


## National Air Quality and Emissions Trends Report

**2003 SPECIAL STUDIES EDITION** 



EPA 454/R-03-005

## National Air Quality and Emissions Trends Report

**2003 SPECIAL STUDIES EDITION** 

U.S. Environmental Protection Agency

Office of Air Quality Planning and Standards Emissions Monitoring and Analysis Division Air Quality Trends Analysis Group Research Triangle Park, North Carolina 27711

September 2003

Derived on recycled paper.

### About the Cover

Cover graphics reflect the range of topics addressed in the series of exploratory analyses studies included in this 2003 Special Studies Edition of the National Air Quality and Emissions Trends Report. Subjects addressed in these studies include new air quality reporting techniques, chemical speciation of  $PM_{2.5}$ , national spatial variation, ozone exceedances, trends in CO concentrations, and transport of Asian dust.

### Disclaimer

This report has been reviewed and approved for publication by the U.S. Environmental Protection Agency's Office of Air Quality Planning and Standards. Mention of trade names or commercial products is not intended to constitute endorsement or recommendation for use.

#### Acknowledgments

The Trends Team would like to acknowledge the members of EPA's Office of Research and Development, Office of Atmospheric Programs, Office of Radiation and Indoor Air, and Office of Transportation and Air Quality for their input for this report; Colorado State University for providing summary data from the IMPROVE monitoring network; support for desktop publishing and Web site development provided under EPA contract 68-D-02-065; and the Trends Workgroup in EPA's Office of Air Quality Planning and Standards for providing comments throughout report development.

### Preface

This is the 28th report on air pollution trends in the United States issued by the U.S. Environmental Protection Agency. The report is prepared by the Air Quality Trends Analysis Group (AQTAG) in Research Triangle Park, North Carolina and is directed toward both the technical air pollution audience and other interested parties and individuals.

The report can be accessed via the Internet at http://www.epa.gov/ airtrends/. AQTAG solicits comments on this report and welcomes suggestions regarding techniques, interpretations, conclusions, or methods of presentation. Comments can be submitted via the website or mailed to:

> Attn: Trends Team AQTAG (C304-01) U.S. EPA Research Triangle Park, NC 27711

Readers can access data from the Aerometric Information Retrieval System (AIRS) at http://www.epa.gov/air/data/index/html and real time air pollution data at http://www.epa.gov/airnow/.

# Contents

| Chapter 1<br>Executive Summary                         | 1  |
|--------------------------------------------------------|----|
| Chapter 2                                              |    |
| Criteria Pollutants — National Trends                  | 7  |
| Carbon Monoxide                                        | 9  |
| Lead                                                   | 13 |
| Nitrogen Dioxide                                       | 17 |
| Ozone                                                  | 22 |
| Particulate Matter                                     | 34 |
| Sulfur Dioxide                                         | 43 |
| References and Notes                                   | 48 |
| Chapter 3                                              |    |
| Criteria Pollutants — Metropolitan Area Trends         | 51 |
| Status: 2000                                           | 51 |
| Trends Analysis                                        | 52 |
| The Air Quality Index                                  | 52 |
| Summary of AQI Analyses                                | 54 |
| A New Display Technique                                | 55 |
| References and Notes                                   | 57 |
| Chapter 4<br>Criteria Pollutants — Nonattainment Areas | 59 |
| Chapter 5 Air Toxics                                   | 63 |
| Chapter 6                                              |    |
| Summary of Exploratory Analyses                        |    |

| Appendix AData Tables.71                                                     |
|------------------------------------------------------------------------------|
| Appendix B<br>Methodology                                                    |
| Special Studies                                                              |
| Impact of April 2001 Asian Dust Event on Particulate Matter Concentrations   |
| in the United States                                                         |
| Chemical Speciation of PM <sub>2.5</sub> in Urban and Rural Areas            |
| Trends in Monitored Concentrations of Carbon Monoxide                        |
| Cumulative Ozone Exceedances—A Measure of Current Year Ozone Levels Compared |
| to Historical Trends                                                         |
| Characterization of National Spatial Variation                               |
| Development of a New Reporting Technique for Air Quality                     |

# **Figures**

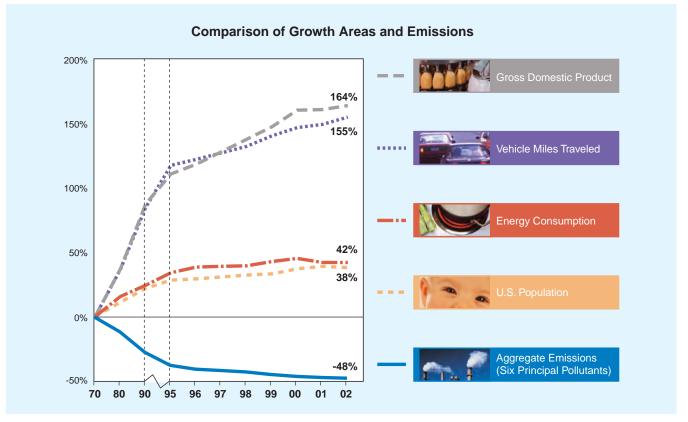
| Figure 2-1.  | Number of people living in counties with air quality concentrations above the level of NAAQS in 2002                         | 8  |
|--------------|------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 2-2.  | CO air quality, 1983–2002, based on annual second maximum 8-hour average                                                     | 9  |
| Figure 2-3.  | Trend in second maximum nonoverlapping 8-hour average CO concentrations by type of location, 1982–2001                       | 10 |
| Figure 2-4.  | Trend in CO second maximum nonoverlapping 8-hour concentrations by EPA Region, 1982–2001                                     | 10 |
| Figure 2-5.  | CO emissions by source category, 2002                                                                                        | 11 |
| Figure 2-6.  | Density map of 2001 CO emissions, by county                                                                                  | 11 |
| Figure 2-7.  | CO emissions, 1983–2002                                                                                                      | 11 |
| Figure 2-8.  | Highest second maximum nonoverlapping 8-hour average CO concentration by county, 2001                                        | 12 |
| Figure 2-9.  | Pb air quality, 1983–2002, based on annual maximum quarterly average                                                         | 14 |
| Figure 2-10. | Maximum quarterly mean Pb concentration trends by location (excluding sites designated as point-source oriented), 1982–2001. | 14 |
| Figure 2-11. | Pb emissions, 1982–2002                                                                                                      | 15 |
| Figure 2-12. | Pb emissions by source category, 2001                                                                                        | 15 |
| Figure 2-13. | Trend in Pb maximum quarterly mean concentration by EPA Region, 1982–2001                                                    | 16 |
| Figure 2-14. | Highest Pb maximum quarterly mean by county, 2001                                                                            | 16 |
| Figure 2-15. | NO <sub>2</sub> air quality, 1982–2001, based on annual arithmetic average                                                   | 18 |
| Figure 2-16. | Trend in annual mean NO <sub>2</sub> concentrations by type of location, 1982–2001                                           | 18 |
| Figure 2-17. | Trend in NO <sub>2</sub> maximum quarterly mean concentration by EPA Region, 1982–2001                                       | 19 |
| Figure 2-18. | NO <sub>x</sub> emissions, 1983–2002                                                                                         | 19 |
| Figure 2-19. | NO <sub>x</sub> emissions by source category, 2002                                                                           | 20 |
| Figure 2-20. | Density map of 2001 NO <sub>2</sub> emissions, by county                                                                     | 21 |
| Figure 2-21. | Highest NO <sub>2</sub> annual mean concentration by county, 2001                                                            | 21 |
| Figure 2-22. | O <sub>3</sub> air quality, 1983–2002, based on annual second maximum 1-hour average                                         | 23 |
| Figure 2-23. | O <sub>3</sub> air quality, 1983–2002, based on annual fourth maximum 8-hour average                                         | 23 |
| Figure 2-24. | Trend in 1-hour O <sub>3</sub> levels, 1983–2002, averaged across EPA Regions, based on annual second highest daily maximum  | 24 |
| Figure 2-25. | Trend in 8-hour O <sub>3</sub> levels, 1983–2002, averaged across EPA Regions, based on annual fourth maximum 8-hour average | 24 |
| Figure 2-26. | Trend in annual second-highest daily maximum 1-hour O <sub>3</sub> concentrations by location, 1983–2002                     | 25 |
| Figure 2-27. | Comparison of actual and meteorologically adjusted 8-hour O <sub>3</sub> trends, 1993–2002                                   | 25 |
| Figure 2-28. | 1-Hour O <sub>3</sub> trends for 1991–2000 and 1992–2001                                                                     | 26 |
| Figure 2-29. | 8-Hour O <sub>3</sub> trends for 1991–2000 and 1992–2001                                                                     |    |
| Figure 2-30. | Median percent change for the period 1995–2001 at PAMS monitors for selected species                                         | 28 |
| Figure 2-31. | Annual 1-hour and 8-hour composite $O_3$ design values in the Atlanta and Chicago-Gary lake county nonattainment areas       | 29 |
| Figure 2-32. | June-August weekday morning average NO <sub>x</sub> and TNMOC at PAMS Type 2 trend sites.                                    | 30 |
| Figure 2-33. | Trends in fourth highest daily 8-hour O <sub>3</sub> concentrations for 34 rural sites from CASTNet, 1990–2001               |    |
| Figure 2-34. | Trend in annual fourth-highest daily maximum 8-hour O <sub>3</sub> concentrations in National Parks, 1992–2001               | 31 |
| Figure 2-35. | VOC emissions, 1983–2002                                                                                                     | 32 |
| Figure 2-36. | Anthropogenic VOC emissions by source category, 2002                                                                         |    |
| Figure 2-37. | Density map of 2001 anthropogenic VOC emissions, by county                                                                   |    |
| Figure 2-38. | PM <sub>10</sub> air quality, 1993–2002, based on seasonally weighted annual average                                         | 35 |
| Figure 2-39. | PM <sub>10</sub> annual mean concentration trends by location, 1992–2001                                                     |    |
| Figure 2-40. | Trend in PM <sub>10</sub> annual mean concentration by EPA Region, 1992–2001                                                 | 36 |
| Figure 2-41. | Highest second maximum 24-hour PM <sub>10</sub> concentration by county, 2001                                                |    |
| Figure 2-42. | National direct PM <sub>10</sub> emissions, 1993–2002 (traditionally inventoried sources only)                               | 38 |
| Figure 2-43. | National direct PM <sub>10</sub> emissions by source category, 2002                                                          | 38 |
| Figure 2-44. | Direct PM <sub>10</sub> emissions density by county, 2001                                                                    |    |
| Figure 2-45. | National direct PM <sub>2.5</sub> emissions, 1993–2002 (traditionally inventoried sources only)                              | 39 |

| Figure 2-46. | Annual average PM <sub>2.5</sub> concentrations (µg/m <sup>3</sup> ) and particle type in rural areas, 2002              | 40 |
|--------------|--------------------------------------------------------------------------------------------------------------------------|----|
| Figure 2-47. | Annual average $PM_{2.5}$ concentrations (µg/m <sup>3</sup> ) and particle type in urban areas, 2002                     | 40 |
| Figure 2-48. | Annual average PM <sub>2.5</sub> concentrations in rural areas                                                           | 41 |
| Figure 2-49. | Annual average PM <sub>2.5</sub> concentrations by county, 2001                                                          | 41 |
| Figure 2-50. | Annual average PM <sub>2.5</sub> concentrations (µg/m <sup>3</sup> ), 2002 (based on seasonally weighted annual average) | 42 |
| Figure 2-51. | SO <sub>2</sub> air quality, 1983–2002, based on annual arithmetic average                                               | 43 |
| Figure 2-52. | Annual mean SO <sub>2</sub> concentration by trend location, 1982–2001                                                   | 44 |
| Figure 2-53. | SO <sub>2</sub> emissions, 1983–2002                                                                                     |    |
| Figure 2-54. | SO <sub>2</sub> emissions by source category, 2002                                                                       |    |
| Figure 2-55. | Direct SO <sub>2</sub> emissions density by county, 2001                                                                 | 45 |
| Figure 2-56. | National SO <sub>2</sub> emissions trend for all Title IV affected units                                                 | 45 |
| Figure 2-57. | Long-term ambient SO <sub>2</sub> trend, 1982–2001                                                                       | 46 |
| Figure 2-58. | Trend in SO <sub>2</sub> annual arithmetic mean concentration by EPA Region, 1982–2001                                   | 47 |
| Figure 2-59. | Highest SO <sub>2</sub> annual mean concentration by county, 2001                                                        | 47 |
| Figure 3-1.  | Air quality index logo                                                                                                   | 54 |
| Figure 3-2.  | Number of days with AQI values > 100, as a percentage of 1990 value                                                      | 55 |
| Figure 3-3.  | Percentage of days over 100 due to ozone                                                                                 | 55 |
| Figure 3-4.  | Sample from the new display technique                                                                                    | 56 |
| Figure 4-1.  | Location of nonattainment areas for criteria pollutants, September 2002                                                  | 59 |
| Figure 4-2.  | Classified ozone nonattainment areas                                                                                     | 60 |
| Figure 5-1.  | Map of 10 cities in monitoring pilot project.                                                                            | 64 |
| Figure 5-2.  | National air toxics emissions, 1996                                                                                      | 64 |
| Figure 5-3.  | National air toxics emissions                                                                                            | 64 |
| Figure 5-4.  | Ambient benzene, annual average urban concentrations, nationwide, 1994–2000                                              | 64 |
| Figure 6-1.  | Urban PM <sub>2.5</sub> increments.                                                                                      | 65 |
| Figure 6-2.  | Monitoring stations showing upward CO trends                                                                             | 67 |
| Figure 6-3.  | Cumulative exceedances—5-year average (97-01) (Atlanta) compared to 2002 data and southeast region average               | 68 |
| Figure 6-4.  | Variance of the difference vs. distance                                                                                  | 69 |
| Figure 6-5.  | CPA vs. distance (km)                                                                                                    | 69 |
| Figure 6-6.  | Comparison of mean CPA vs. distance (km)                                                                                 | 69 |

# **Tables**

| Table 2-1. | NAAQS in Effect as of December 2002                                                               | 7  |
|------------|---------------------------------------------------------------------------------------------------|----|
| Table 2-2. | Milestones in motor vehicle emission control                                                      | 12 |
| Table 2-3. | Trends in TNMOC, NO <sub>x'</sub> and Selected VOC Species                                        | 28 |
| Table 2-4. | Summary of 1991-2001 Trends in Ozone Design Values and 1995-2001 Trends in Summer Weekday Morning |    |
|            | Ozone Precursor Trends in Atlanta and Chicago.                                                    | 30 |
| Table 2-5. | Biogenic Sources of VOC Emissions by Region                                                       | 32 |
| Table 3-1. | Summary of MSA Trend Analyses by Pollutant, 1990–1999                                             | 52 |
| Table 3-2. | AQI Categories, Colors, and Ranges.                                                               | 54 |
| Table 4-1. | Areas Redesignated to Attainment from September 2001 to September 2002                            | 61 |
| Table 6-1. | Estimated PM <sub>2.5</sub> Concentrations Attributable to Asian Dust Cloud                       | 66 |

# Acronyms


| AIRS     | Aerometric Information Retrieval      | $NO_2$            | nitrogen dioxide                      |
|----------|---------------------------------------|-------------------|---------------------------------------|
|          | System                                | NOx               | nitrogen oxides                       |
| AQI      | Air Quality Index                     | NPŜ               | National Park Service                 |
| AQS      | Air Quality System                    | NTI               | National Toxics Inventory             |
| AQTAG    | Air Quality Trends Analysis Group     | O <sub>2</sub>    | oxygen                                |
| CAA      | Clean Air Act                         | $O_3^2$           | ozone                                 |
| CAAA     | Clean Air Act Amendments              | PAMS              | Photochemical Assessment              |
| CASTNet  | Clean Air Status and Trends Network   |                   | Monitoring Stations                   |
| CEMs     | continuous emissions monitors         | PAN               | peroxyacetyl nitrate                  |
| CFC      | chlorofluorocarbons                   | Pb                | lead                                  |
| CFR      | Code of Federal Regulations           | PM                | particulate matter                    |
| CMSA     | consolidated metropolitan statistical | $PM_{10}$         | particulate matter of 10 micrometers  |
|          | area                                  |                   | in diameter or less                   |
| CO       | carbon monoxide                       | PM <sub>2.5</sub> | particulate matter of 2.5 micrometers |
| CPA      | coefficient of perfect agreement      |                   | in diameter or less                   |
| EGR      | emission gas recycle                  | PMSA              | primary metropolitan statistical area |
| EPA      | Environmental Protection Agency       | POC               | pollutant occurrence code             |
| GLM      | General Linear Model                  | ppm               | parts per million                     |
| HAPs     | hazardous air pollutants              | PSI               | Pollutant Standards Index             |
| I/M      | inspection and maintenance            | RVP               | Reid Vapor Pressure                   |
| IMPROVE  | Interagency Monitoring of Protected   | SLAMS             | State and Local Air Monitoring        |
|          | Environments                          |                   | Stations                              |
| MACT     | maximum achievable control            | SO <sub>2</sub>   | sulfur dioxide                        |
|          | technology                            | SO <sub>x</sub>   | sulfur oxides                         |
| MSA      | metropolitan statistical area         | STN               | Speciation Trends Network             |
| MDL      | minimum detectable level              | TNMOC             | total non-methane organic             |
| NAAQS    | National Ambient Air Quality          |                   | compound                              |
|          | Standards                             | TSP               | total suspended particulate           |
| NADP/NTN |                                       | VMT               | vehicle miles traveled                |
|          | Program/National Trends Network       | VOCs              | volatile organic compounds            |
| NAMS     | National Air Monitoring Stations      | µg/m <sup>3</sup> | micrograms per cubic meter            |
| NEI      | National Emissions Inventory          |                   |                                       |

# **Executive Summary**

#### http://www.epa.gov/oar/airtrends

This 28th National Air Quality and Emission Trends Report documents air pollution trends in the United States, focusing on the 20-year period from 1983 to 2002 or 1982 to 2001 if that is the most recent data available. This document highlights the U.S. Environmental Protection Agency's (EPA's) most recent thorough assessment of the nation's air quality, and, for the first time, brings special attention to a series of special studies of policy-relevant air quality issues (see Chapter 6 and the Special Studies section).

In the future, the detailed information traditionally contained in this report will be provided on the Web at http://www.epa.gov/airtrends to facilitate timely updates. A summary of that information will be published each summer as it has for the past several years in EPA's *Latest Findings on National Air Quality: Status and Trends*. This *National Air Quality and Emissions Trends Report* will no longer appear annually in hard copy. Expect future reports to focus on special studies as this report does.



Between 1970 and 2002, gross domestic product increased 164 percent, vehicle miles traveled increased 155 percent, energy consumption increased 42 percent, and U.S. population increased 38 percent. At the same time, total emissions of the six principal air pollutants decreased 48 percent.

## Highlights

- National air quality levels measured at thousands of monitoring stations across the country have shown improvements over the past 20 years for all six principal pollutants.
- Since 1970, aggregate emissions of the six principal pollutants have been cut 48 percent. During that same time, U.S. gross domestic product increased 164 percent, energy consumption increased 42 percent, and vehicle miles traveled increased 155 percent.
- Despite this progress, about 160 million tons of pollution are emitted into the air each year in the United States. Approximately 146 million people live in counties where monitored air in 2002 was unhealthy at times because of high levels of at least one of the six principal air pollutants.
- The vast majority of areas that experienced unhealthy air did so because of one or both of two pollutants—ozone and particulate matter (PM). Important efforts to control these pollutants include implementing more protective National Ambient Air Quality Standards (NAAQS) for ozone and PM and issuing rules to reduce emissions from onroad transportation and stationary combustion sources. These rules will bring reductions in emissions over the next several years.
- Additional reductions will be needed to provide clean air in the future. For example, the Clear Skies legislation currently being considered in Congress would, if enacted, mandate reductions of particle- and ozone-forming compounds from power generators by 70 percent from current levels

200 250 180 1970 2002 160 200 140 Thousand Tons Million Tons 120 150 100 80 100 60 40 50 20

VOC

(-51%)

through a nationwide cap and trade program. This will also reduce acid rain and improve visibility. Also, in May 2003, EPA proposed nonroad diesel engine regulations that would help improve PM and ozone air quality. By 2030, this program would reduce annual emissions of PM by 95 percent, nitrogen oxides (NO<sub>x</sub>) by 90 percent, and sulfur levels by 99 percent from these engines.

0

CO

(-48%)

NO<sub>x</sub>

(-17%)

• Of the six tracked pollutants, progress has been slowest for ground-level ozone. Over the past 20 years, almost all geographic areas experienced some progress in lowering ozone concentrations. The Northeast and Pacific Southwest exhibited the greatest improvement. In particular, substantial progress seen in Los Angeles has continued through 2002. However, the national average ozone (8-hour) levels have been fairly constant in other metropolitan areas. An analysis to adjust 8-hour ozone levels in metropolitan areas to account for the influence of meteorological conditions shows the 10-year trend to be relatively unchanged. At the same time, for many national

parks, the 8-hour ozone levels have increased somewhat.

0

Pb

(-98%)<sup>b</sup>

- Ground-level ozone is not emitted directly into the air, but is formed in the atmosphere by the reaction of volatile organic compounds (VOCs) and NO<sub>v</sub> in the presence of heat and sunlight. Emissions of VOCs have decreased about 40 percent over the past 20 years. However, regional-scale NO<sub>v</sub> reductions over the same period are only 15 percent. More NO<sub>v</sub> reductions will be necessary before more substantial ozone air quality improvements are realized. Some of these additional reductions will result from existing and recently enacted NO<sub>v</sub> emission reduction programs and also, potentially, from the Clear Skies legislation, if enacted.
- The improvement in overall emissions since 1970 included in this year's findings reflect more accurate estimates of VOC, NO<sub>x</sub>, PM, and carbon monoxide (CO) releases from highway vehicles and nonroad engines. Previous years' findings underreported emissions for cars and trucks in the 1970s and 1980s. This year's findings incorporate improvements in

SO<sub>2</sub>

(-52%)

PM<sub>10</sub>

(-34%)<sup>a</sup>

EPA's mobile source emission models, which are based on actual emissions measurements from thousands of motor vehicles and have been peer-reviewed. The new mobile model better represents average U.S. driving habits, such as more rapid accelerations and faster highway speeds.

- Sulfates formed primarily from sulfur dioxide (SO<sub>2</sub>) emissions from coal-fired power plants are a major component of fine particles (known as  $PM_{25}$ ) in the eastern United States. SO<sub>2</sub> emissions decreased approximately 33 percent from 1983 to 2002. Nationally, average SO<sub>2</sub> ambient concentrations have been cut approximately 54 percent over the same period. Reductions in SO<sub>2</sub> concentrations and emissions since 1990 are primarily due to controls implemented under EPA's Acid Rain Program. Sulfate reductions since 1999 are partly responsible for some improvement in ambient fine particle concentrations, particularly in the southeastern United States.
- In many locations, EPA now has 4 years of air quality monitoring data for PM<sub>2.5</sub>. Areas across the Southeast, Mid-Atlantic, Midwest regions, and California have air quality that is unhealthy due to particle pollution. Region-wide emissions from power plants and motor vehicles are among the largest contributors to the high PM<sub>2.5</sub> concentrations.
- Since 1990, many actions have been taken that will significantly reduce air toxics across the country. Specifically, regulations for facilities such as chemical plants, dry cleaners, coke ovens, and incinerators will reduce emissions of toxic air pollution by 1.5 million

tons from 1990 levels. In addition, recent actions to address emissions of toxic air pollutants from motor vehicles as well as stringent standards for heavy-duty trucks, buses, and diesel fuel will eliminate 95 percent of emissions of diesel particulate matter.

• Measurements have shown that atmospheric concentrations of methyl chloroform are falling, indicating that emissions have been greatly reduced. Concentrations of other ozone-depleting substances in the upper layers of the atmosphere, like chlorofluorocarbons (CFCs), are also beginning to decrease.

## **Air Pollution**

## The Concern

Exposure to air pollution is associated with numerous effects on human health, including respiratory problems, hospitalization for heart or lung diseases, and even premature death. Children are at greater risk because they are generally more active outdoors and their lungs are still developing. The elderly and people with heart or lung diseases are also more sensitive to some types of air pollution.

Air pollution can also significantly affect ecosystems. For example, ground-level ozone has been associated with reductions of agricultural and commercial forest yields, and airborne releases of  $NO_x$  are one of the largest sources of nitrogen pollution in certain waterbodies, such as the Chesapeake Bay.

## The Causes

Air pollution comes from many different sources. These include large stationary sources such as factories, power plants, and smelters; smaller sources such as dry cleaners and degreasing operations; mobile sources such as cars, buses, planes, trucks, and trains; and natural sources such as windblown dust and wildfires.

## Under the Clean Air Act

EPA establishes air quality standards to protect public health, including the health of "sensitive" populations such as children, older adults, and people with asthma. EPA also sets limits to protect public welfare. This includes protecting ecosystems, including plants and animals, from harm, as well as protecting against decreased visibility and damage to crops, vegetation, and buildings.

EPA has set national air quality standards for six principal air pollutants (also called the criteria pollutants): nitrogen dioxide (NO<sub>2</sub>), ozone (O<sub>3</sub>), sulfur dioxide, particulate matter, carbon monoxide, and lead (Pb). Four of these pollutants (CO, Pb, NO<sub>2</sub>, and SO<sub>2</sub>) are emitted directly from a variety of sources. Ozone is not directly emitted, but is formed when NO<sub>v</sub> and VOCs react in the presence of sunlight. PM can be directly emitted, or it can be formed when emissions of nitrogen oxides, sulfur oxides, ammonia, organic compounds, and other gases react in the atmosphere.

Each year EPA looks at the levels of these pollutants in the air and the amounts of emissions from various sources to see how both have changed over time and to summarize the current status of air quality.

## **Reporting Air Quality and Emissions Trends**

Each year, air quality trends are created using measurements from monitors located across the country. The following table shows that the air quality based on concentrations

|                    | Percent Change in Air Quality<br>1983-2002 1993-2002 |                       |
|--------------------|------------------------------------------------------|-----------------------|
| NO <sub>2</sub>    | -21                                                  | -11                   |
| O <sub>3</sub> 1-h | -22                                                  | $-2^{a}$<br>+ $4^{a}$ |
| 8-h                | -14                                                  | $+4^{a}$              |
| SO <sub>2</sub>    | -54                                                  | -39                   |
| PM <sub>10</sub>   |                                                      | -13                   |
| PM <sub>2.5</sub>  | —                                                    | -8 <sup>b</sup>       |
| СО                 | -65                                                  | -42                   |
| Pb                 | -94                                                  | -57                   |

#### Percent Change in Emissions 1983-2002 1993-2002

| NO <sub>x</sub>                | -15              | -12 |
|--------------------------------|------------------|-----|
| VOC                            | -40              | -25 |
| SO <sub>2</sub>                | -33              | -31 |
| PM <sub>10</sub> <sup>c</sup>  | -34 <sup>d</sup> | -22 |
| PM <sub>2.5</sub> <sup>c</sup> | —                | -17 |
| СО                             | -41              | -21 |
| Pbe                            | -93              | -5  |

—Trend data not available.

<sup>a</sup> Not statistically significant.

- <sup>b</sup> Based on percentage change from 1999.
- <sup>c</sup> Includes only directly emitted particles.
- <sup>d</sup> Based on percentage change from 1985. Emission estimates prior to 1985 are uncertain.
- <sup>e</sup> Lead emissions are included in the toxic air pollutant emissions inventory and are presented for 1982-2001.

Negative numbers indicate improvements in air quality or reductions in emissions. Positive numbers show where emissions have increased.

> of the principal pollutants has improved nationally over the past 20 years (1983–2002).

EPA estimates nationwide emissions of ambient air pollutants and the pollutants they are formed from (their precursors). These estimates are based on actual monitored readings or engineering calculations of the amounts and types of pollutants emitted by vehicles, factories, and other sources. Emission estimates are based on many factors, including levels of industrial activity, technological developments, fuel consumption, vehicle miles traveled, and other activities that cause air pollution.

Methods for estimating emissions continue to improve. Today's estimates are different from last year's estimates. One reason is because this year EPA used updated, peerreviewed models that estimate VOC, NO<sub>x</sub>, CO, and PM emissions from highway vehicles and nonroad engines and and better represent real-world conditions, such as more rapid accelerations and faster highway speeds. The emissions estimates generated by the new highway vehicle model are derived from actual tailpipe measurements from thousands of vehicles. Another change in the reporting of emissions trends is that emissions from wildfires and prescribed burnings are not considered in the estimates of emission change. This is due to the large variability in the year-to-year levels of these emissions and the relatively small impact these distant emissions have on most monitoring locations. Because of the high degree of uncertainty in predicting emissions for these fires, their emissions have not been projected for 2002 for PM, CO, and VOCs. These emissions will be estimated when 2002 acres-burned data become available. However, fire emissions are included in the emission graphics through 2001. As a result of these reporting changes, some emissions trends have changed significantly. For example, rather than describing no change in the 20-year emission trend for CO, EPA now estimates a 41 percent decrease in CO emissions from 1983 to 2002. This estimated change in emissions is supported by the trend in CO air quality.

Emissions of air pollutants continue to play an important role in a number of air quality issues. About 160 million tons of pollution are emitted into the atmosphere each year in the United States. These emissions mostly contribute to the formation of ozone and particles, the deposition of acids, and visibility impairment.

Despite great progress in air quality improvement, approximately 146 million people nationwide lived in counties with pollution levels above the NAAQS in 2002. Out of the 230 nonattainment areas identified during the 1990 Clean Air Act Amendments designation process, 124 areas remain. In these nonattainment areas, however, the severity of air pollution episodes has decreased.

## The Clean Air Act

The Clean Air Act provides the principal framework for national, state, tribal, and local efforts to protect air quality. Improvements in air quality are the result of effective implementation of clean air laws and regulations, as well as efficient industrial technologies. Under the Clean Air Act, EPA has a number of responsibilities, including

- Conducting periodic reviews of the NAAQS for the six principal pollutants that are considered harmful to public health and the environment.
- Ensuring that these air quality standards are met (in cooperation with the state, tribal, and local governments) through national standards and strategies to control air pollutant emissions from vehicles, factories, and other sources.
- Reducing emissions of SO<sub>2</sub> and NO<sub>x</sub> that cause acid rain.
- Reducing air pollutants such as PM, SO<sub>x</sub>, and NO<sub>x</sub>, which can reduce visibility across large regional areas, including many of the nation's most treasured parks and wilderness areas.

- Ensuring that sources of toxic air pollutants that may cause cancer and other adverse human health and environmental effects are well controlled and that the risks to public health and the environment are substantially reduced.
- Limiting the use of chemicals that damage the stratospheric ozone layer in order to prevent increased levels of harmful ultraviolet radiation.

## Criteria Pollutants — Metropolitan Area Trends

Out of 263 metropolitan statistical areas, 34 have significant upward trends. Of these, only those trends involving 8-hour ozone had values over the level of the air quality standard.

Of the five criteria pollutants used to calculate the Air Quality Index (AQI), only four (CO,  $O_3$ ,  $PM_{10}$ , and  $SO_2$ ) generally contribute to the AQI value. Nitrogen dioxide is rarely the highest pollutant measured. Although five criteria pollutants can contribute to the AQI, the index is usually driven mostly by ozone.

## Criteria Pollutants — Official Nonattainment Areas

As of September 2002, there were a total of 124 classified nonattainment areas on the condensed nonattainment list (see Table A-19). The areas on the condensed list are displayed alphabetically by state. There were, as of September 2002, approximately 126 million people living in classified areas designated as nonattainment for at least one of the criteria pollutants.

## **Air Toxics**

EPA has developed a National-Scale Air Toxics Assessment, which is a nationwide analysis of air toxics. The assessment uses computer modeling of the 1996 National Emissions Inventory (NEI) air toxics data as the basis for developing health risk estimates for 33 toxic air pollutants (a subset of the Clean Air Act's list of 188 air toxics plus diesel PM). The highest ranking 20 percent of the counties in terms of risk (622 counties) contain almost three-fourths of the U.S. population. Three air toxics (chromium, benzene, and formaldehyde) appear to pose the greatest nationwide carcinogenic risk. One air toxic, acrolein, is estimated to pose the highest potential nationwide for significant chronic adverse effects other than cancer.

## **Special Studies**

For the first time, a series of policyrelevant studies and exploratory analyses are summarized in this report (see Chapter 6). These studies address analysis of PM concentrations, carbon monoxide trends, the number of days above AQI levels of 100 for the ozone NAAQS, the spatial variation of air pollutants, and a proposed new reporting technique for air quality data. The full reports are also included in this Special Studies edition. NATIONAL AIR QUALITY AND EMISSIONS TRENDS REPORT, 2003

## Criteria Pollutants — National Trends

#### http://www.epa.gov/oar/airtrends

This chapter presents national and regional trends for each of the six criteria pollutants for which the U.S. Environmental Protection Agency (EPA) has established National Ambient Air Quality Standards (NAAQS): carbon monoxide (CO), lead (Pb), nitrogen dioxide (NO<sub>2</sub>), ozone (O<sub>3</sub>), particulate matter (PM), and sulfur dioxide (SO<sub>2</sub>). Table 2-1 lists the NAAQS for each pollutant in terms of the level and averaging time of the standard used to evaluate compliance.

There are two types of standards: primary and secondary. Primary standards protect against adverse human health effects, whereas secondary standards protect against welfare effects such as damage to crops, ecosystems, vegetation, and buildings, as well as decreased visibility. There are primary standards for all of the criteria pollutants. Some pollutants (PM and SO<sub>2</sub>) have primary standards for both longterm (annual average) and shortterm (24 hours or less) averaging times. Short-term standards most directly protect people from adverse health effects associated with peak short-term exposures to air pollution, whereas long-term standards can protect people from adverse health effects associated with short- and long-term exposures to air pollution.

| Table 2-1 | NAAQS | in Effect | as of | December  | 2002 |
|-----------|-------|-----------|-------|-----------|------|
|           |       |           | 40.01 | Doooniboi | 2002 |

|                   | Primary S<br>(Health-R                           |                                              | Secondary<br>(Welfare-   |                                              |
|-------------------|--------------------------------------------------|----------------------------------------------|--------------------------|----------------------------------------------|
| Pollutant         | Type of Average                                  | Standard Level<br>Concentration <sup>a</sup> | Type of Average          | Standard Level<br>Concentration <sup>a</sup> |
| со                | 8-hour <sup>b</sup>                              | 9 ppm<br>(10 mg/m <sup>3</sup> )             | No Secondary Standard    |                                              |
|                   | 1-hour <sup>b</sup>                              | 35 ppm<br>(40 mg/m <sup>3</sup> )            | No Secondary Sta         | andard                                       |
| Pb                | Maximum<br>Quarterly Average                     | 1.5 µg/m <sup>3</sup>                        | Same as Primary          | Standard                                     |
| NO <sub>2</sub>   | Annual<br>Arithmetic Mean                        | 0.053 ppm<br>(100 μg/m <sup>3</sup> )        | Same as Primary          | Standard                                     |
| 03                | Maximum Daily<br>1-hour Average <sup>c</sup>     | 0.12 ppm<br>(235 μg/m <sup>3</sup> )         | Same as Primary          | Standard                                     |
|                   | 4th Maximum Daily <sup>d</sup><br>8-hour Average | 0.08 ppm<br>(157 μg/m <sup>3</sup> )         | Same as Primary          | Standard                                     |
| PM <sub>10</sub>  | Annual<br>Arithmetic Mean                        | 50 µg/m <sup>3</sup>                         | Same as Primary Standard |                                              |
|                   | 24-hour <sup>e</sup>                             | 150 µg/m <sup>3</sup>                        | Same as Primary          | Standard                                     |
| PM <sub>2.5</sub> | Annual<br>Arithmetic Mean <sup>f</sup>           | 15 μg/m <sup>3</sup>                         | Same as Primary          | Standard                                     |
|                   | 24-hour <sup>g</sup>                             | 65 µg/m <sup>3</sup>                         | Same as Primary          | Standard                                     |
| SO2               | Annual<br>Arithmetic Mean                        | 0.03 ppm<br>(80 µg/m <sup>3</sup> )          | 3-hour <sup>b</sup>      | 0.50 ppm<br>(1,300 µg/m <sup>3</sup> )       |
|                   | 24-hour <sup>b</sup>                             | 0.14 ppm<br>(365 μg/m <sup>3</sup> )         |                          |                                              |

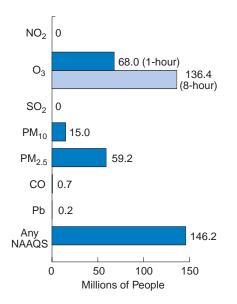
<sup>a</sup> Parenthetical value is an approximately equivalent concentration. (See 40 CFR Part 50.)

<sup>b</sup> Not to be exceeded more than once per year.

<sup>c</sup> The standard is attained when the expected number of days per calendar year with maximum hourly average concentrations above 0.12 ppm is equal to or less than 1, as determined according to Appendix H of the Ozone NAAQS.

<sup>d</sup> Three-year average of the annual 4th highest daily maximum 8-hour average concentration.

<sup>e</sup> The short-term (24-hour) standard of 150 µg/m<sup>3</sup> is not to be exceeded more than once per


year on average over 3 years.

<sup>f</sup> Spatially averaged over designated monitors.

<sup>g</sup> The form is the 98th percentile.

Secondary standards have been established for each criteria pollutant except CO. Secondary standards are identical to the primary standards, with the exception of the one for SO<sub>2</sub>. As Figure 2-1 shows, approximately 146 million people in the United States reside in counties that did not meet the primary standard for at least one of the criteria pollutants for the single year 2002.

Figure 2-1. Number of people living in counties with air quality concentrations above the level of NAAQS in 2002.



The trends information presented in this chapter is based on two types of data: ambient concentrations and emissions estimates. Ambient concentrations are measurements of pollutant concentrations in the ambient air from monitoring sites across the country. This year's report contains trends data accumulated between 1983 and 2002 on the criteria pollutants at thousands of monitoring stations located throughout the United States. For some pollutants, 2002 data are provided; for other pollutants (e.g., lead), 2001 data are

reported. In each case, the most recent, complete data are used, with the relevant years clearly noted. The trends presented here are derived from the composite average of these direct measurements. The averaging times and air quality statistics used in the trends calculations relate directly to the NAAQS.

The second type of data presented in this chapter are national emissions estimates. These are based largely on engineering calculations of the amounts and kinds of pollutants emitted by automobiles, factories, and other sources over a given period. In addition, some emissions estimates are based on measurements from continuous emissions monitors (CEMs) that have been installed at major electric utilities to measure actual emissions. The emissions data summarized in this chapter and in Appendix A were obtained from the National Emission Inventory data located at

#### http://www.epa.gov/ttn/chief.

Methods for estimating emissions continue to evolve. For example, the emissions data presented here reflect the use of new models for estimating volatile organic compounds (VOCs), nitrogen oxides (NO<sub>x</sub>), and CO emissions from highway vehicles and nonroad engines. Also, emissions from wildfires and prescribed burning have not been projected for 2002 for PM, CO, and VOCs, due to the high degree of uncertainty in predicting emissions for these fires. For a complete description of the methodology changes for calculating emissions, see Appendix B.

Changes in ambient concentrations do not always match changes in national emissions estimates, for several reasons. First, because most monitors are positioned in urban, population-oriented locales, air

quality trends are more likely to track changes in urban emissions rather than changes in total national emissions. Urban emissions are generally dominated by mobile sources, whereas total emissions in rural areas may be dominated by large stationary sources such as power plants and smelters.

Second, emissions for some pollutants are calculated or measured in a different form than the primary air pollutant. For example, concentrations of  $O_3$  are caused by VOC emissions as well as NO<sub>v</sub> emissions.

Third, the amount of some pollutants measured at monitoring locations depends on what chemical reactions, if any, occur in the atmosphere during the time it takes the pollutant to travel from its source to the monitoring station.

Fourth, meteorological conditions often control the formation and buildup of pollutants in the ambient air. For example, peak ozone concentrations typically occur during hot, dry, stagnant summertime conditions. CO is predominantly a cold weather problem. Also, the amount of rainfall can affect particulate matter levels.

Fifth, emissions estimates have uncertainties and may not reflect actual emissions. In some cases, estimation methods are not consistent across all years presented in this report.

For a more detailed discussion of the methodology used to compute the trend statistics in this chapter, please refer to Appendix B.

## Carbon Monoxide

| Air Quality              | Conc | entrations |
|--------------------------|------|------------|
| 1983–02                  | 65%  | decrease   |
| 1993–02                  | 42%  | decrease   |
|                          |      |            |
| Emissions                |      |            |
| <b>Emissions</b> 1983–02 | 41%  | decrease   |

## **Worth Noting**

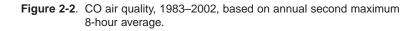
- Nationally, carbon monoxide (CO) levels for 2002 are the lowest recorded in the past 20 years and improvement is consistent across all regions of the country.
- All of the original 42 areas designated nonattainment for the 8hour CO NAAQS in 1991 met the CO NAAQS in 2001–2002.
- However, three additional areas failed to meet the CO NAAQS in 2001–2002.

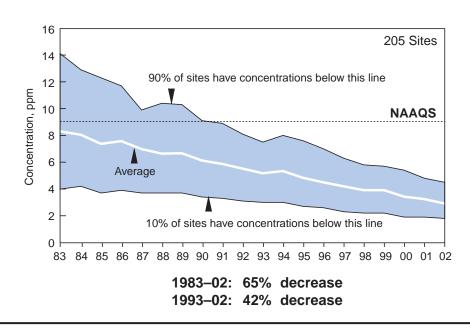
## **Nature and Sources**

Carbon monoxide is a colorless and odorless gas, formed when carbon in fuel is not burned completely. It is a component of motor vehicle exhaust, which contributes about 60 percent of all CO emissions nationwide. Nonroad vehicles account for the remaining CO emissions from transportation sources. High concentrations of CO generally occur in areas with heavy traffic congestion. In cities, as much as 95 percent of all CO emissions may come from automobile exhaust. Other sources of CO emissions include industrial processes, nontransportation fuel combustion, and natural sources such as wildfires. Peak CO concentrations typically occur during the colder months of the year when CO automotive emissions are greater and nighttime inversion conditions (where air pollutants are trapped

near the ground beneath a layer of warm air) are more frequent.

## **Health Effects**


CO enters the bloodstream through the lungs and reduces oxygen delivery to the body's organs and tissues. The health threat from levels of CO sometimes found in the ambient air is most serious for those who suffer from cardiovascular disease such as angina pectoris. At much higher levels of exposure not commonly found in ambient air, CO can be poisonous, and even healthy individuals may be affected. Visual impairment, reduced work capacity, reduced manual dexterity, poor learning ability, and difficulty in performing complex tasks are all associated with exposure to elevated CO levels.


## **Primary Standards**

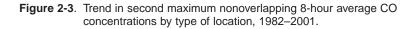
There are two primary NAAQS for ambient CO: a 1-hour average of 35 ppm and an 8-hour average of 9 ppm. These concentrations are not to be exceeded more than once per year. There currently are no secondary standards for CO.

## **National Air Quality Trends**

Nationally, CO concentrations have consistently declined over the past 20 years. Figure 2-2 reveals a 65 percent improvement in composite average ambient CO concentrations from 1983 to 2002 and a 42 percent reduction over the past 10 years.<sup>1</sup> Following an upturn in 1994, the nation experienced year-to-year reductions in peak 8-hour CO concentrations through the remainder of the decade. In fact, the 2002 CO levels were the lowest recorded during the past 20 years. Exceedances of the 8-hour CO NAAQS (which are simply a count of the number of times the level of the standard is exceeded) have declined. In fact, all of the original 42 areas designated nonattainment for the 8-hour CO NAAQS in 1991 met the CO NAAOS in 2001-2002. However, three additional areas failed to meet the CO NAAQS in 2001-2002. This improvement occurred despite a 23 percent increase in vehicle miles traveled in the United States during the past 10 years.






Long-term reductions in ambient CO concentrations have been measured across all monitoring environments—rural, suburban, and urban sites. Figure 2-3 shows that, on average, urban monitoring sites record higher CO concentrations than do suburban sites, with the lowest levels found at four rural sites. During the past 20 years, the 8-hour CO concentrations decreased 44 percent at 4 rural monitoring sites, 60 percent at 89 suburban sites, and 63 percent at 116 urban sites.

#### **Regional Air Quality Trends**

The map in Figure 2-4 shows regional trends in ambient CO concentrations during the past 20 years, 1982 to 2001. All 10 EPA Regions recorded 20-year improvements in CO levels as measured by the regional composite mean concentrations. Significant 20-year concentration reductions of 50 percent or more were evidenced across the nation.

#### **National Emissions Trends**

Figure 2-5 shows that the transportation category, composed of onroad and nonroad sources, accounted for 82 percent of the nation's total CO



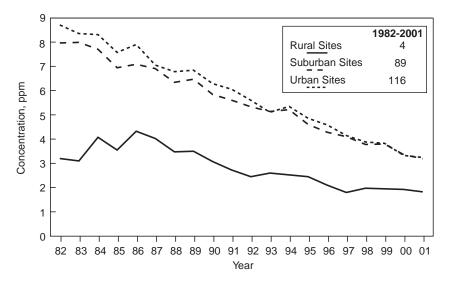
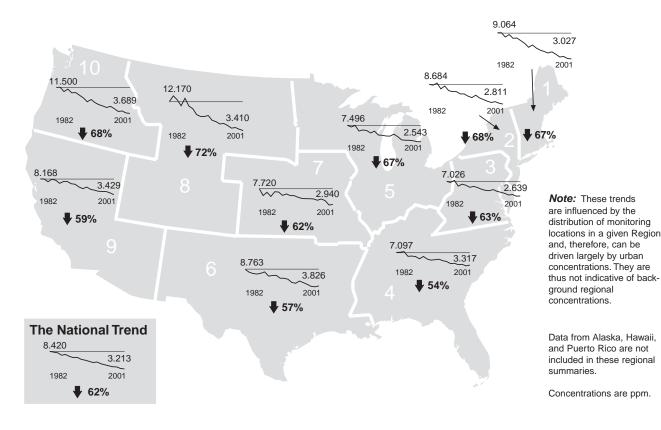
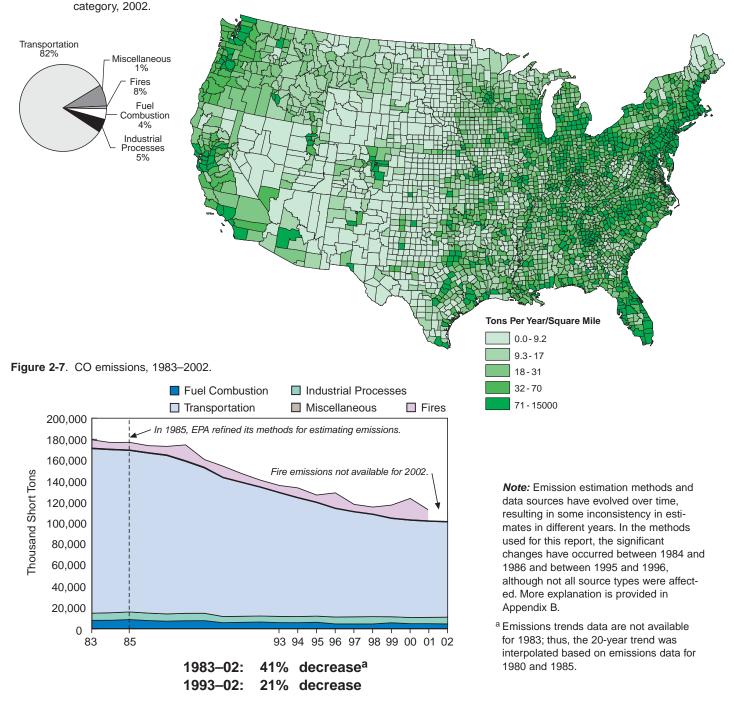




Figure 2-4. Trend in CO second maximum nonoverlapping 8-hour concentrations by EPA Region, 1982–2001.




emissions in 2002. Figure 2-6 presents the broad geographic distributions of 2001 CO emissions based on the tonnage per square mile for each county. This visualization clearly shows that the eastern third of the country and the West Coast emitted more CO (on a density basis) than

Figure 2-5. CO emissions by source

did the western two-thirds of the continental United States. As a result of automotive emissions control programs, CO emission have decreased 41 percent the past 20 years (1983 to 2002) and 21 percent in the past 10 years (1993 to 2002) despite a 155 percent increase in VMT since 1970 (see Figure 2-7). However, emissions from all transportation sources have decreased only 10 percent over the same period, primarily due to an increase in offroad emissions that has offset the gains realized in reductions of onroad vehicle emissions.





11

Table 2-2 lists some of the major milestones in the control of emissions from automobiles, starting with the Clean Air Act (the Act) of 1970. At the national level, these measures, which have led to reductions in emissions of CO as well as other pollutants, include establishing national standards for tailpipe emissions, new vehicle technologies, and clean fuels programs. State and local emissions reduction measures include inspection and maintenance

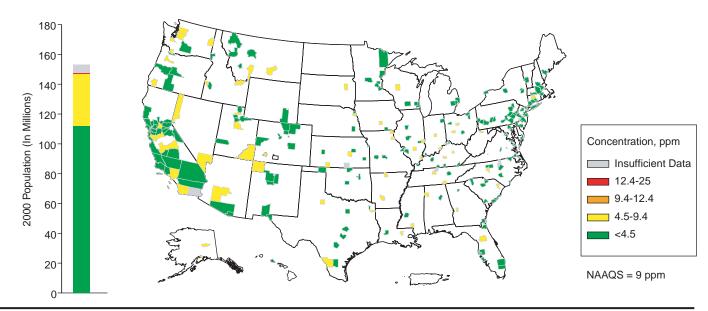
(I/M) programs and transportation management programs.

In the area of clean fuels, the 1990 Clean Air Act Amendments (1990 Amendments) require oxygenated gasoline programs in several regions of the country during the winter months. Under the program regulations, a minimum oxygen content (2.7 percent by weight) is required in gasoline to ensure more complete fuel combustion.<sup>2,3</sup> Of the 36 CO nonattainment areas that initially

Table 2-2. Milestones in motor vehicle emission control.

| 1970 | New Clean Air Act sets auto emissions standards.                     | 1989 | Fuel volatility limits are set for Reid Vapor Pressure (RVP).                               |
|------|----------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------|
| 1971 | Charcoal canisters appear to meet evaporative standards.             | 1990 | The 1990 Amendments set ner tailpipe standards.                                             |
| 1973 | valves appear to meet NO <sub>x</sub>                                | 1992 | Oxyfuel introduced in cities with high CO levels.                                           |
| 1974 | · · · · · <b>,</b> · · · · · · · · · · · ·                           | 1993 | Limits set on sulfur content of diesel fuel.                                                |
| 1975 | The first catalytic converters appear for hydrocarbon, CO.           | 1994 | Phase-in begins of new vehicle standards and technologies.                                  |
|      | Unleaded gas appears for use in catalyst-equipped cars.              | 1995 | Onboard diagnostic systems in 1996 model-year cars.                                         |
| 1981 | Three-way catalysts with onboard computers and $O_2$ sensors appear. | 1995 | Phase I Federal Reformulated<br>Gasoline sales begin in worst<br>ozone nonattainment areas. |
| 1983 | Inspection and maintenance<br>programs (I/M) programs are            | 1998 | Sales of 1999 model-year                                                                    |

programs (I/M) programs are established in 64 cities.


- Pressure (RVP). Amendments set new ndards. roduced in cities O levels. on sulfur content iel. egins of new vehicle and technologies. iagnostic systems odel-year cars. deral Reformulated ales begin in worst attainment areas.
- 999 model-year California emissions-equipped vehicles begin in the Northeast.

implemented the program in 1992, 15 areas participated in the program during 2000.<sup>4</sup>

### 2001 Air Quality Status

The map in Figure 2-8 shows the variations in CO concentrations across the country in 2001. The air quality indicator is the largest annual second maximum 8-hour CO concentration measured at any site in each county. The bar chart to the left of the map displays the number of people living in counties within each concentration range. The colors on the map and bar chart in Figure 2-8 correspond to the colors of the concentration ranges displayed in the map legend. The only areas not meeting the 8-hour CO NAAQS in 2001–2002 are Birmingham, AL, Calexico, CA, and Weirton, WV.

Figure 2-8. Highest second maximum nonoverlapping 8-hour average CO concentration by county, 2001.



## Lead

| Air Quality                 | / Conc | entrations |  |
|-----------------------------|--------|------------|--|
| 1983–02                     | 94%    | decrease   |  |
| 1993–02                     | 57%    | decrease   |  |
|                             |        |            |  |
| Emissions                   |        |            |  |
| <b>Emissions</b><br>1982–02 | 93%    | decrease   |  |

## Worth Noting

 The lead (Pb) monitoring strategy now focuses on emissions from point sources since large reductions in long-term Pb emissions from transportation sources have occurred due to phase-out of leaded gasoline.

## **Nature and Sources**

In the past, automotive sources were the major contributor of lead emissions to the atmosphere. As a result of EPA's regulatory efforts to reduce the content of lead in gasoline, however, the contribution of air emissions of lead from the transportation sector, and particularly the automotive sector, has greatly declined over the past two decades. Today, industrial processes, primarily metals processing, are the major source of lead emissions to the atmosphere. The highest air concentrations of lead are usually found in the vicinity of smelters and battery manufacturers.

## **Health and Environmental Effects**

Exposure to lead occurs through ingestion of lead in food, water, soil, or dust and through inhalation. It accumulates in the blood, bones, and soft tissues. Lead can also adversely affect the kidneys, liver, nervous system, and other organs. Excessive exposure to lead may cause neurological impairments such as seizures, mental retardation, and/or behavioral disorders. Even at low doses, Pb exposure is associated with changes in fundamental enzymatic, energy transfer, and homeostatic mechanisms in the human body. Additionally, even low levels of Pb exposure may cause central nervous system damage in fetuses and children. Recent studies show that neurobehavioral changes may result from Pb exposure during the child's first years of life and that lead may be a factor in high blood pressure and subsequent heart disease.

Airborne lead can also have adverse impacts on the environment. Wild and domestic grazing animals may ingest lead that has deposited on plant or soil surfaces or that has been absorbed by plants through leaves or roots. Animals, however, do not appear to be more susceptible or more sensitive to adverse effects from lead than are humans. Therefore, the secondary standard for lead is identical to the primary standard.

At relatively low concentrations  $(2-10 \mu g/m^3)$ , lead can inhibit plant growth and result in a shift to more tolerant plant species growing near roadsides and stationary source emissions. Although the majority of soil lead becomes bound so that it is insoluble, immobile, and biologically unavailable, elevated soil Pb concentrations have been observed to cause shifts in the microbial community (fungi and bacteria), reduced numbers of invertebrates, and reduced decomposition and nitrification rates and has altered other soil parameters. Because lead remains in the soil, soil concentrations continue to build over time, even when deposition rates are low. Thus, another concern is that acid precipitation may be increasing the mobility and bioavailability of soil lead in some places.

Lead enters water systems mainly through urban runoff, sewage effluents, and industrial waste streams. Most of this lead is rapidly complexed and bound in the sediment. However, water Pb concentrations can reach levels that are associated with increased mortality and impaired reproduction in aquatic invertebrates and blood and neurological changes in fish. Because of these effects, there continue to be implications for the long-term impact of lead on ecosystem function and stability. (See also Chapter 5 in this report as well as the December 1990 Office of Air Quality Planning and Standards Staff Paper [EPA-450/2-89-022].)

## Primary and Secondary Standards

The primary as well as secondary NAAQS for lead is a quarterly average concentration not to exceed  $1.5 \,\mu\text{g/m}^3$ .

## **National Air Quality Trends**

The statistic used to track ambient lead air quality is the maximum quarterly mean concentration for each year. From 1982 to 2001, a total of 39 ambient Pb monitors met the trends data completeness criteria, and a total of 96 ambient Pb monitors met the trends data completeness criteria for the 10-year period from 1992 to 2001. Point-source-oriented monitoring data were omitted from all ambient trends analysis presented in this section to avoid masking the underlying urban trends.

Figure 2-9 indicates that between 1993 and 2002, maximum quarterly average Pb concentrations decreased 57 percent at population-oriented monitors. Between 1999 and 2002, national average Pb concentrations (approaching the minimum detectable level) remained unchanged. The effect of the conversion to unleaded gasoline usage in vehicles on ambient Pb concentrations is most evident when viewed over a longer period, such as that illustrated in Figure 2-9. Between 1983 and 2002, ambient monitor data indicate that concentrations of lead declined 94 percent. This large decline tracks well with overall Pb emissions, which also declined approximately 93 percent between 1983 and 2002.

Figure 2-10 examines urban, rural, and suburban 20-year trends separately. The overall downward trend in Pb concentrations can be noted for all locations from 1982 to 2001.

#### **National Emission Trends**

For stationary sources, Pb emissions for past trends reports have been estimated for fuel combustion and industrial sources based on current data for national activity, but with emission factor and control efficiency estimates that have not been updated with any new information in many years. When gasoline contained lead, mobile sources were by far the largest contributor to Pb emissions, and approximations for stationary sources did not introduce much uncertainty into the understanding of the total emissions trend. Now, most lead is emitted by industrial facilities, particularly by primary and secondary metals processing plants. Moreover, many of these facilities have been the focus of control and compliance efforts in recent years. There are also some issues of possible double counting and inventory gaps.

For example, about 10 percent of Pb emissions estimated in previous reports were from miscellaneous fuel combustion, the only element of which is the combustion of used motor oil containing lead picked up from gasoline. This estimate should be viewed with caution, as the reduction factor of 90 percent used for this source category to reflect the end of leaded gasoline for highway use seems inconsistent with a much greater reduction factor used for exhaust emissions from vehicles. Also, the emission estimates for the sources that burn this fuel (e.g., cement kilns) may double count some of the Pb emissions. Conversely, the estimate of zero Pb emissions from

nonroad gasoline engines is inconsistent with the assumption for highway vehicles that cross-contamination with leaded aviation gasoline causes unleaded fuel to still have small amounts of Pb content on average. Aviation gasoline is not regulated for Pb content and can use significant amounts of lead to comply with octane requirements.

EPA believes that the uncertainties in the past top-down approach for



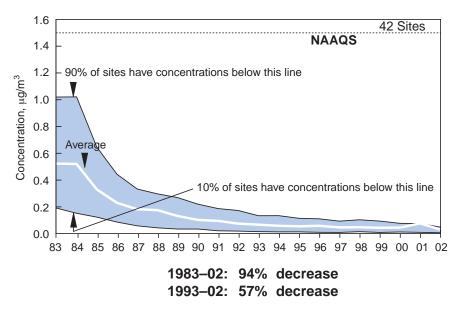
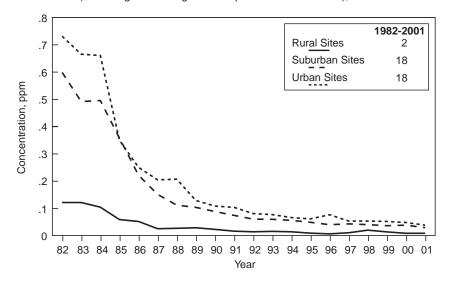
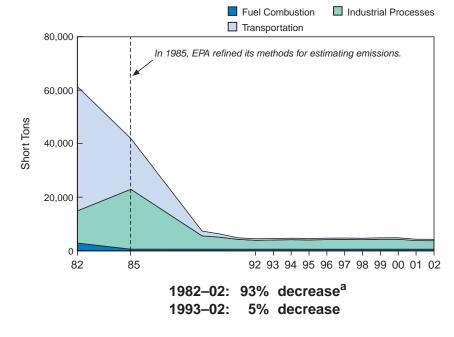




Figure 2-10. Maximum quarterly mean Pb concentration trends by location (excluding sites designated as point-source oriented), 1982–2001.



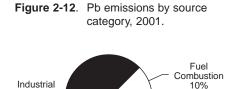
fuel combustion and industrial sources are greater than the actual year-to-year variation in emissions. Consequently, we have not repeated it for this report. The Pb emission estimates for these sources presented here are the same as in the 1999 National Air Quality and Emissions Trends Report, with the previous estimates for 2000 repeated for 2001. Lead emissions for transportation sources have been adjusted for activity changes.

The preferred approach for estimating Pb emissions is to make facility-specific estimates for the source types with significant emissions, reflecting the best information on fuel and ore Pb content, control equipment, and throughput. Ideally, emission tests would be conducted. For the single year of 1996, EPA collected as many such estimates as possible from state/local air agencies, the Toxics Release Inventory, and from EPA studies in preparation for the promulgation of emission standards. A comparison of these estimates to the earlier top-down estimates suggests that Pb emissions from coal-fired utilities may have been higher in 1996 than stated in this report, depending on whether a few states have correctly estimated such emissions. Emissions of lead from other industrial sources in 1996 were somewhat lower than reported in this document for that year.


Regardless of these uncertainties, the long-term trend in Pb emissions is very clear. Because of the phase-out of leaded gasoline, Pb emissions (and concentrations) decreased sharply during the 1980s and early 1990s. There was an approximate decrease in Pb emissions of 93 percent from 1982 to 1991. Figure 2-11 indicates that total Pb emissions have stayed about the same from 1991 on. The large ambient and emission reductions in lead going

from 1982 to 1991 can be largely attributed to the phasing out of leaded gasoline for automobiles. Relative to levels in the 1970s, Pb emissions in the past 10 years have been essentially constant.

Figure 2-12 shows that industrial processes were the major source of Pb


emissions in 2001, accounting for 78 percent of the total. The transportation sector (which includes both onroad and nonroad sources) now accounts for only 12 percent of the total 2001 Pb emissions, with most of that coming from aircraft.





Note: Emission estimation methods and data sources have evolved over time, resulting in some inconsistency in estimates in different years. In the methods used for this report, the significant changes have occurred between 1984 and 1986, and between 1995 and 1996, although not all source types were affected. More explanation is provided in Appendix B.

<sup>a</sup> Emissions trends data are not available for 1982; thus, the 20-year trend was interpolated based on emissions data for 1980 and 1985



Processes 78%

10%

#### **Regional Trends**

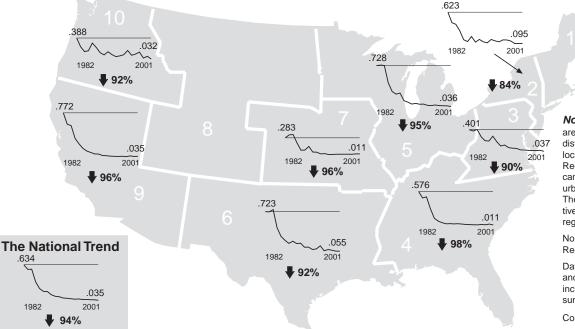
Figure 2-13 segregates the ambient trend analysis by EPA Region. Although most Regions showed large concentration reductions between 1982 and 2001, there were some intermittent upturns, including a rather large upturn in the Region 1 trends plot. Most of these "bumps" in the trends graphs can be attributed to the inherent variability and noise associated with data reported near minimum detectable levels.

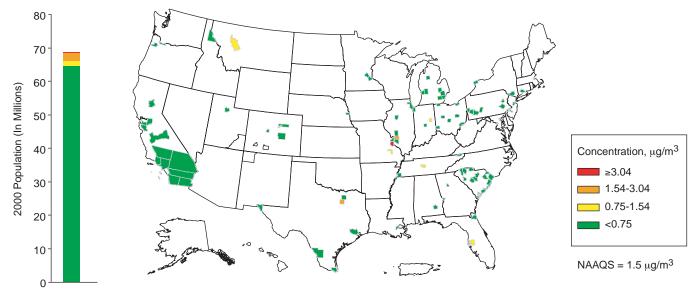
### 2001/2002 Air Quality Status

The large reductions in long-term Pb emissions from transportation sources have changed the nature of the ambient Pb problem in the United States. Because industrial processes are now responsible for all violations of the Pb standard, the Pb monitoring strategy currently focuses on emissions from these point sources.

The map in Figure 2-14 shows the highest quarterly mean Pb concentration by county in 2001. One area, with a total population of 201,219, containing some of the point sources identified in Figure 2-14 did not meet the Pb NAAQS in 2001.

Figure 2-13. Trend in Pb maximum quarterly mean concentration by EPA Region, 1982–2001.





Figure 2-14. Highest Pb maximum quarterly mean by county, 2001.

**Note:** These trends are influenced by the distribution of monitoring locations in a given Region and, therefore, can be driven largely by urban concentrations. They are thus not indicative of background regional concentrations.

No data were available for Regions 1 and 8.

Data from Alaska, Hawaii, and Puerto Rico are not included in these regional summaries.

Concentrations are µg/m<sup>3</sup>.



## Nitrogen Dioxide

| Air Quality                 | y Conc | entrations           |  |
|-----------------------------|--------|----------------------|--|
| 1983–02                     | 21%    | decrease             |  |
| 1993–02                     | 11%    | decrease             |  |
|                             |        |                      |  |
| Emissions                   | ;      |                      |  |
| <b>Emissions</b><br>1983–02 |        | decrease             |  |
|                             | 15%    | decrease<br>decrease |  |

## Worth Noting

- Over the past 20 years, nitrogen dioxide (NO<sub>2</sub>) concentrations across the country have decreased significantly.
- All areas of the country that once violated the national air quality standard for NO<sub>2</sub> now meet that standard.

## **Nature and Sources**

Nitrogen dioxide is a reddish-brown, highly reactive gas that is formed in the ambient air through the oxidation of nitric oxide (NO). Nitrogen oxides (NO<sub>x</sub>), the term used to describe the sum of NO, NO<sub>2</sub>, and other oxides of nitrogen, play a major role in the formation of ozone in the atmosphere through a complex series of reactions with VOCs. A variety of NO<sub>v</sub> compounds and their transformation products occur both naturally and as a result of human activities. Anthropogenic (i.e., manmade) emissions of NO<sub>x</sub> account for a large majority of all nitrogen inputs to the environment. The major sources of anthropogenic NO<sub>x</sub> emissions are high-temperature combustion processes, such as those occurring in automobiles and power plants. Most NO<sub>x</sub> from combustion sources (about 95 percent) are emitted as NO; the remainder are largely NO<sub>2</sub>. Because NO is readily converted to NO<sub>2</sub> in the environment, the emissions estimates reported here

assume nitrogen oxides are in the  $NO_2$  form. Natural sources of  $NO_x$  are lightning, biological and abiological processes in soil, and stratospheric intrusion. Ammonia and other nitrogen compounds produced naturally are important in the cycling of nitrogen through the ecosystem. Home heaters and gas stoves also produce substantial amounts of  $NO_2$  in indoor settings.

## Health and Environmental Effects

Nitrogen dioxide is the most widespread and commonly found nitrogen oxide and is a matter of public health concern. The most troubling health effects associated with shortterm exposures (i.e., less than 3 hours) to NO<sub>2</sub> at or near the ambient NO<sub>2</sub> concentrations seen in the United States include cough and increased changes in airway responsiveness and pulmonary function in individuals with preexisting respiratory illnesses, as well as increases in respiratory illnesses in children 5 to 12 years old.<sup>5,6</sup> Evidence suggests that long-term exposures to NO<sub>2</sub> may lead to increased susceptibility to respiratory infection and may cause structural alterations in the lungs.

Atmospheric transformation of  $NO_x$  can lead to the formation of ozone and nitrogen-bearing particles (e.g., nitrates and nitric acid). As discussed in the ozone and particulate matter sections of this chapter, exposure to both PM and  $O_3$  is associated with adverse health effects.

Nitrogen oxides contribute to a wide range of effects on public welfare and the environment, including global warming and stratospheric ozone depletion. Deposition of nitrogen can lead to fertilization, eutrophication, or acidification of terrestrial, wetland, and aquatic (e.g., fresh water bodies, estuaries, and coastal water) systems. These effects can alter competition between existing species, leading to changes in the number and type of species (composition) within a community. For example, eutrophic conditions in aquatic systems can produce explosive algae growth leading to a depletion of oxygen in the water and/or an increase in levels of toxins harmful to fish and other aquatic life.

## Primary and Secondary Standards

The level for both the primary and secondary NAAQS for NO<sub>2</sub> is 0.053 ppm annual arithmetic average (mean), not to be exceeded. In this report, the annual arithmetic average (mean) concentration is the metric used to evaluate and track ambient NO<sub>2</sub> air quality trends.

## **National Air Quality Trends**

Since 1983, monitored levels of NO<sub>2</sub> have decreased 21 percent.<sup>7</sup> These downward trends in national  $NO_2$ levels are reflected in all regions of the country. Nationally, average NO<sub>2</sub> concentrations are well below the NAAOS and are currently at the lowest levels recorded in the past 20 years. All areas of the country that once violated the NAAQS for NO<sub>2</sub> now meet that standard. Over the past 20 years, national emissions of NO<sub>x</sub> have declined by almost 15 percent. Annual mean NO<sub>2</sub> concentrations declined in the early 1980s, were relatively unchanged during the mid-to-late 1980s, and resumed their decline in the 1990s. Figure 2-15 shows that the national composite annual mean NO2 concentration in 2002 is 11 percent lower than that recorded in 1993. Except for 1994 and 1999, NO<sub>2</sub> concentrations have decreased, or remained unchanged, each year since 1989.

Figure 2-16 reveals how the trends in annual mean  $NO_2$  concentrations vary among rural, suburban, and urban locations. The highest annual mean  $NO_2$  concentrations are typically found in urban areas, with significantly lower annual mean concentrations recorded at rural sites.

Interestingly, as the nation has experienced these significant decreases in NO<sub>2</sub> concentrations, NO<sub>x</sub> emissions are increasing, as described in more detail later in this section of the chapter. One possible explanation involves the location of the majority of the nation's NO<sub>2</sub> monitors. Most NO<sub>2</sub> monitoring sites are mobile-source-oriented sites in urban areas, and the 20-year decline in ambient NO<sub>2</sub> levels closely tracks the 19 percent reduction in emissions from gasoline-powered vehicles over the same time period.

#### **Regional Air Quality Trends**

The map in Figure 2-17 provides regional trends in NO<sub>2</sub> concentrations during the past 20 years, 1982 to 2001 (except Region 10, which does not have any NO<sub>2</sub> trend sites). The trends seen in the suburban and urban sites track the declining trend in NO<sub>v</sub> emissions, as compared with the trend in rural sites. The trends statistic is the regional composite mean of the NO<sub>2</sub> annual mean concentrations across all sites with at least 8 years of ambient measurements. The largest reductions in NO<sub>2</sub> concentrations occurred in the south coast of California and parts of the Northeast and Mid-Atlantic states. Slightly smaller reductions in mean NO<sub>2</sub> concentrations were recorded in New England, the Southeast, and the Southwest. Interestingly, NO2 concentrations were unchanged in the Midwest states and have actually increased in the North Central states.

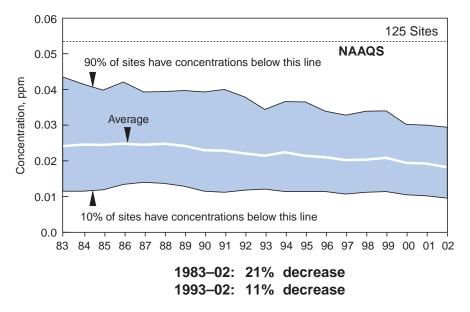



Figure 2-16. Trend in annual mean NO<sub>2</sub> concentrations by type of location, 1982–2001.

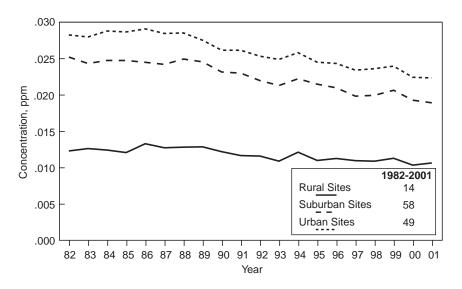
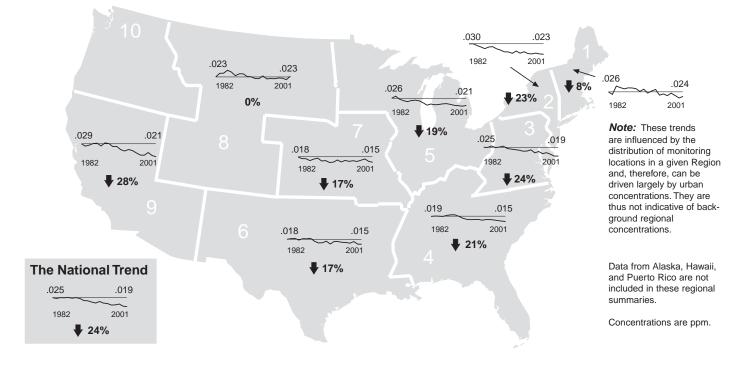
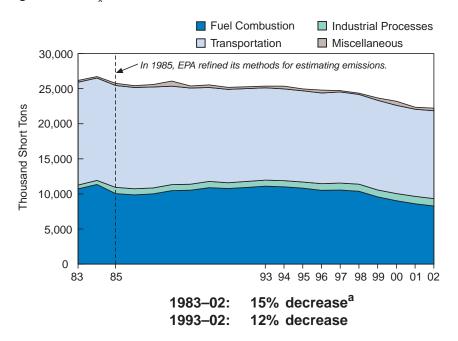




Figure 2-15. NO<sub>2</sub> air quality, 1982–2001, based on annual arithmetic average.




## Figure 2-17. Trend in NO<sub>2</sub> maximum quarterly mean concentration by EPA Region, 1982–2001.

This increase coincides with increases in  $NO_x$  emissions from transportation (both onroad and nonroad) as well as power plants in selected states with  $NO_2$  monitors in these areas.

## **National Emissions Trends**

The reduction in emissions for NO<sub>x</sub> shown in Figure 2-18 differs from the increase in NO<sub>v</sub> emissions reported in previous editions of this report. These emission trends reflect new and improved emission estimates for highway vehicles and nonroad engines. While NO<sub>x</sub> emissions are declining overall, emissions from some sources such as nonroad engines have actually increased since 1983. These increases are of concern given the significant role NO<sub>v</sub> emissions play in the formation of ground-level ozone (smog) as well as other environmental problems like acid rain and nitrogen loadings to

Figure 2-18. NO, emissions, 1983-2002.



*Note:* Emission estimation methods and data sources have evolved over time, resulting in some inconsistency in estimates in different years. In the methods used for this report, the significant changes have occurred between 1984 and 1986, and between 1995 and 1996, although not all source types were affected. More explanation is provided in Appendix B.

<sup>a</sup> Emissions trends data are not available for 1983; thus, the 20-year trend was interpolated based on emissions data for 1980 and 1985.

waterbodies described above. In response, EPA has proposed regulations that will significantly control  $NO_x$  emissions from nonroad diesel engines.

Figure 2-19 indicates that the two primary sources of NO<sub>x</sub> emissions are transportation and stationary source fuel combustion. Together, these two sources make up 93 percent of 2002 total NO<sub>x</sub> emissions. Emissions from transportation sources have decreased 15 percent over the past 20 years and decreased 5 percent during the past 10 years. For both light-duty gasoline vehicles and light-duty gasoline trucks, NO<sub>v</sub> emissions peaked in 1994 and then began a steady decrease through 2000. This decrease can be attributed primarily to the implementation of the Tier 1 emission standards that lowered NO<sub>x</sub> emissions from new cars and light-duty trucks. In contrast, NO<sub>x</sub> emissions from heavyduty vehicles, both gasoline and diesel, decreased significantly over the 10-year period (17 percent

decrease for gasoline and 12 percent increase for diesel). A portion of this increase is due to the increase in VMT for these categories for heavyduty gasoline vehicles and diesel trucks. In addition, emissions from heavy-duty diesel vehicles increased over this period due to the identification of "excess emissions" in many diesel vehicles. These excess emissions peaked in 1998, and emissions of heavy-duty diesel vehicles are now declining. New emission standards will lead to further reductions in emissions from heavy duty vehicles in the future. Further, emissions from nonroad vehicles, particularly those fueled with diesel, have steadily increased over the last 10 years. EPA is developing new standards to reduce these emissions.

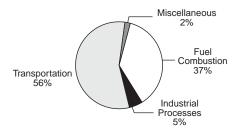

Reductions in  $NO_x$  emissions from fuel combustion, particularly those from electric power generator units in the past 2 years, have partially offset the impact of increases in the transportation sector. Emissions from these generator units in 2001 were 5 percent lower than they were in 2000. The Acid Deposition Control provisions of the Act (Title IV) required EPA to establish  $NO_x$  annual emission limits for coal-fired electric utility units in two phases, resulting in  $NO_x$  reductions of approximately 400,000 tons per year during Phase I (1996–1999) and 2 million tons per year in Phase II (year 2000 and subsequent years).<sup>8</sup>

Figure 2-20 shows the geographic distribution of 2001 NO<sub>x</sub> emissions based on the tonnage per square mile for each county. This map illustrates that the eastern half of the country and the West Coast emit more NO<sub>x</sub> (on a density basis) than does the western half of the continental United States.

### 2001 Air Quality Status

All monitoring locations across the nation met the NO<sub>2</sub> NAAQS in 2001. This is reflected in Figure 2-21, which displays the highest annual mean  $NO_2$  concentration measured in each county.

## Figure 2-19. NO<sub>x</sub> emissions by source category, 2002.



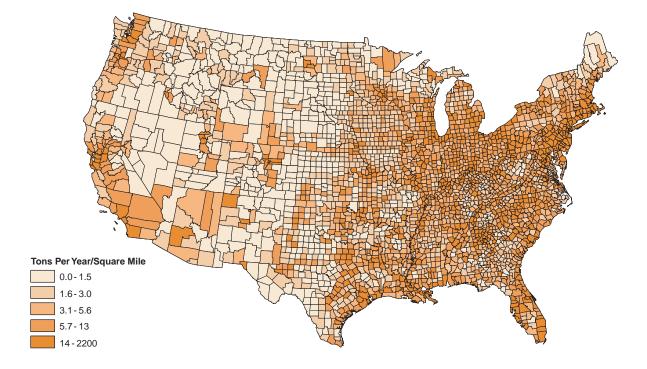
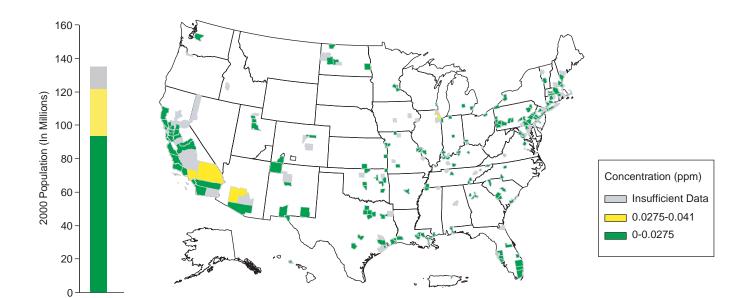




Figure 2-20. Density map of 2001 NO<sub>2</sub> emissions, by county.

Figure 2-21. Highest  $NO_2$  maximum quarterly mean by county, 2001.



## Ozone

| Air Quality | / Concentrations    |   |
|-------------|---------------------|---|
| 1983–02     | 22% decrease (1-hr) | ) |
|             | 14% decrease (8-hr  | ) |
| 1993–02     | 2% decrease (1-hr)  |   |
|             | 4% increase (8-hr   | ) |
|             |                     | _ |
| Emissions ( | Anthropogenic VOCs  | ) |
|             | Antinopogenio 1003  |   |
| 1983–02     | 40% decrease        |   |
|             |                     |   |

## Worth Noting

- Over the past 20 years, ozone (O<sub>3</sub>) levels (1-hour and 8-hour) have improved considerably nationwide.
- However, over the past 10 years, ozone levels (1-hour and 8-hour) have been relatively flat.

### **Nature and Sources**

Ground-level O<sub>3</sub> remains a pervasive pollution problem in the United States. Ozone is readily formed in the atmosphere by the reaction of VOCs and NO<sub>v</sub> in the presence of heat and sunlight, which are most abundant in the summer. VOCs are emitted from a variety of sources, including motor vehicles, chemical plants, refineries, factories, consumer and commercial products, other industries, and natural (biogenic) sources. Nitrogen oxides (a precursor to ozone) are emitted from motor vehicles, power plants, and other sources of combustion, as well as natural sources including lightning and biological processes in soil. Changing weather patterns contribute to yearly differences in O<sub>3</sub> concentrations. Ozone and the precursor pollutants that cause O<sub>2</sub> also can be transported into an area from pollution sources located hundreds of miles upwind.

## Health and Environmental Effects

Ozone occurs naturally in the stratosphere and provides a protective layer high above the Earth. However, at ground level, it is the prime ingredient of smog. Short-term (1- to 3-hour) and prolonged (6- to 8-hour) exposures to ambient  $O_3$  concentrations have been linked to a number of health effects of concern. For example, increased hospital admissions and emergency room visits for respiratory causes have been associated with ambient  $O_3$  exposures.

Exposures to O<sub>3</sub> result in lung inflammation, aggravate preexisting respiratory diseases such as asthma, and may make people more susceptible to respiratory infection. Other health effects attributed to short-term and prolonged exposures to  $O_3$ , generally while individuals are engaged in moderate or heavy exertion, include significant decreases in lung function and increased respiratory symptoms such as chest pain and cough. Children active outdoors during the summer when  $O_3$  levels are at their highest are most at risk of experiencing such effects. Other at-risk groups include adults who are active outdoors, such as outdoor workers, and individuals with preexisting respiratory disorders such as asthma and chronic obstructive lung disease. Within each of these groups are individuals who are unusually sensitive to O<sub>3</sub>. In addition, repeated long-term exposure to O<sub>2</sub> presents the possibility of irreversible changes in the lungs, which could lead to premature aging of the lungs and/or chronic respiratory illnesses.

Ozone also affects sensitive vegetation and ecosystems. Specifically,  $O_3$  can lead to reductions in agricultural

and commercial forest yields, reduced survivability of sensitive tree seedlings, and increased plant susceptibility to disease, pests, and other environmental stresses such as harsh weather. In long-lived species, these effects may become evident only after several years or even decades. As these species are out-competed by others, long-term effects on forest ecosystems and habitat quality for wildlife and endangered species become evident. Furthermore,  $O_3$ injury to the foliage of trees and other plants can decrease the aesthetic value of ornamental species as well as the natural beauty of our national parks and recreation areas.

## Primary and Secondary 1-hour Ozone Standards

In 1979, EPA established 1-hour primary and secondary standards for  $O_3$ . The level of the 1-hour primary and secondary  $O_3$  NAAQS is 0.12 ppm daily maximum 1-hour concentration that is not to be exceeded more than once per year on average.

## Primary and Secondary 8-hour Ozone Standards

On July 18, 1997, EPA strengthened the  $O_3$  NAAQS based on the latest scientific information showing adverse effects from exposures allowed by the then-existing standards. The standard was set in terms of an 8-hour averaging time.<sup>9</sup>

Refer to **http://www.epa.gov/ airlinks** for up-to-date information concerning actions surrounding the revised standards.


#### **Air Quality Trends**

Because the 1-hour and 8-hour NAAQS have different averaging times and forms, two different statistics are used in this report to track ambient  $O_3$  air quality trends. For the 1-hour  $O_3$  NAAQS, this report uses the composite mean of the annual second-highest daily maximum 1hour  $O_3$  concentration as the statistic to evaluate trends. For the 8-hour  $O_3$ NAAQS, this report relies on the annual fourth-highest 8-hour daily maximum  $O_3$  concentration as the statistic of interest to assess trends.

#### **National Air Quality Trends**

Figure 2-22 clearly shows that, over the past 20 years, peak 1-hour O<sub>3</sub> concentrations have declined considerably at monitoring sites across the country. From 1983 to 2002, national 1-hour O<sub>3</sub> levels improved 22 percent, with 1983, 1988, and 1995 representing peak years for this pollutant. Figure 2-22 shows that 370 sites met the data completeness criteria over the past 20 years (1983–2002). It is important to interpret such longterm, quantitative ambient O<sub>3</sub> trends carefully given changes in network design, siting criteria, spatial coverage, and monitoring instrument calibration procedures during the past two decades. More recently, national 1-hour O<sub>3</sub> levels have continued to improve, but the progress has been less rapid, as evidenced by the 2 percent decrease from 1993 to 2002.

Figure 2-23 shows the national trend in 8-hour O<sub>3</sub> concentrations across the same sites used to estimate the national 1-hour  $O_3$  trends. Nationally, 8-hour levels have decreased 14 percent over the last 20 years. However, just as is true for the 1-hour levels, the progress in 8-hour  $O_3$  levels over the last 10 years has slowed and actually shows a 4 percent increase in national levels between 1993 and 2002. Standard statistical tests applied to the 10-year trends for both 1-hour and 8-hour ozone shows that these trends are not statistically significant. Ozone



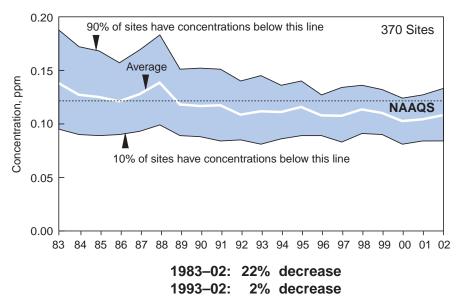
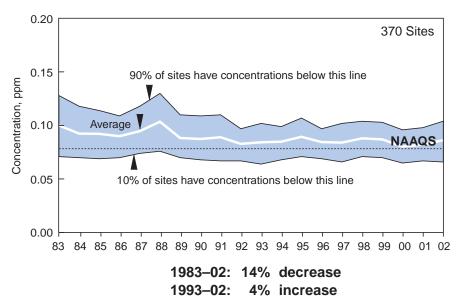
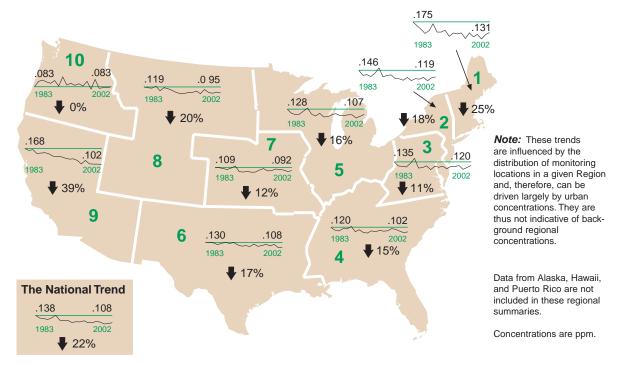
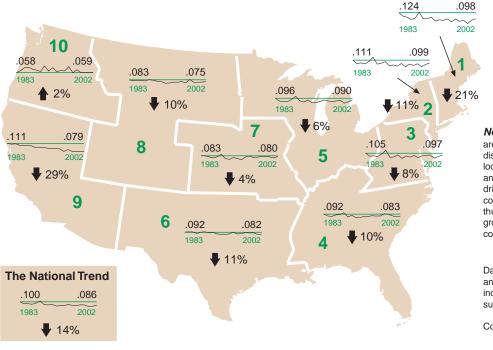




Figure 2-23.  $O_3$  air quality, 1983–2002, based on annual fourth maximum 8-hour average.




concentrations varied over this 10-year period from year to year but did not change overall. The trend in the 8-hour  $O_3$  statistic is similar to the trend in the 1-hour values, although the concentration range is smaller.

## **Regional Air Quality Trends**


The map in Figure 2-24 examines trends in 1-hour  $O_3$  concentrations during the past 20 years by geographic region of the country. The 1-hour  $O_3$  levels in all areas of the

country have generally followed the pattern of declining trends since 1982 similar to that of the national observations. However, the magnitude of improvement has not been consistent across all regions.





**Figure 2-25**. Trend in 8-hour O<sub>3</sub> levels, 1983–2002, averaged across EPA Regions, based on annual fourth maximum 8-hour average.



**Note:** These trends are influenced by the distribution of monitoring locations in a given Region and, therefore, can be driven largely by urban concentrations. They are thus not indicative of background regional concentrations.

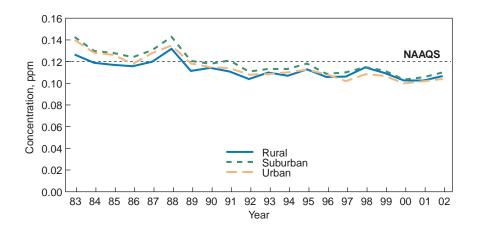
Data from Alaska, Hawaii, and Puerto Rico are not included in these regional summaries.

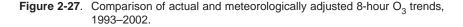
Concentrations are ppm.

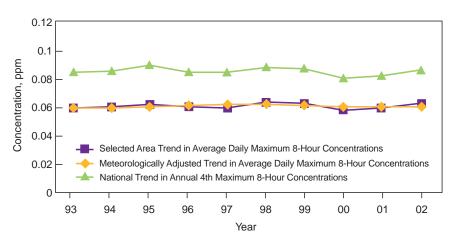
Similarly, Figure 2-25 portrays 8-hour  $O_3$  trends by geographic region of the country. Again, most areas of the country show 20-year air quality improvements (with respect to 8-hour  $O_3$ ) consistent with the national trend, with the most significant improvements occurring in the Northeast and Pacific Southwest. The Pacific Northwest region showed a slight increase in the 8-hour ozone for the period 1983–2002.

In Figure 2-26, the national 1-hour O<sub>3</sub> trend is disaggregated to show the 20-year change in ambient  $O_3$ concentrations among rural, suburban, and urban monitoring sites. The highest ambient O<sub>3</sub> concentrations are typically found at suburban sites, consistent with the downwind transport of emissions from the urban center. During the past 20 years, O<sub>3</sub> concentrations decreased by approximately 23 percent at suburban sites, and 26 percent at urban sites. At rural sites, 1-hour O<sub>3</sub> levels for 2002 are approximately 16 percent lower than they were in 1983 and, for the sixth consecutive year, are greater than the level observed for urban sites.

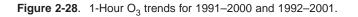
#### **Urban Area Air Quality Trends**

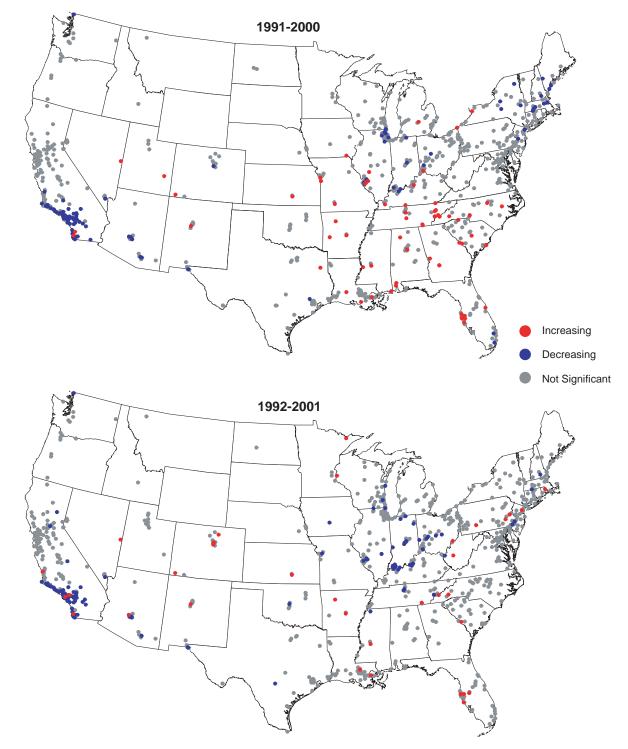

It is important to note that year-toyear changes in ambient ozone trends are influenced by meteorological conditions, population growth, and changes in emission levels of ozone precursors (i.e., VOCs and  $NO_{x}$ ) resulting from ongoing control measures. For example, to further evaluate the 10-year 8-hour ozone trends, EPA applied a model to the annual rate of change in ozone based on measurements in 53 metropolitan areas (Figure 2-27). This model adjusted the ozone data in these areas to account for the influence of local meteorological conditions, including surface temperature and


windspeed. Figure 2-27 shows the aggregated trend in 8-hour ozone for these 53 areas adjusted for meteorological conditions for the 10-year period 1993-2002. The figure also shows the aggregated trend for these areas unadjusted for meteorology and the national average in 8-hour ozone. From this figure, the


meteorologically adjusted trend for this 10-year period can be seen as relatively flat.

EPA's analysis of ambient ozone concentration data indicates that ozone concentrations are on the increase in some urban areas. These increases are evident based on both 1-hour and 8-hour trends, as shown


Figure 2-26. Trend in annual second-highest daily maximum 1-hour O<sub>3</sub> concentrations by location, 1983–2002.

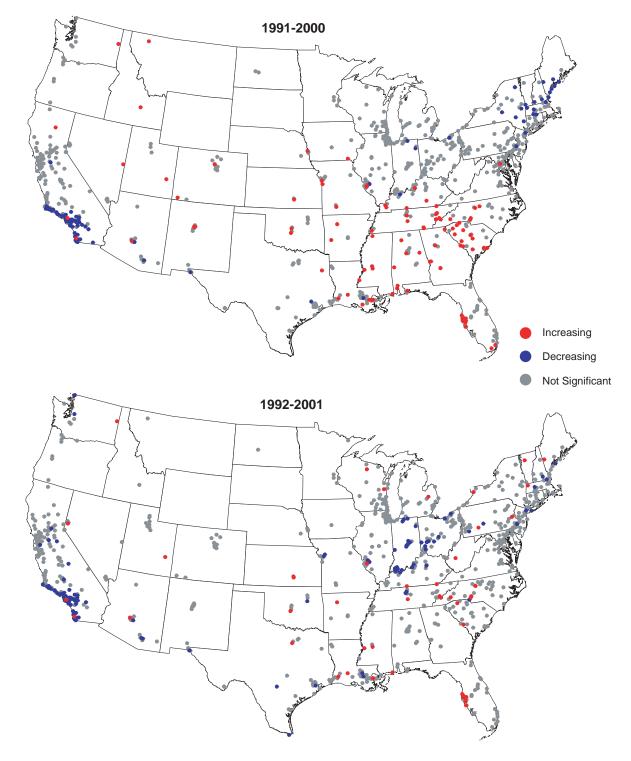







in Figures 2-28 and 2-29. Ozone concentrations are on the increase in several cities in the southeastern and midwestern United States, while urban areas on the West Coast and in New England generally show decreasing trends. Figures 2-28 and 2-29 show a comparison of ozone trends over two consecutive 10-year time frames. The 1-hour trends show an increasing number of cities with upward ozone trends in the western






and mid-Atlantic urban areas and a decreasing number of cities with upward ozone trends in the Southeast. The 8-hour ozone trends also show a decrease in the number of cities with upward ozone trends in the Southeast, but an increasing number of cities with upward trends in New England and around the Great Lakes.

### **Trends at PAMS Sites**

Photochemical Assessment Monitoring Program Stations (PAMS) are operated by states in areas that were originally classified as extreme,

**Figure 2-29**. 8-Hour O<sub>3</sub> trends for 1991–2000 and 1992–2001.



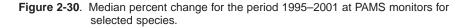
severe, or serious nonattainment for ozone. Ozone, ozone precursor, and surface and upper air meteorological conditions are monitored at PAMS sites during the summer months when meteorological conditions are most conducive to ozone formation. Some PAMS sites have been in operation since 1994 and there are now sufficient data available to examine long-term air quality trends. Trends in total nonmethane organic compounds (TNMOC), NO<sub>x</sub>, and selected VOC species at PAMS locations are tabulated in Table 2-3; median percent changes are illustrated in Figure 2-30. These trends are for concentrations averaged over the hours from 6 to 9 a.m. when ozone precursor concentrations are typically at their maximum and best represent the influence of fresh, local emissions. VOC species were selected for inclusion in this analysis based primarily on relative abundance and status as a hazardous air pollutant under the Clean Air Act. Trends in other VOC species monitored under the PAMS program can generally be expected to be similar to those shown here.

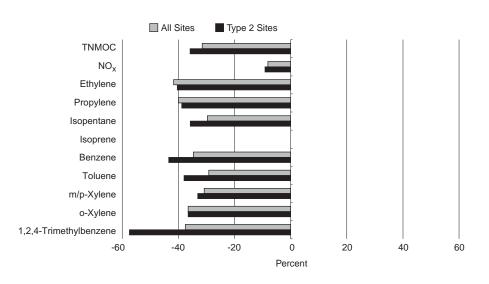
All species except isoprene and NO<sub>v</sub> exhibited substantial median percentage declines over the 1995 to 2001 trend period. Isoprene is largely emitted by biogenic sources (trees and other vegetation) and would therefore not be expected to show a significant trend. For TNMOC and TNMOC species other than isoprene, concentrations decreased at all or nearly all sites, although the decline was not statistically significant in every case. NO concentrations increased at roughly one third of all sites, but none of these increases were found to be statistically significant. Trends at PAMS Type 2 sites, which are generally located within areas of maximum

### Table 2-3. Trends in TNMOC, NO<sub>x</sub>, and Selected VOC Species

|                             | All Site Types Type 2 Sites |       |       |    | Median                     |                        |    |                                   |    |          |              |                 |
|-----------------------------|-----------------------------|-------|-------|----|----------------------------|------------------------|----|-----------------------------------|----|----------|--------------|-----------------|
|                             |                             | All S | iteea |    | at.<br>ficant <sup>⊳</sup> | All Sites <sup>a</sup> |    | Stat.<br>Significant <sup>b</sup> |    | % Change |              |                 |
|                             | Total                       | Up    | Down  | Up | Down                       | Total                  | Up | Down                              | Up | Down     | All<br>Sites | Type 2<br>Sites |
| TNMOC                       | 28                          | 4     | 23    | 0  | 14                         | 14                     | 2  | 12                                | 0  | 7        | -32          | -36             |
| NO <sub>x</sub>             | 63                          | 16    | 33    | 0  | 7                          | 25                     | 6  | 16                                | 0  | 2        | -8           | -9              |
| Ethylene                    | 21                          | 1     | 15    | 0  | 7                          | 12                     | 0  | 10                                | 0  | 4        | -42          | -40             |
| Propylene                   | 17                          | 0     | 14    | 0  | 5                          | 10                     | 0  | 9                                 | 0  | 3        | -40          | -39             |
| Isopentane                  | 22                          | 0     | 18    | 0  | 8                          | 11                     | 0  | 10                                | 0  | 4        | -30          | -36             |
| Isoprene                    | 22                          | 8     | 5     | 0  | 0                          | 12                     | 3  | 4                                 | 0  | 0        | 0            | 0               |
| Benzene                     | 22                          | 0     | 18    | 0  | 12                         | 12                     | 0  | 12                                | 0  | 9        | -35          | -43             |
| Toluene                     | 22                          | 2     | 19    | 0  | 7                          | 12                     | 0  | 11                                | 0  | 4        | -29          | -38             |
| m/p-Xylene                  | 22                          | 0     | 20    | 0  | 9                          | 12                     | 0  | 12                                | 0  | 6        | -31          | -33             |
| o-Xylene                    | 20                          | 0     | 16    | 0  | 8                          | 12                     | 0  | 11                                | 0  | 6        | -36          | -36             |
| 1,2,4-Trimethyl-<br>benzene | 20                          | 4     | 12    | 0  | 4                          | 11                     | 0  | 9                                 | 0  | 4        | -38          | -57             |

TNMOC = Total nonmethane organic compound.


<sup>a</sup>Indicates sign of trend regardless of statistical significance.


<sup>b</sup>Indicates sign of trend at sites where trend is statistically significant at the 95% confidence level.

#### Notes:

1 The number of sites listed in the up and down columns indicates the number of PAMS locations at which the 1995–2001 trend in 6–9 a.m. average concentration is in the indicated direction. The number of sites in the total column may not equal the total of the up and down columns–either because the non-parametric trend estimate for some sites is identically zero or the trend at many sites is not statistically significant.

2 Theil's two-sided nonparametric significance test for the slope was used to assess statistical significance at the 95% confidence level consistent with the methodology used in previous National Air Quality and Emissions Trends reports. Note that these results are not adjusted for multiple comparisons.



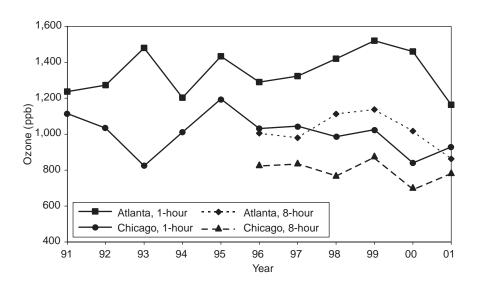


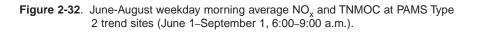
precursor emissions, are similar to trends over all site types although the Type 2 sites exhibited somewhat greater declines in isopentane, benzene, toluene, and 1,2,4-trimethylbenzene.

### Methodology

All data were obtained from EPA's Air Quality System (AQS) database. Trends are based on data from sites meeting certain data completeness criteria for the 1995-2001 period. Data completeness requirements are the same as those used in previous National Air Quality and Emissions Trends reports.<sup>10</sup> Annual averages computed from 1-hour samples of TNMOC or NO<sub>x</sub> were considered valid if data were available for 50 percent or more of all possible observations. Sites selected for trends analysis must have valid annual summary statistics available for 5 or more years. Missing annual summary statistics were filled in via linear interpolation from surrounding years. If a missing value happened to fall at the beginning or end year of the period being investigated, the value was set equal to the nearest available valid year of data. Theil's nonparametric trend-slope estimates and two-sided significance test results for the slope were used to assess statistical significance consistent with the methodology used in previous National Air Quality and Emissions Trends reports. Note that these results are not adjusted for multiple comparisons.

### Ozone and Ozone Precursor Trends in Chicago and Atlanta


Despite much progress in the years since passage of the 1990 Clean Air Act Amendments, some metropolitan areas are still classified as nonattainment with respect to the NAAQS for 1-hour ozone. Two notable examples are Chicago and Atlanta. Atlanta is currently classified as a "serious" ozone nonattainment area; Chicago is currently classified as "severe." In this section we take a closer look at recent trends in ozone and ozone precursors in these two major metropolitan areas.


Composite ozone trends for 1-hour and 8-hour annual ozone design values in Chicago and Atlanta are depicted in Figure 2-31.<sup>11</sup> Trends in 1-hour design values are shown for the period 1991 to 2001; 8-hour design values are shown for the period 1996 to 2001 because 1996 is the first year for which EPA began reporting 8-hour design values. Design values vary from year to year, largely in response to changes in meteorological conditions that make it difficult to identify any longterm trend in either city.

Composite trends in summer weekday morning ozone precursor concentrations in Chicago and Atlanta are illustrated in Figure 2-32. Trends are shown for concentrations on weekday mornings (6-9 a.m.), the period when precursor concentrations are typically at their maximum and are most directly influenced by fresh emissions from local sources. To maintain consistency between nonattainment areas and to retain sites in the analysis from Chicago that would otherwise not meet the data completeness criteria for a time period extending back to 1991, NO<sub>x</sub> summary statistics were calculated for the period 1995 to 2001 only. TNMOC data are only available starting in 1995 for both nonattainment areas. An examination of Figure 2 -34 indicates that TNMOC concentrations declined in both cities during this period, while NO<sub>v</sub> concentrations increased slightly.

Air quality trend statistics for both cities are summarized in Table 2-4. Although none of the trends were found to be statistically significant, the results are generally consistent with a slight decrease in ozone accompanied by a more noticeable decrease in morning TNMOC and a slight increase in morning NO<sub>x</sub>.

**Figure 2-31**. Annual 1-hour and 8-hour composite O<sub>3</sub> design values in the Atlanta and Chicago-Gary lake county nonattainment areas.





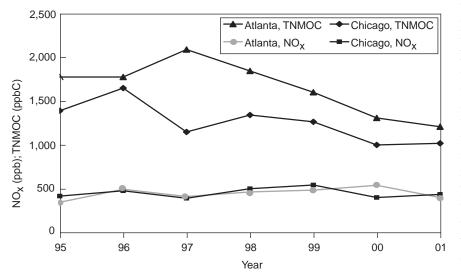



Table 2-4.Summary of 1991–2001 Trends in Ozone Design Values and<br/>1995–2001 Trends in Summer Weekday Morning Ozone<br/>Precursor Trends in Atlanta and Chicago

| City    | Pollutant                                 | Composite<br>Trend<br>(ppb/year) | No. of Sites<br>with Trend<br>Increasing | No. of Sites<br>with Trend<br>Decreasing |  |  |  |  |
|---------|-------------------------------------------|----------------------------------|------------------------------------------|------------------------------------------|--|--|--|--|
| Atlanta | O <sub>3</sub> (1-hour)                   | 1.4                              | 2                                        | 1                                        |  |  |  |  |
|         | O <sub>3</sub> (8-hour)                   | -2.5                             | 1                                        | 3                                        |  |  |  |  |
|         | TNMOC                                     | -11.4                            | 0                                        | 1                                        |  |  |  |  |
|         | NO <sub>x</sub>                           | 2.1                              | 2                                        | 0                                        |  |  |  |  |
| Chicago | O <sub>3</sub> (1-hour)                   | -1.2                             | 1                                        | 7                                        |  |  |  |  |
|         | O <sub>3</sub> (8-hour)                   | -1.3                             | 2                                        | 9                                        |  |  |  |  |
|         | TNMOC                                     | -7.8                             | 0                                        | 2                                        |  |  |  |  |
|         | NO <sub>x</sub>                           | 0.3                              | 1                                        | 1                                        |  |  |  |  |
| TNMOC = | TNMOC = Total nonmethane organic compound |                                  |                                          |                                          |  |  |  |  |

### Methodology

All data were obtained from EPA's AirData Web site (for 1991–2000 data) and AQS database (for 2001 data). Trends are based on data from sites meeting certain data completeness criteria for the 1991–2001 period. Data completeness requirements are the same as those used in previous National Air Quality and Emissions Trends reports.<sup>10</sup> Annual summary statistics for a year of 1-hour or 8-hour ozone data were considered valid if data were available for at least 75 percent of all possible observations. Annual averages computed from round-the-clock 1-hour samples of TNMOC or NO<sub>x</sub> were considered valid if data were available for 50 percent or more of all possible observations. For monitors with less frequent TNMOC sampling schedules (1 day in 6, etc.), the annual mean was considered valid if at least 75 percent of scheduled samples were available. Sites selected for trends analysis must have valid annual summary statistics available for 8 or more years for 1991-2001 trends; 5 or more years for 1995-2001 trends. Missing annual summary statistics were filled in via linear interpolation from surrounding years. If a missing value happened to fall at the beginning or end year of the period being investigated, the value was set equal to the nearest available valid year of data.

Composite trends were calculated for each pollutant in both nonattainment areas by averaging the annual summary statistic over all sites in a region. Theil's nonparametric trendslope estimates and two-sided significance test results for the slope were used to assess statistical significance consistent with the methodology used in previous National Air Quality and Emissions Trends reports. Note that these results are not adjusted for multiple comparisons. Additional methodological details are reported by Coulter-Burke and Stoeckenius.<sup>12</sup>

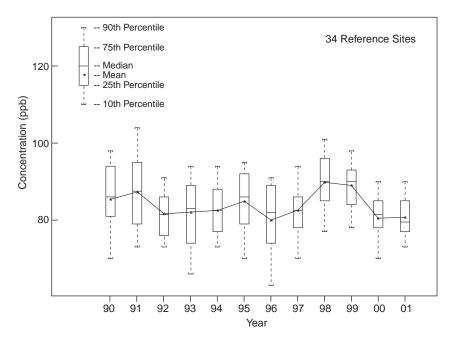

### **Rural Area Air Quality Trends**

Figure 2-33 presents the trend in 8-hour  $O_3$  concentrations for 34 rural sites from the Clean Air Status and Trends Network (CASTNet) for the most recent 10-year period, 1990–2001.<sup>13</sup> The 8-hour  $O_3$  concentrations at these eastern sites, which were the highest during the hot and dry summers of 1991 and 1998, have decreased 8 percent over the last 10 years. This trend in 8-hour  $O_3$ levels at 34 selected sites is mirrored at other rural sites nationwide. Across the nation, rural 8-hour  $O_3$  levels improved 9 percent from 1981 to 2000, but improved by only 2 percent over the last 10 years.<sup>14</sup>

Figure 2-34 further examines patterns in rural  $O_3$  levels by presenting the 10-year trends in the

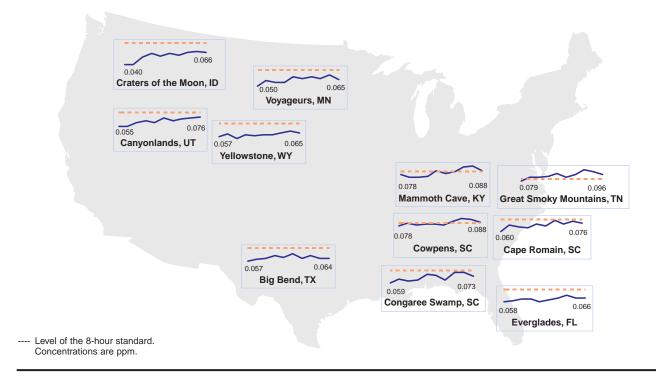
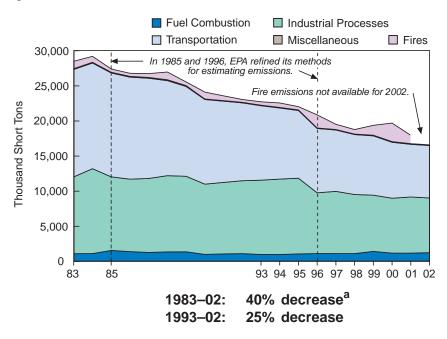

8-hour O<sub>3</sub> concentrations at 11 selected National Park Service (NPS) sites.<sup>15</sup> These sites are located in Class I areas, a special subset of rural environments (all National Parks and wilderness areas exceeding 5,000

Figure 2-33. Trends in fourth highest daily 8-hour O<sub>3</sub> concentrations for 34 rural sites from CASTNet, 1990–2001.



acres) accorded a higher degree of protection under the Clean Air Act provisions for the prevention of significant deterioration. There are more than 33 NPS sites nationally; however, this analysis focuses on the specific sites with sufficient data to evaluate 10-year trends. Over the last 10 years, 8-hour O<sub>3</sub> concentrations in 33 of our National Parks increased nearly 4 percent. Four monitoring sites in 11 of these parks experienced statistically significant upward trends in 8-hour  $O_3$ levels-Great Smoky Mountains (TN), Mammoth Cave (KY), Yellowstone (WY), and Craters of the Moon (ID). For the remaining 22 parks, 8-hour  $O_3$  levels at 18 increased only slightly between 1992 and 2001, five showed decreasing levels, and three were unchanged.

Figure 2-34. Trend in annual fourth highest daily maximum 8-hour O<sub>3</sub> concentrations in National Parks, 1992–2001.

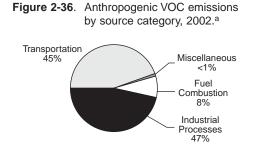



#### **National Emissions Trends**

Figure 2-35 shows that national total VOC emissions (which contribute to  $O_3$  formation) from anthropogenic (man-made, excluding wildfires and prescribed burnings) sources decreased 40 percent between 1983 and 2002, and 25 percent over the past 10 years. National total NO<sub>x</sub> emissions (the other major precursor to  $O_3$  formation) decreased approximately 15 percent and 12 percent, respectively, over the same two periods.

Nationally, the two major sources of VOC emissions are industrial processes (47 percent) and transportation sources (45 percent), as shown in Figure 2-36. Solvent use makes up 63 percent of the industrial processes emission category and 29 percent of total VOC emissions. Industrial process VOC emissions have decreased 26 percent since 1993, in part due to the implementation of maximum achievable control technology (MACT) controls that affect specific chemical and solvent industries. The

Figure 2-35. VOC emissions, 1983-2002.




VOC emissions totals by source category and year are presented in Table A-5 in Appendix A. Recent control measures to reduce transportation sector emissions include regulations to lower fuel volatility and to reduce NO<sub>x</sub> and VOC emissions from tailpipes.<sup>10</sup> The effectiveness of these control measures is reflected in a decrease in VOC emissions from highway vehicles. VOC emissions from highway vehicles have declined 39 percent since 1993, whereas highway vehicle NO<sub>v</sub> emissions have decreased 10 percent over the same period.

In addition to anthropogenic sources of VOC and NO<sub>x</sub>, there are natural or biogenic sources of these compounds as well. Table 2-5 shows the different predominant plant species responsible for VOC emissions in different parts of the country for two major biogenic species of concern, isoprene and monoterpenes. Although it is not possible to control the level of these natural emissions,

*Note:* Emission estimation methods and data sources have evolved over time, resulting in some inconsistency in estimates in different years. In the methods used for this report, the significant changes have occurred between 1984 and 1986 and between 1995 and 1996, although not all source types were affected. More explanation is provided in Appendix B.

<sup>a</sup> Emissions trends data are not available for 1983; thus, the 20-year trend was interpolated based on emissions data for 1980 and 1985.



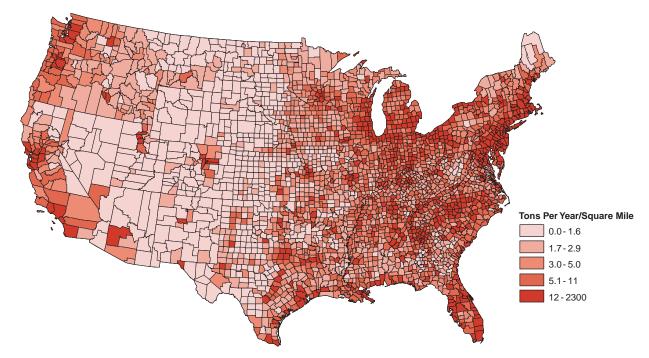

<sup>a</sup> Sums do not equal 100 due to rounding.

 Table 2-5.
 Biogenic Sources of VOC Emissions by Region

| Region                        | VOC          | Source                                        |
|-------------------------------|--------------|-----------------------------------------------|
| Southwestern<br>United States | Isoprene     | Oak (mostly), citrus,<br>eucalyptus           |
|                               | Monoterpenes | Pine, citrus,<br>eucalyptus                   |
| Northeastern                  | Isoprene     | Oak (mostly), spruce                          |
| United States                 | Monoterpenes | Maple, hickory, pine, spruce, fir, cottonwood |

their presence is an important factor to consider when developing  $O_3$ control strategies. Biogenic  $NO_x$ emissions are associated with lightning and biological processes in soil. On a regional basis, biogenic VOC emissions can be greater than anthropogenic VOC emissions. Biogenic  $NO_x$  emissions, however, make up less than 10 percent of total  $NO_x$ emissions.<sup>17</sup> Figure 2-37 shows the geographic distribution of 2001 anthropogenic VOC emissions based on the tonnage per square mile for each county. This map illustrates that the eastern half of the country and the West Coast emit more VOC (on a density basis) than does the western half of the continental United States.

Figure 2-37. Density map of 2001 anthropogenic VOC emissions, by county.



# **Particulate Matter**

| PM <sub>10</sub> Air Qu                   | uality | Concentrations |
|-------------------------------------------|--------|----------------|
| 1993–02                                   | 13%    | decrease       |
| PM <sub>10</sub> Direct                   | Emis   | sions          |
| 1993–02                                   | 22%    | decrease       |
|                                           |        |                |
| PM <sub>2.5</sub> Air Qu                  | uality | Concentrations |
| <b>PM<sub>2.5</sub> Air Qu</b><br>1999–02 |        |                |
| 210                                       | 8%     | decrease       |

### **Worth Noting**

### PM<sub>2.5</sub>

Annual average PM<sub>2.5</sub> concentrations decreased 8 percent nationally from 1999 to 2002. The Southeast was responsible for most of that reduction, where the monitored levels of PM<sub>2.5</sub> decreased 18 percent from 1999 to 2002. Lower 2002 annual average concentrations in the Southeast are due, in part, to decreases in sulfates, which largely result from power plant emissions of SO<sub>2</sub>.

### **Nature and Sources**

Particulate matter is the general term used for a mixture of solid particles and liquid droplets found in the air. Some particles are large enough to be seen as dust or dirt. Others are so small they can be detected only with an electron microscope.  $PM_{2.5}$ describes the "fine" particles that are less than or equal to 2.5 µm in diameter. "Coarse fraction" particles are greater than 2.5 µm, but less than or equal to 10 µm in diameter.  $PM_{10}$ refers to all particles less than or equal to 10 µm in diameter. A particle 10 µm in diameter is about oneseventh the diameter of a human hair. PM can be emitted directly or form in the atmosphere. "Primary" particles, such as dust from roads or elemental carbon (soot) from wood combustion, are emitted directly into the atmosphere. "Secondary" particles are formed in the atmosphere from primary gaseous emissions. Examples include sulfates, formed from SO<sub>2</sub> emissions from power plants and industrial facilities, and nitrates, formed from NO<sub>v</sub> emissions from power plants, automobiles, and other types of combustion sources. The chemical composition of particles depends on location, time of year, and weather. Generally, coarse PM is composed largely of primary particles and fine PM contains many more secondary particles.

Fine and coarse particles typically exhibit different behavior in the atmosphere. Coarse particles can settle rapidly from the atmosphere within hours, and their spatial impact is typically limited because they tend to fall out of the air in the downwind area near their emission point. Larger coarse particles are not readily transported across urban or broader areas because they are generally too large to follow air streams and they tend to be removed easily by impaction on surfaces. Smallersized coarse particles can have longer lives and longer travel distances, especially in extreme circumstances, such as dust storms.

Global meteorological conditions play a role in transporting dust periodically from Africa and Asia to North America. A special study, summarized in Chapter 6 and provided in full in the Special Studies section of this report, examines how a particularly large event in Asia in April 2001 affected PM concentrations in the United States.

# Health and Environmental Effects

Scientific studies show a link between inhalable PM (alone, or combined with other pollutants in the air), which includes both fine and coarse particles, and a series of significant health effects. Both coarse and fine particles can accumulate in the respiratory system and are associated with numerous adverse health effects. Exposure to coarse particles is primarily associated with the aggravation of respiratory conditions such as asthma. Exposure to fine particles is most closely associated with decreased lung function, increased hospital admissions and emergency room visits, increased respiratory symptoms and disease, and premature death. Sensitive groups that appear to be at greatest risk to such PM effects include the elderly, individuals with cardiopulmonary disease such as asthma or congestive heart disease, and children.

Particulate matter also can cause adverse impacts to the environment. Fine particles are the major cause of reduced visibility in parts of the United States, including many of our National Parks. Other environmental impacts occur when particles deposit onto soils, plants, water, or materials. For example, particles containing nitrogen and sulfur that deposit onto land or waterbodies may change the nutrient balance and acidity of those environments so that species composition and buffering capacity change. Particles that are deposited directly onto the leaves of plants can, depending on their chemical composition, corrode leaf surfaces or interfere with plant metabolism. Finally, PM causes soiling and erosion damage to materials, including culturally important objects such as carved monuments and statues.

# Primary and Secondary PM Standards

The NAAQS for  $PM_{10}$  were established in 1987. The primary (healthbased) and secondary (public welfare-based) standards for  $PM_{10}$ include both short- and long-term NAAQS. The short-term (24-hour) standard of 150 µg/m<sup>3</sup> is not to be exceeded more than once per year, on average, over 3 years. The longterm standard specifies an expected annual arithmetic mean not to exceed 50 µg/m<sup>3</sup> averaged over 3 years.

The NAAQS for  $PM_{2.5}$  were established in 1997. The primary and secondary standards for  $PM_{2.5}$  are set at 15 µg/m<sup>3</sup> and 65 µg/m<sup>3</sup>, respectively, for the annual and 24-hour NAAQS.<sup>18</sup> Compliance with the annual standard is determined by the average of three consecutive annual average values (e.g., for 1999, 2000, and 2001). Compliance with the 24-hour standard is determined by the 3-year average of annual 98th percentile concentrations.

### National 10-Year PM<sub>10</sub> Air Quality Trends

Because 1988 represents the first complete year of PM<sub>10</sub> data for most monitored locations, a 20-year trend is not available. However, as Figure 2-38 illustrates, the most recent 10-year period (1993 to 2002) shows that the national average of annual mean PM<sub>10</sub> concentrations at 804 monitoring sites decreased 13 percent. The downward trend is apparent through 1998. However, between 1998 and 1999, the national average increased 1 percent. This slight increase was largely influenced by higher concentrations in the West, particularly in California. PM<sub>10</sub> concentrations in California were higher than normal from September to December 1999, a period that

coincided with major wildfires and particularly dry conditions.

When the sites are grouped as rural, suburban, and urban, as in Figure 2-39, the individual trends are similar to the national trend. The highest values are generally found at the urban sites, followed closely by the values at suburban sites. The annual mean is much lower at the rural sites, which are generally located away from local sources of PM<sub>10</sub>.

Several factors have played a role in reducing PM<sub>10</sub> concentrations. Where appropriate, states required emissions from industrial sources

**Figure 2-38**. PM<sub>10</sub> air quality, 1993–2002, based on seasonally weighted annual average.

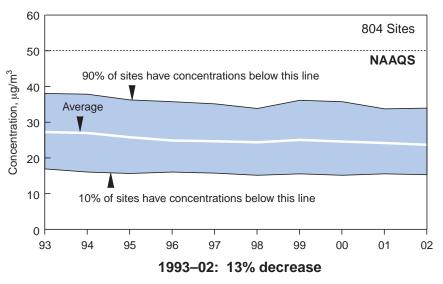
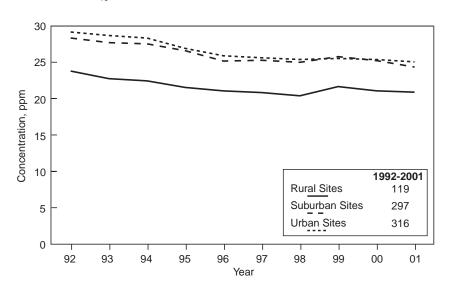




Figure 2-39. PM<sub>10</sub> annual mean concentration trends by location, 1992–2001.




and construction activities to be reduced to meet the  $PM_{10}$  standards. Measures were also adopted to reduce street dust emissions, including the winter-time use of clean antiskid materials such as washed sand, better control of the amount of material used, and removal of the material from the street as soon as the ice and snow melt. Additionally, cleaner burning fuels such as natural gas and fuel oil have replaced wood and coal as fuels for residential heating, industrial furnaces, and electric utility and industrial boilers.

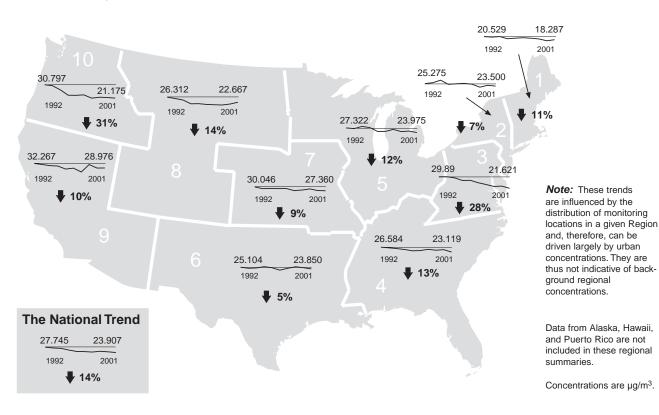

### PM<sub>10</sub> Regional Air Quality Trends

Figure 2-40 is a map of regional trends for the  $PM_{10}$  annual mean from 1992 to 2001. All 10 EPA Regions show decreasing trends over the 10-year period, with declines ranging from 5 to 31 percent. The largest 10-year decreases occurred in the Northwest. This is significant because  $PM_{10}$  concentrations generally have been higher in the western regions.

In the western States, programs such as those with residential wood stoves and agricultural practices have helped reduce emissions of  $PM_{10}$ .

In the eastern United States, the Clean Air Act's Acid Rain Program has contributed to the decrease in  $PM_{10}$  emissions. The program has reduced SO<sub>2</sub> and NO<sub>x</sub> emissions, both of which are precursors of particulate matter in the atmosphere (see the SO<sub>2</sub> section in this chapter for more information on the Acid Rain Program).

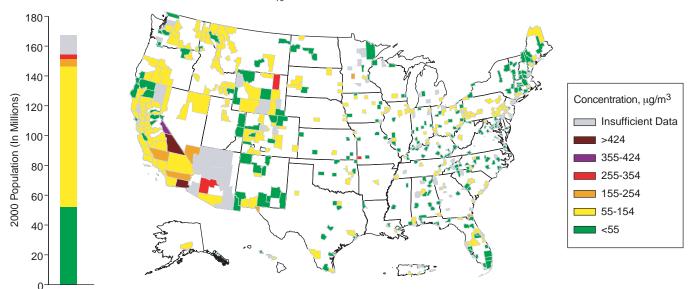


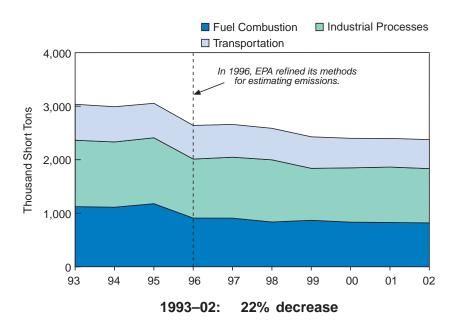


### PM<sub>10</sub> 2001 Air Quality Status

The map in Figure 2-41 displays the highest second maximum 24-hour  $PM_{10}$  concentration in each county for 2001. The highest of these was recorded in Inyo County, California, caused by wind-blown dust from a dry lake bed.<sup>19</sup> The bar chart that accompanies the national map shows the number of people living in counties within each concentration range. The colors on the map and bar chart correspond to the colors of the concentration ranges displayed in the map legend. In 2001, approximately 8 million people lived in 13 counties where the highest second maximum 24-hour PM<sub>10</sub> concentration was above the level of the 24-hour  $PM_{10}$ NAAQS. When both the annual and 24-hour PM<sub>10</sub> standards are considered, there were 11 million people living in 17 counties with  $PM_{10}$ concentrations above the NAAQS

levels in 2001. See Chapter 4 for information concerning officially designated  $PM_{10}$  nonattainment areas.


The Franklin Smelter facility, responsible for historically high recorded PM<sub>10</sub> concentrations in Philadelphia, shut down in August 1997 and was dismantled in late 1999,<sup>20</sup> resulting in 24-hour concentrations below the level of the standard at the nearby monitoring site.


### National PM<sub>10</sub> Emissions Trends

Direct  $PM_{10}$  emissions are generally examined in two separate groups. First, there are the emissions from the more traditionally inventoried sources, which decreased 22 percent nationally between 1993 and 2002 (see Figure 2-42). These sources include fuel combustion, industrial processes, and transportation. Of these, the fuel combustion category saw the largest decrease over the 10-year period (27 percent).

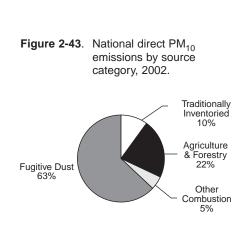

The second group of direct PM<sub>10</sub> emissions is a combination of miscellaneous and natural sources, including agriculture and forestry, wildfires and managed burning, and fugitive dust from paved and unpaved roads. Although fugitive dust emissions are large and can adversely affect air quality, they do not transport to more distant areas readily as do emissions from other source types. It should be noted that fugitive dust emissions from geogenic wind erosion have been removed from the emissions inventory for all years, because the annual emission estimates based on past methods for this category are not believed to be representative. As Figure 2-43 shows, these miscellaneous and natural sources actually account for a large percentage of the total direct PM<sub>10</sub>

Figure 2-41. Highest second maximum 24-hour PM<sub>10</sub> concentration by county, 2001.









**Note:** Emission estimation methods and data sources have evolved over time, resulting in some inconsistency in estimates in different years. In the methods used for this report, the significant changes have occurred between 1984 and 1986, and between 1995 and 1996, although not all source types were affected. More explanation is provided in Appendix B.

emissions nationwide, although they can be difficult to quantify compared to the traditionally inventoried sources. The trend of emissions in the miscellaneous/natural group may be more uncertain from one year to the next or over several years because of this difficulty and because these emissions tend to fluctuate a great deal from year to year.

Table A-6 lists  $PM_{10}$  emissions estimates for the traditionally inventoried and miscellaneous and natural sources.

Figure 2-44 shows the emission density for  $PM_{10}$  in each U.S. county. The  $PM_{10}$  emission density closely follows patterns in population density and thus is the highest in the eastern half of the United States, in

large metropolitan areas, areas with a high concentration of agriculture (e.g., the San Joaquin Valley in California), and along the Pacific Coast. One exception is that open biomass burning is an important source category that is more prevalent in forested areas and in some agricultural areas. Also, fugitive dust is an important component in arid and agricultural areas.

# Trends in PM<sub>2.5</sub> Levels and Direct Emissions

Figure 2-45 shows that direct PM<sub>2.5</sub> emissions from man-made sources decreased 17 percent nationally between 1993 and 2002. This chart tracks only directly emitted particles and does not account for secondary

particles formed when emissions of  $NO_x$ ,  $SO_2$ , ammonia, and other gases react in the atmosphere. The principal types of secondary particles are sulfates and nitrates, which are formed when  $SO_2$  and  $NO_x$  react with ammonia.

Figures 2-46 and 2-47 show how sulfates and nitrates, along with other components, contribute to  $PM_{2.5}$  concentrations. Figure 2-48 represents the most recent year of data available from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network, which was established in 1987 to track trends in pollutants, such as  $PM_{2.5}$ , that contribute to visibility impairment. Because the monitoring sites are located in rural areas

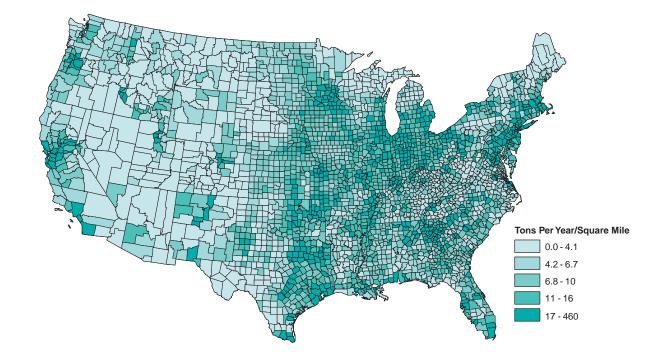
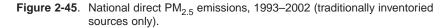
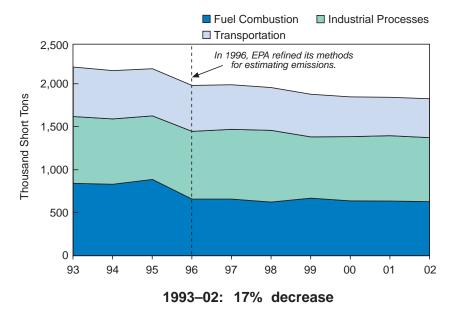





Figure 2-44. Direct PM<sub>10</sub> emissions density by county, 2001.





*Note:* Emission estimation methods and data sources have evolved over time, resulting in some inconsistency in estimates in different years. In the methods used for this report, the significant changes have occurred between 1984 and 1986 and between 1995 and 1996, although not all source types were affected. More explanation is provided in Appendix B.

throughout the country, the network is a good source for assessing regional differences in  $PM_{2.5}$ . Figure 2-47 represents the most recent year of data from EPA's urban speciation network, which was established in 1999. All of these sites are located in urban areas.

The IMPROVE data show that  $PM_{2.5}$  levels in rural areas are highest in the eastern United States and southern California, as shown by the larger circles. Sulfates and associated ammonium dominate the East, with carbon as the next most prevalent component. Sulfate concentrations in the East largely result from SO<sub>2</sub> emissions from coal-fired power plants. In California and other areas of the West, carbon and nitrates make up most of the PM<sub>2.5</sub> measured.

The urban speciation data show that sites in urban areas, as shown in the circles in the map in Figure 2-47, generally have higher annual



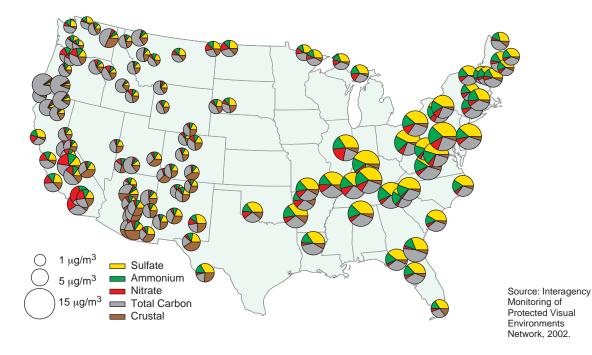
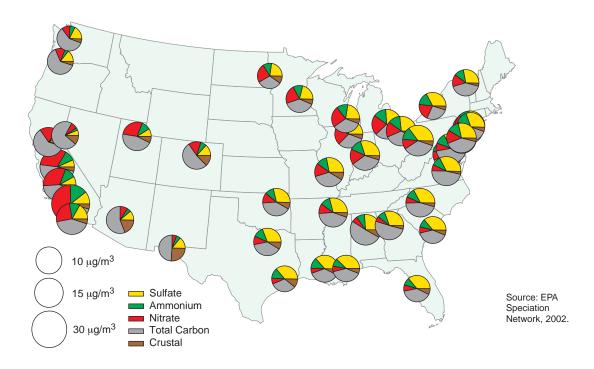
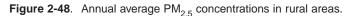
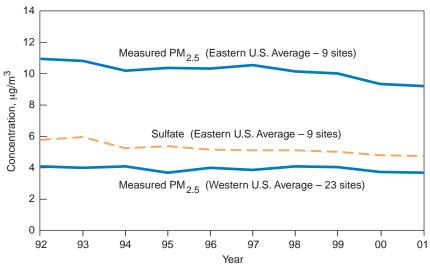




Figure 2-47. Annual average  $PM_{2.5}$  concentrations (µg/m<sup>3</sup>) and particle type in urban areas, 2002.

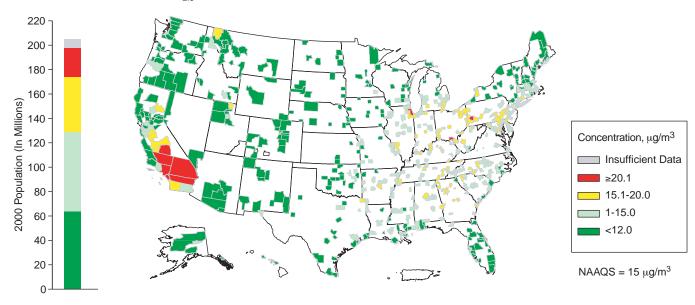



*Note:* Direct comparisons of the information in Figures 2-46 and 2-47 should take into consideration the fact that one is an urban network and the other is a rural network and that there are differences in instruments and measurement methods.

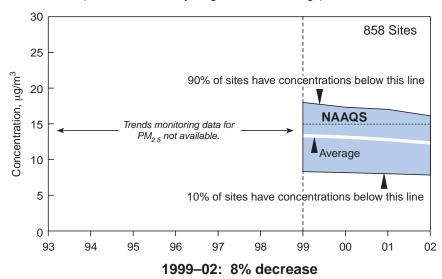

average  $PM_{2.5}$  concentrations than nearby rural areas. Urban sites in the East include a large percentage of carbon and sulfates (and ammonium). Urban sites in the Midwest and far West (and especially in California) include a large percentage of carbon and nitrates.

Trends in rural PM<sub>2.5</sub> concentrations can be examined with data from the IMPROVE network, as shown in Figure 2-48. In the East, where sulfates contribute most to rural  $PM_{25}$ , the annual average PM<sub>2.5</sub> concentrations decreased 16 percent from 1992 to 2001. This decrease was largely due to a decline in sulfate concentrations, which decreased 17 percent. The other major components remained relatively unchanged over the same period. Average PM<sub>25</sub> concentrations in the West were less than one-half of the average for the eastern sites during this period.

In 1999, EPA and its state, tribal, and local air pollution control partners deployed a monitoring network to begin measuring  $PM_{2.5}$  concentrations nationwide. Figure 2-49 shows annual average  $PM_{2.5}$  concentrations by county. This map also indicates that  $PM_{2.5}$  concentrations vary regionally. Based on the monitoring data, parts of California and much of the eastern United States have annual average  $PM_{2.5}$  concentrations above the level of the annual  $PM_{2.5}$ standard, as indicated by the orange and red on the map. With few exceptions, the rest of the country generally has annual average concentrations below the level of the annual  $PM_{2.5}$  health standard.


Now that there are several years of monitoring data available, EPA has begun to examine trends at the national level, as shown in Figure 2-50. Annual average  $PM_{2.5}$  concentrations decreased 8 percent nationally from 1999 to 2002. The Southeast was responsible for most





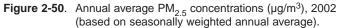


Source: Interagency Monitoring of Protected Visual Environments Network, 1999.

Figure 2-49. Annual average  $PM_{2.5}$  concentrations by county, 2001.



of that reduction, where the monitored levels of  $PM_{2.5}$  decreased 18 percent from 1999 to 2002. Lower 2002 annual average concentrations in the Southeast are due, in part, to decreases in sulfates, which largely result from power plant emissions of SO<sub>2</sub>.





## Sulfur Dioxide

| Air Quality | Conc | entrations |
|-------------|------|------------|
| 1983–02     | 54%  | decrease   |
| 1993–02     | 39%  | decrease   |
| Emileolous  |      |            |
| Emissions   |      |            |
| 1983–02     | 33%  | decrease   |

### **Worth Noting**

- Steady 20-year improvement has reduced sulfur dioxide (SO<sub>2</sub>) ambient concentrations by one-half and emissions by more than one-third.
- Phase II of the Acid Rain Program was implemented in 2000 and has resulted in new reductions.

### **Nature and Sources**

Sulfur dioxide  $(SO_2)$  belongs to the family of sulfur oxide  $(SO_x)$  gases. These gases are formed when fuel containing sulfur (mainly coal and oil) is burned and during metal smelting and other industrial processes. The highest monitored concentrations of  $SO_2$  have been recorded in the vicinity of large industrial facilities.

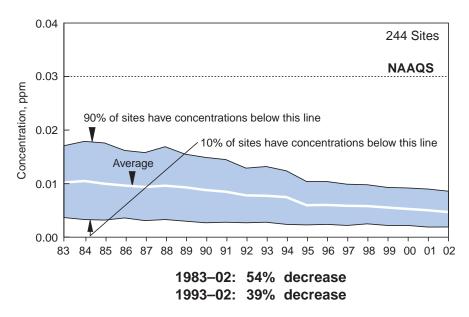
# Health and Environmental Effects

High concentrations of SO<sub>2</sub> can result in temporary breathing impairment for asthmatic children and adults who are active outdoors. Short-term exposures of asthmatic individuals to elevated SO<sub>2</sub> levels while at moderate exertion may result in reduced lung function that may be accompanied by symptoms such as wheezing, chest tightness, or shortness of breath. Other effects that have been associated with longer-term exposures to high concentrations of  $SO_{2}$ , in conjunction with high levels of PM, include respiratory illness, alterations in the lungs' defenses, and

aggravation of existing cardiovascular disease. The subgroups of the population that may be affected under these conditions include individuals with cardiovascular disease or chronic lung disease, as well as children and the elderly.

Additionally, there are a variety of environmental concerns associated with high concentrations of SO<sub>2</sub>. Because  $SO_2$ , along with  $NO_x$ , is a major precursor to acidic deposition (acid rain), it contributes to the acidification of soils, lakes, and streams and the associated adverse impacts on ecosystems. Sulfur dioxide exposure to vegetation can increase foliar injury, decrease plant growth and yield, and decrease the number and variety of plant species in a given community. Sulfur dioxide also is a major precursor to PM<sub>25</sub> (aerosols), which is of significant concern to human health (as discussed in the particulate matter section of this chapter), as well as a main pollutant that impairs visibility. Finally, SO<sub>2</sub> can accelerate the corrosion of natural and man-made materials (e.g., concrete and limestone) that are used in buildings and monuments, as well


as paper, iron-containing metals, zinc, and other protective coatings.


# Primary and Secondary Standards

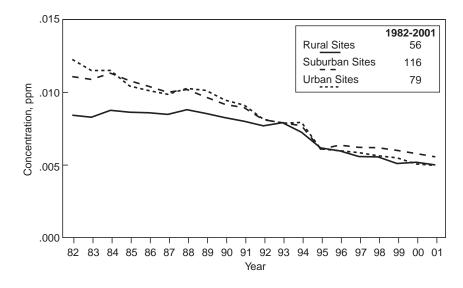
There are both short- and long-term primary NAAQS for SO<sub>2</sub>. The shortterm (24-hour) standard of 0.14 ppm (365  $\mu$ g/m<sup>3</sup>) is not to be exceeded more than once per year. The longterm standard specifies an annual arithmetic mean not to exceed 0.030 ppm (80  $\mu$ g/m<sup>3</sup>). The secondary NAAQS (3-hour) of 0.50 ppm (1,300  $\mu$ g/m<sup>3</sup>) is not to be exceeded more than once per year. The standards for SO<sub>2</sub> have undergone periodic review, but the science has not warranted a change since they were established in 1972.

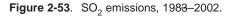
# National 10-Year Air Quality Trends

The national composite average of  $SO_2$  annual mean concentrations decreased 39 percent between 1993 and 2002 as shown in Figure 2-51, with the largest single-year reduction (16 percent) occurring between 1994 and 1995.<sup>21</sup> The composite trend has since leveled off, declining only






4.5 percent from 2001 to 2002. This same general trend is seen in Figure 2-52, which plots the ambient concentrations grouped by rural, suburban, and urban sites. It shows that the mean concentrations at the urban and suburban sites have been consistently higher than those at the rural sites. However, the 1994 to 1995 reduction in the concentrations at nonrural sites has narrowed the gap between the trends. The greater reduction seen in the nonrural sites reflects the fact that the proportion of nonrural sites is greater in the eastern United States, which is where most of the 1994 to 1995 emissions reductions at electric utilities occurred.<sup>22</sup> The national composite second maximum 24-hour SO<sub>2</sub> annual mean concentrations decreased 35 percent between 1992 and 2001 with the largest single year reduction (25 percent) also occurring between 1994 and 1995.


#### **National Emissions Trends**

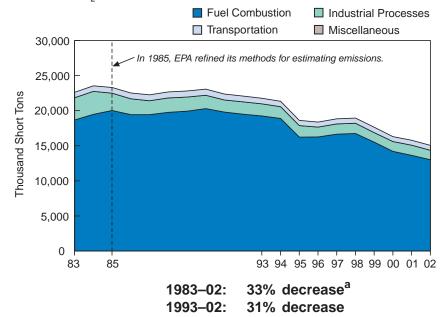
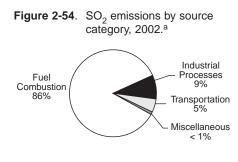

As shown in Figure 2-53, national SO<sub>2</sub> emissions decreased 31 percent between 1993 and 2002, with an even more impressive 33 percent decrease in the past 20 years (1983 to 2002). The dramatic reduction in 1995 was caused by implementation of the Acid Rain Program; subsequent year-to-year variations are driven in part by the yearly changes in emissions from the electric utility industry, which accounts for most of the fuel combustion category in Figure 2-54. In particular, coal-burning power plants have consistently been the largest contributor to SO<sub>2</sub> emissions, as documented in Table A-9 in Appendix A.

Figure 2-55 shows the emissions density for  $SO_2$  in each U.S. county.  $SO_2$  emissions density is highest in the eastern United States, in large metropolitan areas, and in areas with coal-burning power plants.







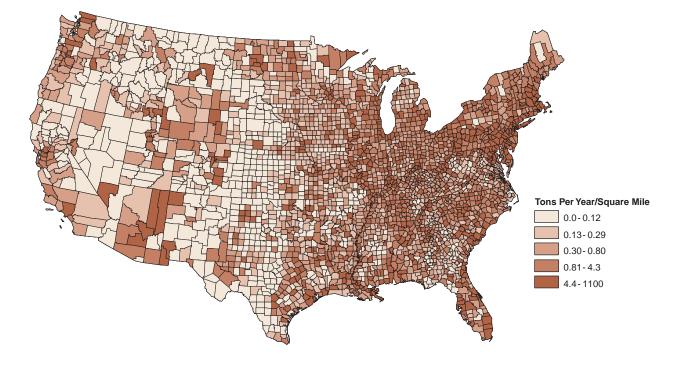
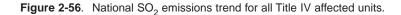


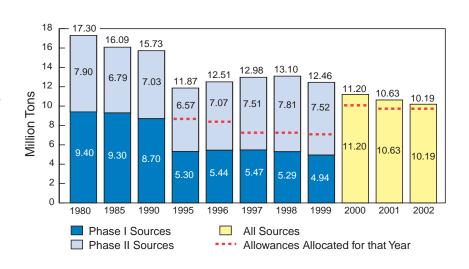

*Note:* Emission estimation methods and data sources have evolved over time, resulting in some inconsistency in estimates in different years. In the methods used for this report, the significant changes have occurred between 1984 and 1986 and between 1995 and 1996, although not all source types were affected. More explanation is provided in Appendix B.

<sup>a</sup> Emissions trends data are not available for 1983; thus, the 20-year trend was interpolated based on emissions data for 1980 and 1985.



<sup>a</sup> Sums do not equal 100 due to rounding.



Figure 2-55. Direct SO<sub>2</sub> emissions density by county, 2001.

### The Acid Rain Program

The substantial national reductions in SO<sub>2</sub> emissions and ambient SO<sub>2</sub> and sulfate concentrations from 1994 to 1995 were due mainly to Phase I implementation of the Acid Rain Program. Established by EPA under Title IV of the 1990 Amendments, the Acid Rain Program's principal goal is to achieve significant reductions in SO<sub>2</sub> and NO<sub>y</sub> emissions from electric utilities. Phase I compliance for SO<sub>2</sub> began in 1995 and significantly reduced emissions from the participating utilities.<sup>23</sup> Phase II began in 2000 and sets restrictions on Phase I plants as well as smaller coal-, gas-, and oil-fired plants. Approximately 3,000 units are now affected by the Acid Rain Program. Figure 2-56 shows the reduction in SO<sub>2</sub> emissions for all sources.

Between 1996 and 1998, total SO<sub>2</sub> emissions from electric utilities had increased slightly, compared to their





levels in 1995. Since 2000, however, total  $SO_2$  emissions have decreased, falling slightly below 1995 levels. Most Phase I plants overcomplied in Phase I (1995 to 2000), banking their SO<sub>2</sub> allowances for use in Phase II, resulting in significant early reductions. However, some Phase I units did increase their emissions during these years. Because Phase I units account for only 18 percent of the total 1996 to 1998 increase, the majority of the increase is attributed to those units not yet participating in the Acid Rain Program until Phase II. By 2010, the Acid Rain Program will reduce annual  $SO_2$  emissions by half from 1980 levels. The program sets a permanent cap at 8.95 million tons per year on the total amount of  $SO_2$  that may be emitted from power plants nationwide. For more information on the Acid Rain Program, visit http://www.epa.gov/airmarkets.

# National 20-Year Air Quality Trends

The progress in reducing ambient  $SO_2$  concentrations during the past 20 years is shown in Figure 2-57. The national 2001 composite average  $SO_2$  annual mean concentration is 50 percent lower than it was in 1982. In addition to the previously mentioned effects of the Acid Rain Program, these steady reductions over time were accomplished by installing flue gas control equipment at coal-fired generating plants,

reducing emissions from industrial processing facilities such as smelters and sulfuric acid manufacturing plants, reducing the average sulfur content of fuels burned, and using cleaner fuels in residential and commercial burners.

### **Regional Air Quality Trends**

The map of regional trends in Figure 2-58 shows that ambient SO<sub>2</sub> concentrations are generally higher in the eastern United States. The effects of Phase I of the Acid Rain Program are seen most vividly in the northeast. In particular, concentrations fell 20 to 25 percent between 1994 and 1995 in EPA Regions 1, 2, 3, and 5. These broad regional trends are not surprising because most of the units affected by Phase I of the Acid Rain Program also are located in the East. This figure also shows that ambient concentrations have increased slightly between 1995 and 1997 in Regions 3 and 4 where many of the electric utility units not yet affected by the Acid Rain Program are located.

#### 2001 Air Quality Status

The most recent year of ambient data shows that all counties did meet the primary  $SO_2$  short-term standard, as shown by Figure 2-59.

Figure 2-57. Long-term ambient SO<sub>2</sub> trend, 1982-2001.



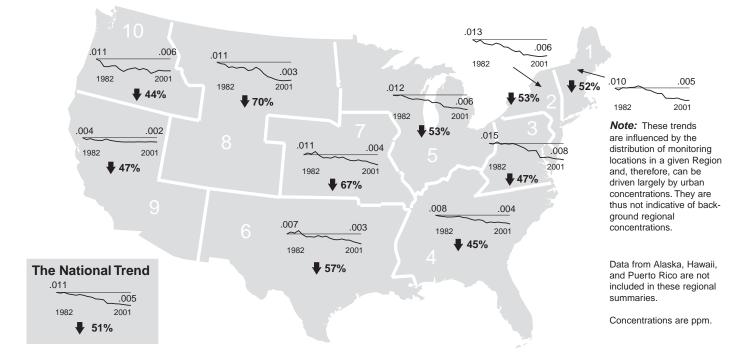
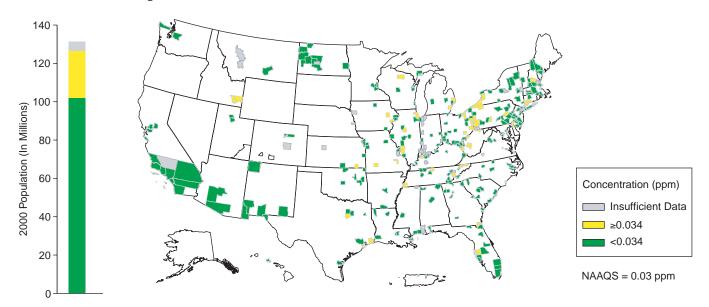




Figure 2-58. Trend in  $SO_2$  annual arithmetic mean concentration by EPA Region, 1982–2001.

Figure 2-59. Highest SO<sub>2</sub> annual mean concentration by county, 2001.



# References

1. Note that due to the annual loss and replacement of ambient monitoring sites (e.g., redevelopment, new leases), too few sites possess a monitoring record sufficient to construct a representative 20-year trend for the nation. Therefore, this report assesses long-term trends by piecing together two separate 10-year trends databases.

2. Oxygenated Gasoline Implementation Guidelines, EPA, Office of Mobile Sources, Washington, DC, July 27, 1992.

3. Guidelines for Oxygenated Gasoline Credit Programs and Guidelines on Establishment of Control Periods Under Section 211(m) of the Clean Air Act as Amended, 57 FR 47853 (October 20, 1992).

4. Table of winter oxygenated fuels programs by state, EPA, Office of Transportation and Air Quality, Washington, DC, December 8, 1999. http://www.epa.gov/otaq/regs/fuels/ oxy-area.pdf

 National Ambient Air Quality Standards for Nitrogen Dioxide:
 Final Decision, *Federal Register*, 61 FR 196, Washington, DC, October 8, 1996.

6. Review of the National Ambient Air Quality Standards for Nitrogen Oxides: Assessment of Scientific and Technical Information, EPA-452/R-95-005, U.S. Environmental Protection Agency, Research Triangle Park, NC, September 1995.

7. Atmospheric concentrations of  $NO_2$  are determined by indirect photomultiplier measurement of the luminescence produced by a critical reaction of NO with ozone. The measurement of  $NO_2$  is based first on the conversion of  $NO_2$  to NO, and then subsequent detection of NO

using this well-characterized chemiluminescence technique. This conversion is not specific for NO<sub>2</sub>, hence chemiluminescence analyzers are subject to interferences produced by response to other nitrogen-containing compounds (e.g., peroxyacetyl nitrate [PAN]) that can be converted to NO. The chemiluminescence technique has been reported to overestimate NO<sub>2</sub> due to these interferences. This is not an issue for compliance because there are no violations of the NO<sub>2</sub> NAAQS. In addition, the interferences are believed to be relatively small in urban areas. The national and regional air quality trends depicted are based primarily on data from monitoring sites in urban locations and are expected to be reasonable representations of urban NO<sub>2</sub> trends. That is not the case in rural and remote areas, however, where air mass aging could foster greater relative levels of PAN and nitric acid and interfere significantly with the interpretation of NO<sub>2</sub> monitoring data.

8. 1998 Compliance Report, U.S. Environmental Protection Agency, Acid Rain Program, Washington, DC, August 1999.

9. National Ambient Air Quality Standards for Ozone; Final Rule, *Federal Register*, 62 FR 38856, Washington, DC, July 18, 1997.

 United States Environmental Protection Agency. Office of Air Quality Planning and Standards.
 2000. "National Air Quality and Emissions Trends Reports, 1998." Appedix B.

11. The 1-hour annual ozone design value is defined at an individual monitoring location as the second highest daily maximum 1-hour average concentration; the 8-hour annual design value is defined as the fourth highest daily maximum 8-hour average concentration. 12. Coulter-Burke, S. and T. Stoeckenius, 2002. *Analysis of Ambient Air Quality Trends in the Chicago and Atlanta Ozone Nonattainment Areas.* ENVIRON International Corp., September.

13. CASTNet is considered the nation's primary source for atmospheric data to estimate dry acidic deposition and to provide data on rural ozone levels. Used in conjunction with other national monitoring networks, CASTNet helps to determine the effectiveness of national emission control programs. Established in 1987, CASTNet now comprises 79 monitoring stations across the United States. The longest data records are primarily at eastern sites. The majority of the monitoring stations are operated by EPA's Office of Air and Radiation; however, 27 stations are operated by the National Park Service (NPS) in cooperation with EPA. The CASTNet data complement the larger O<sub>3</sub> data sets gathered by the State and Local Air Monitoring Stations (SLAMS) and National Air Monitoring Stations (NAMS) networks with additional rural coverage.

14. Similarly, although registering declines in 8-hour ozone levels of 16 and 12 percent, respectively, over the last 20 years, urban and suburban site progress slowed between 1991 and 2000 (to 8.5 and 8 percent improvement).

15. This analysis utilizes a nonparametric regression procedure to assess statistical significance, a description of which is provided in Chapter 3: Criteria Pollutants – Metropolitan Area Trends.

16. "Volatility Regulations for Gasoline and Alcohol Blends Sold in Calendar Years 1989 and Beyond," *Federal Register*, 54 FR 11868, Washington, DC, March 22,1989.

17. *Reformulated Gasoline: A Major Step Toward Cleaner Air*, EPA-420-B-94-004, U.S. Environmental Protection Agency, Office of Air and Radiation, Washington, DC, September 1994.

 National Ambient Air Quality Standards for Particulate Matter:
 Final Rule, *Federal Register*, 62 FR
 38652, Washington, DC, July 18, 1997.
 http://www.epa.gov/ttn/oarpg/t1/fr\_ notices/pmnaaqs.pdf.

19. Personal communication with EPA Region 9.

20. Personal communication with EPA Region 3.

21. Revised Requirements for Designation of Reference and Equivalent Methods for PM2.5 and Ambient Air Quality Surveillance for Particulate Matter: Final Rule, Federal Register 62 July 18, 1997.

22. IMPROVE, Cooperative Center for Research in the Atmosphere, Colorado State University, Ft. Collins, CO, May 2000.

23. 1997 Compliance Report: Acid Rain Program, EPA-430-R-98-012, U.S. Environmental Protection Agency, Office of Air and Radiation, Washington, DC, August 1998. NATIONAL AIR QUALITY AND EMISSIONS TRENDS REPORT, 2003

# Criteria Pollutants — Metropolitan Area Trends

### http://www.epa.gov/oar/airtrends/metro.html

### **Worth Noting**

- Out of 296 metropolitan statistical areas, 36 have significant upward trends.
- Of these, only trends involving ozone had values over the level of air quality standards.

This chapter presents status and trends in criteria pollutants for metropolitan statistical areas (MSAs) in the United States. The MSA status and trends give a local picture of air pollution and can reveal regional patterns of trends. Such information can allow individuals to gauge the air pollution situation where they live. Not all areas in the country are in MSAs, and not all MSAs are included here. A complete list of MSAs and their boundaries can be found in the Statistical Abstract of the United States.<sup>1</sup> The status and trends of MSAs are based on four tables found in Appendix A (A-15 through A-18). Table A-15 gives the 2000 peak statistics for all MSAs, providing the status of that year. It also shows 10-year trends for the 263 MSAs having data that meet the trends requirements explained in Appendix B. Table A-16 lists these MSAs and reports criteria pollutant trends as "upward," "downward," or "not significant." These categories are based on a statistical test, known as the Theil test, described later in this chapter.

Another way to assess trends in MSAs is to examine Air Quality Index (AQI) values.<sup>2,3,4</sup> The AQI is used to present daily information to the public on one or more criteria pollutants in an easily understood format and in a timely manner. Tables A-17 and A-18 list the number of days with AQI values greater than 100 for the nation's 94 largest metropolitan areas (population greater than 500,000). Table A-17 lists AQI values based on all pollutants, and Table A-18 lists AQI values based on ozone alone. The tables listing Pollutant Standards Index (PSI) data from previous reports may not agree with the tables in this report because of the new way to calculate the AQI. These changes are presented in more detail later in this chapter.

A new technique for displaying air quality information is also described. This technique presents visual clues as to the status of different MSAs.

Not every MSA appears in these tables. Some do not appear because the population is so small or the air quality is so good that AQI reporting is not currently required. Ambient monitoring for a particular pollutant may not be conducted if there is no problem, thus some MSAs have no ongoing air quality monitoring for one or more of the criteria pollutants. In addition, there are also MSAs with too little monitoring data for trends analysis purposes (see Appendix B).

### **Status: 2001**

The air quality status for MSAs is provided in Table A-15, which lists peak statistics for all criteria pollutants measured in an MSA. As discussed above, not all criteria pollutants are measured in all MSAs, hence the "ND" (no data) listings in Table A-15. Examining Table A-15 shows that 140 areas had peak concentrations exceeding standard levels for at least one criteria pollutant. The number of these areas increased by 4 the count from 2000 (136 areas). These 140 areas are home to 56 percent of the U.S. population. Similarly, there were 60 areas (with 36 percent of the population) that had peak statistics that exceeded two or more standards. Six areas-Bakersfield, CA, Riverside-San Bernardino, CA, Fresno, CA, Birmingham, AL, St. Louis, MO, and Visalia-Tulare-Porterville, CA (with 3 percent of the U.S. population)-had peak statistics

from three pollutants that exceeded the respective standards. There was one area that violated four or more standards (St. Louis, MO).

# **Trends Analysis**

Table A-16 displays air quality trends for MSAs. The data in this table are average statistics of pollutant concentrations from the subset of ambient monitoring sites that meet the trends criteria explained in Appendix B. A total of 246 MSAs have at least one monitoring site that meets these criteria. As stated previously, not all pollutants are measured in every MSA. From 1992 to 2001, statistics based on the standards were calculated for each site and pollutant with available data. Spatial averages were obtained for each of the 246 MSAs by averaging these statistics across all sites in an MSA. This process resulted in one value per MSA per year for each pollutant. Although there are seasonal patterns of high values for some pollutants in some locations, the averages for every MSA and year provide a consistent indicator with which to assess trends.

Because air pollution levels are affected by variations in meteorology, emissions, and day-to-day activities of populations in MSAs, trends in air pollution levels are not always well defined. To assess upward or downward trends, we applied a statistical significance test to these data. An advantage of using the statistical test is the ability to test whether or not the upward or downward trend is real (significant) or just a chance product of year-toyear variation (not significant). Because the underlying pollutant distributions do not meet the usual assumptions required for common

Table 3-1. Summary of MSA Trend Analyses by Pollutant, 1990–1999

|                  | Trend Statistic          | Total #<br>MSAs | # MSAs<br>Up | # MSAs<br>Down | # MSAs<br>with No<br>Significant<br>Trend |
|------------------|--------------------------|-----------------|--------------|----------------|-------------------------------------------|
| СО               | Second max. 8-hour       | 134             | 0            | 104            | 30                                        |
| Pb               | Max. quarterly mean      | 35              | 1            | 12             | 22                                        |
| NO <sub>2</sub>  | Arithmetic mean          | 97              | 3            | 37             | 57                                        |
| O <sub>3</sub>   | Fourth max. 8-hour       | 202             | 17           | 10             | 175                                       |
| 0 <sub>3</sub>   | Second daily max. 1-hour | 202             | 12           | 15             | 175                                       |
| PM <sub>10</sub> | Ninetieth percentile     | 164             | 4            | 41             | 119                                       |
| PM <sub>10</sub> | Weighted annual mean     | 164             | 7            | 60             | 97                                        |
| SO <sub>2</sub>  | Arithmetic mean          | 139             | 4            | 70             | 65                                        |
| SO2              | Second max. 24-hour      | 139             | 2            | 62             | 75                                        |

significance tests, the test was based on a nonparametric method commonly referred to as the Theil test.<sup>5,6,7,8</sup> By using linear regression to estimate the trend from changes during the entire 10-year period, we can detect an upward or downward trend even when the concentration level of the first year equals the concentration level of the last year.

Table 3-1 summarizes the trend analysis performed on the 246 MSAs. It shows that there were no upward trends in carbon monoxide (CO).  $PM_{10}$  and sulfur dioxide had upward trends in 7 MSAs over the past decade, NO<sub>2</sub> had upward trends in 3 MSAs, while SO<sub>2</sub> had upward trends in 4 MSAs. Lead had an upward trend in 1 MSA. Further examination of Table A-16 shows that, of the 246 MSAs, (1) 180 had downward trends in at least one of the criteria pollutants, (2) 36 had upward trends (of these 36, 25 also had downward trends in other pollutants, leaving 9 MSAs with exclusively upward trends), and (3) only 2 MSAs had no significant trends. A closer look at the 36 MSAs with upward trends reveals that 13 were exceeding the

level of the 8-hour ozone standard, and 3 were above the 1-hour standard. For all other pollutants with upward trends in any MSA, the levels observed were well below standard levels. Taken as a whole, these results still demonstrate significant improvements in urban air quality over the past decade for the nation; however, the number of MSAs with upward trends is increasing when compared to numbers in previous reports.

# The Air Quality Index

The AQI provides information on pollutant concentrations for groundlevel ozone, particulate matter, carbon monoxide, sulfur dioxide, and nitrogen dioxide. Formerly known as the PSI, this nationally uniform air quality index is used by state and local agencies for reporting daily air quality to the public. In 1999, EPA updated the AQI to reflect the latest science on air pollution health effects and to make it more appropriate for use in contemporary news media, thereby enhancing the public's understanding of air pollution across the nation. Currently, the AQI may be found in national media such as USA Today and on the Weather Channel, as well as in local newspapers and broadcasts across the country. It also serves as a basis for community-based programs that encourage the public to take action to reduce air pollution on days when levels are projected to be of concern. An Internet Web site, AIRNOW (http://www.epa.gov/airnow), which presents "real time" air quality data and forecasts of summertime smog levels for most states, uses the AOI to communicate information about air quality. The index has been adopted by many other countries (e.g., Mexico, Singapore, and Taiwan) and is used around the world to provide the public with information on air pollutants.

AQI values for each of the pollutants are derived from concentrations of that pollutant. The index is "normalized" across each pollutant so that, generally, an index value of 100 is set at the level of the shortterm, health-based standard for that pollutant. An index value of 500 is set at the significant harm level, which represents imminent and substantial endangerment to public health.<sup>9</sup> The higher the index value, the greater the level of air pollution and health risk.

To make the AQI as easy to understand as possible, EPA has divided the AQI scale into six general categories that correspond to a different level of health concern:

- **Good** (0–50): Air quality is considered satisfactory, and air pollution poses little or no risk.
- **Moderate** (51–100): Air quality is acceptable; however, for some pollutants there may be a moderate health concern for a very

small number of individuals. For example, people who are unusually sensitive to ozone may experience respiratory symptoms.

- Unhealthy for Sensitive Groups (101-150): Certain groups of people may be particularly sensitive to the harmful effects of certain air pollutants. This means they are likely to be affected at lower levels than is the general public. For example, people with respiratory disease are at greater risk from exposure to ozone, while people with respiratory disease or heart disease are at greater risk from particulate matter. When the AQI is in this range, members of sensitive groups may experience health effects, but the general public is not likely to be affected.
- Unhealthy (151–200): Everyone may begin to experience health effects. Members of sensitive groups may experience more serious health effects.
- Very Unhealthy (201–300): Air quality in this range triggers a health alert, meaning everyone may experience more serious health effects.
- Hazardous (over 300): Air quality in this range triggers health warnings of emergency conditions. The entire population is more likely to be affected.

Because different groups of people are sensitive to different pollutants, there are pollutant-specific health effects and cautionary statements for each category in the AQI.

An AQI report will contain an index value, category name, and the pollutant of concern and is often featured on local television or radio news programs and in newspapers, especially when values are high. For national consistency and ease of understanding, if the AQI is reported using color, there are specific, required colors associated with each category. Examples of the use of color in AQI reporting include the color bars that appear in many newspapers and the color contours of the ozone map. The six AQI categories, their respective health effects descriptors, colors, index ranges, and corresponding concentration ranges are shown in Table 3-2. EPA has also developed an AQI logo (Figure 3-1) to increase the awareness of the AQI in media reports and also to indicate that the AQI is uniform throughout the country.

The AQI integrates information on pollutant concentrations across an entire monitoring network into a single number that represents the worst daily air quality experienced in an urban area. For each of the pollutants, concentrations are converted into index values between 0 and 500. The level of the pollutant with the highest index value is reported as the AQI level for that day. There is a new AQI requirement to report any pollutant with an index value above 100. In addition, when the AQI is above 100, a pollutant-specific statement indicating what specific groups are most at risk must be reported. For example, when the index value is above 100 for ozone, the AQI report will state "children and people with asthma are most at risk." The AOI must be reported in all MSAs with air quality problems and populations greater than 350,000 according to the 2000 census. Previously, urbanized areas with populations greater than 200,000 were required to report the index.

| Category                          | AQI                | O <sub>3</sub> (ppm)<br>8-hour | O <sub>3</sub> (ppm)<br>1-hour | ΡΜ <sub>2.5</sub><br>(μg/m <sup>3</sup> ) | ΡΜ <sub>10</sub><br>(μg/m <sup>3</sup> ) | CO<br>(ppm)            | SO <sub>2</sub><br>(ppm) | NO <sub>2</sub><br>(ppm) |
|-----------------------------------|--------------------|--------------------------------|--------------------------------|-------------------------------------------|------------------------------------------|------------------------|--------------------------|--------------------------|
| Good                              | 0–50               | 0.000-0.064                    | ( <sup>b</sup> )               | 0.0–15.4                                  | 0–54                                     | 0.0-4.4                | 0.000-0.034              | (c)                      |
| Moderate                          | 51–100             | 0.065-0.084                    | ( <sup>b</sup> )               | 15.5–40.4                                 | 55–154                                   | 4.5-9.4                | 0.035-0.144              | (c)                      |
| Unhealthy for<br>Sensitive Groups | 101–150            | 0.085–0.104                    | 0.125–0.164                    | 40.5–65.4                                 | 155–254                                  | 9.5–12.4               | 0.145–0.224              | (c)                      |
| Unhealthy                         | 151–200            | 0.105-0.124                    | 0.165-0.204                    | 65.5-150.4                                | 255-354                                  | 12.5–15.4              | 0.225-0.304              | (c)                      |
| Very unhealthy                    | 201–300            | 0.125-0.374                    | 0.205-0.404                    | 150.5-250.4                               | 355-424                                  | 15.5–30.4              | 0.305-0.604              | 0.65-1.24                |
| Hazardous                         | 301–400<br>401–500 | (a)<br>( <sup>a</sup> )        | 0.405-0.504 0.505-0.604        | 250.5-350.4<br>350.5-500.4                | 425–504<br>505–604                       | 30.5–40.4<br>40.5–50.4 | 0.605-0.804              | 1.25–1.64<br>1.65–2.04   |

#### Table 3-2. AQI Categories, Colors, and Ranges

<sup>a</sup>No health effects information for these levels-use 1-hour concentrations.

<sup>b</sup>1-hour concentrations provided for areas where the AQI is based on 1-hour values might be more cautionary.

<sup>c</sup>NO<sub>2</sub> has no short-term standard but does have a short-term "alert" level.

Figure 3-1. Air quality index logo.



### Summary of AQI Analyses

Of the five criteria pollutants used to calculate the AQI, only four (CO,  $O_3$ ,  $PM_{10}$ , and  $SO_2$ ) generally contribute to the AQI value. In recent years, nitrogen dioxide has never been the highest pollutant measured because it does not have a short-term standard and can be included only when the index reaches a value of 200 or greater. Ten-year AQI trends are based on daily maximum pollutant concentrations from the subset of ambient monitoring sites that meet the trends requirements in Appendix B.

Because an AQI value greater than 100 indicates that at least one criteria pollutant has reached levels at which people in sensitive groups are likely to suffer health effects, the number of days with AQI values greater than 100 provides an indicator of air quality in urban areas. Figure 3-2 shows the trend in the number of days with AQI values greater than 100 summed across the nation's largest metropolitan areas. This number is expressed as a percentage of the days in the first year (1992). Because of their magnitude, AQI totals for Los Angeles, CA,

Riverside, CA, Bakersfield, CA, Ventura, CA, Orange County, CA, and San Diego, CA, are shown separately as California. Plotting these values as a percentage of 1992 values allows trends of different magnitudes to be compared on the same graph. The long-term air quality improvement in California urban areas is evident in this figure. Between 1992 and 2001, the total number of days with AQI values greater than 100 decreased more than 50 percent. The variability in the remaining major cities across the United States makes it difficult to interpret the change over the same period (labeled as "rest" in Figure 3-2), though it does appear to be rising. Other areas that had serious, severe, or extreme ozone problems (labeled as "pams" in Figure 3-2) show almost no change.

Although five criteria pollutants can contribute to the AQI, the index is driven mostly by ozone. AQI estimates depend on the number of pollutants monitored as well as the number of monitoring sites where data are collected. The more pollutants measured and the more sites that are available in an area, the better the estimate of the AQI for a



given day. Historically, ozone accounts for the majority of days, with AQI values above 100. Soon, PM<sub>25</sub> will also be monitored and reported on a regular basis, which will reduce the percentage of days that ozone is the greatest AQI pollutant. Table A-18 shows the number of days with AQI values greater than 100 that are attributed to ozone alone. Comparing Tables A-17 and A-18, the number of days with an AQI above 100 are increasingly due to ozone. In fact, the percentage of days with an AQI above 100 due to ozone have increased from 94 percent in 1992 to 98 percent in 2001 (Figure 3-3). This increase reveals that ozone increasingly accounts for those days above the 100 level and, therefore, reflects the success in achieving lower CO and PM<sub>10</sub> concentrations. However, the typical 1-in-6 day sampling schedule for most PM<sub>10</sub> sites limits the number of days that PM<sub>10</sub> can factor into the AQI determination, which may, in some places, account for the predominance of ozone. In the future, PM<sub>2.5</sub> may challenge ozone as the dominant pollutant.

### A New Display Technique

As more and more information about air pollution and its effect on our health is being presented to the public through various media channels, a need has arisen to provide the general public with a simple, visual method for assessing the degree of air pollution in their communities. To meet this need, EPA is exploring a new technique for displaying air quality information that is designed to allow the general public to quickly and easily review the degree of air pollution in the 319 MSAs across the United States. This technique would

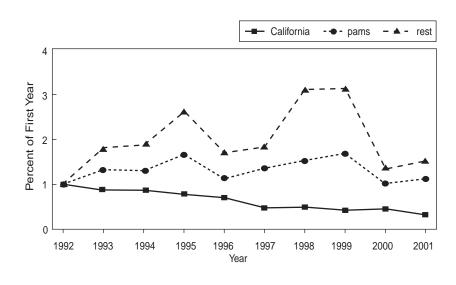
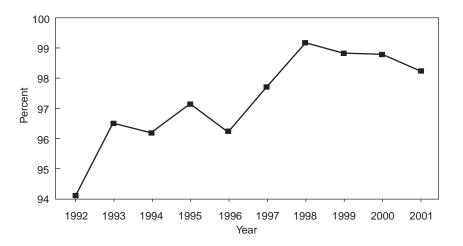




Figure 3-3. Percentage of days over 100 due to ozone.



More days of

unhealthy air

(Days with AQI

>100) compared

to other MSAs

use color-coded circles to show levels of each criteria pollutant in each MSA relative to its levels in the other MSAs. A solid blue • indicates fewer days of unhealthy air (meaning that MSA had fewer AQI days over 100 for, say, ozone than most of the other MSAs had for ozone). On the other end of the spectrum, a black • indicates more days of unhealthy air.

Figure 3-4 presents an example of how this new display technique might appear. The legend in Figure 3-4 explains how the color-coded symbols could be used to quickly and easily provide information about air quality and air pollutants. The new display technique would not provide new or additional air quality data, nor would it be used as a rating system or show trends in air quality over time. Rather, its purpose would be to provide a simplified, visual tool for interpreting air quality information in selected MSAs for a specific year for each of the selected pollutants. EPA is continuing to assess the feasibility of the new technique and to explore additional capabilities that might be added, such as a Web-based application that would allow users to sort and query information to generate customized reports about healthrelated air quality issues, as well as components relating to multiyear displays and visibility.

Additional information on this new display technique is presented in a discussion paper in the Special Studies section of this report. Figure 3-4. Sample from the new display technique.

Fewer days of

unhealthy air

(Days with AQI

>100) compared

to other MSAs

 $\bigcirc$ 

🗙 Not Monitored

Insufficient Data

### **References and Notes**

1. *Statistical Abstracts of the United States, 2000,* U.S. Department of Commerce, U.S. Bureau of the Census.

2. Air Quality Index, A Guide to Air Quality and Your Health, EPA-454/ R-00-005, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC, June 2000.

3. *Code of Federal Regulations,* 40 CFR Part 58, Appendix G.

4. Guideline for Reporting of Daily Air Quality—Air Quality Index (AQI), EPA-454/R-99-010, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC, July 1999.

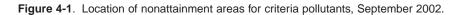
5. *Note*: Although the results are summarized in the report for comparison purposes, the intent of publishing Tables A-16 through A-18 is to present information on a localized basis, to be used on a localized basis (i.e., one MSA at a time). Therefore, no attempt was made to adjust the Type I error to a table-wide basis. All the tests for trends were conducted at the 5 percent significance level. No inference has been made from the tables as a whole. 6. T. Fitz-Simons and D. Mintz, Assessing Environmental Trends with Nonparametric Regression in the SAS Data Step, American Statistical Association 1995 Winter Conference, Raleigh, NC, January, 1995.

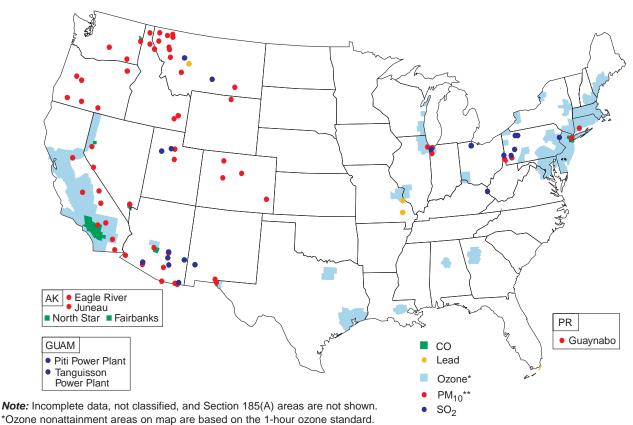
7. Freas, W.P. and E.A. Sieurin, *A Nonparametric Calibration Procedure for Multi-Source Urban Air Pollution Dispersion Models*, presented at the Fifth Conference on Probability and Statistics in Atmospheric Sciences, American Meteorological Society, Las Vegas, NV, November 1977.

8. M. Hollander and D.A. Wolfe, *Nonparametric Statistical Methods*, John Wiley and Sons, Inc., New York, NY, 1973.

9. Based on the short-term standards, federal episode criteria, and significant harm levels, the AQI is computed for PM (particulate matter),  $SO_2$ , CO,  $O_3$ , and  $NO_2$ . Lead is the only criteria pollutant not included in the index because it does not have a short-term standard, federal episode criteria, or significant harm level. NATIONAL AIR QUALITY AND EMISSIONS TRENDS REPORT, 2003

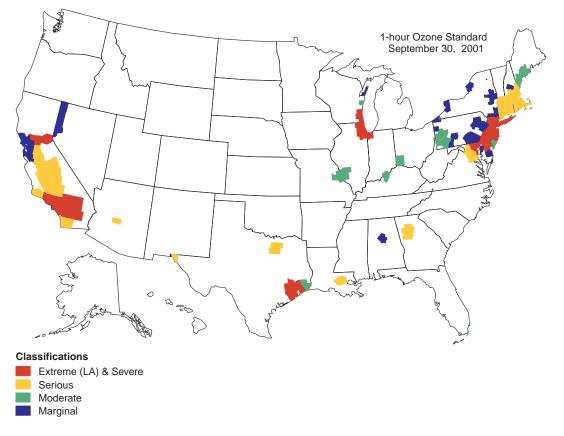
### CHAPTER 4


# Criteria Pollutants — Nonattainment Areas


### http://www.epa.gov/oar/airtrends/non.html

### **Worth Noting**

• As of September 2002, there were 124 classified nonattainment areas on the condensed nonattainment list.


This chapter provides general information on geographical regions known as nonattainment areas. When an area does not meet the air quality standard for one of the criteria pollutants, the area may be subject to the formal rule-making process that designates the area as nonattainment. The 1990 Clean Air Act Amendments (CAAA) further classify ozone, carbon monoxide, and some particulate matter nonattainment areas based on the magnitude of an area's problem. Nonattainment classifications may be used to specify what air pollution reduction measures an area must





\*\*PM<sub>10</sub> nonattainment areas on map are based on the existing PM<sub>10</sub> standards.

Figure 4-2. Classified ozone nonattainment areas.



Note: San Francisco is classified Other/Sec 185(A) and nonattainment areas with incomplete data are not included.

adopt and when the area must reach attainment. The technical details underlying these classifications are discussed in the *Code of Federal Regulations*, Part 81 (40 CFR 81), see http://www.epa.gov/docs/epacfr40/ chapt-I.info/subch-C.htm.

Figure 4-1 shows the location of the classified nonattainment areas for each criteria pollutant as of September 2002. Figure 4-2 identifies the 1-hour ozone nonattainment areas classified by degree of severity. A summary of classified nonattainment areas can be found in Table A-19 in Appendix A. An area is on the condensed list if the area is designated nonattainment for one or more of the criteria pollutants. Note that Section 185(A) nonattainment classified areas (formerly known as "transitional areas") and incomplete data nonattainment areas are excluded from the counts in Table A-19. Another source of information for areas designated as nonattainment, including Section 185(A) and incomplete areas, is the *Green Book*. The current *Green Book* is located at http://www.epa.gov/oar/oaqps/ greenbk. As of September 2002, there were 124 classified nonattainment areas on the condensed nonattainment list. The areas on the condensed list are displayed alphabetically by state. There were, as of September 2002, approximately 126 million people living in classified areas designated as nonattainment for at least one of the criteria pollutants. Areas redesignated to attainment between September 2001 and September 2002 are listed in Table 4-1 by pollutant.

| Pollutant        | Area                                                                      | State | Classification        | Redesignation<br>Effective Date |
|------------------|---------------------------------------------------------------------------|-------|-----------------------|---------------------------------|
| СО               | Denver-Boulder                                                            | CO    | Serious               | 01/14/2002                      |
| СО               | Lowell                                                                    | MA    | Not Classified        | 04/22/2002                      |
| СО               | Springfield                                                               | MA    | Not Classified        | 04/22/2002                      |
| CO               | Waltham                                                                   | MA    | Not Classified        | 04/22/2002                      |
| СО               | Worcester                                                                 | MA    | Not Classified        | 04/22/2002                      |
| СО               | Billings                                                                  | MT    | Not Classified        | 04/22/2002                      |
| CO               | Great Falls                                                               | MT    | Not Classified        | 07/08/2002                      |
| СО               | New York-N. New Jersey-Long Island*                                       | NY    | Moderate > 12.7ppm    | 05/20/2002                      |
| СО               | Klamath Falls                                                             | OR    | Moderate ≤ 12.7ppm    | 11/19/2001                      |
| CO               | Medford                                                                   | OR    | Moderate ≤ 12.7ppm    | 09/23/2002                      |
| Ozone            | Louisville                                                                | IN    | Moderate              | 11/23/2001                      |
| Ozone            | Cincinnati-Hamilton                                                       | KY    | Moderate              | 08/30/2002                      |
| Ozone            | Louisville                                                                | KY    | Moderate              | 11/23/2001                      |
| Ozone            | Pittsburgh-Beaver Valley                                                  | PA    | Moderate              | 11/19/2001                      |
| PM <sub>10</sub> | Mohave County (part); Bullhead City                                       | AZ    | Moderate              | 08/26/2002                      |
| PM <sub>10</sub> | Pinal and Gila counties; Payson                                           | AZ    | Moderate              | 08/26/2002                      |
| PM <sub>10</sub> | Ramsey County; (part)                                                     | MN    | Moderate              | 09/24/2002                      |
| SO <sub>2</sub>  | Central Steptoe Valley                                                    | NV    | Primary               | 06/11/2002                      |
| SO <sub>2</sub>  | AQCR 238: Marathon County: Rothschild Sub-city area, Rib Mountain, Weston | WI    | Primary,<br>Secondary | 07/29/2002                      |

Table 4-1. Areas Redesignated to Attainment from September 2001 to September 2002

Includes areas classified as nonattainment by the CAAA of 1990.

\*The final approval of the NJ portion of the New York–N. New Jersey–Long Island CO area was published on 08/30/2002, and the effective redesignation date was 10/22/2002.

NATIONAL AIR QUALITY AND EMISSIONS TRENDS REPORT, 2003

# **Air Toxics**

#### http://www.epa.gov/oar/airtrends/toxic\_mid.html

## Nature and Sources of the Problem

Toxic air pollutants, or air toxics, are those pollutants that cause or may cause cancer or other serious health effects, such as reproductive effects or birth defects. Air toxics may also cause adverse environmental and ecological effects. Examples of toxic air pollutants include benzene, found in gasoline; perchloroethylene, emitted from some dry cleaning facilities; and methylene chloride, used as a solvent by a number of industries. Most air toxics originate from man-made sources, including mobile sources (e.g., cars, trucks, construction equipment) and stationary sources (e.g., factories, refineries, power plants), as well as indoor sources (e.g., some building materials and cleaning solvents). Some air toxics are also released from natural sources such as volcanic eruptions and forest fires. The Clean Air Act identifies 188 air toxics from industrial sources. EPA has identified 20 of these pollutants that are associated with mobile sources and one additional mobile source air toxic designated "diesel particulate matter and diesel exhaust organic gases."

## Health and Environmental Effects

People exposed to toxic air pollutants at sufficient concentrations may experience various health effects, including cancer, damage to the immune system, as well as neurological, reproductive (e.g., reduced fertility), developmental, respiratory, and other health problems. In addition to exposure from breathing air toxics, risks also are associated with the deposition of toxic pollutants onto soils or surface waters, where they are taken up by plants and ingested by animals and eventually magnified up through the food chain. Like humans, animals may experience health problems due to air toxics exposure.

#### **Trends in Toxic Air Pollutants**

EPA and states do not maintain an extensive nationwide monitoring network for air toxics as they do for many of the other pollutants discussed in this report. While EPA, states, tribes, and local air regulatory agencies collect monitoring data for a number of toxic air pollutants, both the chemicals monitored and the geographic coverage of the monitors vary from state to state. EPA is working with these regulatory partners to build upon the existing monitoring sites to create a national monitoring network for a number of toxic air pollutants. The goal is to ensure that those compounds that pose the greatest risk are measured. The available monitoring data help air pollution control agencies track trends in toxic air pollutants in

various locations around the country. EPA began a pilot city monitoring project in 2001 and is scheduled to include at least 12 months of sampling in four urban areas and six small city/rural areas (see Figure 5-1). This program is intended to help answer several important national network design questions (e.g., sampling and analysis precision, sources of variability, and minimal detection levels). In addition, an initial 11-city trends network is being established that will help develop national trends for several pollutants of concern. For the latest information on national air toxics monitoring, see www.epa.gov/ttn/amtic/airtxfil.html.

EPA also compiles an air toxics inventory as part of the National Emissions Inventory (NEI, formerly the National Toxics Inventory) to estimate and track national emissions trends for the 188 toxic air pollutants regulated under the Clean Air Act. In the NEI, EPA divides emissions into four types of sectors: (1) major (large industrial) sources; (2) area and other sources, which include smaller industrial sources like small dry cleaners and gasoline stations, as well as natural sources like wildfires: (3) onroad mobile sources, including highway vehicles; and (4) nonroad mobile sources like aircraft, locomotives, and construction equipment.

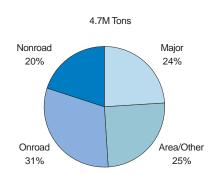
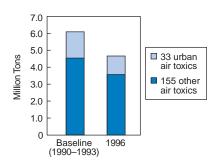
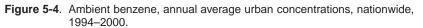
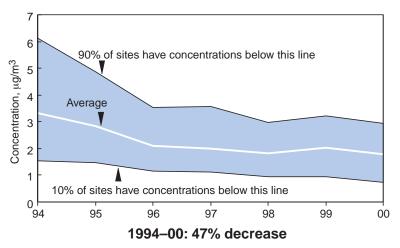

As shown in Figure 5-2, based on 1996 estimates, the most recent year of available data, the emissions of toxic air pollutants are relatively equally divided among the four types of sources. However, this distribution varies from city to city. Based on the data in the NEI (Figure 5-3), estimates of nationwide air toxics emissions have dropped approximately 24 percent between baseline (1990–1993) and 1996. Thirty-three of these air toxics, which pose the greatest threat to public health in urban areas, have similarly dropped 31 percent. Although changes in how EPA compiled the national inventory over time may account for some differences, EPA and state regulations, as well as voluntary reductions by industry, have clearly achieved large reductions in overall air toxic emissions. Trends for individual air toxics vary from pollutant to pollutant. Benzene, which is the most widely monitored toxic air pollutant, is emitted from cars, trucks, oil refineries, and chemical processes. Figure 5-4 shows measurements of benzene taken from 95 urban monitoring sites around the country. These urban areas generally have higher levels of benzene than other areas of the country. Measurements taken at these sites show, on average, a 47 percent drop in benzene levels from 1994 to 2000. During this period, EPA phased in new (so-called "tier 1") car emission standards; required many cities to begin using cleaner-burning gasoline; and set standards that required significant reductions in benzene and other pollutants emitted from oil refineries and chemical processes. EPA estimates that, nationwide, benzene emissions from all sources dropped 20 percent from 1990 to 1996.

Figure 5-1. Map of 10 cities in monitoring pilot project.





Figure 5-2. National air toxics emissions, 1996.


Figure 5-3. National air toxics emissions.



Total for 188 Toxic Air Pollutants







# **Special Studies Summary**

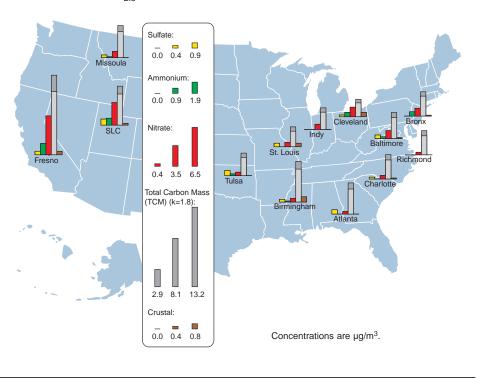
#### http://www.epa.gov/oar/aqtrnd03/chapter6.pdf

### Summary of Exploratory Analyses

This chapter summarizes several recent papers describing analyses conducted on various policy-relevant topics. Two of the papers analyze aspects of particulate matter. The first covers an event in which particulate matter was transported from Asia and its effect on parts of the United States. The second discusses speciated PM<sub>2.5</sub> in urban and rural areas. Trends in CO in localized areas are analyzed in a third article, providing a better understanding of oxyfuel programs. Current-year ozone levels are compared to historical trends in a fourth paper. New tools are discussed in two additional papers. One tool is the coefficient of perfect agreement, or CPA, which is derived to assist in characterizing the spatial variation of pollutants. The final paper discusses a new reporting and display tool that could be used to present air quality information in an innovative way. The papers are presented in their entirety in the Special Studies section at the end of this report.

#### Impact of April 2001 Asian Dust Event on PM Concentrations in the United States

Jim Szykman, David Mintz, Jack Creilson, Michelle Wayland


On April 6, 2001, the combination of strong surface winds and an intense

area of low pressure over the Gobi Desert produced a large dust cloud that was lofted into the free troposphere and transported east. The dust cloud, captured and tracked by satellite imagery, made its way across the Pacific Ocean and reached the United States on April 12 and 13. Examination of ridges and troughs, rising or sinking air, and trajectories showing origins and paths of air masses were all used to understand how and when the dust cloud affected measurements of PM in the United States.

#### Figure 6-1. Urban PM<sub>2.5</sub> increments.

The position of the dust cloud and vertical movement of air was found to determine which regions experienced elevated "soil" PM concentrations. U.S. regions from Utah to Maine were impacted. Specific regions impacted were the West (on April 16th), the Southeast (on April 19th), and the Mid-Atlantic/Northeast (on April 22nd).

Quantities of soil-related particles attributable to the dust storm were calculated using historical trends to develop a baseline of typical April soil concentrations in particulate



matter. Table 6-1 shows the quantities attributable to the dust storm by region. This dust event is the first time that East Coast soil particulate matter peaks have been associated with dust transport from Asia. Peak concentrations were composed of fine fraction (detected as  $PM_{25}$ ) in some locations and coarse fraction (detected as  $PM_{10}$ ) at other locations. Composition of the dust-stormrelated particles was examined using percentages of potassium, calcium, and silicon as indicators of whether the detected dust was Asian in origin. These chemical speciation data showed that the Asian dust contributed, on average 7.4  $\mu$ g/m<sup>3</sup> to the total Pl concentrations during t studied.

Potential health impacts of the dust were also examined. On the dates on which the dust cloud was crossing the United States, there were nine areas with an EPA Air Quality Index (AQI) value above 100 for  $PM_{10}$  or  $PM_{25'}$  indicating that the air quality posed a health risk to sensitive populations such as children and the elderly. Unfortunately, there are no speciation data in these areas for estimating Asian dust contributions. Further review and, in some cases, additional data would be needed to determine whether the Asian dust event contributed to these levels.

## Chemical Speciation of PM<sub>2.5</sub> in Rural and Urban Areas

## *Venkatesh Rao, Neil Frank, Alan Rush, and Fred Dimmick*

Existing ambient air quality monitoring data from the predominantly urban Speciation Trends Network (STN) and the predominantly rural Interagency Monitoring of Protected Visual Environment (IMPROVE) network were analyzed to identify

| Asian dust            | were paired with matched rural sites             | Margarei |
|-----------------------|--------------------------------------------------|----------|
| e, 3.1 to             | to calculate the "urban increment" of            | James He |
| M <sub>2.5</sub> mass | PM <sub>2.5</sub> mass and increment of individ- | In 1999, |
| the period            | ual species. Data from the two moni-             | areas in |

first-order approximations of local

and regional contributions to urban

PM<sub>25</sub> concentrations from March

2001 to February 2002. Urban sites

Number

of Sites

43

19

16

Date

4/16/01

4/19/01

4/22/01

 $PM_{2.5}$  mass and increment of individual species. Data from the two monitoring networks were selected and adjusted to create comparable datasets. This work addressed the problem that often half or more of  $PM_{2.5}$  is composed of secondarily formed species, thus hiding their point of origin.

Figure 6-1 shows the urban increments by components. On average, the urban excess for the site combinations investigated was found to be 8  $\mu$ g/m<sup>3</sup>. Carbonaceous mass was found to be the major contributor to urban excess at all sites studied. Such an amount of PM<sub>2.5</sub> implies that programs are likely needed to address urban sources of PM<sub>2.5</sub>.

Carbonaceous mass appears to be attributed to local emissions, with mobile sources as a possible major contributor. Nitrates are prevalent in the urban excess estimates of the North and West, but not in the East. However, more work is needed to assess the compatibility of nitrate measurements and monitoring methods between networks. Some locations show a sizeable urban excess of crustal materials, some of which may be attributed to industrial sources.

#### Trends in Monitored Concentrations of Carbon Monoxide

Median

**Asian Dust** 

Contribution

 $(\mu g/m^3)$ 

7.4

3.6

3.1

Maximum

Asian Dust

Contribution

(µg/m<sup>3</sup>)

21.2

12.9

7.4

Jo Ellen Brandmeyer, Peter Frechtel, Margaret Z. Byron, Joe Elkins, James Hemby, Venkatesh Rao

, numerous metropolitan nstituted oxygenated gasoline (oxyfuel) programs during winter months to reduce CO emissions from motor vehicles. Some have since discontinued these requirements. This paper demonstrates a screening method for determining CO trends at specific monitoring stations. By contrast, we often examine trends for regions based on metropolitan statistical areas (MSAs). By eliminating averaging across MSAs, this study identified trends in more localized areas. Uncovering localized trends is important when one part of an MSA experiences rapid population growth accompanied by a rapid growth in vehicular emissions.

This study used data from EPA's Air Quality System (AQS), which contains air quality data from the air quality monitoring stations. Stations with at least 8 years of relevant data during the period 1990 through 2000 were screened for either an upward linear trend or upward inflection. The second maximum nonoverlapping 8-hour average of CO for each monitor over the 11-year period was used.

| Table 6-1. | Estimated PM <sub>2</sub> | 5 Concentrations | Attributable to | Asian Dust Cloud |
|------------|---------------------------|------------------|-----------------|------------------|
|------------|---------------------------|------------------|-----------------|------------------|

Site

Locations

West

Midwest and

Southeast

Mid-Atlantic and

Northeast

Median

**Typical April Soil** 

Concentration

(µg/m<sup>3</sup>)

0.7

0.5

0.4

Because no single test will necessarily detect trends at all relevant sites, three separate statistical tests were applied to data from each station: Theil test, first-order linear regression, and quadratic (secondorder) linear regression. The three tests were used together to discern patterns in the data. Of the 433 sites analyzed, 34 showed a statistically significant overall upward trend or statistically significant upward curvature. Figure 6-2 shows locations of these sites and whether they have discontinued their oxyfuel programs. Of the sites listing dates ending the oxyfuel program, all either are located in a federal reformulated gasoline area or have an oxyfuel requirement in their contingency plan.

This analysis method can be used to screen for sites with increasing CO concentrations. The identified sites should then be examined further to determine the magnitude of the concentrations as compared to the existing standard. Because both vehicle miles traveled and the vehicle mix in fleets are changing with time, the authors recommend repeating this analysis annually to determine sites that warrant further analysis.

#### Cumulative Ozone Exceedances—A Measure of Current Year Ozone Levels Compared to Historical Trends

Dennis Doll, Terence Fitz-Simons

Policy makers at the state and federal level are often asked how the current year's ozone season compares to previous years. In order to address that question, the authors used data measured in the Air Quality System network of monitoring stations maintained by EPA's Office of Air Quality Planning and Standards. We addressed data from the network of monitors assigned to cities for which the air quality index (AQI) is forecasted during the ozone season (i.e., April-October), known as the "USA Today list of cities." Data from 2002 (the most recent year) were compared to a 5-year historical average in these cities and the regions in which they are located. Based on this comparison, policy makers can qualitatively assess the severity of the most recent year's ozone measurements with historical year measurements.

To construct the measurements, the authors used AQS data to analyze the number of days ozone measurements exceeded the 8-hour NAAQS for ozone (>0.085 ppm). This indicates that air quality falls into the category "Unhealthy for Sensitive Groups." For the given set of monitors assigned to a city, if one or more monitors measured an 8-hour ozone level >0.085 ppm, the researchers recorded an exceedance for the day. This procedure was repeated for each day of the year for the set of monitors assigned to each city. In this way researchers counted the number of days exceedances were measured in a given city in 2002. For the historical 5-year period 1997 to 2001, the average number of the cumulative count of days was obtained over the 5-year period for each set of monitors assigned to each city to yield a 5-year trend.

We then divided the subject cities into geographic regions and examined a 5-year cumulative regional average as well as city-based averages. This measure helps illustrate differences among and within regions.

Analysis of the southeast region showed that, in 2002, ozone trends in Atlanta and Charlotte were similar to 5-year southeast regional trends, while in Memphis, Nashville, and New Orleans, the number of exceedances was lower than the 5-year regional trends. Figure 6-3 shows the comparison of Atlanta and regional trends. In contrast, for most of the cities analyzed in this study in the

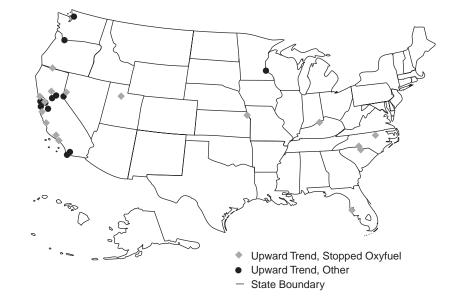
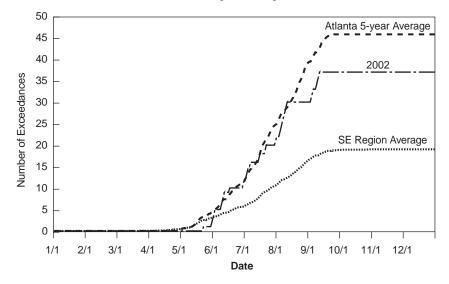



Figure 6-2. Monitoring stations showing upward CO trends.

northeast region, the 2002 data revealed a lower trend than the 5-year average through approximately early July, then a higher trend than the 5-year average from mid-July into mid-September.

Cities analyzed in the midwest region analysis showed seasonal variation for 2002 compared with the 5-year average. For Chicago, Cleveland, Cincinnati, Columbus, Pittsburgh, Indianapolis, Detroit, and St. Louis, the 2002 data trends were lower than the 5-year average through approximately mid- to late June, then were progressively higher than the 5-year average from late June onward. Midwest cities outside the core midwest region (e.g., Kansas City and Minneapolis) showed 2002 data trends similar to or lower than the 5-year average data.

## Characterization of National Spatial Variation


#### Terence Fitz-Simons

Spatial variability is an important quality of air pollutants for many areas of policy within EPA. Monitoring regulations depend heavily on knowledge of spatial variability. Control strategies, "action day" programs, and public information programs also rely on this knowledge. This paper explores a new way to examine spatial variability on a national scale that addresses the limitations of existing spatial variability methods.

#### Traditional Spatial Methods and Their Limitations

Often spatial variability is examined by creating a map showing ranges of pollutant levels by county. Such a map shows which counties have higher pollutant values, but does not allow easy visualization of how close adjoining counties are to others. Some analysts enhance

Figure 6-3. Cumulative exceedances—5-year average (97–01) (Atlanta) compared to 2002 data and southeast region average.



spatial maps with an estimated surface of pollutant levels using a spatial interpolation technique known as kriging. Kriging removes the blank areas on a map, making it somewhat easier to see how pollutants vary over space; however, because the surface itself is smoothed by the process, kriging actually hides some of the spatial variation.

Kriging relies on variograms, which represent the statistical variance of the difference between two data points on a map as it relates to the distance between the two points on the map. The variogram, in turn, relies on the variance, which is a measure of the spread of a distribution or data representing measurement differences between two locations paired by time. The authors use a scatterplot of particulate matter  $(PM_{25})$  data to examine how effectively such kriged maps represent the actual relationship between locations paired by time. The scatterplot shown in Figure 6-4 makes clear that there is no simple relationship between the variance of the difference and distance. This brings into

question the assumption used in kriging that the variance of the difference over distance can be described by a line.

The authors next investigated correlation over distance, using  $PM_{2.5}$  to calculate the correlation of daily  $PM_{2.5}$  values between two sites. Latitude and longitude were used to calculate the distance between two sites, producing a correlation and a distance for each pair of sites. Based on that information, scatterplots were generated that further question the simplicity of the variogram used in kriging.

#### Coefficient of Perfect Agreement Method

The coefficient of perfect agreement (CPA) method addresses the problems raised in the examination of kriging. CPA provides a measure of agreement with many of the characteristics of the correlation coefficient, thus allowing examination of the agreement between pollutant values over distance.

The classical correlation coefficient is a measure of how well paired values track each other. The value 0 (zero) means they do not track each other at all, while a value of 1 means they track each other perfectly. The correlation coefficient is defined as:

$$r = \frac{\sum xy - \frac{\sum x \sum y}{n}}{\sqrt{\left(\sum x^2 - \frac{\left(\sum x\right)^2}{n}\right)\left(\sum y^2 - \frac{\left(\sum y\right)^2}{n}\right)}}$$

The authors discuss several issues involved in constructing a CPA, including sample size, and managing units conversion so that the resulting CPA is unitless. Within those restrictions, the authors apply the CPA to construct a new scatterplot of  $PM_{2.5}$ . Figure 6-5 shows that the denser part of the distribution dips quickly and falls off gradually. This is a different trend than that found in the earlier scatterplot (shown in Figure 6-4) based on variance of difference vs. distance.

This scatterplot gives a national picture of the spatial variation of  $PM_{2.5}$ . The mean CPA starts off at around 0.6 and falls off rapidly out to about 150 km, then falls off gradually to about 0.2 at 500 km. Quantitatively, interpretation of this coefficient is difficult, but it is useful in comparisons with other pollutants. To compare pollutants, the authors display the scatterplot as a box and whisker plot. Pollutants can then be compared by joining the means by a line for several pollutants.

Such comparisons between pollutants could be used to guide policy. For example, daily values of  $PM_{2.5}$ , daily values of  $PM_{10}$ , hourly values of CO (carbon monoxide), and hourly values of ozone were used to produce Figure 6-6. The plot of  $PM_{2.5}$ has a mean CPA that is above ozone for most of the distances out to at least 450 km. This might suggest Figure 6-4. Variance of the difference vs. distance.

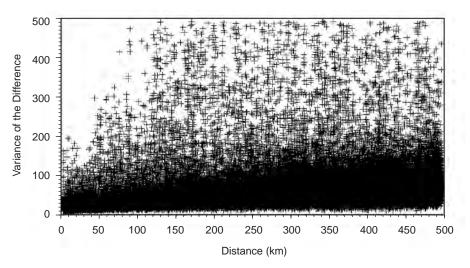



Figure 6-5. CPA vs. distance (km).

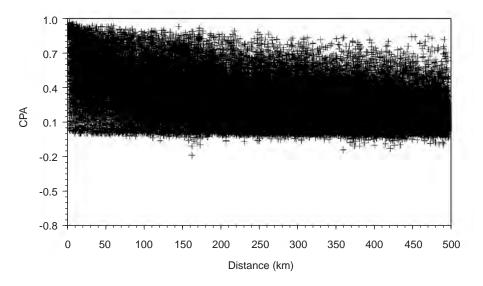
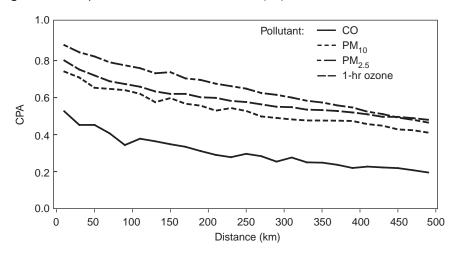
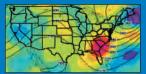
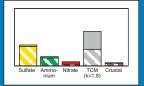




Figure 6-6. Comparison of mean CPA vs. distance (km).

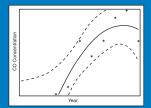


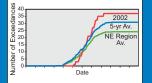
that, if a regional control strategy is being pursued for the ozone problem in the United States, a regional strategy also makes sense for  $PM_{2.5}$ .

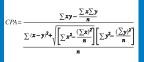

#### Development of a New Reporting Technology for Air Quality


Prepared by RTI International for the Office of Air Quality Planning and Standards This display technique would provide the general public with a new tool to review air quality in MSAs around the United States. The primary function of the display would be to present location- and pollutant-specific air quality data in a graphical format that allows for easy interpretation of air quality data for MSAs. The display would not provide new or additional air quality data; rather, it would present existing data in a new format. The graphical display of data would improve the public's access to air quality information and enhance their ability to use this information in a meaningful way. Potential capabilities that may be added include a Web-based application that would allow users to sort and query information to generate customized reports, as well as visibility and multiyear components.

EPA recognizes that there are limitations to this new display technique and is continuing to assess the usefulness of such a reporting method


as well as additional capabilities that might be added. Developing a simple metric for displaying air quality data on an urban basis across the nation is a difficult and challenging endeavor. However, EPA feels that this information is useful and informative to the public, especially to those who have potential health concerns related to poor air quality. A graphical display that is easily understood is essential to communicating this information, and EPA will continue to refine the display to ensure that it meets this objective based on comments and input from the air quality community and potential users.


## **2003 SPECIAL STUDIES**






Chemical Speciation of PM2.5 in Urban and Rural Areas ....... S13









New Reporting Techniques ..... S63

## Impact of April 2001 Asian Dust Event on Particulate Matter Concentrations in the United States

#### Jim Szykman

U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (currently located at Atmospheric Science Competency, NASA Langley Research Center, Hampton, VA 23681)

#### David Mintz

U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

#### Jack Creilson

SAIC, NASA Langley Research Center, Hampton, VA 23681

#### Michelle Wayland

U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

### Abstract

In April 2001, a large dust storm formed over the Gobi desert in northern China. Satellite remote sensing data and analyses of meteorological conditions were used in this study to follow the dust cloud from China, over the Pacific Ocean, and then coast to coast across the United States over a period of several weeks. Chemical speciation data were used to estimate the PM2 5 mass increment associated with the Asian dust, and peak concentrations were plotted to show the progression of elevated concentrations across the contiguous United States. Meteorological analyses, including air parcel trajectories, were used to link the dust cloud overhead to the concentrations below. Also, the contribution of Asian dust to the total mass concentrations measured at the monitors was examined with respect to the U.S. Environmental Protection Agency's

(EPA's) health standards and Air Quality Index (AQI) for particulate matter. The findings suggest that this transport event contributed to higher PM concentrations in several areas across the United States, with "average" estimated contributions ranging from 3.1 to 7.4 mg/m<sup>3</sup>. Because the event occurred in the springtime when daily concentrations of other PM components are generally low, there were relatively few areas with "unhealthy" AQI days. Nevertheless, this event possibly contributed to "unhealthy" AQI days in three areas. In addition, it raised the 3-year average related to the long-term PM25 health standard by an estimated  $0.1 \text{ mg/m}^3$  in the affected regions. For most sites, this is insignificant, but there are implications for sites with 3-year averages just above the level of the standard.

### Introduction

In early April 2001, an unusually large dust storm developed over the Gobi desert in northern China (Figure 1). The generation of dust storms and their impact on islands in the North Pacific have been the focus of research dating back to the late 1960s.<sup>2</sup> However, the focus on the impacts of Asian dust storms did not turn to the western United States until 1998.<sup>3,4</sup> In recent years, the satellite remote sensing data from such instruments as TOMS (Total Ozone Mapping Spectrometer), SeaWIFS (Sea-viewing Wide Field-

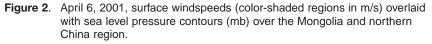


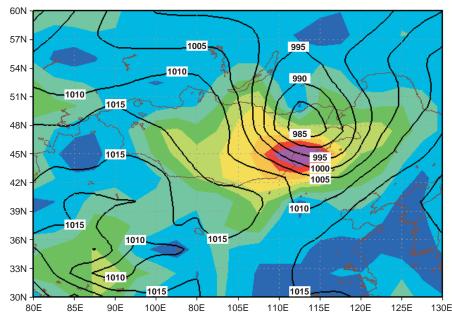


of-view Sensor), MODIS (Moderate Resolution Imaging Spectroradiometer), and AVHRR (Advanced Very High Resolution Radiometer) have added a new dimension to studying such episodic events. These satellite sensors now allow the movement of the dust plume to be captured. In the case of the April 2001 dust storm, the satellites provide an eye-catching image of the dust cloud arriving at the doorstep of the western United States and beyond. But what does such an event, and the compelling satellite images resulting from the event, mean with respect to air quality in the United States and in particular to the levels of health concern for particulate matter? The purpose of this paper is to provide a meaningful analysis of the impact of the April 2001 Asian dust storm on ground-level particulate matter concentrations within the contiguous United States. In this paper, we explore the formation of the dust storm over the Gobi Desert, the transport of the dust from its origin to the east coast of the United States, the mechanism for transport of dust to the boundary layer, and the ground-level impacts of the dust storm.

### Following the Asian Dust Cloud

#### Formation over the Gobi Desert


Wind-blown dust in eastern Asia is a locally well-known springtime occurrence. The dust storms tend to originate in the arid deserts of Mongolia and China, particularly the Gobi Desert, and spread eastward with the prevailing winds. The dust cloud itself forms when the friction from high surface winds, with speeds typically in excess of 5 m/s,<sup>5</sup> lifts loose dust particles up into the boundary layer and lofts them into


the free troposphere where they can be transported eastward.<sup>3</sup>

An analysis of surface meteorological data for April 6 from the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/ NCAR) Reanalysis Project<sup>6</sup> indicates that a strong Siberian low-pressure area (985 mb) was located in northeastern Mongolia (Figure 2). This feature, coupled with relatively higher pressure to the south, produced strong surface winds in excess of 24 m/s in eastern and southern Mongolia. The windspeeds shown are well above the threshold for particle suspension of 5 to  $6 \text{ m/s}^5$ and are located over the Gobi Desert region.

The deep low-pressure area evident in Figure 2 continued to propagate eastward on April 7 with the center of maximum winds mirroring the track of the cyclone (low-pressure area). Averaged over a 24-hour period, the maximum surface winds were greater than 20 m/s. The sustained windspeed combined with the upward vertical velocities associated with the low-pressure system were sufficient to elevate the dust above the boundary layer for transport. An analysis of the circulations at 700 and 500 mb showed that the flow was essentially zonal (along the latitude) and toward the east-northeast. The zonal flow allowed the dust cloud a relatively direct pathway to the Pacific Ocean.

Satellites also confirm the formation of the dust cloud. Figure 3 is a composite AVHRR image from the National Oceanographic and Atmospheric Administration (NOAA)-16 satellite centered over Mongolia and northern China on April 6. This image clearly shows the wind-driven dust over southeastern Mongolia becoming entrained in the lowpressure system to the north. The low-pressure area is indicated in the image by the cyclonic cloud formation. The location of the blowing





dust, highlighted by the red arrows, correlates well with the center of maximum surface winds shown in Figure 2.

## Transport across the Pacific Ocean

Once the dust cloud reached the Pacific Ocean on April 8, it was carried by the northern midlatitude westerly winds (30°–60°N) that are typical during the springtime. Figure 4, created using data from both TOMS and SeaWiFS,<sup>7</sup> shows the daily progression of the dust cloud.<sup>8</sup> The TOMS aerosol index (AI) has been used in the past to show the daily spatial distribution of dust clouds.<sup>9</sup>

As shown in Figure 4, the dust cloud remained fairly compact, with no large sections peeling off northward and no evidence that longitudinal stretching occurred. It is difficult to determine the actual height at which the cloud was transported. Its rapid movement across the Pacific Ocean (5-day average speeds in excess of 20 m/s at 500 mb) and the lack of strong removal processes suggest that the cloud was in the free troposphere and traveling with the strong trans-Pacific westerly flow. The transport speed and zonal flow pattern during this period were verified by an analysis of the circulation at 500 mb.

## Transport across the United States

As Figure 4 shows, the dust cloud first passed over the west coast of North America on April 12 and 13, initially impacting Canada and then the United States. An analysis of meteorological data (Figure 5d–f) shows that the transport of the dust cloud in the free troposphere on April 12 and 13 was from the northwest around the top of a high-pressure ridge that was off the coast of the Figure 3. NOAA-16 AVHRR image of the dust storm over Mongolia for April 6, 2001 (Image courtesy of NOAA).

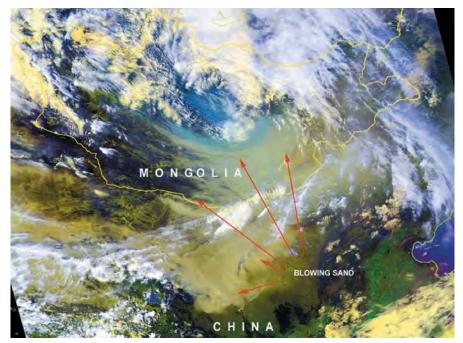
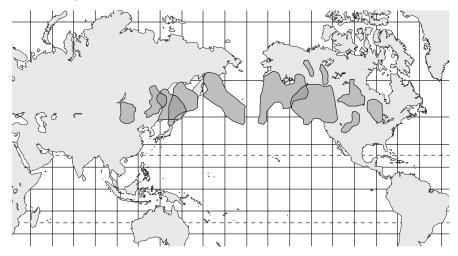




Figure 4. Path of the dust cloud from Asia to the United States, April 6 through April 14, 2001.



United States. The pattern then became zonal, which lasted until April 15, when a large high-pressure ridge developed over the Rocky Mountains. The strong ridge moved slowly eastward, carrying the dust cloud with it. Once the ridge moved into the Southeast, it became stalled, allowing the dome of high pressure to increase in size and strengthen, thus trapping the dust cloud within it. The ridge over the Southeast lasted from April 19 to 23, causing southwesterly flow into the Northeast. This flow transported the dust cloud from the Southeast into the mid-Atlantic and Northeast regions on April 22 and 23.

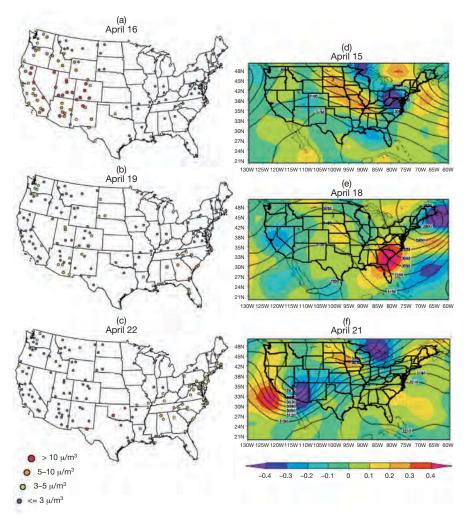
A review of TOMS AI and SeaWIFS to assess the temporal and spatial movement of the Asian dust as it crossed over the United States indicates that there were several days that the TOMS AI showed a dust cloud covering much of the United States. An analysis of meteorological conditions in conjunction with the measurements taken at PM monitors indicates that large-scale transport from the free troposphere to the boundary layer did not always occur. In some instances, it appears that the Asian dust was transported over the entire United States with relatively little effect on PM concentrations below (Figure 5).

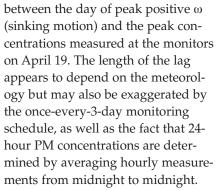
However, as the dust cloud passed over the United States, monitors in some locations did measure elevated concentrations (>5  $\mu$ g/m<sup>3</sup>) of the soil component of PM25 at some time during the month of April 2001, as discussed later in this paper. A closer look at the meteorology, including the location and movement of ridges and troughs from west to east, the rising or sinking of large-scale areas of air (negative and positive omega  $[\omega]$ , respectively) at 700 mb,<sup>10</sup> and the calculation of trajectories using the HYbrid Single-Particle Lagrangian Integrated Trajectories (HYSPLIT) program,<sup>11-13</sup> helps to explain the timing and location of the elevated particulate concentrations with respect to the cloud of Asian dust. Three dates are described here, corresponding to three areas of the country that were affected by the dust cloud: the West, the Southeast, and the Mid-Atlantic/ Northeast.

#### April 16, the West

As shown in Figure 5 (a and d), the peak concentrations seen over the West on this day can be attributed to the synoptic-scale ridging that was in

place on April 15. The development of this ridge, coupled with the elevated terrain of the West, caused descending air. This large-scale sinking of air typically occurs under domes of high pressure. Also influencing the concentrations in the West is the likelihood that the dust cloud would have its greatest impact in this region because its first opportunity for measurable deposition was here. The high concentrations in the boundary layer were supported by numerous reports of decreased visibility at many of the national parks (Figure 6) and major cities


located in that region, as well as with laser radar (LIDAR) measurements taken in Boulder, CO, on April 15.<sup>14</sup>

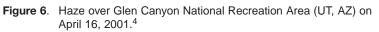

#### April 19, the Southeast

The peak concentrations seen in the Southeast on April 19 (Figure 5b) can be attributed to large-scale dynamic forcing that is associated with episodes of strong sinking motion (positive  $\omega$ ). Figure 5e shows the 700-mb height and omega patterns over the Southeast for April 18. A large area of sinking air is shown in red over this region, suggesting that for the Southeast there is a 1-day lag

Figure 5 (a-c). Peak PM<sub>2.5</sub> estimated soil mass from IMPROVE and STN monitoring networks.





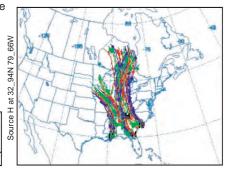


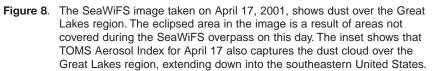

Results of a 3-day backward ensemble trajectory (Figure 7) provide insight into the origin of the air mass coming into the Southeast on April 19. The backward ensemble trajectory starts from four separate monitoring locations: Okefenokee, FL, Cape Romain, SC, Great Smoky Mountains, TN, and Gulfport, MS.

The results for the four ensemble trajectories show consistent flow fields with little divergence from the general origin of the air mass, which is the Midwest. The trajectory results were not surprising when compared to the NCEP/NCAR reanalysis data over the same time period. The NCEP/NCAR reanalysis data for the 700-mb heights (Figure 5e) show a northerly flow from the Midwest into the Southeast. A comparison of the vertical motion of the trajectories with  $\omega$  (Figure 5e) shows good agreement with a large area of sinking air in the Southeast on April 18. When compared with the April 17 TOMS AI and SeaWIFS (Figure 8), this information suggests that the large dust cloud passing over the Great Lakes region is the likely source of the elevated levels of particulate matter.

#### April 22, Mid-Atlantic/Northeast

The peak concentrations seen in the mid-Atlantic and Northeast on April 22 (Figure 5c) can be attributed to a combination of ridging over the Southeast and a pattern of generally subsiding air over the region. The

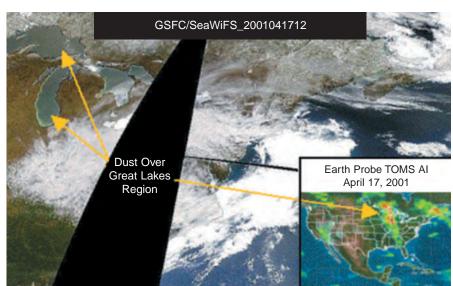



**Figure 7**. Three-day backward ensemble trajectories originating from Okefenokee, FL (30.74 N 82.13 W), Cape Romain, SC (32.94 N 79.66 W), Great Smoky Mountains, TN (35.63 N 83.94 W), and Gulfport, MS (30.39 N 89.05 W) and ending at 15 UTC (11:00 a.m. EDT) on April 19, 2001.

04/16

04/15






650

850

04/17



NASA/Goddard Space Flight Center, The SeaWiFs Project, and ORBIMAGE Science Visualization Studio.

ridging over the Southeast seen on April 21 (Figure 5f) is associated with a developing dome of high pressure that generated southwesterly flow toward the Northeast around the periphery of the high. This return flow would have transported any boundary layer pollution (i.e., dust) located over the region into the mid-Atlantic and northeast regions. This synoptic feature, coupled with any sinking air that forced down the remains of the dust cloud, is a likely cause of the increased particulate concentrations seen in the mid-Atlantic/Northeast. A series of backward trajectories from several mid-Atlantic and northeastern monitoring sites with elevated particulate matter concentrations on April 22 indicate that air originated from the southeastern United States 2 days prior to April 22. This result is consistent with the results of the 700-mb analysis.

## Assessing the Impact of the Asian Dust Cloud

#### Characteristics of Particulate Matter

Monitoring data from the  $PM_{2.5}$  chemical Speciation Trends Network  $(STN)^{15}$  and the Interagency Monitoring and Protected Visual Environment (IMPROVE) aerosol monitoring network<sup>16</sup> were used to examine the elemental soil components. In addition, mass measurements from the national  $PM_{10}$  and  $PM_{2.5}$  Federal Reference Method (FRM) networks were used to assess the health impact of the April 2001 dust event across the United States.

The STN and IMPROVE network use similar sampling and analytical methods to generate similar aerosol composition data. The soil component of  $PM_{2.5}$  can be determined from the measurements made by these networks using the following formula:

$$PM_{2.5} \text{ dust} = 2.2[Al] + 2.49[Si] + 1.63[Ca] + 2.42 [Fe] + 1.94[Ti].^{17}$$

In the United States, dust (also called crustal material or soil) in the ambient air typically originates from wind-blown dust, road surface materials, construction activity, and certain agricultural activities.<sup>18</sup> Dust particles are typically less than 10 µm in diameter. Those particles nominally less than 2.5 µm in diameter are typically measured as part of the fine  $(PM_{25})$  mass. Those between 2.5 and 10 µm are typically measured as part of the coarse  $(PM_{10}-PM_{2.5})$  mass. Because monitors do not have a perfectly sharp size separator at the 2.5-µm cutpoint, some of the particles greater than 2.5 µm can be captured as PM<sub>25</sub> mass, and some of the particles measuring less than 2.5 µm can be captured as coarse mass.<sup>19</sup> The degree to which this occurs varies, depending on the monitoring device and particle separator. During the April 1998 Asian dust event, the mass mean diameter of the dust was observed to be 2 to 3 µm, overlapping the 2.5-µm cutpoint.<sup>3</sup>

Soil concentrations make up only a small fraction of  $PM_{2.5}$  in the East and most areas of the West. Other components such as sulfates, nitrates, and carbon make up the majority of the  $PM_{2.5}$  mass. Concentrations of these components are influenced by meteorology and emission sources and, therefore, vary by season and region of the country.

Because very few speciation data are available for the coarse mass, and there is a growing network of  $PM_{2.5}$ speciation data, the analyses in this paper focus on  $PM_{2.5}$  soil components. Results relevant to EPA's particulate matter health standards are shown in terms of  $PM_{2.5}$  and  $PM_{10}$  mass.

#### **Examining Historical Trends**

Although 24-hour  $PM_{2.5}$  soil concentrations are typically low  $(<3 \ \mu g/m^3)$ ,<sup>20</sup> unusual events such as dust storms can cause short-term peaks. Local dust storms in the desert Southwest are relatively common. However, long-term transport of dust from Asia to North America is not, although there is evidence suggesting that Asian dust storms have become more intense in the past decade. Recent studies have linked the increased intensity to climate change, drought conditions, and land use practices in China.

The dust transported from Asia in April 2001 caused the soil component of PM25 to rise dramatically at certain locations in the United States, with some monitoring sites seeing record-high levels. The PM<sub>25</sub> soil concentration at Canyonlands National Park in southeast Utah (Figure 9), for example, measured 16.6  $\mu$ g/m<sup>3</sup>, twice as high as any previous measurement on record. However, other sites have measured higher levels in previous years. Sula, MT (Figure 10), for example, recorded a higher concentration during the April 1998 Asian dust event.<sup>3</sup> At sites in the Southeast, such as Okefenokee National Wildlife Refuge in Georgia (Figure 11), the peaks in previous years are consistent with seasonal Sahara dust transport.

April 2001 is the first time that East Coast soil peaks have been associated with dust transport from Asia. The site at Brigantine National Wildlife Refuge in New Jersey (Figure 12), for example, had a peak soil concentration of 7.8  $\mu$ g/m<sup>3</sup> on



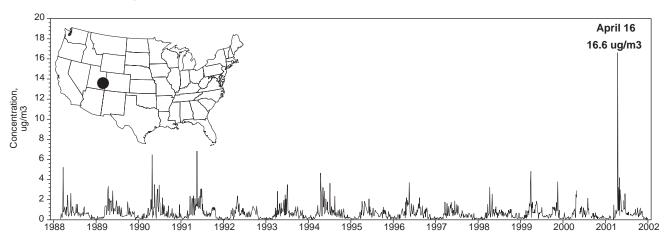



Figure 10. Historical PM<sub>2.5</sub> soil concentrations at Sula Wilderness Area.

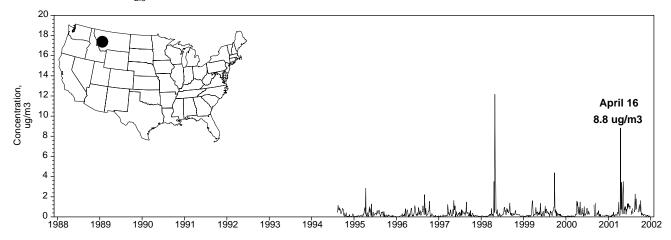
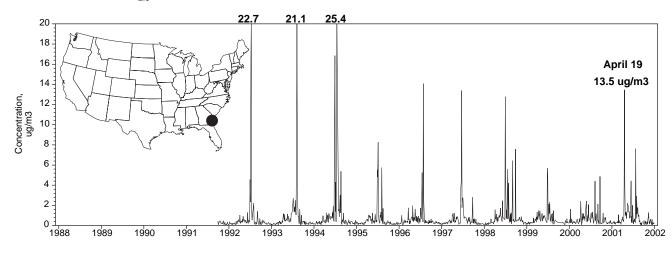




Figure 11. Historical PM<sub>2.5</sub> soil concentrations at Okefenokee National Wildlife Refuge.



S7

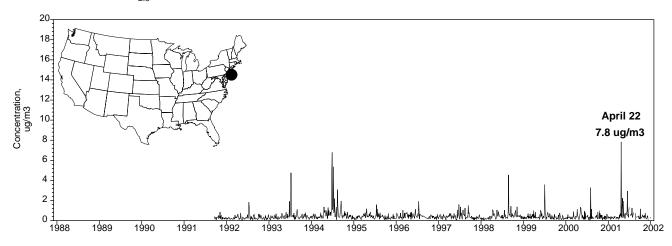



Figure 12. Historical PM<sub>2.5</sub> soil concentrations at Brigantine National Wildlife Refuge.

April 22. Other sites along the East Coast, from Florida to Maine, had modest increases in soil concentrations from mid to late April.

#### Estimating Asian Dust Contribution to PM2.5 Mass

A logical next step in assessing the impact of this dust event on PM<sub>25</sub> mass concentrations was to estimate the soil increment associated with Asian dust on days with peak soil concentrations. The IMPROVE network provided enough historical data to develop a baseline of "typical" April soil concentrations. The typical April soil concentration was represented by the median of all April observations from years other than 2001. An estimate of Asian dust contribution was obtained by subtracting the typical April soil contribution from the peak soil concentration on a site-by-site basis. In this way, an estimate of Asian dust contribution was obtained for every IMPROVE site having adequate data. A graphical illustration of this procedure is provided in Figure 13.

Table 1 groups the sites by date of peak soil concentration. Because it is less resistant to extreme values, the median among sites is used to represent typical values for each date. As might be expected from the dust cloud location shown earlier in this paper, most sites in the West had peak concentrations on April 16. The median Asian dust contribution was 7.4  $\mu$ g/m<sup>3</sup>, ten times as much as the median of the typical April soil concentrations (0.7  $\mu$ g/m<sup>3</sup>). The highest Asian dust contribution on this date (21.2  $\mu$ g/m<sup>3</sup>) occurred at a site in Death Valley, CA. The PM<sub>2.5</sub> and PM<sub>10</sub> mass values at this site were 30.7  $\mu$ g/m<sup>3</sup> and 59.9  $\mu$ g/m<sup>3</sup>, respectively.

On April 19, sites in the Midwest and Southeast experienced peak soil concentrations. The Asian dust contribution on this date was 3.6  $\mu$ g/m<sup>3</sup>, compared to 0.5  $\mu$ g/m<sup>3</sup> for typical April days. The site with the highest contribution (12.9  $\mu$ g/m<sup>3</sup>) was the Okefenokee National Wildlife Refuge in southeastern Georgia. The PM<sub>2.5</sub> and PM<sub>10</sub> mass values at this site were 22.2  $\mu$ g/m<sup>3</sup> and 50.7  $\mu$ g/m<sup>3</sup>, respectively.

On April 22, sites in the mid-Atlantic and Northeast experienced peak soil concentrations. The Asian dust contribution was  $3.1 \ \mu g/m^3$ , compared to typical April soil concentrations ( $0.4 \ \mu g/m^3$ ). The site at Brigantine National Wildlife Refuge had the highest Asian dust contribution (7.4  $\mu$ g/m<sup>3</sup>). The PM<sub>2.5</sub> and PM<sub>10</sub> mass values at this site were 24.4  $\mu$ g/m<sup>3</sup> and 50.6  $\mu$ g/m<sup>3</sup>, respectively.

The dates of the peaks in soil concentrations correspond directly to the meteorological and satellite information presented in earlier sections. The median Asian dust contribution ranges from 3.1 to 7.4  $\mu$ g/m<sup>3</sup> during the April 16–22 period, with doubledigit contributions in some locations.

#### Examining Soil Composition on Peak Days

There is some uncertainty associated with the composition of transported dust, mainly because of the lack of speciation data, especially for the coarse fraction. However, some insights can be gained by examining the  $PM_{2.5}$  speciation data measured during the April 2001 Asian dust event.

We examined various elemental concentrations and ratios in search of potential indicators of Asian dust. Specifically, we compared the primary elemental soil components on the April 2001 peak days with typical April days (represented by the median of April data from other years). We then identified a subset of 20 sites with peak soil concentrations

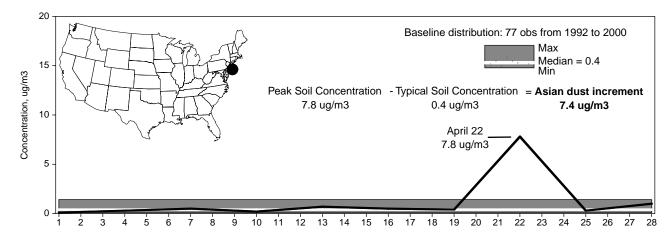



Figure 13. PM<sub>2.5</sub> soil concentrations, April 2001 vs. typical April days, at Brigantine National Wildlife Refuge.

Table 1. Summary of Asian Dust Contribution by Date

| Date    | Number<br>of Sites | Site<br>Locations                                            | Median Typical<br>April Soil<br>Concentration<br>(µg/m <sup>3</sup> ) | Median<br>Asian Dust<br>Contribution<br>(µg/m <sup>3</sup> ) | Maximum<br>Asian Dust<br>Contribution<br>(μg/m <sup>3</sup> ) |
|---------|--------------------|--------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------|
| 4/16/01 | 43                 | West<br>(AZ, CA, CO, ID, MT,<br>NM, NV, OR, UT, WA,<br>WY)   | 0.7                                                                   | 7.4                                                          | 21.2                                                          |
| 4/19/01 | 19                 | Midwest and Southeast<br>(FL, GA, MI, MN, NC,<br>ND, SC, SD) | 0.5                                                                   | 3.6                                                          | 12.9                                                          |
| 4/22/01 | 16                 | Mid-Atlantic and Northeast<br>(DC, KY, ME, NJ, VA, VT, WV)   | 0.4                                                                   | 3.1                                                          | 7.4                                                           |

corresponding to the position of the dust cloud. The most distinctive contrast among the indicators was potassium (K) as a percent of total PM<sub>25</sub> soil mass. The percent of potassium (%K) was 3 to 4 on the peak days. In eastern areas where %K is typically much larger, this appears to be a good indicator that the soil composition is atypical. However, in the desert Southwest and Rocky Mountain regions, where the %K is typically 4, the ratio is of little help. Figure 14 is an aggregation of the data at sites in these regions.

In addition to %K, the percent of calcium (%Ca) and the percent of silicon (%Si) between 2001 peak days and typical days are significantly different in the eastern sites. Because the peak day %Ca and %Si are different in the western locations vs. the eastern locations, it is too early to speculate whether they could be potential indicators of Asian dust. It is certainly possible that the dust size and composition differ after several days and several thousand miles of transport. More speciation data, especially in the coarse range, could help explain differences in composition of transported dust.

#### Assessing Potential Health Impact

As the satellite and meteorological information suggests, only certain regions (coinciding with the position of the dust cloud and the vertical movement of air) experienced elevated soil concentrations and, consequently, higher PM<sub>10</sub> and PM<sub>2.5</sub> concentrations. Sometimes the increase was reflected evenly in the coarse and fine fractions, but in most cases the coarse fraction showed a larger increase than the fine. Two examples of the effect of this Asian dust event on PM<sub>10</sub> and PM<sub>25</sub> mass are shown in Figures 15 and 16. The peak at the Salt Lake City site occurred on April 16. In this example, most of the increase is reflected in the coarse fraction. On April 22, several days later, concentrations peaked at the Acadia National Park site in Maine. Unlike the Salt Lake City example, more of the increase here is reflected in the fine fraction.

**Desert SW and Rocky Mountain Regions** 

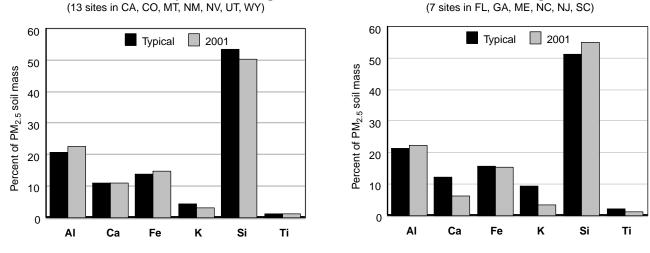



Figure 14. Summary of PM<sub>2.5</sub> soil composition on April 2001 peak days vs. typical April days, by region.

In the preceding examples, the resulting PM mass concentrations show an increase, but the peaks are not above a significant level of health concern for the general population. EPA has designed an index, the Air Quality Index, to communicate information about daily air quality and associated health concerns. According to the AQI, cautions for sensitive populations (people with heart or lung disease, older adults, and children) are associated with daily PM25 and PM<sub>10</sub> concentrations greater than  $40.4 \,\mu\text{g/m}^3$  and  $154 \,\mu\text{g/m}^3$ , respectively. These concentrations correspond to an AQI value of 100. The cautionary statement associated with PM concentrations at this level of concern says that "people with heart or lung disease, older adults, and children should limit prolonged or heavy exertion." There are additional health concerns associated with higher concentration ranges.<sup>22</sup>

There were nine areas (cities or counties) corresponding to the general location and movement of the dust cloud that had at least 1 day with an AQI value above 100 for  $PM_{2.5}$  or  $PM_{10}$ . Four of these areas had no days above 100 during the

entire spring season in the surrounding years (1999, 2000, and 2002). Unfortunately, there are no speciation data in these areas for estimating Asian dust contribution. However, based on estimates computed previously for nearby IMPROVE sites, three of the nine areas might have actually been below 100 were it not for Asian dust contribution. Still, further review and, in some cases, additional data might be needed to determine exact contributions from Asian dust versus dust from other sources.

Because this transport event occurred in April, a temperate part of the year, meteorological conditions were not conducive to the formation of sulfates, nitrates, or organic carbon (major components of PM<sub>2.5</sub> mass). If higher levels of any of these components were combined with the increased dust concentrations, there might have been more AQI values above 100.

With respect to EPA's long-term health standard for  $PM_{2.5}$ , the 1- or 2-day increases from this dust event had relatively little effect. For example, when the "Median Asian Dust Contribution" (3.1 to 7.4 µg/m<sup>3</sup>, depending on region) from Table 1 is excluded from the 3-year averages for 1999 through 2001, the averages are  $0.1 \ \mu g/m^3$  lower. This small shift could be important for any sites bordering the level of the standard of 15.0  $\ \mu g/m^3$ . For this particular 3-year period, there were three counties with averages of 15.1  $\ \mu g/m^3$ , just above the standard. Further review would be required to determine whether or not the sites in these counties were affected by the Asian dust and to what extent.

Eastern Region

### Conclusions

On April 6, 2001, the combination of strong surface winds and an intense area of low pressure over the Gobi Desert produced a large dust cloud that was lofted into the free troposphere and transported eastward. The dust cloud, captured and tracked by satellite imagery, made its way across the Pacific Ocean and ultimately reached the United States on April 12 and 13. Once the cloud was over the United States, sinking air associated with large areas of subsidence and strong downward vertical motion appeared to coincide

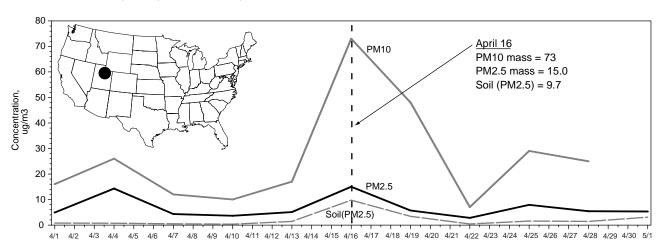
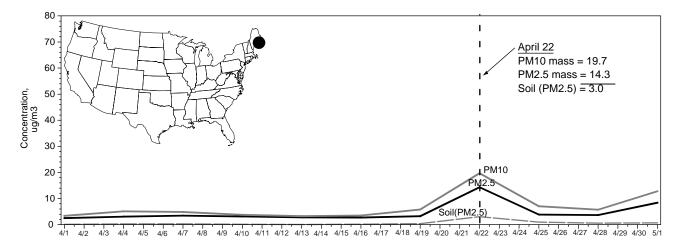




Figure 15. Daily PM<sub>10</sub>, PM<sub>2.5</sub>, and soil (PM<sub>2.5</sub>) concentrations at Salt Lake City, UT.

Figure 16. Daily PM<sub>10</sub>, PM<sub>2.5</sub>, and soil (PM<sub>2.5</sub>) concentrations at Acadia National Park, ME.



with increased soil concentrations in certain areas of the country. In some instances, there appeared to be a lagged relationship (days with increased concentrations lagging days of strong downward vertical motion). This lag could be exaggerated by the once-every-3-day monitoring schedule as well as 24-hour averaging technique employed at the monitoring sites.

Although the TOMS imagery showed days with a dust cloud over much of the United States, an analysis of meteorological conditions in conjunction with IMPROVE and STN monitors indicated that large-scale transport to the boundary layer (which would result in increased particulate matter concentrations) did not occur everywhere. Ridges and troughs, rising or sinking air, and trajectories showing the origins and paths of air masses were all examined to gain an increased understanding of how and when the Asian dust cloud affected the monitors below.

In the areas identified by the satellite and meteorological information, chemical speciation data showed that Asian dust contributed "on average" 3.1 to 7.4  $\mu$ g/m<sup>3</sup> to the total PM<sub>2.5</sub> mass concentrations during the April 16–22 period. There were nine areas (cities or counties) corresponding to the general location and movement of the dust cloud that had at least 1 day with an AQI value above 100 for PM<sub>2.5</sub> or PM<sub>10</sub>. Values for three of the nine areas might have actually been below 100 were it not for Asian dust contribution. Still, further review and, in some cases, additional data might be needed to determine exact contributions from Asian dust versus dust from other sources.

Because the event occurred in the

springtime when daily concentrations of other PM components are generally low, there were relatively few areas with AQI days above 100. If higher levels of any of these components were combined with the increased dust concentrations, there might have been more AQI values above 100.

With respect to EPA's long-term health standard for  $PM_{2.5}$ , this dust event raised the 3-year average by an estimated 0.1 µg/m<sup>3</sup> in the affected regions. For most sites, this is insignificant, but there are implications for sites with 3-year averages just above the level of the standard.

### References

1. Asian Dust Clouds, (http://www. lakepowell.net/asiandust.htm) (accessed October 2002).

2. Rex, R. W.; Syers, J.W.; Jackson, M.L.; Clayton, R.N. Eolian origin of quartz in soils of Hawaiian Islands and in Pacific pelagic sediments; *Science*. **1969**,163, 277–291.

3. Husar, R. B.; Tratt, D.M.; Schichtel, B.A.; Falke, S.R.; Li, F.; Jaffe, D.; Gasso, S.; Gill, T.; Laulainen, N.S.; Lu, F.; Reheis, M.C.; Chun, Y.; Westphal, D.; Holben, B.N.; Gueymard, C.; McKendry, I.; Kuring, N.; Feldman, G.C.; McClain, C.; Frouin, R.J.; Merrill, J.; DuBois, D.; Vignola, F.; Murayama, T.; Nickovic, S.; Wilson, W.E.; Sassen, K.; Sugimoto, N.; Malm, W.C. Asian dust events of April 1998; *J. Geophys. Res.* **2001**, 106, 18,317–18,330.

4. Tratt, D. M.; Frouin, R.J.; Westphal, D.L. April 1998 Asian dust event: a southern California perspective; *J. Geophys. Res.* **2001**, 106, 18371–18379.

5. Gillette, D. A wind tunnel simulation of the erosion of soil: Effect of soil texture, sand-blasting, wind speed, and soil consolidation on the dust production; *Atmos. Environ.* **1978**, 12, 1735–1743.

6. NCEP/NCAR Reanalysis, The NCEP/NCAR 40-Year Reanalysis Project, http://www.cdc.noaa.gov/, NOAA–CIRES Climate Diagnostics Center, Boulder, Colorado, USA, 2002.

7. McClain, C.R.; Cleave, M.L.; Feldman, G.C.; Gregg, W.W.; Hooker, S.B.; Kuring, N. Science quality SeaWiFS data for global biospheric research; *Sea Technol.* **1998**, 39, 10–16.

8. Darmenova, K.; Sokolik, I.N. Integrated Analysis of Satellite and Ground-based Meteorological Observations of Asian Dust Outbreaks in Spring of 2001. Presented at Eos Trans. AGU, Fall Meeting, 2002.

9. Herman, J. R.; Bhartia, P.K.; Torres, O.; Seftor, C.; Celarier, E. Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data; *J. Geophys. Res.* **1997**, 102, 16,911–16,922.

10. Holton, J.R. *An Introduction to Dynamic Meteorology;* Academic Press: San Diego, CA, 1992; 511.

11. Draxler, R.R.; Hess, G.D. Description of the HYSPLIT\_4 modeling system, NOAA Technical Memorandum ERL ARL-224; Dec.1997; 24.

12. Draxler, R.R.; Hess, G.D. An overview of the HYSPLIT\_4 modeling system for trajectories, dispersion and deposition; *Aust. Met. Mag.* **1998**, 47, 295–308.

13. HYSPLIT 4 modeling system; http://www.arl.noaa.gov/ss/ models/hysplit.html, NOAA ARL Transport Modeling and Assessment, Silver Spring, MD (2002) (accessed September 2002).

14. NOAA CMDL, Carbon Monoxide Measurements in the Mongolian Desert Dust Cloud at Boulder, http://www.cmdl.noaa.gov/ hotitems/asiandust.html, NOAA's Climate Monitoring & Diagnostics Laboratory, Boulder, CO, USA, 2001 (accessed October 2002).

15. Revised Requirements for Designation of Reference and Equivalent Methods for PM2.5 and Ambient Air Quality Surveillance for Particulate Matter; Final Rule; *Federal Register* 1997, 62, 38763.

16. Eldred, R. A.; Cahill, T.A.; Pitchford, M.; Malm, W.C. IMPROVE – a new remote area particulate monitoring system for visibility studies; *Proc. APCA* (*Air Pollution Control Assoc.*) Annual Meeting Pittsburgh, PA. 1988, 81, 1–16.

17. Malm, W.C.; Sisler, J.F.; Huffman, D.; Eldred, R.A.; Cahill, T.A. Spatial and seasonal trends in particle concentration and optical extinction in the United States; *J. Geophys. Res.* **1994**, 99, 1347–1370.

 National Air Quality and Emissions Trends Report, 1999, EPA–454/
 R–01–004, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711, March 2001; 54.

19. Claiborn, C.S.; Finn, D.; Larson, T.V.; Koening, J.Q. Windblown dust contributions to high PM<sub>2.5</sub> concentrations; *J. Air & Waste Manage. Assoc.* **2000**, 50, 1440–1445.

20. Malm, W.C.; Sisler, J.F.; Pitchford, M.L.; Scruggs, M.; Ames, R.; Copeland, S.; Gebhart, K.A.; Day, D.E. *Spatial and Seasonal Patterns and Temporal Variability of Haze and its Constituents in the United States: Report III*, Colorado State University, Cooperative Institute for Research in the Atmosphere, Fort Collins, CO, May 2000.

21. Air Quality Index Brochure. http://www.epa.gov/airnow/ aqibroch/ (accessed November 2002).

## Chemical Speciation of PM<sub>2.5</sub> in Urban and Rural Areas

#### Venkatesh Rao

Office of Air and Radiation U.S. Environmental Protection Agency, Ann Arbor, MI 48105

#### Neil Frank, Alan Rush, Fred Dimmick

Air Quality Trends Analysis Group U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

### Abstract

Data from the Interagency Monitoring of PROtected Visual Environment (IMPROVE) and the Speciation Trends Network (STN) are used to analyze the chemical composition of PM<sub>25</sub> and to explore issues associated with interpretation of their measurements. The data from the largely rural IMPROVE network and urban STN are used to examine spatial patterns and to develop estimates of the local urban excess over the regional background concentrations. This work will give some insights into which of the chemical constituents are driving urban excess of PM2.5 mass in different regions of the United States.

### Introduction

With the promulgation of the new Particulate Matter National Ambient Air Quality Standards (PM<sub>25</sub> NAAQS), all future designated nonattainment areas and surrounding regions may need to reduce emission of fine particles and their precursors to permit those areas to attain the NAAQS. Efficient air quality management requires knowing which sources contribute to the problem and how much. Determining  $PM_{25}$  source contributions is complicated due to the fact that often half or more of the PM<sub>2.5</sub> mass is composed of secondarily formed species,<sup>1</sup> hiding their point of origin. In addition, PM<sub>2.5</sub> has a lifetime on the order of several days,<sup>2</sup> enabling

sources up to 1,500 miles away to affect a source region.

This work examines a simple subset of the source apportionment problem by providing evidence for local and regional source contributions and first-order approximations of their respective contributions to the following major urban areas: Fresno, CA, Missoula, MT, Salt Lake City, UT, Tulsa, OK, St. Louis, MO, Birmingham, AL, Indianapolis, IN, Atlanta, GA, Cleveland, OH, Charlotte, NC, Richmond, VA, Baltimore, MD, and New York, NY. This is accomplished by computing urban excess concentrations-by comparing annual concentrations of PM2 5 mass and its most abundant chemical species at the urban monitors with nearby rural monitors. In the process of arriving at the urban excess numbers, several graphics are used to show the chemical species that make up PM<sub>25</sub> mass across the United States.

#### **Data Sources**

Ambient monitoring data from the PM<sub>2.5</sub> chemical Speciation Trends Network (STN) and the Interagency Monitoring of PROtected Visual Environmental (IMPROVE) aerosol monitoring network were the main sources of data used to assess the urban and rural PM<sub>2.5</sub> species concentrations across the United States.

The PM<sub>2.5</sub> STN was established by regulation<sup>3</sup> and is a companion network to the mass-based Federal Reference Method (FRM) network implemented in support of the PM<sub>2.5</sub> NAAQS. EPA established the STN network to provide nationally consistent speciated PM<sub>2.5</sub> data for the assessment of trends at representative sites in urban areas across the country. As part of a routine monitoring program, the STN quantifies mass concentrations and PM<sub>2.5</sub> constituents, including numerous trace elements, ions (sulfate, nitrate, sodium, potassium, ammonium), elemental carbon, and organic carbon. The STN began operation in late 1999, and there are currently a total of 54 STN sites.

In 1987 the IMPROVE aerosol monitoring network was established among federal and state agencies to provide information for determining the types of pollutants and sources primarily responsible for visibility impairment within federally designated Class I areas.<sup>4</sup> Ambient aerosol mass concentrations have been measured under the IMPROVE program to characterize the visibility conditions in these Class I areas since 1988. Over the past few years, the IMPROVE network has expanded from its original 20 monitoring sites to 110 sites in 2002. In addition, there are currently over 50 supplemental sites in regionally representative rural areas that deploy the exact same aerosol monitoring protocol. As with the STN, the IMPROVE network also quantifies mass concentrations and PM<sub>25</sub> constituents.

Both the STN and IMPROVE programs employ a 1-in-3-day sampling protocol.

#### **Data Work-Up**

The time period chosen for this analysis is the 1-year period from March 2001 to February 2002. Any references to an annual average will refer to these 12 months. Out of the possible 54 STN sites, 35 had "complete" annual data. Similarly, 98 IMPROVE sites had "complete" annual data for this time period. Complete data, for the purposes of this analysis, refers to 50% or more of the "relevant" species observations being present for the four quarters that make up the 12 months from March 2001 to February 2002. To be consistent with previous EPA characterizations<sup>5</sup> of the composition of ambient PM<sub>2.5</sub>, the following "relevant" chemical species that make up PM<sub>25</sub> mass are considered in this analysis. The relevant species for the STN are nitrate, sulfate, organic carbon, elemental carbon, ammonium, and the trace elements that go into the "crustal" calculation: aluminum, silicon, calcium, iron, and titanium. Similarly, for IMPROVE, the relevant species are nitrate, sulfate, organic carbon, elemental carbon, and the same five trace elements that go into the "crustal" calculation. Because both networks employ a 1-in-3-day sampling protocol, the 50% completeness criterion amounts to there being 15 or more observations per quarter. No further requirement was imposed for matching days among sites or between networks. Quarters for the 12 months analyzed are defined in Table 1.

Figures 1 and 2 show the 35 STN and 98 IMPROVE locations that had complete data, as defined by the completeness criterion defined above, for the time period analyzed.

#### Table 1. Quarter Definitions

| Quarter | Months Used in Analysis                    |
|---------|--------------------------------------------|
| 1       | January 2002, February 2002, March 2001    |
| 2       | April 2001, May 2001, June 2001            |
| 3       | July 2001, August 2001, September 2001     |
| 4       | October 2001, November 2001, December 2001 |









## Data Handling Protocols

Even though the STN and IMPROVE networks use similar sampling and analytical methods, there are differences in the species they measure and the operational protocols they employ. To put aerosol composition data derived from both these networks on an as-similar-as-possible basis, the following data handling protocols were employed:

- Ammonium: Although directly measured ammonium as performed by STN is important in characterizing the composition of PM<sub>2 5</sub>, network-wide IMPROVE measurements are currently lacking in this area. Ammonium concentrations are thus estimated for IMPROVE (and for comparison purposes, for STN as well) from sulfate  $(SO_4)$  and nitrate measurements, assuming (1) all sulfates are ammonium sulfate (NH<sub>4</sub>SO<sub>4</sub>), and (2) all nitrates are ammonium nitrate. For now, the inter-network measure based on assumed ammonium sulfate and assumed ammonium nitrate compounds is more comparable and will therefore be used to define urban excess. These "estimated" ammonium concentrations are the values shown on all graphics that compare rural and urban ammonium concentrations.
- Sulfate: The IMPROVE program estimates sulfate concentrations as three times the sulfur concentration, whereas with the STN program, sulfate concentrations are used as measured. In this analysis, the sulfate ion measurement is used from both networks to represent sulfates.
- **Carbon**: Carbon is monitored somewhat differently by the IMPROVE and STN programs.

The variances in their analytical and sampling procedures effectively result in two different operational definitions of organic and elemental carbon.<sup>5,6</sup> For this reason, organic (OC) and elemental carbon (EC) are not analyzed separately. Instead, total carbonaceous mass (TCM) is estimated as: TCM = k \* OC + EC for both programs. Here k is the factor for converting measured organic carbon to organic carbon mass (to account for hydrogen, oxygen, etc.). Historically, EPA and IMPROVE programs have used k=1.4 to convert from carbon to carbon mass. Most recent findings by Turpin et al.<sup>7</sup> suggest that a higher factor to convert carbon to carbon mass may be needed in both urban and rural areas. In this work, both k=1.4 and k=1.8 are used to represent TCM. In some cases, TCM (k=1.8) is used to show total carbonaceous mass, whereas in other cases, comparisons are made between use of k=1.8 and k=1.4.7

The OC measurements reported by STN are blank-corrected data using network-wide estimates.<sup>5</sup> This is consistent with the approach used by the IMPROVE program.<sup>6</sup> The OC values reported by the IMPROVE program are automatically blankcorrected using an appropriate blank correction factor.<sup>6</sup> Table 2 lists the OC blank correction factors used for each of the speciation samplers that are in the STN network (also shown for comparison purposes is the IMPROVE blank correction factor). It should be noted that only organic carbon concentrations for the STN are blank-corrected (none of the other STN chemical constituents nor the total gravimetric mass is blankcorrected in this analysis).

#### Urban PM<sub>2.5</sub> Excess

Local and regional contributions to the urban centers were estimated by computing the differences between the concentrations of the annual average urban and nearby rural monitoring data. These estimates are thus a first approximation of local and regional contributions of PM<sub>25</sub> mass and its chemical constituents to the urban areas investigated. Although strong regional similarity exists for each of the chemical species on a large spatial scale, there are still local gradients that exist in the rural concentration domain. See, for example, Figures 3

 Table 2.
 Organic Carbon (OC) Blank Correction Factors

| Speciation Sampler | 24-h Sample<br>Volume, m <sup>3</sup> | OC Blank Correction<br>Factor (μg/m <sup>3</sup> ) |
|--------------------|---------------------------------------|----------------------------------------------------|
| MetOne SASS        | 9.6                                   | 1.40                                               |
| Anderson RASS      | 10.4                                  | 1.28                                               |
| R&P 2300           | 14.4                                  | 0.93                                               |
| URG MASS           | 16.7                                  | 0.56                                               |
| IMPROVE            | 32.8                                  | 0.4                                                |

Soil: The soil component of  $PM_{2.5}$  ("crustal" material) was computed using the following formula, which is the same as that employed by the IMPROVE program<sup>8</sup>:

PM<sub>2.5</sub> Fine Soil = "Crustal" = 2.2[AI] + 2.49 [Si] + 1.63 [Ca] + 2.42 [Fe] + 1.94[Ti].

through 5, which show spatially averaged concentrations of carbonaceous mass, sulfates, and nitrate for the March 2001-February 2002 time period (together with the annual mean concentrations at each **IMPROVE** monitoring location). Thus, the location of a rural site (for eventual pairing to an urban site to determine urban increments) may influence the amount of urban excess seen for the specific chemical constituents of PM2.5. One way to remove this effect and standardize the choice of rural background concentrations is to use spatial interpolation to determine average concentrations for any particular urban location. Although doing this for all sites is beyond the scope of this paper, spatial averaging for rural concentrations was applied, albeit in a simple manner, at two urban locations. At the St. Louis, MO, urban site, three nearby IMPROVE sites were used to determine an inverse-distanceweighted annually averaged rural concentration for each of the species. Similarly at the Atlanta, GA, urban site, two nearby IMPROVE sites were used to determine an average annual rural concentration for each of the species. See the discussion in the next section and Table 3 for more information on the choice of pairing of specific urban/rural sites. In general, this approach assumes that the  $PM_{25}$  at the rural sites is generally representative of the upwind regional concentrations and is not significantly influenced by nearby emissions and that the regional sources (including upwind urban areas) have the same impact on the rural monitors and the particular urban monitors.

Figure 3. Spatial averaging of rural sulfate concentrations.

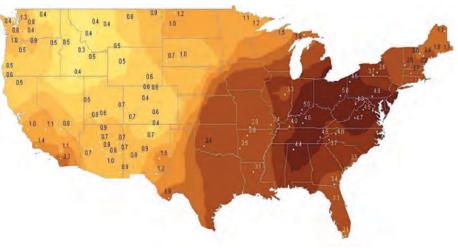
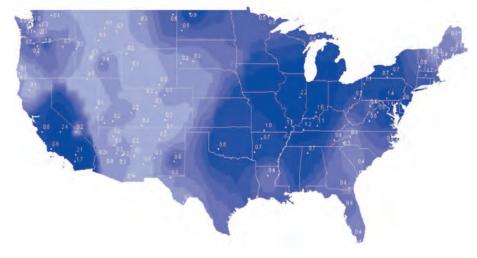
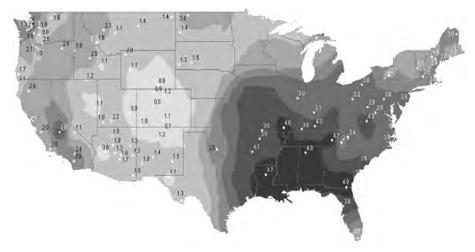




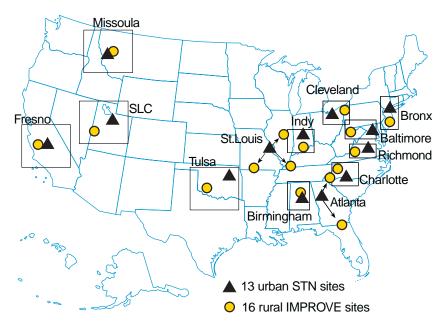

Figure 4. Spatial averaging of rural nitrate concentrations.







#### **Choice of Urban and Rural Sites**


Figure 6 summarizes the urban and rural locations chosen for this analysis. There are five urban sites (Bronx, NY, Baltimore, MD, Richmond, VA, Charlotte, NC, and Atlanta, GA) in the Northeast and Mid-Atlantic States, five urban sites stretching from north to south in the mid portion of the United States (Cleveland, OH, Indianapolis, IN, St. Louis, MO, Tulsa, OK, and Birmingham, AL), and three urban sites in the West (Fresno, CA, Salt Lake City, UT, and Missoula, MT). These were chosen due to their data being complete for the year in question as well as their ease in matching up with nearby IMPROVE rural (discussed further below) sites for the urban excess study. Except for Tulsa, they were also selected to represent states with reported PM<sub>25</sub> mass concentrations greater than 15 µg/m<sup>3</sup>, which is the level of the annual PM<sub>25</sub> NAAQS. IMPROVE sites with complete data were chosen for assumed

representativeness of upwind background concentrations. In the case of matching the urban Atlanta and St. Louis sites to nearby rural sites, a single available rural site with complete data was not judged to be sufficiently representative of the requisite

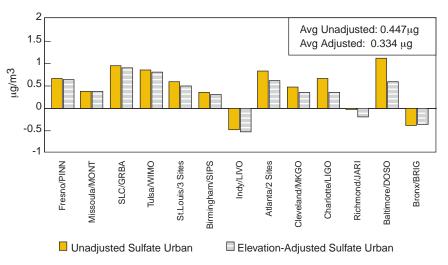
Figure 6. Thirteen urban/rural site paintings.

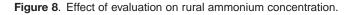
requirement, and therefore a multiple site approach (as explained above) was employed.

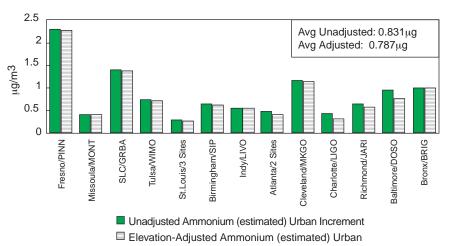
Table 3 summarizes all the STN and IMPROVE sites for their elevation and separation distances. For the analyses of urban excess, all

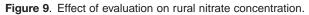


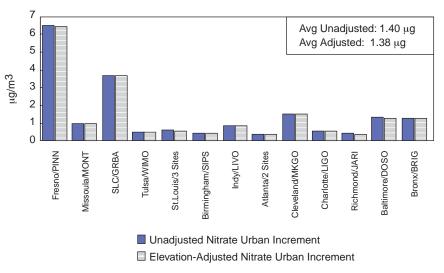
| Table 3. | STN and IMPROVE Site Particulars |  |
|----------|----------------------------------|--|
|----------|----------------------------------|--|


| Urban Location/Site | Elevation (m) | Rural Location/Site                     | Elevation (m) | Distance Apart (km) |
|---------------------|---------------|-----------------------------------------|---------------|---------------------|
| Fresno, CA          | 96            | Pinnacles National Monument, CA         | 317           | 28                  |
| Missoula, MT        | 975           | Monture, MT                             | 1,293         | 72                  |
| Salt Lake City, UT  | 1,306         | Great Basin National Park, NV           | 2,068         | 277                 |
| Tulsa, OK           | 198           | Wichita Mountains, OK                   | 487           | 298                 |
| St. Louis, MO       | 0             | Cadiz, KY                               | 188           | 296                 |
|                     |               | Hercules-Glades, MO                     | 423           | 322                 |
|                     |               | Bondville, IL                           | 211           | 220                 |
| Birmingham, AL      | 174           | Sipsy Wilderness, AL                    | 279           | 100                 |
| Indianapolis, IN    | 235           | Livonia, IN                             | 298           | 142                 |
| Atlanta, GA         | 308           | Okefenokee National Wildlife Refuge, GA | 49            | 324                 |
|                     |               | Shining Rock Wilderness, NC             | 1,621         | 236                 |
| Cleveland, OH       | 206           | M.K. Goddard, PA                        | 383           | 129                 |
| Charlotte, NC       | 232           | Linville Gorge, NC                      | 986           | 132                 |
| Richmond, VA        | 59            | James River Face, VA                    | 300           | 179                 |
| Baltimore, MD       | 5             | Dolly Sods/Otter Creek Wilderness, WV   | 1,158         | 256                 |
| Bronx, NY           | 0             | Brigantine National Wildlife Refuge, NJ | 9             | 165                 |


urban/rural pairings were elevationadjusted to account for the effect of 24-h average sample volume density on aerosol concentration. Both IMPROVE- and STN-reported data represent local conditions. This elevation adjustment was done in two steps: (1) all the concentrations from the IMPROVE sites were adjusted to sea-level conditions, and (2) all these sea-level-adjusted concentrations were adjusted once again to the elevation corresponding to the matched urban site. Except for the St. Louis and Atlanta STN monitors and their pairing with rural IMPROVE monitors, all other STN sites were matched one-on-one with the rural monitors listed in Table 3. In the case of St. Louis, the three IMPROVE monitors shown in Table 3 as matched sites were inverse-distance weighted, and the urban Atlanta site was compared to the averaged concentration(s) derived from the two IMPROVE sites shown in Table 3.


# Elevation Effects on PM<sub>2.5</sub> Concentrations


As mentioned previously, all the IMPROVE data were adjusted for elevation (based on temperature and barometric pressure correction factors) twice: once to adjust to sea level and then again, as necessary, to adjust to the elevation of the matched urban site. Basically, this elevation adjustment is a small technical correction to make the "urban excess" calculation more meaningful. Other than at the Dolly Sods/ Baltimore rural/urban pairing of sites, however, the urban/rural elevation differences were small, and these adjustments are very minor as can be seen in Figures 7 through 11, which show the effects of elevation adjustments for all the chemical species of interest at the 13 urban/rural paired combinations.


Figure 7. Effect of evaluation on rural sulfate concentrations.



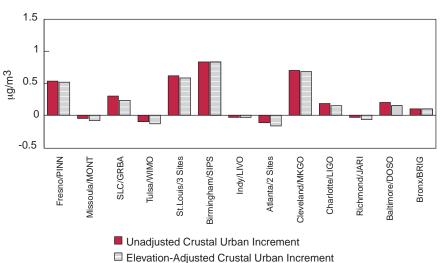


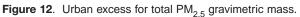






# Urban Increments of PM<sub>2.5</sub> Mass and the Chemical Species


Urban sites were paired with matched rural sites as listed in Table 3, and the annual average concentrations were calculated for both the urban sites and the companion rural site(s). All rural values reflect elevation-adjusted values. These averaged rural concentrations were subtracted from the appropriate urban concentrations to arrive at the urban increments of mass and increments of the individual chemical species.


Shown first in Figure 12 is the comparison of urban concentrations to estimated regional background for total measured gravimetric mass. The difference is the "urban increment." The height of each bar represents the annually averaged urban gravimetric mass. Overlaying the nearby rural gravimetric mass on top of the urban mass levels shows how much of the total mass can be attributed to rural vs. urban sources. It can be seen that Fresno, Cleveland, and Birmingham are the urban sites in this analysis with the largest urban PM<sub>25</sub> mass during the time period investigated. The largest urban increment in PM<sub>25</sub> mass is seen to be at the Fresno, CA, site, with an average excess of about  $18 \,\mu\text{g/m}^3$ . The smallest urban increment for mass is seen to be at the St. Louis site, which shows an average urban excess of about 5  $\mu$ g/m<sup>3</sup> total PM<sub>25</sub> mass. Although this result suggests that there are more local sources influencing urban PM<sub>25</sub> mass at the Fresno, CA, location than at the St. Louis, MO, location, the selected rural sites in the eastern United States may be more reflective of background concentrations. The Fresno site may be influenced by other PM<sub>25</sub> sources throughout the

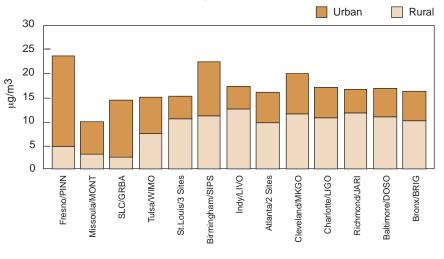
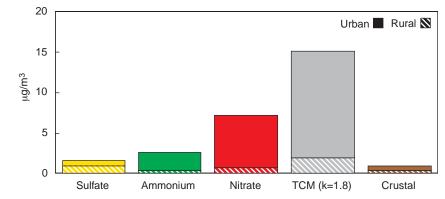

Figure 10. Effect of elevation on rural TCM (k=1.8) concentrations.

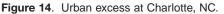


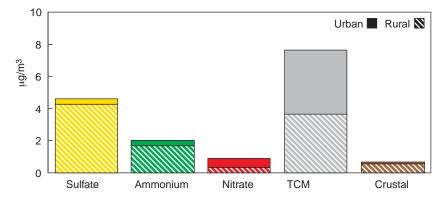
Figure 11. Effect of elevation on rural crustal concentrations.

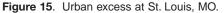


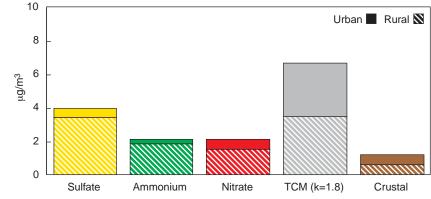


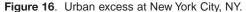


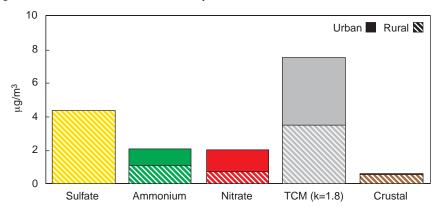


San Joaquin Valley. In general, the total excess mass ranges from 4 to  $16 \ \mu g/m^3$ , with the West generally showing more mass urban excess than the East. On average, the urban excess in PM<sub>2.5</sub> mass for the investigated 13 site combinations is seen to be about 8  $\mu g/m^3$ .


Figures 13 through 16 show a comparison of urban concentrations with estimated regional background for four example sites (urban sites: Fresno, CA, St. Louis, MO, New York, NY, and Charlotte, NC-see Table 3 for the matched rural sites for these urban locations) out of the total 13 urban/rural pairings investigated. The height of each bar represents the average urban concentration by species. Overlaying the nearby rural concentrations by chemical component on the urban chemical component concentrations, the example stacked bar charts (Figures 13-16) show that the estimated regional background represents varying proportions of the total urban concentrations by component and location. Specifically, TCM and nitrates dominate Fresno particulate aerosol, whereas carbon and sulfates are the highest among the example eastern sites. In terms of urban excess, all four of these examples show TCM and nitrate concentrations to be the major components. Urban increments of TCM are seen to range from  $13 \,\mu g/m^3$  at the Fresno, CA, location to about 3 to 4  $\mu$ g/m<sup>3</sup> at the other three locations. Similarly, nitrate urban excess is seen to be  $6.5 \,\mu g/m^3$ at the Fresno, CA, location and is in the 0.5 to 1.3  $\mu$ g/m<sup>3</sup> range at the other sites studied. As stated earlier, the Fresno values are probably reflective of contributions from the San Joaquin Valley.


Another interesting way to look at urban excess at the 13 selected urban/rural pairs is by examining


Figure 13. Urban excess at Fresno, CA.









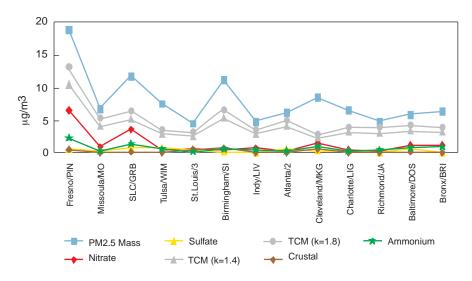





the urban increment of gravimetric mass as it compares to the urban increments of each of the chemical species that drive that mass. This is shown in Figure 17. The top line in Figure 17 depicts the total PM<sub>2.5</sub> mass urban excess for these 13 urban/rural site combination pairs. The urban mass is derived from the STN speciation samplers. The urban sites are arranged to reflect a west-toeast trend as you go from left to right on the graph. At all locations, total carbonaceous mass is seen to be the major contributor to PM<sub>25</sub> mass, and, at the western sites, nitrates also play a role in determining the total  $PM_{25}$  mass increments for the time period investigated. The average excess urban mass seen in the eastern sites is 5 to 8  $\mu$ g/m<sup>3</sup> with carbon contributing between 3 and 5 µg/m<sup>3</sup> to the mass increment. The exception to this average is the Birmingham, AL, urban site. This site is paired with the Sipsy Wilderness rural site (~100 km away) to estimate urban excess. Birmingham shows a mass increment of about 12  $\mu$ g/m<sup>3</sup>, with carbon contributing about 5.0 to 6.5  $\mu g/m^3$  to the total mass increment. Birmingham probably has local (urban) emissions sources that are contributing to the PM<sub>25</sub> mass. To understand why the mass is so much higher in the urban Birmingham area compared with the other eastern sites studied, more work is needed to investigate how these sources differ from emissions sources in the other eastern locations.

### National Map of Urban Excess

The estimated urban excess concentrations are displayed in the national map shown in Figure 18 for the selected 13 urban/rural combinations. Table 4 presents these same findings through summary statistics. Those urban excess numbers that were less than zero were set equal to zero in Table 4 (the "minimum" values for sulfate and crustal concentrations in the "East" and "Overall" columns). However, the actual numbers, both positive and negative, were used to compute average concentrations (of urban excess concentrations).

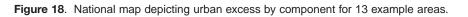

The significant points and important caveats are as follows:

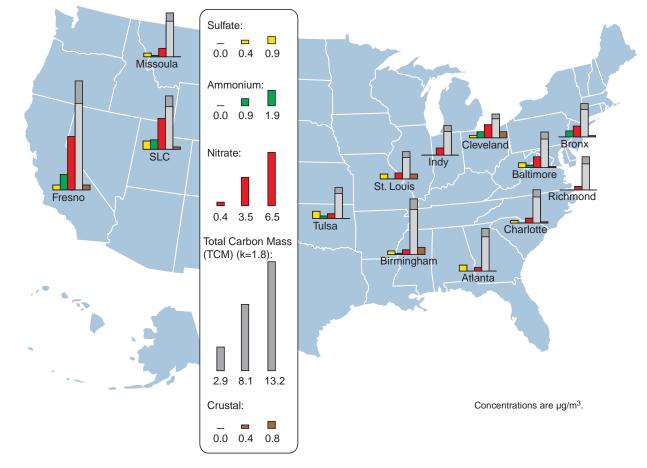
- The estimate for urban excess sulfate is invariably very small in the eastern United States, which is consistent with the notion that most sulfates are transported from regional sources of SO<sub>2</sub>. This small estimated urban excess in the East (0.0-0.5 µg/m<sup>3</sup>) is attributed at least in part to sulfur emissions associated with fuel combustion from stationary and mobile sources.
- Nitrates are seen to be in excess in the more northern and western locations, showing a larger local contribution than sulfates or any other species except carbon. This is assumed to reflect local nitrogen sources (e.g., mobile), nitric acid

from NO<sub>v</sub>/VOC reactions, and preferential winter-time nitrate formation compared to sulfates. However, more work is needed to assess the comparability of nitrate measurements and monitoring methods between networks. To that end, a major study is planned next year by the IMPROVE program. This was initiated, in part, because there is concern that the IMPROVE protocol may produce relatively lower concentrations of nitrates, so some of the reported difference may be measurement related.

- Carbonaceous mass is shown to have a substantial urban excess (2.9 to 13.2 µg/m<sup>3</sup> when k=1.8). It is clearly the largest among all reported chemical components in this "urban excess" analysis. It appears to be attributed to local emissions, with mobile sources as a possible major contributor.
- Some locations also show a sizeable urban excess of "crustal material." The estimation procedure used in the IMPROVE protocol includes the measurement of iron and other trace elements.







Therefore, this difference also reflects oxidized particulate metals, some of which may be attributed to road dust or industrial sources in urban areas.

### Conclusions

In this work, the local and regional source contributions of  $PM_{2.5}$  to urban areas were investigated at 13 urban locations in the United

States. This was accomplished by matching urban sites to nearby rural sites and then comparing the appropriate concentrations of chemical constituents and mass. Although







|                                    | West (3 sites) |      |         | East (10 sites) |     |         | Overall (13 sites) |      |         |
|------------------------------------|----------------|------|---------|-----------------|-----|---------|--------------------|------|---------|
| Chemical Species                   | Min            | Max  | Average | Min             | Max | Average | Min                | Max  | Average |
| Sulfate                            | 0.4            | 0.9  | 0.6     | 0               | 0.8 | 0.3     | 0                  | 0.9  | 0.3     |
| Estimated Ammonium                 | 0.4            | 2.3  | 1.4     | 0.3             | 1.1 | 0.6     | 0.3                | 2.3  | 0.8     |
| Nitrate                            | 1.0            | 6.5  | 3.7     | 0.4             | 1.5 | 0.8     | 0.4                | 6.5  | 1.5     |
| Total Carbonaceous<br>Mass (k=1.4) | 4.2            | 10.5 | 6.6     | 2.4             | 5.4 | 3.3     | 2.4                | 10.5 | 4.1     |
| Total Carbonaceous<br>Mass (k=1.8) | 5.3            | 13.2 | 8.3     | 2.9             | 6.7 | 4.2     | 2.9                | 13.2 | 5.1     |
| "Crustal"                          | -0.1           | 0.5  | 0.2     | 0               | 0.8 | 0.2     | 0                  | 0.8  | 0.2     |

there is uncertainty in the measured mass and in other measurement protocols, it is clear that carbonaceous mass is prevalent everywhere (average of 5.1  $\mu$ g/m<sup>3</sup> with k=1.8) and is the major component of urban excess at all the sites studied. In the western sites, the TCM (based on k=1.4) urban excess varies from 4.5 to 10.5  $\mu g/m^3$ , whereas in the eastern sites, TCM urban excess is in the range of 2 to 5.4  $\mu$ g/m<sup>3</sup>. TCM, based on k=1.8, varies from a range of 5.3 to 13.2  $\mu g/m^3$  in the West and to a range of 2.9 to 6.7  $\mu$ g/m<sup>3</sup> in the East. Similarly, nitrates are prevalent in the urban excess estimates for the North and West (2 to  $6 \mu g/m^3$ ). Consistent with the theory that most sulfates are transported from regional sources of SO<sub>2</sub>, the urban excess of this chemical component is invariably very small in the eastern United States. These results may be viewed as a first step in differentiating between regional and local sources that contribute to PM<sub>25</sub> mass. More work is needed in the areas of estimating regional background associated with specific urban areas using spatial analysis, identifying specific emission sources with the estimated urban excesses using source apportionment techniques, more refined data analysis that includes meteorological variables, and examination of the data on finer time resolution to get to the next and more refined level of urban excess concentrations. These will be the subjects of future papers in this area.

### Disclaimer

The views and opinions expressed in this paper are solely those of the authors and do not necessarily reflect those of the U.S. Environmental Protection Agency.

## References

1. Schichtel, B.A.; Husar, R.B. Aerosol types over the continental U.S.: spatial and seasonal patterns. Presented at the A&WMA Conference, Kansas City, MO, 1992; Paper 92-60.07.

2. Husar, R.B.; Lodge Jr., J.P.; Moore, J.D. Sulfur in the atmosphere. In *Proceedings of the International Symposium, Dubrovnik, Yugoslavia, 7-14 September 1977*; Pergamon Press: Oxford, 1978.

3. U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Emissions, Modeling, and Analysis Division, Monitoring and Quality Assurance Group. *Particulate Matter (PM2.5) Speciation Guidance, Final Draft, Edition 1*; October 17, 1999.

4. Malm, W.C.; Sisler, J. F.; Huffman, D.; Edred, R. A.; Cahill, T. A. Spatial and seasonal trends in particle concentration and optical extinction in the United States. *J. Geophys. Res.* **1994**, 99, 1347-1370.

5. U.S. National Air Quality and Emissions Trends Report, 1999; EPA-454/R-01-004; Research Triangle Park, NC, March 2001.

 Dimmick, F. Recent analysis of PM<sub>2.5</sub> Speciation Data with Emphasis on Carbonaceous Mass.
 EPA Memorandum, October 3, 2002.

7. Turpin, B.; Lim, H-J. Species contributions to PM<sub>2.5</sub> mass concentrations: revisiting common assumptions for estimating organic mass. *Aerosol Sci. Technology*. **2001**, 35, 602-610.

8. IMPROVE Web Site. http:// vista.cira.colostate.edu/improve/. Accessed October 2002. NATIONAL AIR QUALITY AND EMISSIONS TRENDS REPORT, 2003

## Trends in Monitored Concentrations of Carbon Monoxide

#### Jo Ellen Brandmeyer, Peter Frechtel, and Margaret Z. Byron

RTI International, P.O. Box 12194, Research Triangle Park, NC 27709-2194

#### Joe Elkins and James Hemby

Air Quality Trends Analysis Group U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

#### Venkatesh Rao

Office of Air and Radiation U.S. Environmental Protection Agency, Ann Arbor, MI 48105

### Abstract

Carbon monoxide (CO) is one of the criteria pollutants regulated under the Clean Air Act. Numerous metropolitan areas instituted oxygenated gasoline (oxyfuel) programs during winter months to reduce CO emissions from motor vehicles, but some have since discontinued these requirements. This paper demonstrates a screening method for determining monitoring stations of potential interest. Monitoring stations with at least 8 years of relevant data during the period from 1990 through 2000 were screened for either an upward linear trend or upward inflection. Statistical tests assessed the trend in the annual second maximum nonoverlapping 8-hour average of CO for each monitor over the 11-year period. Of the 433 sites analyzed, 34 showed a statistically significant overall upward trend or statistically significant upward curvature. This analysis method can be used to screen for sites with increasing CO concentrations. The identified sites should then be examined further to determine the magnitude of the concentrations as compared to the existing standard. Because some areas have changed their fuel requirements within the last few years of the analysis, we recommend repeating this test annually.

## Introduction

Carbon monoxide (CO) is a colorless, odorless, and poisonous gas produced by incomplete burning of carbon in fuels. Approximately 75% of nationwide CO emissions are from transportation sources. The largest emissions contribution comes from highway motor vehicles. Thus, the focus of CO controls as well as CO monitoring has been on traffic-oriented sites in urban areas where the main source of CO is motor vehicle exhaust. Other CO sources include wood-burning stoves, incinerators, and other heavy industrial sources.

The National Ambient Air Quality Standard (NAAQS) for carbon monoxide is 9 ppm for an 8-h average not to be exceeded more than once per year. The EPA motor vehicle program has achieved considerable success in reducing CO emissions. EPA standards in the early 1970s prompted automakers to improve basic engine design. By 1975, most new cars were equipped with catalytic convertors designed to convert CO to carbon dioxide. In the 1980s, automakers introduced more sophisticated converters plus on-board computers and oxygen sensors to help optimize the efficiency of the catalytic converter.

CO emissions from automobiles increase dramatically in cold weather because cars need more fuel to start at cold temperatures, and some emission control devices operate less efficiently when they are cold. Until 1994, vehicles were tested for CO emissions only at 75°F. But, recognizing the effect of cold weather, the 1990 Clean Air Act (the Act) calls for 1994 and later cars and light trucks to meet a carbon monoxide standard at 20°F as well. The Act also stipulates expanded requirements for inspection and maintenance programs. These routine emission system checks should help identify malfunctioning vehicles that emit excessive levels of CO and other pollutants (the so-called "high emitters"). The inspections will be complemented by requirements for onboard warning devices to alert drivers when their emission control systems are not working properly.

Yet another strategy to reduce CO emissions from vehicles is to add oxygen-containing compounds to gasoline. This has the effect of "leaning-out" the air-to-fuel ratio, thereby promoting more complete fuel combustion. The most common oxygen additives are ethers and alcohols. Several western and northern U.S. cities have employed wintertime oxygenated gasolines for many years. The Act expands this concept and requires that oxygenated gasolines be used during the winter months in certain metropolitan areas with high CO levels.

With these control programs and technology improvements, today's passenger cars and light-duty trucks are capable of emitting 90% to 95% less CO over their lifetimes than their uncontrolled counterparts of the 1960s. As a result, ambient CO levels have dropped, despite large increases in the number of vehicles on the road and the number of miles they travel. However, in recent months, with continued heavy increase in vehicle travel, there have been indications that CO levels are climbing again in certain parts of the country. The objective of this work is to examine those areas of the country where mobile-source activity is heavy (in CO nonattainment and problem areas) and/or where CO air quality has been a persistent problem and determine whether CO levels are increasing.

## **Experimental Methods**

CO concentration data were extracted for 858 monitoring sites from EPA's Aerometric Information Retrieval System (AIRS) on March 14, 2002. To meet the completeness requirement for this analysis, at least 8 years of data must have been available for the years 1990 to 2000, inclusive. Statistical analyses were performed for the 433 sites that met this requirement.

The Metropolitan Statistical Area (MSA) code was also downloaded for each site. The codes were linked to the most recent list of areas that employ or have discontinued oxy-fuel requirements.<sup>1</sup> This information was used to group the sites (oxyfuel ended vs. no change in oxyfuel requirements) and to interpret the results of the analyses.

The effects of meteorology on ambient CO concentrations were not examined in this study. For example, certain meteorological parameters (e.g., mixing height and windspeed) need to be considered when comparing emissions to ambient concentration measurements.<sup>3,4</sup> However, the Glen et al. study<sup>3</sup> concluded that seasonal fluctuations in CO concentrations are explained by the variations in these meteorological parameters, whereas the long-term trend is primarily due to the trend in emissions. Although the current analysis did not account for interannual meteorological changes, the same overall downward trend was identified.

The analysis used the second maximum nonoverlapping 8-h average CO concentration (SECMX) for each year. This statistic was selected for analysis because it coincides with the 8-h NAAQS for CO. Missing values (i.e., years without a SECMX value for a monitor) were not filled in; that is, linear interpolation or some other method was not employed to fill in missing data. The data for each site were then analyzed independently of all other sites; that is, no spatial averaging was performed to obtain annual average values for each MSA.

Although the SECMX values form the basis of the annual CO trends published by EPA's Air Quality Trends Analysis Group in the Trends Report,<sup>2</sup> the methodology employed in this study differed in three basic ways:

- The Trends Report fills in missing data, whereas this study used only the data that were available from AIRS.
- The Trends Report aggregates data and analyzes results for each MSA, whereas this study performed the data analysis separately for each monitor.

• The analysis for the Trends Report used only the nonparametric Theil test, whereas this study also used two linear regression models.

The three analyses that were performed for each site were the Theil test, first-order linear regression, and quadratic (second-order) linear regression. Each of these analyses included a statistical hypothesis test that computes a *p*-value for each monitor. If the *p*-value is less than a critical value *n* between 0 and 1, then the test has a result that is "significant at  $\alpha = n$ ." A smaller value for  $\alpha$  indicates a greater likelihood that the data truly possess the detected trend.

Every test was two-sided, meaning that the  $\alpha$ -level used to detect an increasing or a decreasing trend was  $\alpha/2$ . Therefore, if a monitor exhibited an increasing trend, then the *p*value for the test would have to be less than  $\alpha/2$  for the increasing trend to be significant. For example, if a monitor exhibited an upward trend that was significant at  $\alpha = 0.01$ , then the probability of seeing as extreme an upward trend as this monitor under the null hypothesis of no trend is less than 0.005 (0.5%).

The Theil test and both regression models are discussed below.

#### Theil Test

The Theil test<sup>5</sup> is a nonparametric statistical test that can be used instead of regression-based methods for discerning a monotonic trend. It examines whether the concentration from year to year tends to increase or decrease consistently, making it a test of monotonicity. This test is not concerned with the magnitude of the year-to-year differences. The null hypothesis is that there is no monotonic trend in the data.

The first step in the test is to examine all possible [n(n-1)/2] pairs

of data points from a given monitor, where n = 8, 9, 10, or 11. Next, a count is taken of all the pairs that show an increasing or decreasing trend. The null hypothesis will be rejected and the test results will indicate a significant monotonic increasing (or decreasing) trend if this count of the data point pairs is greater than (or less than) a certain critical value. A large positive value indicates a positive trend, and a large negative value indicates a negative trend.

The Theil test was applied for two reasons. First, it is appropriate when the errors from a linear regression are not normally, or close to normally, distributed. The data here may not meet the normality assumption. Second, this test was recommended to EPA for determining whether an area has a significant trend.<sup>6</sup> Therefore, this test is used in EPA's annual Trends Reports.

#### Choice of Urban and Rural Sites

Unlike the Theil test, linear regression is a parametric test. All linear regression models incorporate three basic assumptions: (1) the data are normally distributed, (2) the variance is constant at each time, and (3) no autocorrelation exists between time periods.

A first-order linear regression was performed using PROC REG in SAS.<sup>7</sup> The linear regression model used SECMX as the dependent variable. To make the results less dependent on the magnitude of the year, a transformation was performed on the value of the year by subtracting 1989 (i.e., 1 less than the minimum year in the dataset):

$$YR' = YEAR - 1989$$
 (1)

YR' was the only independent variable in the regression model.

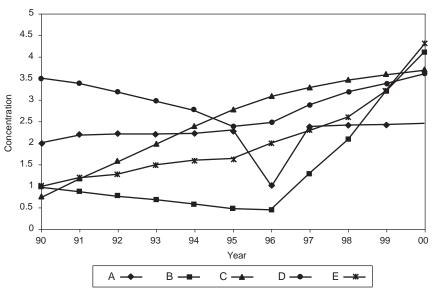
PROC REG includes a hypothesis test for a nonzero slope. The *p*-value from this hypothesis test is presented in the results tables.

#### Quadratic Regression

A second linear regression was also performed using PROC REG. This test was a quadratic (second-order) linear regression that used both (YR') and (YR')<sup>2</sup> as independent variables. The *p*-value from the test for a nonzero coefficient on the squared term is presented in the results tables. A significant *p*-value for this test indicates significant curvature in the regression line. That is, an upward trend suggests that the slope has increased from the early years to the recent years.

#### Interpretation of Statistical Results

These three statistical tests are complementary in that each examines the data differently. The Theil test looks for a monotonic trend, firstorder linear regression applies normality theory for a linear trend, and


#### Figure 1. Examples of trends A through E.

quadratic regression applies normality theory for a nonlinear trend. All three spotlight sites that may be of interest to policy makers, but no single test will detect all interesting sites. They can be used together, however, to discern patterns in the data. Consider the following five trends, as illustrated in Figure 1.

#### Trend A

This site has a consistent, upward trend that is not dramatic. However, 1996 was a very "clean" year at the site, with a SECMX value lower than the rest of the years.

The Theil test undoubtedly will detect a significant upward trend at site A. The first-order regression model may not find a significant trend at site A for two reasons. First, the anomalous point in 1996 inflates the variance. Second, the slope estimate will not be much greater than zero because the increasing trend is only slight. The quadratic regression model may or may not be significant for this site.



Site A may be of interest to policy makers. For example, upon examination of associated data such as temperature, they may find a meteorological reason that 1996 was such a clean year (e.g., warm winter) and decide that the true pattern is a consistent increase in CO concentration.

#### Trend B

From 1990 to 1996, the concentrations at site B decreased slightly. The concentrations then increased dramatically from 1997 to 2000.

At site B the Theil test may not detect a trend because of a lack of a consistent pattern in the early years. It also will not be influenced by the explosive pattern in the recent years. However, the first-order regression model will certainly detect an increasing trend. The high concentrations in the later years will increase the slope of the regression line. If the increase is more dramatic in the very recent years, the quadratic regression model may also detect a significant upward inflection.

Site B also would likely be of interest to policy makers, because the most recent years show a dramatic increase in concentration.

#### Trend C

The concentrations at site C increased dramatically from 1990 to 1995. The rate of increase then slowed from 1996 to 2000, although the concentrations continued to increase.

At site C, both the Theil test and the first-order regression model will detect an increasing trend. However, the quadratic regression model might detect a downward curvature.

This may be a site where population growth is explosive, but the state or local government has taken drastic steps to reduce emissions per capita. This pattern is likely to interest policy makers because the site is showing improvement via slower concentration growth, although the concentration at the site is still increasing.

#### Trend D

The concentrations at site D decreased from 1990 to 1995 but increased from 1996 to 2000. The concentrations in 1990 and 2000 were similar to each other.

At site D, both the Theil test and the first-order regression model likely will fail to detect a trend. The Theil test will have about the same number of increasing and decreasing pairs. The slope of the first-order linear regression line likely will be nearly zero. The quadratic regression model, however, will detect a significant upward curvature.

This site may be of interest to policy makers because the pattern suggests that the concentrations will continue to increase. This pattern may be prevalent where the oxyfuels program was discontinued.

#### Trend E

The concentrations at site E increased from 1990 to 1995. The increase became more pronounced from 1996 to 2000.

At site E, all three tests will produce significant results. This site exhibits a consistent increase in concentrations, and it merits special vigilance.

#### **Results and Discussion**

This study analyzed data for the 433 sites that met the completeness test. One or more statistical tests revealed significance at 79% of the sites at the  $\alpha$  = 0.10 level. This result was expected due to the effects of fleet turnover.

Of greater interest to this study, however, was that a statistically

significant upward trend or curvature was revealed at 34 sites. Table 1 lists the results of the three statistical models for all sites where at least one model revealed a significant upward trend or positive quadratic component. Seven pieces of information are included for each site: (1) MSA containing the site, (2) ending date for the oxyfuel program (if applicable), (3) monitor ID in AIRS, (4) number of years of data used in the analysis, (5) results of the Theil test, (6) results of a hypothesis test that the slope of the line from the first-order linear regression model is nonzero, and (7) results of a hypothesis test that the coefficient associated with the squared term is nonzero for the quadratic regression model. Of the sites listing dates ending the oxyfuel program, all either are located in a federal reformulated gasoline area or have an oxyfuel requirement in their contingency plan.

Figure 2 shows the locations of the monitoring sites with at least one statistical model showing a statistically significant upward trend or positive quadratic component. Only those sites located within the coterminous United States are included in this map.

A plot of the SECMX vs. year was generated for each of the 433 sites in this analysis. For each plot the concentration values are shown as stars. The solid line represents the quadratic regression line, and the dashed lines represent the 95% confidence bands around the regression line. That is, there is a 95% probability that the true trend lies within the area bounded by the dashed lines and only a 5% probability that the true trend lies outside this area. Examples of patterns found in these plots are included as Figures 3 through 7.

| MSA                      | Ending Date<br>Oxyfuel<br>Requirement | Monitor ID      | Years of<br>Data | Theil Test | 1st Order<br>Regression<br>Model | 2nd Order<br>Regression<br>Model |
|--------------------------|---------------------------------------|-----------------|------------------|------------|----------------------------------|----------------------------------|
| _                        | _                                     | 370770001421011 | 8                | NS         | UP10                             | NS                               |
| _                        | _                                     | 410350006421011 | 11               | DOWN01     | DOWN01                           | UP01                             |
| Charlotte, NC            | _                                     | 371190038421011 | 11               | DOWN01     | DOWN01                           | UP05                             |
| Charlotte, NC            | _                                     | 371191009421011 | 8                | UP05       | UP05                             | NS                               |
| Kansas City, MO          | _                                     | 290470009421011 | 10               | DOWN05     | DOWN05                           | UP10                             |
| Los Angeles, CA          | _                                     | 060371201421011 | 11               | DOWN01     | DOWN01                           | UP10                             |
| Los Angeles, CA          | _                                     | 060379002421011 | 11               | DOWN01     | DOWN01                           | UP05                             |
| Louisville, KY           | _                                     | 211110046421011 | 11               | DOWN05     | DOWN01                           | UP05                             |
| Minneapolis-St. Paul, MN | _                                     | 271230865421011 | 8                | DOWN05     | DOWN05                           | UP05                             |
| Modesto, CA              | 6/1/1998*                             | 060990005421011 | 11               | DOWN05     | DOWN05                           | UP01                             |
| Oakland, CA              | _                                     | 060010003421011 | 10               | DOWN05     | DOWN01                           | UP10                             |
| Oakland, CA              | _                                     | 060130002421011 | 11               | DOWN01     | DOWN01                           | UP05                             |
| Oakland, CA              | _                                     | 060133001421011 | 11               | DOWN01     | DOWN01                           | UP05                             |
| Vancouver, WA            | 10/21/1996*                           | 530110010421011 | 11               | DOWN01     | DOWN01                           | UP01                             |
| Provo, UT                | _                                     | 490490002421011 | 11               | DOWN01     | DOWN01                           | UP05                             |
| Reno, NV                 | _                                     | 320311005421011 | 11               | DOWN01     | DOWN01                           | UP05                             |
| Sacramento, CA           | 6/1/1998*†                            | 060170010421011 | 9                | DOWN05     | DOWN01                           | UP01                             |
| Sacramento, CA           | 6/1/1998*†                            | 060170011421011 | 8                | DOWN01     | DOWN01                           | UP10                             |
| Sacramento, CA           | 6/1/1998*†                            | 060670006421011 | 11               | DOWN01     | DOWN01                           | UP10                             |
| Sacramento, CA           | 6/1/1998 *†                           | 060670007421011 | 11               | DOWN01     | DOWN01                           | UP01                             |
| San Diego, CA            | 6/1/1998*†                            | 060730003421011 | 10               | DOWN01     | DOWN01                           | UP05                             |
| San Diego, CA            | 6/1/1998*†                            | 060731007421011 | 11               | DOWN01     | DOWN01                           | UP01                             |
| San Francisco, CA        | 6/1/1998*                             | 060811001421011 | 11               | DOWN01     | DOWN01                           | UP10                             |
| San Jose, CA             | _                                     | 060850004421011 | 11               | DOWN05     | DOWN01                           | UP01                             |
| San Jose, CA             | _                                     | 060850004421012 | 11               | DOWN05     | DOWN01                           | UP01                             |
| San Juan, PR             | _                                     | 721270002421011 | 11               | DOWN05     | DOWN05                           | UP10                             |
| San Luis Obispo, CA      | _                                     | 060792002421011 | 11               | DOWN01     | DOWN01                           | UP10                             |
| Santa Rosa, CA           | _                                     | 060970003421011 | 11               | DOWN05     | DOWN05                           | UP10                             |
| Seattle, WA              | 10/11/1996*                           | 530610012421011 | 11               | DOWN01     | DOWN01                           | UP05                             |
| Stockton, CA             | 6/1/1998*                             | 060770008421011 | 11               | DOWN05     | DOWN05                           | UP05                             |
| Stockton, CA             | 6/1/1998*                             | 060771002421011 | 11               | DOWN05     | DOWN01                           | UP05                             |
| Tampa, FL                | _                                     | 120571045421011 | 8                | DOWN05     | DOWN01                           | UP10                             |
| Vallejo, CA              | _                                     | 060950004421011 | 11               | DOWN01     | DOWN01                           | UP05                             |
| Yuba City, CA            | _                                     | 061010003421011 | 10               | DOWN01     | DOWN01                           | UP05                             |

 Table 1. Carbon Monoxide Monitoring Sites Where at Least One Statistical Test Shows Increasing Concentration

\*Oxyfuel program retained as contingency measure.

<sup>†</sup>Federal reformulated gasoline program area.

The following notation was used for the statistical results:

DOWN01 = downward trend, significant at  $\alpha$  level 0.01 DOWN05 = downward trend, significant at  $\alpha$  level 0.05 DOWN10 = downward trend, significant at  $\alpha$  level 0.10 NS = no significant trend UP01 = upward trend, significant at  $\alpha$  level 0.01

UP05 = upward trend, significant at  $\alpha$  level 0.05

UP10 = upward trend, significant at  $\alpha$  level 0.10

Figure 3 illustrates a site that was screened out by this analysis; none of the three tests revealed an upward trend. The statistical results were DOWN01, DOWN01, and NS for the Theil test, first-order linear regression, and quadratic regression, respectively.

The Theil test revealed a statistically significant upward trend at only one site. Its data and quadratic regression results are shown in Figure 4. The first-order linear regression model also revealed an upward trend at this site. Both these tests were significant at the  $\alpha = 0.05$ level. The second-order linear regression found no significant trend at this site. This pattern is similar to Trend C, described above.

Figure 4 also demonstrates how this analysis method should be used to screen monitoring sites. Although two statistical tests revealed an upward trend, this site is not of immediate concern because the concentrations are far below the NAAQS value of 9 ppm. If this site is located in an area of high population growth, then it should be reevaluated in the future.

Figures 5 through 7 illustrate patterns that are similar to Trend D, described above. The site in Figure 5 apparently experienced minimum CO concentrations during the period 1995 to 1997. The concentrations increased after that period. For this site, the Theil test revealed a downward pattern at the  $\alpha$  = 0.05 level, and the first-order linear regression model revealed a downward pattern at the  $\alpha$  = 0.01 level. However, the quadratic regression model revealed an upward pattern at the  $\alpha = 0.01$ level. Also, the lower bound of the 95% confidence limit is increasing, and concentrations are not low like those shown in Figure 4.

**Figure 2**. Locations of monitoring sites in the coterminous United States with at least one statistical model showing a significant upward trend. Circles represent sites that have stopped an oxygenated gasoline requirement. Diamonds represent other sites.

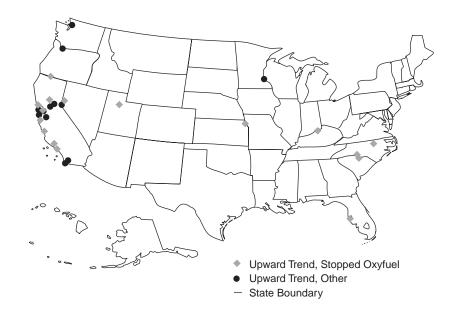
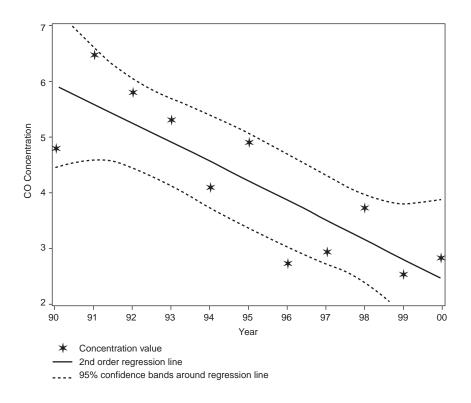




Figure 3. Example of a site screened out by the combined statistical models.



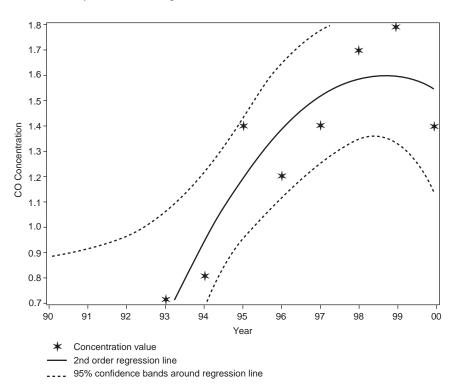
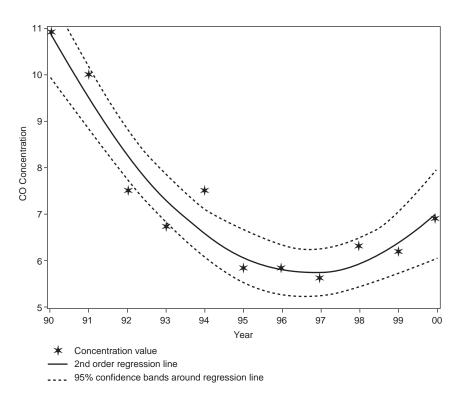



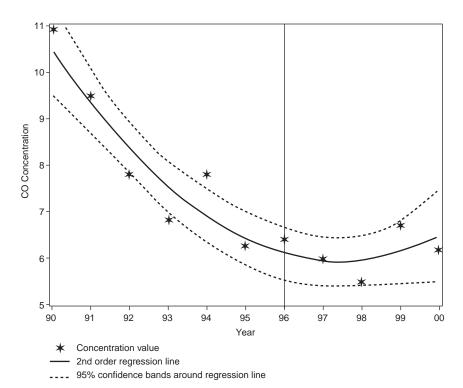

Figure 4. Example of a site with increasing trend. This site did not have data for the years 1990 through 1992.

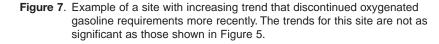
Figure 5. Example of a site with increasing trend in recent years.

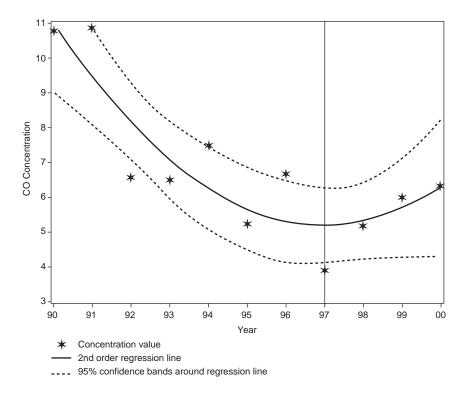


The site in Figure 6 discontinued its oxyfuel requirements as of October 21, 1996; the vertical line at Year = 1996 indicates the year that this requirement ended. However, the data do not include whether the second highest concentration for 1996 occurred during or after the oxyfuel program. For this site, both the Theil test and the first-order linear regression model revealed a downward pattern at the  $\alpha$  = 0.01 level. However, the second-order linear regression model revealed an upward pattern at the  $\alpha$  = 0.01 level. The pattern of the 95% confidence limits of the second-order linear regression line indicates a high probability of nearly stable to rapidly increasing concentration.


The site in Figure 7 discontinued its oxyfuel requirements as of June 1, 1998, more recently than the site in Figure 6. Because of the increased scatter of the data around the regression line, the 95% confidence region is larger and the patterns not as statistically significant as those for the site in Figure 6. For this site, both the Theil test and the first-order linear regression model revealed a downward pattern at the  $\alpha = 0.05$ level, whereas the quadratic regression model revealed an upward pattern at the  $\alpha = 0.05$  level.


This study demonstrates the utility of using more than one statistical test to determine patterns in ambient concentration data. The Theil test is a nonparametric, monotonic test that measures numbers of pairs of data that increase vs. decrease. First-order linear regression examines the significance of the slope of the least-squares line through all the available data. Quadratic regression examines the significance of the coefficient of the second-order term in the leastsquares regression. Although interpolation cannot be used to extrapolate beyond the range of the data, the significance of the secondorder term provides a measure of the curvature (i.e., change in the trend) of the regression line. This additional information is useful in locating sites with recent increasing concentrations, even when the overall trend is downward or not significant.


Unlike the Trends Report,<sup>2</sup> which examines trends for regions based on MSA, this study looked for trends associated with individual monitors. Trends in more localized areas, therefore, could be discovered because areal averaging was not performed. Uncovering localized trends is important when one part of an MSA experiences rapid population growth with the associated rapid growth in vehicular emissions.


## Conclusions

This analysis revealed relatively few sites with statistically significant upward trends or inflection in CO concentrations during the period 1990 to 2000. By combining regression models with the Theil test, 34 of 433 sites were identified for further analysis. Because this study demonstrated that the simpler Theil test performed nearly as well as the firstorder linear regression in identifying upward linear trends, we do not recommend performing first-order linear regression on these relatively short data sets in the future. However, this study showed that the quadratic regression model successfully identifies sites where the concentration has increased in recent years, thereby identifying potential problem areas earlier than the Theil test. Because this method is to be used to identify sites of potential interest, we further recommend using  $\alpha = 0.10$  and a one-sided









hypothesis test to reduce the number of false negative results.

This method was designed to be an automated screening method for potential problem areas. Because both vehicle-miles traveled and the vehicle mix in fleets are changing with time, we recommend repeating this analysis annually to determine sites that warrant further analysis.

## Acknowledgments

Support for this project was provided by the U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, under contract number GS-10F-0283K(SIN 899-2). We are grateful to Michael Riggs, senior statistician at RTI, for his insightful comments and technical review of this manuscript.

## References

1. U.S. Environmental Protection Agency, Air and Radiation, Office of Transportation and Air Quality. *State Winter Oxygenated Fuel Program Requirements for Attainment or Maintenance of CO NAAQS*; October 2001. Available from http://www.epa. gov/otaq/regs/fuels/oxy-area.pdf (accessed March 2002).

2. U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Emissions Monitoring and Analysis Division, Air Quality Trends Analysis Group. *National Air Quality and Emissions Trends Report*, 1999; EPA 454/R-01-004; Research Triangle Park, NC, 2001. 3. Glen, W. Graham; Zelenka, Michael P.; Graham, Richard C. Relating Meteorological Variables and Trends in Motor Vehicle Emissions to Monthly Urban Carbon Monoxide Concentrations. *Atmospheric Environment* **1996**, *30*, 4225-4232.

4. Flaum, Jennifer B.; Rao, S. Trivikrama; Zurbenko, Igor G. Moderating the Influence of Meteorological Conditions on Ambient Ozone Concentrations. *JAWMA* **1996**, *46*, 35-46.

5. Hollander, M.; Wolfe, D.A. Nonparametric Statistical Methods; John Wiley & Sons: New York, 1973; pp 200–204.

6. U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards. U.S. Environmental Protection Agency Intra-Agency Task Force Report on Air Quality Indicators; EPA-450/4-81-015; Research Triangle Park, NC, February 1981.

7. *SAS/STAT Users' Guide Version 8;* SAS Institute: Cary, NC, 1999.

NATIONAL AIR QUALITY AND EMISSIONS TRENDS REPORT, 2003

## **Cumulative Ozone Exceedances—A Measure of Current Year Ozone Levels Compared to Historical Trends**

Dennis Doll

U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

#### **Terence Fitz-Simons**

U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

## Introduction

The U.S. Environmental Protection Agency (EPA) maintains a historical record of air pollutant data in the EPA Air Quality System (AQS), which is overseen by the Office of Air Quality Planning and Standards. This database provides qualityassured pollutant measurement data from a network of monitoring stations in metropolitan areas and regions throughout the United States. The AQS usually contains the most recent 10-year period of monitored data. Pollutant measurement data are entered into the AQS by state and local agencies maintaining the network of monitoring stations. These data are entered on a continuous basis throughout the year but are usually complete within about 3 months after the end of the calendar vear.

Ozone is one of the principal pollutants measured at a network of monitoring stations throughout the United States. The historical ozone database maintained in the AQS provides a unique opportunity to conduct analyses to investigate and characterize the ozone levels in these metropolitan areas and regions. Comparisons of historical data with the most recent year of data in the AQS can provide an indication of the current magnitude of ozone pollutant levels in metropolitan areas and regions throughout the United States compared to historical levels and can show whether ozone levels are

worse, better, or about the same in the most recent year compared to recent historical trends.

## Origin of Data

The ozone monitoring "season" occurs in the period from April through October in most major metropolitan areas throughout the United States. Frequently states, EPA Regional Offices, and EPA Headquarter Offices are asked how this year's ozone season compared to that of previous years. These queries occur particularly when there may have been several ozone "episodes" during the year or if there were periods of especially high ozone measurements prompting air quality alerts that may have been widely reported in the media.

One potentially useful way to compare ozone seasons is to depict the seasonal trend in ozone by counting the number of days in which ozone exceedances are measured in selected metropolitan areas and/or regions. The measure of ozone exceedances that is most widely reported in the media is the EPA Air Quality Index (AQI). The AQI contains categories of ozone levels based on health effects and includes (1) Moderate, (2) Unhealthy for Sensitive Groups, (3) Unhealthy, (4) Very Unhealthy, and (5) Hazardous.

The Unhealthy for Sensitive Groups category is based on the 8-hour National Ambient Air Quality Standards (NAAQS) for ozone (≥0.085 ppm). Other categories (Unhealthy, Very Unhealthy, and Hazardous) are based on ozone levels of increasing severity. By tracking the number of days ozone measurements exceed the NAAQS (e.g., Unhealthy for Sensitive Groups) during the ozone season as reported in the AQS, a comparison can be made of the most recent year's ozone measurements with previous or historical year measurements. Based on this comparison, a qualitative assessment of the "severity" of the most recent year's ozone measurements with historical year measurements can be made.

In this analysis, we use ozone data measured from the network of monitors assigned to the USA Today newspaper cities, for which the AQI is forecasted during the ozone season. Monitoring data from additional cities could be used as well, but we chose the USA Today cities as an illustration of the type of comparisons that can be done and because it the most widely reported measure of ozone levels in the media.

EPA maintains a list of monitors that are assigned to these *USA Today* cities (see Table 1).<sup>1</sup> Using these same monitors, the historical ozone data can be obtained for each of the *USA Today* cities from previous years' data reported in the AQS. In this analysis, we use the 2002 data reported in the AQS as the most recent year data and the previous

#### Table 1. Monitoring Sites for USA Today Cities

| City      | AIRS_ID   | Site      | City      | AIRS_ID   | Site                   |
|-----------|-----------|-----------|-----------|-----------|------------------------|
| Atlanta   | 130570001 | 130570001 | Baltimore | 245100051 | 245100051              |
| Atlanta   | 130670003 | 130670003 | Baltimore | 245100053 | 245100053              |
| Atlanta   | 130770002 | 130770002 | Boston    | 250091002 | 250091002              |
| tlanta    | 130890002 | 130890002 | Boston    | 250091201 | 250091201              |
| Atlanta   | 130893001 | 130893001 | Boston    | 250092006 | 250092006              |
| Atlanta   | 130970002 | 130970002 | Boston    | 250093001 | 250093001              |
| Atlanta   | 130970004 | 130970004 | Boston    | 250093102 | 250093102              |
| Atlanta   | 131130001 | 131130001 | Boston    | 250094001 | 250094001              |
| Atlanta   | 131210034 | 131210034 | Boston    | 250094003 | 250094003              |
| Atlanta   | 131210053 | 131210053 | Boston    | 250094004 | 250094004              |
| Atlanta   | 131210055 | 131210055 | Boston    | 250170004 | 250170004              |
| Atlanta   | 131215001 | 131215001 | Boston    | 250171001 | 250171001              |
| Atlanta   | 131215002 | 131215002 | Boston    | 250171001 | 250171001              |
|           | 131350002 | 131350002 |           |           |                        |
|           |           |           | Boston    | 250171005 | 250171005<br>250171102 |
|           | 131510002 | 131510002 | Boston    |           |                        |
|           | 132230001 | 132230001 | Boston    | 250173003 | 250173003<br>250176001 |
| Atlanta   | 132230002 | 132230002 | Boston    | 250176001 |                        |
| Atlanta   | 132230003 | 132230003 | Boston    | 250211001 | 250211001              |
| Atlanta   | 132470001 | 132470001 | Boston    | 250212002 | 250212002              |
| Atlanta   | 132558001 | 132558001 | Boston    | 250213003 | 250213003              |
| Baltimore | 240030001 | 240030001 | Boston    | 250232001 | 250232001              |
| Baltimore | 240030014 | 240030014 | Boston    | 250250002 | 250250002              |
| Baltimore | 240030019 | 240030019 | Boston    | 250250015 | 250250015              |
| Baltimore | 240031003 | 240031003 | Boston    | 250250021 | 250250021              |
| Baltimore | 240032002 | 240032002 | Boston    | 250250041 | 250250041              |
| Baltimore | 240050003 | 240050003 | Boston    | 250250042 | 250250042              |
| Baltimore | 240050010 | 240050010 | Boston    | 250250081 | 250250081              |
| Baltimore | 240051007 | 240051007 | Boston    | 250251003 | 250251003              |
| Baltimore | 240053001 | 240053001 | Charlotte | 371090004 | 371090004              |
| Baltimore | 240054002 | 240054002 | Charlotte | 371090099 | 371090099              |
| Baltimore | 240056001 | 240056001 | Charlotte | 371190011 | 371190011              |
| Baltimore | 240130001 | 240130001 | Charlotte | 371190018 | 371190018              |
| Baltimore | 240250080 | 240250080 | Charlotte | 371190019 | 371190019              |
| Baltimore | 240251001 | 240251001 | Charlotte | 371190026 | 371190026              |
| Baltimore | 240259001 | 240259001 | Charlotte | 371190028 | 371190028              |
| Baltimore | 240270005 | 240270005 | Charlotte | 371190030 | 371190030              |
| Baltimore | 245100004 | 245100004 | Charlotte | 371190033 | 371190033              |
| Baltimore | 245100011 | 245100011 | Charlotte | 371190034 | 371190034              |
| Baltimore | 245100018 | 245100018 | Charlotte | 371190041 | 371190041              |
| Baltimore | 245100019 | 245100019 | Charlotte | 371191005 | 371191005              |
| Baltimore | 245100036 | 245100036 | Charlotte | 371191009 | 371191009              |
| Baltimore | 245100040 | 245100040 | Charlotte | 371590021 | 371590021              |
| Baltimore | 245100050 | 245100050 | Charlotte | 371590022 | 371590022              |
| Charlotte | 371790003 | 371790003 | Chicago   | 170314006 | 170314006              |
| Charlotte | 450910002 | 450910002 | Chicago   | 170314007 | 170314007              |
| Charlotte | 450910004 | 450910004 | Chicago   | 170314201 | 170314201              |

| City       | AIRS_ID   | Site      | City              | AIRS_ID   | Site      |
|------------|-----------|-----------|-------------------|-----------|-----------|
| Charlotte  | 450910006 | 450910006 | Chicago           | 170315001 | 170315001 |
| Charlotte  | 450911004 | 450911004 | Chicago           | 170315002 | 170315002 |
| Chicago    | 170310001 | 170310001 | Chicago           | 170316002 | 170316002 |
| Chicago    | 170310002 | 170310002 | Chicago           | 170317002 | 170317002 |
| Chicago    | 170310003 | 170310003 | Chicago           | 170318001 | 170318001 |
| Chicago    | 170310004 | 170310004 | Chicago           | 170318003 | 170318003 |
| Chicago    | 170310006 | 170310006 | Chicago           | 170370002 | 170370002 |
| Chicago    | 170310007 | 170310007 | Chicago           | 170430003 | 170430003 |
| Chicago    | 170310009 | 170310009 | Chicago           | 170431002 | 170431002 |
| Chicago    | 170310025 | 170310025 | Chicago           | 170436001 | 170436001 |
| Chicago    | 170310026 | 170310026 | Chicago           | 170438002 | 170438002 |
| Chicago    | 170310027 | 170310027 | Chicago           | 170890003 | 170890003 |
| Chicago    | 170310032 | 170310032 | Chicago           | 170890005 | 170890005 |
| Chicago    | 170310033 | 170310033 | Chicago           | 170890006 | 170890006 |
| Chicago    | 170310034 | 170310034 | Chicago           | 170970001 | 170970001 |
| Chicago    | 170310036 | 170310036 | Chicago           | 170970006 | 170970006 |
| Chicago    | 170310037 | 170310037 | Chicago           | 170970007 | 170970007 |
| Chicago    | 170310038 | 170310038 | Chicago           | 170970008 | 170970008 |
| Chicago    | 170310039 | 170310039 | Chicago           | 170970009 | 170970009 |
| Chicago    | 170310040 | 170310040 | Chicago           | 170971002 | 170971002 |
| Chicago    | 170310042 | 170310042 | Chicago           | 170971003 | 170971003 |
| Chicago    | 170310044 | 170310044 | Chicago           | 170971007 | 170971007 |
| Chicago    | 170310045 | 170310045 | Chicago           | 170973001 | 170973001 |
| Chicago    | 170310050 | 170310050 | Chicago           | 171110001 | 171110001 |
| Chicago    | 170310053 | 170310053 | Chicago           | 171111001 | 171111001 |
| Chicago    | 170310062 | 170310062 | Chicago           | 171970005 | 171970005 |
| Chicago    | 170310063 | 170310063 | Chicago           | 171971007 | 171971007 |
| Chicago    | 170310064 | 170310064 | Chicago           | 171971008 | 171971008 |
| Chicago    | 170310072 | 170310072 | Chicago           | 171971011 | 171971011 |
| Chicago    | 170310075 | 170310075 | Cincinnati        | 180290003 | 180290003 |
| Chicago    | 170311002 | 170311002 | Cincinnati        | 210150003 | 210150003 |
| Chicago    | 170311003 | 170311003 | Cincinnati        | 210151002 | 210151002 |
| Chicago    | 170311501 | 170311501 | Cincinnati        | 210370003 | 210370003 |
| Chicago    | 170311601 | 170311601 | Cincinnati        | 210371001 | 210371001 |
| Chicago    | 170312002 | 170312002 | Cincinnati        | 210374001 | 210374001 |
| Chicago    | 170312301 | 170312301 | Cincinnati        | 211170007 | 211170007 |
| Chicago    | 170313001 | 170313001 | Cincinnati        | 211910002 | 211910002 |
| Chicago    | 170313005 | 170313005 | Cincinnati        | 390250002 | 390250002 |
| Chicago    | 170314002 | 170314002 | Cincinnati        | 390250020 | 390250020 |
| Chicago    | 170314003 | 170314003 | Cincinnati        | 390250022 | 390250022 |
| Cincinnati | 390610003 | 390610003 | Columbus          | 390970006 | 390970006 |
| Cincinnati | 390610006 | 390610006 | Columbus          | 390970007 | 390970007 |
| Cincinnati | 390610010 | 390610010 | Columbus          | 391298001 | 391298001 |
| Cincinnati | 390610019 | 390610019 | Dallas-Fort Worth | 480850004 | 480850004 |
| Cincinnati | 390610020 | 390610020 | Dallas-Fort Worth | 480850005 | 480850005 |
| Cincinnati | 390610034 | 390610034 | Dallas-Fort Worth | 480850010 | 480850010 |

| City       | AIRS_ID   | Site      | City              | AIRS_ID   | Site      |
|------------|-----------|-----------|-------------------|-----------|-----------|
| Cincinnati | 390610035 | 390610035 | Dallas-Fort Worth | 480850085 | 480850085 |
| Cincinnati | 390610037 | 390610037 | Dallas-Fort Worth | 481130039 | 481130039 |
| Cincinnati | 390610040 | 390610040 | Dallas-Fort Worth | 481130044 | 481130044 |
| Cincinnati | 390616002 | 390616002 | Dallas-Fort Worth | 481130045 | 481130045 |
| Cincinnati | 391650006 | 391650006 | Dallas-Fort Worth | 481130047 | 481130047 |
| Cincinnati | 391651002 | 391651002 | Dallas-Fort Worth | 481130052 | 481130052 |
| Cleveland  | 390071001 | 390071001 | Dallas-Fort Worth | 481130055 | 481130055 |
| Cleveland  | 390350002 | 390350002 | Dallas-Fort Worth | 481130069 | 481130069 |
| Cleveland  | 390350033 | 390350033 | Dallas-Fort Worth | 481130075 | 481130075 |
| Cleveland  | 390350034 | 390350034 | Dallas-Fort Worth | 481130086 | 481130086 |
| Cleveland  | 390350035 | 390350035 | Dallas-Fort Worth | 481130087 | 481130087 |
| Cleveland  | 390350064 | 390350064 | Dallas-Fort Worth | 481131047 | 481131047 |
| Cleveland  | 390350081 | 390350081 | Dallas-Fort Worth | 481133003 | 481133003 |
| Cleveland  | 390352001 | 390352001 | Dallas-Fort Worth | 481210002 | 481210002 |
| Cleveland  | 390353003 | 390353003 | Dallas-Fort Worth | 481210033 | 481210033 |
| Cleveland  | 390354003 | 390354003 | Dallas-Fort Worth | 481210034 | 481210034 |
| Cleveland  | 390355002 | 390355002 | Dallas-Fort Worth | 481210054 | 481210054 |
| Cleveland  | 390550004 | 390550004 | Dallas-Fort Worth | 481390015 | 481390015 |
| Cleveland  | 390850001 | 390850001 | Dallas-Fort Worth | 481390082 | 481390082 |
| Cleveland  | 390850003 | 390850003 | Dallas-Fort Worth | 482570001 | 482570001 |
| Cleveland  | 390853002 | 390853002 | Dallas-Fort Worth | 482570005 | 482570005 |
| Cleveland  | 390930013 | 390930013 | Dallas-Fort Worth | 483970001 | 483970001 |
| Cleveland  | 390930017 | 390930017 | Dallas-Fort Worth | 483970081 | 483970081 |
| Cleveland  | 390931002 | 390931002 | Denver            | 80010600  | 080010600 |
| Cleveland  | 390931003 | 390931003 | Denver            | 80013001  | 080013001 |
| Cleveland  | 391030002 | 391030002 | Denver            | 80017015  | 080017015 |
| Cleveland  | 391030003 | 391030003 | Denver            | 80050002  | 080050002 |
| Cleveland  | 391032001 | 391032001 | Denver            | 80050003  | 080050003 |
| Columbus   | 390410002 | 390410002 | Denver            | 80051002  | 080051002 |
| Columbus   | 390490004 | 390490004 | Denver            | 80310002  | 080310002 |
| Columbus   | 390490009 | 390490009 | Denver            | 80310009  | 080310009 |
| Columbus   | 390490015 | 390490015 | Denver            | 80310010  | 080310010 |
| Columbus   | 390490028 | 390490028 | Denver            | 80310011  | 080310011 |
| Columbus   | 390490029 | 390490029 | Denver            | 80310014  | 080310014 |
| Columbus   | 390490037 | 390490037 | Denver            | 80350002  | 080350002 |
| Columbus   | 390490081 | 390490081 | Denver            | 80350603  | 080350603 |
| Columbus   | 390890005 | 390890005 | Denver            | 80590002  | 080590002 |
| Denver     | 80590004  | 080590004 | Houston           | 482010047 | 482010047 |
| Denver     | 80590005  | 080590005 | Houston           | 482010051 | 482010051 |
| Denver     | 80590006  | 080590006 | Houston           | 482010055 | 482010055 |
| Denver     | 80590011  | 080590011 | Houston           | 482010059 | 482010059 |
| Denver     | 80590600  | 080590600 | Houston           | 482010062 | 482010062 |
| Denver     | 80590601  | 080590601 | Houston           | 482010066 | 482010066 |
| Detroit    | 260990009 | 260990009 | Houston           | 482010070 | 482010070 |
| Detroit    | 260991003 | 260991003 | Houston           | 482010075 | 482010075 |
| Detroit    | 261150037 | 261150037 | Houston           | 482010099 | 482010099 |

| City        | AIRS_ID   | Site      | City                       | AIRS_ID   | Site      |
|-------------|-----------|-----------|----------------------------|-----------|-----------|
| Detroit     | 261150745 | 261150745 | Houston                    | 482011003 | 482011003 |
| Detroit     | 261250001 | 261250001 | Houston                    | 482011034 | 482011034 |
| Detroit     | 261250902 | 261250902 | Houston                    | 482011035 | 482011035 |
| Detroit     | 261251002 | 261251002 | Houston                    | 482011036 | 482011036 |
| Detroit     | 261470003 | 261470003 | Houston                    | 482011037 | 482011037 |
| Detroit     | 261470005 | 261470005 | Houston                    | 482011039 | 482011039 |
| Detroit     | 261470030 | 261470030 | Houston                    | 482011050 | 482011050 |
| Detroit     | 261630001 | 261630001 | Houston                    | 482017001 | 482017001 |
| Detroit     | 261630009 | 261630009 | Houston                    | 482910089 | 482910089 |
| Detroit     | 261630014 | 261630014 | Houston                    | 483390078 | 483390078 |
| Detroit     | 261630016 | 261630016 | Houston                    | 483390088 | 483390088 |
| Detroit     | 261630018 | 261630018 | Houston                    | 483390089 | 483390089 |
| Detroit     | 261630019 | 261630019 | Houston                    | 484730001 | 484730001 |
| Detroit     | 261630020 | 261630020 | Indianapolis               | 180110001 | 180110001 |
| Detroit     | 261630025 | 261630025 | Indianapolis               | 180570004 | 180570004 |
| Detroit     | 261630062 | 261630062 | Indianapolis               | 180571001 | 180571001 |
| Detroit     | 261632002 | 261632002 | Indianapolis               | 180590001 | 180590001 |
| Detroit     | 261632003 | 261632003 | Indianapolis               | 180590002 | 180590002 |
| lonolulu    | 150031001 | 150031001 | Indianapolis               | 180590003 | 180590003 |
| lonolulu    | 150031004 | 150031004 | Indianapolis               | 180590004 | 180590004 |
| louston     | 480710900 | 480710900 | Indianapolis               | 180591001 | 180591001 |
| louston     | 480710901 | 480710901 | Indianapolis               | 180630004 | 180630004 |
| louston     | 480710902 | 480710902 | Indianapolis               | 180810001 | 180810001 |
| louston     | 480710903 | 480710903 | Indianapolis               | 180810002 | 180810002 |
| louston     | 481570004 | 481570004 | Indianapolis               | 180950009 | 180950009 |
| louston     | 482010007 | 482010007 | Indianapolis               | 180950010 | 180950010 |
| louston     | 482010024 | 482010024 | Indianapolis               | 180970004 | 180970004 |
| louston     | 482010026 | 482010026 | Indianapolis               | 180970021 | 180970021 |
| louston     | 482010027 | 482010027 | Indianapolis               | 180970025 | 180970025 |
| louston     | 482010028 | 482010028 | Indianapolis               | 180970030 | 180970030 |
| louston     | 482010029 | 482010029 | Indianapolis               | 180970031 | 180970031 |
| louston     | 482010038 | 482010038 | Indianapolis               | 180970033 | 180970033 |
| louston     | 482010039 | 482010039 | Indianapolis               | 180970037 | 180970037 |
| louston     | 482010046 | 482010046 | Indianapolis               | 180970042 | 180970042 |
| ndianapolis | 180970050 | 180970050 | Las Vegas                  | 320030043 | 320030043 |
| ndianapolis | 180970057 | 180970057 | Las Vegas                  | 320030043 | 320030071 |
| ndianapolis | 180970037 | 180970037 | Las Vegas                  | 320030071 | 320030071 |
| ndianapolis | 180970073 | 180970073 | Las Vegas                  | 320030072 | 320030072 |
| ndianapolis | 180970073 | 180970073 | Las Vegas                  | 320030538 | 320030073 |
| ndianapolis | 180970901 | 180970901 | Las Vegas                  | 320030538 | 320030538 |
| ndianapolis | 180970902 | 180970902 | Las Vegas                  | 320030001 | 320030001 |
| ndianapolis | 180970902 | 180970902 | Las Vegas                  | 320031001 | 320031001 |
| ndianapolis | 180970903 | 180970903 | Las Vegas                  | 320031005 | 320031005 |
| ndianapolis | 180970904 | 180970904 | Las Vegas                  | 320031007 | 320031007 |
| ndianapolis | 180970905 | 180970905 | -                          | 60370001  | 060370001 |
| ndianapolis | 180972001 | 180970906 | Los Angeles<br>Los Angeles | 60370001  | 060370001 |

Table 1. Monitoring Sites for USA Today Cities (continued)

| City        | AIRS_ID   | Site      | City                 | AIRS_ID   | Site      |
|-------------|-----------|-----------|----------------------|-----------|-----------|
| ndianapolis | 181090001 | 181090001 | Los Angeles          | 60370004  | 060370004 |
| ndianapolis | 181090003 | 181090003 | Los Angeles          | 60370016  | 060370016 |
| ndianapolis | 181090004 | 181090004 | Los Angeles          | 60370018  | 060370018 |
| ndianapolis | 181090005 | 181090005 | Los Angeles          | 60370019  | 060370019 |
| ndianapolis | 181450001 | 181450001 | Los Angeles          | 60370030  | 060370030 |
| Kansas City | 200910005 | 200910005 | Los Angeles          | 60370031  | 060370031 |
| Kansas City | 201030002 | 201030002 | Los Angeles          | 60370113  | 060370113 |
| Kansas City | 201210001 | 201210001 | Los Angeles          | 60370206  | 060370206 |
| Kansas City | 202090001 | 202090001 | Los Angeles          | 60371002  | 060371002 |
| Kansas City | 202090011 | 202090011 | Los Angeles          | 60371004  | 060371004 |
| Kansas City | 202090017 | 202090017 | Los Angeles          | 60371102  | 060371102 |
| Kansas City | 202090021 | 202090021 | Los Angeles          | 60371103  | 060371103 |
| Kansas City | 290370002 | 290370002 | Los Angeles          | 60371104  | 060371104 |
| Kansas City | 290370003 | 290370003 | Los Angeles          | 60371105  | 060371105 |
| Kansas City | 290470003 | 290470003 | Los Angeles          | 60371106  | 060371106 |
| Kansas City | 290470004 | 290470004 | Los Angeles          | 60371201  | 060371201 |
| Kansas City | 290470005 | 290470005 | Los Angeles          | 60371301  | 060371301 |
| Kansas City | 290470018 | 290470018 | Los Angeles          | 60371401  | 060371401 |
| Kansas City | 290470025 | 290470025 | Los Angeles          | 60371601  | 060371601 |
| Kansas City | 290472004 | 290472004 | Los Angeles          | 60371701  | 060371701 |
| Kansas City | 290950022 | 290950022 | Los Angeles          | 60371902  | 060371902 |
| Kansas City | 290950036 | 290950036 | Los Angeles          | 60372002  | 060372002 |
| Kansas City | 291650003 | 291650003 | Los Angeles          | 60372005  | 060372005 |
| Kansas City | 291650023 | 291650023 | Los Angeles          | 60372101  | 060372101 |
| as Vegas    | 320030005 | 320030005 | Los Angeles          | 60372301  | 060372301 |
| as Vegas    | 320030007 | 320030007 | Los Angeles          | 60372401  | 060372401 |
| as Vegas    | 320030009 | 320030009 | Los Angeles          | 60374001  | 060374001 |
| as Vegas    | 320030016 | 320030016 | Los Angeles          | 60374002  | 060374002 |
| as Vegas    | 320030020 | 320030020 | Los Angeles          | 60374101  | 060374101 |
| as Vegas    | 320030021 | 320030021 | Los Angeles          | 60375001  | 060375001 |
| as Vegas    | 320030022 | 320030022 | Los Angeles          | 60376002  | 060376002 |
| os Angeles  | 60376012  | 060376012 | Minneapolis-St. Paul | 271636015 | 271636015 |
| os Angeles  | 60377001  | 060377001 | Minneapolis-St. Paul | 271710009 | 271710009 |
| os Angeles  | 60378001  | 060378001 | Minneapolis-St. Paul | 551090001 | 551090001 |
| os Angeles  | 60379002  | 060379002 | Minneapolis-St. Paul | 551091002 | 551091002 |
| os Angeles  | 60379006  | 060379006 | Nashville            | 470370011 | 470370011 |
| _os Angeles | 60379033  | 060379033 | Nashville            | 470370012 | 470370012 |
| Nemphis     | 50350005  | 050350005 | Nashville            | 470370026 | 470370026 |
| /lemphis    | 280330002 | 280330002 | Nashville            | 470430007 | 470430007 |
| /lemphis    | 470470103 | 470470103 | Nashville            | 470430009 | 470430009 |
| vlemphis    | 471570012 | 471570012 | Nashville            | 471490101 | 471490101 |
| vlemphis    | 471570021 | 471570021 | Nashville            | 471650007 | 471650007 |
| Vemphis     | 471570024 | 471570024 | Nashville            | 471650101 | 471650101 |
| Nemphis     | 471570032 | 471570032 | Nashville            | 471870103 | 471870103 |
| Memphis     | 471571004 | 471571004 | Nashville            | 471870105 | 471870105 |
| Miami       | 120250008 | 120250008 | Nashville            | 471870106 | 471870106 |

| City                  | AIRS_ID   | Site      | City         | AIRS_ID   | Site      |
|-----------------------|-----------|-----------|--------------|-----------|-----------|
| Miami                 | 120250021 | 120250021 | Nashville    | 471890103 | 471890103 |
| Miami                 | 120250023 | 120250023 | New Orleans  | 220510003 | 220510003 |
| Miami                 | 120250026 | 120250026 | New Orleans  | 220511001 | 220511001 |
| Miami                 | 120250027 | 120250027 | New Orleans  | 220512001 | 220512001 |
| Miami                 | 120250029 | 120250029 | New Orleans  | 220710005 | 220710005 |
| Miami                 | 120250030 | 120250030 | New Orleans  | 220710011 | 220710011 |
| Miami                 | 120251006 | 120251006 | New Orleans  | 220710012 | 220710012 |
| Miami                 | 120251008 | 120251008 | New Orleans  | 220710082 | 220710082 |
| Miami                 | 120251009 | 120251009 | New Orleans  | 220710083 | 220710083 |
| Miami                 | 120254002 | 120254002 | New Orleans  | 220711001 | 220711001 |
| Minneapolis-St. Paul  | 270030002 | 270030002 | New Orleans  | 220870002 | 220870002 |
| Minneapolis-St. Paul  | 270031001 | 270031001 | New Orleans  | 220890001 | 220890001 |
| Vinneapolis-St. Paul  | 270031002 | 270031002 | New Orleans  | 220890003 | 220890003 |
| Vinneapolis-St. Paul  | 270032002 | 270032002 | New Orleans  | 220890100 | 220890100 |
| Vinneapolis-St. Paul  | 270370006 | 270370006 | New Orleans  | 220930001 | 220930001 |
| Vinneapolis-St. Paul  | 270371007 | 270371007 | New Orleans  | 220930002 | 220930002 |
| Vinneapolis-St. Paul  | 270376018 | 270376018 | New Orleans  | 220950002 | 220950002 |
| Vinneapolis-St. Paul  | 270530022 | 270530022 | New York     | 360050003 | 360050003 |
| Vinneapolis-St. Paul  | 270530027 | 270530027 | New York     | 360050006 | 360050006 |
| /linneapolis-St. Paul | 270530047 | 270530047 | New York     | 360050073 | 360050073 |
| /linneapolis-St. Paul | 271230001 | 271230001 | New York     | 360050080 | 360050080 |
| Vinneapolis-St. Paul  | 271230003 | 271230003 | New York     | 360050083 | 360050083 |
| /linneapolis-St. Paul | 271230030 | 271230030 | New York     | 360050110 | 360050110 |
| Vinneapolis-St. Paul  | 271230031 | 271230031 | New York     | 360470007 | 360470007 |
| Vinneapolis-St. Paul  | 271410001 | 271410001 | New York     | 360470011 | 360470011 |
| Vinneapolis-St. Paul  | 271410002 | 271410002 | New York     | 360470018 | 360470018 |
| Vinneapolis-St. Paul  | 271410008 | 271410008 | New York     | 360470076 | 360470076 |
| Vinneapolis-St. Paul  | 271630027 | 271630027 | New York     | 360610005 | 360610005 |
| New York              | 360610010 | 360610010 | Philadelphia | 421010023 | 421010023 |
| New York              | 360610050 | 360610050 | Philadelphia | 421010024 | 421010024 |
| New York              | 360610056 | 360610056 | Philadelphia | 421010025 | 421010025 |
| New York              | 360610061 | 360610061 | Philadelphia | 421010026 | 421010026 |
| New York              | 360610063 | 360610063 | Philadelphia | 421010027 | 421010027 |
| New York              | 360790005 | 360790005 | Philadelphia | 421010029 | 421010029 |
| New York              | 360810004 | 360810004 | Philadelphia | 421010136 | 421010136 |
| New York              | 360810070 | 360810070 | Phoenix      | 40130009  | 040130009 |
| New York              | 360810097 | 360810097 | Phoenix      | 40130013  | 040130013 |
| New York              | 360810098 | 360810098 | Phoenix      | 40130014  | 040130014 |
| New York              | 360810124 | 360810124 | Phoenix      | 40130015  | 040130015 |
| New York              | 360850067 | 360850067 | Phoenix      | 40130016  | 040130016 |
| New York              | 361191002 | 361191002 | Phoenix      | 40130018  | 040130018 |
| New York              | 361192004 | 361192004 | Phoenix      | 40130019  | 040130019 |
| New York              | 361195003 | 361195003 | Phoenix      | 40131003  | 040131003 |
| Orlando               | 120690002 | 120690002 | Phoenix      | 40131004  | 040131004 |
| Orlando               | 120950008 | 120950008 | Phoenix      | 40131006  | 040131006 |
| Orlando               | 120952002 | 120952002 | Phoenix      | 40131010  | 040131010 |

| City         | AIRS_ID   | Site      | City       | AIRS_ID  | Site      |
|--------------|-----------|-----------|------------|----------|-----------|
| Orlando      | 120972002 | 120972002 | Phoenix    | 40132001 | 040132001 |
| Orlando      | 121171002 | 121171002 | Phoenix    | 40132004 | 040132004 |
| Philadelphia | 340050007 | 340050007 | Phoenix    | 40132005 | 040132005 |
| Philadelphia | 340053001 | 340053001 | Phoenix    | 40133002 | 040133002 |
| Philadelphia | 340070003 | 340070003 | Phoenix    | 40133003 | 040133003 |
| Philadelphia | 340071001 | 340071001 | Phoenix    | 40133004 | 040133004 |
| Philadelphia | 340150002 | 340150002 | Phoenix    | 40133006 | 040133006 |
| Philadelphia | 340333001 | 340333001 | Phoenix    | 40133009 | 040133009 |
| Philadelphia | 420170012 | 420170012 | Phoenix    | 40133010 | 040133010 |
| Philadelphia | 420290050 | 420290050 | Phoenix    | 40134003 | 040134003 |
| Philadelphia | 420290070 | 420290070 | Phoenix    | 40134004 | 040134004 |
| Philadelphia | 420290100 | 420290100 | Phoenix    | 40134005 | 040134005 |
| Philadelphia | 420450002 | 420450002 | Phoenix    | 40134006 | 040134006 |
| Philadelphia | 420450102 | 420450102 | Phoenix    | 40134007 | 040134007 |
| Philadelphia | 420450103 | 420450103 | Phoenix    | 40139508 | 040139508 |
| Philadelphia | 420910013 | 420910013 | Phoenix    | 40139604 | 040139604 |
| Philadelphia | 420910069 | 420910069 | Phoenix    | 40139701 | 040139701 |
| Philadelphia | 420910101 | 420910101 | Phoenix    | 40139702 | 040139702 |
| Philadelphia | 421010002 | 421010002 | Phoenix    | 40139704 | 040139704 |
| Philadelphia | 421010004 | 421010004 | Phoenix    | 40139706 | 040139706 |
| Philadelphia | 421010014 | 421010014 | Phoenix    | 40139707 | 040139707 |
| Philadelphia | 421010019 | 421010019 | Phoenix    | 40139805 | 040139805 |
| Philadelphia | 421010020 | 421010020 | Phoenix    | 40139993 | 040139993 |
| Philadelphia | 421010021 | 421010021 | Phoenix    | 40139994 | 040139994 |
| Philadelphia | 421010022 | 421010022 | Phoenix    | 40139995 | 040139995 |
| Phoenix      | 40139997  | 040139997 | Sacramento | 60171002 | 060171002 |
| Phoenix      | 40139998  | 040139998 | Sacramento | 60172002 | 060172002 |
| Phoenix      | 40218001  | 040218001 | Sacramento | 60610002 | 060610002 |
| Pittsburgh   | 420030008 | 420030008 | Sacramento | 60610004 | 060610004 |
| Pittsburgh   | 420030010 | 420030010 | Sacramento | 60610006 | 060610006 |
| Pittsburgh   | 420030067 | 420030067 | Sacramento | 60610810 | 060610810 |
| Pittsburgh   | 420030080 | 420030080 | Sacramento | 60611003 | 060611003 |
| Pittsburgh   | 420030081 | 420030081 | Sacramento | 60613001 | 060613001 |
| Pittsburgh   | 420030088 | 420030088 | Sacramento | 60670001 | 060670001 |
| Pittsburgh   | 420031001 | 420031001 | Sacramento | 60670002 | 060670002 |
| Pittsburgh   | 420031005 | 420031005 | Sacramento | 60670003 | 060670003 |
| Pittsburgh   | 420070002 | 420070002 | Sacramento | 60670005 | 060670005 |
| Pittsburgh   | 420070003 | 420070003 | Sacramento | 60670006 | 060670006 |
| Pittsburgh   | 420070004 | 420070004 | Sacramento | 60670010 | 060670010 |
| Pittsburgh   | 420070005 | 420070005 | Sacramento | 60670011 | 060670011 |
| Pittsburgh   | 420070014 | 420070014 | Sacramento | 60670012 | 060670012 |
| Pittsburgh   | 420070501 | 420070501 | Sacramento | 60670013 | 060670013 |
| Pittsburgh   | 420190501 | 420190501 | Sacramento | 60671001 | 060671001 |
| Pittsburgh   | 421250005 | 421250005 | Sacramento | 60675001 | 060675001 |
| Pittsburgh   | 421250200 | 421250200 | Sacramento | 60675002 | 060675002 |
| Pittsburgh   | 421250501 | 421250501 | Sacramento | 60675003 | 060675003 |

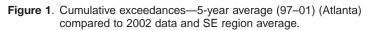
| City          | AIRS_ID   | Site      | City           | AIRS_ID   | Site      |
|---------------|-----------|-----------|----------------|-----------|-----------|
| Pittsburgh    | 421255001 | 421255001 | Salt Lake City | 490110001 | 490110001 |
| Pittsburgh    | 421290006 | 421290006 | Salt Lake City | 490110002 | 490110002 |
| Pittsburgh    | 421290008 | 421290008 | Salt Lake City | 490350002 | 490350002 |
| Pittsburgh    | 421290101 | 421290101 | Salt Lake City | 490350003 | 490350003 |
| Portland      | 410050004 | 410050004 | Salt Lake City | 490350004 | 490350004 |
| Portland      | 410051006 | 410051006 | Salt Lake City | 490350009 | 490350009 |
| Portland      | 410052001 | 410052001 | Salt Lake City | 490351001 | 490351001 |
| Portland      | 410052002 | 410052002 | Salt Lake City | 490351002 | 490351002 |
| Portland      | 410053001 | 410053001 | Salt Lake City | 490351005 | 490351005 |
| Portland      | 410054001 | 410054001 | Salt Lake City | 490352004 | 490352004 |
| Portland      | 410090004 | 410090004 | Salt Lake City | 490353001 | 490353001 |
| Portland      | 410511002 | 410511002 | Salt Lake City | 490353003 | 490353003 |
| Portland      | 530110007 | 530110007 | Salt Lake City | 490353006 | 490353006 |
| Portland      | 530110009 | 530110009 | Salt Lake City | 490353007 | 490353007 |
| Portland      | 530110011 | 530110011 | Salt Lake City | 490570001 | 490570001 |
| Portland      | 530111001 | 530111001 | Salt Lake City | 490570003 | 490570003 |
| Sacramento    | 60170006  | 060170006 | Salt Lake City | 490570007 | 490570007 |
| Sacramento    | 60170009  | 060170009 | Salt Lake City | 490571001 | 490571001 |
| Sacramento    | 60170010  | 060170010 | Salt Lake City | 490571002 | 490571002 |
| Sacramento    | 60170011  | 060170011 | Salt Lake City | 490571003 | 490571003 |
| Sacramento    | 60170012  | 060170012 | San Diego      | 60730001  | 060730001 |
| Sacramento    | 60170020  | 060170020 | San Diego      | 60730002  | 060730002 |
| San Diego     | 60730003  | 060730003 | St. Louis      | 171192005 | 171192005 |
| San Diego     | 60730005  | 060730005 | St. Louis      | 171192006 | 171192006 |
| San Diego     | 60730006  | 060730006 | St. Louis      | 171192007 | 171192007 |
| San Diego     | 60731001  | 060731001 | St. Louis      | 171192008 | 171192008 |
| San Diego     | 60731002  | 060731002 | St. Louis      | 171193007 | 171193007 |
| San Diego     | 60731003  | 060731003 | St. Louis      | 171198001 | 171198001 |
| San Diego     | 60731004  | 060731004 | St. Louis      | 171331001 | 171331001 |
| San Diego     | 60731005  | 060731005 | St. Louis      | 171332001 | 171332001 |
| San Diego     | 60731006  | 060731006 | St. Louis      | 171630008 | 171630008 |
| San Diego     | 60731007  | 060731007 | St. Louis      | 171630009 | 171630009 |
| San Diego     | 60731008  | 060731008 | St. Louis      | 171630010 | 171630010 |
| San Diego     | 60731009  | 060731009 | St. Louis      | 171631001 | 171631001 |
| San Diego     | 60732007  | 060732007 | St. Louis      | 171631006 | 171631006 |
| San Diego     | 60734001  | 060734001 | St. Louis      | 171631007 | 171631007 |
| San Diego     | 60737001  | 060737001 | St. Louis      | 171631008 | 171631008 |
| San Francisco | 60410001  | 060410001 | St. Louis      | 171631009 | 171631009 |
| San Francisco | 60410002  | 060410002 | St. Louis      | 290990012 | 290990012 |
| San Francisco | 60750003  | 060750003 | St. Louis      | 291830002 | 291830002 |
| San Francisco | 60750004  | 060750004 | St. Louis      | 291830005 | 291830005 |
| San Francisco | 60750005  | 060750005 | St. Louis      | 291830008 | 291830008 |
| San Francisco | 60810002  | 060810002 | St. Louis      | 291831002 | 291831002 |
| San Francisco | 60811001  | 060811001 | St. Louis      | 291831004 | 291831004 |
| Seattle       | 530330010 | 530330010 | St. Louis      | 291890001 | 291890001 |
| Seattle       | 530330017 | 530330017 | St. Louis      | 291890002 | 291890002 |

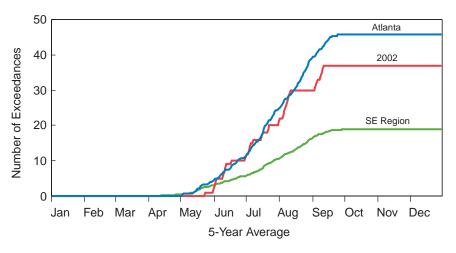
Table 1. Monitoring Sites for USA Today Cities (continued)

| City      | AIRS_ID   | Site      | City       | AIRS_ID   | Site      |
|-----------|-----------|-----------|------------|-----------|-----------|
| Seattle   | 530330018 | 530330018 | St. Louis  | 291890004 | 291890004 |
| Seattle   | 530330023 | 530330023 | St. Louis  | 291890006 | 291890006 |
| Seattle   | 530330058 | 530330058 | St. Louis  | 291890007 | 291890007 |
| Seattle   | 530330059 | 530330059 | St. Louis  | 291890008 | 291890008 |
| Seattle   | 530330080 | 530330080 | St. Louis  | 291890009 | 291890009 |
| Seattle   | 530330088 | 530330088 | St. Louis  | 291890010 | 291890010 |
| Seattle   | 530332001 | 530332001 | St. Louis  | 291892002 | 291892002 |
| Seattle   | 530337001 | 530337001 | St. Louis  | 291893001 | 291893001 |
| Seattle   | 530337002 | 530337002 | St. Louis  | 291894001 | 291894001 |
| Seattle   | 530610007 | 530610007 | St. Louis  | 291895001 | 291895001 |
| Seattle   | 530612001 | 530612001 | St. Louis  | 291897001 | 291897001 |
| St. Louis | 170830001 | 170830001 | St. Louis  | 291897002 | 291897002 |
| St. Louis | 170831001 | 170831001 | St. Louis  | 291897003 | 291897003 |
| St. Louis | 171190005 | 171190005 | St. Louis  | 295100002 | 295100002 |
| St. Louis | 171190006 | 171190006 | St. Louis  | 295100007 | 295100007 |
| St. Louis | 171190008 | 171190008 | St. Louis  | 295100061 | 295100061 |
| St. Louis | 171190012 | 171190012 | St. Louis  | 295100062 | 295100062 |
| St. Louis | 171191004 | 171191004 | St. Louis  | 295100063 | 295100063 |
| St. Louis | 171191009 | 171191009 | St. Louis  | 295100064 | 295100064 |
| St. Louis | 295100066 | 295100066 | Washington | 110010043 | 110010043 |
| St. Louis | 295100067 | 295100067 | Washington | 110011000 | 110011000 |
| St. Louis | 295100068 | 295100068 | Washington | 240090010 | 240090010 |
| St. Louis | 295100069 | 295100069 | Washington | 240170010 | 240170010 |
| St. Louis | 295100070 | 295100070 | Washington | 240210034 | 240210034 |
| St. Louis | 295100071 | 295100071 | Washington | 240210037 | 240210037 |
| St. Louis | 295100072 | 295100072 | Washington | 240310005 | 240310005 |
| St. Louis | 295100080 | 295100080 | Washington | 240310006 | 240310006 |
| St. Louis | 295100086 | 295100086 | Washington | 240311001 | 240311001 |
| Tampa     | 120570025 | 120570025 | Washington | 240311004 | 240311004 |
| Tampa     | 120570074 | 120570074 | Washington | 240313001 | 240313001 |
| Tampa     | 120570081 | 120570081 | Washington | 240330002 | 240330002 |
| Tampa     | 120570110 | 120570110 | Washington | 240330003 | 240330003 |
| Tampa     | 120571021 | 120571021 | Washington | 240330004 | 240330004 |
| Tampa     | 120571022 | 120571022 | Washington | 240338001 | 240338001 |
| Tampa     | 120571035 | 120571035 | Washington | 240338002 | 240338002 |
| Tampa     | 120571042 | 120571042 | Washington | 510130008 | 510130008 |
| Tampa     | 120571052 | 120571052 | Washington | 510130020 | 510130020 |
| Tampa     | 120571055 | 120571052 | Washington | 510590005 | 510590005 |
| Tampa     | 120571065 | 120571065 | Washington | 510590014 | 510590014 |
| Tampa     | 120571068 | 120571068 | Washington | 510590014 | 510590014 |
| Tampa     | 120574004 | 120574004 | Washington | 510590030 | 510590030 |
| Tampa     | 121010005 | 121010005 | Washington | 510591004 | 510591004 |
| Tampa     | 121012001 | 121010003 | Washington | 510595001 | 510595001 |
| Tampa     | 121030003 | 121030003 | Washington | 510610002 | 510610002 |
| Tampa     | 121030004 | 121030003 | Washington | 511071005 | 511071005 |
| Tampa     | 121030004 | 121030004 | Washington | 511530008 | 511530008 |

| City       | AIRS_ID   | Site      | City       | AIRS_ID   | Site      |
|------------|-----------|-----------|------------|-----------|-----------|
| Tampa      | 121030018 | 121030018 | Washington | 511530009 | 511530009 |
| Tampa      | 121030020 | 121030020 | Washington | 511790001 | 511790001 |
| Tampa      | 121030021 | 121030021 | Washington | 511870002 | 511870002 |
| Tampa      | 121030023 | 121030023 | Washington | 515100009 | 515100009 |
| Tampa      | 121033001 | 121033001 | Washington | 516000005 | 516000005 |
| Tampa      | 121035002 | 121035002 | Washington | 516300003 | 516300003 |
| Tampa      | 121037001 | 121037001 | Washington | 540030003 | 540030003 |
| Washington | 110010003 | 110010003 |            |           |           |
| Washington | 110010008 | 110010008 |            |           |           |
| Washington | 110010011 | 110010011 |            |           |           |
| Washington | 110010013 | 110010013 |            |           |           |
| Washington | 110010014 | 110010014 |            |           |           |
| Washington | 110010017 | 110010017 |            |           |           |
| Washington | 110010018 | 110010018 |            |           |           |
| Washington | 110010025 | 110010025 |            |           |           |
| Washington | 110010041 | 110010041 |            |           |           |

Table 1. Monitoring Sites for USA Today Cities (continued)


5 years (1997 through 2001) of data from the AQS for developing the historical data.


## Procedures

Using the data described above, we observed the following procedure for determining an ozone exceedance day for a particular USA Today city. For each day of the year, if one of the monitors assigned to a particular city measured an 8-hour ozone level  $\geq 0.085$  ppm, that one measurement resulted in one exceedance day for the city. Even if more than one of the city's assigned monitors recorded an 8-hour ozone level ≥0.085 ppm on a given day, the exceedance count for that day and city remained one. The number of days exceedances are measured are then accumulated over the year to obtain a count of days (or cumulative count) of exceedance measurements.

For 2002, the cumulative count of days was obtained from the AQS database described above for each city. For the historical 5-year period (i.e., 1997 through 2001), the average number of the cumulative count of days was obtained over the 5-year period for each set of monitors assigned to each city to yield a 5-year trend. We decided to use an average value as a comparison instead of a year-to-year comparison because the year-to-year cumulative count of days will vary, making comparisons with the most recent year less meaningful.

Using these data, we generated graphs showing the 5-year average cumulative count of days with the 2002 cumulative count of days for selected cities. Figure 1 provides the graph for Atlanta, which shows that the cumulative count of days in 2002 for the Atlanta area closely matches the 5-year average trend in the cumulative count of days through approximately the middle of August. After the middle of August, the 2002 count of days was less than the 5-year average, and, by the end of the ozone season, the cumulative count of days for 2002 was 37 compared to the 5-year average trend of 46.





We also added a regional aspect for comparison to the individual city data. We grouped the USA Today cities into geographic regions and then calculated a 5-year regional average cumulative count of days based on the individual city data within the region. This regional average was also depicted on the individual city graphics to offer a comparison of the city data to regional data.

As shown in Table 2, the USA Today cities were grouped into southeast, northeast, midwest, and southwest regions. Dallas, Houston, and Los Angeles were treated as individual cities because of their unique geographic locations and—especially in the case of Los Angeles—unique emission density characteristics compared to other USA Today cities. The combination of cities included in the regional average cumulative count of days was somewhat subjective for this illustration, and other combinations could be done for different comparative purposes.

## **Discussion of Graphical Depictions of Cumulative Count** of Days

The following sections discuss the graphical depictions of the cumulative count of days for 30 of the 36 USA Today cities used in this analysis. The USA Today cities of Portland (OR), Seattle, Denver, Honolulu, Salt Lake City, and San Francisco were not included because ozone exceedances are typically minimal in these locations.

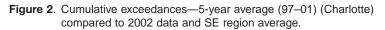
#### Southeast U.S. Region

We have included the following cities in the Southeast (SE) U.S. Region: Atlanta, Charlotte, Memphis, Nashville, New Orleans, Miami, Orlando, and Tampa. The graph for

Southeast U.S. Cities

|                        | Charlotte<br>Memphis<br>Nashville                         | Miami<br>Orlando<br>Tampa                                             |
|------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------|
| Northeast U.S. Cities  | Boston<br>New York<br>Philadelphia                        | Baltimore<br>Washington, D.C.                                         |
| Midwest U.S. Cities    | Chicago<br>Cleveland<br>Cincinnati<br>Columbus<br>Detroit | Indianapolis<br>Kansas City<br>Minneapolis<br>Pittsburgh<br>St. Louis |
| Southwest U.S. Cities  | Las Vegas<br>Phoenix                                      | Sacramento<br>San Diego                                               |
| Individual U.S. Cities | Dallas<br>Houston                                         | Los Angeles                                                           |

Atlanta


each SE city depicts the city 5-year average cumulative count of days, the combined 5-year average for all SE Region cities, and the 2002 cumulative count of days for the city.

The Atlanta graph (see Figure 1) shows that the 2002 count of days was tracking the Atlanta 5-year average rather closely through approximately the middle of August then trended less than the 5-year average for the remainder of the year. An ozone episode of several days is depicted on the graph in early August, when the count of days increased from 22 days to 30

days. For comparative purposes, the Atlanta data are higher than those for the combined SE Region average; that is, the Atlanta 5-year average cumulative count of days is about 46 days per year, whereas the SE Region average is approximately 18 days per year.

New Orleans

For Charlotte (Figure 2), the 2002 count of days trended slightly less than the 5-year average through early June but then trended slightly greater than the 5-year average from early July onward. Ozone episodes are noted in early July and early August. Also, the Charlotte data are comparatively higher than those for



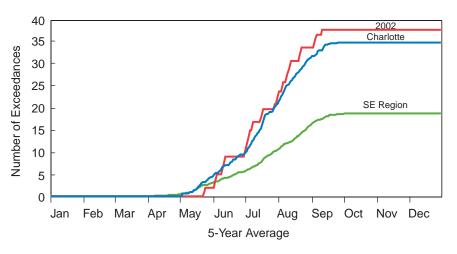
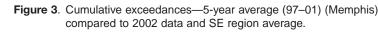




Table 2. Regional Groupings of USA Today Cities



the combined SE Region average. The Charlotte data show that the city's 5-year average cumulative count of days is about 35 days per year, whereas the combined SE Region average is about 18 days per year.

The graph for Memphis (Figure 3) shows that the 2002 data were trending less than the Memphis 5-year average count of days throughout the year. As a result, the total cumulative count of days for 2002 was 16, whereas the 5-year average total is approximately 23 days. Again, an ozone episode is noted in early August for Memphis, similar to those noted in Atlanta and Charlotte.

As with the graph for Memphis, the graph for Nashville (Figure 4) also shows the 2002 data trending slightly less than the 5-year average throughout the year. The total count of days for 2002 was 21 days, whereas the 5-year average count of days is approximately 25 days. Notable ozone episodes are shown in early August and early September.

The graph for New Orleans (Figure 5) shows the count of days for 2002 trended less than the 5-year average throughout the year. The 2002 total was 2 days, whereas the 5-year is 8 days.

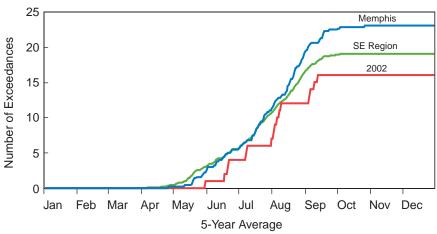



Figure 4. Cumulative exceedances—5-year average (97–01) (Nashville) compared to 2002 data and SE region average.

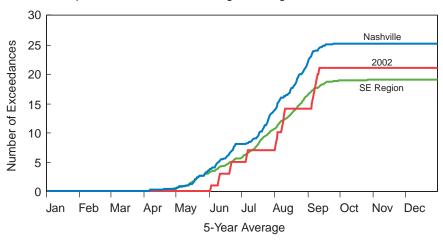
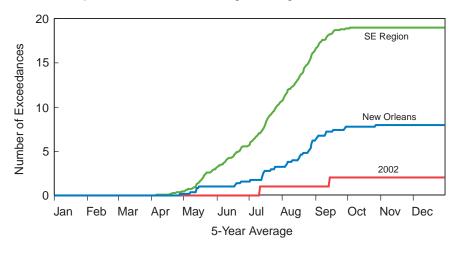




Figure 5. Cumulative exceedances—5-year average (97–01) (New Orleans) compared to 2002 data and SE region average.



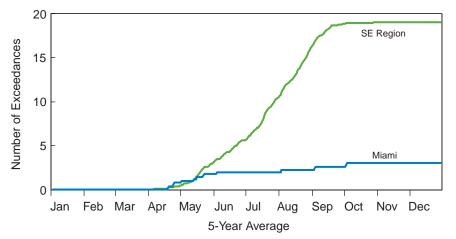
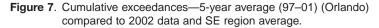




Figure 6. Cumulative exceedances—5-year average (97–01) (Miami) compared to 2002 data and SE region average.



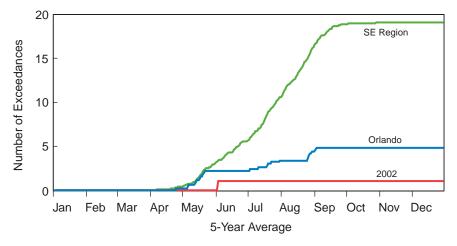
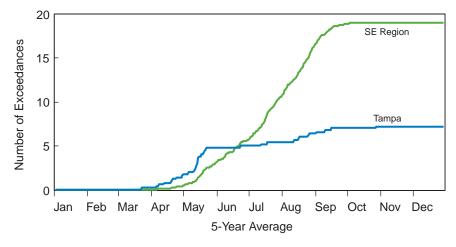




Figure 8. Cumulative exceedances—5-year average (97–01) (Tampa) compared to 2002 data and SE region average.

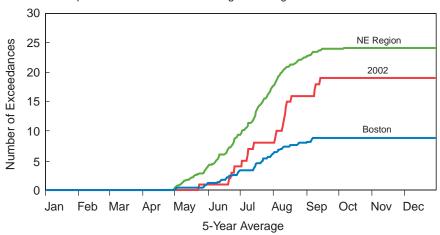
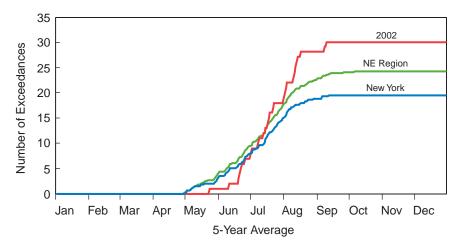


Miami (Figure 6), Orlando (Figure 7), and Tampa (Figure 8) all show 2002 cumulative counts of days throughout the year less than the 5-year average. Miami and Tampa show no exceedances counted for 2002. In comparison, Miami averaged 5 days for the 5-year period, and Tampa averaged 7 days.

#### Northeast U.S. Region

The following cities were included for the Northeast (NE) U.S. Region: Boston, New York, Philadelphia, Baltimore, and Washington, DC. The graph for each NE city depicts the city 5-year average count of days, the combined 5-year average count of days for all NE cities, and the city's 2002 count of days.

The graphical depiction for the Boston area (Figure 9) shows that the 2002 data trended greater than the 5-year average from approximately late June onward. A notable ozone episode of high ozone with several days of measured exceedances occurred during early to mid-August. The total count of days in the Boston area for 2002 was 18, whereas the 5-year average count of days is approximately 8 days.

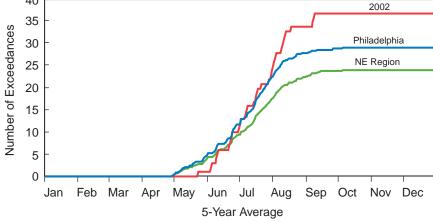


Figure 9. Cumulative exceedances—5-year average (97–01) (Boston) compared to 2002 data and NE region average.

Figure 10. Cumulative exceedances—5-year average (97–01) (New York) compared to 2002 data and NE region average.



compared to 2002 data and NE region average.

Figure 11. Cumulative exceedances—5-year average (97-01) (Philadelphia)



The graph for the New York area (Figure 10) shows a trend similar to the one in Boston, with the 2002 data trending greater than the 5-year average from approximately the beginning of July onward. The New York data also show an ozone episode in early to mid-August. The total count of days for 2002 was 30, compared to the 5-year average of 19 days.

For Philadelphia (Figure 11), the graph shows the 2002 data trending similar to the 5-year data until the beginning of August. After that, the 2002 data trend greater, with a 2002 total count of days of 37, whereas the 5-year average is approximately 29 days. As with Boston and New York, the ozone episode is evident in early to mid-August. The graph for Baltimore (Figure 12) shows a pattern nearly identical to that of Philadelphia. The 2002 total count of days was 39, whereas the 5-year average is approximately 33 days.

The Washington, DC, graph (Figure 13) shows a pattern similar to that of Philadelphia and Baltimore, with the 2002 data showing a greater trend than the 5-year average from approximately the beginning of August onward. The total 2002 count of days for Washington was 37, as compared to the 5-year average of 31 days.

#### Midwest U.S. Region

The following cities were included in the Midwest U.S. Region: Chicago, Cleveland, Cincinnati, Columbus, Detroit, Indianapolis, Kansas City, Minneapolis, Pittsburgh, and St. Louis.

The graph for Chicago (Figure 14) shows a similar trend for 2002 count of days compared to the 5-year average trend through approximately the middle of June. Thereafter, the 2002 data show a notably greater trend than the 5-year average. A notable ozone episode of several days is evident in the middle of July. Other episodes are shown in early August and early September. The total count of days for 2002 in the Chicago area was 20, as compared to the 5-year average of approximately 9.

Figure 12. Cumulative exceedances—5-year average (97–01) (Baltimore) compared to 2002 data and NE region average.

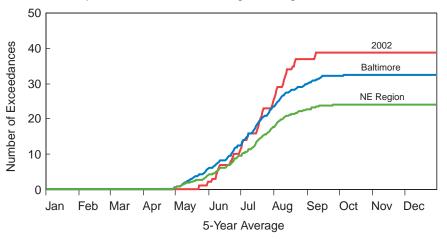



Figure 13. Cumulative exceedances—5-year average (97–01) (Washington, DC) compared to 2002 data and NE region average.

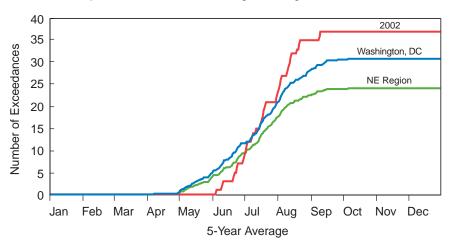
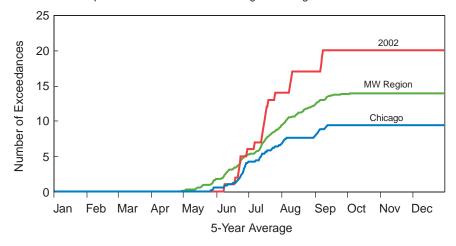
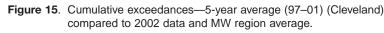





Figure 14. Cumulative exceedances—5-year average (97–01) (Chicago) compared to 2002 data and MW region average.





The graph for Cleveland (Figure 15) shows a pattern similar to the one for Chicago. There is a similar trend in the 2002 data and 5-year average data through the end of June, then a notably greater trend in the count of days from the middle of June onward. The total 2002 count of days was 31 compared to the 5-year average of approximately 18 days.

Cincinnati (Figure 16), Columbus (Figure 17), Detroit (Figure 18), Indianapolis (Figure 19), Pittsburgh (Figure 20), and St. Louis (Figure 21) all show a similar pattern, with the 2002 data trending less than the 5-year average until the middle or end of June, then trending notably greater than the 5-year average onward. All show ozone episodes around the beginning of August and in early September. Another episode common to all cities is seen in the middle of June. For Cincinnati, the 2002 total count of days was 28, compared to a 5-year average of approximately 17 days. For Columbus, the 2002 total was 27 days, compared to a 5-year average of approximately 16 days.




Figure 16. Cumulative exceedances—5-year average (97–01) (Cincinnati) compared to 2002 data and MW region average.

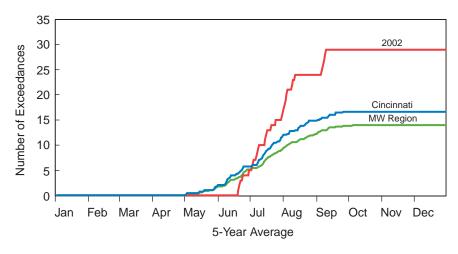
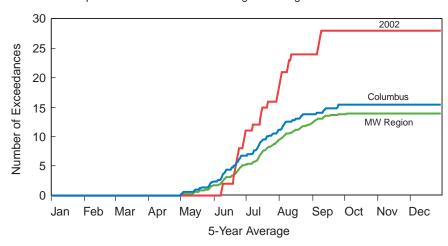




Figure 17. Cumulative exceedances—5-year average (97–01) (Columbus) compared to 2002 data and MW region average.



SPECIAL STUDIES • CUMULATIVE OZONE EXCEEDANCES S51

For Detroit, the 2002 total was 22 days, compared to approximately 12 days for the 5-year average. For Indianapolis, the 2002 total was 24 days, compared to approximately 15 days for the 5-year average.

For Pittsburgh, the 2002 total was 33 days, compared to a 5-year average of approximately 23 days.

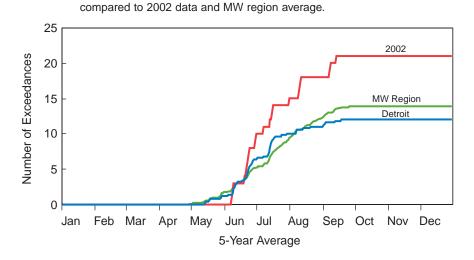
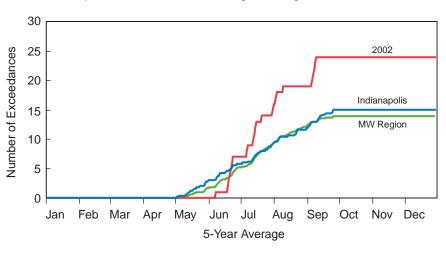
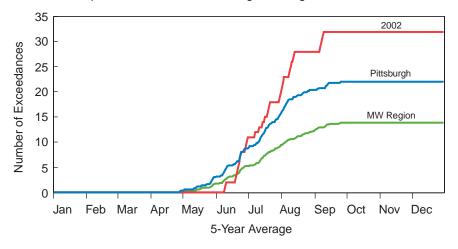
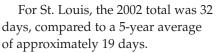
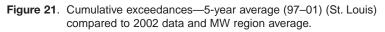



Figure 19. Cumulative exceedances—5-year average (97–01) (Indianapolis) compared to 2002 data and MW region average.



Figure 20. Cumulative exceedances—5-year average (97–01) (Pittsburgh) compared to 2002 data and MW region average.





The graph for Kansas City (Figure 22) showed no exceedances until early July. Ozone exceedances trended similar to the 5-year average for July and into August, then trended less than the 5-year average onward. The 2002 cumulative count of days was 7, whereas the 5-year average for Kansas City is approximately 11 days.

Minneapolis (Figure 23) historically has few exceedance days, averaging about 1 day over the 5-year period. The 2002 data show there were 2 exceedance days.



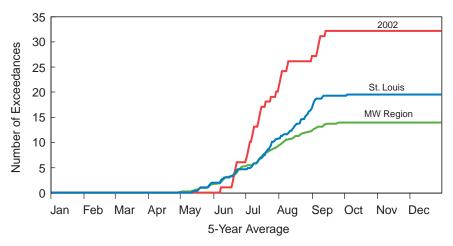



Figure 22. Cumulative exceedances—5-year average (97–01) (Kansas City) compared to 2002 data and MW region average.

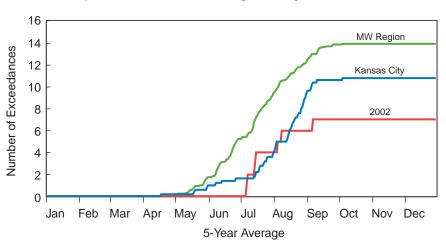
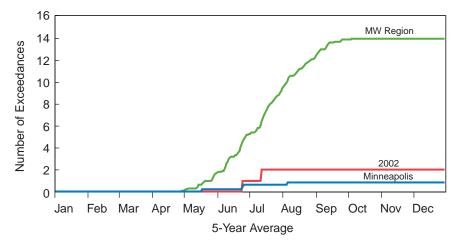




Figure 23. Cumulative exceedances—5-year average (97–01) (Minneapolis) compared to 2002 data and MW region average.



#### Southwest U.S. Region

The following cities were included in the Southwest (SW) U.S. Region: Las Vegas, Phoenix, Sacramento, and San Diego. Los Angeles was viewed separately for the SW Region. Also, any comparisons of the SW Region to individual cities may be less meaningful than comparisons in other regions because of the larger distances and more unique geographic and emission characteristics among the SW region cities.

For Las Vegas (Figure 24), the trend in the cumulative count of days for 2002 was similar to the 5-year average trend. The total number of days for 2002 was 6, whereas the 5-year average count of days is 3.

The 2002 cumulative count of days for San Diego (Figure 25) trended persistently less than the 5-year average throughout the year. The total count of days for 2002 was 13, as compared to the 5-year average of approximately 20 days.

The graph for Sacramento (Figure 26) showed a similar trend for 2002 as compared to the 5-year average through the beginning of July. Thereafter, the 2002 count of days trended greater than the 5-year average from early July onward. The total 2002 cumulative count of days was 45 days, whereas the 5-year average is approximately 35 days.

Figure 24. Cumulative exceedances—5-year average (97–01) (Las Vegas) compared to 2002 data and SW region average.

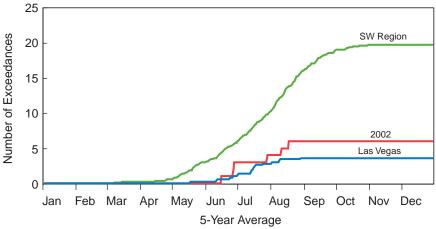



Figure 25. Cumulative exceedances—5-year average (97–01) (San Diego) compared to 2002 data and SW region average.

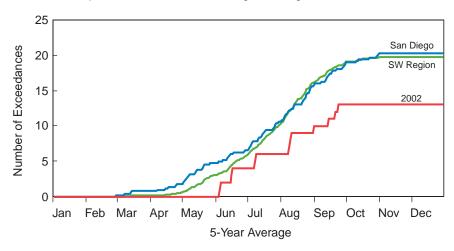
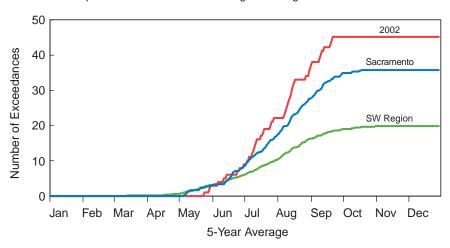
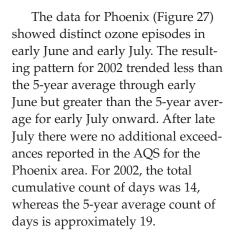
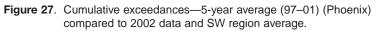
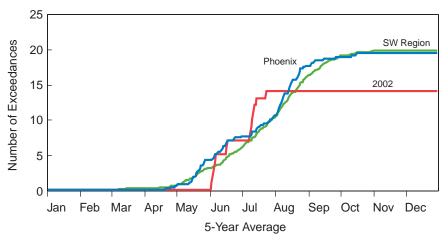
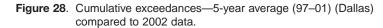





Figure 26. Cumulative exceedances—5-year average (97–01) (Sacramento) compared to 2002 data and SW region average.







#### **Other Areas**


Dallas, Houston, and Los Angeles were treated separately in this analysis due to their unique geographic locations and emission densities as compared to nearby locations.

For Dallas (Figure 28), the 2002 data trended close to the 5-year average data through early August then trended somewhat less than the 5-year average from early August onward. The 2002 count of days was 20 days, whereas the 5-year average count of days is approximately 33 days.

The 2002 data for Houston (Figure 29) was similar to that for Dallas in that it also trended lower than the 5-year average, especially after early August. For 2002, the total cumulative count of days was 22, whereas the 5-year average is approximately 36 days.







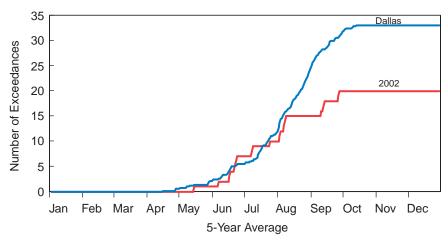
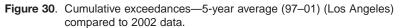
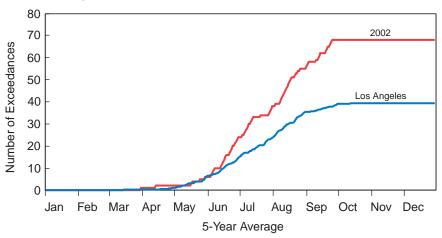



Figure 29. Cumulative exceedances—5-year average (97–01) (Houston) compared to 2002 data.




For Los Angeles (Figure 30), the 2002 data showed a similar trend to the 5-year average data through the beginning of June, then trended progressively greater than the 5-year average from early June onward. A notable episode occurred in early to mid-August. For 2002, the total count of days was 68, whereas the 5-year average is approximately 40 days.


#### Summary

This analysis provided a comparative illustration of accumulated ozone exceedance days among *USA Today* cities throughout the United States. These comparisons were illustrated for distinct geographic regions due to the regional nature of ground-level ozone formation and transport.

The illustrations show distinctive differences among regions and also within regions when 2002 data are compared to historical 5-year average trends. For example, in the SE region, the 2002 accumulated count of days trended in a similar pattern to the 5-year average trend for some cities (e.g., Atlanta, Charlotte), whereas the 2002 data trended lower than the 5-year average for some other cities (e.g., Memphis, Nashville, New Orleans). In contrast, for most of the cities analyzed in this study in the NE region, the 2002 data trended lower than the 5-year average through approximately early July, then trended higher than the 5-year average from mid-July into mid-September.

The MW Region comparison presented different results than did the comparisons for the SE and NE regions. For example, for all cities in the core area of the MW region (Chicago, Cleveland, Cincinnati, Columbus, Pittsburgh, Indianapolis, Detroit, and St. Louis), the 2002 data trended less than the 5-year average





through approximately mid- to late June, then trended progressively higher than the 5-year average from late June onward. Other cities outside the core MW Region (e.g., Kansas City, Minneapolis) showed 2002 data trending similar to or less than the 5-year average data.

#### Reference

1. John E. White. Information Transfer Group, Information Transfer and Program Integration Division, Office of Air Quality Planning and Standards, Research Triangle Park, NC. Personal communication, September, 2002.

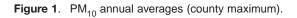
# **Characterization of National Spatial Variation**

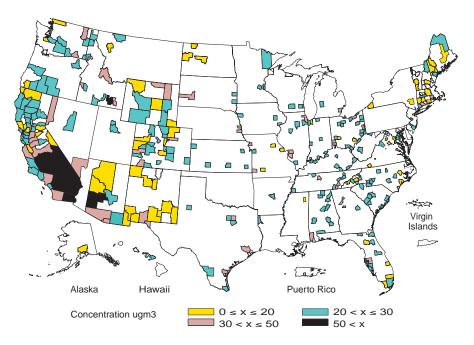
#### **Terence Fitz-Simons**

U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

## Abstract

Spatial variability is an important quality of air pollutants for many areas of policy within the U.S. Environmental Protection Agency (EPA). Obviously, monitoring regulations depend heavily on knowledge of spatial variability. In addition, control strategies depend on this knowledge, which helps determine whether a local or regional program would be more effective. Action day programs and public information programs also benefit from this knowledge. Traditionally, spatial variation has been depicted by isopleth maps, concentration maps, and box plots of various sites. Does this really give us useful knowledge about spatial variation? This paper explores a new way to examine spatial variability on a national scale and also presents an extension of this method in an attempt to characterize spatial variability in a useful way. The new methodology is presented along with its application using PM<sub>2.5</sub> and ozone data.

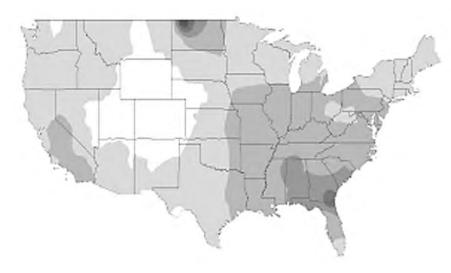

## Introduction


Spatial variability is a very important quality of air pollutants for many areas of EPA policy. Obviously, monitoring regulations and network design depend heavily on knowledge of spatial variability, as do implementation strategies and policies. Control strategies also depend heavily on this knowledge, which helps state and local agencies decide whether a local or regional program may be more effective. Action day programs and public information programs also depend on this information to facilitate decisions regarding how large of an area should be included in various alerts or information publications. Traditionally, spatial variation has been depicted by isopleth maps, concentration maps, and box plots of various sites. Each of these methods gives a crude idea of spatial variability. This paper explores a new way to visualize large-scale spatial variability and also presents an extension of this method in an attempt to characterize spatial variability in a useful way. The new methodology is presented along with its application using data from several pollutants nationwide.

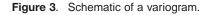
## Characterizing Spatial Variation

One of the first questions arising from almost any investigation of an air pollutant is, "What is the spatial and temporal variability or variation?" Very often, the spatial part of the question is answered with a map showing ranges of pollutant levels by county. These maps show where pollutant levels are higher and lower and, in general, where information is available or where monitoring sites are located (see Figure 1).

After the work of producing the map is done, the question is usually considered answered. However, this is a crude view of spatial variability. Looking at such a map, counties with







higher values are easily spotted but it is hard to visualize how close adjoining counties are to others. Some analysts go a step farther and show a map of an estimated surface of pollutant levels. The latest and most popular way to do this is called kriging.<sup>1</sup> Kriging is a spatial interpolation technique developed for the mining industry in South Africa to predict ore reserves. With an interpolated surface, all the blank areas on the map are gone, and it is somewhat easier to see how pollutants may vary over space. Figure 2 provides an example of a kriged surface. Because the surface itself is smoothed by the process, kriging actually hides some of the spatial variation, which may or may not be a good result depending on the purpose of the analysis.

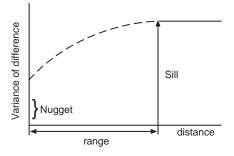
At the heart of kriging is a concept called a variogram, which is a representation of the statistical variance of the difference between two data points on a map as it relates to the distance between the two points on the map. Much like the mean, which is a measure of the center of a distribution of data, the variance is a measure of the spread of a distribution of data. In this case, the data are a series of measurements representing differences between two locations paired by time. Thus if d<sub>i</sub> is the difference between two readings at two monitors at a given time i, then  $d_i = x_{1i} - x_{2i}$ . If  $x_1$  and  $x_2$  are both random variables from two locations, then the variance of the difference is  $V(x_1-x_2)$ , or V(d). In fact, the variance of the difference is V(d) = $V(x_1) + V(x_2) - 2COV(x_1, x_2)$ . This is the sum of the variances of the two random variables minus twice the covariance (a measure of how much the two random variables vary together). Basically, this says that the more the two random variables change together (they go up or down together but they do not necessarily change the same amount), the smaller the variance of the difference will be because the values at two different sites would be expected to vary together more if they are close together and vary more independently if they are far apart. This leads to the concept of the variogram, which, in this case, is the relationship between the variance of the differences and the distance between two sites (Figure 3). The dotted line in Figure 3 shows how the variance changes with the distance. At a

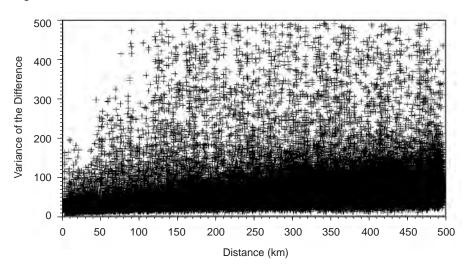
Figure 2. Example of a kriged surface.

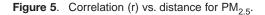


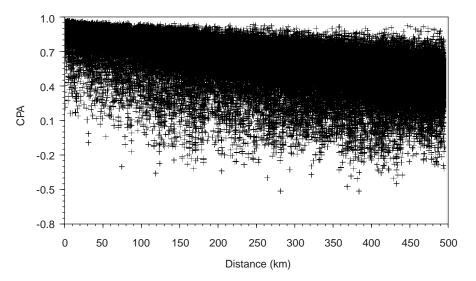
distance of zero (0), there is still variation left that does not go away even if the sites are at the same location. This is called the nugget. Similarly, there is a point, called the sill, at which the variance levels out. The area between 0 and the sill is called the range. The range can be thought of as the region where there is a correlation between two sites. The region after the sill can be thought of as the distances at which sites appear to be independent of each other.







Figure 4 shows how  $PM_{2.5}$  data can be used to plot the variance of the difference against distance. The difference in daily  $PM_{2.5}$  values was calculated for various sites across the country. The variance of the differences was calculated, and the latitude and longitude of each site were used to calculate the distance between two sites. Each pair of sites then had a variance of the difference and a distance, which were plotted for all possible pairs of sites across the country.

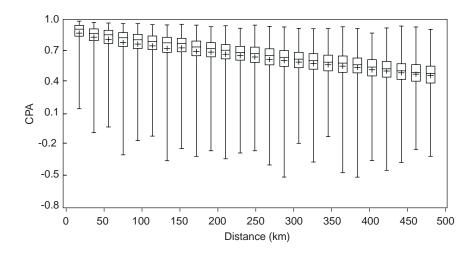

Looking at the scatterplot, it is clear that there is no simple relationship between the variance of the difference and distance. A very dense cluster of points seems to center over 25 at 0 distance and then slowly increases as the distance increases. However, from a casual examination of the plot, enough points fall outside the dense cloud (in fact, many were cut off to actually see any trend at all by setting the maximum variance displayed to 500) to bring into question the assumption used in kriging, as shown in Figure 3, that the variance of the difference over distance can be described by a line.


The point of defining all these terms is to show that the variance of the differences between two measurements taken at the same time but at different locations is generally increasing because the covariance is decreasing over the distance. Because the correlation is covariance normalized by the variances, we can characterize the spatial dependence of data from two locations through the correlation. Because the variance of the difference generally increased, the covariance and, therefore, the correlation should decrease over distance. This raises the question, how does the correlation vary over distance? To answer this question, PM<sub>25</sub> data were used to calculate the correlation of daily PM2 5 values between two sites, and the latitude and longitude were used to calculate the distance between two sites. Thus for each pair of sites, we have correlation and a distance. Looking at all the possible pairs of sites, scatterplots may be generated, such as the one in Figure 5. The values of the correlations are restricted to all values between -1 and 1, but the variance of the distance must be positive. These restrictions help provide a much more coherent picture. There is, again, a dense cloud that trends downward as the distance increases. Also, there are many points not in the dense cloud that fall beneath the trend. Again, these points are numerous enough to question the simplicity of the variogram used in kriging.

To simplify what is seen in this scatter plot, the data could be

Figure 4. Variance of the difference vs. distance.







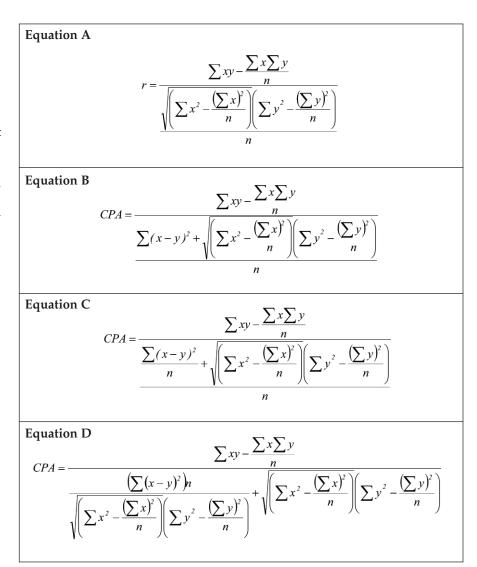

summarized by box plots of the data over 20-km intervals. This would result in Figure 6, which shows a much less confusing picture. The whiskers represent the maxima and minima of the intervals. The box represents the 75th and 25th percentiles, the plus sign (+) represents the mean, and the single line in the box represents the median or 50th percentile. Now a trend is much more apparent in the correlation than in the scatterplot. However, this

display shows only how well the data "track" or follow a pattern. It does not show how well the data from different sites actually agree. In other words, the data from one site might track the data from another site very well but still have very different concentrations on average than data from the other site. Here we present a solution to this problem, a coefficient of perfect agreement, or CPA.

Figure 6. Box plot of correlation vs. distance.



## The Coefficient of Perfect Agreement


The goal of formulating a CPA is to give a measure of agreement with many of the characteristics of the correlation coefficient.

The classical correlation coefficient is a measure of how well paired values track each other. The value 0 (zero) means they do not track each other at all, whereas a value of 1 means they track each other perfectly (all the points in a scatterplot would be on a straight line). A value of -1 also means perfect tracking, but the scatterplot line would have a downward or negative slope. The correlation coefficient is defined as shown in Equation A.

As stated earlier, the correlation coefficient has a nice feature in that, when the data from two sites agree in a perfectly linear fashion, then r is 1 (or -1). However, if the data agreed perfectly, the only line that mattered would be a line with a slope of 1 and an intercept of 0 (the line y = x). Therefore, the first characteristic we desire in a CPA is that the CPA = 1 when all points in a scatterplot fall

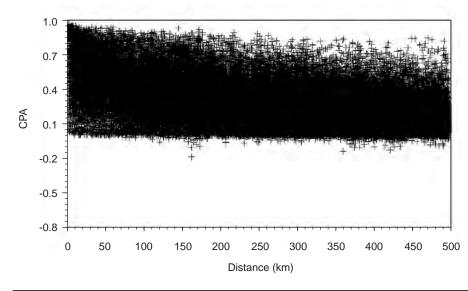
on the line y = x, and the CPA = 0 if there is no systematic agreement. One way to create this would be to include a term in the denominator of the correlation coefficient as shown in Equation B.

If there were no agreement, this term would become large and the CPA would become small (or close to 0). If there were perfect agreement, the term would be 0, and, because all the points would fall on a straight line, the rest of the equation (the correlation coefficient) would be 1, allowing the CPA to be 1. However, if the two data streams fell on a straight line that did not have a slope of 1 and an intercept of 0, then the



CPA would certainly not be 1 but less than 1 because y would not equal x everywhere. This seems to have all the characteristics desired in a CPA.

However, note that the  $\sum (x - y)^2$  term will get larger and larger as the number of data points gets larger and larger, making the CPA get smaller and smaller. Unless there were a situation of perfect agreement, then such a CPA could be made to be arbitrarily small by taking larger and larger numbers of data points to compute the CPA. A further refinement would then be defined as shown in Equation C.


This solves the sample size problem, but there is one problem left. The correlation coefficient is a unitless or unit invariant quantity. This CPA is not, but it should be. Units have been reintroduced into the formula. Because a units conversion could result in a different CPA value, this is not a desirable trait for a coefficient. The added term is divided by the same divisor used to normalize the covariance to get the correlation resulting in Equation D. Now the CPA is unitless.

Monte Carlo studies of the CPA were performed by generating values from a straight line. In linear regression, Y = a + bX + e, where e has a normal distribution with a mean of 0 and a variance of  $\sigma^2$ . This last term is also called the variation about the line. Five hundred sets of values were generated with different slopes, intercepts, and variations about the line. Slopes ranged from 0 to 5, intercepts ranged from -10 to 10, and the variance about the line,  $\sigma^2$ , ranged from 0 to 100. In this case, whenever  $\sigma^2$  is 0, then r is 1 (a perfect linear relationship). However, the CPA is equal to 1 only if a is 0, b is 1, and  $\sigma^2$  is 0. The studies found the CPA to be relatively sensitive to the lack of perfect agreement when there was only a perfect linear relationship (when r is 1 and the CPA should be less than 1).

## Application

Using the CPA instead of r, a new scatterplot can be constructed (Figure 7). Now the denser part of the distribution of points has a different trend.

Figure 7. CPA vs distance (km).



The trend dips quickly and then falls off gradually. If, as before, the data are displayed as box and whisker plots, the more pronounced trend in Figure 8 is revealed. This gives a national picture of the spatial variation of PM<sub>25</sub>. The mean CPA starts off at around 0.6 and falls off rapidly out to about 150 km, then falls off gradually from there to about 0.2 at 500 km. The maximum and minimum of the coefficient (the whiskers on the box and whiskers plot) still vary almost across all possible values of the coefficient (perfect agreement, or 1, to no agreement at all, or 0) at any distance. Quantitatively, interpretation of this coefficient is difficult at best. Where it might be of most use is in comparisons with other pollutants.

# Comparison of Pollutants

Pollutants can be compared by following the previous steps used to produce Figure 8. The means in Figure 8 (the pluses [+]) can be joined by a line for several pollutants. This is where the usefulness of a CPA can be demonstrated. A comparison between pollutants could be made to help guide policy. For example, daily values of PM<sub>2.5</sub>, daily values of PM<sub>10</sub>, hourly values of CO (carbon monoxide), and hourly values of ozone were used to produce Figure 9. As can be seen from the plot, PM<sub>25</sub> has a mean CPA that is above ozone for most of the distances out to 500 km (at least until 450 km). This might suggest that if a regional control strategy is being pursued for the ozone problem in the United States, a regional strategy also makes sense for PM<sub>2.5</sub>.

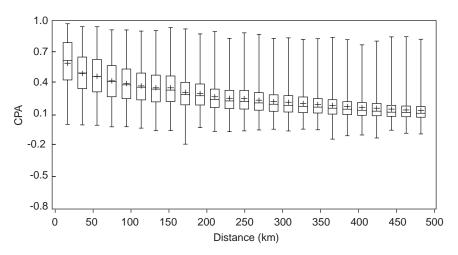
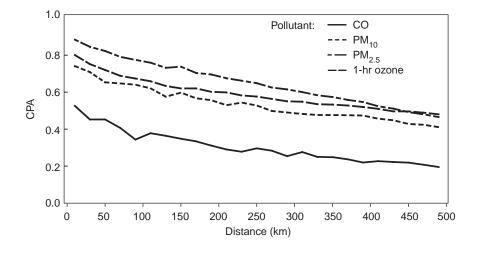




Figure 8. Coefficient of perfect agreement vs distance (km).

Figure 9. Comparison of mean CPA vs distance (km).



## Conclusions

A CPA can be formulated that can be of some use in assessing spatial variation on a national scale. The statistical properties of the CPA used here are not known, and the CPA cannot be used to quantify this variability. However, it can be a useful comparative tool to visualize differences in national scale spatial variation among pollutants.

# References

1. Matheron, G. Principles of Geostatistics. *Economic Geology*. **1963**, 58, 1246–1266.

# Development of a New Reporting Technique for Air Quality

Prepared by **RTI International** *Research Triangle Park, NC 27709* 

Prepared for **The Office of Air Quality Planning and Standards** U.S. Environmental Protection Agency Research Triangle Park, NC 27709

# Reporting Air Quality Information

The U.S. Environmental Protection Agency (EPA) has long taken the lead in reporting air quality information to the general public. EPA routinely presents status and trends for the outdoor concentrations of different kinds of air pollutants in documents that provide clear and informative text, graphics, and data tables for general and technical audiences. These documents include the National Air Quality and Emissions Trends Report (the Trends Report) and a related booklet, Latest Findings on National Air Quality: Status and *Trends*. In addition, EPA maintains the Air Trends Web site (http:// www.epa.gov/airtrends/index.html), which presents current and past air trends information and data, highlights of EPA's air pollution programs, and detailed information about air quality in the United States.

Air quality information is often complex and not always easily interpreted by the general public. As more and more information about air pollution and its effect on our health is being presented to the public through common channels such as television and radio news programs, daily newspapers, and Web postings, a need has arisen to provide the general public with a simple, visual method for assessing the degree of air pollution in their communities. As one approach to meeting this need, EPA is exploring a method of displaying air quality information that is designed to allow the general public to quickly and easily review the degree of air pollution in locations across the United States. Although this simplified display offers obvious benefits to users, there are limitations to this reporting technique as well. This paper describes the new reporting technique in detail and discusses its advantages and disadvantages.

# A New Reporting Tool

EPA is evaluating the use of a new tool for displaying air quality information using data from EPA's Air Quality Index (AQI), which monitors air quality in selected city groupings known as metropolitan statistical areas (MSAs). Information for 319 MSAs would be included in the display. MSAs are defined by the Office of Management and Budget and generally include one or more entire counties, except in New England where cities and towns are the basic geographic units. MSAs have been selected as the reporting unit because they are the basis for AQI reports and for listings of

attainment and nonattainment status for National Ambient Air Quality Standards (NAAQS).

The new display technique would present air quality information by MSA for the following pollutants:

- Carbon monoxide (CO)
- Nitrogen dioxide (NO<sub>2</sub>)
- Ozone  $(O_3)$
- Particulate matter (PM<sub>10</sub> and PM <sub>2.5</sub>)
- Sulfur dioxide (SO<sub>2</sub>).

Information would be displayed using color-coded circles to indicate air quality for each of these pollutants in the selected MSAs. Users would be able to view the air quality status for different locations and pollutants by scrolling up and down an alphabetical list of MSAs.

The purpose of this new reporting technique would be to provide a simplified, visual tool for interpreting air quality information in selected MSAs for a specific year for each of the selected pollutants. It would not be used as a rating system, nor would it show trends in air quality over time. Future versions of this method could allow users to sort the information based on the relative rankings for each pollutant of interest and generate a report based on their relative degree of suitability for someone with asthma, angina, or other health conditions.

Figure 1. Interpreting the symbols in the new display technique

#### Example MSA Report

|                                     | Pollutants                                                                          | Legend                              |                                     |
|-------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------|
| Metropolitan Statistical Area (MSA) | 0°/0/5×°/5×°/0°/0°                                                                  | LE                                  | EGEND                               |
|                                     | <u>  / <sup>0</sup> / <sup>0</sup> / <sup>0</sup> / <sup>0</sup> / <sup>2</sup></u> | • •                                 | $\circ$ $\rightarrow$ $\bullet$     |
| location 1                          | $\circ$ – $\bullet$ $\bullet$ $\bullet$                                             | ▲                                   |                                     |
| location 2                          | $\bullet \bullet \bullet \bullet \bullet \bullet \bullet$                           | Fewer days of<br>unhealthy air      | More days of<br>unhealthy air       |
| location 3                          | $\bigcirc \bullet \bullet \bullet \bullet \bullet \bullet$                          | (Days with AQI<br>>100) compared to | (Days with AQI<br>>100) compared to |
| location 4                          | • - • • • -                                                                         | other MSAs                          | other MSAs                          |
| location 5                          | $\bigcirc$ $\bigcirc$ $\bigcirc$ $\bigcirc$ $\bigcirc$ $\bigcirc$ $\bigcirc$        | ×                                   | Not Monitored                       |
|                                     |                                                                                     |                                     | Insufficient Data                   |

| Pollutant           |                                          | -                                    | $\bigcirc$                         | $\bigcirc$                          |                                            |
|---------------------|------------------------------------------|--------------------------------------|------------------------------------|-------------------------------------|--------------------------------------------|
| Ozone               | 1 or fewer<br>days with AQI<br>above 100 | 2 or 3 days<br>with AQI<br>above 100 | 4-12 days<br>with AQI<br>above 100 | 13-25 days<br>with AQI<br>above 100 | more than 25<br>days with AQI<br>above 100 |
| Carbon<br>monoxide  | 0 days<br>with AQI<br>above 100          | 1 days<br>with AQI<br>above 100      | 2 days<br>with AQI<br>above 100    | 3 days<br>with AQI<br>above 100     | more than 3<br>days with AQI<br>above 100  |
| PM <sub>2.5</sub>   | 1 or fewer<br>days with AQI<br>above 100 | 2 or 3 days<br>with AQI<br>above 100 | 4-12 days<br>with AQI<br>above 100 | 13-28 days<br>with AQI<br>above 100 | more than 28<br>days with AQI<br>above 100 |
| PM <sub>10</sub>    | 1 day<br>with AQI<br>above 100           | 2 days<br>with AQI<br>above 100      | 3-11 days<br>with AQI<br>above 100 | 12-36 days<br>with AQI<br>above 100 | more than 36<br>days with AQI<br>above 100 |
| Sulfur<br>dioxide   | 0 days<br>with AQI<br>above 100          | 1 day<br>with AQI<br>above 100       | 2 days<br>with AQI<br>above 100    | 3 days<br>with AQI<br>above 100     | more than 3<br>days with AQI<br>above 100  |
| Nitrogen<br>dioxide | 0 days<br>with AQI<br>above 100          | 1 day<br>with AQI<br>above 100       | 2 days<br>with AQI<br>above 100    | 3 days<br>with AQI<br>above 100     | more than 3<br>days with AQI<br>above 100  |

## Cutpoint Table for 2001

#### **Developing the Tool**

#### Selecting Pollutants

The pollutants to be included in this display are CO,  $NO_2$ ,  $O_3$ , particulate matter ( $PM_{10}$  and  $PM_{2.5}$ ), and  $SO_2$ . These pollutants are five of the six "criteria" pollutants for which EPA has set National Ambient Air Quality Standards (NAAQS) as required by the Clean Air Act. The NAAQS for each pollutant indicate an outdoor (or ambient) concentration not to be exceeded on average over a 3-year period; concentrations below the NAAQS are preferable and would be expected to cause fewer adverse health effects. EPA tracks air quality based on measurements of pollutant concentrations in outdoor air at monitoring sites across the country and then compiles and processes these data to generate the Air Quality Index or AQI.

#### Designing the Display

Figure 1 shows one potential display method for a sample of several MSAs. In this sample, a solid black circle indicates poorer air quality than most MSAs and a solid blue circle indicates better air quality than most MSAs, with indications for three degrees of quality in between (half blue circle, empty circle, and half black circle). Again, this display would be pollutant-specific and limited to a specific year. It would not suggest air quality trends for these locations over time.

The colored circle symbols would be derived in different ways for different pollutants. For pollutants with a lot of data available, EPA would use percentiles to set ranges for the symbols. For those pollutants with few data, EPA would set the ranges to facilitate presentation. Figure 1 presents the basis for the suggested symbols for each of the pollutants. The following section describes the methodology for assigning the symbols to data ranges in more detail.

Looking at sample MSAs in Figure 1, we can determine that location 3, for example, has fewer days of unhealthy air than most of the MSAs monitored for CO, particulate matter, SO<sub>2</sub>, and NO<sub>2</sub> (indicated by the solid blue circles). For ozone, location 3 has about the median number of days of unhealthy air; in other words, roughly equal numbers of MSAs have more days and fewer days of unhealthy air than location 3 for ozone. Thus, location 3 would appear to be a relatively good location for someone with asthma, since particulate matter, sulfur dioxide, and ozone are pollutants of concern for people with asthma.

Where the "Not monitored" symbol (\*) appears, no monitoring is performed for that pollutant in that particular MSA, and the MSA is presumed to have healthy air for that pollutant. The "Insufficient data" symbol (—) means that the area is monitored but not enough data were available to be included.

# Methodology

The new reporting method would be developed from outdoor air quality data collected at monitoring stations operated by state, tribal, and local government agencies as well as some federal agencies, including EPA. The monitoring data are used to calculate the AQI, which reports daily air quality for a given location. The AQI values, in turn, would be the basis for this reporting tool. To generate the new display, three steps would be required, as described in the following sections: analyze outdoor air quality monitoring data, calculate the AQI, and assign the symbols shown in Figure 1 for each pollutant individually.

#### Analyze Outdoor Air Quality Data

As currently conceived, the display would be generated based on measurements of pollutant concentrations in the outdoor air at monitoring stations across the country. The air quality data consist of daily (24-hour) measurements for  $PM_{10}$ and PM 25 and continuous (1-hour) measurements for CO, NO<sub>2</sub>, O<sub>3</sub>, and  $SO_2$ <sup>1</sup> The daily measurements for particulate matter are taken from monitoring instruments that produce one 24-hour measurement and typically operate on a systematic sampling schedule of once every 6 days, or 61 samples per year. In other words, these instruments generate one 24-hour sample every 6 days. EPA has determined that these 61 daily samples adequately represent outdoor air quality throughout the year. Monitoring instruments for CO, NO<sub>2</sub>, O<sub>3</sub>, and SO<sub>2</sub> operate continuously and produce a measurement every hour for a possible total of 8,760 hourly measurements in a year.

#### **Calculate Air Quality Index**

EPA compiles and processes outdoor air quality data to generate the AQI. The AQI is an index for reporting daily air quality for a given location and is a key tool in EPA's efforts to make air quality data accessible and useful to the general public. It indicates how clean or how polluted the outside air is. Based on monitoring data, the AQI gives a daily score of 1 to 500 for each pollutant monitored in each MSA. An AQI of 100 means the outdoor air concentration is generally no higher than the respective NAAQS. For example, an AQI of 50 means good air quality, whereas an AQI of 300 means poor air quality.

The AQI for particulate matter is a special case, in that day counts are derived slightly differently. AQI levels for particulate matter are best estimated from daily particulate matter monitors, and, therefore, the nation's air programs are installing more continuous particulate matter monitors. However, when using EPA's Federal Reference Method (FRM) data, the nondaily sampling schedules for particulate matter (e.g., one sample per 3 days) can affect the observed day counts. Therefore, EPA is evaluating methods for adjusting the counts for particulate matter days with an AQI over 100. The easiest method to adjust particulate matter counts, and that currently being used, is based on a simple ratio of the number of days in a quarter to the number of days with at least one sample in an MSA. The ratio is multiplied times the actual number of days in the quarter with the AQI above 100 for particulate matter to get an adjusted quarterly count, which can then be used to calculate an annual number. For example, if there are 90 days in a quarter and 15 sampling days in that quarter, the ratio of 90:15, or 6, is used to adjust the count of days with an AQI over 100 for particulate matter. Thus, if there are 2 days with sample values resulting in an AQI greater than 100, the count is adjusted to 12 days with an AQI greater than 100.

EPA maintains a Web site that fully explains the derivation of the AQI and its interpretation and use at http://www.epa.gov/airnow/ aqibroch/aqi.html#1. This Web site includes information linking particular health effects such as asthma and angina to the different principal pollutants. Users can determine which of the pollutants are particularly problematic for different health conditions. For example, asthma is related to concentrations of O<sub>3</sub>, PM<sub>10</sub>, PM<sub>2.5</sub>, and SO<sub>2</sub>, and angina is exacerbated by elevated concentrations of CO.

#### Assign Pollutant-Specific Symbols

To generate the new display, EPA would compile the AQI values for all MSAs (for a given time period, say calendar year 2001) and assign the symbols for each pollutant separately, as shown in Figure 1. For each pollutant, EPA would first count the number of days for each MSA when the AQI was above 100. The data for the MSAs would then be listed in order from the fewest days with AQI above 100 to the most days with AQI above 100. The data display technique is designed to indicate the MSA's relative rank by percentile. An MSA's percentile rank tells what portion of the sampled MSAs is above it (fewer days of unhealthy air) and what portion is below (more days of unhealthy air). For example, if an MSA is at the 90th percentile, 10% of the MSAs have fewer days of unhealthy air and 90% have more days of unhealthy air.

This approach works when there is sufficient variability, or range, in the data. In the 2001 data for  $O_3$ ,  $PM_{10}$ , and  $PM_{2.5}$ , the range is relatively wide from the MSA with the fewest days with the AQI above 100 to the MSA with the most days, and the percentile method would be used for these pollutants. However, the 2001 data for CO, NO<sub>2</sub>, and SO<sub>2</sub> do not vary enough among MSAs for percentiles to be derived. For these pollutants, the 2001 data show three or four MSAs having 1 day with the AQI greater than 100 and the remaining MSAs having no days with the AQI above 100. Therefore, the symbols would simply be assigned to 0, 1, 2, 3, 4, and greater than 4 days. While two different methods are used to set the boundaries, or "cutpoints," for the symbols, MSAs can be interpreted in the same manner for all pollutants.

The cutpoint table in Figure 1 presents the cutpoints, or ranges of day counts, indicated by each symbol for each pollutant. For pollutants with sufficient data variability to use the percentile method (i.e.,  $O_{3}$ ,  $PM_{10}$ , and  $PM_{25}$ ), the top 5% would be considered to have the best air quality for that particular pollutant. Thus, MSAs within the top 5% would be given a blue circle. For example, as shown in Figure 1, location 4 has a blue circle for  $O_3$ , which means that location 4 is in the 5% of MSAs reporting the lowest number of days with the AQI above 100 for  $O_3$ . The remaining 95% of the MSAs sampled have more unhealthy days than location 4 with respect to O<sub>3</sub> levels (i.e., they had more days with the AQI for  $O_3$  greater than 100). If there were 300 MSAs for which O<sub>3</sub> was sampled, location 4 would be one of 15 MSAs assigned a blue circle for  $O_3$ . Note that the blue circle does not indicate the actual number of days when the AQI was greater than 100; it simply tells whether location 4 experienced fewer or more unhealthy days than other sampled MSAs.

The remaining symbols for  $O_3$ ,  $PM_{10}$ , and  $PM_{2.5}$  would be assigned similarly, based on percentiles, as shown in the cutpoint table in Figure 1. A half blue circle would be assigned to MSAs above the 5th percentile and below the 25th percentile. An MSA with this symbol would have had more unhealthy days than

those with a full blue circle (the top 5%), but fewer unhealthy days than the remaining 75% of the MSAs sampled. Likewise, the white circle would be assigned to MSAs from the 25th to 75th percentiles; they experience more unhealthy days than the MSAs with the full or half blue circles, but they have fewer unhealthy days than the remaining 25% of the MSAs sampled. The half black and full black circles would be assigned to the MSAs with more unhealthy days. The half black circle indicates that the MSA has more unhealthy days than 95% of the MSAs sampled and that only 5% of the MSAs have as many or more unhealthy days. The full black circle would be assigned to the MSAs with the most unhealthy days.

#### **Assumptions and Limitations**

The new reporting technique that EPA is evaluating includes several assumptions and limitations, as described below. These issues indicate areas where discussion and further development may be appropriate.

- The new display technique is based on the AQI, which, in turn, is based on short-term (daily) concentrations. However, for NO<sub>2</sub>, PM, and SO<sub>2</sub>, long-term standards also apply. Some MSAs may have no problem complying with shortterm standards (thus being assigned a blue circle) while failing to meet the annual standard. An additional component that incorporates annual concentration data into the display technique may be desirable.
- At this time, the new display technique is designed to address CO, NO<sub>2</sub>, O<sub>3</sub>, particulate matter (PM<sub>10</sub> and PM<sub>2.5</sub>), and SO<sub>2</sub>; it does not

address any hazardous air pollutants (HAPs). Addition of a component addressing HAPs could be considered. Benzene may provide a reasonable test case for reporting on HAPs, because it commonly occurs in ambient air and is monitored in the most locations.

- EPA acknowledges that the general public is not always familiar with MSAs. For example, users living in small towns may not realize they are part of an MSA named for a nearby larger town. Furthermore, not all areas in the country are in MSAs, and not all MSAs would be included in this display. Those MSAs with small populations, those with air quality that is so good that AQI reporting is not currently required, and those with too little monitoring data would not be included.
- Information would be presented for those air quality data that meet EPA's data quality requirements.<sup>2</sup> However, all pollutants are not monitored in all MSAs, and some MSAs are not monitored at all. For example, certain MSAs with small populations and those where the air quality is not considered a problem would not have data in the display. Thus, the "Not monitored" symbol can mean that there is no perceived air quality problem for that pollutant in that MSA, and the "Insufficient data" symbol means that there is not enough data available to be included. The latter case does not necessarily mean that there is no cause for concern.
- Different MSAs have different numbers of monitors. This display technique would not account for the fact that MSAs with more monitors will tend to have more

days with AQIs above 100. The display technique might be modified to normalize the day counts based on number of monitors.

- Air quality may vary across a single MSA. In assigning a single symbol for each pollutant in each MSA, the display would not reflect this potential variation.
- The methods used to set the cutpoints for the data display are designed to give an intuitive visual display of air quality in MSAs. The new method would be based on percentiles to provide consistency in setting cutpoints from one year to the next; however, there are other approaches that might also work to meet the objectives.
- The color-coded symbols suggested for the new display technique would indicate an MSA's air quality relative to the air quality in the other MSAs reported. As such, the symbols would not be an indication of a particular level of health protection. Because the symbols would indicate relative air quality, a black circle, for example, could be assigned for few days or for many days of unhealthy air, depending on the number of unhealthy days for most MSAs. For example, a black circle would be assigned for 20 days of unhealthy air if most MSAs had fewer than 20 unhealthy days, or for 120 days of unhealthy air if most MSAs had up to 120 unhealthy days. It will be important to ensure that users are aware of the relative nature of the information.
- The color-coded symbols would be based on counts of days with the AQI exceeding 100, but, as

currently conceived, there is no indication of the degree of exceedance. For example, a day with an AQI of 103 counts the same as a day with an AQI of 350. To reflect increased concern for days with higher AQI values, alternatives such as weighting days with an AQI above, say 200, could be considered.

- The display would present air quality for the current year. The percentile-based symbols would indicate an MSA's status relative to the other sampled MSAs. The percentiles reflect a given year's data; therefore, the number of unhealthy days implied by each symbol would change with each subsequent year's data. In its initial format, the display would not indicate trends in air quality or whether air quality in a particular MSA is improving or declining. Furthermore, users should be made aware that a single year's report may or may not indicate an MSA's general air quality or whether it is a "good" place to live, since any given year can reflect anomalies in air quality trends.
- The display would not provide any indication or distinction of source contribution.

# Potential Uses for the New Display Technique

The new display technique is a work in progress. The preceding section described the report's current iteration, but EPA is exploring additional capabilities and features to enhance the technique. For example, EPA is determining how to add this display to the Air Trends Web site to allow users to sort and query the list to focus on particular health effects. Capabilities currently being discussed for this new technique are described in the following sections.

#### Particular Health Effect Perspective

Allowing users to evaluate air quality with respect to particular health concerns is perhaps the most significant capability that is being considered for the new display technique. The AQI Web site (http://www.epa. gov/airnow/aqibroch/aqi.html#1) provides information linking health concerns and sensitive populations to particular pollutants and outdoor concentrations. For example, the AQI is used as the basis for advisories to people with asthma; these individuals are advised to limit outdoor exertion when AQI values for  $O_{2}$ ,  $PM_{10'} PM_{25'}$  or SO<sub>2</sub> are over 100. Similarly, people with angina are cautioned when the AQI for CO is over 100. EPA is looking into ways in which the MSA report could allow users to sort the data based on specific health-based concerns for any of these pollutants and generate a report focusing on health concerns for someone with asthma, angina, or other health conditions.

#### **Visibility and Regional Haze**

Degradation in visibility is related to several criteria pollutants and is an important environmental issue for the public, particularly in National Parks and wilderness areas (Class I areas). For example, the annual Trends Report presents useful information on the impacts of air pollution on visibility. Without the effects of pollution, a natural visual range in the United States is approximately 75 to 150 km (45 to 90 miles) in the East and 200 to 300 km (120 to 180 miles) in the West. However, data collected by EPA show that, in 1999, mean visual range in the East was only 24 km (14.4 miles) for the worst days and only 84 km (50.4 miles) for the best days. In the West, the mean visual range for 1999 was 80 km (48 miles). EPA is considering methods for including similar graphical information of this type of data in the display.

#### **Multiyear Reports**

EPA is considering adding a multiyear dimension to the display. In addition to presenting the annual reports described above, EPA would also provide graphically similar reports that would reflect a 5- or 10year average for the number of days that the AQI was above 100 for each pollutant in each MSA. Using these averaged day counts, percentiles would be derived and symbols assigned as described above for the annual data. Users could see the report for a 5-year average as well as for any individual year for the past 5 years. Reports for individual years could be compared to the average as well as to each other.

# Summary and Conclusions

This display technique would provide the general public with a new tool to review air quality in MSAs around the United States. The primary function of the display would be to present location- and pollutant-specific air quality data in a graphical format that allows for easy interpretation of air quality data for MSAs. The display would not provide new or additional air quality data; rather, it would present existing data in a new format. The graphical display of data would improve the public's access to air quality information and enhance their ability to use this information in a meaningful way. Potential capabilities that may be added include a Web-based application that would allow users to sort and query information to generate customized reports, as well as visibility and multiyear components.

EPA recognizes that there are limitations to this new display technique and is continuing to assess the usefulness of such a reporting method as well as additional capabilities that might be added. Developing a simple metric for displaying air quality data on an urban basis across the nation is a difficult and challenging endeavor. However, EPA feels that this information is useful and informative to the public, especially to those who have potential health concerns related to poor air quality. A graphical display that is easily understood is essential to communicating this information, and EPA will continue to refine the display to ensure that it meets this objective based on comments and input from the air quality community and potential users.

## References

1. Although continuous PM monitors are being installed and some continuous monitoring data are available, these data would not be included in this display. Only Federal Reference Method (FRM) data would be incorporated into the data display as currently conceived, and the PM continuous monitoring data are not based on EPA's FRM.

2. For more information on EPA's data quality requirements, see Appendix B–Metropolitan Area Trends of the Trends Report at http://www.epa.gov/airtrends/metro.html.

|                                                                                                                                                                                                                          |                                                                                                        | AL REPORT DAT                                                             |                                                                                   |                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 1. REPORT NO.<br>EPA-454/R-03-008                                                                                                                                                                                        | 2.                                                                                                     |                                                                           | 3. RECIPIENT'S ACCESSION                                                          | I NO.                                                                   |
| 4. TITLE AND SUBTITLE<br>National Air Quality and Emis                                                                                                                                                                   | sion Trends Report                                                                                     | 2003 Special                                                              | 5. REPORT DATE                                                                    |                                                                         |
| Studies Edition                                                                                                                                                                                                          |                                                                                                        |                                                                           | 6. PERFORMING ORGANIZA                                                            | ATION CODE                                                              |
| 7. AUTHOR(S) J.Elkins, J.Hemby, V<br>D. Doll, D. Mintz, A. Rush, N<br>Creilson, F. Dimmick, J. Bran<br>Solomon                                                                                                           | . Frank, M. Schmidt                                                                                    | , M. Wayland, J.                                                          | 8. PERFORMING ORGANIZA                                                            | ATION REPORT NO.                                                        |
| 9. PERFORMING ORGANIZATION NAME AND<br>Office of Air Quality Planning                                                                                                                                                    |                                                                                                        |                                                                           | 10. PROGRAM ELEMENT NO                                                            | 0.                                                                      |
| U.S. Environmental Protecti<br>Research Triangle Park, NC                                                                                                                                                                | <b>·</b> ·                                                                                             |                                                                           | 11. CONTRACT/GRANT NO.                                                            |                                                                         |
| 12. SPONSORING AGENCY NAME AND ADD                                                                                                                                                                                       | RESS                                                                                                   |                                                                           | 13. TYPE OF REPORT AND I                                                          | PERIOD COVERED                                                          |
| Office of Air Quality Planning                                                                                                                                                                                           | ng and Standards                                                                                       |                                                                           |                                                                                   |                                                                         |
| U.S. Environmental Protecti<br>Research Triangle Park, NC                                                                                                                                                                |                                                                                                        |                                                                           | 14. SPONSORING AGENCY (<br>EPA/200/04                                             | CODE                                                                    |
| 15. SUPPLEMENTARY NOTES                                                                                                                                                                                                  |                                                                                                        |                                                                           |                                                                                   |                                                                         |
| 16. ABSTRACT<br>THIS REPORT PRESENTS NATIO<br>DIOXIDE, CARBON MONOXIDE<br>AIR QUALITY TRENDS FROM D<br>IN NATIONWIDE EMISSIONS AT<br>SECTION INCLUDING REPORTS<br>THE ASIAN DUST STORM, CUM<br>VARIATION, AND A NEW REPO | E, LEAD AND SULFUR<br>DATA COLLECTED AT<br>RE ALSO PRESENTED<br>S ON CHEMICAL SPE<br>IULATIVE OZONE EX | COOXIDE FOR 10 A<br>MONITORING STA<br>THIS REPORT ALS<br>CIATION INCLUDIN | ND 20 YEAR PERIOD<br>TIONS ACROSS THE C<br>O INCLUDES A SPEC<br>G THE URBAN INCRE | S. IN ADDITION TO<br>COUNTRY, TRENDS<br>IAL STUDIES<br>EMENT, IMPACT OF |
| 17.                                                                                                                                                                                                                      | KEY WORDS                                                                                              | AND DOCUMENT ANALYSIS                                                     |                                                                                   | T                                                                       |
| a. DESCRIPTORS                                                                                                                                                                                                           |                                                                                                        | b. IDENTIFIERS/OPEN ENDED                                                 | TERMS                                                                             | c. COSATI Field/Group                                                   |
| AIR POLLUTION TRENDS, AIR 7<br>DEPOSITION, EMISSION TRENI<br>MATTER                                                                                                                                                      |                                                                                                        | Air Pollution control                                                     |                                                                                   |                                                                         |
| 18. DISTRIBUTION STATEMENT                                                                                                                                                                                               |                                                                                                        | 19. SECURITY CLASS (Report)<br>Unclassified                               |                                                                                   | 21. NO. OF PAGES                                                        |
| Release Unlimited                                                                                                                                                                                                        |                                                                                                        | 20. SECURITY CLASS (Page)<br>Unclassified                                 |                                                                                   | 22. PRICE                                                               |

# **Data Tables**

http://www.epa.gov/oar/aqtrnd03/appenda.pdf

| Statistic        | # of Sites | Units | Percentile   | 1981    | 1982    | 1983  | 1984    | 1985    | 1986    | 1987    | 1988    | 1989  | 1990    |
|------------------|------------|-------|--------------|---------|---------|-------|---------|---------|---------|---------|---------|-------|---------|
| Carbon Monoxid   | e          |       |              |         |         |       |         |         |         |         |         |       |         |
| 2nd Max. 8-hr.   | 321        | ppm   | 95th         | 15.2    | 15.3    | 15.3  | 13.8    | 12.7    | 12.2    | 11.6    | 11.3    | 10.9  | 10.2    |
| 2nd Max. 8-hr.   | 321        | ppm   | 90th         | 12.9    | 12.8    | 12.4  | 11.9    | 11.0    | 11.0    | 9.7     | 9.9     | 9.6   | 8.8     |
| 2nd Max. 8-hr.   | 321        | ppm   | 75th         | 10.6    | 10.0    | 9.8   | 9.9     | 8.9     | 8.9     | 8.3     | 7.8     | 7.8   | 7.2     |
| 2nd Max. 8-hr.   | 321        | ppm   | 50th         | 7.7     | 7.4     | 7.3   | 7.3     | 6.3     | 6.7     | 6.3     | 6.0     | 6.0   | 5.5     |
| 2nd Max. 8-hr.   | 321        | ppm   | 25th         | 5.6     | 5.5     | 5.2   | 5.2     | 4.9     | 5.0     | 4.7     | 4.5     | 4.5   | 4.3     |
| 2nd Max. 8-hr.   | 321        | ppm   | 10th         | 4.2     | 4.3     | 4.0   | 4.2     | 3.8     | 3.9     | 3.7     | 3.5     | 3.6   | 3.3     |
| 2nd Max. 8-hr.   | 321        | ppm   | 5th          | 3.7     | 3.6     | 3.4   | 3.5     | 3.4     | 3.3     | 3.3     | 3.1     | 2.9   | 2.9     |
| 2nd Max. 8-hr.   | 321        | ppm   | Arith. Mean  | 8.4     | 8.1     | 7.9   | 7.8     | 7.1     | 7.2     | 6.7     | 6.4     | 6.4   | 5.9     |
| Lead             |            |       |              |         |         |       |         |         |         |         |         |       |         |
| Max. Qtr. AM     | 228        | ppm   | 95th         | 1.39    | 1.31    | 1.04  | 1.03    | 0.70    | 0.41    | 0.31    | 0.29    | 0.23  | 0.17    |
| Max. Qtr. AM     | 228        | ppm   | 90th         | 1.02    | 0.96    | 0.77  | 0.72    | 0.56    | 0.30    | 0.21    | 0.20    | 0.15  | 0.13    |
| Max. Qtr. AM     | 228        | ppm   | 75th         | 0.61    | 0.69    | 0.55  | 0.50    | 0.32    | 0.19    | 0.13    | 0.11    | 0.10  | 0.08    |
| Max. Qtr. AM     | 228        | ppm   | 50th         | 0.41    | 0.43    | 0.37  | 0.33    | 0.21    | 0.12    | 0.09    | 0.07    | 0.06  | 0.05    |
| Max. Qtr. AM     | 228        | ppm   | 25th         | 0.28    | 0.28    | 0.24  | 0.23    | 0.14    | 0.08    | 0.06    | 0.04    | 0.04  | 0.03    |
| Max. Qtr. AM     | 228        | ppm   | 10th         | 0.20    | 0.18    | 0.16  | 0.15    | 0.10    | 0.06    | 0.04    | 0.02    | 0.03  | 0.02    |
| Max. Qtr. AM     | 228        | ppm   | 5th          | 0.15    | 0.14    | 0.13  | 0.12    | 0.07    | 0.05    | 0.03    | 0.02    | 0.02  | 0.01    |
| Max. Qtr. AM     | 228        | ppm   | Arith. Mean  | 0.58    | 0.58    | 0.47  | 0.45    | 0.28    | 0.18    | 0.13    | 0.12    | 0.10  | 0.08    |
| Nitrogen Dioxide | •          |       |              |         |         |       |         |         |         |         |         |       |         |
| Arith. Mean      | 169        | ppm   | 95th         | 0.051   | 0.050   | 0.046 | 0.046   | 0.048   | 0.050   | 0.043   | 0.048   | 0.045 | 0.042   |
| Arith. Mean      | 169        | ppm   | 90th         | 0.041   | 0.039   | 0.038 | 0.040   | 0.039   | 0.036   | 0.038   | 0.038   | 0.038 | 0.035   |
| Arith. Mean      | 169        | ppm   | 75th         | 0.028   | 0.029   | 0.028 | 0.029   | 0.029   | 0.029   | 0.028   | 0.029   | 0.029 | 0.028   |
| Arith. Mean      | 169        | ppm   | 50th         | 0.021   | 0.021   | 0.022 | 0.023   | 0.022   | 0.022   | 0.022   | 0.023   | 0.022 | 0.020   |
| Arith. Mean      | 169        | ppm   | 25th         | 0.016   | 0.016   | 0.016 | 0.016   | 0.017   | 0.016   | 0.017   | 0.017   | 0.016 | 0.015   |
| Arith. Mean      | 169        | ppm   | 10th         | 0.009   | 0.009   | 0.008 | 0.009   | 0.009   | 0.009   | 0.010   | 0.009   | 0.009 | 0.009   |
| Arith. Mean      | 169        | ppm   | 5th          | 0.006   | 0.004   | 0.004 | 0.004   | 0.005   | 0.004   | 0.004   | 0.003   | 0.004 | 0.004   |
| Arith. Mean      | 169        | ppm   | Arith. Mean  | 0.024   | 0.023   | 0.023 | 0.023   | 0.023   | 0.023   | 0.023   | 0.023   | 0.023 | 0.022   |
| Ozone            |            |       |              |         |         |       |         |         |         |         |         |       |         |
| 2nd Max. 1-hr.   | 471        | ppm   | 95th         | 0.220   | 0.210   | 0.224 | 0.204   | 0.190   | 0.170   | 0.183   | 0.203   | 0.180 | 0.170   |
| 2nd Max. 1-hr.   | 471        | ppm   | 90th         | 0.167   | 0.161   | 0.186 | 0.165   | 0.160   | 0.150   | 0.164   | 0.181   | 0.147 | 0.146   |
| 2nd Max. 1-hr.   | 471        | ppm   | 75th         | 0.140   | 0.136   | 0.150 | 0.139   | 0.133   | 0.130   | 0.140   | 0.155   | 0.124 | 0.122   |
| 2nd Max. 1-hr.   | 471        | ppm   | 50th         | 0.116   | 0.115   | 0.130 | 0.114   | 0.112   | 0.112   | 0.118   | 0.130   | 0.108 | 0.109   |
| 2nd Max. 1-hr.   | 471        | ppm   | 25th         | 0.100   | 0.100   | 0.110 | 0.100   | 0.098   | 0.099   | 0.104   | 0.110   | 0.098 | 0.096   |
| 2nd Max. 1-hr.   | 471        | ppm   | 10th         | 0.090   | 0.087   | 0.095 | 0.090   | 0.088   | 0.086   | 0.090   | 0.097   | 0.086 | 0.084   |
| 2nd Max. 1-hr.   | 471        | ppm   | 5th          | 0.080   | 0.080   | 0.086 | 0.081   | 0.078   | 0.080   | 0.087   | 0.088   | 0.080 | 0.077   |
| 2nd Max. 1-hr.   | 471        | ppm   | Arith. Mean  | 0.126   | 0.125   | 0.137 | 0.125   | 0.123   | 0.118   | 0.125   | 0.136   | 0.116 | 0.114   |
| 4th Moy 9 5-     | 469        |       | 0Eth         | 0 1 2 2 | 0 1 2 1 | 0.145 | 0 1 2 2 | 0 1 2 4 | 0 1 2 2 | 0 1 2 9 | 0 1 1 1 | 0 100 | 0 1 4 0 |
| 4th Max. 8-hr.   | 468        | ppm   | 95th         | 0.133   | 0.131   | 0.145 | 0.132   | 0.134   | 0.123   | 0.128   | 0.141   | 0.122 | 0.116   |
| 4th Max. 8-hr.   | 468        | ppm   | 90th<br>Z5th | 0.116   | 0.115   | 0.126 | 0.113   | 0.113   | 0.107   | 0.116   | 0.129   | 0.106 | 0.106   |
| 4th Max. 8-hr.   | 468        | ppm   | 75th         | 0.101   | 0.098   | 0.110 | 0.100   | 0.097   | 0.095   | 0.102   | 0.116   | 0.093 | 0.094   |
| 4th Max. 8-hr.   | 468        | ppm   | 50th         | 0.088   | 0.088   | 0.097 | 0.088   | 0.087   | 0.085   | 0.091   | 0.102   | 0.084 | 0.083   |
| 4th Max. 8-hr.   | 468        | ppm   | 25th         | 0.077   | 0.076   | 0.083 | 0.077   | 0.078   | 0.076   | 0.080   | 0.087   | 0.076 | 0.075   |
| 4th Max. 8-hr.   | 468        | ppm   | 10th         | 0.065   | 0.065   | 0.070 | 0.067   | 0.068   | 0.068   | 0.071   | 0.076   | 0.068 | 0.066   |
| 4th Max. 8-hr.   | 468        | ppm   | 5th          | 0.057   | 0.058   | 0.064 | 0.061   | 0.062   | 0.061   | 0.067   | 0.067   | 0.063 | 0.059   |
| 4th Max. 8-hr.   | 468        | ppm   | Arith. Mean  | 0.091   | 0.090   | 0.099 | 0.091   | 0.091   | 0.088   | 0.093   | 0.102   | 0.087 | 0.085   |

## Table A-1a. National Air Quality Trends Statistics for Criteria Pollutants, 1981–1990

| Statistic        | # of Sites | Units | Percentile  | 1981   | 1982   | 1983   | 1984   | 1985   | 1986   | 1987   | 1988   | 1989   | 1990  |
|------------------|------------|-------|-------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|
| PM <sub>10</sub> |            |       |             |        |        |        |        |        |        |        |        |        |       |
| Annual Avg.      | _          | µg/m3 | 95th        | _      | _      | _      | _      | _      |        | _      | _      | _      | _     |
| Annual Avg.      | _          | µg/m3 | 90th        |        | _      | _      |        | _      |        | _      | _      | _      | _     |
| Annual Avg.      | _          | µg/m3 | 75th        |        | _      | _      |        | _      |        | _      | _      | _      | _     |
| Annual Avg.      | _          | µg/m3 | 50th        | _      | _      | _      | _      | _      | _      | _      | _      | _      | _     |
| Annual Avg.      | —          | µg/m3 | 25th        | _      | _      | _      | _      | _      | _      | _      | _      | _      | _     |
| Annual Avg.      | _          | µg/m3 | 10th        |        | _      | _      |        | _      |        | _      | _      | _      | _     |
| Annual Avg.      | —          | µg/m3 | 5th         | _      | _      | _      | _      | _      | _      | _      | _      | _      | _     |
| Annual Avg.      | _          | µg/m3 | Arith. Mean | —      | _      | _      | _      | _      | _      | _      | _      | _      | -     |
| Sulfur Dioxide   |            |       |             |        |        |        |        |        |        |        |        |        |       |
| Arith. Mean      | 456        | ppm   | 95th        | 0.0223 | 0.0199 | 0.0184 | 0.0193 | 0.0186 | 0.0180 | 0.0169 | 0.0182 | 0.0176 | 0.016 |
| Arith. Mean      | 456        | ppm   | 90th        | 0.0186 | 0.0165 | 0.0152 | 0.0164 | 0.0160 | 0.0147 | 0.0142 | 0.0150 | 0.0148 | 0.013 |
| Arith. Mean      | 456        | ppm   | 75th        | 0.0134 | 0.0123 | 0.0121 | 0.0126 | 0.0117 | 0.0118 | 0.0114 | 0.0113 | 0.0114 | 0.010 |
| Arith. Mean      | 456        | ppm   | 50th        | 0.0091 | 0.0087 | 0.0086 | 0.0089 | 0.0087 | 0.0083 | 0.0082 | 0.0082 | 0.0080 | 0.007 |
| Arith. Mean      | 456        | ppm   | 25th        | 0.0061 | 0.0058 | 0.0058 | 0.0055 | 0.0053 | 0.0052 | 0.0051 | 0.0050 | 0.0047 | 0.004 |
| Arith. Mean      | 456        | ppm   | 10th        | 0.0028 | 0.0030 | 0.0028 | 0.0028 | 0.0026 | 0.0024 | 0.0024 | 0.0025 | 0.0023 | 0.002 |
| Arith. Mean      | 456        | ppm   | 5th         | 0.0018 | 0.0015 | 0.0016 | 0.0017 | 0.0018 | 0.0016 | 0.0016 | 0.0019 | 0.0017 | 0.001 |
| Arith. Mean      | 456        | ppm   | Arith. Mean | 0.0102 | 0.0095 | 0.0093 | 0.0095 | 0.0090 | 0.0088 | 0.0086 | 0.0087 | 0.0085 | 0.007 |
| 2nd Max. 24-hr.  | _          | ppm   | 95th        | _      | _      | _      | _      | _      | _      | _      | _      | _      | _     |
| 2nd Max. 24-hr.  |            | ppm   | 90th        | _      | _      | _      | _      | _      | _      | _      | _      | _      | _     |
| 2nd Max. 24-hr.  | _          | ppm   | 75th        | _      | _      | _      | _      | _      | _      | _      | _      | _      | _     |
| 2nd Max. 24-hr.  | _          | ppm   | 50th        | _      | _      | _      | _      | _      | _      | _      | _      | _      | _     |
| 2nd Max. 24-hr.  | _          | ppm   | 25th        | _      | _      | _      | _      | _      | _      | _      | _      | _      | _     |
| 2nd Max. 24-hr.  | _          | ppm   | 10th        |        | _      | _      | _      |        | _      | _      | _      | _      | _     |
| 2nd Max. 24-hr.  | _          | ppm   | 5th         |        | _      | _      | _      |        | _      | _      | _      | _      | _     |
| 2nd Max. 24-hr.  |            | ppm   | Arith. Mean |        |        |        |        |        |        |        |        |        |       |

### Table A-1a. National Air Quality Trends Statistics for Criteria Pollutants, 1981–1990 (continued)

| Statistic        | # of Sites | Units | Percentile  | 1991  | 1992  | 1993  | 1994  | 1995  | 1996  | 1997  | 1998  | 1999  | 2000  |
|------------------|------------|-------|-------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Carbon Monoxid   | e          |       |             |       |       |       |       |       |       |       |       |       |       |
| 2nd Max. 8-hr.   | 327        | ppm   | 95th        | 9.8   | 8.9   | 8.5   | 8.3   | 7.9   | 7.7   | 6.9   | 7.0   | 6.5   | 6.1   |
| 2nd Max. 8-hr.   | 327        | ppm   | 90th        | 8.9   | 8.0   | 7.4   | 7.7   | 7.0   | 6.7   | 6.2   | 5.8   | 5.6   | 5.1   |
| 2nd Max. 8-hr.   | 327        | ppm   | 75th        | 7.1   | 6.6   | 6.2   | 6.3   | 5.7   | 5.2   | 5.0   | 4.7   | 4.5   | 4.1   |
| 2nd Max. 8-hr.   | 327        | ppm   | 50th        | 5.3   | 5.0   | 4.8   | 5.0   | 4.4   | 4.0   | 3.8   | 3.6   | 3.6   | 3.2   |
| 2nd Max. 8-hr.   | 327        | ppm   | 25th        | 4.0   | 3.8   | 3.6   | 3.9   | 3.3   | 3.0   | 2.9   | 2.8   | 2.6   | 2.4   |
| 2nd Max. 8-hr.   | 327        | ppm   | 10th        | 2.8   | 2.8   | 2.8   | 2.7   | 2.5   | 2.3   | 2.1   | 2.1   | 1.9   | 1.8   |
| 2nd Max. 8-hr.   | 327        | ppm   | 5th         | 2.1   | 2.2   | 2.1   | 2.1   | 2.2   | 1.9   | 1.7   | 1.8   | 1.6   | 1.4   |
| 2nd Max. 8-hr.   | 327        | ppm   | Arith. Mean | 5.6   | 5.3   | 5.0   | 5.1   | 4.6   | 4.3   | 4.1   | 3.9   | 3.7   | 3.4   |
| Lead             |            |       |             |       |       |       |       |       |       |       |       |       |       |
| Max. Qtr. AM     | 130        | ppm   | 95th        | 0.38  | 0.23  | 0.18  | 0.16  | 0.18  | 0.15  | 0.12  | 0.14  | 0.10  | 0.11  |
| Max. Qtr. AM     | 130        | ppm   | 90th        | 0.19  | 0.15  | 0.12  | 0.12  | 0.10  | 0.10  | 0.09  | 0.10  | 0.09  | 0.09  |
| Max. Qtr. AM     | 130        | ppm   | 75th        | 0.08  | 0.07  | 0.07  | 0.06  | 0.05  | 0.05  | 0.05  | 0.05  | 0.05  | 0.05  |
| Max. Qtr. AM     | 130        | ppm   | 50th        | 0.04  | 0.04  | 0.04  | 0.03  | 0.03  | 0.03  | 0.03  | 0.03  | 0.02  | 0.02  |
| Max. Qtr. AM     | 130        | ppm   | 25th        | 0.03  | 0.02  | 0.02  | 0.02  | 0.02  | 0.01  | 0.01  | 0.01  | 0.01  | 0.01  |
| Max. Qtr. AM     | 130        | ppm   | 10th        | 0.01  | 0.01  | 0.01  | 0.01  | 0.01  | 0.01  | 0.01  | 0.01  | 0.01  | 0.01  |
| Max. Qtr. AM     | 130        | ppm   | 5th         | 0.01  | 0.01  | 0.01  | 0.01  | 0.01  | 0.00  | 0.01  | 0.01  | 0.01  | 0.01  |
| Max. Qtr. AM     | 130        | ppm   | Arith. Mean | 0.08  | 0.07  | 0.06  | 0.05  | 0.05  | 0.05  | 0.04  | 0.04  | 0.04  | 0.04  |
| Nitrogen Dioxide | •          |       |             |       |       |       |       |       |       |       |       |       |       |
| Arith. Mean      | 234        | ppm   | 95th        | 0.043 | 0.038 | 0.037 | 0.040 | 0.039 | 0.037 | 0.034 | 0.035 | 0.035 | 0.033 |
| Arith. Mean      | 234        | ppm   | 90th        | 0.032 | 0.032 | 0.031 | 0.032 | 0.031 | 0.031 | 0.029 | 0.030 | 0.029 | 0.028 |
| Arith. Mean      | 234        | ppm   | 75th        | 0.025 | 0.024 | 0.024 | 0.024 | 0.023 | 0.023 | 0.022 | 0.023 | 0.023 | 0.021 |
| Arith. Mean      | 234        | ppm   | 50th        | 0.018 | 0.018 | 0.018 | 0.019 | 0.018 | 0.018 | 0.017 | 0.017 | 0.017 | 0.017 |
| Arith. Mean      | 234        | ppm   | 25th        | 0.012 | 0.013 | 0.013 | 0.013 | 0.012 | 0.012 | 0.012 | 0.012 | 0.013 | 0.012 |
| Arith. Mean      | 234        | ppm   | 10th        | 0.008 | 0.008 | 0.008 | 0.008 | 0.007 | 0.007 | 0.008 | 0.007 | 0.008 | 0.008 |
| Arith. Mean      | 234        | ppm   | 5th         | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.004 | 0.005 | 0.005 | 0.005 |
| Arith. Mean      | 234        | ppm   | Arith. Mean | 0.019 | 0.019 | 0.019 | 0.020 | 0.019 | 0.019 | 0.018 | 0.018 | 0.018 | 0.017 |
| Ozone            |            |       |             |       |       |       |       |       |       |       |       |       |       |
| 2nd Max. 1-hr.   | 738        | ppm   | 95th        | 0.161 | 0.152 | 0.150 | 0.146 | 0.149 | 0.140 | 0.140 | 0.147 | 0.138 | 0.134 |
| 2nd Max. 1-hr.   | 738        | ppm   | 90th        | 0.145 | 0.130 | 0.135 | 0.128 | 0.138 | 0.125 | 0.129 | 0.132 | 0.130 | 0.124 |
| 2nd Max. 1-hr.   | 738        | ppm   | 75th        | 0.121 | 0.112 | 0.120 | 0.116 | 0.122 | 0.114 | 0.115 | 0.119 | 0.117 | 0.111 |
| 2nd Max. 1-hr.   | 738        | ppm   | 50th        | 0.106 | 0.100 | 0.104 | 0.104 | 0.110 | 0.103 | 0.103 | 0.109 | 0.107 | 0.098 |
| 2nd Max. 1-hr.   | 738        | ppm   | 25th        | 0.093 | 0.090 | 0.091 | 0.092 | 0.097 | 0.093 | 0.091 | 0.097 | 0.096 | 0.088 |
| 2nd Max. 1-hr.   | 738        | ppm   | 10th        | 0.081 | 0.081 | 0.080 | 0.082 | 0.085 | 0.083 | 0.080 | 0.086 | 0.085 | 0.079 |
| 2nd Max. 1-hr.   | 738        | ppm   | 5th         | 0.075 | 0.075 | 0.074 | 0.077 | 0.078 | 0.079 | 0.074 | 0.076 | 0.076 | 0.073 |
| 2nd Max. 1-hr.   | 738        | ppm   | Arith. Mean | 0.111 | 0.105 | 0.107 | 0.106 | 0.112 | 0.105 | 0.104 | 0.110 | 0.107 | 0.100 |
| 4th Max. 8-hr.   | 741        | ppm   | 95th        | 0.115 | 0.106 | 0.108 | 0.105 | 0.111 | 0.102 | 0.105 | 0.109 | 0.105 | 0.100 |
| 4th Max. 8-hr.   | 741        | ppm   | 90th        | 0.107 | 0.096 | 0.100 | 0.097 | 0.106 | 0.097 | 0.099 | 0.102 | 0.101 | 0.095 |
| 4th Max. 8-hr.   | 741        | ppm   | 75th        | 0.095 | 0.087 | 0.090 | 0.090 | 0.095 | 0.090 | 0.091 | 0.095 | 0.094 | 0.087 |
| 4th Max. 8-hr.   | 741        | ppm   | 50th        | 0.084 | 0.079 | 0.081 | 0.082 | 0.088 | 0.082 | 0.082 | 0.087 | 0.087 | 0.080 |
| 4th Max. 8-hr.   | 741        | ppm   | 25th        | 0.073 | 0.072 | 0.073 | 0.074 | 0.077 | 0.075 | 0.074 | 0.078 | 0.077 | 0.072 |
| 4th Max. 8-hr.   | 741        | ppm   | 10th        | 0.063 | 0.065 | 0.063 | 0.067 | 0.068 | 0.068 | 0.065 | 0.069 | 0.068 | 0.064 |
| 4th Max. 8-hr.   | 741        | ppm   | 5th         | 0.057 | 0.059 | 0.058 | 0.061 | 0.062 | 0.062 | 0.059 | 0.062 | 0.061 | 0.057 |
|                  | 741        | ppm   | Arith. Mean | 0.085 | 0.081 | 0.082 | 0.083 | 0.087 | 0.083 | 0.082 | 0.086 | 0.086 | 0.079 |

## Table A-1b. National Air Quality Trends Statistics for Criteria Pollutants, 1991–2000

| Statistic                | # of Sites | Units | Percentile  | 1991   | 1992   | 1993   | 1994   | 1995   | 1996   | 1997   | 1998   | 1999   | 2000   |
|--------------------------|------------|-------|-------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| P <b>M</b> <sub>10</sub> |            |       |             |        |        |        |        |        |        |        |        |        |        |
| Annual Avg.              | 886        | µg/m3 | 95th        | 46.4   | 41.8   | 41.5   | 40.0   | 38.9   | 37.9   | 38.1   | 35.8   | 39.7   | 39.0   |
| Annual Avg.              | 886        | µg/m3 | 90th        | 40.1   | 36.7   | 36.6   | 36.4   | 34.9   | 33.6   | 33.0   | 31.9   | 33.2   | 32.9   |
| Annual Avg.              | 886        | µg/m3 | 75th        | 33.8   | 31.3   | 30.5   | 30.7   | 29.1   | 27.7   | 27.2   | 27.5   | 27.6   | 27.5   |
| Annual Avg.              | 886        | µg/m3 | 50th        | 28.2   | 26.1   | 25.9   | 25.6   | 24.1   | 23.1   | 23.1   | 23.4   | 23.2   | 23.1   |
| Annual Avg.              | 886        | µg/m3 | 25th        | 23.6   | 22.2   | 21.1   | 21.1   | 19.9   | 19.4   | 19.5   | 19.7   | 19.1   | 19.1   |
| Annual Avg.              | 886        | µg/m3 | 10th        | 18.5   | 18.0   | 17.4   | 16.9   | 15.9   | 16.1   | 16.1   | 15.3   | 15.4   | 15.2   |
| Annual Avg.              | 886        | µg/m3 | 5th         | 16.1   | 15.2   | 14.3   | 14.1   | 13.3   | 13.8   | 13.4   | 13.4   | 13.5   | 12.7   |
| Annual Avg.              | 886        | µg/m3 | Arith. Mean | 29.4   | 27.3   | 26.6   | 26.4   | 25.1   | 24.2   | 24.1   | 23.8   | 24.1   | 23.8   |
| Sulfur Dioxide           |            |       |             |        |        |        |        |        |        |        |        |        |        |
| Arith. Mean              | 457        | ppm   | 95th        | 0.0167 | 0.0167 | 0.0159 | 0.0151 | 0.0118 | 0.0113 | 0.0111 | 0.0107 | 0.0105 | 0.0106 |
| Arith. Mean              | 457        | ppm   | 90th        | 0.0145 | 0.0130 | 0.0130 | 0.0125 | 0.0104 | 0.0100 | 0.0094 | 0.0096 | 0.0091 | 0.0090 |
| Arith. Mean              | 457        | ppm   | 75th        | 0.0101 | 0.0096 | 0.0095 | 0.0094 | 0.0077 | 0.0075 | 0.0073 | 0.0074 | 0.0070 | 0.0065 |
| Arith. Mean              | 457        | ppm   | 50th        | 0.0076 | 0.0070 | 0.0068 | 0.0067 | 0.0051 | 0.0054 | 0.0052 | 0.0050 | 0.0049 | 0.0048 |
| Arith. Mean              | 457        | ppm   | 25th        | 0.0046 | 0.0044 | 0.0041 | 0.0039 | 0.0033 | 0.0033 | 0.0032 | 0.0033 | 0.0032 | 0.0030 |
| Arith. Mean              | 457        | ppm   | 10th        | 0.0023 | 0.0023 | 0.0023 | 0.0022 | 0.0019 | 0.0019 | 0.0019 | 0.0020 | 0.0020 | 0.0019 |
| Arith. Mean              | 457        | ppm   | 5th         | 0.0017 | 0.0015 | 0.0016 | 0.0016 | 0.0014 | 0.0015 | 0.0014 | 0.0014 | 0.0015 | 0.0015 |
| Arith. Mean              | 457        | ppm   | Arith. Mean | 0.0081 | 0.0076 | 0.0074 | 0.0072 | 0.0057 | 0.0057 | 0.0056 | 0.0055 | 0.0053 | 0.0051 |
| 2nd Max. 24-hr           | 457        | ppm   | 95th        | 0.0800 | 0.0800 | 0.0730 | 0.0760 | 0.0590 | 0.0610 | 0.0530 | 0.0540 | 0.0530 | 0.0470 |
| 2nd Max. 24-hr           |            | ppm   | 90th        | 0.0640 | 0.0630 | 0.0600 | 0.0640 | 0.0490 | 0.0480 | 0.0470 | 0.0450 | 0.0430 | 0.0410 |
| 2nd Max. 24-hr           |            | ppm   | 75th        | 0.0440 | 0.0450 | 0.0420 | 0.0460 | 0.0340 | 0.0330 | 0.0330 | 0.0320 | 0.0290 | 0.0300 |
| 2nd Max. 24-hr           |            | ppm   | 50th        | 0.0320 | 0.0310 | 0.0290 | 0.0330 | 0.0230 | 0.0230 | 0.0230 | 0.0220 | 0.0210 | 0.0210 |
| 2nd Max. 24-hr.          |            | ppm   | 25th        | 0.0210 | 0.0200 | 0.0190 | 0.0200 | 0.0160 | 0.0150 | 0.0150 | 0.0150 | 0.0140 | 0.0140 |
| 2nd Max. 24-hr.          |            | ppm   | 10th        | 0.0110 | 0.0110 | 0.0110 | 0.0100 | 0.0080 | 0.0090 | 0.0080 | 0.0080 | 0.0080 | 0.0080 |
| 2nd Max. 24-hr.          | 457        | ppm   | 5th         | 0.0080 | 0.0070 | 0.0070 | 0.0060 | 0.0060 | 0.0060 | 0.0050 | 0.0050 | 0.0060 | 0.0060 |
| 2nd Max. 24-hr.          |            | ppm   | Arith. Mean | 0.0364 | 0.0353 | 0.0340 | 0.0358 | 0.0267 | 0.0267 | 0.0257 | 0.0247 | 0.0238 | 0.0233 |

### Table A-1b. National Air Quality Trends Statistics for Criteria Pollutants, 1991–2000 (continued)

| Source Category                      | 1980  | 1985  | 1989  | 1990  | 1991  | 1992  | 1993  | 1994  | 1995  | 1996  | 1997  | 1998  | 1999  | 2000  |
|--------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Fuel Combustion                      | 7,302 | 8,485 | 7,443 | 5,510 | 5,856 | 6,155 | 5,586 | 5,519 | 5,934 | 4,349 | 4,336 | 4,337 | 4,348 | 4,590 |
| FUEL COMB. ELEC. UTIL.               | 322   | 291   | 321   | 363   | 349   | 350   | 363   | 370   | 372   | 409   | 423   | 450   | 424   | 445   |
| Coal                                 | 188   | 207   | 233   | 234   | 234   | 236   | 246   | 247   | 250   | 251   | 257   | 242   | 229   | 234   |
| Oil                                  | 48    | 18    | 26    | 20    | 19    | 15    | 16    | 15    | 10    | 12    | 14    | 19    | 19    | 18    |
| Gas                                  | 85    | 56    | 51    | 51    | 51    | 51    | 49    | 53    | 55    | 79    | 84    | 97    | 96    | 105   |
| Other                                | NA    | 8     | 9     | 33    | 19    | 26    |
| Internal Combustion                  | NA    | 10    | 11    | 57    | 45    | 47    | 51    | 55    | 58    | 58    | 60    | 60    | 61    | 62    |
| FUEL COMB. INDUSTRIAL                | 750   | 670   | 672   | 879   | 920   | 955   | 1,043 | 1,041 | 1,056 | 1,191 | 1,163 | 1,151 | 1,175 | 1,221 |
| Coal                                 | 58    | 86    | 87    | 105   | 101   | 102   | 101   | 100   | 98    | 110   | 109   | 106   | 109   | 110   |
| Oil                                  | 35    | 47    | 46    | 74    | 60    | 64    | 66    | 66    | 71    | 54    | 52    | 51    | 52    | 55    |
| Gas                                  | 418   | 257   | 271   | 226   | 284   | 300   | 322   | 337   | 345   | 340   | 339   | 336   | 340   | 361   |
| Other                                | 239   | 167   | 173   | 279   | 267   | 264   | 286   | 287   | 297   | 349   | 333   | 334   | 341   | 355   |
| Internal Combustion                  | NA    | 113   | 96    | 195   | 208   | 227   | 268   | 251   | 245   | 337   | 330   | 324   | 334   | 340   |
| FUEL COMB. OTHER                     | 6,230 | 7,525 | 6,450 | 4,269 | 4,587 | 4,849 | 4,181 | 4,108 | 4,506 | 2,749 | 2,750 | 2,736 | 2,749 | 2,924 |
| Commercial/Institutional Coal        | 13    | 14    | 15    | 14    | 14    | 15    | 15    | 15    | 15    | 14    | 14    | 15    | 15    | 15    |
| Commercial/Institutional Oil         | 21    | 18    | 17    | 18    | 17    | 18    | 18    | 18    | 19    | 19    | 20    | 16    | 16    | 16    |
| Commercial/Institutional Gas         | 26    | 42    | 49    | 44    | 44    | 51    | 53    | 54    | 54    | 64    | 65    | 63    | 68    | 69    |
| Misc. Fuel Comb. (Except Residential | ,     | 57    | 55    | 149   | 141   | 141   | 143   | 147   | 145   | 46    | 48    | 49    | 50    | 51    |
| Residential Wood                     | 5,992 | 7,232 | 6,161 | 3,781 | 4,090 | 4,332 | 3,679 | 3,607 | 3,999 | 2,351 | 2,351 | 2,351 | 2,351 | 2,526 |
| fireplaces                           | 5,992 | 7,232 | 6,161 | 3,781 | 4,090 | 4,332 | 3,679 | 3,607 | 3,999 | 1,043 | 1,043 | 1,043 | 1,043 | 1,118 |
| woodstoves                           | NA    | 1,308 | 1,308 | 1,308 | 1,308 | 1,408 |
| other                                | NA    |
| Residential Other                    | 178   | 162   | 153   | 262   | 281   | 292   | 274   | 268   | 273   | 255   | 252   | 242   | 249   | 246   |
| Industrial Processes                 | 9,250 | 7,215 | 7,013 | 5,852 | 5,740 | 5,683 | 5,898 | 5,839 | 5,790 | 7,187 | 7,348 | 7,362 | 7,343 | 7,521 |
| CHEMICAL & ALLIED PRODUCT MFG        | 2,151 | 1,845 | 1,925 | 1,183 | 1,127 | 1,112 | 1,093 | 1,171 | 1,223 | 1,053 | 1,071 | 1,081 | 1,081 | 1,112 |
| Organic Chemical Mfg                 | 543   | 251   | 285   | 149   | 128   | 131   | 132   | 130   | 127   | 90    | 91    | 92    | 93    | 96    |
| ethylene dichloride                  | 17    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| maleic anhydride                     | 103   | 16    | 16    | 3     | 3     | 4     | 4     | 4     | 4     | 0     | 0     | 0     | 0     | 0     |
| cyclohexanol                         | 37    | 5     | 6     | 0     | 0     | 0     | 0     | 1     | 1     | 0     | 0     | 0     | 0     | 0     |
| other                                | 386   | 230   | 264   | 146   | 125   | 127   | 128   | 125   | 123   | 89    | 90    | 92    | 92    | 95    |
| Inorganic Chemical Mfg               | 191   | 89    | 95    | 133   | 129   | 130   | 131   | 135   | 134   | 120   | 121   | 123   | 125   | 128   |
| pigments; TiO2 chloride process: rea |       | 77    | 84    | 119   | 119   | 119   | 119   | 119   | 119   | 117   | 118   | 120   | 122   | 125   |
| other                                | 157   | 12    | 12    | 14    | 11    | 12    | 13    | 16    | 15    | 3     | 3     | 3     | 3     | 3     |
| Polymer & Resin Mfg                  | NA    | 19    | 18    | 3     | 6     | 5     | 5     | 5     | 5     | 5     | 5     | 5     | 5     | 5     |
| Agricultural Chemical Mfg            | NA    | 16    | 17    | 44    | 19    | 19    | 18    | 17    | 17    | 12    | 13    | 13    | 13    | 13    |
| Paint, Varnish, Lacquer, Enamel Mfg  | NA    | NA    | NA    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Pharmaceutical Mfg                   | NA    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 1     | 1     |
| Other Chemical Mfg                   | 1,417 | 1,471 | 1,510 | 854   | 844   | 827   | 805   | 885   | 939   | 826   | 841   | 847   | 845   | 869   |
| carbon black mfg                     | 1,417 | 1,078 | 1,112 | 798   | 756   | 736   | 715   | 793   | 845   | 796   | 811   | 818   | 815   | 839   |
| carbon black furnace: fugitives      | NA    | 155   | 180   | 17    | 54    | 57    | 60    | 63    | 65    | 4     | 4     | 4     | 4     | 4     |
| other                                | NA    | 238   | 219   | 39    | 35    | 34    | 30    | 30    | 29    | 26    | 26    | 26    | 26    | 26    |
| METALS PROCESSING                    | 2,246 | 2,223 | 2,132 | 2,640 | 2,571 | 2,496 | 2,536 | 2,475 | 2,380 | 1,604 | 1,709 | 1,702 | 1,673 | 1,735 |
| Nonferrous Metals Processing         | 842   | 694   | 677   | 436   | 438   | 432   | 423   | 421   | 424   | 459   | 475   | 465   | 451   | 461   |
| aluminum anode baking                | 421   | 41    | 41    | 41    | 47    | 41    | 41    | 41    | 41    | 22    | 23    | 23    | 23    | 23    |
| prebake aluminum cell                | 421   | 257   | 254   | 260   | 260   | 260   | 260   | 260   | 260   | 277   | 288   | 281   | 271   | 278   |
| other                                | NA    | 396   | 382   | 135   | 131   | 131   | 122   | 120   | 123   | 160   | 164   | 160   | 157   | 160   |

Table A-2. National Carbon Monoxide Emissions Estimates, 1980, 1985, 1989–2000 (thousand short tons)

| Source Category                          | 1980    | 1985    | 1989   | 1990   | 1991   | 1992   | 1993   | 1994   | 1995   | 1996  | 1997  | 1998  | 1999   | 2000  |
|------------------------------------------|---------|---------|--------|--------|--------|--------|--------|--------|--------|-------|-------|-------|--------|-------|
| Ferrous Metals Processing                | 1,404   | 1,523   | 1,449  | 2,163  | 2,108  | 2,038  | 2,089  | 2,029  | 1,930  | 1,101 | 1,189 | 1,193 | 1,181  | 1,233 |
| basic oxygen furnace                     | 80      | 694     | 662    | 594    | 731    | 767    | 768    | 677    | 561    | 268   | 296   | 301   | 301    | 316   |
| carbon steel electric arc furnace        | 280     | 19      | 18     | 45     | 54     | 49     | 58     | 61     | 65     | 60    | 65    | 66    | 66     | 69    |
| coke oven charging                       | 43      | 9       | 9      | 14     | 16     | 17     | 7      | 7      | 8      | 4     | 4     | 4     | 4      | 4     |
| gray iron cupola                         | 340     | 302     | 280    | 124    | 118    | 114    | 121    | 128    | 120    | 111   | 115   | 111   | 106    | 108   |
| iron ore sinter plant windbox            | 600     | 304     | 293    | 211    | 211    | 211    | 211    | 211    | 211    | 46    | 50    | 50    | 50     | 52    |
| other                                    | 61      | 194     | 187    | 1,174  | 979    | 880    | 924    | 945    | 966    | 612   | 659   | 661   | 654    | 683   |
| Metals Processing NEC                    | NA      | 6       | 6      | 40     | 25     | 26     | 25     | 25     | 25     | 44    | 46    | 44    | 41     | 41    |
| PETROLEUM & RELATED INDUSTRIES           | 1,723   | 462     | 436    | 333    | 345    | 371    | 371    | 338    | 348    | 354   | 367   | 366   | 366    | 369   |
| Oil & Gas Production                     | NA      | 11      | 8      | 38     | 18     | 21     | 22     | 35     | 34     | 27    | 27    | 27    | 27     | 28    |
| Petroleum Refineries & Related Industrie | es1,723 | 449     | 427    | 291    | 324    | 345    | 344    | 299    | 309    | 319   | 332   | 331   | 332    | 333   |
| fluid catalytic cracking units           | 1,680   | 403     | 390    | 284    | 315    | 333    | 328    | 286    | 299    | 308   | 320   | 319   | 320    | 321   |
| other                                    | 44      | 46      | 37     | 7      | 9      | 13     | 17     | 13     | 10     | 11    | 12    | 12    | 12     | 12    |
| Asphalt Manufacturing                    | NA      | 2       | 2      | 3      | 4      | 5      | 5      | 5      | 5      | 8     | 8     | 8     | 7      |       |
| OTHER INDUSTRIAL PROCESSES               | 830     | 694     | 716    | 537    | 548    | 544    | 594    | 600    | 624    | 561   | 582   | 590   | 599    | 620   |
| Agriculture, Food, & Kindred Products    |         | 0       | 0      | 3      | 3      | 3      | 3      | 2      | 6      | 4     | 4     | 4     | 4      | 4     |
| Textiles, Leather, & Apparel Products    | NA      | Ő       | 0<br>0 | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 0     | 0     | 0      | 0     |
| Wood, Pulp & Paper, & Publishing Prod.   |         | 627     | 655    | 473    | 461    | 449    | 453    | 461    | 484    | 356   | 370   | 378   | 388    | 401   |
| sulfate pulping: rec. furnace/evaporate  |         | 475     | 497    | 370    | 360    | 348    | 350    | 355    | 370    | 274   | 285   | 291   | 299    | 309   |
| sulfate (kraft) pulping: lime kiln       | 798     | 140     | 146    | 87     | 81     | 75     | 78     | 76     | 82     | 50    | 52    | 53    | 55     | 57    |
| other                                    | NA      | 12      | 13     | 16     | 21     | 25     | 24     | 30     | 32     | 32    | 33    | 34    | 34     | 36    |
| Rubber & Miscellaneous Plastic Product   |         | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 0     | 0     | 0      | 0     |
| Mineral Products                         | 32      | 43      | 43     | 54     | 77     | 85     | 131    | 131    | 127    | 180   | 186   | 186   | 185    | 192   |
| Machinery Products                       | NA      | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 100   | 100   | 100   | 100    | 1/2   |
| Electronic Equipment                     | NA      | 18      | 12     | 2      | 2      | 2      | 2      | 2      | 2      | 0     | 0     | 0     | 0      | 0     |
| Transportation Equipment                 | NA      | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 0     | 0     | 0      | 0     |
| Miscellaneous Industrial Processes       | NA      | 6       | 5      | 5      | 5      | 6      | 4      | 4      | 4      | 19    | 19    | 20    | 20     | 20    |
| SOLVENT UTILIZATION                      | NA      | 2       | 2      | 5      | 5      | 5      | 4<br>5 | 4<br>5 | 4      | 19    | 2     | 20    | 20     | 20    |
|                                          | NA      | 1       | 2      | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 2     | 2     | 2      | 2     |
| Degreasing<br>Craphic Arts               | NA      | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 0     | 0     | 0      | 0     |
| Graphic Arts                             | NA      | NA      | NA     | 0      | 0      | 0      | 0      | 0      | 0<br>1 | 0     | 0     | 0     | 0      | 0     |
| Dry Cleaning                             |         | NA<br>0 |        | 0      | 0      | 1      | 1      | 1      | 1      | 0     | 1     | 1     | 0<br>1 | 1     |
| Surface Coating                          | NA      | 0       | 1<br>0 | 0      | 4      | 4      | 4      | 4      | 4      | 0     | 0     | 0     | 0      | 0     |
| Other Industrial                         | NA      | -       |        | 4<br>0 | 4<br>0 | 4<br>0 | 4<br>0 | 4<br>0 | 4<br>0 | 0     | 0     |       | 0      | 0     |
| Nonindustrial                            | NA      | NA      | NA     |        |        |        |        |        |        |       | -     | 0     |        |       |
| Solvent Utilization NEC                  | NA      | NA      | NA     | NA     | NA     | NA     | NA     | NA     | NA     | 0     | 0     | 0     | 0      | 0     |
| STORAGE & TRANSPORT                      | NA      | 49      | 55     | 76     | 28     | 17     | 51     | 24     | 25     | 70    | 71    | 72    | 72     | 74    |
| Bulk Terminals & Plants                  | NA      | 0       | 0      | 0      | 2      | 0      | 4      | 4      | 4      | 0     | 0     | 0     | 0      | 0     |
| Petroleum & Petroleum Product Stora      | 0       | 0       | 0      | 0      | 12     | 0      | 32     | 4      | 4      | 0     | 0     | 0     | 0      | 0     |
| Petroleum & Petroleum Product Transpo    |         | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 0     | 0     | 0      | 0     |
| Service Stations: Stage I                | NA      | NA      | NA     | NA     | NA     | NA     | NA     | NA     | NA     | 0     | 0     | 0     | 0      | 0     |
| Service Stations: Stage II               | NA      | NA      | NA     | NA     | NA     | NA     | NA     | 0      | 0      | 0     | 0     | 0     | 0      | 0     |
| Organic Chemical Storage                 | NA      | 42      | 49     | 74     | 13     | 13     | 13     | 13     | 13     | 68    | 69    | 70    | 70     | 72    |
| Organic Chemical Transport               | NA      | NA      | NA     | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 0     | 0     | 0      | 0     |
| Inorganic Chemical Storage               | NA      | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 0     | 0     | 0      | 0     |
| Bulk Materials Storage                   | NA      | 6       | 5      | 1      | 1      | 3      | 2      | 3      | 3      | 1     | 1     | 1     | 1      | 1     |

NATIONAL AIR QUALITY AND EMISSIONS TRENDS REPORT, 2003

| WASTE DISPOSAL & RECYCLING         2,300         1,941         1,747         1,079         1,116         1,138         1,248         1,225         1,185         3,544         3,546         3,549           Incineration         1,246         958         876         372         392         404         497         467         432         72         74         77           conical wood burner         228         17         19         6         7         6         6         6         6         2         2         2           municipal incinerator         13         34         35         16         17         15         14         14         15         7         7         8           industrial         NA         9         9         10         10         87         48         10         9         10         10           commercial/institutional         60         32         39         19         20         21         21         21         21         21         21         21         21         21         21         21         21         21         22         23         33           Open Burning         1,007         20< | 3,550 3,609<br>76 78<br>2 2 | 509 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----|
| conical wood burner22817196766666222municipal incinerator133435161715141415778industrialNA999101087481091010commercial/institutional60323919202121212122222324residential945865773294312324340347351000otherNA22272628293029323233Open Burning1,0549828707067227317497557503,4663,466industrial1,0072021141415151550000commercial/institutional47454648505254520000000000000000000000000000000000000000000000000000000000<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 2                         |     |
| municipal incinerator         13         34         35         16         17         15         14         14         15         7         7         8           industrial         NA         9         9         9         10         10         87         48         10         9         10         10           commmercial/institutional         60         32         39         19         20         21         21         21         21         22         22         33         34         34         347         351         0         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         0              |                             | 78  |
| industrialNA999101087481091010commmercial/institutional603239192021212121222324residential945865773294312324340347351000otherNA2227262829302932232233Open Burning1,0549828707067227317497557503,4663,466industrial1,0072021141415151515000commercial/institutional477445546485052545200000residentialNA958845509516523529533536425425425425425425425425425425425425425425425425425425425425425425425425425425425425425425425425426436436436436436436436436436436436436436436436436436436436436436436436436436436436436 <t< td=""><td></td><td>2</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             | 2   |
| commmercial/institutional60323919202121212121222324residential945865773294312324340347351000otherNA22272628293029323233Open Burning1,0549828707067227317497557503,4663,466industrial1,00720211414151515000commmercial/institutional4745464850525452000commercial/institutional4745464850525452000residentialNANANANANANANA2,9982,9982,9982,998otherNANANANANANANANA137144144153153147434343POTWNANANANA0000000000Industrial Waste WaterNANANA00000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8 8                         |     |
| residential945865773294312324340347351000otherNA22272628293029323233Open Burning1,0549828707067227317497557503,4663,466industrial1,00720211414151515000commmercial/institutional4745464850525452000residentialNA958845509516523529533536425425425land clearing debrisNA958845509516523529533514434343POTWNANANANANANANA137144144153153147434343POTWNANANA00000000000Industrial Waste WaterNANANA00000000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 10                       | 10  |
| otherNA22272628293029323233Open Burning1,0549828707067227317497557503,4663,466industrial1,00720211414151515000commmercial/institutional4745464850525452000residentialNA958845509516523529533536425425425land clearing debrisNANANANANANANA2,9982,9982,998otherNANANANA0000000POTWNANANANA00000000Industrial Waste WaterNANANA000000000TSDFNANA000000000000000LandfillsNA0000000000000000000000000000000000000000<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24 25                       |     |
| Open Burning1,0549828707067227317497557503,4663,4663,466industrial1,0072021141415151515000commmercial/institutional47454648505254520000residentialNA958845509516523529533536425425425land clearing debrisNANANANANANA2,9982,998otherNANANA137144144153153147434343POTWNANANA00000000000Industrial Waste WaterNANANA0000000000000000000000000000000000000000000000000000000000000000000000000000000000 <td>0 0</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 0                         |     |
| industrial1,0072021141415151515000commmercial/institutional4745464850525452000residentialNA958845509516523529533536425425425land clearing debrisNANANANANANANA2,9982,9982,998otherNANANANA137144144153153147434343POTWNANANA000000000Industrial Waste WaterNANANA000000000TSDFNANA00000000000000LandfillsNA00000000000000000000000000000000000000000000000000000000000000000000 <t< td=""><td>33 33</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 33 33                       |     |
| commercial/institutional4745464850525452000residentialNA958845509516523529533536425425425land clearing debrisNANANANANANANA2,9982,9982,998otherNANANANA137144144153153147434343POTWNANANA000000000Industrial Waste WaterNANANA00000000TSDFNANANA00000000000LandfillsNA0000000000000Transportation92,53893,38683,82976,63581,58380,23581,22482,69975,03582,63181,35380,285ON-ROAD VEHICLES78,04977,38766,05058,44462,99961,23661,83362,90354,81154,38853,31552,360Light-Duty Gas Vehicles & Motorcycles 53,56149,45142,23434,99635,68033,76133,18533,31729,78729,16328,63928,420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3,467 3,524                 |     |
| residentialNA958845509516523529533536425425425land clearing debrisNANANANANANANANANANA2,9982,9982,998otherNANANANA13714414415315314743434343POTWNANANA0000000000Industrial Waste WaterNANANA0000000000TSDFNANANA0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 0                         |     |
| land clearing debrisNANANANANANANANA2,9982,9982,998otherNANANANA137144144153153147434343POTWNANANA0000000000Industrial Waste WaterNANANA0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 0                         |     |
| other         NA         NA         NA         137         144         144         153         153         147         43         43         43           POTW         NA         NA         NA         NA         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td< td=""><td>425 436</td><td></td></td<>                         | 425 436                     |     |
| POTW         NA         NA         NA         NA         NA         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                             | 2,998 3,044                 |     |
| Industrial Waste Water         NA         NA         NA         NA         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O         O </td <td>43 44</td> <td></td>                        | 43 44                       |     |
| TSDF       NA       NA       NA       NA       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O       O<                                                                                                                                                                                 | 0 0                         |     |
| Landfills<br>Other         NA         0         0         1         1         2         2         2         2         6         6         6           Other         NA         0         0         0         0         0         0         1         1         2         2         2         2         6         6         6         6           Transportation         92,538         93,386         83,829         76,635         81,583         80,235         81,224         82,699         75,035         82,631         81,353         80,288           ON-ROAD VEHICLES         78,049         77,387         66,050         58,444         62,999         61,236         61,833         62,903         54,811         54,388         53,315         52,360           Light-Duty Gas Vehicles & Motorcycles 53,561         49,451         42,234         34,996         35,680         33,761         33,185         33,317         29,787         29,163         28,639         28,639                                                                                                                                                                            | 0 0                         |     |
| Other         NA         0         0         0         0         1         1         0         0         0           Transportation         92,538         93,386         83,829         76,635         81,583         80,235         81,224         82,699         75,035         82,631         81,353         80,285           ON-ROAD VEHICLES         78,049         77,387         66,050         58,444         62,999         61,236         61,833         62,903         54,811         54,388         53,315         52,360           Light-Duty Gas Vehicles & Motorcycles 53,561         49,451         42,234         34,996         35,680         33,761         33,185         33,317         29,787         29,163         28,639         28,639                                                                                                                                                                                                                                                                                                                                                                                                        | 0 0                         |     |
| Transportation         92,538         93,386         83,829         76,635         81,583         80,235         81,224         82,699         75,035         82,631         81,353         80,288           ON-ROAD VEHICLES         78,049         77,387         66,050         58,444         62,999         61,236         61,833         62,903         54,811         54,388         53,315         52,360           Light-Duty Gas Vehicles & Motorcycles 53,561         49,451         42,234         34,996         35,680         33,761         33,185         33,317         29,787         29,163         28,639         28,420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6 6                         |     |
| ON-ROAD VEHICLES         78,049         77,387         66,050         58,444         62,999         61,236         61,833         62,903         54,811         54,388         53,315         52,360           Light-Duty Gas Vehicles & Motorcycles 53,561         49,451         42,234         34,996         35,680         33,761         33,185         33,317         29,787         29,163         28,639         28,420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 0                         | -   |
| Light-Duty Gas Vehicles & Motorcycles 53,561 49,451 42,234 34,996 35,680 33,761 33,185 33,317 29,787 29,163 28,639 28,420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 77,821 76,426               |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 49,740 48,469               |     |
| light-duty gas vehicles 53.342 49.273 42.047 34.806 35.503 32.582 32.005 33.122 20.601 28.074 28.440 28.225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26,685 26,718               |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26,502 26,519               |     |
| motorcycles 219 178 187 190 177 179 190 195 187 189 191 195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 183 199                     |     |
| Light-Duty Gas Trucks 16,137 18,960 15,940 17,118 20,622 21,536 22,795 22,614 19,434 16,873 16,949 16,948                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16,532 15,837               |     |
| light-duty gas trucks 1 10,395 11,834 9,034 9,672 11,606 12,065 12,647 12,428 11,029 11,221 11,296 11,315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11,111 10,732               |     |
| light-duty gas trucks 2 5,742 7,126 6,906 7,446 9,016 9,471 10,148 10,186 8,405 5,652 5,652 5,634                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5,421 5,105                 |     |
| Heavy-Duty Gas Vehicles         7,189         7,716         6,506         5,029         5,369         4,586         4,483         5,523         4,103         6,260         5,549         4,782                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4,264 3,680                 |     |
| Diesels 1,161 1,261 1,369 1,301 1,327 1,353 1,370 1,449 1,487 2,093 2,178 2,210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,260 2,234                 |     |
| heavy-duty diesel vehicles 1,139 1,235 1,336 1,233 1,292 1,317 1,333 1,411 1,447 2,074 2,162 2,197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2,249 2,223                 |     |
| light-duty diesel trucks 4 4 6 46 8 9 10 10 10 7 6 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4 4                         |     |
| light-duty diesel vehicles         19         22         28         22         27         27         28         29         12         10         8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7 6                         |     |
| NON-ROAD ENGINES AND VEHICLES         14,489         15,999         17,779         18,191         18,585         18,999         19,391         19,796         20,224         28,243         28,038         27,928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28,081 27,957               |     |
| Non-Road Gasoline         12,760         13,659         15,021         15,394         15,738         16,081         16,424         16,765         17,112         25,432         25,210         25,098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25,087 24,980               |     |
| recreational 299 312 321 355 361 366 371 374 382 4,796 4,796 4,796                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4,796 4,792                 |     |
| construction 527 603 603 603 602 602 602 602 723 688 674                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 671 668                     |     |
| industrial 709 807 740 723 707 690 674 657 640 864 823 793                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 826 796                     |     |
| lawn & garden 6,764 7,166 8,023 8,237 8,451 8,665 8,880 9,094 9,308 11,330 11,243 11,073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11,148 11,057               |     |
| farm 338 372 407 416 424 433 442 450 459 340 343 346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 359 360                     |     |
| light commercial 2,095 2,263 2,754 2,877 3,000 3,123 3,246 3,369 3,491 3,992 4,061 4,138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4,062 4,051                 |     |
| logging 28 31 47 50 54 58 62 66 69 1,160 1,012 1,016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,067 1,105                 |     |
| airport service 9 10 10 10 10 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             | 9   |
| railway maintenance NA 5 6 6 6 6 6 6 7 7 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |     |
| recreational marine vessels 1,990 2,090 2,112 2,117 2,122 2,128 2,133 2,138 2,144 2,211 2,228 2,244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9 9<br>7 6<br>2,144 2,137   |     |

 Table A-2.
 National Carbon Monoxide Emissions Estimates, 1980, 1985, 1989–2000 (thousand short tons) (cont.)

| Source Category             | 1980    | 1985    | 1989    | 1990   | 1991    | 1992   | 1993   | 1994    | 1995   | 1996    | 1997    | 1998    | 1999    | 2000    |
|-----------------------------|---------|---------|---------|--------|---------|--------|--------|---------|--------|---------|---------|---------|---------|---------|
| Non-Road Diesel             | 829     | 900     | 1,062   | 1,098  | 1,134   | 1,169  | 1,204  | 1,238   | 1,269  | 1,386   | 1,377   | 1,352   | 1,300   | 1,242   |
| recreational                | 2       | 3       | 3       | 3      | 3       | 3      | 3      | 3       | 3      | 5       | 5       | 5       | 5       | 4       |
| construction                | 479     | 534     | 637     | 662    | 688     | 714    | 739    | 763     | 785    | 878     | 869     | 846     | 802     | 754     |
| industrial                  | 83      | 105     | 121     | 124    | 127     | 130    | 134    | 138     | 142    | 149     | 151     | 151     | 151     | 151     |
| lawn & garden               | 13      | 14      | 26      | 29     | 32      | 34     | 37     | 39      | 42     | 47      | 50      | 53      | 53      | 49      |
| farm                        | 174     | 142     | 163     | 166    | 168     | 170    | 172    | 174     | 175    | 165     | 163     | 161     | 157     | 153     |
| light commercial            | 28      | 34      | 44      | 46     | 48      | 49     | 51     | 52      | 54     | 62      | 64      | 67      | 72      | 77      |
| logging                     | 49      | 61      | 58      | 58     | 58      | 57     | 57     | 56      | 55     | 63      | 58      | 52      | 46      | 40      |
| airport service             | 1       | 2       | 3       | 4      | 4       | 5      | 5      | 5       | 6      | 7       | 7       | 8       | 8       | 8       |
| railway maintenance         | NA      | 1       | 2       | 2      | 2       | 2      | 2      | 3       | 3      | 3       | 3       | 3       | 3       | 3       |
| recreational marine vessels | NA      | 3       | 4       | 4      | 4       | 4      | 4      | 4       | 5      | 7       | 7       | 7       | 4       | 4       |
| Aircraft                    | 743     | 831     | 955     | 904    | 888     | 901    | 905    | 915     | 942    | 360     | 360     | 360     | 360     | 365     |
| Marine Vessels              | 62      | 73      | 98      | 129    | 136     | 132    | 126    | 127     | 127    | 138     | 139     | 140     | 140     | 141     |
| coal                        | 4       | 5       | 7       | 4      | 4       | 4      | 4      | 5       | 4      | NA      | NA      | NA      | NA      | NA      |
| diesel                      | 57      | 67      | 90      | 80     | 83      | 79     | 75     | 76      | 77     | 131     | 131     | 131     | 131     | 133     |
| residual oil                | 1       | 1       | 2       | 11     | 11      | 12     | 12     | 12      | 10     | 8       | 8       | 8       | 8       | 8       |
| gasoline                    | NA      | NA      | NA      | 2      | 2       | 2      | 2      | 2       | 2      | NA      | NA      | NA      | NA      | NA      |
| other                       | NA      | NA      | NA      | 31     | 36      | 35     | 33     | 33      | 34     | 0       | 0       | 0       | 0       | 0       |
| Railroads                   | 96      | 106     | 121     | 121    | 120     | 125    | 120    | 114     | 114    | 117     | 121     | 120     | 119     | 119     |
| Non-Road Other              | NA      | 430     | 522     | 545    | 568     | 591    | 614    | 637     | 660    | 810     | 831     | 858     | 1,075   | 1,110   |
| liquified petroleum gas     | NA      | 288     | 376     | 398    | 420     | 442    | 464    | 486     | 508    | 704     | 724     | 749     | 950     | 983     |
| compressed natural gas      | NA      | 142     | 146     | 147    | 148     | 149    | 150    | 151     | 152    | 106     | 108     | 109     | 125     | 127     |
| MISCELLANEOUS               | 8,344   | 7,927   | 8,153   | 11,122 | 8,618   | 6,934  | 7,082  | 9,656   | 7,298  | 10,472  | 12,474  | 9,303   | 12,886  | 20,806  |
| Agriculture & Forestry      | NA      | NA      | NA      | NA     | NA      | NA     | NA     | NA      | NA     | 0       | 0       | 0       | 0       | 0       |
| Other Combustion            | 8,344   | 7,927   | 8,153   | 11,122 | 8,618   | 6,934  | 7,082  | 9,656   | 7,298  | 10,472  | 12,474  | 9,303   | 12,885  | 20,806  |
| structural fires            | 217     | 242     | 242     | 78     | 80      | 81     | 82     | 83      | 84     | 18      | 18      | 18      | 18      | 18      |
| agricultural fires          | 501     | 396     | 571     | 415    | 413     | 421    | 415    | 441     | 465    | 454     | 464     | 471     | 479     | 489     |
| slash/prescribed burning    | 2,226   | 4,332   | 4,332   | 4,668  | 4,666   | 4,729  | 4,966  | 4,990   | 5,252  | 5,402   | 5,769   | 6,152   | 3,967   | 2,397   |
| forest wildfires            | 5,396   | 2,957   | 3,009   | 5,928  | 3,430   | 1,674  | 1,586  | 4,114   | 1,469  | 4,574   | 6,200   | 2,638   | 8,398   | 17,878  |
| other                       | 4       | NA      | NA      | 32     | 28      | 30     | 34     | 28      | 28     | 22      | 23      | 23      | 24      | 24      |
| Health Services             | NA      | NA      | NA      | 0      | NA      | NA     | NA     | NA      | NA     | 0       | 0       | 0       | 0       | 0       |
| Cooling Towers              | NA      | NA      | NA      | NA     | 0       | 0      | NA     | 0       | 0      | 0       | 0       | 0       | 0       | 0       |
| Fugitive Dust               | NA      | NA      | NA      | 0      | 0       | 0      | 0      | 0       | 0      | 0       | 0       | 0       | 0       | 0       |
| TOTAL ALL SOURCES           | 117,434 | 117,013 | 106,439 | 99,119 | 101,797 | 99,007 | 99,791 | 103,713 | 94,058 | 104,639 | 105,511 | 101,290 | 102,398 | 109,343 |
|                             |         |         |         |        |         |        |        |         |        |         |         |         |         |         |

*Note:* Some columns may not sum to totals due to rounding.

Table A-2. National Carbon Monoxide Emissions Estimates, 1980, 1985, 1989–2000 (thousand short tons) (cont.) NATIONAL AIR QUALITY AND EMISSIONS TRENDS REPORT, 2003

| Source Category                    | 1980      | 1985  | 1989  | 1990  | 1991  | 1992  | 1993  | 1994  | 1995  | 1996  | 1997  | 1998  | 1999  | 2000  |
|------------------------------------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Fuel Combustion                    | 4,299     | 515   | 505   | 500   | 495   | 491   | 497   | 496   | 490   | 492   | 493   | 494   | 501   | 501   |
| FUEL COMB. ELEC. UTIL.             | 129       | 64    | 67    | 64    | 61    | 59    | 62    | 62    | 57    | 61    | 64    | 69    | 72    | 72    |
| Coal                               | 95        | 51    | 46    | 46    | 46    | 47    | 50    | 50    | 50    | 53    | 54    | 55    | 56    | 56    |
| bituminous                         | 57        | 31    | 28    | 28    | 28    | 28    | 30    | 30    | 30    | 32    | 33    | 33    | 34    | 34    |
| subbituminous                      | 28        | 15    | 14    | 14    | 14    | 14    | 15    | 15    | 15    | 16    | 16    | 16    | 17    | 17    |
| anthracite & lignite               | 9         | 5     | 4     | 4     | 4     | 4     | 5     | 5     | 5     | 5     | 5     | 5     | 5     | 5     |
| Oil                                | 34        | 13    | 21    | 18    | 15    | 12    | 12    | 12    | 7     | 8     | 10    | 14    | 16    | 16    |
| residual                           | 34        | 13    | 21    | 18    | 15    | 12    | 12    | 12    | 7     | 8     | 10    | 14    | 16    | 16    |
| distillate                         | 0         | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| FUEL COMB. INDUSTRIAL              | 60        | 30    | 18    | 18    | 18    | 18    | 19    | 19    | 18    | 16    | 16    | 15    | 17    | 17    |
| Coal                               | 45        | 22    | 14    | 14    | 15    | 14    | 14    | 14    | 14    | 13    | 14    | 13    | 13    | 13    |
| bituminous                         | 31        | 15    | 10    | 10    | 10    | 10    | 10    | 10    | 10    | 9     | 9     | 9     | 9     | 9     |
| subbituminous                      | 10        | 5     | 3     | 3     | 3     | 3     | 3     | 3     | 3     | 3     | 3     | 3     | 3     | 3     |
| anthracite & lignite               | 4         | 2     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |
| Oil                                | 14        | 8     | 4     | 3     | 3     | 4     | 5     | 5     | 4     | 3     | 2     | 2     | 3     | 3     |
| residual                           | 14        | 7     | 3     | 3     | 2     | 3     | 4     | 4     | 3     | 2     | 2     | 1     | 3     | 3     |
| distillate                         | 1         | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |
| FUEL COMB. OTHER                   | 4,111     | 421   | 420   | 418   | 416   | 414   | 416   | 415   | 415   | 415   | 413   | 410   | 412   | 412   |
| Commercial/Institutional Coal      | 12        | 6     | 4     | 4     | 3     | 4     | 4     | 3     | 4     | 5     | 5     | 4     | 4     | 4     |
| bituminous                         | 6         | 4     | 3     | 3     | 2     | 2     | 2     | 2     | 2     | 3     | 3     | 2     | 2     | 2     |
| subbituminous                      | 2         | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |
| anthracite, lignite                | 4         | 1     | 1     | 0     | 0     | 0     | 1     | 0     | 1     | 1     | 1     | 1     | 1     | 1     |
| Commercial/Institutional Oil       | 10        | 4     | 4     | 4     | 4     | 4     | 4     | 4     | 3     | 3     | 2     | 2     | 3     | 3     |
| residual                           | 9         | 3     | 3     | 3     | 3     | 3     | 3     | 3     | 2     | 2     | 2     | 1     | 3     | 3     |
| distillate                         | 1         | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |
| other                              | NA        | NA    | NA    | NA    | NA    | NA    | NA    | NA    | NA    | NA    | 0     | 0     | 0     | 0     |
| Misc. Fuel Comb. (Except Residenti | al) 4,080 | 400   | 400   | 400   | 400   | 400   | 400   | 400   | 400   | 400   | 400   | 400   | 400   | 400   |
| Residential Other                  | 9         | 11    | 12    | 10    | 9     | 7     | 8     | 8     | 8     | 7     | 6     | 5     | 5     | 5     |
| Industrial Processes               | 5,148     | 3,402 | 3,161 | 3,278 | 3,081 | 2,736 | 2,872 | 3,007 | 2,875 | 3,061 | 3,121 | 3,045 | 3,162 | 3,162 |
| CHEMICAL & ALLIED PRODUCT MFG      | 104       | 118   | 136   | 136   | 132   | 93    | 92    | 96    | 163   | 167   | 188   | 194   | 218   | 218   |
| Inorganic Chemical Mfg             | 104       | 118   | 136   | 136   | 132   | 93    | 92    | 96    | 163   | 167   | 188   | 194   | 218   | 218   |
| lead oxide and pigments            | 104       | 118   | 136   | 136   | 132   | 93    | 92    | 96    | 163   | 167   | 188   | 194   | 218   | 218   |
| METALS PROCESSING                  | 3,026     | 2,097 | 2,088 | 2,170 | 1,974 | 1,774 | 1,900 | 2,027 | 2,049 | 2,055 | 2,081 | 1,991 | 2,078 | 2,078 |
| Nonferrous Metals Processing       | 1,826     | 1,376 | 1,337 | 1,409 | 1,258 | 1,112 | 1,210 | 1,287 | 1,337 | 1,333 | 1,342 | 1,259 | 1,329 | 1,329 |
| primary lead production            | 1,075     | 874   | 715   | 728   | 623   | 550   | 637   | 633   | 674   | 588   | 619   | 608   | 623   | 623   |
| primary copper production          | 20        | 19    | 19    | 19    | 19    | 20    | 21    | 22    | 21    | 22    | 24    | 25    | 25    | 25    |
| primary zinc production            | 24        | 16    | 9     | 9     | 11    | 11    | 13    | 12    | 12    | 13    | 13    | 12    | 12    | 12    |
| secondary lead production          | 481       | 288   | 433   | 449   | 414   | 336   | 341   | 405   | 432   | 514   | 484   | 413   | 465   | 465   |
| secondary copper production        | 116       | 70    | 37    | 75    | 65    | 73    | 70    | 76    | 79    | 76    | 82    | 78    | 81    | 81    |
| lead battery manufacture           | 50        | 65    | 74    | 78    | 77    | 77    | 81    | 94    | 102   | 103   | 107   | 110   | 117   | 117   |
| lead cable coating                 | 37        | 43    | 50    | 50    | 48    | 44    | 47    | 44    | 16    | 16    | 14    | 13    | 4     | 4     |
| other                              | 24        | 3     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |

Table A-3. National Lead Emissions Estimates, 1980, 1985, 1989–2000 (short tons)

| Source Category                       | 1980     | 1985   | 1989  | 1990  | 1991  | 1992  | 1993  | 1994  | 1995  | 1996  | 1997  | 1998  | 1999  | 2000  |
|---------------------------------------|----------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Ferrous Metals Processing             | 911      | 577    | 582   | 576   | 517   | 461   | 496   | 540   | 528   | 529   | 538   | 536   | 555   | 555   |
| coke manufacturing                    | 6        | 3      | 4     | 4     | 3     | 3     | 2     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| ferroalloy production                 | 13       | 7      | 20    | 18    | 14    | 14    | 12    | 13    | 8     | 8     | 8     | 7     | 6     | 6     |
| iron production                       | 38       | 21     | 19    | 18    | 16    | 17    | 18    | 18    | 19    | 18    | 18    | 18    | 18    | 18    |
| steel production                      | 481      | 209    | 138   | 138   | 145   | 139   | 145   | 160   | 159   | 160   | 165   | 168   | 173   | 173   |
| gray iron production                  | 373      | 336    | 401   | 397   | 339   | 288   | 319   | 349   | 342   | 343   | 348   | 343   | 357   | 357   |
| Metals Processing NEC                 | 289      | 144    | 170   | 185   | 199   | 202   | 194   | 200   | 184   | 193   | 201   | 196   | 195   | 195   |
| metal mining                          | 207      | 141    | 169   | 184   | 198   | 201   | 193   | 199   | 183   | 192   | 200   | 195   | 194   | 194   |
| other                                 | 82       | 3      | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |
| OTHER INDUSTRIAL PROCESSES            | 808      | 316    | 173   | 169   | 167   | 56    | 55    | 54    | 59    | 51    | 54    | 54    | 53    | 53    |
| Mineral Products                      | 93       | 43     | 23    | 26    | 24    | 26    | 27    | 28    | 29    | 29    | 30    | 30    | 31    | 31    |
| cement manufacturing                  | 93       | 43     | 23    | 26    | 24    | 26    | 27    | 28    | 29    | 29    | 30    | 30    | 31    | 31    |
| Miscellaneous Industrial Processes    | 715      | 273    | 150   | 143   | 143   | 30    | 28    | 26    | 30    | 22    | 25    | 23    | 22    | 22    |
| VASTE DISPOSAL & RECYCLING            | 1,210    | 871    | 765   | 804   | 808   | 812   | 825   | 830   | 604   | 788   | 798   | 806   | 813   | 813   |
| Incineration                          | 1,210    | 871    | 765   | 804   | 808   | 812   | 825   | 830   | 604   | 788   | 798   | 806   | 813   | 813   |
| municipal waste                       | 161      | 79     | 45    | 67    | 70    | 68    | 69    | 68    | 70    | 76    | 76    | 76    | 77    | 77    |
| other                                 | 1,049    | 792    | 720   | 738   | 738   | 744   | 756   | 762   | 534   | 712   | 722   | 729   | 736   | 736   |
| Transportation                        | 64,706   | 18,973 | 1,802 | 1,197 | 592   | 584   | 547   | 544   | 564   | 525   | 523   | 518   | 536   | 565   |
| ON-ROAD VEHICLES                      | 60,501   | 18,052 | 982   | 421   | 18    | 18    | 19    | 19    | 19    | 19    | 20    | 21    | 22    | 20    |
| Light-Duty Gas Vehicles & Motorcycles | s 47,184 | 13,637 | 733   | 314   | 13    | 14    | 14    | 14    | 14    | 12    | 13    | 14    | 14    | 14    |
| Light-Duty Gas Trucks                 | 11,671   | 4,061  | 232   | 100   | 4     | 4     | 5     | 5     | 5     | 7     | 7     | 7     | 7     | 5     |
| Heavy-Duty Gas Vehicles               | 1,646    | 354    | 16    | 7     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 1     | 1     | 1     |
| ION-ROAD ENGINES AND VEHICLES         | 4,205    | 921    | 820   | 776   | 574   | 565   | 529   | 525   | 544   | 505   | 503   | 497   | 515   | 545   |
| Non-Road Gasoline                     | 3,320    | 229    | 166   | 158   | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Aircraft                              | 885      | 692    | 655   | 619   | 574   | 565   | 528   | 525   | 544   | 505   | 503   | 497   | 515   | 545   |
| TOTAL ALL SOURCES                     | 74,153   | 22,890 | 5,468 | 4,975 | 4,169 | 3,810 | 3,916 | 4,047 | 3,929 | 4,077 | 4,137 | 4,057 | 4,199 | 4,228 |

NATIONAL AIR QUALITY AND EMISSIONS TRENDS REPORT, 2003

APPENDIX A · DATA TABLES 81

| Source Category                      | 1980   | 1985   | 1989   | 1990   | 1991   | 1992   | 1993   | 1994   | 1995   | 1996   | 1997   | 1998   | 1999  | 2000  |
|--------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|-------|
| Fuel Combustion                      | 11,320 | 10,048 | 10,537 | 10,895 | 10,779 | 10,928 | 11,111 | 11,015 | 10,827 | 10,502 | 10,563 | 10,389 | 9,964 | 9,649 |
| FUEL COMB. ELEC. UTIL.               | 7,024  | 6,127  | 6,593  | 6,663  | 6,519  | 6,504  | 6,651  | 6,565  | 6,384  | 6,141  | 6,279  | 6,231  | 5,672 | 5,266 |
| Coal                                 | 6,123  | 5,240  | 5,676  | 5,642  | 5,559  | 5,579  | 5,744  | 5,636  | 5,579  | 5,574  | 5,644  | 5,436  | 4,929 | 4,573 |
| bituminous                           | 3,439  | 4,378  | 4,595  | 4,532  | 4,435  | 4,456  | 4,403  | 4,207  | 3,830  | 3,776  | 3,828  | 3,635  | 3,176 | 2,910 |
| subbituminous                        | 1,694  | 668    | 837    | 857    | 874    | 868    | 1,087  | 1,167  | 1,475  | 1,570  | 1,591  | 1,575  | 1,551 | 1,462 |
| anthracite & lignite                 | 542    | 194    | 245    | 254    | 250    | 255    | 255    | 262    | 273    | 229    | 225    | 226    | 201   | 201   |
| other                                | 447    | NA     | 0      | 0      | 0      | 0     | 0     |
| Oil                                  | 901    | 193    | 285    | 221    | 212    | 170    | 180    | 163    | 96     | 118    | 145    | 223    | 188   | 154   |
| residual                             | 39     | 178    | 268    | 207    | 198    | 158    | 166    | 149    | 94     | 116    | 142    | 220    | 184   | 149   |
| distillate                           | 862    | 15     | 17     | 14     | 14     | 13     | 14     | 14     | 2      | 2      | 2      | 3      | 3     | 4     |
| other                                | NA     | NA     | NA     | 0      | NA     | NA     | NA     | NA     | NA     | 0      | 0      | 0      | 0     | 0     |
| Gas                                  | NA     | 646    | 582    | 565    | 580    | 579    | 551    | 591    | 562    | 285    | 319    | 381    | 370   | 353   |
| natural                              | NA     | 646    | 582    | 565    | 580    | 579    | 551    | 591    | 562    | 273    | 306    | 363    | 368   | 351   |
| process                              | NA     | 12     | 13     | 19     | 2     | 1     |
| Other                                | NA     | 6      | 7      | 27     | 19    | 18    |
| Internal Combustion                  | NA     | 48     | 49     | 235    | 168    | 175    | 176    | 175    | 148    | 158    | 165    | 164    | 166   | 170   |
| FUEL COMB. INDUSTRIAL                | 3,555  | 3,209  | 3,209  | 3,035  | 2,979  | 3,071  | 3,151  | 3,147  | 3,144  | 3,157  | 3,102  | 3,051  | 3,130 | 3,222 |
| Coal                                 | 444    | 608    | 615    | 585    | 570    | 574    | 589    | 602    | 597    | 543    | 537    | 524    | 539   | 543   |
| bituminous                           | 306    | 430    | 446    | 399    | 387    | 405    | 413    | 420    | 412    | 369    | 364    | 357    | 367   | 370   |
| subbituminous                        | 94     | 14     | 14     | 18     | 20     | 21     | 28     | 38     | 46     | 46     | 46     | 44     | 46    | 46    |
| anthracite & lignite                 | 44     | 33     | 30     | 26     | 26     | 26     | 26     | 27     | 26     | 19     | 19     | 18     | 18    | 18    |
| other                                | NA     | 131    | 124    | 141    | 137    | 122    | 122    | 117    | 112    | 109    | 108    | 105    | 108   | 109   |
| Oil                                  | 286    | 309    | 294    | 265    | 237    | 244    | 245    | 241    | 247    | 225    | 216    | 209    | 214   | 228   |
| residual                             | 179    | 191    | 176    | 180    | 146    | 154    | 153    | 149    | 156    | 141    | 130    | 126    | 129   | 139   |
| distillate                           | 63     | 89     | 88     | 71     | 73     | 73     | 75     | 76     | 73     | 73     | 74     | 72     | 73    | 75    |
| other                                | 44     | 29     | 29     | 14     | 18     | 17     | 17     | 17     | 17     | 11     | 12     | 11     | 11    | 13    |
| Gas                                  | 2,619  | 1,520  | 1,625  | 1,182  | 1,250  | 1,301  | 1,330  | 1,333  | 1,324  | 1,205  | 1,189  | 1,175  | 1,200 | 1,253 |
| natural                              | 2,469  | 1,282  | 1,405  | 967    | 1,025  | 1,068  | 1,095  | 1,103  | 1,102  | 993    | 970    | 958    | 984   | 1,010 |
| process                              | 5      | 227    | 209    | 211    | 222    | 230    | 233    | 228    | 220    | 210    | 216    | 215    | 214   | 240   |
| other                                | 145    | 11     | 10     | 3      | 3      | 3      | 2      | 2      | 2      | 3      | 3      | 3      | 3     | 3     |
| Other                                | 205    | 118    | 120    | 131    | 129    | 126    | 124    | 124    | 123    | 120    | 115    | 115    | 118   | 123   |
| wood/bark waste                      | 138    | 89     | 92     | 89     | 82     | 82     | 83     | 83     | 84     | 83     | 79     | 80     | 83    | 86    |
| liquid waste                         | NA     | 12     | 12     | 8      | 11     | 10     | 11     | 11     | 11     | 9      | 8      | 8      | 8     | 9     |
| other                                | 67     | 17     | 16     | 34     | 36     | 34     | 30     | 30     | 28     | 29     | 28     | 27     | 27    | 28    |
| Internal Combustion                  | NA     | 655    | 556    | 874    | 793    | 825    | 863    | 846    | 854    | 1,064  | 1,045  | 1,028  | 1,059 | 1,076 |
| FUEL COMB. OTHER                     | 741    | 712    | 736    | 1,196  | 1,281  | 1,353  | 1,308  | 1,303  | 1,298  | 1,204  | 1,182  | 1,107  | 1,162 | 1,161 |
| Commercial/Institutional Coal        | 25     | 37     | 38     | 40     | 36     | 38     | 40     | 40     | 38     | 34     | 35     | 37     | 37    | 37    |
| Commercial/Institutional Oil         | 155    | 106    | 106    | 97     | 88     | 93     | 93     | 95     | 103    | 96     | 97     | 80     | 79    | 80    |
| Commercial/Institutional Gas         | 131    | 145    | 159    | 200    | 210    | 225    | 232    | 237    | 231    | 247    | 252    | 243    | 265   | 269   |
| Misc. Fuel Comb. (Except Residential | ) NA   | 11     | 11     | 34     | 32     | 28     | 31     | 31     | 30     | 27     | 28     | 29     | 28    | 29    |
| Residential Wood                     | 74     | 88     | 75     | 46     | 50     | 53     | 45     | 44     | 49     | 30     | 30     | 30     | 30    | 33    |
| Residential Other                    | 356    | 326    | 347    | 780    | 865    | 916    | 867    | 857    | 847    | 770    | 740    | 688    | 723   | 713   |
| distillate oil                       | 85     | 75     | 78     | 209    | 211    | 210    | 210    | 210    | 210    | 193    | 188    | 172    | 175   | 169   |
| natural gas                          | 238    | 248    | 267    | 449    | 469    | 489    | 513    | 516    | 519    | 470    | 437    | 400    | 433   | 431   |
| other                                | 33     | 3      | 3      | 121    | 185    | 218    | 144    | 131    | 118    | 108    | 114    | 117    | 116   | 114   |
| Industrial Processes                 | 666    | 891    | 852    | 892    | 816    | 857    | 861    | 878    | 873    | 888    | 923    | 933    | 933   | 967   |

Table A-4. National Nitrogen Oxides Emissions Estimates, 1980, 1985, 1989–2000 (thousand short tons)

| Source Category 1                         | 980  | 1985 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 |
|-------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| CHEMICAL & ALLIED PRODUCT MFG             | 213  | 262  | 273  | 168  | 165  | 163  | 155  | 160  | 158  | 125  | 127  | 129  | 131  | 134  |
| Organic Chemical Mfg                      | 54   | 37   | 42   | 18   | 22   | 22   | 19   | 20   | 20   | 21   | 21   | 21   | 21   | 22   |
| Inorganic Chemical Mfg                    | 159  | 22   | 18   | 12   | 12   | 10   | 5    | 6    | 7    | 6    | 6    | 6    | 6    | 6    |
| Polymer & Resin Mfg                       | NA   | 22   | 23   | 6    | 6    | 6    | 5    | 5    | 4    | 3    | 3    | 3    | 3    | 3    |
| Agricultural Chemical Mfg                 | NA   | 143  | 152  | 80   | 77   | 76   | 74   | 76   | 74   | 50   | 51   | 52   | 53   | 55   |
| Paint, Varnish, Lacquer, Enamel Mfg       | NA   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Pharmaceutical Mfg                        | NA   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Other Chemical Mfg                        | NA   | 38   | 39   | 52   | 48   | 50   | 51   | 54   | 54   | 45   | 46   | 47   | 47   | 48   |
| METALS PROCESSING                         | 65   | 87   | 83   | 97   | 76   | 81   | 83   | 91   | 98   | 83   | 88   | 88   | 88   | 91   |
| Nonferrous Metals Processing              | NA   | 16   | 15   | 14   | 15   | 13   | 12   | 12   | 12   | 11   | 12   | 12   | 12   | 12   |
| Ferrous Metals Processing                 | 65   | 58   | 54   | 78   | 56   | 62   | 67   | 75   | 83   | 66   | 71   | 71   | 70   | 73   |
| Metals Processing NEC                     | NA   | 13   | 14   | 6    | 5    | 6    | 4    | 4    | 4    | 6    | 6    | 6    | 6    | 7    |
| PETROLEUM & RELATED INDUSTRIES            | 72   | 124  | 97   | 153  | 121  | 148  | 123  | 117  | 110  | 139  | 143  | 143  | 143  | 146  |
| Oil & Gas Production                      | NA   | 69   | 47   | 104  | 65   | 68   | 70   | 63   | 58   | 86   | 88   | 88   | 88   | 90   |
| Petroleum Refineries & Related Industries | 72   | 55   | 49   | 47   | 52   | 76   | 49   | 49   | 48   | 47   | 48   | 48   | 48   | 49   |
| Asphalt Manufacturing                     | NA   | 1    | 1    | 3    | 4    | 4    | 5    | 5    | 5    | 7    | 7    | 7    | 7    | 7    |
| OTHER INDUSTRIAL PROCESSES                | 205  | 327  | 311  | 378  | 352  | 361  | 370  | 389  | 399  | 438  | 460  | 467  | 465  | 487  |
| Agriculture, Food, & Kindred Products     | NA   | 5    | 5    | 3    | 3    | 3    | 4    | 3    | 6    | 5    | 5    | 5    | 5    | 5    |
| Textiles, Leather, & Apparel Products     | NA   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 1    | 1    | 1    | 1    | 1    |
| Wood, Pulp & Paper, & Publishing Prod     | s 24 | 73   | 77   | 91   | 88   | 86   | 86   | 89   | 89   | 86   | 89   | 91   | 92   | 96   |
| Rubber & Miscellaneous Plastic Prods      | NA   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Mineral Products                          | 181  | 239  | 220  | 270  | 249  | 259  | 267  | 281  | 287  | 331  | 350  | 355  | 351  | 369  |
| cement mfg                                | 98   | 137  | 124  | 151  | 131  | 139  | 143  | 150  | 153  | 200  | 212  | 214  | 208  | 220  |
| glass mfg                                 | 60   | 48   | 45   | 59   | 59   | 61   | 64   | 66   | 67   | 69   | 74   | 76   | 77   | 81   |
| other                                     | 23   | 54   | 51   | 61   | 59   | 60   | 60   | 64   | 66   | 62   | 64   | 65   | 65   | 67   |
| Machinery Products                        | NA   | 2    | 2    | 3    | 2    | 2    | 3    | 6    | 7    | 2    | 3    | 3    | 3    | 3    |
| Electronic Equipment                      | NA   | NA   | NA   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Transportation Equipment                  | NA   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Miscellaneous Industrial Processes        | NA   | 8    | 7    | 10   | 10   | 10   | 9    | 9    | 10   | 12   | 12   | 12   | 12   | 12   |
| SOLVENT UTILIZATION                       | NA   | 2    | 3    | 1    | 2    | 3    | 3    | 3    | 3    | 2    | 3    | 3    | 3    | 3    |
| Degreasing                                | NA   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Graphic Arts                              | NA   | 0    | 0    | 0    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| Dry Cleaning                              | NA   | NA   | NA   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Surface Coating                           | NA   | 2    | 2    | 1    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Other Industrial                          | NA   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Nonindustrial                             | NA   | NA   | NA   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Solvent Utilization NEC                   | NA   | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| STORAGE & TRANSPORT                       | NA   | 2    | 2    | 3    | 6    | 5    | 5    | 5    | 6    | 15   | 16   | 16   | 16   | 17   |
| Bulk Terminals & Plants                   | NA   | NA   | NA   | 0    | 1    | 1    | 1    | 1    | 1    | 2    | 2    | 2    | 2    | 2    |
| Petroleum & Petroleum Product Storage     | NA   | 1    | 1    | 2    | 2    | 0    | 0    | 0    | 0    | 7    | 8    | 8    | 8    | 8    |
| Petroleum & Petroleum Product Transport   |      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Service Stations: Stage I                 | NA   | 0    | 0    | 0    | 0    | 0    |
| Service Stations: Stage II                | NA   | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Organic Chemical Storage                  | NA   | 1    | 1    | 0    | 2    | 3    | 3    | 3    | 4    | 4    | 4    | 4    | 4    | 4    |
| Organic Chemical Transport                | NA   | NA   | NA   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Inorganic Chemical Storage                | NA   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Bulk Materials Storage                    | NA   | 0    | 1    | 0    | 0    | 0    | 0    | 0    | 1    | 2    | 2    | 2    | 2    | 2    |

| Source Category                       | 1980    | 1985   | 1989   | 1990   | 1991   | 1992   | 1993   | 1994   | 1995   | 1996   | 1997   | 1998   | 1999   | 2000   |
|---------------------------------------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| WASTE DISPOSAL & RECYCLING            | 111     | 87     | 84     | 91     | 95     | 96     | 123    | 114    | 99     | 86     | 86     | 87     | 87     | 89     |
| Incineration                          | 37      | 27     | 31     | 49     | 51     | 51     | 74     | 65     | 53     | 53     | 53     | 54     | 54     | 55     |
| Open Burning                          | 74      | 59     | 52     | 42     | 43     | 43     | 44     | 44     | 44     | 30     | 30     | 30     | 30     | 31     |
| POTW                                  | NA      | NA     | NA     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| Industrial Waste Water                | NA      | NA     | NA     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| TSDF                                  | NA      | NA     | NA     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| Landfills                             | NA      | 0      | 0      | 0      | 0      | 1      | 1      | 1      | 1      | 2      | 2      | 2      | 2      | 2      |
| Other                                 | NA      | 0      | 0      | 0      | 1      | 1      | 4      | 3      | 1      | 1      | 1      | 1      | 1      | 1      |
| Transportation                        | 12,150  | 11,948 | 12,210 | 12,014 | 12,457 | 12,692 | 12,902 | 13,191 | 13,085 | 14,260 | 14,470 | 14,371 | 13,731 | 13,251 |
| ON-ROAD VEHICLES                      | 8.621   | 8,089  | 7.682  | 7,210  | 7.557  | 7.759  | 7,960  | 8,176  | 7,956  | 8,793  | 8.924  | 8,816  | 8.612  | 8,150  |
| Light-Duty Gas Vehicles & Motorcycles | 5 4,421 | 3,806  | 3,494  | 3,013  | 3,069  | 3,098  | 3,117  | 3,173  | 3,043  | 3,006  | 2,996  | 2,933  | 2,825  | 2,790  |
| light-duty gas vehicles               | 4,416   | 3,797  | 3,483  | 3,002  | 3,058  | 3,086  | 3,105  | 3,161  | 3,031  | 2,994  | 2,983  | 2,920  | 2,813  | 2,777  |
| motorcycles                           | 5       | 9      | 11     | 11     | 11     | 12     | 12     | 13     | 12     | 12     | 12     | 12     | 12     | 13     |
| Light-Duty Gas Trucks                 | 1,408   | 1,530  | 1,386  | 1,552  | 1,839  | 2,004  | 2,131  | 2,160  | 1,991  | 1,709  | 1,742  | 1,703  | 1,676  | 1,608  |
| light-duty gas trucks 1               | 864     | 926    | 803    | 901    | 1,074  | 1,171  | 1,242  | 1,251  | 1,183  | 1,166  | 1,185  | 1,157  | 1,141  | 1,099  |
| light-duty gas trucks 2               | 544     | 603    | 584    | 651    | 766    | 833    | 888    | 909    | 809    | 543    | 557    | 546    | 535    | 509    |
| Heavy-Duty Gas Vehicles               | 300     | 330    | 343    | 306    | 321    | 309    | 316    | 351    | 330    | 518    | 505    | 467    | 455    | 439    |
| Diesels                               | 2,493   | 2,423  | 2,458  | 2,340  | 2,328  | 2,347  | 2,397  | 2,492  | 2,591  | 3,560  | 3,680  | 3,713  | 3,655  | 3,312  |
| heavy-duty diesel vehicles            | 2,463   | 2,389  | 2,416  | 2,248  | 2,284  | 2,302  | 2,351  | 2,446  | 2,544  | 3,538  | 3,662  | 3,698  | 3,644  | 3,300  |
| light-duty diesel trucks              | 5       | 6      | -,2    | 63     | 11     | 11     | 12     | 12     | 13     | 8      | 7      | 6      | 5      | 4      |
| light-duty diesel vehicles            | 25      | 28     | 35     | 28     | 33     | 33     | 33     | 34     | 34     | 14     | 11     | 9      | 7      | 7      |
| NON-ROAD ENGINES AND VEHICLES         | 3,529   | 3,859  | 4,528  | 4,804  | 4,900  | 4,934  | 4,942  | 5,015  | 5,128  | 5,467  | 5,546  | 5,555  | 5,558  | 5,558  |
| Non-Road Gasoline                     | 101     | 108    | 114    | 120    | 121    | 123    | 124    | 126    | 127    | 164    | 181    | 197    | 203    | 212    |
| recreational                          | 1       | 1      | 1      | 6      | 6      | 6      | 6      | 6      | 6      | 29     | 29     | 29     | 29     | 30     |
| construction                          | 4       | 4      | 4      | 4      | 4      | 4      | 4      | 4      | 4      | 4      | 5      | 6      | 6      | 6      |
| industrial                            | 13      | 14     | 13     | 12     | 12     | 12     | 11     | 11     | 11     | 14     | 14     | 14     | 15     | 14     |
| lawn & garden                         | 29      | 31     | 35     | 36     | 37     | 38     | 39     | 40     | 41     | 51     | 61     | 71     | 79     | 84     |
| farm                                  | 5       | 5      | 5      | 6      | 6      | 6      | 6      | 6      | 6      | 4      | 4      | 4      | 4      | 4      |
| light commercial                      | 11      | 12     | 14     | 15     | 16     | 16     | 17     | 18     | 18     | 22     | 27     | 31     | 32     | 34     |
| logging                               | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 3      | 4      | 5      | 5      | 5      |
| airport service                       | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| railway maintenance                   | NA      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| recreational marine vessels           | 38      | 40     | 41     | 41     | 41     | 41     | 41     | 41     | 41     | 37     | 37     | 37     | 33     | 34     |
| Non-Road Diesel                       | 2,125   | 2,155  | 2,472  | 2,513  | 2,552  | 2,595  | 2,640  | 2,687  | 2,739  | 2,746  | 2,760  | 2,751  | 2,707  | 2,660  |
| recreational                          | 2       | 2      | 3      | . 3    | 3      | 3      | 3      | . 3    | 3      | 5      | 5      | 5      | 5      | 5      |
| construction                          | 843     | 943    | 1,083  | 1,102  | 1,120  | 1,138  | 1,156  | 1,174  | 1,198  | 1,267  | 1,273  | 1,267  | 1,247  | 1,222  |
| industrial                            | 193     | 244    | 270    | 268    | 265    | 265    | 268    | 270    | 274    | 240    | 242    | 241    | 237    | 234    |
| lawn & garden                         | 19      | 22     | 40     | 45     | 50     | 54     | 59     | 64     | 69     | 70     | 76     | 81     | 84     | 83     |
| farm                                  | 926     | 755    | 877    | 898    | 917    | 936    | 953    | 970    | 987    | 935    | 934    | 926    | 910    | 894    |
| light commercial                      | 44      | 54     | 72     | 77     | 82     | 87     | 91     | 96     | 101    | 109    | 114    | 119    | 123    | 126    |
| logging                               | 94      | 118    | 101    | 94     | 88     | 82     | 79     | 77     | 75     | 79     | 73     | 67     | 61     | 56     |
| airport service                       | 2       | 3      | 6      | 7      | 7      | 8      | 8      | 9      | 9      | 10     | 10     | 10     | 10     | 10     |
| railway maintenance                   | NA      | 2      | 3      | 3      | 4      | 4      | 4      | 4      | 4      | 4      | 4      | 4      | 7      | 7      |
| recreational marine vessels           | NA      | 13     | 16     | 17     | 17     | 18     | 19     | 19     | 20     | 28     | 29     | 30     | 23     | 24     |

| Source Category          | 1980   | 1985   | 1989   | 1990   | 1991   | 1992   | 1993   | 1994   | 1995   | 1996   | 1997   | 1998   | 1999   | 2000   |
|--------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Aircraft                 | 106    | 119    | 138    | 158    | 155    | 156    | 156    | 161    | 165    | 81     | 81     | 81     | 81     | 84     |
| Marine Vessels           | 467    | 557    | 747    | 943    | 995    | 961    | 917    | 929    | 936    | 1,083  | 1,084  | 1,084  | 1,083  | 1,090  |
| coal                     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | NA     | NA     | NA     | NA     | NA     |
| diesel                   | 396    | 469    | 628    | 630    | 649    | 621    | 593    | 604    | 615    | 996    | 996    | 996    | 996    | 1,006  |
| residual oil             | 71     | 87     | 118    | 114    | 115    | 116    | 114    | 115    | 105    | 87     | 87     | 87     | 87     | 84     |
| gasoline                 | NA     | NA     | NA     | 10     | 10     | 9      | 9      | 9      | 10     | NA     | NA     | NA     | NA     | NA     |
| other                    | NA     | NA     | NA     | 190    | 221    | 214    | 201    | 201    | 206    | 0      | 0      | 0      | 0      | 0      |
| Railroads                | 731    | 808    | 923    | 929    | 929    | 946    | 945    | 947    | 990    | 1,183  | 1,222  | 1,215  | 1,242  | 1,230  |
| Non-Road Other           | NA     | 112    | 135    | 141    | 147    | 153    | 159    | 165    | 171    | 210    | 218    | 227    | 271    | 281    |
| liquified petroleum gas  | NA     | 75     | 98     | 103    | 109    | 115    | 120    | 126    | 132    | 183    | 190    | 199    | 240    | 249    |
| compressed natural gas   | NA     | 37     | 38     | 38     | 38     | 39     | 39     | 39     | 39     | 27     | 28     | 28     | 31     | 32     |
| MISCELLANEOUS            | 248    | 310    | 293    | 369    | 286    | 255    | 241    | 390    | 267    | 415    | 401    | 318    | 343    | 576    |
| Agriculture and Forestry | NA     | 0      | 0      | 0      | 0      | 0      |
| agricultural livestock   | NA     | 0      | 0      | 0      | 0      | 0      |
| Other Combustion         | 248    | 310    | 293    | 368    | 285    | 253    | 240    | 388    | 265    | 415    | 401    | 318    | 343    | 576    |
| Health Services          | NA     | NA     | NA     | NA     | NA     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| Cooling Towers           | NA     | NA     | NA     | NA     | NA     | 0      | NA     | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| Fugitive Dust            | NA     | NA     | NA     | 1      | 1      | 1      | 1      | 1      | 1      | 0      | 0      | 0      | 0      | 0      |
| TOTAL ALL SOURCES        | 24,384 | 23,198 | 23,893 | 24,170 | 24,338 | 24,732 | 25,116 | 25,474 | 25,051 | 26,065 | 26,357 | 26,011 | 25,439 | 24,899 |

NATIONAL AIR QUALITY AND EMISSIONS TRENDS REPORT, 2003

*Note:* Some columns may not sum to totals due to rounding.

APPENDIX A · DATA TABLES 85

| Source Category                      | 1980   | 1985     | 1989      | 1990    | 1991   | 1992    | 1993   | 1994    | 1995   | 1996  | 1997    | 1998    | 1999    | 2000    |
|--------------------------------------|--------|----------|-----------|---------|--------|---------|--------|---------|--------|-------|---------|---------|---------|---------|
| Fuel Combustion                      | 1,050  | 1,570    | 1,372     | 1,005   | 1,075  | 1,114   | 993    | 989     | 1,073  | 1,125 | 1,122   | 1,122   | 1,136   | 1,206   |
| FUEL COMB. ELEC. UTIL.               | 45     | 32       | 37        | 47      | 44     | 44      | 45     | 45      | 44     | 50    | 52      | 56      | 62      | 64      |
| Coal                                 | 31     | 24       | 27        | 27      | 27     | 27      | 29     | 29      | 29     | 28    | 29      | 29      | 29      | 30      |
| Oil                                  | 9      | 5        | 7         | 6       | 5      | 4       | 4      | 4       | 3      | 3     | 4       | 5       | 5       | 4       |
| Gas                                  | 5      | 2        | 2         | 2       | 2      | 2       | 2      | 2       | 2      | 8     | 8       | 10      | 10      | 11      |
| Other                                | NA     | NA       | NA        | NA      | NA     | NA      | NA     | NA      | NA     | 0     | 0       | 1       | 7       | 8       |
| Internal Combustion                  | NA     | 1        | 1         | 12      | 10     | 10      | 10     | 10      | 10     | 10    | 11      | 11      | 11      | 11      |
| FUEL COMB. INDUSTRIAL                | 157    | 134      | 134       | 182     | 196    | 187     | 186    | 196     | 206    | 179   | 175     | 174     | 179     | 185     |
| Coal                                 | 3      | 7        | 7         | 7       | 6      | 7       | 6      | 8       | 6      | 7     | 7       | 7       | 7       | 7       |
| Oil                                  | 3      | 17       | 16        | 12      | 11     | 12      | 12     | 12      | 12     | 9     | 8       | 8       | 8       | 9       |
| Gas                                  | 62     | 57       | 61        | 58      | 60     | 52      | 51     | 63      | 73     | 59    | 59      | 59      | 60      | 63      |
| Other                                | 89     | 35       | 36        | 51      | 51     | 49      | 51     | 50      | 50     | 35    | 34      | 34      | 35      | 37      |
| Internal Combustion                  | NA     | 18       | 15        | 54      | 68     | 66      | 66     | 64      | 65     | 69    | 68      | 67      | 69      | 70      |
| FUEL COMB. OTHER                     | 848    | 1,403    | 1,200     | 776     | 835    | 884     | 762    | 748     | 823    | 896   | 895     | 892     | 895     | 957     |
| Commercial/Institutional Coal        | 1      | 1        | 1         | 1       | 1      | 1       | 1      | 1       | 1      | 1     | 1       | 1       | 1       | 1       |
| Commercial/Institutional Oil         | 3      | 4        | 4         | 3       | 3      | 3       | 3      | 3       | 3      | 3     | 3       | 3       | 3       | 3       |
| Commercial/Institutional Gas         | 7      | 6        | 7         | 8       | 8      | 10      | 11     | 11      | 11     | 14    | 14      | 13      | 15      | 15      |
| Misc. Fuel Comb. (Except Residential | I) NA  | 4        | 4         | 8       | 8      | 8       | 9      | 9       | 8      | 9     | 9       | 9       | 10      | 10      |
| Residential Wood                     | 809    | 1,372    | 1,169     | 718     | 776    | 822     | 698    | 684     | 759    | 833   | 833     | 833     | 833     | 895     |
| fireplaces                           | 809    | 1,372    | 1,169     | 718     | 776    | 822     | 698    | 684     | 759    | 541   | 541     | 541     | 541     | 580     |
| woodstoves                           | NA     | NA       | NA        | NA      | NA     | NA      | NA     | NA      | NA     | 292   | 292     | 292     | 292     | 315     |
| other                                | NA     | NA       | NA        | NA      | NA     | NA      | NA     | NA      | NA     | NA    | NA      | NA      | NA      | NA      |
| Residential Other                    | 28     | 16       | 15        | 38      | 39     | 40      | 40     | 40      | 41     | 36    | 35      | 33      | 34      | 34      |
| Industrial Processes                 | 12,861 | 10,474   | 10,755    | 10,000  | 10,178 | 10,380  | 10,578 | 10,738  | 10,780 | 8,682 | 8,900   | 8,442   | 8,003   | 8,033   |
| CHEMICAL & ALLIED PRODUCT MFG        | 1,595  | 881      | 980       | 634     | 710    | 715     | 701    | 691     | 660    | 387   | 388     | 394     | 396     | 407     |
| Organic Chemical Mfg                 | 884    | 349      | 387       | 192     | 216    | 211     | 215    | 217     | 210    | 131   | 133     | 136     | 139     | 143     |
| ethylene oxide mfg                   | 10     | 2        | 2         | 0       | 1      | 1       | 1      | 1       | 1      | 0     | 0       | 0       | 0       | 0       |
| phenol mfg                           | NA     | 0        | 0         | 4       | 4      | 4       | 4      | 4       | 2      | 2     | 2       | 2       | 2       | 2       |
| terephthalic acid mfg                | 60     | 24       | 27        | 20      | 23     | 17      | 19     | 21      | 17     | 11    | 11      | 11      | 11      | 12      |
| ethylene mfg                         | 111    | 28       | 33        | 9       | 11     | 10      | 10     | 9       | 10     | 5     | 5       | 5       | 5       | 5       |
| charcoal mfg                         | 40     | 37       | 45        | 33      | 33     | 33      | 33     | 34      | 33     | 30    | 31      | 31      | 32      | 33      |
| socmi reactor                        | 118    | 43       | 49        | 26      | 30     | 30      | 32     | 33      | 33     | 27    | 28      | 28      | 29      | 30      |
| socmi distillation                   | NA     | 7        | 7         | 8       | 9      | 8       | 8      | 8       | 8      | 4     | 4       | 4       | 4       | 4       |
| socmi air oxidation processes        | NA     | 0        | 1         | 2       | 2      | 2       | 2      | 2       | 2      | 1     | 1       | 1       | 1       | 1       |
| socmi fugitives                      | 254    | 179      | 193       | 61      | 67     | 69      | 70     | 70      | 70     | 40    | 41      | 42      | 42      | 43      |
| other                                | 291    | 27       | 30        | 29      | 38     | 37      | 36     | 35      | 34     | 12    | 12      | 12      | 13      | 13      |
| Inorganic Chemical Mfg               | 93     | 3        | 3         | 2       | 3      | 3       | 2      | 2       | 3      | 3     | 3       | 3       | 3       | 3       |
| Polymer & Resin Mfg                  | 384    | 343      | 389       | 242     | 268    | 283     | 269    | 257     | 222    | 128   | 124     | 126     | 124     | 128     |
| polypropylene mfg                    | 1      | 12       | 13        | 2 2     | 200    | 205     | 207    | 237     | 222    | 2     | 2       | 2       | 2       | 2       |
| polyethylene mfg                     | 22     | 51       | 57        | 39      | 44     | 45      | 46     | 46      | 35     | 16    | 17      | 17      | 17      | 17      |
| polystyrene resins                   | 15     | 6        | 7         | 4       | 5      |         |        | 40<br>5 | 5      | 5     | 3       | 3       | 3       | 3       |
| Polymer & Resin Mfg (continued)      | 15     | U        | '         | 7       | 5      | 5       | 5      | J       | 5      | 5     | 5       | 5       | 5       | 5       |
| synthetic fiber                      | 199    | 217      | 250       | 144     | 161    | 173     | 157    | 143     | 142    | 78    | 80      | 82      | 83      | 86      |
| styrene/butadiene rubber             | 70     | 45       | 250<br>50 | 144     | 15     | 1/3     | 157    | 143     | 142    | 11    | 80<br>7 | 62<br>7 | 03<br>7 | 80<br>7 |
| other                                | 70     | 45<br>12 | 13        | 37      | 41     |         | 42     | 43      | 22     | 16    | 16      | 7<br>16 | 13      | 13      |
|                                      |        |          |           | 37<br>6 | 41     | 42<br>8 | 42     |         | 5      | 8     | 8       |         | 8       | 8       |
| Agricultural Chemical Mfg            | NA     | 11       | 12        | D       | /      | ŏ       | /      | 6       | 5      | ŏ     | ŏ       | 8       | ŏ       | ŏ       |

NATIONAL AIR QUALITY AND EMISSIONS TRENDS REPORT, 2003

 Table A-5.
 National Volatile Organic Compounds Emissions Estimates, 1980, 1985, 1989–2000 (thousand short tons)

| Source Category                           | 1980  | 1985     | 1989     | 1990     | 1991     | 1992    | 1993     | 1994     | 1995     | 1996 | 1997     | 1998     | 1999     | 2000 |
|-------------------------------------------|-------|----------|----------|----------|----------|---------|----------|----------|----------|------|----------|----------|----------|------|
| Paint, Varnish, Lacquer, Enamel Mfg       | 65    | 8        | 8        | 14       | 16       | 17      | 18       | 17       | 18       | 7    | 8        | 8        | 8        | 8    |
| paint & varnish mfg                       | 65    | 8        | 8        | 13       | 15       | 16      | 16       | 16       | 16       | 6    | 6        | 6        | 6        | 6    |
| other                                     | NA    | 0        | 0        | 1        | 1        | 1       | 1        | 1        | 2        | 2    | 2        | 2        | 2        | 2    |
| Pharmaceutical Mfg                        | 77    | 43       | 48       | 20       | 21       | 24      | 23       | 24       | 38       | 7    | 7        | 7        | 8        | 8    |
| Other Chemical Mfg                        | 92    | 125      | 132      | 158      | 179      | 169     | 166      | 168      | 164      | 104  | 105      | 106      | 107      | 109  |
| carbon black mfg                          | 92    | 26       | 26       | 9        | 17       | 16      | 16       | 21       | 24       | 27   | 28       | 28       | 28       | 29   |
| printing ink mfg                          | NA    | 2        | 3        | 1        | 1        | 1       | 1        | 2        | 2        | 1    | 1        | 1        | 1        | 1    |
| fugitives unclassified                    | NA    | 12       | 12       | 23       | 23       | 21      | 20       | 27       | 30       | 13   | 13       | 13       | 13       | 13   |
| carbon black furnace: fugitives           | NA    | 4        | 5        | 0        | 1        | 1       | 1        | 1        | 1        | 0    | 0        | 0        | 0        | 0    |
| other                                     | NA    | 81       | 87       | 125      | 136      | 129     | 127      | 117      | 107      | 63   | 64       | 64       | 65       | 66   |
| METALS PROCESSING                         | 273   | 76       | 74       | 122      | 123      | 124     | 124      | 126      | 125      | 73   | 78       | 78       | 76       | 79   |
| Nonferrous Metals Processing              | NA    | 18       | 19       | 18       | 19       | 17      | 18       | 20       | 21       | 19   | 20       | 20       | 20       | 21   |
| Ferrous Metals Processing                 | 273   | 57       | 54       | 98       | 99       | 100     | 98       | 97       | 96       | 44   | 47       | 47       | 46       | 48   |
| coke oven door & topside leaks            | 152   | 12       | 12       | 19       | 22       | 27      | 27       | 26       | 26       | 5    | 6        | 6        | 6        | 6    |
| coke oven by-product plants               | NA    | 3        | 3        | 7        |          | 9       | 9        | 9        | 9        | 5    | 5        | 5        | 5        | 5    |
| other                                     | 121   | 41       | 39       | 71       | 68       | 63      | 62       | 62       | 61       | 35   | 37       | 36       | 35       | 37   |
| Metals Processing NEC                     | NA    | 1        | 1        | 7        | 6        | 8       | 8        | 8        | 8        | 10   | 11       | 11       | 10       | 11   |
| PETROLEUM & RELATED INDUSTRIES            | 1,440 | 703      | 639      | 612      | 640      | 632     | 649      | 647      | 642      | 477  | 487      | 485      | 424      | 433  |
| Oil & Gas Production                      | 379   | 107      | 68       | 301      | 301      | 297     | 310      | 305      | 299      | 271  | 274      | 272      | 271      | 279  |
| Petroleum Refineries & Related Industrie  |       | 592      | 568      | 308      | 337      | 332     | 336      | 339      | 339      | 201  | 208      | 208      | 149      | 150  |
| vaccuum distillation                      | 32    | 15       | 13       | 500      | 557      | 7       | 7        | 7        | 6        | 3    | 3        | 3        | 3        | 3    |
| fluid catalytic cracking units            | 21    | 34       | 31       | ,<br>15  | ,<br>17  | ,<br>16 | ,<br>15  | 16       | 16       | 16   | 16       | 16       | 16       | 16   |
| process unit turnarounds                  | NA    | 15       | 13       | 13       | 11       | 10      | 13       | 10       | 10       | 2    | 2        | 2        | 2        | 2    |
| petroleum refinery fugitives              | NA    | 76       | 65       | 99       | 105      | 103     | 109      | 109      | 111      | 84   | 87       | 86       | 27       | 27   |
| other                                     | 992   | 454      | 446      | 177      | 105      | 195     | 194      | 198      | 194      | 97   | 101      | 101      | 101      | 101  |
| Asphalt Manufacturing                     | 16    | 3        | 3        | 3        | 3        | 3       | 3        | 3        | 4        | 5    | 5        | 5        | 4        | 4    |
| OTHER INDUSTRIAL PROCESSES                | 237   | 390      | 403      | 401      | 391      | 414     | 442      | 438      | 450      | 422  | 438      | 443      | 463      | 480  |
| Agriculture, Food, & Kindred Products     |       | 169      | 175      | 138      | 130      | 127     | 146      | 145      | 147      | 104  | 108      | 109      | 110      | 114  |
| vegetable oil mfg                         | 81    | 46       | 49       | 16       | 130      | 127     | 140      | 145      | 147      | 104  | 100      | 107      | 1        | 1    |
| whiskey fermentation: aging               | 64    | 40<br>24 | 23       | 24       | 16       | 12      | 24       | 24       | 25       | 15   | 16       | 16       | 16       | 17   |
| bakeries                                  | 46    | 24<br>51 | 23<br>51 | 43       | 44       | 44      | 24<br>46 | 24<br>46 | 23<br>47 | 41   | 42       | 42       | 43       | 44   |
| other                                     | NA    | 49       | 52       | 43<br>55 | 44<br>52 | 51      | 40<br>58 | 40<br>58 | 60       | 41   | 42       | 42<br>50 | 43<br>50 | 52   |
| Textiles, Leather, & Apparel Products     | NA    | 49<br>10 | 10       | 20       | 52<br>18 | 19      | 19       | 19       | 19       | 10   | 49<br>10 | 10       | 10       | 10   |
| Wood, Pulp & Paper, & Publishing Products |       | 42       | 44       | 20<br>96 | 92       | 19      | 19       | 19       | 19       | 154  | 160      | 164      | 167      | 173  |
| Rubber & Miscellaneous Plastic Produ      |       | 42       | 44       | 58       | 92<br>59 | 64      | 62       | 61       | 60       | 49   | 51       | 52       | 52       | 54   |
|                                           |       |          |          | 5        | 5        |         |          |          |          |      |          |          |          |      |
| rubber tire mfg                           | 44    | 10       | 11       |          | -        | 5       | 5        | 6        | 6        | 6    | 6        | 6        | 6        | 6    |
| green tire spray                          | NA    | 5        | 6        | 3        | 4        | 3       | 3        | 3        | 3        | 2    | 2        | 2        | 2        | 2    |
| other                                     | NA    | 26       | 29       | 50       | 50       | 55      | 53       | 52       | 51       | 41   | 43       | 44       | 44       | 46   |
| Mineral Products                          | 2     | 15       | 14       | 18       | 17       | 27      | 28       | 30       | 31       | 31   | 32       | 32       | 32       | 33   |
| Machinery Products                        | NA    | 4        | 4        | 7        | 8        | 10      | 8        | 11       | 11       | 11   | 12       | 12       | 12       | 12   |
| Electronic Equipment                      | NA    | 0        | 0        | 2        | 2        | 3       | 3        | 3        | 2        | 1    | 1        | 1        | 13       | 13   |
| Transportation Equipment                  | NA    | 1        | 0        | 2        | 2        | 2       | 3        | 3        | 2        | 3    | 4        | 4        | 4        | 4    |
| Construction                              | NA    | NA       | NA       | 0        | 0        | 0       | 0        | 0        | 0        | 0    | 0        | 0        | 0        | 0    |
| Miscellaneous Industrial Processes        | NA    | 108      | 109      | 59       | 62       | 62      | 62       | 62       | 57       | 58   | 60       | 60       | 64       | 66   |

| Source Category               | 1980  | 1985  | 1989  | 1990  | 1991  | 1992  | 1993  | 1994  | 1995  | 1996  | 1997  | 1998  | 1999  | 2000  |
|-------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| SOLVENT UTILIZATION           | 6,584 | 5,699 | 5,964 | 5,750 | 5,782 | 5,901 | 6,016 | 6,162 | 6,183 | 5,474 | 5,621 | 5,149 | 4,828 | 4,827 |
| Degreasing                    | 513   | 756   | 757   | 744   | 718   | 737   | 753   | 775   | 789   | 602   | 624   | 372   | 371   | 382   |
| open top                      | NA    | 28    | 29    | 18    | 25    | 26    | 26    | 27    | 24    | 8     | 8     | 4     | 4     | 4     |
| conveyorized                  | NA    | 5     | 4     | 5     | 6     | 6     | 6     | 6     | 5     | 4     | 5     | 2     | 2     | 2     |
| cold cleaning                 | NA    | 31    | 35    | 30    | 23    | 24    | 24    | 22    | 23    | 22    | 23    | 10    | 11    | 11    |
| other                         | 513   | 691   | 689   | 691   | 664   | 680   | 697   | 719   | 737   | 567   | 588   | 356   | 354   | 365   |
| Graphic Arts                  | 373   | 317   | 363   | 274   | 301   | 308   | 322   | 333   | 339   | 287   | 293   | 300   | 295   | 304   |
| letterpress                   | NA    | 2     | 2     | 4     | 8     | 8     | 8     | 8     | 8     | 6     | 6     | 6     | 6     | 6     |
| flexographic                  | NA    | 18    | 20    | 20    | 24    | 26    | 26    | 25    | 24    | 19    | 19    | 20    | 16    | 16    |
| lithographic                  | NA    | 4     | 4     | 14    | 17    | 18    | 21    | 22    | 20    | 12    | 12    | 13    | 13    | 13    |
| gravure                       | NA    | 131   | 150   | 75    | 82    | 81    | 87    | 93    | 91    | 50    | 51    | 52    | 45    | 46    |
| other                         | 373   | 162   | 187   | 162   | 171   | 175   | 180   | 185   | 196   | 200   | 205   | 210   | 214   | 222   |
| Dry Cleaning                  | 320   | 169   | 212   | 215   | 218   | 224   | 225   | 228   | 230   | 154   | 163   | 166   | 168   | 169   |
| perchloroethylene             | NA    | 85    | 107   | 110   | 112   | 115   | 116   | 117   | 118   | 58    | 61    | 63    | 63    | 64    |
| petroleum solvent             | NA    | 84    | 105   | 104   | 106   | 109   | 110   | 111   | 112   | 89    | 94    | 96    | 97    | 98    |
| other                         | 320   | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 1     | 7     | 8     | 8     | 8     | 8     |
| Surface Coating               | 3,685 | 2,549 | 2,635 | 2,523 | 2,521 | 2,577 | 2,632 | 2,716 | 2,681 | 2,373 | 2,456 | 2,193 | 2,138 | 2,087 |
| industrial adhesives          | 55    | 381   | 375   | 390   | 374   | 386   | 400   | 419   | 410   | 351   | 366   | 147   | 148   | 154   |
| fabrics                       | 186   | 34    | 35    | 14    | 14    | 16    | 16    | 15    | 15    | 10    | 10    | 10    | 11    | 11    |
| paper                         | 626   | 106   | 114   | 75    | 64    | 61    | 59    | 59    | 52    | 48    | 49    | 50    | 51    | 53    |
| large appliances              | 36    | 22    | 18    | 21    | 20    | 20    | 21    | 22    | 21    | 23    | 24    | 23    | 22    | 23    |
| magnet wire                   | 5     | 0     | 0     | 1     | 1     | 1     | 1     | 1     | 1     | 2     | 2     | 2     | 2     | 2     |
| autos & light trucks          | 165   | 85    | 87    | 92    | 90    | 93    | 92    | 96    | 96    | 94    | 100   | 102   | 105   | 109   |
| metal cans                    | 73    | 97    | 95    | 94    | 91    | 93    | 96    | 98    | 102   | 99    | 106   | 109   | 113   | 117   |
| metal coil                    | 21    | 50    | 50    | 45    | 49    | 47    | 49    | 48    | 47    | 45    | 47    | 48    | 49    | 51    |
| wood furniture                | 231   | 132   | 140   | 158   | 154   | 159   | 171   | 185   | 179   | 175   | 185   | 127   | 130   | 143   |
| metal furniture               | 52    | 41    | 44    | 48    | 47    | 49    | 52    | 56    | 53    | 52    | 54    | 56    | 58    | 59    |
| flatwood products             | 82    | 4     | 4     | 9     | 10    | 10    | 11    | 12    | 13    | 16    | 17    | 17    | 18    | 19    |
| plastic parts                 | 25    | 11    | 11    | 27    | 22    | 23    | 22    | 22    | 18    | 15    | 16    | 16    | 16    | 17    |
| large ships                   | 20    | 15    | 15    | 15    | 14    | 15    | 15    | 15    | 13    | 17    | 18    | 18    | 19    | 16    |
| aircraft                      | 2     | 27    | 34    | 7     | 7     | 7     | 7     | 7     | 6     | 11    | 11    | 12    | 5     | 6     |
| misc. metal parts             | NA    | 14    | 14    | 59    | 87    | 90    | 92    | 93    | 92    | 38    | 40    | 40    | 41    | 41    |
| steel drums                   | NA    | NA    | NA    | 3     | 3     | 3     | 3     | 4     | 4     | 4     | 4     | 4     | 4     | 4     |
| architectural                 | 477   | 473   | 500   | 495   | 500   | 505   | 510   | 515   | 522   | 480   | 485   | 487   | 483   | 406   |
| traffic markings              | NA    | 100   | 106   | 105   | 106   | 107   | 108   | 109   | 111   | 93    | 94    | 94    | 93    | 77    |
| maintenance coatings          | 106   | 79    | 80    | 79    | 76    | 78    | 81    | 85    | 84    | 80    | 83    | 84    | 85    | 71    |
| railroad                      | 9     | 4     | 3     | 3     | 3     | 3     | 3     | 4     | 4     | 3     | 3     | 3     | 4     | 4     |
| auto refinishing              | 186   | 111   | 132   | 130   | 132   | 137   | 140   | 144   | 142   | 161   | 163   | 163   | 104   | 102   |
| machinery                     | 62    | 37    | 28    | 28    | 26    | 26    | 27    | 27    | 25    | 25    | 25    | 22    | 20    | 19    |
| electronic & other electrical | NA    | 79    | 79    | 78    | 75    | 77    | 80    | 85    | 85    | 78    | 82    | 82    | 82    | 87    |
| general                       | 52    | 146   | 154   | 121   | 127   | 129   | 133   | 140   | 138   | 100   | 105   | 106   | 107   | 113   |
| miscellaneous                 | 799   | 104   | 103   | 32    | 37    | 42    | 39    | 38    | 35    | 30    | 31    | 32    | 33    | 35    |
| thinning solvents             | NA    | 90    | 96    | 96    | 97    | 100   | 94    | 96    | 99    | 51    | 53    | 54    | 54    | 56    |
| other                         | 415   | 306   | 317   | 297   | 295   | 302   | 310   | 321   | 314   | 273   | 280   | 282   | 282   | 293   |

| Source Category                       | 1980       | 1985       | 1989      | 1990       | 1991       | 1992       | 1993       | 1994       | 1995       | 1996       | 1997       | 1998       | 1999       | 2000       |  |
|---------------------------------------|------------|------------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--|
| Other Industrial                      | 690        | 125        | 131       | 94         | 98         | 102        | 102        | 99         | 96         | 106        | 110        | 111        | 113        | 118        |  |
| miscellaneous                         | 44         | NA         | NA        | NA         | NA         | NA         | NA         | NA         | NA         | NA         | NA         | NA         | NA         | NA         |  |
| rubber & plastics mfg                 | 327        | 25         | 29        | 28         | 28         | 28         | 29         | 31         | 31         | 38         | 40         | 40         | 40         | 42         |  |
| other                                 | 319        | 100        | 102       | 66         | 71         | 74         | 73         | 68         | 64         | 68         | 70         | 71         | 72         | 76         |  |
| Nonindustrial                         | 1,002      | 1,783      | 1,867     | 1,900      | 1,925      | 1,952      | 1,982      | 2,011      | 2,048      | 1,949      | 1,973      | 2,004      | 1,743      | 1,765      |  |
| cutback asphalt                       | 323        | 191        | 199       | 199        | 202        | 207        | 214        | 221        | 227        | 135        | 140        | 144        | 147        | 150        |  |
| other asphalt                         | NA         | NA         | NA        | NA         | NA         | NA         | NA         | NA         | NA         | 43         | 44         | 45         | 46         | 48         |  |
| pesticide application                 | 241        | 212        | 260       | 258        | 264        | 272        | 280        | 289        | 299        | 388        | 393        | 408        | 412        | 421        |  |
| adhesives                             | NA         | 345        | 353       | 361        | 365        | 368        | 372        | 375        | 380        | 301        | 304        | 307        | 250        | 252        |  |
| consumer solvents                     | NA         | 1,035      | 1,056     | 1,083      | 1,095      | 1,105      | 1,116      | 1,126      | 1,142      | 1,076      | 1,085      | 1,095      | 883        | 890        |  |
| other                                 | 437        | NA         | NA        | NA         | NA         | NA         | NA         | NA         | NA         | 6          | 6          | 6          | 5          | 5          |  |
| Solvent Utilization NEC               | NA         | NA         | NA        | 0          | NA         | NA         | 0          | 0          | 0          | 3          | 3          | 3          | 2          | 2          |  |
| STORAGE & TRANSPORT                   | 1,975      | 1,747      | 1,753     | 1,495      | 1,532      | 1,583      | 1,600      | 1,629      | 1,652      | 1,289      | 1,327      | 1,327      | 1,245      | 1,225      |  |
| Bulk Terminals & Plants               | 517        | 606        | 651       | 359        | 369        | 384        | 395        | 403        | 406        | 208        | 215        | 214        | 206        | 208        |  |
| fixed roof                            | 12         | 14         | 15        | 9          | 11         | 12         | 13         | 16         | 16         | 6          | 6          | 6          | 6          | 7          |  |
| floating roof                         | 39         | 46         | 50        | 26         | 29         | 30         | 34         | 29         | 19         | 11         | 11         | 11         | 12         | 12         |  |
| variable vapor space                  | 1          | 1          | 1         | 2          | 2          | 1          | 1          | 1          | 0          | 0          | 0          | 0          | 0          | 0          |  |
| efr with seals                        | NA         | NA         | NA        | 2          | 3          | 3          | 4          | 4          | 3          | 2          | 2          | 2          | 2          | 2          |  |
| ifr with seals                        | NA         | NA         | NA        | 2          | 2          | 3          | 5          | 3          | 3          | 3          | 3          | 3          | 3          | 3          |  |
| underground tanks                     | 0          | 0          | 0         | 1          | 2          | 2          | 2          | 2          | 2          | 2          | 2          | 2          | 2          | 2          |  |
| area source: gasoline                 | 440        | 512        | 553       | 282        | 281        | 292        | 292        | 305        | 322        | 163        | 167        | 167        | 157        | 157        |  |
| other                                 | 26         | 32         | 33        | 36         | 40         | 42         | 44         | 43         | 41         | 21         | 22         | 22         | 24         | 25         |  |
| Petroleum & Petroleum Product Storag  |            | 223        | 210       | 157        | 195        | 204        | 205        | 194        | 191        | 181        | 187        | 187        | 108        | 109        |  |
| fixed roof gasoline                   | 43         | 26         | 23        | 13         | 17         | 17         | 16         | 16         | 16         | 14         | 14         | 14         | 1          | 1          |  |
| fixed roof crude                      | 148        | 26         | 21        | 21         | 25         | 26         | 28         | 24         | 21         | 25         | 26         | 25         | 10         | 11         |  |
| floating roof gasoline                | 45         | 27         | 24        | 15         | 25         | 24         | 24         | 22         | 22         | 16         | 16         | 16         | 11         | 11         |  |
| floating roof crude                   | 36         | 5          | 5         | 2          | - 20       | 7          | 8          | 6          | 6          | 5          | 6          | 6          | 2          | 2          |  |
| efr / seal gasoline                   | 3          | 2          | 2         | 7          | 11         | 13         | 14         | 14         | 15         | 9          | 9          | 9          | 9          | 9          |  |
| efr / seal crude                      | 2          | 0          | 0         | 3          | 3          | 3          | 3          | 3          | 2          | 3          | 3          | 4          | 3          | 3          |  |
| ifr / seal gasoline                   | 1          | 1          | 1         | 1          | 2          | 2          | 2          | 2          | 2          | 3          | 3          | 3          | 3          | 3          |  |
| ifr / seal crude                      | 2          | 0          | 0         | 0          | 0          | 0          | 0          | 0          | 0          | 1          | 1          | 1          | 1          | 1          |  |
| variable vapor space gasoline         | 3          | 1          | 2         | 1          | 2          | 5          | 6          | 3          | 0          | 0          | 0          | 0          | 0          | 0          |  |
| area source: crude                    | NA         | NA         | NA        | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |  |
| other                                 | 23         | 133        | 132       | 92         | 102        | 106        | 103        | 103        | 106        | 104        | 108        | 108        | 68         | 69         |  |
| Petroleum & Petroleum Product Transp  |            | 133        | 125       | 151        | 102        | 149        | 103        | 139        | 134        | 104        | 108        | 108        | 121        | 97         |  |
| gasoline loading: normal / splash     | 011 01     | 3          | 3         | 3          | 2          | 2          | 2          | 3          | 2          | 3          | 3          | 3          | 3          | 3          |  |
| gasoline loading: balanced / submerg  |            | 3<br>21    | 22        | 3<br>15    | 2<br>17    | 2<br>15    | 13         | 3<br>11    | 2<br>10    | 3<br>7     | 3<br>7     | 3<br>7     | 3<br>7     | 3<br>7     |  |
| gasoline loading: normal / submerge   |            | 41         | 42        | 26         | 25         | 26         | 24         | 25         | 23         | 13         | 7<br>14    | 13         | 7<br>14    | 14         |  |
| gasoline loading: clean / submerged   | 1 3<br>0   | 41         | 42        | 26<br>0    | 25<br>0    | 26<br>0    | 24<br>0    | 25<br>0    | 23         | 0          | 0          | 0          | 14         | 14         |  |
| marine vessel loading: gasoline & cru |            | 2<br>24    | 22        | 31         | 30         | 30         | 0<br>29    | 28         | 0<br>29    | 31         | 32         | 33         | 34         | 12         |  |
| 0.0                                   |            | 24<br>35   |           |            | 30<br>73   | 30<br>75   |            |            | 29<br>70   |            |            |            |            |            |  |
| other<br>Service Stations: Stage I    | 6          |            | 35<br>223 | 76<br>300  | 73<br>295  | 303        | 73<br>309  | 72<br>322  | 70<br>334  | 61<br>310  | 62<br>318  | 62<br>318  | 63<br>320  | 60<br>321  |  |
| 5                                     | 461<br>583 | 207<br>485 |           | 300<br>433 | 295<br>430 | 303<br>442 | 309<br>449 | 322<br>467 | 334<br>484 | 310<br>399 | 318<br>410 | 318<br>410 | 320<br>412 | 321<br>414 |  |
| Service Stations: Stage II            |            |            | 441       |            |            |            |            | 467<br>55  |            |            |            |            |            |            |  |
| Service Stations: Breathing & Emptyir | -          | 49         | 52        | 52         | 51         | 52         | 53         |            | 57         | 43         | 45         | 45         | 45         | 45         |  |
| Organic Chemical Storage              | 46         | 34         | 36        | 30         | 35         | 38         | 39         | 39         | 37         | 26         | 26         | 27         | 25         | 26         |  |
| Organic Chemical Transport            | NA         | 17         | 15        | 10         | 8          | 8          | 7          | 7          | 7          | 5          | 5          | 5          | 5          | 3          |  |
| Inorganic Chemical Storage            | NA         | 0          | 0         | 0          | 1          | 1          | 1          | 1          | 1          | 1          | 1          | 1          | 1          | 1          |  |
| Inorganic Chemical Transport          | NA         | 0          | 0         | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |  |
| Bulk Materials Storage                | NA         | 0          | 0         | 2          | 2          | 2          | 1          | 1          | 1          | 1          | 1          | 1          | 1          | 1          |  |
| Bulk Materials Transport              | NA         | NA         | NA        | NA         | NA         | NA         | NA         | NA         | NA         | 0          | 0          | 0          | 0          | 0          |  |

| Source Category                                    | 1980   | 1985   | 1989       | 1990       | 1991       | 1992       | 1993       | 1994       | 1995       | 1996       | 1997       | 1998  | 1999       | 2000       |
|----------------------------------------------------|--------|--------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------|------------|------------|
| WASTE DISPOSAL & RECYCLING                         | 758    | 979    | 941        | 986        | 999        | 1,010      | 1,046      | 1,046      | 1,067      | 560        | 561        | 566   | 571        | 582        |
| Incineration                                       | 366    | 64     | 59         | 48         | 50         | 51         | 76         | 65         | 54         | 24         | 24         | 25    | 26         | 26         |
| Open Burning                                       | 372    | 309    | 274        | 196        | 200        | 203        | 207        | 208        | 208        | 364        | 364        | 364   | 364        | 371        |
| industrial                                         | NA     | 6      | 6          | 4          | 4          | 4          | 5          | 5          | 5          | 0          | 0          | 0     | 0          | 0          |
| commmercial/institutional                          | NA     | 1      | 2          | 9          | 9          | 10         | 10         | 10         | 10         | 0          | 0          | 0     | 0          | 0          |
| residential                                        | NA     | 302    | 266        | 165        | 167        | 169        | 171        | 172        | 173        | 150        | 150        | 150   | 150        | 154        |
| land clearing debris                               | NA     | NA     | NA         | NA         | NA         | NA         | NA         | NA         | NA         | 206        | 206        | 206   | 206        | 209        |
| other                                              | 372    | NA     | NA         | 19         | 20         | 20         | 21         | 21         | 20         | 8          | 8          | 8     | 8          | 8          |
| POTW                                               | NA     | 10     | 11         | 49         | 47         | 48         | 50         | 52         | 51         | 48         | 48         | 49    | 50         | 51         |
| Industrial Waste Water                             | NA     | 1      | 2          | 14         | 18         | 19         | 19         | 19         | 16         | 19         | 20         | 20    | 21         | 21         |
| TSDF                                               | NA     | 594    | 595        | 589        | 591        | 589        | 588        | 587        | 628        | 41         | 41         | 42    | 42         | 43         |
| Landfills                                          | NA     | 0      | 0          | 64         | 66         | 69         | 74         | 80         | 75         | 35         | 35         | 36    | 36         | 37         |
| Other                                              | 20     | 0      | 0          | 26         | 28         | 31         | 33         | 35         | 36         | 29         | 29         | 30    | 32         | 33         |
| Transportation                                     | 11,291 | 11,818 | 9,744      | 8,988      | 9,240      | 8,882      | 8,973      | 9,235      | 8,515      | 9,336      | 9,082      | 8,972 | 8,754      | 8,396      |
| ON-ROAD VEHICLES                                   | 8,979  | 9,376  | 7,192      | 6,443      | 6,660      | 6,289      | 6,348      | 6,563      | 5,816      | 5,541      | 5,438      | 5,439 | 5,332      | 5,035      |
| Light-Duty Gas Vehicles & Motorcycles              |        | 5,864  | 4,462      | 3,692      | 3,608      | 3,288      | 3,232      | 3,332      | 3,029      | 2,911      | 2,878      | 2,935 | 2,907      | 2,798      |
| light-duty gas vehicles                            | 5,843  | 5,810  | 4,412      | 3,635      | 3,571      | 3,256      | 3,252      | 3,295      | 2,991      | 2,875      | 2,842      | 2,895 | 2,865      | 2,756      |
| motorcycles                                        | 64     | 5,010  | 50         | 56         | 3,371      | 3,230      | 3,170      | 3,273      | 38         | 36         | 2,042      | 2,075 | 42         | 42         |
| Light-Duty Gas Trucks                              | 2,059  | 2,425  | 1,867      | 2,016      | 2,318      | 2,347      | 2,471      | 2,488      | 2,135      | 1,786      | 1,789      | 1,788 | 1,759      | 1,655      |
| 5                                                  | 2,039  | 2,425  | 1,018      | 1,103      | 1,245      | 1,255      | 1,313      | 2,400      | 1,172      | 1,157      | 1,769      | 1,171 | 1,166      | 1,005      |
| light-duty gas trucks 1<br>light-duty gas trucks 2 | 830    | 988    | 849        | 912        | 1,245      | 1,255      | 1,313      | 1,307      | 963        | 629        | 624        | 617   | 593        | 546        |
| 5 , 5                                              |        | 716    | 649<br>517 |            |            |            |            |            |            | 488        |            |       |            |            |
| Heavy-Duty Gas Vehicles                            | 611    | 370    |            | 405<br>331 | 416<br>318 | 335<br>318 | 327<br>318 | 414<br>330 | 325<br>326 | 488<br>356 | 439<br>332 | 400   | 375<br>290 | 323<br>260 |
| Diesels                                            | 402    |        | 346        |            |            |            |            |            |            |            |            | 316   |            |            |
| heavy-duty diesel vehicles                         | 392    | 360    | 332        | 298        | 303        | 302        | 302        | 313        | 309        | 348        | 325        | 311   | 286        | 256        |
| light-duty diesel trucks                           | 2      | 2      | 3          | 24         | 4          | 5          | 5          | 5          | 5          | 4          | 3          | 3     | 2          | 2          |
| light-duty diesel vehicles                         | 8      | 8      | 11         | 9          | 11         | 11         | 11         | 12         | 12         | 5          | 4          | 3     | 3          | 2          |
| NON-ROAD ENGINES AND VEHICLES                      | 2,312  | 2,442  | 2,552      | 2,545      | 2,581      | 2,594      | 2,624      | 2,672      | 2,699      | 3,834      | 3,684      | 3,573 | 3,461      | 3,404      |
| Non-Road Gasoline                                  | 1,787  | 1,886  | 1,907      | 1,889      | 1,920      | 1,925      | 1,957      | 1,991      | 2,021      | 3,303      | 3,156      | 3,056 | 2,973      | 2,942      |
| recreational                                       | 151    | 156    | 160        | 128        | 130        | 132        | 133        | 135        | 138        | 604        | 604        | 604   | 604        | 605        |
| construction                                       | 39     | 45     | 44         | 44         | 44         | 44         | 44         | 44         | 44         | 68         | 59         | 54    | 51         | 50         |
| industrial                                         | 33     | 37     | 33         | 33         | 32         | 31         | 30         | 29         | 28         | 42         | 34         | 32    | 29         | 28         |
| lawn & garden                                      | 583    | 616    | 682        | 700        | 718        | 734        | 752        | 771        | 789        | 1,047      | 971        | 888   | 852        | 830        |
| farm                                               | 17     | 19     | 20         | 20         | 21         | 21         | 21         | 22         | 22         | 17         | 17         | 16    | 15         | 14         |
| light commercial                                   | 127    | 137    | 164        | 171        | 179        | 185        | 192        | 200        | 207        | 233        | 204        | 182   | 163        | 155        |
| logging                                            | 5      | 5      | 8          | 9          | 9          | 10         | 11         | 11         | 12         | 372        | 344        | 351   | 369        | 382        |
| airport service                                    | 1      | 1      | 1          | 1          | 1          | 1          | 1          | 1          | 1          | 0          | 0          | 0     | 0          | 0          |
| railway maintenance                                | NA     | 0      | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0     | 0          | 0          |
| recreational marine vessels                        | 830    | 869    | 793        | 784        | 787        | 768        | 772        | 778        | 779        | 917        | 924        | 929   | 890        | 878        |
| Non-Road Diesel                                    | 327    | 332    | 384        | 390        | 397        | 403        | 408        | 414        | 420        | 412        | 406        | 395   | 369        | 342        |
| recreational                                       | 1      | 1      | 1          | 1          | 1          | 1          | 1          | 1          | 1          | 1          | 1          | 1     | 1          | 1          |
| construction                                       | 135    | 151    | 176        | 181        | 185        | 190        | 194        | 199        | 204        | 207        | 205        | 198   | 185        | 169        |
| industrial                                         | 28     | 36     | 40         | 40         | 41         | 41         | 42         | 42         | 43         | 41         | 41         | 41    | 39         | 37         |
| lawn & garden                                      | 4      | 5      | 9          | 10         | 11         | 12         | 13         | 14         | 14         | 15         | 16         | 17    | 18         | 15         |
| farm                                               | 138    | 113    | 127        | 126        | 126        | 125        | 124        | 123        | 121        | 107        | 104        | 101   | 95         | 89         |
| light commercial                                   | 8      | 10     | 13         | 13         | 14         | 14         | 15         | 16         | 16         | 18         | 19         | 20    | 20         | 21         |
| logging                                            | 11     | 14     | 14         | 14         | 15         | 15         | 15         | 14         | 14         | 15         | 13         | 10    | 8          | 6          |
| airport service                                    | 0      | 1      | 1          | 1          | 1          | 2          | 2          | 2          | 2          | 2          | 2          | 2     | 2          | 2          |
| railway maintenance                                | NA     | 1      | 1          | 1          | 1          | 1          | 1          | 1          | 1          | 1          | 1          | 1     | 2          | 2          |
| recreational marine vessels                        | NA     | 2      | 3          | 3          | 3          | 3          | 3          | 3          | 3          | 4          | 4          | 5     | 1          | 1          |

 Table A-5.
 National Volatile Organic Compounds Emissions Estimates, 1980, 1985, 1989–2000 (thousand short tons)

 (continued)

| Source Category                  | 1980   | 1985   | 1989   | 1990   | 1991   | 1992   | 1993   | 1994   | 1995   | 1996   | 1997   | 1998   | 1999   | 2000   |
|----------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Aircraft                         | 146    | 165    | 190    | 180    | 177    | 179    | 176    | 176    | 178    | 32     | 32     | 32     | 32     | 29     |
| Marine Vessels                   | 19     | 22     | 30     | 32     | 34     | 33     | 32     | 43     | 32     | 39     | 39     | 40     | 39     | 39     |
| coal                             | 0      | 1      | 1      | 0      | 0      | 0      | 0      | 1      | 0      | NA     | NA     | NA     | NA     | NA     |
| diesel                           | 17     | 20     | 27     | 21     | 22     | 21     | 20     | 27     | 20     | 31     | 31     | 31     | 31     | 32     |
| residual oil                     | 1      | 1      | 2      | 3      | 3      | 3      | 3      | 4      | 3      | 8      | 8      | 8      | 8      | 7      |
| gasoline                         | NA     | NA     | NA     | 1      | 1      | 1      | 1      | 1      | 1      | NA     | NA     | NA     | NA     | NA     |
| other                            | NA     | NA     | NA     | 7      | 8      | 8      | 8      | 11     | 8      | 0      | 0      | 0      | 0      | 0      |
| Railroads                        | 33     | 37     | 42     | 52     | 52     | 54     | 52     | 49     | 49     | 48     | 50     | 50     | 48     | 48     |
| Non-Road Other                   | NA     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| liquified petroleum gas          | NA     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| compressed natural gas           | NA     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| MISCELLANEOUS                    | 1,134  | 566    | 642    | 1,059  | 756    | 486    | 556    | 720    | 551    | 742    | 1,181  | 702    | 1,506  | 2,710  |
| Agriculture & Forestry           | NA     | NA     | NA     | 5      | 6      | 6      | 6      | 6      | 7      | 7      | 7      | 7      | 8      | 8      |
| Other Combustion                 | 1,134  | 565    | 641    | 1,049  | 743    | 474    | 544    | 707    | 537    | 729    | 1,168  | 688    | 1,493  | 2,696  |
| structural fires                 | 40     | 44     | 44     | 14     | 14     | 15     | 15     | 15     | 15     | 3      | 3      | 3      | 3      | 3      |
| agricultural fires               | 70     | 55     | 79     | 48     | 48     | 49     | 48     | 51     | 54     | 51     | 52     | 52     | 53     | 54     |
| slash/prescribed burning         | 285    | 182    | 182    | 234    | 239    | 243    | 266    | 259    | 293    | 277    | 293    | 311    | 281    | 183    |
| forest wildfires                 | 739    | 283    | 335    | 749    | 439    | 164    | 212    | 379    | 171    | 395    | 817    | 319    | 1,152  | 2,452  |
| other                            | 1      | NA     | NA     | 3      | 3      | 3      | 3      | 3      | 3      | 3      | 3      | 3      | 3      | 3      |
| Catastrophic/Accidental Releases | NA     | NA     | NA     | 4      | 4      | 4      | 4      | 4      | 4      | 4      | 5      | 5      | 5      | 5      |
| Health Services                  | NA     | 0      | 1      | 1      | 0      | 1      | 1      | 1      | 1      | 0      | 1      | 1      | 1      | 1      |
| Cooling Towers                   | NA     | NA     | NA     | 0      | 2      | 2      | 1      | 2      | 2      | 1      | 1      | 1      | 1      | 1      |
| Fugitive Dust                    | NA     | NA     | NA     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| TOTAL ALL SOURCES                | 26,336 | 24,428 | 22,513 | 21,053 | 21,249 | 20,862 | 21,099 | 21,683 | 20,918 | 19,924 | 20,325 | 19,278 | 19,439 | 20,384 |

 Table A-5.
 National Volatile Organic Compounds Emissions Estimates, 1980, 1985, 1989–2000 (thousand short tons)

 (continued)

| Source Category                       | 1980  | 1985  | 1989  | 1990  | 1991  | 1992  | 1993  | 1994  | 1995  | 1996 | 1997 | 1998 | 1999 | 2000 |
|---------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|------|------|------|------|
| Fuel Combustion                       | 2,445 | 1,536 | 1,382 | 1,196 | 1,147 | 1,183 | 1,124 | 1,113 | 1,179 | 978  | 980  | 912  | 950  | 997  |
| FUEL COMB. ELEC. UTIL.                | 879   | 280   | 271   | 295   | 257   | 257   | 279   | 273   | 268   | 289  | 294  | 229  | 259  | 270  |
| Coal                                  | 796   | 268   | 255   | 265   | 232   | 234   | 253   | 246   | 244   | 264  | 268  | 197  | 231  | 242  |
| bituminous                            | 483   | 217   | 193   | 188   | 169   | 167   | 185   | 181   | 174   | 195  | 196  | 134  | 125  | 129  |
| subbituminous                         | 238   | 35    | 39    | 37    | 39    | 43    | 46    | 44    | 48    | 51   | 51   | 47   | 57   | 57   |
| anthracite & lignite                  | 75    | 16    | 22    | 41    | 23    | 23    | 22    | 21    | 21    | 19   | 21   | 17   | 49   | 56   |
| other                                 | NA    | 0     | 0     | NA    | NA    | NA    | NA    | NA    | NA    | 0    | 0    | 0    | 0    | 0    |
| Oil                                   | 76    | 8     | 12    | 9     | 10    | 7     | 9     | 8     | 5     | 6    | 7    | 5    | 3    | 3    |
| residual                              | 74    | 8     | 11    | 9     | 10    | 7     | 9     | 8     | 5     | 6    | 7    | 5    | 3    | 3    |
| distillate                            | 2     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 0    | 0    | 0    | 0    |
| Gas                                   | 7     | 1     | 1     | 1     | 1     | 0     | 1     | 1     | 1     | 1    | 1    | 1    | 0    | 0    |
| Other                                 | NA    | 1    | 1    | 7    | 6    | 6    |
| Internal Combustion                   | NA    | 3     | 3     | 20    | 15    | 16    | 17    | 17    | 18    | 17   | 18   | 18   | 19   | 19   |
| FUEL COMB. INDUSTRIAL                 | 679   | 247   | 243   | 270   | 233   | 243   | 257   | 270   | 302   | 239  | 233  | 230  | 235  | 244  |
| Coal                                  | 18    | 71    | 70    | 84    | 72    | 74    | 71    | 70    | 70    | 73   | 73   | 71   | 74   | 74   |
| bituminous                            | 12    | 48    | 49    | 59    | 48    | 53    | 51    | 49    | 49    | 43   | 43   | 42   | 44   | 44   |
| subbituminous                         | 4     | 1     | 1     | 5     | 3     | 3     | 3     | 5     | 5     | 5    | 5    | 5    | 5    | 5    |
| anthracite & lignite                  | 2     | 7     | 6     | 2     | 1     | 1     | 1     | 1     | 1     | 1    | 1    | 1    | 1    | 1    |
| other                                 | NA    | 15    | 14    | 19    | 19    | 17    | 16    | 16    | 15    | 24   | 23   | 23   | 23   | 24   |
| Oil                                   | 67    | 52    | 48    | 52    | 44    | 45    | 45    | 44    | 49    | 46   | 43   | 42   | 43   | 46   |
| residual                              | 63    | 43    | 39    | 44    | 36    | 37    | 38    | 37    | 42    | 38   | 35   | 34   | 35   | 38   |
| distillate                            | 4     | 5     | 5     | 6     | 6     | 6     | 6     | 6     | 6     | 7    | 7    | 7    | 7    | 7    |
| other                                 | 0     | 4     | 4     | 2     | 2     | 1     | 1     | 1     | 1     | 1    | 1    | 1    | 1    | 1    |
| Gas                                   | 23    | 47    | 44    | 41    | 34    | 40    | 43    | 43    | 45    | 42   | 42   | 42   | 42   | 45   |
| natural                               | 20    | 24    | 24    | 30    | 24    | 26    | 29    | 30    | 30    | 28   | 27   | 27   | 28   | 29   |
| process                               | 3     | 22    | 20    | 11    | 10    | 13    | 13    | 14    | 15    | 14   | 15   | 15   | 14   | 16   |
| other                                 | NA    | 1     | 1     | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 0    | 0    | 0    | 0    |
| Other                                 | 571   | 75    | 78    | 87    | 72    | 74    | 86    | 74    | 73    | 61   | 58   | 59   | 59   | 62   |
| wood/bark waste                       | 566   | 67    | 71    | 80    | 67    | 67    | 71    | 68    | 68    | 54   | 51   | 52   | 53   | 55   |
| liquid waste                          | NA    | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1    | 1    | 1    | 1    | 1    |
| other                                 | 5     | 6     | 6     | 6     | 5     | 6     | 14    | 6     | 5     | 7    | 6    | 6    | 6    | 6    |
| Internal Combustion                   | NA    | 3     | 3     | 6     | 10    | 11    | 12    | 38    | 64    | 17   | 17   | 16   | 17   | 17   |
| FUEL COMB. OTHER                      | 887   | 1,009 | 869   | 631   | 657   | 683   | 588   | 570   | 610   | 450  | 453  | 453  | 456  | 483  |
| Commercial/Institutional Coal         | 8     | 13    | 13    | 15    | 14    | 15    | 15    | 15    | 16    | 16   | 16   | 17   | 17   | 17   |
| Commercial/Institutional Oil          | 30    | 12    | 13    | 13    | 11    | 12    | 11    | 12    | 12    | 12   | 12   | 10   | 9    | 10   |
| Commercial/Institutional Gas          | 4     | 4     | 5     | 5     | 6     | 6     | 6     | 7     | 6     | 8    | 8    | 7    | 8    | 8    |
| Misc. Fuel Comb. (Except Residential) | NA    | 3     | 3     | 79    | 73    | 73    | 72    | 73    | 73    | 72   | 76   | 79   | 81   | 84   |
| Residential Wood                      | 818   | 959   | 817   | 501   | 535   | 558   | 464   | 446   | 484   | 319  | 319  | 319  | 319  | 342  |
| fireplaces                            | 818   | 959   | 817   | 501   | 535   | 558   | 464   | 446   | 484   | 144  | 144  | 144  | 144  | 154  |
| woodstoves                            | NA    | 175  | 175  | 175  | 175  | 188  |
| other                                 | NA    | NA   | NA   | NA   | NA   | NA   |
| Residential Other                     | 27    | 18    | 18    | 18    | 18    | 18    | 18    | 18    | 18    | 23   | 22   | 21   | 22   | 21   |

Table A-6. National PM<sub>10</sub> Emissions Estimates, 1980, 1985, 1989–2000 (thousand short tons)

| Source Category                          | 1980  | 1985    | 1989    | 1990    | 1991     | 1992     | 1993    | 1994     | 1995     | 1996     | 1997     | 1998     | 1999     | 2000     |
|------------------------------------------|-------|---------|---------|---------|----------|----------|---------|----------|----------|----------|----------|----------|----------|----------|
| Industrial Processes                     | 3,026 | 1,339   | 1,276   | 1,306   | 1,264    | 1,269    | 1,240   | 1,219    | 1,231    | 1,180    | 1,203    | 1,207    | 1,209    | 1,242    |
| CHEMICAL & ALLIED PRODUCT MFG            | 148   | 58      | 63      | 77      | 68       | 71       | 66      | 76       | 67       | 63       | 64       | 65       | 65       | 67       |
| Organic Chemical Mfg                     | 19    | 19      | 22      | 26      | 28       | 28       | 28      | 29       | 29       | 29       | 29       | 30       | 30       | 31       |
| Inorganic Chemical Mfg                   | 25    | 7       | 8       | 19      | 4        | 5        | 5       | 5        | 5        | 4        | 4        | 4        | 4        | 4        |
| Polymer & Resin Mfg                      | NA    | 4       | 5       | 5       | 4        | 5        | 4       | 4        | 4        | 3        | 3        | 3        | 3        | 3        |
| Agricultural Chemical Mfg                | 61    | 9       | 10      | 11      | 11       | 11       | 11      | 10       | 10       | 8        | 9        | 9        | 9        | 9        |
| Paint, Varnish, Lacquer, Enamel Mfg      | NA    | 0       | 0       | 1       | 1        | 1        | 1       | 1        | 1        | 1        | 1        | 1        | 1        | 1        |
| Pharmaceutical Mfg                       | NA    | 0       | 0       | 1       | 0        | 0        | 0       | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
| Other Chemical Mfg                       | 42    | 18      | 18      | 14      | 20       | 20       | 18      | 27       | 18       | 19       | 19       | 19       | 19       | 19       |
| METALS PROCESSING                        | 622   | 220     | 211     | 214     | 251      | 250      | 181     | 184      | 212      | 144      | 151      | 150      | 148      | 152      |
| Nonferrous Metals Processing             | 130   | 46      | 45      | 50      | 46       | 47       | 40      | 39       | 41       | 34       | 35       | 35       | 35       | 35       |
| copper                                   | 32    | 3       | 3       | 14      | 14       | 15       | 12      | 11       | 12       | 6        | 6        | 6        | 6        | 6        |
| lead                                     | 18    | 4       | 3       | 3       | 2        | 2        | 2       | 2        | 3        | 2        | 2        | 2        | 2        | 2        |
| zinc                                     | 3     | 4       | 3       | 6       | 6        | 6        | 2       | 2        | 2        | 2        | 2        | 2        | 2        | 2        |
| other                                    | 77    | 36      | 36      | 27      | 23       | 23       | 25      | 25       | 25       | 24       | 25       | 25       | 25       | 25       |
| Ferrous Metals Processing                | 322   | 164     | 156     | 155     | 123      | 115      | 121     | 125      | 149      | 24<br>91 | 23<br>96 | 25<br>95 | 23<br>93 | 23<br>96 |
| primary                                  | 271   | 136     | 150     | 128     | 99       | 92       | 97      | 125      | 149      | 64       | 90<br>68 | 43<br>68 | 43<br>67 | 90<br>70 |
| secondary                                | 51    | 26      | 26      | 25      | 99<br>24 | 23       | 24      | 25       | 26       | 27       | 28       | 27       | 26       | 26       |
| other                                    | NA    | 20      | 20      | 25      | 24       | 23       | 24      | 25       | 20       | 27       | 20       | 27       | 20       | 28       |
| Metals Processing NEC                    | 170   | 2<br>10 | 10      | 2       | 82       | 88       | 20      | 20       | 22       | 0<br>19  | 20       | 20       | 21       | 21       |
| PETROLEUM & RELATED INDUSTRIES           | 138   | 63      | 58      | 9<br>55 | 62<br>43 | 00<br>43 |         | 20<br>38 | 22<br>40 | 29       | 20<br>30 | 20<br>30 | 21       | 30       |
|                                          |       | 63<br>0 | 58<br>0 |         |          | 43<br>2  | 38<br>2 |          |          | 29<br>1  | 30<br>1  | 30<br>1  | 29<br>1  | 30<br>1  |
| Oil & Gas Production                     | NA    | 28      | 24      | 2<br>20 | 2<br>20  | 2<br>21  | 20      | 2<br>19  | 2<br>20  | 17       | 17       | 17       | 17       | 17       |
| Petroleum Refineries & Related Industrie |       |         |         |         |          |          |         |          |          |          |          |          |          |          |
| fluid catalytic cracking units           | 41    | 24      | 21      | 17      | 17       | 18       | 17      | 16       | 18       | 12       | 12       | 12       | 12       | 12       |
| other                                    | NA    | 4       | 3       | 3       | 3        | 3        | 3       | 3        | 3        | 5        | 5        | 5        | 5        | 5        |
| Asphalt Manufacturing                    | 97    | 35      | 34      | 33      | 21       | 20       | 17      | 17       | 18       | 12       | 12       | 11       | 11       | 11       |
| OTHER INDUSTRIAL PROCESSES               | 1,846 | 611     | 591     | 583     | 520      | 506      | 501     | 495      | 511      | 325      | 336      | 338      | 343      | 355      |
| Agriculture, Food, & Kindred Products    |       | 68      | 72      | 73      | 80       | 69       | 73      | 73       | 80       | 59       | 61       | 59       | 61       | 63       |
| country elevators                        | 258   | 7       | 9       | 9       | 10       | 10       | 10      | 9        | 9        | 5        | 5        | 5        | 5        | 6        |
| terminal elevators                       | 86    | 6       | 6       | 6       | 7        | 8        | 8       | 7        | 7        | 2        | 2        | 2        | 2        | 2        |
| feed mills                               | 3     | 6       | 7       | 7       | 4        | 5        | 5       | 5        | 5        | 3        | 3        | 3        | 3        | 4        |
| soybean mills                            | 22    | 13      | 14      | 14      | 15       | 11       | 12      | 12       | 12       | 7        | 7        | 7        | 7        | 8        |
| wheat mills                              | 1     | 3       | 3       | 3       | 4        | 4        | 4       | 4        | 4        | 2        | 2        | 2        | 2        | 2        |
| other grain mills                        | 6     | 7       | 8       | 8       | 6        | 5        | 6       | 6        | 7        | 5        | 5        | 5        | 5        | 6        |
| other                                    | 26    | 25      | 25      | 25      | 34       | 26       | 28      | 30       | 37       | 36       | 37       | 34       | 36       | 37       |
| Textiles, Leather, & Apparel Products    | NA    | 0       | 0       | 0       | 0        | 0        | 0       | 0        | 0        | 1        | 1        | 1        | 1        | 1        |
| Wood, Pulp & Paper, & Publishing Produ   |       | 101     | 106     | 105     | 81       | 79       | 78      | 76       | 81       | 75       | 77       | 79       | 80       | 84       |
| sulfate (kraft) pulping                  | 142   | 71      | 74      | 73      | 53       | 50       | 49      | 50       | 53       | 38       | 40       | 40       | 41       | 43       |
| other                                    | 41    | 30      | 33      | 32      | 27       | 29       | 29      | 26       | 28       | 37       | 38       | 39       | 39       | 41       |
| Rubber & Miscellaneous Plastic Product   |       | 3       | 4       | 4       | 4        | 4        | 3       | 3        | 3        | 4        | 4        | 4        | 4        | 4        |
| Mineral Products                         | 1,261 | 401     | 374     | 367     | 320      | 318      | 316     | 313      | 317      | 160      | 166      | 167      | 168      | 174      |
| cement mfg                               | 417   | 213     | 193     | 190     | 147      | 145      | 140     | 139      | 140      | 23       | 24       | 25       | 24       | 26       |
| surface mining                           | 127   | 20      | 15      | 15      | 14       | 15       | 17      | 17       | 17       | 16       | 17       | 17       | 17       | 17       |
| stone quarrying/processing               | 421   | 52      | 54      | 54      | 59       | 60       | 60      | 58       | 58       | 23       | 24       | 24       | 24       | 24       |
| other                                    | 296   | 116     | 111     | 108     | 99       | 98       | 99      | 100      | 102      | 97       | 101      | 102      | 103      | 107      |
| Machinery Products                       | NA    | 8       | 9       | 9       | 8        | 9        | 7       | 7        | 7        | 5        | 5        | 5        | 5        | 6        |
| Electronic Equipment                     | NA    | 0       | 0       | 0       | 0        | 0        | 0       | 0        | 0        | 1        | 1        | 1        | 1        | 1        |
| Transportation Equipment                 | NA    | 2       | 2       | 2       | 2        | 2        | 0       | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
| Construction                             | NA    | NA      | NA      | 0       | 0        | 0        | 0       | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
| Miscellaneous Industrial Processes       | NA    | 28      | 23      | 23      | 25       | 24       | 22      | 22       | 23       | 21       | 21       | 21       | 22       | 22       |

| Source Category                       | 1980   | 1985 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 |
|---------------------------------------|--------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| SOLVENT UTILIZATION                   | NA     | 2    | 2    | 4    | 5    | 5    | 6    | 6    | 6    | 6    | 6    | 6    | 6    | 7    |
| Degreasing                            | NA     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Graphic Arts                          | NA     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 1    | 1    | 1    | 1    | 1    |
| Dry Cleaning                          | NA     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Surface Coating                       | NA     | 2    | 2    | 3    | 4    | 4    | 5    | 5    | 5    | 4    | 5    | 5    | 5    | 5    |
| Other Industrial                      | NA     | 0    | 0    | 1    | 1    | 1    | 1    | 1    | 1    | 0    | 0    | 0    | 0    | 0    |
| Nonindustrial                         | NA     | NA   | NA   | NA   | NA   | NA   | NA   | NA   | NA   | 0    | 0    | 0    | 0    | 0    |
| Solvent Utilization NEC               | NA     | NA   | NA   | NA   | NA   | NA   | NA   | NA   | NA   | 0    | 0    | 0    | 0    | 0    |
| STORAGE & TRANSPORT                   | NA     | 107  | 101  | 102  | 101  | 117  | 114  | 106  | 109  | 81   | 83   | 84   | 85   | 87   |
| Bulk Terminals & Plants               | NA     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Petroleum & Petroleum Product Storage | ge NA  | 0    | 0    | 0    | 1    | 1    | 1    | 0    | 0    | 1    | 1    | 1    | 1    | 1    |
| Petroleum & Petroleum Product Transpo | ort NA | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Service Stations: Stage II            | NA     | NA   | NA   | NA   | NA   | NA   | NA   | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Organic Chemical Storage              | NA     | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| Organic Chemical Transport            | NA     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Inorganic Chemical Storage            | NA     | 0    | 0    | 1    | 1    | 1    | 1    | 1    | 1    | 0    | 0    | 1    | 1    | 1    |
| Inorganic Chemical Transport          | NA     | NA   | NA   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Bulk Materials Storage                | NA     | 105  | 99   | 100  | 99   | 115  | 111  | 104  | 107  | 78   | 80   | 81   | 82   | 84   |
| storage                               | NA     | 33   | 31   | 31   | 27   | 30   | 32   | 31   | 30   | 26   | 26   | 27   | 27   | 28   |
| transfer                              | NA     | 72   | 67   | 69   | 71   | 85   | 79   | 73   | 76   | 51   | 53   | 54   | 54   | 56   |
| combined                              | NA     | 1    | 1    | 1    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| other                                 | NA     | NA   | NA   | NA   | 0    | 0    | NA   | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Bulk Materials Transport              | NA     | 0    | 0    | 1    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| WASTE DISPOSAL & RECYCLING            | 273    | 278  | 251  | 271  | 276  | 278  | 334  | 313  | 287  | 532  | 533  | 534  | 533  | 544  |
| Incineration                          | 75     | 52   | 50   | 65   | 66   | 65   | 119  | 96   | 69   | 26   | 27   | 28   | 28   | 29   |
| residential                           | 42     | 39   | 35   | 39   | 41   | 43   | 44   | 45   | 45   | 0    | 0    | 0    | 0    | 0    |
| other                                 | 32     | 13   | 15   | 26   | 25   | 23   | 74   | 52   | 25   | 26   | 27   | 28   | 28   | 29   |
| Open Burning                          | 198    | 225  | 200  | 206  | 209  | 211  | 214  | 216  | 217  | 502  | 502  | 502  | 502  | 511  |
| residential                           | 198    | 221  | 195  | 195  | 197  | 199  | 202  | 203  | 204  | 190  | 190  | 190  | 190  | 195  |
| land clearing debris                  | NA     | NA   | NA   | NA   | NA   | NA   | NA   | NA   | NA   | 302  | 302  | 302  | 302  | 306  |
| other                                 | NA     | 4    | 5    | 11   | 12   | 12   | 13   | 13   | 13   | 10   | 10   | 10   | 10   | 10   |
| POTW                                  | NA     | NA   | NA   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Industrial Waste Water                | NA     | 0    | 0    | NA   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| TSDF                                  | NA     | NA   | NA   | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Landfills                             | NA     | 0    | 0    | 0    | 0    | 1    | 1    | 1    | 0    | 3    | 3    | 3    | 3    | 3    |
| Other                                 | NA     | 0    | 0    | 0    | 0    | 0    | 0    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| Transportation                        | 795    | 786  | 844  | 838  | 842  | 839  | 810  | 804  | 756  | 809  | 791  | 769  | 741  | 708  |
| ON-ROAD VEHICLES                      | 397    | 363  | 367  | 349  | 353  | 349  | 327  | 324  | 300  | 345  | 331  | 312  | 296  | 273  |
| Light-Duty Gas Vehicles & Motorcycles | s 120  | 77   | 65   | 57   | 56   | 55   | 55   | 55   | 55   | 56   | 57   | 58   | 59   | 59   |
| light-duty gas vehicles               | 119    | 77   | 64   | 57   | 55   | 54   | 55   | 54   | 55   | 56   | 56   | 58   | 58   | 58   |
| motorcycles                           | 1      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Light-Duty Gas Trucks                 | 55     | 43   | 34   | 37   | 44   | 47   | 46   | 46   | 41   | 35   | 36   | 36   | 36   | 36   |
| light-duty gas trucks 1               | 25     | 19   | 16   | 18   | 21   | 22   | 22   | 22   | 23   | 23   | 24   | 24   | 25   | 25   |
| light-duty gas trucks 2               | 29     | 24   | 19   | 19   | 23   | 25   | 24   | 24   | 19   | 12   | 12   | 12   | 11   | 11   |
| Heavy-Duty Gas Vehicles               | 15     | 14   | 11   | 10   | 10   | 9    | 10   | 10   | 9    | 14   | 13   | 12   | 11   | 11   |
| Diesels                               | 208    | 229  | 257  | 245  | 243  | 238  | 215  | 213  | 194  | 239  | 225  | 206  | 190  | 168  |
| heavy-duty diesel vehicles            | 194    | 219  | 247  | 225  | 233  | 228  | 206  | 204  | 185  | 235  | 221  | 203  | 188  | 166  |
| light-duty diesel trucks              | 2      | 1    | 2    | 13   | 2    | 3    | 2    | 2    | 2    | 2    | 1    | 1    | 1    | 1    |
| light-duty diesel vehicles            | 12     | 8    | 9    | 7    | 8    | 8    | 7    | 7    | 7    | 3    | 2    | 2    | 1    | 1    |

| Source Category               | 1980  | 1985  | 1989  | 1990  | 1991  | 1992  | 1993  | 1994  | 1995  | 1996  | 1997  | 1998  | 1999  | 2000  |
|-------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| NON-ROAD ENGINES AND VEHICLES | 398   | 424   | 477   | 489   | 489   | 490   | 483   | 480   | 456   | 464   | 460   | 457   | 445   | 435   |
| Non-Road Gasoline             | 42    | 44    | 46    | 47    | 47    | 48    | 48    | 48    | 49    | 89    | 90    | 91    | 92    | 93    |
| recreational                  | 3     | 3     | 3     | 3     | 3     | 3     | 3     | 3     | 3     | 6     | 6     | 6     | 6     | 6     |
| construction                  | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 2     | 2     | 2     | 2     | 2     |
| industrial                    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| lawn & garden                 | 9     | 9     | 10    | 11    | 11    | 11    | 12    | 12    | 12    | 21    | 21    | 20    | 20    | 21    |
| farm                          | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| light commercial              | 1     | 1     | 2     | 2     | 2     | 2     | 2     | 2     | 2     | 2     | 2     | 2     | 2     | 2     |
| logging                       | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 19    | 20    | 22    | 23    | 23    |
| airport service               | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| railway maintenance           | NA    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| recreational marine vessels   | 28    | 29    | 30    | 30    | 30    | 30    | 30    | 30    | 30    | 38    | 38    | 39    | 39    | 39    |
| Non-Road Diesel               | 263   | 272   | 302   | 301   | 299   | 297   | 296   | 296   | 296   | 273   | 268   | 263   | 251   | 241   |
| recreational                  | 0     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |
| construction                  | 123   | 134   | 149   | 149   | 148   | 147   | 147   | 146   | 146   | 142   | 139   | 135   | 128   | 121   |
| industrial                    | 27    | 35    | 38    | 38    | 37    | 37    | 38    | 38    | 38    | 33    | 33    | 33    | 33    | 33    |
| lawn & garden                 | 4     | 4     | 8     | 8     | 9     | 10    | 11    | 11    | 12    | 11    | 11    | 12    | 12    | 12    |
| farm                          | 85    | 70    | 78    | 78    | 77    | 76    | 75    | 74    | 73    | 62    | 59    | 57    | 54    | 52    |
| light commercial              | 7     | 9     | 11    | 12    | 12    | 12    | 13    | 13    | 14    | 13    | 14    | 14    | 15    | 15    |
| logging                       | 16    | 19    | 15    | 13    | 11    | 10    | 9     | 9     | 8     | 8     | 7     | 7     | 6     | 5     |
| airport service               | 0     | 0     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |
| railway maintenance           | NA    | 0     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |
| recreational marine vessels   | NA    | 1     | 1     | 1     | 1     | 1     | 1     | 2     | 2     | 2     | 2     | 2     | 1     | 1     |
| Aircraft                      | 33    | 37    | 43    | 44    | 44    | 45    | 43    | 41    | 40    | 5     | 5     | 5     | 5     | 5     |
| Marine Vessels                | 23    | 28    | 38    | 44    | 46    | 45    | 43    | 44    | 43    | 66    | 65    | 66    | 66    | 65    |
| coal                          | 2     | 2     | 3     | 3     | 3     | 3     | 3     | 3     | 3     | NA    | NA    | NA    | NA    | NA    |
| diesel                        | 15    | 17    | 23    | 27    | 28    | 27    | 26    | 26    | 26    | 42    | 42    | 42    | 42    | 42    |
| residual oil                  | 7     | 9     | 12    | 14    | 14    | 14    | 14    | 14    | 13    | 24    | 24    | 24    | 24    | 23    |
| gasoline                      | NA    | NA    | NA    | 1     | 1     | 1     | 1     | 1     | 1     | NA    | NA    | NA    | NA    | NA    |
| Railroads                     | 37    | 41    | 47    | 53    | 53    | 54    | 52    | 50    | 27    | 29    | 30    | 30    | 30    | 30    |
| Non-Road Other                | NA    | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 2     | 2     | 2     | 1     | 1     |
| liquified petroleum gas       | NA    | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |
| compressed natural gas        | NA    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| TOTAL ALL SOURCES             | 6,267 | 3,662 | 3,502 | 3,340 | 3,253 | 3,292 | 3,174 | 3,136 | 3,165 | 2,967 | 2,974 | 2,888 | 2,900 | 2,947 |
|                               |       |       |       |       |       |       |       |       |       |       |       |       |       |       |

Table A-6. National PM<sub>10</sub> Emissions Estimates, 1980, 1985, 1989–2000 (thousand short tons) (continued)

NATIONAL AIR QUALITY AND EMISSIONS TRENDS REPORT, 2003

| Source Category          | 1980 | 1985   | 1989   | 1990   | 1991   | 1992   | 1993   | 1994   | 1995   | 1996   | 1997   | 1998   | 1999   | 2000   |
|--------------------------|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| NATURAL SOURCES          | NA   | NA     | NA     | NA     | NA     | NA     | NA     | NA     | NA     | NA     | NA     | NA     | NA     | NA     |
| Geogenic                 | NA   | NA     | NA     | NA     | NA     | NA     | NA     | NA     | NA     | NA     | NA     | NA     | NA     | NA     |
| Wind Erosion             | NA   | NA     | NA     | NA     | NA     | NA     | NA     | NA     | NA     | NA     | NA     | NA     | NA     | NA     |
| MISCELLANEOUS            | 852  | 37,736 | 37,461 | 24,540 | 24,233 | 23,958 | 24,328 | 25,619 | 22,765 | 20,283 | 21,124 | 20,836 | 21,138 | 21,926 |
| Agriculture & Forestry   | NA   | 7,108  | 7,320  | 5,292  | 5,234  | 5,017  | 4,575  | 4,845  | 4,902  | 4,911  | 4,952  | 4,951  | 4,998  | 5,045  |
| agricultural crops       | NA   | 6,833  | 6,923  | 4,745  | 4,684  | 4,464  | 4,016  | 4,281  | 4,334  | 4,330  | 4,373  | 4,366  | 4,408  | 4,449  |
| agricultural livestock   | NA   | 275    | 396    | 547    | 550    | 553    | 558    | 564    | 569    | 581    | 579    | 585    | 590    | 596    |
| Other Combustion         | 852  | 894    | 912    | 1,181  | 924    | 770    | 800    | 1,053  | 849    | 1,136  | 1,283  | 987    | 1,332  | 2,018  |
| structural fires         | 23   | 59     | 59     | 22     | 22     | 23     | 23     | 23     | 24     | 3      | 3      | 3      | 3      | 3      |
| agricultural fires       | NA   | 59     | 85     | 88     | 88     | 89     | 86     | 92     | 97     | 99     | 101    | 103    | 104    | 106    |
| slash/prescribed burning | 315  | 468    | 468    | 470    | 481    | 487    | 539    | 514    | 583    | 532    | 579    | 620    | 444    | 248    |
| forest wildfires         | 514  | 308    | 300    | 601    | 332    | 171    | 152    | 424    | 145    | 502    | 599    | 261    | 780    | 1,660  |
| other                    | 0    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| Cooling Towers           | NA   | NA     | NA     | 0      | 0      | 0      | 0      | 0      | 1      | 3      | 3      | 3      | 3      | 3      |
| Fugitive Dust            | NA   | 29,734 | 29,229 | 18,068 | 18,075 | 18,170 | 18,953 | 19,722 | 17,012 | 14,233 | 14,886 | 14,895 | 14,805 | 14,860 |
| unpaved roads            | NA   | 11,644 | 11,798 | 11,234 | 11,206 | 10,918 | 11,430 | 11,370 | 10,362 | 9,071  | 9,461  | 9,327  | 9,158  | 9,154  |
| paved roads              | NA   | 5,080  | 5,769  | 2,248  | 2,399  | 2,423  | 2,462  | 2,538  | 2,409  | 2,400  | 2,595  | 2,663  | 2,769  | 2,741  |
| construction             | NA   | 12,670 | 11,269 | 4,249  | 4,092  | 4,460  | 4,651  | 5,245  | 3,654  | 2,117  | 2,117  | 2,117  | 2,117  | 2,187  |
| other                    | NA   | 339    | 392    | 336    | 377    | 369    | 409    | 569    | 586    | 645    | 713    | 788    | 760    | 777    |
| TOTAL ALL SOURCES        | 852  | 37,736 | 37,461 | 24,540 | 24,233 | 23,958 | 24,328 | 25,619 | 22,765 | 20,283 | 21,124 | 20,836 | 21,138 | 21,926 |

| SOURCE CATEGORY                       | 1990 | 1991     | 1992 | 1993    | 1994     | 1995     | 1996     | 1997     | 1998     | 1999     | 2000    |
|---------------------------------------|------|----------|------|---------|----------|----------|----------|----------|----------|----------|---------|
| Fuel Combustion                       | 909  | 893      | 927  | 852     | 841      | 898      | 735      | 737      | 705      | 719      | 756     |
| FUEL COMB. ELEC. UTIL.                | 121  | 105      | 106  | 112     | 108      | 107      | 157      | 161      | 130      | 137      | 141     |
| Coal                                  | 97   | 85       | 87   | 90      | 86       | 86       | 133      | 135      | 103      | 113      | 116     |
| bituminous                            | 59   | 53       | 53   | 57      | 54       | 52       | 88       | 89       | 62       | 57       | 59      |
| subbituminous                         | 14   | 16       | 18   | 18      | 17       | 20       | 32       | 31       | 30       | 35       | 35      |
| anthracite & lignite                  | 23   | 16       | 16   | 15      | 15       | 15       | 13       | 15       | 11       | 20       | 22      |
| Oil                                   | 5    | 5        | 4    | 5       | 5        | 3        | 5        | 6        | 4        | 3        | 22      |
| Gas                                   | NA   | NA       | NA   | NA      | NA       | NA       | J<br>1   | 1        | 1        | 0        | 0       |
| Other                                 | NA   | NA       | NA   | NA      | NA       | NA       | 0        | 0        | 3        | 3        | 4       |
| Internal Combustion                   | 20   | 15       | 16   | 17      | 17       | 18       | 17       | 18       | 18       | 19       | 19      |
| FUEL COMB. INDUSTRIAL                 | 177  | 151      | 159  | 172     | 183      | 203      | 153      | 149      | 147      | 150      | 157     |
| Coal                                  | 29   | 23       | 25   | 24      | 25       | 203      | 23       | 23       | 23       | 24       | 24      |
|                                       | 29   | 23<br>18 | 20   | 24      | 25<br>19 | 25<br>19 | 23<br>18 | 23<br>18 | 23<br>18 | 24<br>18 | 18      |
| bituminous                            | 23   |          | 20   | 20      | 3        | 3        | 3        | 3        | 3        | 3        | 3       |
| subbituminous                         | 2    | 1<br>1   | 0    | 2       | 3<br>0   | 3<br>1   | 3<br>0   | 3<br>0   | 3<br>0   | 3<br>0   | 3       |
| anthracite & lignite                  |      |          |      |         |          | •        |          |          |          |          |         |
| other                                 | 3    | 3        | 3    | 3<br>27 | 2        | 2        | 2        | 2        | 2        | 2        | 2<br>26 |
| Oil                                   | 31   | 26       | 26   | 27      | 26       | 28       | 26       | 24       | 24       | 24       |         |
| residual                              | 26   | 22       | 22   | 23      | 22       | 24       | 22       | 20       | 19       | 20       | 22      |
| distillate                            | 4    | 3        | 3    | 4       | 4        | 4        | 4        | 4        | 4        | 4        | 4       |
| other                                 | 1    | 1        | 1    | 1       | 1        | 1        | 0        | 1        | 0        | 0        | 1       |
| Gas                                   | 39   | 34       | 39   | 41      | 42       | 44       | 39       | 39       | 38       | 39       | 41      |
| natural                               | 29   | 23       | 26   | 28      | 29       | 29       | 25       | 25       | 25       | 25       | 26      |
| process                               | 11   | 10       | 13   | 13      | 14       | 15       | 13       | 14       | 14       | 14       | 15      |
| other                                 | 0    | 0        | 0    | 0       | 0        | 0        | 0        | 0        | 0        | 0        | 0       |
| Other                                 | 73   | 58       | 59   | 69      | 60       | 59       | 50       | 48       | 48       | 48       | 51      |
| wood/bark waste                       | 68   | 55       | 54   | 58      | 55       | 55       | 44       | 42       | 42       | 43       | 45      |
| liquid waste                          | 1    | 0        | 0    | 1       | 0        | 0        | 0        | 0        | 0        | 0        | 0       |
| other                                 | 4    | 3        | 4    | 10      | 4        | 3        | 6        | 5        | 5        | 5        | 5       |
| Internal Combustion                   | 5    | 10       | 10   | 11      | 29       | 48       | 15       | 15       | 15       | 15       | 16      |
| FUEL COMB. OTHER                      | 611  | 638      | 662  | 568     | 550      | 589      | 425      | 427      | 428      | 432      | 458     |
| Commercial/Institutional Coal         | 6    | 6        | 6    | 6       | 6        | 6        | 7        | 7        | 7        | 7        | 7       |
| Commercial/Institutional Oil          | 5    | 5        | 5    | 5       | 5        | 5        | 5        | 5        | 4        | 4        | 4       |
| Commercial/Institutional Gas          | 5    | 5        | 6    | 6       | 6        | 6        | 7        | 7        | 7        | 7        | 7       |
| Misc. Fuel Comb. (Except Residential) |      | 73       | 72   | 72      | 72       | 73       | 72       | 75       | 78       | 81       | 83      |
| Residential Wood                      | 501  | 535      | 558  | 464     | 446      | 484      | 319      | 319      | 319      | 319      | 342     |
| fireplaces                            | 501  | 535      | 558  | 464     | 446      | 484      | 144      | 144      | 144      | 144      | 154     |
| woodstoves                            | NA   | NA       | NA   | NA      | NA       | NA       | 175      | 175      | 175      | 175      | 188     |
| Residential Other                     | 15   | 15       | 15   | 15      | 15       | 15       | 15       | 14       | 13       | 14       | 14      |
| Industrial Processes                  | 794  | 812      | 819  | 788     | 771      | 749      | 874      | 886      | 891      | 893      | 915     |
| CHEMICAL & ALLIED PRODUCT MFG         | 47   | 43       | 45   | 41      | 49       | 42       | 39       | 39       | 40       | 40       | 41      |
| Organic Chemical Mfg                  | 10   | 10       | 11   | 10      | 11       | 11       | 12       | 12       | 12       | 12       | 13      |
| Inorganic Chemical Mfg                | 12   | 3        | 4    | 4       | 4        | 3        | 3        | 3        | 3        | 3        | 3       |
| Polymer & Resin Mfg                   | 4    | 3        | 4    | 3       | 3        | 3        | 2        | 2        | 2        | 2        | 2       |
| Agricultural Chemical Mfg             | 8    | 8        | 8    | 8       | 8        | 8        | 5        | 6        | 6        | 6        | 6       |
| Paint, Varnish, Lacquer, Enamel Mfg   | 0    | 0        | 0    | 0       | 0        | 0        | 0        | 0        | 0        | 0        | 0       |
| Pharmaceutical Mfg                    | 0    | 0        | 0    | 0       | 0        | 0        | 0        | 0        | 0        | 0        | 0       |
| Other Chemical Mfg                    | 13   | 17       | 17   | 15      | 23       | 16       | 16       | 16       | 17       | 17       | 17      |
| Galer onerniear mig                   | 15   | 17       | 17   | 15      | 20       | 10       | 10       | 10       | 17       | 17       | 17      |

| SOURCE CATEGORY                         | 1990    | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 |
|-----------------------------------------|---------|------|------|------|------|------|------|------|------|------|------|
| METALS PROCESSING                       | 157     | 197  | 198  | 125  | 125  | 134  | 100  | 105  | 105  | 104  | 107  |
| Non-Ferrous Metals Processing           | 31      | 29   | 29   | 25   | 25   | 25   | 22   | 23   | 23   | 23   | 23   |
| copper                                  | 9       | 9    | 9    | 8    | 8    | 8    | 4    | 5    | 4    | 4    | 5    |
| lead                                    | 2       | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| zinc                                    | 5       | 5    | 5    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 2    |
| other                                   | 14      | 13   | 13   | 14   | 14   | 14   | 15   | 15   | 15   | 15   | 15   |
| Ferrous Metals Processing               | 121     | 89   | 83   | 86   | 86   | 92   | 65   | 69   | 68   | 66   | 68   |
| primary                                 | 103     | 72   | 66   | 68   | 68   | 74   | 47   | 50   | 50   | 50   | 52   |
| secondary                               | 17      | 16   | 16   | 17   | 18   | 19   | 18   | 18   | 18   | 17   | 17   |
| other                                   | 1       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Metals Processing NEC                   | 5       | 80   | 85   | 14   | 14   | 16   | 13   | 14   | 14   | 15   | 15   |
| PETROLEUM & RELATED INDUSTRIES          | 27      | 24   | 24   | 22   | 22   | 22   | 17   | 17   | 17   | 17   | 17   |
| Oil & Gas Production                    | 2       | 2    | 2    | 2    | 2    | 2    | 1    | 1    | 1    | 1    | 1    |
| Petroleum Refineries & Related Industri | ies 13  | 14   | 14   | 13   | 13   | 13   | 12   | 12   | 12   | 12   | 12   |
| fluid catalytic cracking units          | 11      | 12   | 12   | 11   | 11   | 11   | 7    | 8    | 8    | 8    | 8    |
| other                                   | 2       | 2    | 2    | 2    | 2    | 2    | 4    | 4    | 4    | 4    | 4    |
| Asphalt Manufacturing                   | 12      | 9    | 8    | 7    | 7    | 8    | 4    | 4    | 4    | 4    | 4    |
| OTHER INDUSTRIAL PROCESSES              | 284     | 264  | 259  | 260  | 256  | 256  | 180  | 186  | 189  | 191  | 198  |
| Agriculture, Food, & Kindred Product    | s 39    | 46   | 40   | 44   | 43   | 40   | 20   | 21   | 21   | 22   | 22   |
| country elevators                       | 6       | 6    | 7    | 6    | 6    | 6    | 1    | 1    | 1    | 1    | 1    |
| terminal elevators                      | 3       | 3    | 4    | 5    | 4    | 4    | 0    | 0    | 0    | 0    | 0    |
| feed mills                              | 2       | 2    | 2    | 2    | 2    | 2    | 1    | 1    | 1    | 1    | 1    |
| soybean mills                           | 5       | 4    | 4    | 5    | 5    | 5    | 3    | 3    | 3    | 3    | 3    |
| wheat mills                             | 1       | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| other grain mills                       | 4       | 3    | 3    | 3    | 3    | 3    | 2    | 3    | 3    | 3    | 3    |
| other                                   | 17      | 26   | 19   | 21   | 22   | 20   | 14   | 14   | 14   | 14   | 15   |
| Textiles, Leather, & Apparel Products   | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 1    | 0    | 0    | 1    |
| Wood, Pulp & Paper, & Publishing Proc   | ducts77 | 61   | 59   | 59   | 57   | 60   | 52   | 53   | 55   | 56   | 58   |
| sulfate (kraft) pulping                 | 57      | 40   | 38   | 38   | 38   | 40   | 31   | 32   | 32   | 33   | 34   |
| other                                   | 21      | 21   | 21   | 21   | 19   | 20   | 21   | 22   | 22   | 23   | 24   |
| Rubber & Miscellaneous Plastic Prod     | ucts 3  | 3    | 3    | 3    | 3    | 3    | 2    | 2    | 2    | 2    | 2    |
| Mineral Products                        | 144     | 134  | 135  | 136  | 133  | 134  | 88   | 92   | 93   | 93   | 97   |
| cement mfg                              | 54      | 40   | 39   | 38   | 38   | 38   | 11   | 11   | 11   | 11   | 12   |
| surface mining                          | 6       | 6    | 7    | 7    | 7    | 6    | 7    | 7    | 7    | 7    | 8    |
| stone quarrying/processing              | 24      | 28   | 28   | 28   | 26   | 26   | 9    | 9    | 9    | 9    | 9    |
| other                                   | 61      | 60   | 61   | 62   | 63   | 63   | 61   | 64   | 65   | 66   | 68   |
| Machinery Products                      | 3       | 3    | 3    | 3    | 3    | 3    | 2    | 2    | 2    | 2    | 2    |
| Electronic Equipment                    | 0       | 0    | 0    | 0    | 0    | 0    | 1    | 1    | 1    | 1    | 1    |
| Transportation Equipment                | 1       | 1    | 1    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Construction                            | 0       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Miscellaneous Industrial Processes      | 16      | 16   | 17   | 15   | 16   | 16   | 14   | 14   | 15   | 15   | 15   |

Table A-8. National  $PM_{2.5}$  Emissions Estimates, 1990–2000 (thousand short tons) (continued)

| SOURCE CATEGORY                       | 1990   | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 |  |
|---------------------------------------|--------|------|------|------|------|------|------|------|------|------|------|--|
| SOLVENT UTILIZATION                   | 4      | 4    | 5    | 6    | 6    | 5    | 5    | 5    | 5    | 6    | 6    |  |
| Degreasing                            | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Graphic Arts                          | 0      | 0    | 0    | 0    | 0    | 0    | 1    | 1    | 1    | 1    | 1    |  |
| Dry Cleaning                          | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Surface Coating                       | 3      | 3    | 4    | 4    | 4    | 4    | 4    | 4    | 4    | 4    | 4    |  |
| Other Industrial                      | 1      | 1    | 1    | 1    | 1    | 1    | 0    | 0    | 0    | 0    | 0    |  |
| Nonindustrial                         | NA     | NA   | NA   | NA   | NA   | NA   | 0    | 0    | 0    | 0    | 0    |  |
| Solvent Utilization NEC               | NA     | NA   | NA   | NA   | NA   | NA   | 0    | 0    | 0    | 0    | 0    |  |
| STORAGE & TRANSPORT                   | 42     | 42   | 50   | 46   | 43   | 42   | 30   | 31   | 31   | 31   | 32   |  |
| Bulk Terminals & Plants               | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Petroleum & Petroleum Product Storage |        | 1    | 1    | 1    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Petroleum & Petroleum Product Trans   | port 0 | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Service Stations: Stage II            | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Organic Chemical Storage              | 0      | 0    | 0    | 0    | 0    | 0    | 1    | 1    | 1    | 1    | 1    |  |
| Organic Chemical Transport            | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Inorganic Chemical Storage            | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Inorganic Chemical Transport          | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Bulk Materials Storage                | 41     | 41   | 48   | 44   | 41   | 41   | 28   | 29   | 29   | 30   | 31   |  |
| storage                               | 13     | 11   | 12   | 13   | 13   | 12   | 11   | 11   | 11   | 11   | 12   |  |
| transfer                              | 28     | 29   | 36   | 31   | 28   | 29   | 17   | 18   | 18   | 18   | 19   |  |
| combined                              | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| other                                 | NA     | 0    | 0    | NA   | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Bulk Materials Transport              | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| WASTE DISPOSAL & RECYCLING            | 234    | 238  | 239  | 288  | 271  | 247  | 503  | 503  | 504  | 504  | 514  |  |
| Incineration                          | 46     | 47   | 46   | 93   | 73   | 50   | 15   | 15   | 16   | 16   | 16   |  |
| residential                           | 27     | 28   | 30   | 31   | 31   | 31   | 0    | 0    | 0    | 0    | 0    |  |
| other                                 | 19     | 18   | 16   | 62   | 42   | 19   | 15   | 15   | 16   | 16   | 16   |  |
| Open Burning                          | 187    | 190  | 192  | 195  | 196  | 197  | 486  | 486  | 486  | 486  | 495  |  |
| residential                           | 177    | 179  | 181  | 183  | 184  | 185  | 174  | 174  | 174  | 174  | 178  |  |
| land clearing debris                  | NA     | NA   | NA   | NA   | NA   | NA   | 302  | 302  | 302  | 302  | 306  |  |
| other                                 | 10     | 11   | 11   | 11   | 12   | 11   | 10   | 10   | 10   | 10   | 10   |  |
| POTW                                  | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Industrial Waste Water                | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| TSDF                                  | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Landfills                             | 0      | 0    | 1    | 1    | 1    | 0    | 2    | 2    | 2    | 2    | 2    |  |
| Other                                 | 0      | 0    | 0    | 0    | 1    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Transportation                        | 719    | 720  | 717  | 688  | 682  | 640  | 702  | 686  | 666  | 638  | 608  |  |
| ON-ROAD VEHICLES                      | 286    | 288  | 284  | 261  | 258  | 237  | 276  | 263  | 246  | 230  | 209  |  |
| Light-Duty Gas Vehicles & Motorcycles | s 34   | 33   | 32   | 32   | 32   | 32   | 32   | 33   | 34   | 34   | 33   |  |
| ldgv                                  | 34     | 33   | 32   | 32   | 32   | 32   | 32   | 33   | 33   | 34   | 33   |  |
| motorcycles                           | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Light-Duty Gas Trucks                 | 24     | 28   | 30   | 30   | 29   | 26   | 22   | 22   | 22   | 22   | 22   |  |
| ldgt1                                 | 12     | 13   | 14   | 14   | 14   | 14   | 14   | 15   | 15   | 15   | 15   |  |
| ldgt2                                 | 13     | 15   | 16   | 16   | 15   | 12   | 8    | 8    | 7    | 7    | 7    |  |

| SOURCE CATEGORY               | 1990  | 1991  | 1992  | 1993  | 1994  | 1995  | 1996  | 1997  | 1998  | 1999  | 2000  |  |
|-------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|
| Heavy-Duty Gas Vehicles       | 6     | 6     | 6     | 7     | 7     | 6     | 9     | 9     | 8     | 8     | 7     |  |
| Diesels                       | 221   | 220   | 216   | 192   | 190   | 173   | 212   | 199   | 181   | 166   | 147   |  |
| hddv                          | 204   | 211   | 207   | 184   | 182   | 165   | 208   | 196   | 179   | 165   | 145   |  |
| lddt                          | 12    | 2     | 2     | 2     | 2     | 2     | 1     | 1     | 1     | 1     | 1     |  |
| lddv                          | 6     | 7     | 7     | 6     | 6     | 6     | 2     | 2     | 1     | 1     | 1     |  |
| NON-ROAD ENGINES AND VEHICLES | 432   | 432   | 433   | 427   | 424   | 403   | 426   | 423   | 420   | 408   | 399   |  |
| Non-Road Gasoline             | 43    | 43    | 43    | 44    | 44    | 45    | 81    | 82    | 83    | 84    | 85    |  |
| recreational                  | 2     | 3     | 3     | 3     | 3     | 3     | 5     | 5     | 5     | 5     | 5     |  |
| construction                  | 1     | 1     | 1     | 1     | 1     | 1     | 2     | 2     | 2     | 2     | 2     |  |
| industrial                    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |  |
| lawn & garden                 | 10    | 10    | 10    | 11    | 11    | 11    | 19    | 19    | 19    | 19    | 19    |  |
| farm                          | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |  |
| light commercial              | 1     | 2     | 2     | 2     | 2     | 2     | 2     | 2     | 2     | 2     | 2     |  |
| logging                       | 0     | 0     | 0     | 0     | 0     | 0     | 17    | 19    | 20    | 21    | 22    |  |
| airport service               | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |  |
| railway maintenance           | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |  |
| recreational marine vessels   | 27    | 27    | 27    | 28    | 28    | 28    | 35    | 35    | 36    | 36    | 35    |  |
| Non-Road Diesel               | 277   | 275   | 273   | 273   | 272   | 272   | 251   | 247   | 242   | 231   | 222   |  |
| recreational                  | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |  |
| construction                  | 137   | 136   | 136   | 135   | 134   | 134   | 130   | 128   | 124   | 118   | 111   |  |
| industrial                    | 35    | 34    | 34    | 35    | 35    | 35    | 30    | 30    | 30    | 30    | 30    |  |
| lawn & garden                 | 8     | 8     | 9     | 10    | 11    | 11    | 10    | 10    | 11    | 11    | 11    |  |
| farm                          | 71    | 71    | 70    | 69    | 68    | 67    | 57    | 55    | 53    | 50    | 48    |  |
| light commercial              | 11    | 11    | 11    | 12    | 12    | 13    | 12    | 13    | 13    | 13    | 14    |  |
| logging                       | 12    | 10    | 9     | 8     | 8     | 8     | 8     | 7     | 6     | 5     | 5     |  |
| airport service               | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |  |
| railway maintenance           | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 0     | 0     |  |
| recreational marine vessels   | 1     | 1     | 1     | 1     | 1     | 1     | 2     | 2     | 2     | 1     | 1     |  |
| Aircraft                      | 31    | 31    | 32    | 30    | 29    | 28    | 4     | 4     | 4     | 4     | 4     |  |
| Marine Vessels                | 32    | 34    | 33    | 31    | 32    | 31    | 61    | 60    | 61    | 61    | 60    |  |
| coal                          | 1     | 1     | 1     | 1     | 1     | 1     | NA    | NA    | NA    | NA    | NA    |  |
| diesel                        | 25    | 26    | 25    | 24    | 24    | 24    | 38    | 38    | 38    | 38    | 39    |  |
| residual oil                  | 6     | 6     | 6     | 6     | 6     | 6     | 22    | 22    | 22    | 22    | 21    |  |
| gasoline                      | 0     | 0     | 0     | 0     | 0     | 0     | NA    | NA    | NA    | NA    | NA    |  |
| Railroads                     | 49    | 48    | 50    | 48    | 46    | 25    | 27    | 28    | 28    | 27    | 27    |  |
| Non-Road Other                | 1     | 1     | 1     | 1     | 1     | 1     | 2     | 2     | 2     | 1     | 1     |  |
| liquified petroleum gas       | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |  |
| compressed natural gas        | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |  |
| NATURAL SOURCES               | NA    |  |
| Geogenic                      | NA    |  |
| Wind Erosion                  | NA    |  |
| MISCELLANEOUS                 | 5,234 | 5,003 | 4,854 | 4,926 | 5,359 | 4,726 | 4,411 | 4,735 | 4,479 | 4,829 | 5,466 |  |
| Agriculture & Forestry        | 1,031 | 1,019 | 976   | 887   | 941   | 952   | 953   | 961   | 961   | 970   | 979   |  |
| agricultural crops            | 949   | 937   | 893   | 803   | 856   | 867   | 866   | 875   | 873   | 882   | 890   |  |
| agricultural livestock        | 82    | 83    | 83    | 84    | 85    | 85    | 87    | 87    | 88    | 89    | 89    |  |
| agrical an involution         | 02    | 00    | 00    | 01    | 00    | 00    | 0,    | 0,    | 00    | 0,    | 07    |  |

Table A-8. National  $PM_{2.5}$  Emissions Estimates, 1990–2000 (thousand short tons) (continued)

| SOURCE CATEGORY          | 1990  | 1991  | 1992  | 1993  | 1994  | 1995  | 1996  | 1997  | 1998  | 1999  | 2000  |  |
|--------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|
| Other Combustion         | 1,037 | 807   | 666   | 693   | 912   | 735   | 931   | 1,123 | 855   | 1,200 | 1,817 |  |
| structural fires         | 20    | 20    | 21    | 21    | 21    | 22    | 3     | 3     | 3     | 3     | 3     |  |
| agricultural fires       | 80    | 80    | 81    | 78    | 83    | 89    | 89    | 91    | 93    | 94    | 96    |  |
| slash/prescribed burning | 399   | 408   | 413   | 457   | 436   | 494   | 453   | 491   | 526   | 400   | 223   |  |
| forest wildfires         | 538   | 299   | 151   | 137   | 372   | 130   | 386   | 538   | 233   | 702   | 1,494 |  |
| other                    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |  |
| Cooling Towers           | 0     | 0     | 0     | 0     | 0     | 1     | 2     | 2     | 3     | 3     | 3     |  |
| Fugitive Dust            | 3,166 | 3,177 | 3,212 | 3,346 | 3,506 | 3,037 | 2,525 | 2,649 | 2,660 | 2,657 | 2,667 |  |
| unpaved roads            | 1,687 | 1,684 | 1,642 | 1,718 | 1,709 | 1,559 | 1366  | 1427  | 1406  | 1,381 | 1,380 |  |
| paved roads              | 562   | 600   | 606   | 616   | 634   | 585   | 600   | 649   | 666   | 693   | 686   |  |
| construction             | 850   | 818   | 892   | 930   | 1,049 | 777   | 423   | 423   | 423   | 423   | 437   |  |
| other                    | 67    | 75    | 73    | 81    | 113   | 117   | 136   | 150   | 165   | 159   | 163   |  |
| TOTAL ALL SOURCES        | 7,655 | 7,429 | 7,318 | 7,254 | 7,653 | 7,013 | 6,722 | 7,044 | 6,741 | 7,079 | 7,745 |  |

APPENDIX A · DATA TABLES 101

| Source Category                      | 1980    | 1985   | 1989   | 1990   | 1991   | 1992   | 1993   | 1994   | 1995   | 1996   | 1997   | 1998   | 1999   | 2000   |
|--------------------------------------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Fuel Combustion                      | 21,391  | 20,021 | 19,924 | 20,290 | 19,796 | 19,493 | 19,245 | 18,887 | 16,230 | 16,232 | 16,649 | 16,746 | 16,027 | 14,876 |
| FUEL COMB. ELEC. UTIL.               | 17,469  | 16,272 | 16,215 | 15,909 | 15,784 | 15,416 | 15,189 | 14,889 | 12,080 | 12,730 | 13,195 | 13,416 | 12,653 | 11,389 |
| Coal                                 | 16,073  | 15,630 | 15,404 | 15,220 | 15,087 | 14,824 | 14,527 | 14,313 | 11,603 | 12,206 | 12,615 | 12,470 | 11,826 | 10,723 |
| bituminous                           | NA      | 14,029 | 13,579 | 13,371 | 13,215 | 12,914 | 12,212 | 11,841 | 8,609  | 8,998  | 9,517  | 9,357  | 8,596  | 7,866  |
| subbituminous                        | NA      | 1,292  | 1,422  | 1,415  | 1,381  | 1,455  | 1,796  | 1,988  | 2,345  | 2,632  | 2,490  | 2,486  | 2,609  | 2,367  |
| anthracite & lignite                 | NA      | 309    | 404    | 434    | 491    | 455    | 519    | 484    | 649    | 576    | 608    | 627    | 621    | 489    |
| Oil                                  | 1,395   | 612    | 779    | 639    | 652    | 546    | 612    | 522    | 413    | 460    | 514    | 762    | 639    | 511    |
| residual                             | NA      | 604    | 765    | 629    | 642    | 537    | 601    | 512    | 408    | 454    | 509    | 756    | 631    | 502    |
| distillate                           | NA      | 8      | 14     | 10     | 10     | 9      | 10     | 10     | 5      | 6      | 5      | 6      | 7      | 8      |
| Gas                                  | 1       | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 9      | 7      | 6      | 6      | 7      | 9      |
| Other                                | NA      | NA     | NA     | NA     | NA     | NA     | NA     | NA     | NA     | 4      | 4      | 121    | 123    | 88     |
| Internal Combustion                  | NA      | 30     | 30     | 49     | 45     | 46     | 49     | 53     | 55     | 53     | 56     | 57     | 58     | 59     |
| FUEL COMB. INDUSTRIAL                | 2,951   | 3,169  | 3,086  | 3,550  | 3,256  | 3,292  | 3,284  | 3,218  | 3,357  | 2,863  | 2,805  | 2,742  | 2,788  | 2,894  |
| Coal                                 | 1,527   | 1,818  | 1,840  | 1,914  | 1,805  | 1,783  | 1,763  | 1,740  | 1,728  | 1,321  | 1,306  | 1,274  | 1,305  | 1,320  |
| bituminous                           | 1,058   | 1,347  | 1,384  | 1,050  | 949    | 1,005  | 991    | 988    | 1,003  | 885    | 877    | 858    | 878    | 889    |
| subbituminous                        | 326     | 28     | 29     | 50     | 53     | 60     | 67     | 77     | 81     | 63     | 63     | 61     | 64     | 64     |
| anthracite & lignite                 | 144     | 90     | 79     | 67     | 68     | 67     | 68     | 68     | 68     | 61     | 60     | 57     | 57     | 58     |
| other                                | NA      | 353    | 348    | 746    | 735    | 650    | 636    | 606    | 576    | 312    | 306    | 298    | 306    | 309    |
| Oil                                  | 1,065   | 862    | 812    | 927    | 779    | 801    | 809    | 777    | 912    | 807    | 764    | 738    | 754    | 806    |
| residual                             | 851     | 671    | 625    | 687    | 550    | 591    | 597    | 564    | 701    | 626    | 578    | 559    | 571    | 618    |
| distillate                           | 85      | 111    | 107    | 198    | 190    | 191    | 193    | 193    | 191    | 158    | 161    | 156    | 159    | 161    |
| other                                | 129     | 80     | 80     | 42     | 39     | 20     | 20     | 20     | 20     | 23     | 25     | 23     | 24     | 27     |
| Gas                                  | 299     | 397    | 346    | 543    | 516    | 552    | 555    | 542    | 548    | 575    | 582    | 578    | 575    | 609    |
| Other                                | 60      | 86     | 82     | 158    | 142    | 140    | 140    | 141    | 147    | 140    | 134    | 133    | 135    | 140    |
| Internal Combustion                  | NA      | 7      | 6      | 9      | 14     | 16     | 17     | 19     | 23     | 20     | 19     | 19     | 20     | 20     |
| FUEL COMB. OTHER                     | 971     | 579    | 624    | 831    | 755    | 784    | 772    | 780    | 793    | 639    | 649    | 588    | 586    | 593    |
| Commercial/Institutional Coal        | 110     | 158    | 169    | 212    | 184    | 190    | 193    | 192    | 200    | 179    | 184    | 196    | 196    | 200    |
| Commercial/Institutional Oil         | 637     | 239    | 274    | 425    | 376    | 396    | 381    | 391    | 397    | 308    | 314    | 250    | 245    | 252    |
| Commercial/Institutional Gas         | 1       | 2      | 2      | 7      | 7      | 7      | 8      | 8      | 8      | 10     | 10     | 10     | 11     | 11     |
| Misc. Fuel Comb. (Except Residential | ) NA    | 1      | 1      | 6      | 6      | 6      | 6      | 6      | 5      | 6      | 6      | 6      | 6      | 6      |
| Residential Wood                     | ,<br>13 | 13     | 11     | 7      | 7      | 8      | 6      | 6      | 7      | 5      | 5      | 5      | 5      | 5      |
| Residential Other                    | 211     | 167    | 167    | 175    | 176    | 177    | 178    | 177    | 176    | 131    | 130    | 121    | 123    | 119    |
| distillate oil                       | 157     | 128    | 132    | 137    | 141    | 144    | 145    | 145    | 144    | 108    | 106    | 97     | 98     | 95     |
| bituminous/subbituminous coal        | 43      | 29     | 27     | 30     | 26     | 26     | 25     | 25     | 24     | 17     | 18     | 18     | 18     | 18     |
| other                                | 11      | 10     | 8      | 9      | 8      | 8      | 8      | 8      | 8      | 6      | 6      | 6      | 6      | 6      |
| Industrial Processes                 | 3,807   | 2,467  | 2,010  | 1,900  | 1,720  | 1,758  | 1,723  | 1,675  | 1,638  | 1,408  | 1,458  | 1,463  | 1,457  | 1,498  |
| CHEMICAL & ALLIED PRODUCT MFG        | 280     | 456    | 440    | 297    | 280    | 278    | 269    | 275    | 286    | 255    | 259    | 261    | 262    | 268    |
| Organic Chemical Mfg                 | NA      | 16     | 17     | 10     | 9      | 9      | 9      | 8      | 8      | 4      | 4      | 4      | 4      | 5      |
| Inorganic Chemical Mfg               | 271     | 354    | 334    | 214    | 208    | 203    | 191    | 194    | 199    | 173    | 176    | 178    | 179    | 183    |
| sulfur compounds                     | 271     | 346    | 326    | 211    | 205    | 199    | 187    | 189    | 195    | 171    | 174    | 176    | 177    | 181    |
| other                                | NA      | 8      | 8      | 2      | 3      | 4      | 4      | 4      | 4      | 2      | 2      | 2      | 2      | 2      |
| Polymer & Resin Mfg                  | NA      | 7      | 7      | 1      | 1      | 1      | 1      | 1      | 0      | 1      | 1      | 1      | 1      | 1      |
| Agricultural Chemical Mfg            | NA      | 4      | 4      | 5      | 4      | 4      | 4      | 4      | 5      | 1      | 1      | 1      | 1      | 1      |
| Paint, Varnish, Lacquer, Enamel Mfg  | NA      | NA     | NA     | NA     | NA     | NA     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| Pharmaceutical Mfg                   | NA      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| Other Chemical Mfg                   | 10      | 76     | 77     | 67     | 57     | 60     | 64     | 68     | 74     | 76     | 76     | 77     | 76     | 78     |

Table A-9. National Sulfur Dioxide Emissions Estimates, 1980, 1985, 1989–2000 (thousand short tons)

| Source Category                       | 1980     | 1985  | 1989 | 1990 | 1991 | 1992   | 1993 | 1994 | 1995 | 1996   | 1997 | 1998 | 1999 | 2000 |
|---------------------------------------|----------|-------|------|------|------|--------|------|------|------|--------|------|------|------|------|
| METALS PROCESSING                     | 1,842    | 1,042 | 695  | 726  | 612  | 615    | 603  | 562  | 530  | 390    | 407  | 405  | 400  | 411  |
| Nonferrous Metals Processing          | 1,279    | 853   | 513  | 517  | 435  | 438    | 431  | 391  | 361  | 267    | 276  | 274  | 271  | 278  |
| copper                                | 1,080    | 655   | 327  | 323  | 234  | 247    | 250  | 206  | 177  | 93     | 99   | 98   | 97   | 100  |
| lead                                  | 34       | 121   | 113  | 129  | 135  | 131    | 122  | 128  | 126  | 112    | 113  | 114  | 114  | 116  |
| aluminum                              | 95       | 62    | 60   | 60   | 61   | 55     | 53   | 51   | 53   | 57     | 59   | 57   | 55   | 56   |
| other                                 | 71       | 14    | 13   | 4    | 5    | 5      | 6    | 6    | 6    | 5      | 5    | 5    | 5    | 5    |
| Ferrous Metals Processing             | 562      | 172   | 165  | 186  | 159  | 158    | 153  | 153  | 151  | 107    | 114  | 114  | 112  | 116  |
| Metals Processing NEC                 | NA       | 18    | 17   | 22   | 18   | 18     | 19   | 19   | 18   | 17     | 17   | 17   | 16   | 17   |
| PETROLEUM & RELATED INDUSTRIES        | 734      | 505   | 429  | 430  | 378  | 416    | 383  | 379  | 369  | 335    | 344  | 342  | 341  | 346  |
| Oil & Gas Production                  | 157      | 204   | 156  | 122  | 98   | 93     | 98   | 95   | 89   | 90     | 90   | 90   | 90   | 92   |
| natural gas                           | 157      | 202   | 155  | 120  | 96   | 92     | 96   | 93   | 88   | 89     | 90   | 89   | 89   | 92   |
| other                                 | NA       | 2     | 1    | 2    | 2    | 2      | 2    | 2    | 1    | 1      | 1    | 1    | 1    | 1    |
| Petroleum Refineries & Related Indust | ries 577 | 300   | 272  | 304  | 274  | 315    | 278  | 276  | 271  | 238    | 246  | 245  | 244  | 246  |
| fluid catalytic cracking units        | 330      | 212   | 195  | 183  | 182  | 185    | 183  | 188  | 188  | 157    | 163  | 162  | 162  | 163  |
| other                                 | 247      | 88    | 77   | 121  | 92   | 130    | 95   | 88   | 83   | 81     | 83   | 83   | 82   | 83   |
| Asphalt Manufacturing                 | NA       | 1     | 1    | 4    | 7    | 7      | 7    | 8    | 9    | 8      | 8    | 8    | 7    | 7    |
| OTHER INDUSTRIAL PROCESSES            | 918      | 425   | 405  | 399  | 396  | 396    | 392  | 398  | 403  | 390    | 409  | 415  | 414  | 432  |
| Agriculture, Food, & Kindred Produc   | ts NA    | 3     | 3    | 3    | 3    | 3      | 3    | 3    | 3    | 4      | 4    | 4    | 5    | 5    |
| Textiles, Leather, & Apparel Products |          | 0     | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0    |
| Wood, Pulp & Paper, & Publishing Pro  |          | 131   | 136  | 116  | 123  | 119    | 113  | 109  | 114  | 101    | 105  | 107  | 109  | 113  |
| Rubber & Miscellaneous Plastic Proc   |          | 1     | 1    | 0    | 0    | 0      | 0    | 0    | 0    | 1      | 1    | 1    | 1    | 1    |
| Mineral Products                      | 694      | 286   | 261  | 275  | 267  | 270    | 272  | 282  | 282  | 270    | 285  | 288  | 284  | 299  |
| cement mfg                            | 630      | 192   | 172  | 181  | 165  | 168    | 170  | 167  | 171  | 171    | 181  | 183  | 179  | 189  |
| other                                 | 64       | 95    | 89   | 94   | 102  | 102    | 102  | 114  | 111  | 99     | 103  | 105  | 105  | 109  |
| Machinery Products                    | NA       | 0     | 0    | 0    | 0    | 1      | 0    | 1    | 1    | 0      | 0    | 0    | 0    | 0    |
| Electronic Equipment                  | NA       | 0     | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0    |
| Transportation Equipment              | 0        | 0     | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0    |
| Miscellaneous Industrial Processes    | NĂ       | 3     | 3    | 5    | 3    | 3      | 3    | 3    | 4    | 13     | 13   | 14   | 14   | 14   |
| SOLVENT UTILIZATION                   | NA       | 1     | 1    | 0    | 0    | 1      | 1    | 1    | 1    | 1      | 1    | 1    | 1    | 1    |
| Degreasing                            | NA       | 0     | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0    |
| Graphic Arts                          | NA       | 0     | 0    | 0    | Ő    | 0      | 0    | 0    | 0    | 0      | 0    | 0    | 0    | Ő    |
| Dry Cleaning                          | NA       | NĂ    | NĂ   | NĂ   | NĂ   | 0      | NĂ   | 0    | 0    | 0<br>0 | 0    | 0    | 0    | 0    |
| Surface Coating                       | NA       | 1     | 1    | 0    | 0    | 0      | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0    |
| Other Industrial                      | NA       | 0     | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 1      | 1    | 1    | 1    | 1    |
| STORAGE & TRANSPORT                   | NA       | 4     | 5    | 7    | 10   | 9      | 5    | 2    | 2    | 5      | 5    | 5    | 5    | 5    |
| Bulk Terminals & Plants               | NA       | NĂ    | NA   | 0    | 10   | ,<br>1 | 0    | 0    | 0    | 1      | 1    | 1    | 1    | 1    |
| Petroleum & Petroleum Product Stor    |          | 0     | 0    | 5    | 7    | 0      | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0    |
| Petroleum & Petroleum Product Trans   |          | 1     | 1    | 0    | 0    | 0      | 0    | 0    | 0    | 1      | 1    | 2    | 2    | 2    |
| Service Stations: Stage II            | NA       | NA    | NA   | NA   | NA   | NA     | NA   | 0    | 0    | 0      | 0    | 0    | 0    | 0    |
| Organic Chemical Storage              | NA       | 1     | 1    | 0    | 0    | 0      | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0    |
| Organic Chemical Transport            | NA       | NA    | NA   | 0    | 0    | 0      | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0    |
| Inorganic Chemical Storage            | NA       | 0     | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0    |
| Inorganic Chemical Transport          | NA       | 0     | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0    |
| -                                     | NA       | 1     | 2    | 1    | 0    | 7      | 4    | 1    | 0    | 2      | 2    | 2    | 2    | 2    |
| Bulk Materials Storage                | NA       | I     | Z    | I    | I    | 1      | 4    | I    | I    | Z      | Z    | Z    | Z    | 2    |

| Source Category                      | 1980   | 1985   | 1989   | 1990   | 1991   | 1992   | 1993   | 1994   | 1995   | 1996   | 1997   | 1998   | 1999   | 2000   |
|--------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| WASTE DISPOSAL & RECYCLING           | 33     | 34     | 36     | 43     | 44     | 44     | 71     | 59     | 47     | 32     | 33     | 34     | 34     | 35     |
| Incineration                         | 21     | 25     | 28     | 32     | 32     | 32     | 51     | 42     | 35     | 26     | 27     | 28     | 28     | 29     |
| industrial                           | NA     | 10     | 10     | 5      | 4      | 5      | 25     | 17     | 8      | 6      | 6      | 7      | 7      | 7      |
| other                                | 21     | 15     | 18     | 26     | 28     | 27     | 26     | 26     | 27     | 20     | 21     | 21     | 21     | 22     |
| Open Burning                         | 12     | 9      | 8      | 11     | 11     | 11     | 11     | 11     | 11     | 5      | 5      | 5      | 5      | 5      |
| industrial                           | NA     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| land clearing debris                 | NA     |
| other                                | 12     | 8      | 7      | 10     | 10     | 11     | 11     | 11     | 11     | 5      | 5      | 5      | 5      | 5      |
| POTW                                 | NA     | NA     | NA     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| Industrial Waste Water               | NA     | NA     | NA     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| TSDF                                 | NA     | NA     | NA     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| Landfills                            | NA     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 1      | 1      | 1      | 1      | 1      |
| industrial                           | NA     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| other                                | NA     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| Other                                | NA     | 0      | 0      | 0      | 1      | 1      | 8      | 6      | 0      | 0      | 0      | 0      | 0      | 0      |
| Transportation                       | 697    | 1,159  | 1,349  | 1,476  | 1,517  | 1,553  | 1,497  | 1,297  | 1,311  | 1,791  | 1,816  | 1,837  | 1,853  | 1,805  |
| ON-ROAD VEHICLES                     | 521    | 522    | 570    | 560    | 573    | 586    | 526    | 307    | 311    | 343    | 353    | 358    | 366    | 314    |
| Light-Duty Gas Vehicles & Motorcycle | s 159  | 146    | 145    | 129    | 126    | 125    | 124    | 125    | 126    | 128    | 131    | 134    | 136    | 108    |
| light-duty gas vehicles              | 158    | 145    | 145    | 128    | 126    | 125    | 124    | 124    | 126    | 128    | 130    | 134    | 136    | 107    |
| motorcycles                          | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| Light-Duty Gas Trucks                | 50     | 55     | 58     | 69     | 81     | 87     | 90     | 92     | 93     | 85     | 89     | 90     | 94     | 75     |
| light-duty gas trucks 1              | 33     | 36     | 38     | 45     | 52     | 56     | 58     | 59     | 60     | 62     | 65     | 66     | 69     | 55     |
| light-duty gas trucks 2              | 16     | 19     | 21     | 24     | 29     | 31     | 32     | 32     | 32     | 22     | 23     | 24     | 24     | 20     |
| Heavy-Duty Gas Vehicles              | 10     | 11     | 11     | 10     | 10     | 10     | 11     | 12     | 11     | 18     | 18     | 17     | 17     | 13     |
| Diesels                              | 303    | 311    | 356    | 352    | 356    | 364    | 300    | 79     | 82     | 112    | 117    | 117    | 119    | 118    |
| NON-ROAD ENGINES AND VEHICLES        | 175    | 637    | 779    | 916    | 944    | 968    | 972    | 990    | 999    | 1,448  | 1,463  | 1,479  | 1,487  | 1,491  |
| Non-Road Gasoline                    | NA     | 20     | 22     | 22     | 22     | 22     | 23     | 23     | 23     | 35     | 35     | 35     | 35     | 35     |
| Non-Road Diesel                      | NA     | 407    | 488    | 509    | 529    | 549    | 570    | 590    | 610    | 459    | 474    | 490    | 497    | 516    |
| Aircraft                             | 6      | 6      | 7      | 11     | 11     | 11     | 11     | 11     | 11     | 8      | 8      | 8      | 8      | 8      |
| Marine Vessels                       | 117    | 143    | 193    | 251    | 259    | 258    | 249    | 252    | 239    | 887    | 887    | 887    | 887    | 872    |
| Railroads                            | 53     | 59     | 67     | 122    | 120    | 125    | 117    | 113    | 113    | 56     | 56     | 56     | 56     | 56     |
| Non-Road Other                       | NA     | 1      | 2      | 2      | 2      | 2      | 2      | 2      | 2      | 3      | 3      | 3      | 4      | 4      |
| MISCELLANEOUS                        | 11     | 11     | 11     | 12     | 11     | 10     | 10     | 15     | 10     | 16     | 15     | 12     | 12     | 21     |
| Agriculture & Forestry               | NA     | 0      | 0      | 0      | 0      | 0      |
| Other Combustion                     | 11     | 11     | 11     | 12     | 11     | 9      | 9      | 15     | 10     | 16     | 15     | 12     | 12     | 21     |
| Fugitive Dust                        | NA     | NA     | NA     | 0      | 0      | 0      | 1      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| TOTAL ALL SOURCES                    | 25,905 | 23,658 | 23,293 | 23,679 | 23,044 | 22,813 | 22,474 | 21,875 | 19,189 | 19,447 | 19,939 | 20,059 | 19,349 | 18,201 |

*Note:* Some columns may not sum to totals due to rounding.

| Source Category                            | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 |  |
|--------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|--|
| Fuel Combustion                            | 25   | 25   | 25   | 26   | 26   | 26   | 47   | 47   | 47   | 49   | 50   |  |
| FUEL COMB. ELEC. UTIL.                     | 0    | 0    | 0    | 0    | 0    | 0    | 6    | 6    | 8    | 8    | 8    |  |
| Coal                                       | NA   | NA   | NA   | NA   | NA   | NA   | 0    | 0    | 0    | 0    | 0    |  |
| Oil                                        | NA   | NA   | NA   | NA   | NA   | NA   | 2    | 2    | 3    | 3    | 3    |  |
| Gas                                        | NA   | NA   | NA   | NA   | NA   | NA   | 4    | 4    | 4    | 5    | 5    |  |
| Other                                      | NA   | NA   | NA   | NA   | NA   | NA   | 0    | 0    | 0    | 0    | 0    |  |
| Internal Combustion                        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| FUEL COMB. INDUSTRIAL                      | 17   | 17   | 17   | 18   | 18   | 18   | 34   | 34   | 33   | 34   | 35   |  |
| Coal                                       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Oil                                        | 4    | 4    | 4    | 4    | 4    | 4    | 4    | 4    | 4    | 4    | 4    |  |
| Gas                                        | 13   | 13   | 13   | 14   | 14   | 13   | 25   | 25   | 25   | 25   | 27   |  |
| Other                                      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Internal Combustion                        | 0    | 0    | 0    | 0    | 0    | 0    | 5    | 5    | 5    | 5    | 5    |  |
| FUEL COMB. OTHER                           | 8    | 8    | 8    | 8    | 8    | 8    | 7    | 7    | 6    | 7    | 7    |  |
| Commercial/Institutional Coal              | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Commercial/Institutional Oil               | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |  |
| Commercial/Institutional Gas               | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |  |
| Misc. Fuel Comb. (Except Residential)      | NA   | NA   | NA   | NA   | NA   | NA   | 0    | 0    | 0    | 0    | 0    |  |
| Residential Other                          | 5    | 5    | 5    | 5    | 5    | 5    | 5    | 5    | 4    | 4    | 4    |  |
| Industrial Processes                       | 351  | 355  | 359  | 364  | 364  | 365  | 271  | 277  | 284  | 289  | 296  |  |
| CHEMICAL & ALLIED PRODUCT MFG              | 183  | 183  | 183  | 183  | 183  | 183  | 123  | 125  | 130  | 133  | 137  |  |
| Organic Chemical Mfg                       | NA   | NA   | NA   | NA   | NA   | NA   | 0    | 0    | 0    | 0    | 0    |  |
| Inorganic Chemical Mfg                     | NA   | NA   | NA   | NA   | NA   | NA   | 0    | 0    | 0    | 0    | 0    |  |
| Polymer & Resin Mfg                        | NA   | NA   | NA   | NA   | NA   | NA   | 0    | 0    | 0    | 0    | 0    |  |
| Agricultural Chemicals                     | 183  | 183  | 183  | 183  | 183  | 183  | 109  | 111  | 115  | 118  | 121  |  |
| ammonium nitrate/urea mfg.                 | 111  | 111  | 111  | 111  | 111  | 111  | 41   | 42   | 43   | 44   | 46   |  |
| other                                      | 71   | 71   | 71   | 71   | 71   | 71   | 68   | 70   | 72   | 73   | 76   |  |
| Other Chemical Mfg                         | NA   | NA   | NA   | NA   | NA   | NA   | 13   | 14   | 14   | 15   | 15   |  |
| METALS PROCESSING                          | 6    | 6    | 6    | 6    | 6    | 6    | 4    | 5    | 5    | 5    | 5    |  |
| Non-Ferrous Metals Processing              | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Ferrous Metals Processing                  | 6    | 6    | 6    | 6    | 6    | 6    | 4    | 5    | 5    | 5    | 5    |  |
| Metals Processing NEC                      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| PETROLEUM & RELATED INDUSTRIES             | 43   | 43   | 43   | 43   | 43   | 43   | 16   | 17   | 17   | 17   | 17   |  |
| Oil & Gas Production                       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Petroleum Refineries & Related Industrie   |      | 43   | 43   | 43   | 43   | 43   | 16   | 17   | 17   | 17   | 17   |  |
| catalytic cracking                         | 43   | 43   | 43   | 43   | 43   | 43   | 16   | 17   | 17   | 17   | 17   |  |
| other                                      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| OTHER INDUSTRIAL PROCESSES                 | 38   | 38   | 39   | 39   | 40   | 40   | 43   | 45   | 45   | 45   | 47   |  |
| Agriculture, Food, & Kindred Products      | 2    | 2    | 3    | 3    | 2    | 2    | 4    | 4    | 4    | 4    | 4    |  |
| Textiles, Leather, & Apparel Products      | NÁ   | NÁ   | NA   | NA   | NĂ   | NÁ   | 0    | 0    | 0    | 0    | 0    |  |
| Wood, Pulp & Paper, & Publishing Produ     |      | NA   | NA   | NA   | NA   | NA   | 1    | 1    | 1    | 1    | 1    |  |
| Rubber & Miscellaneous Plastic Product     |      | NA   | NA   | NA   | NA   | NA   | 0    | 0    | 0    | 0    | 0    |  |
| Mineral Products                           | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
|                                            | NA   | NA   | NA   | NA   | NA   | NA   | 0    | 0    | 0    | 0    | 0    |  |
| Machinery Products                         |      |      |      |      |      |      |      |      |      |      |      |  |
| Machinery Products<br>Electronic Equipment | NA   | NA   | NA   | NA   | NA   | NA   | 0    | 0    | 0    | 0    | 0    |  |

106

| Source Category                      | 1990    | 1991  | 1992  | 1993  | 1994  | 1995  | 1996  | 1997  | 1998  | 1999  | 2000                                    |
|--------------------------------------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----------------------------------------|
| SOLVENT UTILIZATION                  | NA      | NA    | NA    | NA    | NA    | NA    | 0     | 0     | 0     | 0     | 0                                       |
| Degreasing                           | NA      | NA    | NA    | NA    | NA    | NA    | 0     | 0     | 0     | 0     | 0                                       |
| Graphic Arts                         | NA      | NA    | NA    | NA    | NA    | NA    | 0     | 0     | 0     | 0     | 0                                       |
| Dry Cleaning                         | NA      | NA    | NA    | NA    | NA    | NA    | 0     | 0     | 0     | 0     | 0                                       |
| Surface Coating                      | NA      | NA    | NA    | NA    | NA    | NA    | 0     | 0     | 0     | 0     | 0                                       |
| Other Industrial                     | NA      | NA    | NA    | NA    | NA    | NA    | 0     | 0     | 0     | 0     | 0                                       |
| STORAGE & TRANSPORT                  | 0       | 0     | 0     | 0     | 0     | 0     | 1     | 1     | 1     | 1     | 1                                       |
| Bulk Terminals & Plants              | NA      | NA    | NA    | NA    | NA    | NA    | 0     | 0     | 0     | 0     | 0                                       |
| Petroleum & Petroleum Product Stor   | age NA  | NA    | NA    | NA    | NA    | NA    | 1     | 1     | 1     | 1     | 1                                       |
| Petroleum & Petroleum Product Transp | oort NA | NA    | NA    | NA    | NA    | NA    | 0     | 0     | 0     | 0     | 0                                       |
| Organic Chemical Storage             | NA      | NA    | NA    | NA    | NA    | NA    | 0     | 0     | 0     | 0     | 0                                       |
| Inorganic Chemical Storage           | NA      | NA    | NA    | NA    | NA    | NA    | 0     | 0     | 0     | 0     | 0                                       |
| Bulk Materials Storage               | 0       | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0                                       |
| WASTE DISPOSAL & RECYCLING           | 82      | 86    | 89    | 93    | 93    | 93    | 84    | 84    | 86    | 88    | 89                                      |
| Incineration                         | NA      | NA    | NA    | NA    | NA    | NA    | 0     | 0     | 0     | 0     | 0                                       |
| Open Burning                         | NA      | NA    | NA    | NA    | NA    | NA    | 0     | 0     | 0     | 0     | 0                                       |
| POTW                                 | 82      | 86    | 89    | 93    | 93    | 93    | 84    | 84    | 86    | 87    | 89                                      |
| wastewater treatment                 | 82      | 86    | 89    | 93    | 93    | 93    | 84    | 84    | 86    | 87    | 89                                      |
| other                                | NA      | NA    | NA    | NA    | NA    | NA    | 0     | 0     | 0     | 0     | 0                                       |
| Industrial Waste Water               | NA      | NA    | NA    | NA    | NA    | NA    | 0     | 0     | 0     | 0     | 0                                       |
| TSDF                                 | NA      | NA    | NA    | NA    | NA    | NA    | 0     | 0     | 0     | 0     | 0                                       |
| Landfills                            | NA      | NA    | NA    | NA    | NA    | NA    | 0     | 0     | 0     | 0     | 0                                       |
| Other                                | NA      | NA    | NA    | NA    | NA    | NA    | 0     | 0     | 0     | 0     | 0                                       |
| Transportation                       | 194     | 205   | 214   | 224   | 239   | 258   | 238   | 267   | 262   | 265   | 268                                     |
| ON-ROAD VEHICLES                     | 188     | 198   | 208   | 218   | 233   | 252   | 229   | 258   | 252   | 261   | 264                                     |
| Light-Duty Gas Vehicles & Motorcycle | es 149  | 151   | 155   | 159   | 168   | 180   | 157   | 168   | 169   | 173   | 174                                     |
| Light-Duty Gas Trucks                | 38      | 46    | 52    | 58    | 63    | 70    | 63    | 80    | 72    | 78    | 80                                      |
| Heavy-Duty Gas Vehicles              | 0       | 0     | 1     | 1     | 1     | 1     | 4     | 4     | 4     | 4     | 4                                       |
| Diesels                              | 0       | 0     | 0     | 0     | 0     | 0     | 6     | 6     | 6     | 6     | 6                                       |
| NON-ROAD ENGINES AND VEHICLES        | 6       | 7     | 7     | 7     | 7     | 7     | 9     | 9     | 10    | 4     | 4                                       |
| Non-Road Gasoline                    | 1       | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1                                       |
| Non-Road Diesel                      | 2       | 3     | 3     | 3     | 3     | 3     | 3     | 3     | 3     | 3     | 3                                       |
| Aircraft                             | NA      | NA    | NA    | NA    | NA    | NA    | 3     | 3     | 4     | NA    | NA                                      |
| Marine Vessels                       | 1       | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     | NA    | NA                                      |
| Railroads                            | 2       | 2     | 2     | 2     | 2     | 2     | 1     | 1     | 1     | NA    | NA                                      |
| NATURAL SOURCES                      | 0       | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0                                       |
| Biogenic                             | 0       | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0                                       |
| MISCELLANEOUS                        | 3,757   | 3,799 | 3,841 | 3,897 | 3,953 | 4,009 | 4,138 | 4,196 | 4,293 | 4,311 | 4,349                                   |
| Agriculture & Forestry               | 3,757   | 3,799 | 3,841 | 3,897 | 3,953 | 4,009 | 4,138 | 4,196 | 4,293 | 4,311 | 4,349                                   |
| agricultural crops                   | 420     | 446   | 473   | 499   | 525   | 551   | 649   | 678   | 739   | 724   | 724                                     |
| agricultural livestock               | 3,337   | 3,353 | 3,368 | 3,398 | 3,428 | 3,458 | 3,489 | 3,518 | 3,554 | 3,587 | 3,625                                   |
| Fugitive Dust                        | 0       | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0                                       |
| TOTAL ALL SOURCES                    | 4,327   | 4,383 | 4,440 | 4,512 | 4,583 | 4,658 | 4,694 | 4,787 | 4,886 | 4,914 | 4,963                                   |
|                                      | .,      | .,000 | .,    | .,    | .,    | .,    | .,    | .,    | .,    | .,    | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |

Table A-10. National Ammonia Emissions Estimates, 1990–2000 (thousand short tons) (continued)

*Note:* Some columns may not sum to totals due to rounding.

|         | <u> </u>                   | Dh                       | NO                        | 0                             | DM                                | 60                        |
|---------|----------------------------|--------------------------|---------------------------|-------------------------------|-----------------------------------|---------------------------|
| Year    | CO<br>2nd Max. 8-hr<br>ppm | Pb<br>Max. Qtr.<br>µg/m³ | NO₂<br>Arith. Mean<br>ppm | Ozone<br>2nd Max. 1-hr<br>ppm | PM₁₀<br>Wtd. Arith. Mean<br>µg/m³ | SO₂<br>Arith. Mean<br>ppm |
| 198190  | 321 sites                  | 228 sites                | 169 sites                 | 471 sites                     |                                   | 456 sites                 |
| 1981    | 8.4                        | 0.58                     | 0.024                     | 0.126                         | _                                 | 0.0102                    |
| 1982    | 8.1                        | 0.58                     | 0.023                     | 0.125                         | _                                 | 0.0095                    |
| 1983    | 7.9                        | 0.47                     | 0.023                     | 0.137                         | _                                 | 0.0093                    |
| 1984    | 7.8                        | 0.45                     | 0.023                     | 0.125                         | _                                 | 0.0095                    |
| 1985    | 7.1                        | 0.28                     | 0.023                     | 0.123                         | _                                 | 0.0090                    |
| 1986    | 7.2                        | 0.18                     | 0.023                     | 0.118                         | _                                 | 0.0088                    |
| 1987    | 6.7                        | 0.13                     | 0.023                     | 0.125                         | _                                 | 0.0086                    |
| 1988    | 6.4                        | 0.12                     | 0.023                     | 0.136                         | _                                 | 0.0087                    |
| 1989    | 6.4                        | 0.10                     | 0.023                     | 0.116                         | _                                 | 0.0085                    |
| 1990    | 5.9                        | 0.08                     | 0.022                     | 0.114                         | —                                 | 0.0079                    |
| 1991–00 | 327 sites                  | 130 sites                | 234 sites                 | 738 sites                     | 886 sites                         | 457 sites                 |
| 1991    | 5.6                        | 0.08                     | 0.019                     | 0.111                         | 29.4                              | 0.0081                    |
| 1992    | 5.3                        | 0.07                     | 0.019                     | 0.105                         | 27.3                              | 0.0076                    |
| 1993    | 5.0                        | 0.06                     | 0.019                     | 0.107                         | 26.6                              | 0.0074                    |
| 1994    | 5.1                        | 0.05                     | 0.020                     | 0.106                         | 26.4                              | 0.0072                    |
| 1995    | 4.6                        | 0.05                     | 0.019                     | 0.112                         | 25.1                              | 0.0057                    |
| 1996    | 4.3                        | 0.05                     | 0.019                     | 0.105                         | 24.2                              | 0.0057                    |
| 1997    | 4.1                        | 0.04                     | 0.018                     | 0.104                         | 24.1                              | 0.0056                    |
| 1998    | 3.9                        | 0.04                     | 0.018                     | 0.110                         | 23.8                              | 0.0055                    |
| 1999    | 3.7                        | 0.04                     | 0.018                     | 0.107                         | 24.1                              | 0.0053                    |
| 2000    | 3.4                        | 0.04                     | 0.017                     | 0.100                         | 23.8                              | 0.0051                    |

## Table A-11. National Long-Term Air Quality Trends, 1981–2000

| Statistic # o                                            | f Sites           | Units                   | Location                   | 1981                       | 1982                       | 1983                       | 1984                       | 1985                       | 1986                       | 1987                       | 1988                       | 1989                       | 1990                    |
|----------------------------------------------------------|-------------------|-------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-------------------------|
| Carbon Monoxide                                          |                   |                         |                            |                            |                            |                            |                            |                            |                            |                            |                            |                            |                         |
| 2nd Max. 8-hr.<br>2nd Max. 8-hr.                         | 4<br>136          | ppm<br>ppm              | Rural<br>Suburban          | 4.7<br>8.0                 | 4.9<br>7.8                 | 3.8<br>7.5                 | 3.3<br>7.5                 | 4.1<br>7.3                 | 3.8<br>6.6                 | 4.5<br>6.6                 | 3.8<br>6.4                 | 3.5<br>6.1                 | 3.2<br>6.1              |
| 2nd Max. 8-hr.                                           | 178               | ppm                     | Urban                      | 9.1                        | 8.8                        | 8.6                        | 8.3                        | 8.2                        | 7.5                        | 7.6                        | 7.0                        | 6.8                        | 6.6                     |
| Lead                                                     |                   |                         |                            |                            |                            |                            |                            |                            |                            |                            |                            |                            |                         |
| Max. Qtr.<br>Max. Qtr.<br>Max. Qtr.                      | 10<br>107<br>106  | μg/m³<br>μg/m³<br>μg/m³ | Rural<br>Suburban<br>Urban | 1.12<br>0.57<br>0.54       | 0.98<br>0.52<br>0.60       | 0.94<br>0.45<br>0.44       | 1.03<br>0.43<br>0.41       | 0.37<br>0.30<br>0.26       | 0.48<br>0.19<br>0.15       | 0.29<br>0.14<br>0.11       | 0.25<br>0.12<br>0.09       | 0.24<br>0.10<br>0.08       | 0.17<br>0.09<br>0.06    |
| Nitrogen Dioxide                                         | 100               | µg/m                    | Orban                      | 0.04                       | 0.00                       | 0.11                       | 0.41                       | 0.20                       | 0.10                       | 0.11                       | 0.00                       | 0.00                       | 0.00                    |
| Arith. Mean<br>Arith. Mean<br>Arith. Mean                | 22<br>81<br>64    | ppm<br>ppm<br>ppm       | Rural<br>Suburban<br>Urban | 0.009<br>0.025<br>0.028    | 0.008<br>0.024<br>0.027    | 0.008<br>0.024<br>0.027    | 0.008<br>0.024<br>0.028    | 0.008<br>0.024<br>0.028    | 0.009<br>0.024<br>0.028    | 0.009<br>0.024<br>0.028    | 0.008<br>0.024<br>0.028    | 0.008<br>0.024<br>0.027    | 0.008<br>0.023<br>0.026 |
| Ozone                                                    |                   |                         |                            |                            |                            |                            |                            |                            |                            |                            |                            |                            |                         |
| 2nd Max. 1-hr.<br>2nd Max. 1-hr.<br>2nd Max. 1-hr.       | 127<br>229<br>105 | ppm<br>ppm<br>ppm       | Rural<br>Suburban<br>Urban | 0.117<br>0.131<br>0.128    | 0.114<br>0.130<br>0.126    | 0.126<br>0.142<br>0.140    | 0.117<br>0.128<br>0.127    | 0.115<br>0.127<br>0.123    | 0.112<br>0.122<br>0.119    | 0.117<br>0.129<br>0.126    | 0.129<br>0.141<br>0.134    | 0.110<br>0.119<br>0.116    | 0.111<br>0.116<br>0.112 |
| 4th Max. 8-hr.<br>4th Max. 8-hr.<br>4th Max. 8-hr.       | 127<br>227<br>104 | ppm<br>ppm<br>ppm       | Rural<br>Suburban<br>Urban | 0.089<br>0.093<br>0.090    | 0.087<br>0.093<br>0.086    | 0.096<br>0.102<br>0.098    | 0.089<br>0.092<br>0.091    | 0.089<br>0.093<br>0.090    | 0.087<br>0.090<br>0.086    | 0.091<br>0.095<br>0.091    | 0.102<br>0.105<br>0.098    | 0.086<br>0.088<br>0.086    | 0.087<br>0.086<br>0.082 |
| PM <sub>10</sub>                                         |                   |                         |                            |                            |                            |                            |                            |                            |                            |                            |                            |                            |                         |
| Wtd. Arith. Mean<br>Wtd. Arith. Mean<br>Wtd. Arith. Mean |                   | μg/m³<br>μg/m³<br>μg/m³ | Rural<br>Suburban<br>Urban |                            |                            |                            |                            |                            |                            |                            |                            |                            |                         |
| Sulfur Dioxide                                           |                   |                         |                            |                            |                            |                            |                            |                            |                            |                            |                            |                            |                         |
| Arith. Mean<br>Arith. Mean<br>Arith. Mean                | 120<br>187<br>142 | ppm<br>ppm<br>ppm       | Rural<br>Suburban<br>Urban | 0.0083<br>0.0102<br>0.0118 | 0.0076<br>0.0096<br>0.0111 | 0.0075<br>0.0094<br>0.0106 | 0.0079<br>0.0098<br>0.0106 | 0.0076<br>0.0094<br>0.0098 | 0.0075<br>0.0090<br>0.0098 | 0.0075<br>0.0086<br>0.0095 | 0.0075<br>0.0088<br>0.0098 | 0.0073<br>0.0084<br>0.0096 | 0.0079                  |

## Table A-12. National Air Quality Trends by Monitoring Location, 1981–2000

 $^{\ast}$  PM\_{10} trend data is not available for this 10-year period.

| Statistic #      | of Sites | Units | Location | 1991   | 1992   | 1993   | 1994   | 1995   | 1996   | 1997   | 1998   | 1999   | 2000   |
|------------------|----------|-------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Carbon Monoxid   | de       |       |          |        |        |        |        |        |        |        |        |        |        |
| 2nd Max. 8-hr.   | 13       | ppm   | Rural    | 2.3    | 2.3    | 2.0    | 2.2    | 2.2    | 1.9    | 1.7    | 1.7    | 1.6    | 1.6    |
| 2nd Max. 8-hr.   | 153      | ppm   | Suburban | 5.4    | 5.1    | 4.9    | 5.1    | 4.4    | 4.1    | 4.0    | 3.8    | 3.7    | 3.4    |
| 2nd Max. 8-hr.   | 217      | ppm   | Urban    | 6.0    | 5.6    | 5.2    | 5.4    | 4.9    | 4.6    | 4.3    | 4.0    | 3.9    | 3.5    |
| Lead             |          |       |          |        |        |        |        |        |        |        |        |        |        |
| Max. Qtr.        | 4        | µg/m³ | Rural    | 0.03   | 0.03   | 0.04   | 0.04   | 0.11   | 0.03   | 0.02   | 0.04   | 0.03   | 0.04   |
| Max. Qtr.        | 58       | µg/m³ | Suburban | 0.07   | 0.06   | 0.05   | 0.05   | 0.05   | 0.04   | 0.04   | 0.04   | 0.04   | 0.04   |
| Max. Qtr.        | 63       | µg/m³ | Urban    | 0.09   | 0.07   | 0.07   | 0.06   | 0.05   | 0.05   | 0.05   | 0.04   | 0.04   | 0.04   |
| Nitrogen Dioxid  | е        |       |          |        |        |        |        |        |        |        |        |        |        |
| Arith. Mean      | 39       | ppm   | Rural    | 0.009  | 0.009  | 0.009  | 0.009  | 0.009  | 0.009  | 0.009  | 0.008  | 0.009  | 0.008  |
| Arith. Mean      | 105      | ppm   | Suburban | 0.020  | 0.020  | 0.019  | 0.020  | 0.020  | 0.019  | 0.018  | 0.018  | 0.019  | 0.018  |
| Arith. Mean      | 87       | ppm   | Urban    | 0.023  | 0.023  | 0.023  | 0.024  | 0.023  | 0.022  | 0.022  | 0.022  | 0.022  | 0.021  |
| Ozone            |          |       |          |        |        |        |        |        |        |        |        |        |        |
| 2nd Max. 1-hr.   | 259      | ppm   | Rural    | 0.105  | 0.101  | 0.103  | 0.102  | 0.107  | 0.102  | 0.101  | 0.108  | 0.105  | 0.099  |
| 2nd Max. 1-hr.   | 332      | ppm   | Suburban | 0.116  | 0.108  | 0.111  | 0.110  | 0.115  | 0.107  | 0.108  | 0.113  | 0.110  | 0.103  |
| 2nd Max. 1-hr.   | 127      | ppm   | Urban    | 0.110  | 0.106  | 0.105  | 0.106  | 0.110  | 0.106  | 0.102  | 0.105  | 0.104  | 0.097  |
| 4th Max. 8-hr.   | 263      | ppm   | Rural    | 0.082  | 0.080  | 0.081  | 0.081  | 0.085  | 0.082  | 0.082  | 0.086  | 0.086  | 0.080  |
| 4th Max. 8-hr.   | 332      | ppm   | Suburban | 0.088  | 0.082  | 0.084  | 0.085  | 0.090  | 0.084  | 0.084  | 0.089  | 0.087  | 0.081  |
| 4th Max. 8-hr.   | 126      | ppm   | Urban    | 0.082  | 0.079  | 0.079  | 0.080  | 0.084  | 0.081  | 0.079  | 0.082  | 0.081  | 0.075  |
| PM <sub>10</sub> |          |       |          |        |        |        |        |        |        |        |        |        |        |
| Wtd. Arith. Mea  | an 140   | µg/m³ | Rural    | 24.3   | 22.8   | 22.0   | 21.9   | 20.3   | 20.3   | 20.1   | 19.7   | 20.4   | 20.3   |
| Wtd. Arith. Mea  | an 353   | µg/m³ | Suburban | 30.0   | 28.0   | 27.2   | 27.1   | 26.0   | 24.8   | 24.8   | 24.5   | 24.9   | 24.4   |
| Wtd. Arith. Mea  | an 373   | µg/m³ | Urban    | 30.9   | 28.5   | 27.8   | 27.6   | 26.1   | 25.4   | 25.1   | 24.9   | 24.9   | 24.7   |
| Sulfur Dioxide   |          |       |          |        |        |        |        |        |        |        |        |        |        |
| Arith. Mean      | 119      | ppm   | Rural    | 0.0068 | 0.0065 | 0.0067 | 0.0063 | 0.0053 | 0.0050 | 0.0048 | 0.0047 | 0.0045 | 0.0044 |
| Arith. Mean      | 197      | ppm   | Suburban | 0.0087 | 0.0081 | 0.0079 | 0.0076 | 0.0059 | 0.0060 | 0.0059 | 0.0059 | 0.0058 | 0.0056 |
| Arith. Mean      | 131      | ppm   | Urban    | 0.0087 | 0.0079 | 0.0076 | 0.0076 | 0.0060 | 0.0058 | 0.0057 | 0.0056 | 0.0055 | 0.0052 |

## Table A-12. National Air Quality Trends by Monitoring Location, 1991–2000

|                                                                                                          | Statistic                                                                                                         | # of Sites                              | Units                                                              | 1981                                                 | 1982                                                  | 1983                                                 | 1984                                                  | 1985                                                  | 1986                                                  | 1987                                                 | 1988                                                 | 1989                                                 | 1990                                                 |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| Region 1                                                                                                 |                                                                                                                   |                                         |                                                                    |                                                      |                                                       |                                                      |                                                       |                                                       |                                                       |                                                      |                                                      |                                                      |                                                      |
| CO<br>Pb<br>NO <sub>2</sub><br>O <sub>3</sub><br>O <sub>3</sub><br>PM <sub>10</sub> *<br>SO <sub>2</sub> | 2nd Max. 8-hr.<br>Max. Qtr.<br>Arith. Mean<br>2nd Max. 1-hr.<br>4th Max. 8-hr.<br>Wtd. Arith. Mean<br>Arith. Mean | 11<br>15<br>4<br>23<br>23<br>-<br>49    | ppm<br>µg/m <sup>3</sup><br>ppm<br>ppm<br>µg/m <sup>3</sup><br>ppm | 9.1<br>0.51<br>0.030<br>0.142<br>0.101<br>           | 9.6<br>0.56<br>0.028<br>0.150<br>0.109<br>—<br>0.0095 | 9.2<br>0.44<br>0.026<br>0.166<br>0.119<br><br>0.0089 | 8.9<br>0.38<br>0.032<br>0.153<br>0.105<br>—<br>0.0097 | 7.0<br>0.32<br>0.031<br>0.140<br>0.102<br>            | 7.5<br>0.12<br>0.029<br>0.123<br>0.090<br>—<br>0.0100 | 6.7<br>0.08<br>0.030<br>0.132<br>0.095<br>           | 5.7<br>0.06<br>0.030<br>0.161<br>0.120<br>           | 5.8<br>0.05<br>0.028<br>0.129<br>0.094<br><br>0.0093 | 6.1<br>0.02<br>0.027<br>0.124<br>0.093<br>           |
| Region 2                                                                                                 |                                                                                                                   |                                         |                                                                    |                                                      |                                                       |                                                      |                                                       |                                                       |                                                       |                                                      |                                                      |                                                      |                                                      |
| CO<br>Pb<br>NO <sub>2</sub><br>O <sub>3</sub><br>O <sub>3</sub><br>PM <sub>10</sub> *<br>SO <sub>2</sub> | 2nd Max. 8-hr.<br>Max. Qtr.<br>Arith. Mean<br>2nd Max. 1-hr.<br>4th Max. 8-hr.<br>Wtd. Arith. Mean<br>Arith. Mean | 22<br>12<br>10<br>28<br>28<br>          | ppm<br>µg/m <sup>3</sup><br>ppm<br>ppm<br>µg/m <sup>3</sup><br>ppm | 9.4<br>0.73<br>0.031<br>0.134<br>0.100<br>           | 8.5<br>0.73<br>0.032<br>0.136<br>0.098<br>            | 7.8<br>0.65<br>0.033<br>0.153<br>0.112<br>           | 8.3<br>0.67<br>0.032<br>0.131<br>0.096<br>            | 6.7<br>0.50<br>0.031<br>0.131<br>0.099<br>            | 7.4<br>0.16<br>0.030<br>0.123<br>0.095<br>            | 6.4<br>0.11<br>0.031<br>0.141<br>0.106<br>           | 6.2<br>0.08<br>0.031<br>0.160<br>0.121<br>           | 6.1<br>0.05<br>0.030<br>0.118<br>0.092<br>           | 5.6<br>0.05<br>0.029<br>0.126<br>0.096<br><br>0.0097 |
| Region 3                                                                                                 |                                                                                                                   |                                         |                                                                    |                                                      |                                                       |                                                      |                                                       |                                                       |                                                       |                                                      |                                                      |                                                      |                                                      |
| CO<br>Pb<br>NO <sub>2</sub><br>O <sub>3</sub><br>O <sub>3</sub><br>PM <sub>10</sub> *<br>SO <sub>2</sub> | 2nd Max. 8-hr.<br>Max. Qtr.<br>Arith. Mean<br>2nd Max. 1-hr.<br>4th Max. 8-hr.<br>Wtd. Arith. Mean<br>Arith. Mean | 41<br>30<br>36<br>64<br>64<br>1<br>     | ppm<br>µg/m <sup>3</sup><br>ppm<br>ppm<br>µg/m <sup>3</sup><br>ppm | 7.0<br>0.40<br>0.023<br>0.122<br>0.092<br>           | 7.0<br>0.44<br>0.023<br>0.124<br>0.095<br>            | 6.8<br>0.34<br>0.024<br>0.138<br>0.107<br>           | 7.6<br>0.35<br>0.025<br>0.119<br>0.092<br>            | 5.7<br>0.22<br>0.024<br>0.118<br>0.093<br>—<br>0.0131 | 6.3<br>0.15<br>0.024<br>0.113<br>0.089<br>            | 5.9<br>0.12<br>0.025<br>0.128<br>0.100<br>           | 5.5<br>0.14<br>0.024<br>0.150<br>0.116<br><br>0.0138 | 5.3<br>0.10<br>0.023<br>0.111<br>0.088<br>           | 5.2<br>0.07<br>0.023<br>0.112<br>0.089<br><br>0.0124 |
| Region 4                                                                                                 |                                                                                                                   |                                         |                                                                    |                                                      |                                                       |                                                      |                                                       |                                                       |                                                       |                                                      |                                                      |                                                      |                                                      |
| CO<br>Pb<br>NO <sub>2</sub><br>O <sub>3</sub><br>O <sub>3</sub><br>PM <sub>10</sub> *<br>SO <sub>2</sub> | 2nd Max. 8-hr.<br>Max. Qtr.<br>Arith. Mean<br>2nd Max. 1-hr.<br>4th Max. 8-hr.<br>Wtd. Arith. Mean<br>Arith. Mean | 49<br>38<br>10<br>70<br>70<br>1 —<br>59 | ppm<br>µg/m <sup>3</sup><br>ppm<br>ppm<br>µg/m <sup>3</sup><br>ppm | 7.8<br>0.60<br>0.019<br>0.108<br>0.084<br><br>0.0088 | 7.3<br>0.70<br>0.019<br>0.106<br>0.081<br><br>0.0078  | 7.4<br>0.61<br>0.019<br>0.120<br>0.092<br>           | 7.7<br>0.58<br>0.019<br>0.108<br>0.084<br><br>0.0072  | 6.2<br>0.28<br>0.019<br>0.105<br>0.082<br>            | 6.2<br>0.22<br>0.019<br>0.114<br>0.087<br><br>0.0072  | 5.9<br>0.15<br>0.019<br>0.113<br>0.089<br><br>0.0074 | 5.6<br>0.13<br>0.019<br>0.124<br>0.097<br>           | 6.0<br>0.12<br>0.019<br>0.103<br>0.080<br><br>0.0071 | 5.3<br>0.09<br>0.017<br>0.110<br>0.086<br><br>0.0068 |
| Region 5                                                                                                 |                                                                                                                   |                                         |                                                                    |                                                      |                                                       |                                                      |                                                       |                                                       |                                                       |                                                      |                                                      |                                                      |                                                      |
| CO<br>Pb<br>NO <sub>2</sub><br>O <sub>3</sub><br>O <sub>3</sub><br>PM <sub>10</sub> *                    | 2nd Max. 8-hr.<br>Max. Qtr.<br>Arith. Mean<br>2nd Max. 1-hr.<br>4th Max. 8-hr.<br>Wtd. Arith. Mear                | 40<br>44<br>17<br>97<br>97              | ppm<br>µg/m <sup>3</sup><br>ppm<br>ppm<br>µg/m <sup>3</sup>        | 7.8<br>0.47<br>0.021<br>0.116<br>0.087               | 7.1<br>0.57<br>0.021<br>0.113<br>0.086                | 7.1<br>0.38<br>0.022<br>0.129<br>0.097               | 7.5<br>0.33<br>0.022<br>0.110<br>0.083                | 5.8<br>0.21<br>0.021<br>0.106<br>0.082                | 6.0<br>0.13<br>0.021<br>0.108<br>0.082                | 6.2<br>0.10<br>0.022<br>0.119<br>0.090               | 5.4<br>0.10<br>0.021<br>0.131<br>0.104               | 5.6<br>0.08<br>0.022<br>0.107<br>0.085               | 5.0<br>0.08<br>0.019<br>0.100<br>0.079               |

## Table A-13. National Air Quality Trends Statistics by EPA Region, 1981–1990

 $^{\star}$  PM\_{10} trend data is not available for this 10-year period.

|                                       | Statistic                       | # of Sites | Units        | 1981       | 1982           | 1983           | 1984           | 1985           | 1986           | 1987   | 1988           | 1989           | 1990   |
|---------------------------------------|---------------------------------|------------|--------------|------------|----------------|----------------|----------------|----------------|----------------|--------|----------------|----------------|--------|
| Region 6                              |                                 |            |              |            |                |                |                |                |                |        |                |                |        |
| CO                                    | 2nd Max. 8-hr.                  | 25         | ppm          | 7.9        | 7.8            | 7.3            | 7.2            | 7.3            | 7.1            | 7.4    | 6.4            | 6.3            | 6.3    |
| Pb                                    | Max. Qtr.                       | 22         | µg/m³        | 0.71       | 0.62           | 0.58           | 0.55           | 0.35           | 0.19           | 0.16   | 0.13           | 0.12           | 0.09   |
| NO <sub>2</sub>                       | Arith. Mean                     | 14         | ppm          | 0.017      | 0.017          | 0.017          | 0.017          | 0.017          | 0.017          | 0.017  | 0.017          | 0.016          | 0.01   |
| 0 <sub>3</sub>                        | 2nd Max. 1-hr.                  | 41         | ppm          | 0.129      | 0.124          | 0.124          | 0.124          | 0.121          | 0.115          | 0.119  | 0.123          | 0.120          | 0.12   |
| 0 <sub>3</sub>                        | 4th Max. 8-hr.                  | 41         | ppm          | 0.091      | 0.087          | 0.089          | 0.090          | 0.090          | 0.084          | 0.088  | 0.091          | 0.085          | 0.08   |
| PM <sub>10</sub> *                    | Wtd. Arith. Mear                |            | µg/m³        |            |                | -              |                |                |                |        |                |                | -      |
| SO <sub>2</sub>                       | Arith. Mean                     | 32         | ppm          | 0.0076     | 0.0072         | 0.0079         | 0.0070         | 0.0074         | 0.0065         | 0.0062 | 0.0059         | 0.0058         | 0.005  |
| Region 7                              |                                 |            |              |            |                |                |                |                |                |        |                |                |        |
| CO                                    | 2nd Max. 8-hr.                  | 15         | ppm          | 7.0        | 6.9            | 5.6            | 6.4            | 5.2            | 6.3            | 6.0    | 5.3            | 5.5            | 5.     |
| Pb                                    | Max. Qtr.                       | 19         | µg/m³        | 0.21       | 0.17           | 0.17           | 0.17           | 0.13           | 0.09           | 0.05   | 0.04           | 0.04           | 0.0    |
| NO <sub>2</sub>                       | Arith. Mean                     | 9          | ppm          | 0.015      | 0.017          | 0.016          | 0.016          | 0.015          | 0.016          | 0.017  | 0.016          | 0.015          | 0.01   |
| 0 <sub>3</sub>                        | 2nd Max. 1-hr.                  | 24         | ppm          | 0.104      | 0.100          | 0.116          | 0.113          | 0.104          | 0.103          | 0.110  | 0.114          | 0.095          | 0.09   |
| 0 <sub>3</sub>                        | 4th Max. 8-hr.                  | 24         | ppm          | 0.068      | 0.069          | 0.088          | 0.085          | 0.075          | 0.074          | 0.079  | 0.088          | 0.074          | 0.07   |
| PM <sub>10</sub> *                    | Wtd. Arith. Mean                | ı —<br>19  | µg/m³        | 0.0087     | 0.0093         | 0.0092         | 0.0088         | 0.0081         | 0.0079         | 0.0074 | 0.0072         | 0.0074         | 0.006  |
| SO <sub>2</sub>                       | Arith. Mean                     | 19         | ppm          | 0.0087     | 0.0093         | 0.0092         | 0.0088         | 0.0081         | 0.0079         | 0.0074 | 0.0072         | 0.0074         | 0.006  |
| Region 8                              |                                 |            |              |            |                |                |                |                |                |        |                |                |        |
| CO                                    | 2nd Max. 8-hr.                  | 16         | ppm          | 10.9       | 10.6           | 11.9           | 10.8           | 9.7            | 10.9           | 9.3    | 8.7            | 7.4            | 6.     |
| Pb                                    | Max. Qtr.                       | 6          | µg/m³        | 1.18       | 1.23           | 1.13           | 1.31           | 0.98           | 0.79           | 0.68   | 0.65           | 0.51           | 0.4    |
| NO <sub>2</sub>                       | Arith. Mean                     | 15         | ppm          | 0.624      | 0.586          | 0.449          | 0.416          | 0.246          | 0.189          | 0.135  | 0.104          | 0.091          | 0.07   |
| 0 <sub>3</sub>                        | 2nd Max. 1-hr.                  | 13         | ppm          | 0.101      | 0.103          | 0.110          | 0.104          | 0.102          | 0.109          | 0.097  | 0.104          | 0.103          | 0.09   |
| 0 <sub>3</sub>                        | 4th Max. 8-hr.                  | 13         | ppm          | 0.073      | 0.074          | 0.078          | 0.075          | 0.076          | 0.076          | 0.075  | 0.078          | 0.077          | 0.07   |
| PM <sub>10</sub> *<br>SO <sub>2</sub> | Wtd. Arith. Mear<br>Arith. Mean | u —<br>20  | µg/m³<br>ppm | <br>0.0064 | 0.0060         | 0.0055         | <br>0.0048     | 0.0050         | <br>0.0045     | 0.0043 | 0.0040         | 0.0043         | 0.004  |
| -                                     | Anth. Mean                      | 20         | ppm          | 0.0064     | 0.0060         | 0.0055         | 0.0046         | 0.0050         | 0.0045         | 0.0043 | 0.0040         | 0.0043         | 0.004  |
| Region 9                              |                                 |            |              |            |                |                |                |                |                |        |                |                |        |
| CO                                    | 2nd Max. 8-hr.                  | 77         | ppm          | 8.1        | 8.0            | 7.9            | 7.0            | 7.8            | 7.5            | 6.5    | 7.1            | 7.0            | 6.6    |
| Pb                                    | Max. Qtr.                       | 36         | µg/m³        | 0.62       | 0.59           | 0.45           | 0.42           | 0.25           | 0.19           | 0.13   | 0.10           | 0.09           | 0.0    |
| NO <sub>2</sub>                       | Arith. Mean                     | 54         | ppm          | 0.030      | 0.028          | 0.027          | 0.027          | 0.028          | 0.028          | 0.027  | 0.029          | 0.029          | 0.02   |
| 0 <sub>3</sub>                        | 2nd Max. 1-hr.                  | 105        | ppm          | 0.153      | 0.149          | 0.161          | 0.152          | 0.156          | 0.138          | 0.141  | 0.144          | 0.138          | 0.13   |
| 0 <sub>3</sub>                        | 4th Max. 8-hr.                  | 105        | ppm          | 0.101      | 0.097          | 0.106          | 0.103          | 0.105          | 0.097          | 0.098  | 0.100          | 0.096          | 0.08   |
| PM <sub>10</sub> *<br>SO <sub>2</sub> | Wtd. Arith. Mear<br>Arith. Mean | 48         | µg/m³<br>ppm | 0.0056     | 0.0043         | 0.0039         | 0.0044         | 0.0041         | 0.0035         | 0.0031 | 0.0033         | 0.0032         | 0 003  |
| -                                     | Antin. Mean                     | 40         | ppm          | 0.0000     | 0.0043         | 0.0039         | 0.0044         | 0.0041         | 0.0035         | 0.0031 | 0.0035         | 0.0032         | 0.0030 |
| Region 10                             |                                 |            |              |            |                |                |                |                |                |        |                |                |        |
| CO                                    | 2nd Max. 8-hr.                  | 25         | ppm          | 11.6       | 11.5           | 11.2           | 10.3           | 10.5           | 9.4            | 9.3    | 9.1            | 8.4            | 7.     |
| Pb                                    | Max. Qtr.                       | 6          | µg/m³        | 1.69       | 0.65           | 0.54           | 0.53           | 0.42           | 0.23           | 0.15   | 0.10           | 0.07           | 0.0    |
| NO <sub>2</sub>                       | Arith. Mean                     | _          | ppm          | -          |                |                | -              |                |                |        |                | -              | -      |
| 0 <sub>3</sub>                        | 2nd Max. 1-hr.                  | 6<br>6     | ppm          | 0.121      | 0.108<br>0.075 | 0.093<br>0.063 | 0.098<br>0.066 | 0.105<br>0.074 | 0.107<br>0.078 | 0.098  | 0.110<br>0.072 | 0.089<br>0.064 | 0.11   |
| O <sub>3</sub>                        | 4th Max. 8-hr.                  |            | ppm          | 0.084      | 0.075          | 0.063          | 0.000          | 0.074          | 0.078          | 0.073  | 0.072          | 0.064          | 0.08   |
| PM <sub>10</sub> *                    | Wtd. Arith. Mear                |            | µg/m³        |            |                |                |                |                |                |        |                |                |        |

### Table A-13. National Air Quality Trends Statistics by EPA Region, 1981–1990 (continued)

 $^{\ast}$  PM\_{10} trend data is not available for this 10-year period.

|                                           | Statistic                          | # of Sites | Units             | 1991          | 1992          | 1993          | 1994          | 1995           | 1996          | 1997          | 1998           | 1999          | 2000                       |
|-------------------------------------------|------------------------------------|------------|-------------------|---------------|---------------|---------------|---------------|----------------|---------------|---------------|----------------|---------------|----------------------------|
| egion 1                                   |                                    |            |                   |               |               |               |               |                |               |               |                |               |                            |
| со                                        | 2nd Max. 8-hr.                     | 18         | ppm               | 5.5           | 5.6           | 4.8           | 5.9           | 5.3            | 4.8           | 4.1           | 3.7            | 3.7           | 3.2                        |
| Pb                                        | Max. Qtr.                          | 1          | µg/m³             | 0.69          | 0.19          | 0.02          | 0.02          | 0.04           | 0.03          | 0.03          | 0.02           | 0.01          | 0.02                       |
| NO <sub>2</sub>                           | Arith. Mean                        | 15         | ppm               | 0.022         | 0.020         | 0.021         | 0.022         | 0.019          | 0.020         | 0.019         | 0.020          | 0.019         | 0.018                      |
| O <sub>3</sub>                            | 2nd Max. 1-hr.                     | 41         | ppm               | 0.118         | 0.127         | 0.110         | 0.119         | 0.114          | 0.116         | 0.102         | 0.116          | 0.106         | 0.113                      |
| O <sub>3</sub>                            | 4th Max. 8-hr.                     | 41         | ppm               | 0.096         | 0.086         | 0.088         | 0.086         | 0.090          | 0.081         | 0.090         | 0.084          | 0.087         | 0.07                       |
| PM <sub>10</sub>                          | Wtd. Arith. Mear                   |            | µg/m³             | 23.2          | 20.5          | 20.2          | 20.6          | 18.7           | 19.3          | 19.5          | 19.3           | 18.9          | 17.9                       |
| SO <sub>2</sub>                           | Arith. Mean                        | 40         | ppm               | 0.0077        | 0.0072        | 0.0069        | 0.0068        | 0.0053         | 0.0051        | 0.0052        | 0.0052         | 0.0048        | 0.004                      |
| egion 2                                   |                                    |            |                   |               |               |               |               |                |               |               |                |               |                            |
| CO                                        | 2nd Max. 8-hr.                     | 28         | ppm               | 6.0           | 5.4           | 4.9           | 5.7           | 5.0            | 4.3           | 3.9           | 3.5            | 3.7           | 3.                         |
| Pb                                        | Max. Qtr.                          | 4          | µg/m³             | 0.05          | 0.05          | 0.07          | 0.07          | 0.06           | 0.06          | 0.06          | 0.06           | 0.05          | 0.05                       |
| NO <sub>2</sub>                           | Arith. Mean                        | 11         | ppm               | 0.029         | 0.028         | 0.028         | 0.029         | 0.027          | 0.028         | 0.027         | 0.027          | 0.027         | 0.027                      |
| O <sub>3</sub>                            | 2nd Max. 1-hr.                     | 37         | ppm               | 0.121         | 0.109         | 0.109         | 0.104         | 0.115          | 0.102         | 0.111         | 0.107          | 0.114         | 0.102                      |
| O <sub>3</sub>                            | 4th Max. 8-hr.                     | 37         | ppm               | 0.098         | 0.085         | 0.088         | 0.084         | 0.094          | 0.081         | 0.091         | 0.087          | 0.093         | 0.08                       |
| PM <sub>10</sub>                          | Wtd. Arith. Mean                   |            | µg/m³             | 26.4          | 23.8          | 23.8          | 24.3          | 21.6<br>0.0059 | 22.5          | 23.0          | 22.1<br>0.0054 | 21.8          | 22. <sup>2</sup><br>0.0054 |
| SO <sub>2</sub>                           | Arith. Mean                        | 42         | ppm               | 0.0088        | 0.0081        | 0.0075        | 0.0077        | 0.0059         | 0.0060        | 0.0055        | 0.0054         | 0.0053        | 0.0054                     |
| egion 3                                   |                                    |            |                   |               |               |               |               |                |               |               |                |               |                            |
| CO                                        | 2nd Max. 8-hr.                     | 39         | ppm               | 4.9           | 4.6           | 4.6           | 5.2           | 4.2            | 3.8           | 3.6           | 3.4            | 3.2           | 3.0                        |
| Pb                                        | Max. Qtr.                          | 16         | µg/m³             | 0.09          | 0.06          | 0.06          | 0.06          | 0.04           | 0.04          | 0.04          | 0.04           | 0.04          | 0.04                       |
| NO <sub>2</sub>                           | Arith. Mean                        | 35         | ppm               | 0.021         | 0.021         | 0.021         | 0.022         | 0.020          | 0.021         | 0.020         | 0.020          | 0.019         | 0.018                      |
| O <sub>3</sub>                            | 2nd Max. 1-hr.                     | 79<br>70   | ppm               | 0.117         | 0.103         | 0.116         | 0.111         | 0.117          | 0.105         | 0.116         | 0.115          | 0.120         | 0.104                      |
|                                           | 4th Max. 8-hr.<br>Wtd. Arith. Mear | 79<br>1 55 | ppm               | 0.095<br>32.6 | 0.083<br>29.5 | 0.093<br>29.2 | 0.088<br>29.2 | 0.094<br>27.1  | 0.084<br>26.9 | 0.093<br>25.8 | 0.095<br>24.6  | 0.095<br>23.6 | 0.084<br>23.8              |
| РМ <sub>10</sub><br><b>SO<sub>2</sub></b> | Arith. Mean                        | 79         | µg/m³<br>ppm      | 0.0126        | 0.0117        | 0.0117        | 0.0117        | 0.0085         | 0.0086        | 0.0090        | 0.0086         | 0.0083        |                            |
|                                           | Antin. Mean                        | 15         | ppin              | 0.0120        | 0.0117        | 0.0117        | 0.0117        | 0.0005         | 0.0000        | 0.0030        | 0.0000         | 0.0000        | 0.0002                     |
| legion 4                                  | Ond Mary O ha                      | 00         |                   | 4.0           | 10            | 10            | 10            | 4.0            | 0.7           | 4.0           | 0.0            | 0.7           | 0.0                        |
| CO<br>Pb                                  | 2nd Max. 8-hr.                     | 62<br>21   | ppm               | 4.8<br>0.04   | 4.8<br>0.04   | 4.9<br>0.03   | 4.6<br>0.03   | 4.3<br>0.03    | 3.7<br>0.02   | 4.0<br>0.02   | 3.6<br>0.02    | 3.7<br>0.03   | 3.2<br>0.04                |
| NO <sub>2</sub>                           | Max. Qtr.<br>Arith. Mean           | 32         | µg/m³             | 0.04          | 0.04          | 0.03          | 0.03          | 0.03           | 0.02          | 0.02          | 0.02           | 0.03          | 0.04                       |
| $O_3$                                     | 2nd Max. 1-hr.                     |            | ppm<br>ppm        | 0.014         | 0.014         | 0.014         | 0.100         | 0.014          | 0.101         | 0.102         | 0.014          | 0.109         | 0.012                      |
| 0 <sub>3</sub>                            | 4th Max. 8-hr.                     | 144        | ppm               | 0.075         | 0.030         | 0.082         | 0.081         | 0.083          | 0.081         | 0.082         | 0.090          | 0.089         | 0.084                      |
| О3<br>РМ <sub>10</sub>                    | Wtd. Arith. Mear                   |            | µg/m <sup>3</sup> | 28.0          | 26.4          | 25.9          | 25.2          | 24.8           | 23.8          | 23.9          | 24.7           | 24.0          | 24.0                       |
| SO <sub>2</sub>                           | Arith. Mean                        | 80         | ppm               | 0.0057        | 0.0054        | 0.0055        | 0.0051        | 0.0043         | 0.0044        | 0.0045        | 0.0046         | 0.0045        |                            |
| egion 5                                   |                                    |            |                   |               |               |               |               |                |               |               |                |               |                            |
| co                                        | 2nd Max. 8-hr.                     | 45         | ppm               | 4.6           | 4.4           | 4.3           | 5.0           | 4.0            | 3.4           | 3.3           | 3.3            | 3.0           | 2.8                        |
| Pb                                        | Max. Qtr.                          | 36         | µg/m³             | 0.10          | 0.09          | 0.09          | 0.09          | 0.07           | 0.06          | 0.06          | 0.06           | 0.05          | 0.05                       |
| NO <sub>2</sub>                           | Arith. Mean                        | 12         | ppm               | 0.021         | 0.022         | 0.022         | 0.023         | 0.023          | 0.023         | 0.022         | 0.023          | 0.022         | 0.022                      |
| 0 <sub>3</sub>                            | 2nd Max. 1-hr.                     | 142        | ppm               | 0.109         | 0.098         | 0.097         | 0.104         | 0.111          | 0.103         | 0.102         | 0.106          | 0.105         | 0.094                      |
| 0 <sub>3</sub>                            | 4th Max. 8-hr.                     | 142        | ppm               | 0.087         | 0.078         | 0.077         | 0.083         | 0.090          | 0.085         | 0.083         | 0.085          | 0.088         | 0.077                      |
| $PM_{10}$                                 | Wtd. Arith. Mear                   | n 154      | µg/m³             | 29.5          | 27.7          | 26.6          | 28.3          | 27.5           | 24.8          | 24.9          | 26.5           | 25.2          | 25.5                       |
| SO <sub>2</sub>                           | Arith. Mean                        | 102        | ppm               | 0.0092        | 0.0081        | 0.0082        | 0.0078        | 0.0062         | 0.0062        | 0.0060        | 0.0060         | 0.0059        | 0.005                      |

# Table A-13. National Air Quality Trends Statistics by EPA Region, 1991–2000

|                  | Statistic        | # of Sites | Units | 1990   | 1991   | 1992   | 1993   | 1994   | 1995   | 1996   | 1997   | 1998   | 1999  |
|------------------|------------------|------------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|
| Region 6         |                  |            |       |        |        |        |        |        |        |        |        |        |       |
| CO               | 2nd Max. 8-hr.   | 31         | ppm   | 5.6    | 5.5    | 5.5    | 4.6    | 4.5    | 4.9    | 4.4    | 4.0    | 3.6    | 3.4   |
| Pb               | Max. Qtr.        | 11         | µg/m³ | 0.15   | 0.11   | 0.10   | 0.08   | 0.12   | 0.12   | 0.06   | 0.08   | 0.06   | 0.0   |
| NO <sub>2</sub>  | Arith. Mean      | 28         | ppm   | 0.013  | 0.014  | 0.014  | 0.015  | 0.015  | 0.015  | 0.014  | 0.014  | 0.014  | 0.01  |
| O <sub>3</sub>   | 2nd Max. 1-hr.   | 76         | ppm   | 0.112  | 0.109  | 0.110  | 0.109  | 0.120  | 0.109  | 0.113  | 0.115  | 0.111  | 0.11  |
| O <sub>3</sub>   | 4th Max. 8-hr.   | 76         | ppm   | 0.079  | 0.078  | 0.080  | 0.082  | 0.089  | 0.082  | 0.083  | 0.086  | 0.086  | 0.08  |
| $PM_{10}$        | Wtd. Arith. Mean | 50         | µg/m³ | 25.5   | 25.2   | 24.4   | 24.7   | 25.9   | 24.9   | 23.1   | 24.0   | 26.1   | 25.   |
| SO2              | Arith. Mean      | 27         | ppm   | 0.0062 | 0.0064 | 0.0054 | 0.0048 | 0.0046 | 0.0048 | 0.0044 | 0.0042 | 0.0037 | 0.003 |
| Region 7         |                  |            |       |        |        |        |        |        |        |        |        |        |       |
| со               | 2nd Max. 8-hr.   | 20         | ppm   | 5.2    | 4.6    | 4.4    | 4.3    | 4.1    | 4.2    | 3.8    | 4.4    | 3.5    | 2.    |
| Pb               | Max. Qtr.        | 4          | µg/m³ | 0.04   | 0.02   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.01   | 0.0   |
| NO <sub>2</sub>  | Arith. Mean      | 11         | ppm   | 0.015  | 0.016  | 0.015  | 0.016  | 0.016  | 0.016  | 0.015  | 0.016  | 0.017  | 0.010 |
| 0 <sub>3</sub>   | 2nd Max. 1-hr.   | 28         | ppm   | 0.092  | 0.090  | 0.086  | 0.098  | 0.102  | 0.094  | 0.094  | 0.099  | 0.100  | 0.09  |
| 0 <sub>3</sub>   | 4th Max. 8-hr.   | 28         | ppm   | 0.075  | 0.074  | 0.066  | 0.078  | 0.081  | 0.076  | 0.076  | 0.078  | 0.080  | 0.07  |
| PM <sub>10</sub> | Wtd. Arith. Mean | 46         | µg/m³ | 29.2   | 28.6   | 27.5   | 28.0   | 27.5   | 28.2   | 26.2   | 26.4   | 26.2   | 25.   |
| SO <sub>2</sub>  | Arith. Mean      | 25         | ppm   | 0.0073 | 0.0067 | 0.0065 | 0.0068 | 0.0054 | 0.0052 | 0.0047 | 0.0045 | 0.0047 | 0.004 |
| Region 8         |                  |            |       |        |        |        |        |        |        |        |        |        |       |
| со               | 2nd Max. 8-hr.   | 20         | ppm   | 6.9    | 7.0    | 5.9    | 5.5    | 5.0    | 5.0    | 4.7    | 4.0    | 4.0    | 3.    |
| Pb               | Max. Qtr.        | 8          | µg/m³ | 0.06   | 0.06   | 0.06   | 0.04   | 0.04   | 0.03   | 0.03   | 0.04   | 0.04   | 0.0   |
| NO <sub>2</sub>  | Arith. Mean      | 12         | ppm   | 0.013  | 0.013  | 0.014  | 0.015  | 0.014  | 0.014  | 0.013  | 0.014  | 0.013  | 0.01  |
| 0 <sub>3</sub>   | 2nd Max. 1-hr.   | 18         | ppm   | 0.089  | 0.087  | 0.084  | 0.087  | 0.087  | 0.090  | 0.084  | 0.096  | 0.089  | 0.08  |
| 0 <sub>3</sub>   | 4th Max. 8-hr.   | 18         | ppm   | 0.067  | 0.066  | 0.065  | 0.068  | 0.067  | 0.070  | 0.067  | 0.076  | 0.070  | 0.06  |
| PM <sub>10</sub> | Wtd. Arith. Mean | 99         | µg/m³ | 26.6   | 25.3   | 24.3   | 23.6   | 20.8   | 20.9   | 20.2   | 20.1   | 19.8   | 20.   |
| SO <sub>2</sub>  | Arith. Mean      | 24         | ppm   | 0.0074 | 0.0082 | 0.0080 | 0.0070 | 0.0060 | 0.0048 | 0.0037 | 0.0035 | 0.0034 | 0.003 |
| Region 9         |                  |            |       |        |        |        |        |        |        |        |        |        |       |
| со               | 2nd Max. 8-hr.   | 97         | ppm   | 5.9    | 5.1    | 4.7    | 5.1    | 4.4    | 4.3    | 4.0    | 4.0    | 3.9    | 3.5   |
| Pb               | Max. Qtr.        | 24         | µg/m³ | 0.05   | 0.04   | 0.04   | 0.03   | 0.03   | 0.02   | 0.03   | 0.02   | 0.03   | 0.0   |
| NO <sub>2</sub>  | Arith. Mean      | 78         | ppm   | 0.023  | 0.022  | 0.021  | 0.022  | 0.021  | 0.020  | 0.019  | 0.019  | 0.020  | 0.01  |
| O <sub>3</sub>   | 2nd Max. 1-hr.   | 157        | ppm   | 0.125  | 0.123  | 0.119  | 0.116  | 0.119  | 0.114  | 0.102  | 0.114  | 0.102  | 0.10  |
| O <sub>3</sub>   | 4th Max. 8-hr.   | 157        | ppm   | 0.090  | 0.090  | 0.088  | 0.087  | 0.088  | 0.087  | 0.078  | 0.085  | 0.079  | 0.07  |
| $PM_{10}$        | Wtd. Arith. Mean | 127        | µg/m³ | 36.7   | 32.2   | 31.2   | 30.4   | 29.9   | 28.0   | 28.5   | 25.9   | 30.4   | 28.   |
| SO <sub>2</sub>  | Arith. Mean      | 30         | ppm   | 0.0021 | 0.0021 | 0.0018 | 0.0019 | 0.0019 | 0.0019 | 0.0019 | 0.0019 | 0.0020 | 0.002 |
| Region 10        |                  |            |       |        |        |        |        |        |        |        |        |        |       |
| СО               | 2nd Max. 8-hr.   | 27         | ppm   | 8.4    | 7.7    | 7.1    | 6.8    | 6.6    | 6.5    | 6.1    | 5.4    | 5.6    | 4.9   |
| Pb               | Max. Qtr.        | 5          | µg/m³ | 0.06   | 0.04   | 0.05   | 0.05   | 0.05   | 0.04   | 0.05   | 0.06   | 0.04   | 0.04  |
| NO <sub>2</sub>  | Arith. Mean      | —          | ppm   | —      | —      | —      | —      | —      | —      | —      | —      | —      | _     |
| O <sub>3</sub>   | 2nd Max. 1-hr.   | 16         | ppm   | 0.086  | 0.087  | 0.080  | 0.087  | 0.085  | 0.095  | 0.074  | 0.094  | 0.073  | 0.07  |
| O <sub>3</sub>   | 4th Max. 8-hr.   | 16         | ppm   | 0.062  | 0.067  | 0.058  | 0.063  | 0.063  | 0.074  | 0.057  | 0.067  | 0.059  | 0.05  |
| $PM_{10}$        | Wtd. Arith. Mean | 69         | µg/m³ | 32.0   | 30.5   | 30.0   | 26.6   | 23.0   | 22.9   | 23.2   | 20.5   | 21.0   | 20.   |
| SO2              | Arith. Mean      | 8          | ppm   | 0.0063 | 0.0068 | 0.0065 | 0.0061 | 0.0053 | 0.0049 | 0.0048 | 0.0048 | 0.0051 | 0.005 |

## Table A-13. National Air Quality Trends Statistics by EPA Region, 1991–2000 (continued)

| Table A-14. | Maximum A | ir Quality | Concentrations by | / County, 2000 |
|-------------|-----------|------------|-------------------|----------------|
|-------------|-----------|------------|-------------------|----------------|

| State | County                                                  | CO<br>2000<br>Population | Pb<br>8-hr<br>(ppm) | NO <sub>2</sub><br>QMax<br>(µg/m <sup>3</sup> ) | O₃<br>AM<br>(ppm) | O <sub>3</sub><br>1-hr<br>(ppm) |              | PM₁₀<br>Wtd AM<br>(µg/m³) | 24-hr           | Wtd AM      |                            | SO <sub>2</sub><br>AM | 24-hr<br>(ppm) |
|-------|---------------------------------------------------------|--------------------------|---------------------|-------------------------------------------------|-------------------|---------------------------------|--------------|---------------------------|-----------------|-------------|----------------------------|-----------------------|----------------|
|       |                                                         | Fopulation               | (ppin)              | (µg/m <sup>*</sup> )                            | (ppin)            | (ppiii)                         | (ppin)       | (µ <b>y</b> /m')          | (µ <b>y</b> /m) | (µg/m)      | (µ <b>y/m<sup>*</sup>)</b> | (ppin)                | (ppin)         |
|       | Baldwin County                                          | 140,415                  | ND                  | ND                                              | ND                | 0.12                            | 0.10         | ND                        | ND              | IN          | IN                         | ND                    | ND             |
|       | Clay County                                             | 14,254                   | ND                  | ND                                              | ND                | 0.09                            | 0.08         | ND                        | ND              | IN          | IN                         | ND                    | ND             |
|       | Colbert County                                          | 54,984                   | ND                  | ND                                              | ND                | ND                              | ND           | ND                        | IN              | IN          | IN                         | 0.003                 | 0.017          |
|       | DeKalb County                                           | 64,452                   | ND                  | ND                                              | ND                | ND                              | ND           | 23                        | 44              | IN          | IN                         | ND                    | ND             |
|       | Elmore County                                           | 65,874                   | ND                  | ND                                              | ND                | 0.10                            | 0.08         | ND                        | ND              | ND          | ND                         | ND                    | ND             |
|       | Escambia County                                         | 38,440                   | ND                  | ND                                              | ND                | ND                              | ND           | 26                        | 60              | IN          | IN                         | ND                    | ND             |
|       | Etowah County                                           | 103,459                  | ND                  | ND                                              | ND                | ND                              | ND           | 26                        | 64              | IN          | IN                         | ND                    | ND             |
|       | Franklin County                                         | 31,223                   | ND                  | ND                                              | ND                | ND                              | ND           | ND                        | IN              | ND          | ND                         | ND                    | ND             |
|       | Houston County                                          | 88,787                   | ND                  | ND                                              | ND                | ND                              | ND           | 24                        | 70              | IN          | IN                         | ND                    | ND             |
|       | Jackson County                                          | 53,926                   | ND                  | ND                                              | ND                | ND                              | ND           | ND                        | ND              | ND          | ND                         | 0.005                 | 0.041          |
|       | Jefferson County                                        | 662,047                  | 5                   | ND                                              | ND                | 0.12                            | 0.09         | IN                        | 125             | 22.3        | 53                         | IN<br>0.000           | 0.057          |
|       | Lawrence County                                         | 34,803                   | ND                  | ND                                              | ND                | 0.10                            | 0.08         | ND                        | ND              | ND          | ND                         | 0.002                 | 0.005          |
|       | Madison County                                          | 276,700                  | 2                   | ND                                              | ND                | 0.11                            | 0.09         | 24                        | 80              | IN          | IN                         | ND                    | ND             |
|       | Marengo County                                          | 22,539                   | ND                  | ND                                              | ND                | ND                              | ND           | 23                        | 46              | ND          | ND                         | ND<br>0.002           | ND<br>0.008    |
|       | Mobile County                                           | 399,843                  | ND                  | ND                                              | ND                | 0.12                            | 0.09         | 24                        | 150             | IN          | IN                         |                       |                |
|       | Montgomery County<br>Morgan County                      | 223,510<br>111,064       | ND<br>ND            | ND<br>ND                                        | ND<br>ND          | 0.11<br>0.11                    | 0.09<br>0.09 | 25<br>23                  | 61<br>53        | IN<br>IN    | IN<br>IN                   | ND<br>ND              | ND<br>ND       |
|       | Pike County                                             | 29,605                   | ND                  | 0.57                                            | ND                | ND                              | 0.09<br>ND   | 23<br>24                  | 53<br>48        | ND          | ND                         | ND                    | ND             |
|       |                                                         |                          | ND                  | 0.57<br>ND                                      | ND                | ND                              | ND           | 24<br>26                  | 40<br>52        | IN          | IND                        | ND                    | ND             |
|       | Russell County                                          | 49,756                   | ND                  | ND                                              | 0.011             | 0.13                            | 0.10         | 20<br>27                  | 52<br>60        | IN          | IN                         | ND                    | ND             |
|       | Shelby County<br>Sumter County                          | 143,293<br>14,798        | ND                  | ND                                              | 0.011<br>ND       | 0.13                            | 0.08         | ND                        | ND              | IN          | IN                         | ND                    | ND             |
|       | -                                                       |                          |                     |                                                 |                   |                                 |              |                           |                 |             |                            |                       |                |
|       | Talladega County                                        | 80,321                   | ND<br>ND            | ND<br>ND                                        | ND<br>ND          | ND<br>ND                        | ND<br>ND     | 26<br>IN                  | 68<br>68        | IN<br>IN    | IN<br>IN                   | ND<br>ND              | ND<br>ND       |
|       | Tuscaloosa County<br>Walker County                      | 164,875<br>70,713        | ND                  | ND                                              | ND                | ND                              | ND           | IN                        | IN              | IN          | IN                         | ND                    | ND             |
|       |                                                         |                          | 6                   |                                                 |                   |                                 |              |                           |                 |             |                            |                       |                |
|       | Anchorage Municipality                                  | 260,283                  | 9                   | ND<br>ND                                        | ND<br>ND          | ND<br>ND                        | ND<br>ND     | IN<br>IN                  | 108<br>IN       | 6.1<br>12.2 | 20<br>42                   | ND<br>ND              | ND<br>ND       |
|       | Fairbanks North Star Borough<br>Juneau City and Borough | 82,840                   | 9<br>ND             | ND                                              | ND                | ND                              | ND           | IN                        | 27              | IZ.Z        | 42<br>IN                   | ND                    | ND             |
|       |                                                         | 30,711                   | ND                  | ND                                              | ND                | ND                              | ND           | ND                        | ND              | IN          | IN                         | ND                    | ND             |
|       | Ketchikan Gateway Borough<br>Matanuska-Susitna Borough  | 14,070<br>59,322         | ND                  | ND                                              | ND                | ND                              | ND           | IN                        | 58              | IN          | IN                         | ND                    | ND             |
|       | Yukon-Koyukuk Census Area                               | 6,551                    | ND                  | ND                                              | ND                | 0.05                            | 0.04         | ND                        | ND              | IN          | IN                         | ND                    | ND             |
|       | Cochise County                                          | 117,755                  | ND                  | ND                                              | ND                | 0.03                            | 0.04         | 38                        | 90              | IN          | IN                         | ND                    | ND             |
|       | Coconino County                                         | 116,320                  | ND                  | ND                                              | ND                | 0.08                            | 0.07         | 16                        | 33              | IN          | IN                         | ND                    | ND             |
|       | Gila County                                             | 51,335                   | ND                  | ND                                              | ND                | ND                              | ND           | 25                        | 65              | IN          | IN                         | ND                    | ND             |
|       | Graham County                                           | 33,489                   | ND                  | ND                                              | ND                | ND                              | ND           | IN                        | IN              | ND          | ND                         | ND                    | ND             |
|       | Maricopa County                                         | 3,072,149                | 7                   | ND                                              | 0.036             | 0.11                            | 0.09         | 70                        | 232             | IN          | IN                         | 0.003                 | 0.016          |
|       | Mohave County                                           | 155,032                  | ND                  | ND                                              | 0.000<br>ND       | ND                              | ND           | 15                        | 29              | ND          | ND                         | 0.005<br>ND           | ND             |
|       | Navajo County                                           | 97,470                   | ND                  | ND                                              | ND                | ND                              | ND           | IN                        | 34              | ND          | ND                         | ND                    | ND             |
|       | Pima County                                             | 843,746                  | 5                   | ND                                              | 0.017             | 0.09                            | 0.08         | 39                        | 123             | IN          | IN                         | 0.002                 | 0.007          |
|       | Santa Cruz County                                       | 38,381                   | ND                  | ND                                              | ND                | ND                              | ND           | 49                        | 120             | IN          | IN                         | ND                    | ND             |
|       | Yavapai County                                          | 167,517                  | ND                  | ND                                              | ND                | 0.09                            | 0.08         | 16                        | 34              | ND          | ND                         | ND                    | ND             |
|       | Yuma County                                             | 160,026                  | ND                  | ND                                              | ND                | 0.08                            | 0.06         | IN                        | IN              | ND          | ND                         | ND                    | ND             |
|       | Arkansas County                                         | 20,749                   | ND                  | ND                                              | ND                | ND                              | ND           | ND                        | ND              | IN          | IN                         | ND                    | ND             |
|       | Ashley County                                           | 24,209                   | ND                  | ND                                              | ND                | ND                              | ND           | ND                        | ND              | IN          | IN                         | ND                    | ND             |
|       | Craighead County                                        | 82,148                   | ND                  | ND                                              | ND                | ND                              | ND           | ND                        | ND              | 15.2        | IN                         | ND                    | ND             |
|       | Crittenden County                                       | 50,866                   | ND                  | ND                                              | ND                | 0.11                            | 0.09         | ND                        | ND              | 15.7        | IN                         | ND                    | ND             |
|       | Faulkner County                                         | 86,014                   | ND                  | ND                                              | ND                | ND                              | ND           | ND                        | ND              | IN          | IN                         | ND                    | ND             |
|       | Garland County                                          | 88,068                   | ND                  | ND                                              | ND                | ND                              | ND           | ND                        | ND              | IN          | IN                         | ND                    | ND             |
|       | Jefferson County                                        | 84,278                   | ND                  | ND                                              | ND                | ND                              | ND           | ND                        | ND              | 15.0        | 27                         | ND                    | ND             |
|       | Marion County                                           | 16,140                   | ND                  | ND                                              | ND                | ND                              | ND           | ND                        | ND              | IN          | IN                         | ND                    | ND             |
|       | Miller County                                           | 40,443                   | ND                  | ND                                              | ND                | ND                              | ND           | ND                        | ND              | IN          | IN                         | ND                    | ND             |
|       | Mississippi County                                      | 51,979                   | ND                  | ND                                              | ND                | ND                              | ND           | ND                        | ND              | IN          | IN                         | ND                    | ND             |
|       | Montgomery County                                       | 9,245                    | ND                  | ND                                              | ND                | 0.08                            | 0.07         | ND                        | ND              | ND          | ND                         | ND                    | ND             |
|       | Newton County                                           | 8,608                    | ND                  | ND                                              | ND                | 0.08                            | 0.07         | ND                        | ND              | ND          | ND                         | ND                    | ND             |
|       | Ouachita County                                         | 28,790                   | ND                  | ND                                              | ND                | ND                              | ND           | ND                        | ND              | ND          | ND                         | ND                    | ND             |
|       | Phillips County                                         | 26,445                   | ND                  | ND                                              | ND                | ND                              | ND           | ND                        | ND              | 14.7        | 30                         | ND                    | ND             |
|       | Polk County                                             | 20,229                   | ND                  | ND                                              | ND                | ND                              | ND           | ND                        | ND              | 12.3        | 26                         | ND                    | ND             |
|       | Pope County                                             | -0,0                     |                     |                                                 | ND                |                                 |              |                           |                 |             | 29                         |                       | ND             |

| State | County                          | CO<br>2000<br>Population | Pb<br>8-hr<br>(ppm) | NO₂<br>QMax<br>(µg/m³) | O₃<br>AM<br>(ppm) | O <sub>3</sub><br>1-hr<br>(ppm) |              | PM <sub>10</sub><br>Wtd AM<br>(µg/m <sup>3</sup> ) |           |             |                 | SO <sub>2</sub><br>AM<br>(ppm) | 24-hr<br>(ppm) |
|-------|---------------------------------|--------------------------|---------------------|------------------------|-------------------|---------------------------------|--------------|----------------------------------------------------|-----------|-------------|-----------------|--------------------------------|----------------|
| AR    | Pulaski County                  | 361,474                  | 3                   | ND                     | 0.010             | 0.11                            | 0.09         | 25                                                 | 48        | 15.7        | 34              | 0.002                          | 0.007          |
|       | Sebastian County                | 115,071                  | ND                  | ND                     | ND                | ND                              | ND           | ND                                                 | ND        | 13.5        | 27              | ND                             | ND             |
| AR    | Union County                    | 45,629                   | ND                  | ND                     | ND                | ND                              | ND           | ND                                                 | ND        | IN          | IN              | 0.005                          | 0.030          |
|       | Washington County               | 157,715                  | ND                  | ND                     | ND                | ND                              | ND           | ND                                                 | ND        | IN          | IN              | ND                             | ND             |
|       | White County                    | 67,165                   | ND                  | ND                     | ND                | ND                              | ND           | ND                                                 | ND        | IN          | IN              | ND                             | ND             |
|       | Alameda County                  | 1,443,741                | 3                   | 0.00                   | 0.020             | 0.13                            | 0.08         | 22                                                 | 63        | 11.2        | 50              | ND                             | ND             |
|       | Amador County                   | 35,100                   | 1                   | ND                     | ND                | 0.12                            | 0.09         | ND                                                 | ND        | ND          | ND              | ND                             | ND             |
|       | Butte County                    | 203,171                  | 4                   | 0.00                   | 0.012             | 0.10                            | 0.09         | 27                                                 | 77        | 16.3        | 70              | ND                             | ND             |
|       | Calaveras County                | 40,554                   | 1                   | ND                     | ND                | 0.12                            | 0.10         | 18                                                 | 33        | 9.0         | 30              | ND                             | ND             |
|       | Colusa County                   | 18,804                   | ND                  | ND                     | ND                | 0.09                            | 0.07         | 25                                                 | 88        | 8.0         | 26              | ND                             | ND             |
|       | Contra Costa County             | 948,816                  | 3                   | 0.00                   | 0.016             | 0.10                            | 0.08         | 20                                                 | 50        | 10.9        | 46              | 0.003                          | 0.021          |
|       | Del Norte County                | 27,507                   | ND                  | ND                     | ND                | ND                              | ND           | IN                                                 | 36        | ND          | ND              | ND                             | ND             |
|       | El Dorado County                | 156,299                  | 2<br>6              | ND                     | 0.011             | 0.13                            | 0.10         | 20                                                 | 50        | 7.8         | 22<br><b>89</b> | ND                             | ND             |
|       | Fresno County                   | 799,407                  |                     | 0.00<br>ND             | 0.020<br>ND       | 0.15                            | 0.11         | 41<br>22                                           | 122       | 25.4<br>ND  | 09<br>ND        | ND<br>ND                       | ND<br>ND       |
|       | Glenn County<br>Humboldt County | 26,453<br>126,518        | ND<br>ND            | ND                     | ND                | 0.09<br>ND                      | 0.07<br>ND   | 22                                                 | 75<br>46  | 9.2         | 22              | ND                             | ND             |
|       | Imperial County                 | 142,361                  | 10                  | 0.02                   | IN                | 0.16                            | 0.09         | 21<br>212                                          | 40<br>545 | 9.2<br>16.8 | IN              | IN                             | 0.007          |
|       | Inyo County                     | 17,945                   | ND                  | 0.02<br>ND             | ND                | 0.09                            | 0.09         | 140                                                | 6230      | IN          | 67              | ND                             | 0.007<br>ND    |
|       | Kern County                     | 661,645                  | 5                   | 0.00                   | 0.023             | 0.09<br>0.14                    | 0.08<br>0.11 | 46                                                 | 136       | 21.7        | 100             | ND                             | ND             |
|       | Kings County                    | 129,461                  | ND                  | 0.00<br>ND             | 0.023             | 0.14                            | 0.11         | 40<br>50                                           | 129       | 16.2        | IN              | ND                             | ND             |
|       | Lake County                     | 58,309                   | ND                  | ND                     | ND                | 0.12                            | 0.06         | 11                                                 | 21        | IN          | IN              | ND                             | ND             |
|       | Lassen County                   | 33,828                   | ND                  | ND                     | ND                | ND                              | ND           | IN                                                 | IN        | ND          | ND              | ND                             | ND             |
|       | Los Angeles County              | 9,519,338                | 10                  | 0.06                   | 0.044             | 0.17                            | 0.11         | 46                                                 | 93        | 23.9        | 83              | 0.003                          | 0.010          |
|       | Madera County                   | 123,109                  | ND                  | ND                     | 0.013             | 0.10                            | 0.09         | ND                                                 | ND        | ND          | ND              | ND                             | ND             |
|       | Marin County                    | 247,289                  | 2                   | ND                     | 0.016             | 0.07                            | 0.05         | 20                                                 | 39        | ND          | ND              | ND                             | ND             |
|       | Mariposa County                 | 17,130                   | ND                  | ND                     | ND                | 0.11                            | 0.09         | 25                                                 | 56        | ND          | ND              | ND                             | ND             |
|       | Mendocino County                | 86,265                   | 2                   | ND                     | 0.011             | 0.07                            | 0.05         | 23                                                 | 47        | IN          | IN              | ND                             | ND             |
|       | Merced County                   | 210,554                  | ND                  | ND                     | 0.012             | 0.12                            | 0.10         | 35                                                 | 89        | 17.3        | 47              | ND                             | ND             |
|       | Modoc County                    | 9,449                    | ND                  | ND                     | ND                | ND                              | ND           | 23                                                 | 59        | 8.3         | 37              | ND                             | ND             |
|       | Mono County                     | 12,853                   | IN                  | ND                     | ND                | ND                              | ND           | 13                                                 | 1642      | IN          | IN              | ND                             | ND             |
|       | Monterey County                 | 401,762                  | 1                   | ND                     | 0.007             | 0.08                            | 0.06         | 30                                                 | 70        | 8.0         | 22              | ND                             | ND             |
|       | Napa County                     | 124,279                  | 3                   | ND                     | 0.012             | 0.08                            | 0.06         | 16                                                 | 43        | ND          | ND              | ND                             | ND             |
|       | Nevada County                   | 92,033                   | ND                  | ND                     | ND                | 0.12                            | 0.10         | 17                                                 | 49        | IN          | IN              | ND                             | ND             |
|       | Orange County                   | 2,846,289                | 6                   | ND                     | 0.029             | 0.12                            | 0.08         | 40                                                 | 119       | 20.4        | 37              | 0.002                          | 0.005          |
| CA    | Placer County                   | 248,399                  | 2                   | 0.00                   | 0.017             | 0.12                            | 0.10         | 24                                                 | 50        | 12.2        | 43              | ND                             | ND             |
| CA    | Plumas County                   | 20,824                   | ND                  | ND                     | ND                | 0.08                            | 0.07         | 20                                                 | 61        | IN          | IN              | ND                             | ND             |
| CA    | Riverside County                | 1,545,387                | 4                   | 0.05                   | 0.022             | 0.15                            | 0.11         | 59                                                 | 190       | 28.4        | 81              | 0.002                          | 0.026          |
| CA    | Sacramento County               | 1,223,499                | 6                   | ND                     | 0.019             | 0.13                            | 0.10         | 27                                                 | 82        | 12.3        | 81              | IN                             | 0.015          |
| CA    | San Benito County               | 53,234                   | ND                  | ND                     | ND                | 0.10                            | 0.08         | 16                                                 | 31        | ND          | ND              | ND                             | ND             |
| CA    | San Bernardino County           | 1,709,434                | 4                   | 0.05                   | 0.038             | 0.17                            | 0.12         | 53                                                 | 108       | 26.0        | 70              | 0.003                          | 0.010          |
|       | San Diego County                | 2,813,833                | 5                   | 0.02                   | 0.024             | 0.12                            | 0.10         | 31                                                 | 86        | 15.9        | IN              | 0.004                          | 0.011          |
|       | San Francisco County            | 776,733                  | 3                   | 0.00                   | 0.020             | 0.06                            | 0.04         | 24                                                 | 53        | IN          | IN              | 0.002                          | 0.007          |
|       | San Joaquin County              | 563,598                  | 4                   | 0.00                   | 0.020             | 0.11                            | 0.08         | 32                                                 | 79        | 17.3        | IN              | ND                             | ND             |
|       | San Luis Obispo County          | 246,681                  | 2                   | ND                     | 0.012             | 0.08                            | 0.07         | 21                                                 | 102       | 10.5        | 41              | 0.005                          | 0.028          |
|       | San Mateo County                | 707,161                  | 4                   | ND                     | 0.018             | 0.08                            | 0.05         | 21                                                 | 50        | 10.9        | 43              | ND                             | ND             |
|       | Santa Barbara County            | 399,347                  | 3                   | 0.00                   | 0.018             | 0.10                            | 0.08         | 26                                                 | 62        | 9.7         | 19              | 0.002                          | 0.003          |
|       | Santa Clara County              | 1,682,585                | 7                   | 0.00                   | 0.025             | 0.10                            | 0.07         | 27                                                 | 68        | 13.5        | 57              | ND                             | ND             |
|       | Santa Cruz County               | 255,602                  | 1                   | ND                     | 0.005             | 0.09                            | 0.06         | 26                                                 | 50        | 7.9         | 18              | 0.001                          | 0.003          |
|       | Shasta County                   | 163,256                  | ND                  | ND                     | ND                | 0.11                            | 0.08         | 24                                                 | 47        | IN          | IN              | ND                             | ND             |
|       | Sierra County                   | 3,555                    | ND                  | ND                     | ND                | ND                              | ND           | IN                                                 | IN        | ND          | ND              | ND                             | ND             |
|       | Siskiyou County                 | 44,301                   | ND                  | ND                     | ND                | 0.10                            | 0.06         | IN                                                 | 33        | ND          | ND              | ND                             | ND             |
|       | Solano County                   | 394,542                  | 5                   | ND                     | 0.013             | 0.10                            | 0.07         | 18                                                 | 46        | 11.6        | 60              | 0.002                          | 0.005          |
|       | Sonoma County                   | 458,614                  | 3                   | ND                     | 0.013             | 0.08                            | 0.06         | 18                                                 | 40        | 10.3        | 40              | ND                             | ND             |
|       | Stanislaus County               | 446,997                  | 4                   | 0.00                   | 0.018             | 0.11                            | 0.09         | 35                                                 | 100       | 18.9        | 71              | ND                             | ND             |
|       | Sutter County                   | 78,930                   | 4                   | ND                     | 0.013             | 0.10                            | 0.08         | 28                                                 | 66        | 11.5        | 38              | ND                             | ND             |
|       | Tehama County                   | 56,039                   | ND                  | ND                     | ND                | 0.10                            | 0.08         | IN                                                 | 43        | ND          | ND              | ND                             | ND             |
| CA    | Trinity County                  | 13,022                   | ND                  | ND                     | ND                | ND                              | ND           | 19                                                 | 48        | ND          | ND              | ND                             | ND             |

| State | County                                | CO<br>2000<br>Population | Pb<br>8-hr<br>(ppm) | NO₂<br>QMax<br>(µg/m³) | O₃<br>AM<br>(ppm) | O <sub>3</sub><br>1-hr<br>(ppm) |              | Wtd AM   | 24-hr    | PM <sub>2.5</sub><br>Wtd AM<br>(µg/m³) ( |          | SO <sub>2</sub><br>AM<br>(ppm) | 24-hr<br>(ppm) |
|-------|---------------------------------------|--------------------------|---------------------|------------------------|-------------------|---------------------------------|--------------|----------|----------|------------------------------------------|----------|--------------------------------|----------------|
| CA    | Tulare County                         | 368,021                  | 3                   | ND                     | 0.018             | 0.12                            | 0.11         | 53       | 127      | 23.7                                     | 103      | ND                             | ND             |
|       | Tuolumne County                       | 54,501                   | 2                   | ND                     | ND                | 0.11                            | 0.10         | ND       | ND       | ND                                       | ND       | ND                             | ND             |
|       | Ventura County                        | 753,197                  | 3                   | 0.00                   | 0.020             | 0.12                            | 0.10         | 31       | 80       | IN                                       | IN       | 0.002                          | 0.007          |
|       | Yolo County                           | 168,660                  | 1                   | ND                     | 0.011             | 0.10                            | 0.08         | 26       | 66       | 10.3                                     | 38       | ND                             | ND             |
|       | Adams County                          | 363,857                  | 3                   | 0.15                   | 0.016             | 0.08                            | 0.06         | 43       | 134      | 11.6                                     | 41       | 0.003                          | 0.009          |
|       | Alamosa County                        | 14,966                   | ND                  | ND                     | ND                | ND                              | ND           | IN       | 88       | ND                                       | ND       | ND                             | ND             |
|       | Arapahoe County                       | 487,967                  | ND                  | ND                     | ND                | 0.10                            | 0.08         | ND       | ND       | 8.7                                      | 22       | ND                             | ND             |
|       | Archuleta County                      | 9,898                    | ND                  | ND                     | ND                | ND                              | ND           | 28       | 87       | IN                                       | IN       | ND                             | ND             |
|       | Boulder County                        | 291,288                  | 4                   | ND                     | ND                | 0.09                            | 0.07         | 23       | 74       | 9.5                                      | 25       | ND                             | ND             |
|       | Delta County                          | 27,834                   | ND<br>5             | ND                     | ND                | ND                              | ND           | 24       | 62       | IN<br>10.8                               | IN<br>20 | ND                             | ND             |
|       | Denver County<br>Douglas County       | 554,636<br>175,766       | 5<br>ND             | 0.02<br>ND             | IN<br>ND          | 0.10<br>0.10                    | 0.07<br>0.08 | 29<br>15 | 80<br>31 | 10.8<br>IN                               | 30<br>IN | IN<br>ND                       | 0.017<br>ND    |
|       | Eagle County                          | 41,659                   | ND                  | ND                     | ND                | ND                              | 0.08<br>ND   | IN       | 23       | ND                                       | ND       | ND                             | ND             |
|       | Elbert County                         | 19,872                   | ND                  | ND                     | ND                | ND                              | ND           | ND       | ND       | 4.1                                      | 12       | ND                             | ND             |
|       | El Paso County                        | 516,929                  | 4                   | 0.01                   | 0.035             | 0.09                            | 0.07         | 25       | 87       | 7.5                                      | 16       | 0.004                          | 0.014          |
|       | Fremont County                        | 46,145                   | ND                  | ND                     | ND                | ND                              | ND           | 17       | 36       | ND                                       | ND       | ND                             | ND             |
|       | Garfield County                       | 43,791                   | ND                  | ND                     | ND                | ND                              | ND           | 23       | 53       | ND                                       | ND       | ND                             | ND             |
|       | Gunnison County                       | 13,956                   | ND                  | ND                     | ND                | ND                              | ND           | 28       | 88       | IN                                       | IN       | ND                             | ND             |
|       | Jefferson County                      | 527,056                  | 4                   | ND                     | 0.011             | 0.11                            | 0.08         | 16       | 32       | ND                                       | ND       | ND                             | ND             |
|       | Lake County                           | 7,812                    | ND                  | 0.03                   | ND                | ND                              | ND           | ND       | ND       | ND                                       | ND       | ND                             | ND             |
|       | La Plata County                       | 43,941                   | ND                  | ND                     | ND                | ND                              | ND           | 36       | 121      | IN                                       | IN       | ND                             | ND             |
|       | Larimer County                        | 251,494                  | 4                   | ND                     | ND                | 0.10                            | 0.08         | IN       | 66       | 8.3                                      | 20       | ND                             | ND             |
|       | Mesa County                           | 116,255                  | 4                   | ND                     | ND                | ND                              | ND           | 20       | 53       | 7.4                                      | 26       | ND                             | ND             |
|       | Montezuma County                      | 23,830                   | ND                  | ND                     | ND                | 0.09                            | 0.07         | ND       | ND       | ND                                       | ND       | ND                             | ND             |
|       | Montrose County                       | 33,432                   | ND                  | ND                     | ND                | ND                              | ND           | IN       | 87       | ND                                       | ND       | ND                             | ND             |
| CO    | Pitkin County                         | 14,872                   | ND                  | ND                     | ND                | ND                              | ND           | 22       | 71       | ND                                       | ND       | ND                             | ND             |
| CO    | Prowers County                        | 14,483                   | ND                  | ND                     | ND                | ND                              | ND           | 22       | 136      | ND                                       | ND       | ND                             | ND             |
| CO    | Pueblo County                         | 141,472                  | ND                  | ND                     | ND                | ND                              | ND           | 24       | 64       | 7.9                                      | 22       | ND                             | ND             |
| CO    | Routt County                          | 19,690                   | ND                  | ND                     | ND                | ND                              | ND           | 25       | 96       | IN                                       | IN       | ND                             | ND             |
| CO    | San Miguel County                     | 6,594                    | ND                  | ND                     | ND                | ND                              | ND           | IN       | 62       | IN                                       | IN       | ND                             | ND             |
|       | Summit County                         | 23,548                   | ND                  | ND                     | ND                | ND                              | ND           | 22       | 71       | ND                                       | ND       | ND                             | ND             |
| CO    | Teller County                         | 20,555                   | ND                  | ND                     | ND                | ND                              | ND           | 27       | 113      | ND                                       | ND       | ND                             | ND             |
|       | Weld County                           | 180,936                  | 4                   | ND                     | ND                | 0.09                            | 0.07         | 21       | 58       | 8.9                                      | 28       | ND                             | ND             |
|       | Fairfield County                      | 882,567                  | 3                   | ND                     | 0.018             | 0.12                            | 0.09         | 31       | 67       | IN                                       | IN       | 0.006                          | 0.026          |
|       | Hartford County                       | 857,183                  | 7                   | ND                     | 0.017             | 0.10                            | 0.08         | 18       | 39       | IN                                       | IN       | 0.004                          | 0.021          |
|       | Litchfield County                     | 182,193                  | ND                  | ND                     | ND                | 0.11                            | 0.09         | 15       | 31       | ND                                       | ND       | ND                             | ND             |
|       | Middlesex County                      | 155,071                  | ND                  | ND                     | ND                | 0.12                            | 0.09         | ND       | ND       | ND                                       | ND       | ND                             | ND             |
|       | New Haven County                      | 824,008                  | 3                   | 0.02                   | 0.025             | 0.14                            | 0.09         | 32       | 86       | 16.2                                     | 40       | 0.006                          | 0.031          |
|       | New London County                     | 259,088                  | ND                  | ND                     | ND                | 0.14                            | 0.08         | 16       | 40       | IN                                       | IN       | ND                             | ND             |
|       | Tolland County                        | 136,364                  | ND                  | ND                     | IN                | 0.10                            | 0.08         | ND       | ND       | ND                                       | ND       | ND                             | ND             |
|       | Kent County                           | 126,697                  | ND                  | ND                     | ND                | 0.13                            | 0.09         | ND<br>26 | ND       | 12.9                                     | 23       | ND                             | ND             |
|       | New Castle County                     | 500,265<br>156,638       | 3<br>ND             | ND<br>ND               | IN<br>ND          | 0.12<br>0.11                    | 0.10<br>0.10 | 26<br>ND | 46<br>ND | 16.8                                     | 29<br>28 | 0.007<br>ND                    | 0.047<br>ND    |
|       | Sussex County<br>District of Columbia | 572,059                  | 5                   | 0.00                   | 0.023             | 0.11                            | 0.10         | ND       | ND       | 14.6<br><b>18.9</b>                      | 20<br>50 | 0.008                          | 0.023          |
|       | Alachua County                        | 217,955                  | ND                  | 0.00<br>ND             | 0.023<br>ND       | 0.12                            | 0.09         | 20       | 36       | 11.9                                     | 27       | 0.008<br>ND                    | 0.023<br>ND    |
|       | Baker County                          | 22,259                   | ND                  | ND                     | ND                | 0.10                            | 0.08         | ND       | ND       | ND                                       | ND       | ND                             | ND             |
|       | Bay County                            | 148,217                  | ND                  | ND                     | ND                | 0.09                            | 0.00         | 25       | 46       | ND                                       | ND       | ND                             | ND             |
|       | Brevard County                        | 476,230                  | ND                  | ND                     | ND                | 0.12                            | 0.03         | IN       | 34       | IN                                       | IN       | ND                             | ND             |
|       | Broward County                        | 1,623,018                | 4                   | 0.05                   | 0.010             | 0.03                            | 0.00         | 19       | 31       | 9.6                                      | 36       | 0.003                          | 0.026          |
|       | Citrus County                         | 118,085                  | ND                  | ND                     | ND                | ND                              | ND           | ND       | ND       | 10.5                                     | 31       | 0.005<br>ND                    | 0.020<br>ND    |
|       | Collier County                        | 251,377                  | ND                  | ND                     | ND                | ND                              | ND           | IN       | IN       | ND                                       | ND       | ND                             | ND             |
|       | Duval County                          | 778,879                  | 4                   | 0.03                   | 0.015             | 0.11                            | 0.08         | 26       | 46       | IN                                       | IN       | 0.003                          | 0.055          |
|       | Escambia County                       | 294,410                  | ND                  | ND                     | 0.010             | 0.12                            | 0.10         | 22       | 38       | 13.9                                     | 32       | 0.005                          | 0.032          |
|       | Hamilton County                       | 13,327                   | ND                  | ND                     | ND                | ND                              | ND           | 24       | 46       | ND                                       | ND       | 0.004                          | 0.013          |
|       | Hillsborough County                   | 998,948                  | 3                   | 2.01                   | 0.011             | 0.11                            | 0.08         | 33       | 73       | 13.5                                     | 33       | 0.006                          | 0.025          |
|       | Holmes County                         | 18,564                   | ND                  | ND                     | ND                | 0.10                            | 0.08         | ND       | ND       | ND                                       | ND       | ND                             | ND             |
|       | Lake County                           | 210,528                  | ND                  | ND                     | ND                | IN                              | IN           | 20       | 53       | ND                                       | ND       | ND                             | ND             |

| State | County            | CO<br>2000<br>Population | Pb<br>8-hr<br>(ppm) | NO₂<br>QMax<br>(µg/m³) | O₃<br>AM<br>(ppm) | O <sub>3</sub><br>1-hr<br>(ppm) |      | PM <sub>10</sub><br>Wtd AM<br>(µg/m³) |     |      |    | SO <sub>2</sub><br>AM<br>(ppm) | 24-hr<br>(ppm) |
|-------|-------------------|--------------------------|---------------------|------------------------|-------------------|---------------------------------|------|---------------------------------------|-----|------|----|--------------------------------|----------------|
| FL    | Lee County        | 440,888                  | ND                  | ND                     | ND                | 0.09                            | 0.08 | 19                                    | 43  | 9.6  | 25 | ND                             | ND             |
|       | Leon County       | 239,452                  | ND                  | ND                     | ND                | 0.09                            | 0.08 | 18                                    | 46  | IN   | IN | ND                             | ND             |
| FL    | Manatee County    | 264,002                  | ND                  | ND                     | 0.009             | 0.11                            | 0.09 | 23                                    | 40  | IN   | IN | 0.002                          | 0.014          |
| FL    | Marion County     | 258,916                  | ND                  | ND                     | ND                | 0.09                            | 0.08 | ND                                    | ND  | 11.0 | 24 | ND                             | ND             |
| FL    | Monroe County     | 79,589                   | ND                  | ND                     | ND                | ND                              | ND   | 18                                    | 36  | ND   | ND | ND                             | ND             |
| FL    | Nassau County     | 57,663                   | ND                  | ND                     | ND                | ND                              | ND   | IN                                    | 65  | ND   | ND | 0.007                          | 0.053          |
| FL    | Orange County     | 896,344                  | 3                   | ND                     | 0.012             | 0.11                            | 0.08 | 26                                    | 50  | 12.1 | 31 | 0.003                          | 0.009          |
| FL    | Osceola County    | 172,493                  | ND                  | ND                     | ND                | 0.10                            | 0.08 | ND                                    | ND  | ND   | ND | ND                             | ND             |
| FL    | Palm Beach County | 1,131,184                | 3                   | ND                     | 0.016             | 0.09                            | 0.08 | IN                                    | 38  | 9.4  | 27 | 0.002                          | 0.008          |
| FL    | Pasco County      | 344,765                  | ND                  | ND                     | ND                | 0.09                            | 0.08 | ND                                    | ND  | ND   | ND | ND                             | ND             |
| FL    | Pinellas County   | 921,482                  | 2                   | 0.01                   | 0.013             | 0.10                            | 0.08 | 26                                    | 45  | 12.4 | 43 | 0.005                          | 0.031          |
| FL    | Polk County       | 483,924                  | ND                  | ND                     | ND                | 0.10                            | 0.08 | 23                                    | 121 | 12.2 | 28 | 0.005                          | 0.018          |
| FL    | Putnam County     | 70,423                   | ND                  | ND                     | ND                | ND                              | ND   | 27                                    | 49  | ND   | ND | 0.003                          | 0.014          |
| FL    | St. Lucie County  | 192,695                  | ND                  | ND                     | 0.010             | 0.08                            | 0.07 | 18                                    | 35  | 10.1 | 23 | ND                             | ND             |
| FL    | Santa Rosa County | 117,743                  | ND                  | ND                     | ND                | 0.11                            | 0.10 | ND                                    | ND  | ND   | ND | ND                             | ND             |
| FL    | Sarasota County   | 325,957                  | 4                   | ND                     | 0.004             | 0.11                            | 0.09 | 26                                    | 48  | 11.0 | 30 | 0.002                          | 0.019          |
| FL    | Seminole County   | 365,196                  | ND                  | ND                     | ND                | 0.10                            | 0.08 | IN                                    | 32  | 11.0 | 27 | ND                             | ND             |
| FL    | Volusia County    | 443,343                  | ND                  | ND                     | ND                | 0.09                            | 0.08 | 21                                    | 53  | 10.5 | 26 | ND                             | ND             |
| GA    | Baldwin County    | 44,700                   | ND                  | ND                     | ND                | ND                              | ND   | ND                                    | ND  | ND   | ND | 0.003                          | 0.016          |
| GA    | Bartow County     | 76,019                   | ND                  | ND                     | ND                | ND                              | ND   | ND                                    | ND  | ND   | ND | 0.003                          | 0.016          |
| GA    | Bibb County       | 153,887                  | ND                  | ND                     | ND                | 0.13                            | 0.10 | IN                                    | 48  | 18.6 | 37 | 0.003                          | 0.015          |
| GA    | Chatham County    | 232,048                  | ND                  | ND                     | ND                | 0.10                            | 0.08 | 26                                    | 66  | 15.1 | IN | 0.003                          | 0.024          |
| GA    | Chattooga County  | 25,470                   | ND                  | ND                     | ND                | ND                              | ND   | IN                                    | IN  | ND   | ND | ND                             | ND             |
| GA    | Cherokee County   | 141,903                  | ND                  | ND                     | ND                | 0.08                            | 0.07 | ND                                    | ND  | ND   | ND | ND                             | ND             |
| GA    | Clarke County     | 101,489                  | ND                  | ND                     | ND                | ND                              | ND   | ND                                    | ND  | 19.0 | IN | ND                             | ND             |
| GA    | Clayton County    | 236,517                  | ND                  | ND                     | ND                | ND                              | ND   | ND                                    | ND  | 19.2 | IN | ND                             | ND             |
| GA    | Cobb County       | 607,751                  | ND                  | ND                     | ND                | 0.12                            | 0.11 | ND                                    | ND  | 18.7 | 50 | ND                             | ND             |
| GA    | Coweta County     | 89,215                   | ND                  | ND                     | ND                | 0.11                            | 0.10 | ND                                    | ND  | ND   | ND | ND                             | ND             |
| GA    | Dawson County     | 15,999                   | ND                  | ND                     | ND                | 0.10                            | 0.08 | ND                                    | ND  | ND   | ND | ND                             | ND             |
| GA    | DeKalb County     | 665,865                  | 3                   | 0.04                   | 0.018             | 0.15                            | 0.11 | IN                                    | 64  | 18.9 | IN | ND                             | ND             |
| GA    | Dougherty County  | 96,065                   | ND                  | ND                     | ND                | ND                              | ND   | IN                                    | IN  | 17.4 | IN | ND                             | ND             |
| GA    | Douglas County    | 92,174                   | ND                  | ND                     | ND                | 0.12                            | 0.10 | 28                                    | 56  | ND   | ND | ND                             | ND             |
| GA    | Fannin County     | 19,798                   | ND                  | ND                     | ND                | ND                              | ND   | ND                                    | ND  | ND   | ND | 0.003                          | 0.018          |
| GA    | Fayette County    | 91,263                   | ND                  | ND                     | ND                | 0.15                            | 0.10 | ND                                    | ND  | ND   | ND | ND                             | ND             |
| GA    | Floyd County      | 90,565                   | ND                  | ND                     | ND                | ND                              | ND   | 24                                    | 50  | 18.4 | IN | 0.003                          | 0.013          |
| GA    | Fulton County     | 816,006                  | 3                   | ND                     | 0.023             | 0.16                            | 0.11 | 36                                    | 85  | 21.4 | IN | 0.005                          | 0.019          |
| GA    | Glynn County      | 67,568                   | ND                  | ND                     | ND                | 0.09                            | 0.07 | IN                                    | 41  | IN   | IN | ND                             | ND             |
| GA    | Gwinnett County   | 588,448                  | ND                  | ND                     | ND                | 0.13                            | 0.10 | ND                                    | ND  | 19.4 | IN | ND                             | ND             |
| GA    | Hall County       | 139,277                  | ND                  | ND                     | ND                | ND                              | ND   | ND                                    | ND  | 18.3 | IN | ND                             | ND             |
| GA    | Henry County      | 119,341                  | ND                  | ND                     | ND                | 0.16                            | 0.11 | ND                                    | ND  | ND   | ND | ND                             | ND             |
| GA    | Houston County    | 110,765                  | ND                  | ND                     | ND                | ND                              | ND   | ND                                    | ND  | IN   | IN | ND                             | ND             |
|       | Lowndes County    | 92,115                   | ND                  | ND                     | ND                | ND                              | ND   | ND                                    | ND  | 15.6 | IN | ND                             | ND             |
|       | Murray County     | 36,506                   | ND                  | ND                     | ND                | 0.11                            | 0.09 | ND                                    | ND  | ND   | ND | ND                             | ND             |
|       | Muscogee County   | 186,291                  | ND                  | 0.11                   | ND                | 0.11                            | 0.09 | IN                                    | 59  | 19.2 | 71 | ND                             | ND             |
|       | Paulding County   | 81,678                   | ND                  | ND                     | 0.005             | 0.10                            | 0.09 | ND                                    | ND  | 16.9 | 46 | ND                             | ND             |
|       | Richmond County   | 199,775                  | ND                  | ND                     | ND                | 0.12                            | 0.09 | IN                                    | 48  | 17.5 | IN | ND                             | ND             |
|       | Rockdale County   | 70,111                   | ND                  | ND                     | 0.008             | 0.13                            | 0.10 | ND                                    | ND  | ND   | ND | ND                             | ND             |
|       | Spalding County   | 58,417                   | ND                  | ND                     | ND                | ND                              | ND   | 26                                    | 56  | ND   | ND | ND                             | ND             |
|       | Sumter County     | 33,200                   | ND                  | ND                     | ND                | 0.11                            | 0.09 | ND                                    | ND  | ND   | ND | ND                             | ND             |
|       | Walker County     | 61,053                   | ND                  | ND                     | ND                | ND                              | ND   | IN                                    | IN  | IN   | IN | ND                             | ND             |
|       | Washington County | 21,176                   | ND                  | ND                     | ND                | ND                              | ND   | IN                                    | 54  | IN   | IN | ND                             | ND             |
|       | Wilkinson County  | 10,220                   | ND                  | ND                     | ND                | ND                              | ND   | ND                                    | ND  | 17.6 | IN | ND                             | ND             |
|       | Hawaii County     | 148,677                  | ND                  | ND                     | ND                | 0.05                            | 0.04 | ND                                    | ND  | ND   | ND | ND                             | ND             |
|       | Honolulu County   | 876,156                  | 2                   | ND                     | 0.005             | 0.05                            | 0.04 | 16                                    | 52  | 4.9  | 10 | 0.002                          | 0.007          |
|       | Kauai County      | 58,463                   | ND                  | ND                     | ND                | ND                              | ND   | IN                                    | IN  | ND   | ND | ND                             | ND             |
| HI    | Maui County       | 128,094                  | ND                  | ND                     | ND                | ND                              | ND   | 24                                    | 76  | IN   | IN | ND                             | ND             |

| State  | County             | CO<br>2000<br>Population | Pb<br>8-hr<br>(ppm) | NO <sub>2</sub><br>QMax<br>(µg/m³) | O <sub>3</sub><br>AM<br>(ppm) | O <sub>3</sub><br>1-hr<br>(ppm) |      | PM <sub>10</sub><br>Wtd AM<br>(µg/m³) |     |      |    | SO₂<br>AM<br>(ppm) | 24-hr<br>(ppm) |
|--------|--------------------|--------------------------|---------------------|------------------------------------|-------------------------------|---------------------------------|------|---------------------------------------|-----|------|----|--------------------|----------------|
| ID     | Ada County         | 300,904                  | 3                   | ND                                 | IN                            | ND                              | ND   | 34                                    | 88  | 9.2  | 38 | ND                 | ND             |
| ID     | Bannock County     | 75,565                   | ND                  | ND                                 | ND                            | ND                              | ND   | 31                                    | 94  | 10.5 | 57 | 0.008              | 0.036          |
| ID     | Benewah County     | 9,171                    | ND                  | ND                                 | ND                            | ND                              | ND   | IN                                    | 63  | ND   | ND | ND                 | ND             |
| ID     | Bingham County     | 41,735                   | ND                  | ND                                 | ND                            | ND                              | ND   | IN                                    | IN  | ND   | ND | ND                 | ND             |
| ID     | Bonner County      | 36,835                   | ND                  | ND                                 | ND                            | ND                              | ND   | 22                                    | 56  | 9.8  | 37 | ND                 | ND             |
| ID     | Bonneville County  | 82,522                   | ND                  | ND                                 | ND                            | ND                              | ND   | 21                                    | 54  | IN   | IN | ND                 | ND             |
| ID     | Boundary County    | 9,871                    | ND                  | ND                                 | ND                            | ND                              | ND   | IN                                    | 42  | ND   | ND | ND                 | ND             |
| ID     | Butte County       | 2,899                    | ND                  | ND                                 | ND                            | 0.07                            | 0.07 | ND                                    | ND  | ND   | ND | ND                 | ND             |
| ID     | Canyon County      | 131,441                  | 5                   | ND                                 | ND                            | ND                              | ND   | 30                                    | 82  | 9.7  | 38 | ND                 | ND             |
| ID     | Caribou County     | 7,304                    | ND                  | ND                                 | ND                            | ND                              | ND   | IN                                    | IN  | ND   | ND | 0.004              | 0.034          |
| ID     | Kootenai County    | 108,685                  | ND                  | ND                                 | ND                            | ND                              | ND   | 21                                    | 70  | 9.9  | 33 | ND                 | ND             |
| ID     | Lemhi County       | 7,806                    | ND                  | ND                                 | ND                            | ND                              | ND   | 44                                    | 255 | ND   | ND | ND                 | ND             |
| ID     | Lewis County       | 3,747                    | ND                  | ND                                 | ND                            | ND                              | ND   | 31                                    | 58  | ND   | ND | ND                 | ND             |
| ID     | Minidoka County    | 20,174                   | ND                  | ND                                 | ND                            | ND                              | ND   | 25                                    | 58  | ND   | ND | ND                 | ND             |
| ID     | Nez Perce County   | 37,410                   | 3                   | ND                                 | ND                            | ND                              | ND   | 23                                    | 53  | 10.1 | 30 | ND                 | ND             |
| ID     | Power County       | 7,538                    | ND                  | ND                                 | ND                            | ND                              | ND   | IN                                    | 221 | ND   | ND | ND                 | ND             |
| ID     | Shoshone County    | 13,771                   | ND                  | 0.08                               | ND                            | ND                              | ND   | 21                                    | 64  | 12.2 | 30 | ND                 | ND             |
| ID     | Twin Falls County  | 64,284                   | ND                  | ND                                 | ND                            | ND                              | ND   | 25                                    | 47  | 3.2  | 19 | ND                 | ND             |
| IL     | Adams County       | 68,277                   | ND                  | ND                                 | ND                            | 0.08                            | 0.07 | ND                                    | ND  | 13.1 | 30 | 0.004              | 0.025          |
| IL     | Champaign County   | 179,669                  | ND                  | ND                                 | ND                            | 0.08                            | 0.07 | ND                                    | ND  | 14.8 | 28 | 0.002              | 0.016          |
| IL     | Cook County        | 5,376,741                | 4                   | 0.15                               | 0.032                         | 0.10                            | 0.08 | 35                                    | 123 | 20.2 | 43 | 0.012              | 0.075          |
| IL     | DuPage County      | 904,161                  | ND                  | ND                                 | ND                            | 0.08                            | 0.06 | ND                                    | ND  | 15.3 | 34 | 0.003              | 0.018          |
| IL     | Effingham County   | 34,264                   | ND                  | ND                                 | ND                            | 0.09                            | 0.07 | ND                                    | ND  | ND   | ND | ND                 | ND             |
| IL     | Hamilton County    | 8,621                    | ND                  | ND                                 | ND                            | 0.10                            | 0.08 | ND                                    | ND  | ND   | ND | ND                 | ND             |
| IL     | Jackson County     | 59,612                   | ND                  | ND                                 | ND                            | ND                              | ND   | 23                                    | 55  | ND   | ND | ND                 | ND             |
| IL     | Jersey County      | 21,668                   | ND                  | ND                                 | ND                            | 0.10                            | 0.08 | ND                                    | ND  | ND   | ND | ND                 | ND             |
| IL     | Kane County        | 404,119                  | ND                  | ND                                 | ND                            | 0.08                            | 0.07 | IN                                    | IN  | IN   | IN | ND                 | ND             |
| IL     | Lake County        | 644,356                  | ND                  | ND                                 | IN                            | 0.09                            | 0.07 | ND                                    | ND  | 12.2 | 31 | ND                 | ND             |
|        | La Salle County    | 111,509                  | ND                  | ND                                 | ND                            | ND                              | ND   | 26                                    | 135 | 15.2 | 35 | ND                 | ND             |
|        | McHenry County     | 260,077                  | ND                  | ND                                 | ND                            | 0.09                            | 0.08 | ND                                    | ND  | 14.7 | 35 | ND                 | ND             |
|        | McLean County      | 150,433                  | ND                  | ND                                 | ND                            | ND                              | ND   | ND                                    | ND  | 14.9 | 33 | ND                 | ND             |
|        | Macon County       | 114,706                  | ND                  | ND                                 | ND                            | 0.09                            | 0.08 | ND                                    | ND  | 15.0 | 31 | 0.005              | 0.025          |
|        | Macoupin County    | 49,019                   | ND                  | 0.01                               | ND                            | 0.10                            | 0.08 | 23                                    | 40  | IN   | IN | 0.003              | 0.012          |
|        | Madison County     | 258,941                  | 2                   | 1.76                               | ND                            | 0.11                            | 0.08 | 45                                    | 116 | 20.6 | 37 | 0.008              | 0.041          |
| IL     | Peoria County      | 183,433                  | 3                   | 0.02                               | ND                            | 0.08                            | 0.07 | 24                                    | 54  | 14.8 | 32 | 0.006              | 0.036          |
|        | Randolph County    | 33,893                   | ND                  | ND                                 | ND                            | 0.09                            | 0.08 | ND                                    | ND  | 15.2 | 33 | 0.003              | 0.017          |
| IL<br> | Rock Island County | 149,374                  | ND                  | ND                                 | ND                            | 0.07                            | 0.06 | ND                                    | ND  | 13.6 | 28 | 0.003              | 0.012          |
| IL<br> | St. Clair County   | 256,082                  | ND                  | 0.07                               | 0.018                         | 0.11                            | 0.08 | 32                                    | 62  | 17.4 | 36 | 0.007              | 0.030          |
| IL<br> | Sangamon County    | 188,951                  | 2                   | ND                                 | ND                            | 0.10                            | 0.08 | 26                                    | 54  | 13.4 | 32 | 0.005              | 0.035          |
| IL     | Tazewell County    | 128,485                  | ND                  | ND                                 | ND                            | ND                              | ND   | ND                                    | ND  | ND   | ND | 0.005              | 0.063          |
| IL     | Wabash County      | 12,937                   | ND                  | ND                                 | ND                            | ND                              | ND   | ND                                    | ND  | ND   | ND | 0.006              | 0.035          |
|        | Will County        | 502,266                  | 1                   | ND                                 | 0.009                         | 0.09                            | 0.08 | IN                                    | 59  | 16.0 | 31 | 0.005              | 0.023          |
|        | Winnebago County   | 278,418                  | 3                   | ND                                 | ND                            | 0.08                            | 0.07 | ND                                    | ND  | 15.0 | 36 | ND                 | ND             |
|        | Allen County       | 331,849                  | 4                   | ND                                 | ND                            | 0.10                            | 0.09 | IN                                    | 43  | 15.7 | 47 | ND                 | ND             |
| IN     | Bartholomew County | 71,435                   | ND                  | ND                                 | ND                            | ND                              | ND   | IN                                    | 70  | ND   | ND | ND                 | ND             |
|        | Boone County       | 46,107                   | ND                  | ND                                 | ND                            | 0.10                            | 0.08 | ND                                    | ND  | ND   | ND | ND                 | ND             |
|        | Clark County       | 96,472                   | ND                  | ND                                 | ND                            | 0.10                            | 0.09 | 28                                    | 65  | 18.6 | IN | ND                 | ND             |
|        | Daviess County     | 29,820                   | ND                  | ND                                 | ND                            | ND                              | ND   | 23                                    | 60  | ND   | ND | 0.006              | 0.015          |
|        | Dearborn County    | 46,109                   | ND                  | ND                                 | ND                            | ND                              | ND   | ND                                    | ND  | ND   | ND | 0.009              | 0.053          |
| IN     | DeKalb County      | 40,285                   | ND                  | ND                                 | ND                            | ND                              | ND   | 24                                    | 60  | ND   | ND | ND                 | ND             |
| IN     | Delaware County    | 118,769                  | ND                  | 0.58                               | ND                            | ND                              | ND   | ND                                    | ND  | 16.1 | 49 | ND                 | ND             |
|        | Dubois County      | 39,674                   | ND                  | ND                                 | ND                            | ND                              | ND   | 26                                    | 62  | 17.1 | 48 | ND                 | ND             |
| IN     | Elkhart County     | 182,791                  | ND                  | ND                                 | ND                            | 0.08                            | 0.06 | ND                                    | ND  | 15.7 | IN | ND                 | ND             |
|        | Floyd County       | 70,823                   | ND                  | ND                                 | ND                            | 0.09                            | 0.08 | ND                                    | ND  | 16.0 | IN | 0.015              | 0.037          |
|        | Fountain County    | 17,954                   | ND                  | ND                                 | ND                            | ND                              | ND   | ND                                    | ND  | ND   | ND | 0.007              | 0.031          |
| IN     | Gibson County      | 32,500                   | ND                  | ND                                 | 0.010                         | 0.08                            | 0.07 | ND                                    | ND  | ND   | ND | 0.006              | 0.070          |

| State | County               | CO<br>2000<br>Population | Pb<br>8-hr<br>(ppm) | NO₂<br>QMax<br>(µg/m³) | O₃<br>AM<br>(ppm) | O₃<br>1-hr<br>(ppm) |      | PM <sub>10</sub><br>Wtd AM<br>(µg/m³) |     | Wtd AM |    | SO <sub>2</sub><br>AM<br>(ppm) | 24-hr<br>(ppm) |
|-------|----------------------|--------------------------|---------------------|------------------------|-------------------|---------------------|------|---------------------------------------|-----|--------|----|--------------------------------|----------------|
| IN    | Greene County        | 33,157                   | ND                  | ND                     | ND                | 0.10                | 0.09 | ND                                    | ND  | ND     | ND | ND                             | ND             |
| IN    | Hamilton County      | 182,740                  | ND                  | ND                     | ND                | 0.10                | 0.09 | ND                                    | ND  | ND     | ND | ND                             | ND             |
| IN    | Hancock County       | 55,391                   | ND                  | ND                     | ND                | 0.10                | 0.09 | ND                                    | ND  | ND     | ND | ND                             | ND             |
| IN    | Hendricks County     | 104,093                  | 2                   | ND                     | IN                | 0.10                | 0.09 | IN                                    | 67  | ND     | ND | IN                             | 0.108          |
| IN    | Henry County         | 48,508                   | ND                  | ND                     | ND                | ND                  | ND   | ND                                    | ND  | IN     | IN | ND                             | ND             |
| IN    | Howard County        | 84,964                   | ND                  | ND                     | ND                | ND                  | ND   | ND                                    | ND  | 15.6   | 35 | ND                             | ND             |
| IN    | Huntington County    | 38,075                   | ND                  | ND                     | ND                | 0.09                | 0.09 | ND                                    | ND  | ND     | ND | ND                             | ND             |
| IN    | Jackson County       | 41,335                   | ND                  | ND                     | ND                | 0.10                | 0.08 | ND                                    | ND  | ND     | ND | ND                             | ND             |
| IN    | Jasper County        | 30,043                   | ND                  | ND                     | ND                | ND                  | ND   | 18                                    | 34  | ND     | ND | 0.003                          | 0.014          |
| IN    | Jefferson County     | 31,705                   | ND                  | ND                     | ND                | ND                  | ND   | ND                                    | ND  | ND     | ND | 0.007                          | 0.027          |
| IN    | Johnson County       | 115,209                  | ND                  | ND                     | ND                | 0.10                | 0.08 | ND                                    | ND  | ND     | ND | ND                             | ND             |
|       | Knox County          | 39,256                   | ND                  | ND                     | ND                | ND                  | ND   | ND                                    | ND  | IN     | IN | ND                             | ND             |
| IN    | Lake County          | 484,564                  | 3                   | 0.11                   | 0.020             | 0.10                | 0.09 | 31                                    | 123 | 17.1   | 38 | 0.006                          | 0.046          |
| IN    | LaPorte County       | 110,106                  | ND                  | ND                     | ND                | 0.10                | 0.08 | ND                                    | ND  | IN     | IN | 0.004                          | 0.016          |
| IN    | Madison County       | 133,358                  | ND                  | ND                     | ND                | 0.09                | 0.08 | 21                                    | 40  | 16.9   | IN | ND                             | ND             |
| IN    | Marion County        | 860,454                  | 4                   | 0.12                   | 0.017             | 0.10                | 0.08 | 27                                    | 55  | 17.8   | 36 | 0.007                          | 0.025          |
| IN    | Morgan County        | 66,689                   | ND                  | ND                     | ND                | 0.10                | 0.09 | ND                                    | ND  | ND     | ND | ND                             | ND             |
| IN    | Perry County         | 18,899                   | ND                  | ND                     | ND                | 0.10                | 0.09 | 30                                    | 75  | ND     | ND | 0.007                          | 0.030          |
| IN    | Pike County          | 12,837                   | ND                  | ND                     | ND                | ND                  | ND   | ND                                    | ND  | ND     | ND | 0.008                          | 0.029          |
| IN    | Porter County        | 146,798                  | ND                  | ND                     | ND                | 0.10                | 0.09 | 18                                    | 54  | 13.4   | 30 | 0.006                          | 0.027          |
| IN    | Posey County         | 27,061                   | ND                  | ND                     | ND                | 0.10                | 0.09 | ND                                    | ND  | ND     | ND | ND                             | ND             |
| IN    | Putnam County        | 36,019                   | ND                  | ND                     | ND                | ND                  | ND   | 25                                    | 57  | ND     | ND | ND                             | ND             |
| IN    | St. Joseph County    | 265,559                  | ND                  | ND                     | 0.016             | 0.10                | 0.08 | 19                                    | 35  | 13.7   | 36 | ND                             | ND             |
| IN    | Shelby County        | 43,445                   | ND                  | ND                     | ND                | 0.10                | 0.09 | ND                                    | ND  | ND     | ND | ND                             | ND             |
| IN    | Spencer County       | 20,391                   | ND                  | ND                     | 0.007             | ND                  | ND   | 25                                    | 51  | IN     | IN | 0.008                          | 0.028          |
| IN    | Sullivan County      | 21,751                   | ND                  | ND                     | ND                | ND                  | ND   | ND                                    | ND  | ND     | ND | 0.008                          | 0.040          |
| IN    | Tippecanoe County    | 148,955                  | ND                  | ND                     | ND                | ND                  | ND   | ND                                    | ND  | 15.6   | 35 | ND                             | ND             |
| IN    | Vanderburgh County   | 171,922                  | 3                   | ND                     | 0.014             | 0.09                | 0.08 | 28                                    | 68  | 16.1   | 39 | 0.004                          | 0.020          |
| IN    | Vigo County          | 105,848                  | ND                  | ND                     | ND                | 0.09                | 0.08 | 25                                    | 54  | 15.7   | 37 | 0.012                          | 0.055          |
| IN    | Warrick County       | 52,383                   | ND                  | ND                     | ND                | 0.09                | 0.08 | ND                                    | ND  | ND     | ND | 0.015                          | 0.084          |
| IN    | Wayne County         | 71,097                   | ND                  | ND                     | ND                | ND                  | ND   | 24                                    | 47  | ND     | ND | 0.006                          | 0.031          |
| IA    | Black Hawk County    | 128,012                  | ND                  | ND                     | ND                | ND                  | ND   | 31                                    | 71  | 11.6   | 29 | ND                             | ND             |
| IA    | Bremer County        | 23,325                   | ND                  | ND                     | ND                | 0.09                | 0.08 | ND                                    | ND  | ND     | ND | ND                             | ND             |
| IA    | Cerro Gordo County   | 46,447                   | ND                  | ND                     | ND                | ND                  | ND   | 35                                    | 138 | 10.6   | 28 | 0.003                          | 0.053          |
|       | Clinton County       | 50,149                   | ND                  | ND                     | ND                | 0.09                | 0.08 | 24                                    | 70  | 12.0   | 29 | 0.005                          | 0.028          |
| IA    | Delaware County      | 18,404                   | ND                  | ND                     | ND                | ND                  | ND   | IN                                    | 46  | ND     | ND | ND                             | ND             |
| IA    | Emmet County         | 11,027                   | ND                  | ND                     | ND                | ND                  | ND   | 17                                    | 39  | IN     | IN | ND                             | ND             |
| IA    | Harrison County      | 15,666                   | ND                  | ND                     | ND                | 0.09                | 0.08 | ND                                    | ND  | ND     | ND | ND                             | ND             |
| IA    | Johnson County       | 111,006                  | ND                  | ND                     | ND                | ND                  | ND   | ND                                    | ND  | 10.9   | 28 | ND                             | ND             |
| IA    | Lee County           | 38,052                   | ND                  | ND                     | ND                | ND                  | ND   | ND                                    | ND  | ND     | ND | 0.002                          | 0.011          |
| IA    | Linn County          | 191,701                  | 2                   | ND                     | 0.005             | 0.08                | 0.08 | IN                                    | 60  | 10.7   | 29 | 0.003                          | 0.037          |
| IA    | Muscatine County     | 41,722                   | ND                  | ND                     | ND                | ND                  | ND   | 25                                    | 119 | IN     | IN | 0.009                          | 0.084          |
|       | Palo Alto County     | 10,147                   | ND                  | ND                     | ND                | 0.08                | 0.07 | IN                                    | IN  | ND     | ND | ND                             | ND             |
| IA    | Polk County          | 374,601                  | 5                   | ND                     | ND                | 0.07                | 0.06 | 31                                    | 134 | 10.8   | 28 | ND                             | ND             |
| IA    | Pottawattamie County | 87,704                   | ND                  | ND                     | ND                | ND                  | ND   | 23                                    | 39  | 9.9    | 27 | ND                             | ND             |
| IA    | Scott County         | 158,668                  | ND                  | ND                     | IN                | 0.09                | 0.08 | 41                                    | 141 | 12.7   | 30 | 0.003                          | 0.014          |
|       | Story County         | 79,981                   | ND                  | ND                     | ND                | 0.08                | 0.07 | ND                                    | ND  | 9.8    | 27 | ND                             | ND             |
|       | Van Buren County     | 7,809                    | ND                  | ND                     | ND                | 0.08                | 0.07 | ND                                    | ND  | 9.7    | 27 | 0.001                          | 0.005          |
|       | Warren County        | 40,671                   | ND                  | ND                     | ND                | 0.08                | 0.07 | ND                                    | ND  | ND     | ND | ND                             | ND             |
|       | Woodbury County      | 103,877                  | ND                  | ND                     | ND                | ND                  | ND   | 25                                    | 76  | 9.5    | 31 | ND                             | ND             |
|       | Ford County          | 32,458                   | ND                  | ND                     | ND                | ND                  | ND   | 22                                    | 49  | ND     | ND | ND                             | ND             |
|       | Johnson County       | 451,086                  | ND                  | ND                     | ND                | ND                  | ND   | ND                                    | ND  | 11.2   | 26 | ND                             | ND             |
|       | Linn County          | 9,570                    | 2                   | ND                     | 0.004             | 0.11                | 0.08 | ND                                    | ND  | 11.3   | 29 | 0.001                          | 0.004          |
|       | Montgomery County    | 36,252                   | ND                  | ND                     | ND                | ND                  | ND   | 24                                    | 75  | ND     | ND | 0.006                          | 0.044          |
|       | Neosho County        | 16,997                   | ND                  | ND                     | ND                | ND                  | ND   | 26                                    | 63  | ND     | ND | ND                             | ND             |
|       | Sedgwick County      | 452,869                  | 6                   | ND                     | ND                | 0.09                | 0.08 | 26                                    | 87  | 12.7   | 29 | ND                             | ND             |

| State | County                      | CO<br>2000<br>Population | Pb<br>8-hr<br>(ppm) | NO₂<br>QMax<br>(µg/m³) | O₃<br>AM<br>(ppm) | O <sub>3</sub><br>1-hr<br>(ppm) |          | PM₁₀<br>Wtd AM<br>(µg/m³) ( | 24-hr    |            |          | SO₂<br>AM<br>(ppm) | 24-hr<br>(ppm) |
|-------|-----------------------------|--------------------------|---------------------|------------------------|-------------------|---------------------------------|----------|-----------------------------|----------|------------|----------|--------------------|----------------|
|       | Shawnee County              | 169,871                  | ND                  | ND                     | ND                | ND                              | ND       | 20                          | 49       | 10.8       | 23       | ND                 | ND             |
|       | Sherman County              | 6,760                    | ND                  | ND                     | ND                | ND                              | ND       | 25                          | 60       | ND         | ND       | ND                 | ND             |
|       | Sumner County               | 25,946                   | 2                   | ND                     | IN                | 0.09                            | 0.08     | ND                          | ND       | 10.6       | 23       | 0.001              | 0.002          |
|       | Trego County                | 3,319                    | ND                  | ND                     | ND                | 0.09                            | 0.08     | ND                          | ND       | ND         | ND       | ND                 | ND             |
|       | Wyandotte County            | 157,882                  | 5                   | ND                     | 0.017             | 0.11                            | 0.09     | 37                          | 64       | 13.3       | 32       | 0.002              | 0.012          |
|       | Bell County                 | 30,060                   | 3                   | ND                     | ND                | 0.11                            | 0.09     | IN                          | 54       | IN         | IN       | ND                 | ND             |
|       | Boone County                | 85,991                   | ND                  | ND                     | ND                | 0.11                            | 0.08     | ND                          | ND       | ND         | ND       | ND                 | ND             |
|       | Boyd County                 | 49,752                   | 1                   | ND                     | 0.015             | 0.09                            | 0.08     | 32                          | 80       | IN         | IN       | 0.007              | 0.020          |
|       | Bullitt County              | 61,236                   | ND                  | ND                     | 0.013             | 0.10                            | 0.08     | IN                          | 68       | IN         | IN       | ND                 | ND             |
|       | Campbell County             | 88,616                   | ND                  | ND                     | 0.015             | 0.11                            | 0.09     | IN                          | IN       | IN         | IN       | 0.007              | 0.040          |
|       | Carter County               | 26,889                   | ND                  | ND                     | ND                | 0.09                            | 0.08     | ND                          | ND       | IN         | IN       | ND                 | ND             |
|       | Christian County            | 72,265                   | ND                  | ND                     | ND                | 0.10                            | 0.08     | ND                          | ND       | IN         | IN       | ND                 | ND             |
|       | Daviess County              | 91,545                   | 1                   | ND                     | 0.011             | 0.08                            | 0.07     | 20                          | 64       | IN         | IN       | 0.005              | 0.018          |
|       | Edmonson County             | 11,644                   | ND                  | ND                     | ND                | 0.10                            | 0.09     | ND                          | ND       | ND         | ND       | ND                 | ND             |
|       | Fayette County              | 260,512                  | 2                   | ND                     | 0.013             | 0.09                            | 0.08     | 21                          | 49       | IN         | IN       | 0.005              | 0.020          |
|       | Franklin County             | 47,687                   | ND                  | ND                     | ND                | ND                              | ND       | ND                          | ND       | IN         | IN       | ND                 | ND             |
|       | Graves County               | 37,028                   | ND                  | ND                     | ND                | 0.10                            | 0.08     | ND                          | ND       | ND         | ND       | ND                 | ND             |
|       | Greenup County              | 36,891                   | ND                  | ND                     | ND                | 0.09                            | 0.08     | ND                          | ND       | ND         | ND       | 0.007              | 0.024          |
|       | Hancock County              | 8,392                    | ND                  | ND                     | ND                | 0.09                            | 0.08     | ND                          | ND       | ND         | ND       | 0.005              | 0.018          |
|       | Hardin County               | 94,174                   | ND                  | ND                     | ND                | 0.09                            | 0.08     | IN                          | IN       | IN         | IN       | ND                 | ND             |
|       | Harlan County               | 33,202                   | ND                  | ND                     | ND                | ND                              | ND       | 24                          | 48       | ND         | ND       | ND                 | ND             |
|       | Henderson County            | 44,829                   | 2                   | ND                     | 0.016             | 0.09                            | 0.08     | IN<br>24                    | 48       | IN<br>17.0 | IN       | 0.006              | 0.034          |
|       | Jefferson County            | 693,604                  | 4                   | ND                     | 0.013             | 0.11                            | 0.09     | 31                          | 84       | 17.9       | IN       | 0.008              | 0.036          |
|       | Jessamine County            | 39,041                   | ND                  | ND                     | ND                | 0.08                            | 0.08     | ND                          | ND       | ND         | ND       | ND                 | ND             |
|       | Kenton County               | 151,464                  | 2                   | ND                     | 0.018             | 0.11                            | 0.09     | 19                          | 50       | IN         | IN       | ND                 | ND             |
|       | Livingston County           | 9,804                    | ND                  | ND                     | ND                | 0.10                            | 0.08     | IN<br>01                    | IN<br>74 | ND         | ND       | 0.005              | 0.017          |
|       | McCracken County            | 65,514                   | 3                   | ND                     | 0.010             | 0.10                            | 0.08     | 21                          | 74       | IN         | IN       | 0.002              | 0.014          |
|       | McLean County               | 9,938                    | ND                  | ND                     | ND                | 0.09                            | 0.08     | ND                          | ND       | ND         | ND       | ND                 | ND             |
|       | Madison County              | 70,872                   | ND<br>ND            | ND<br>ND               | ND<br>ND          | ND<br>ND                        | ND<br>ND | IN<br>IN                    | 43<br>IN | IN<br>ND   | IN<br>ND | ND<br>ND           | ND<br>ND       |
|       | Marshall County             | 30,125                   |                     |                        |                   |                                 | 0.09     | ND                          |          | ND         | ND       | ND                 |                |
|       | Oldham County               | 46,178<br>29,390         | ND<br>ND            | ND<br>ND               | ND<br>ND          | 0.11<br>0.09                    | 0.09     | IN                          | ND<br>IN | IN         | IN       | ND                 | ND<br>ND       |
|       | Perry County<br>Pike County | 68,736                   | ND                  | ND                     | ND                | 0.09                            | 0.07     | IN                          | 43       | IN         | IN       | ND                 | ND             |
|       | Pulaski County              | 56,217                   | ND                  | ND                     | ND                | 0.09                            | 0.08     | 25                          | 43<br>50 | ND         | ND       | ND                 | ND             |
|       | Scott County                | 33,061                   | ND                  | ND                     | ND                | 0.10                            | 0.03     | ND                          | ND       | ND         | ND       | ND                 | ND             |
|       | Simpson County              | 16,405                   | ND                  | ND                     | ND                | 0.00                            | 0.07     | ND                          | ND       | ND         | ND       | ND                 | ND             |
|       | Trigg County                | 12,597                   | ND                  | ND                     | ND                | 0.10                            | 0.03     | ND                          | ND       | ND         | ND       | ND                 | ND             |
|       | Warren County               | 92,522                   | ND                  | ND                     | 0.010             | 0.09                            | 0.00     | 19                          | 47       | IN         | IN       | ND                 | ND             |
|       | Whitley County              | 35,865                   | ND                  | ND                     | ND                | ND                              | ND       | 25                          | 57       | ND         | ND       | ND                 | ND             |
|       | Ascension Parish            | 76,627                   | ND                  | ND                     | ND                | 0.13                            | 0.10     | ND                          | ND       | ND         | ND       | ND                 | ND             |
|       | Beauregard Parish           | 32,986                   | ND                  | ND                     | IN                | 0.13                            | 0.08     | ND                          | ND       | ND         | ND       | ND                 | ND             |
|       | Bossier Parish              | 98,310                   | ND                  | ND                     | ND                | 0.13                            | 0.00     | ND                          | ND       | ND         | ND       | 0.002              | 0.006          |
|       | Caddo Parish                | 252,161                  | ND                  | ND                     | ND                | 0.11                            | 0.09     | 24                          | 51       | 13.8       | 31       | ND                 | ND             |
|       | Calcasieu Parish            | 183,577                  | ND                  | ND                     | 0.005             | 0.13                            | 0.09     | ND                          | ND       | 13.1       | 34       | 0.004              | 0.013          |
|       | Concordia Parish            | 20,247                   | ND                  | ND                     | ND                | ND                              | ND       | ND                          | ND       | 12.3       | 27       | ND                 | ND             |
|       | East Baton Rouge Parish     | 412,852                  | 4                   | ND                     | 0.017             | 0.14                            | 0.10     | IN                          | 53       | 15.0       | 35       | 0.004              | 0.015          |
|       | Grant Parish                | 18,698                   | ND                  | ND                     | ND                | 0.10                            | 0.08     | ND                          | ND       | ND         | ND       | ND                 | ND             |
|       | Iberville Parish            | 33,320                   | ND                  | ND                     | 0.010             | 0.10                            | 0.00     | ND                          | ND       | IN         | IN       | ND                 | ND             |
|       | Jefferson Parish            | 455,466                  | ND                  | ND                     | 0.010             | 0.12                            | 0.10     | ND                          | ND       | 13.5       | 35       | ND                 | ND             |
|       | Lafayette Parish            | 190,503                  | ND                  | ND                     | ND                | 0.12                            | 0.09     | ND                          | ND       | 13.0       | 33       | ND                 | ND             |
|       | Lafourche Parish            | 89,974                   | ND                  | ND                     | ND                | 0.12                            | 0.09     | ND                          | ND       | ND         | ND       | ND                 | ND             |
|       | Livingston Parish           | 91,814                   | ND                  | ND                     | 0.005             | 0.12                            | 0.03     | ND                          | ND       | ND         | ND       | ND                 | ND             |
|       | Orleans Parish              | 484,674                  | 4                   | ND                     | 0.003             | 0.13                            | 0.08     | IN                          | 44       | 14.1       | 37       | ND                 | ND             |
|       | Ouachita Parish             | 147,250                  | ND                  | ND                     | ND                | 0.10                            | 0.00     | ND                          | ND       | 13.3       | 27       | 0.002              | 0.003          |
|       | Pointe Coupee Parish        | 22,763                   | ND                  | ND                     | IN                | 0.10                            | 0.00     | ND                          | ND       | ND         | ND       | 0.002<br>ND        | 0.000<br>ND    |
|       | Rapides Parish              | 126,337                  | ND                  | ND                     | ND                | ND                              | ND       | ND                          | ND       | 13.3       | 30       | ND                 | ND             |
|       | St. Bernard Parish          | 67,229                   | ND                  | ND                     |                   | 0.11                            | 0.09     |                             | ND       | 13.1       | 35       | 0.005              | 0.020          |

| State | County                         | CO<br>2000<br>Population | Pb<br>8-hr<br>(ppm) | NO₂<br>QMax<br>(µg/m³) | O₃<br>AM<br>(ppm) | O₃<br>1-hr<br>(ppm) |      | PM <sub>10</sub><br>Wtd AM<br>(µg/m³) | 24-hr | Wtd AM   |          | SO <sub>2</sub><br>AM<br>(ppm) | 24-hr<br>(ppm) |
|-------|--------------------------------|--------------------------|---------------------|------------------------|-------------------|---------------------|------|---------------------------------------|-------|----------|----------|--------------------------------|----------------|
| LA    | St. Charles Parish             | 48,072                   | ND                  | ND                     | ND                | 0.12                | 0.09 | IN                                    | 57    | ND       | ND       | ND                             | ND             |
| LA    | St. James Parish               | 21,216                   | ND                  | ND                     | IN                | 0.12                | 0.09 | ND                                    | ND    | ND       | ND       | ND                             | ND             |
| LA    | St. John the Baptist Parish    | 43,044                   | ND                  | 0.12                   | ND                | 0.12                | 0.09 | ND                                    | ND    | ND       | ND       | ND                             | ND             |
| LA    | St. Mary Parish                | 53,500                   | ND                  | ND                     | ND                | 0.12                | 0.09 | ND                                    | ND    | ND       | ND       | ND                             | ND             |
| LA    | Tangipahoa Parish              | 100,588                  | ND                  | ND                     | ND                | ND                  | ND   | ND                                    | ND    | 14.0     | 35       | ND                             | ND             |
| LA    | Terrebonne Parish              | 104,503                  | ND                  | ND                     | ND                | ND                  | ND   | ND                                    | ND    | 12.4     | 29       | ND                             | ND             |
| LA    | West Baton Rouge Parish        | 21,601                   | ND                  | ND                     | 0.017             | 0.12                | 0.09 | IN                                    | 68    | 14.2     | 36       | 0.006                          | 0.031          |
| ME    | Androscoggin County            | 103,793                  | ND                  | ND                     | ND                | ND                  | ND   | IN                                    | 36    | 9.6      | 26       | 0.004                          | 0.018          |
|       | Aroostook County               | 73,938                   | ND                  | ND                     | ND                | ND                  | ND   | 24                                    | 87    | 10.4     | 24       | ND                             | ND             |
| ME    | Cumberland County              | 265,612                  | ND                  | ND                     | ND                | 0.08                | 0.07 | 27                                    | 74    | 11.0     | 35       | 0.005                          | 0.018          |
| ME    | Franklin County                | 29,467                   | ND                  | ND                     | ND                | ND                  | ND   | IN                                    | 29    | ND       | ND       | ND                             | ND             |
| ME    | Hancock County                 | 51,791                   | ND                  | ND                     | IN                | 0.10                | 0.08 | ND                                    | ND    | 5.6      | 14       | ND                             | ND             |
| ME    | Kennebec County                | 117,114                  | ND                  | ND                     | ND                | 0.08                | 0.06 | IN                                    | IN    | 9.6      | 31       | ND                             | ND             |
| ME    | Knox County                    | 39,618                   | ND                  | ND                     | ND                | 0.09                | 0.07 | IN                                    | 32    | IN       | IN       | ND                             | ND             |
| ME    | Oxford County                  | 54,755                   | ND                  | ND                     | ND                | 0.06                | 0.05 | IN                                    | 31    | IN       | IN       | 0.003                          | 0.013          |
| ME    | Penobscot County               | 144,919                  | ND                  | ND                     | ND                | IN                  | IN   | 17                                    | 37    | 9.0      | 24       | ND                             | ND             |
| ME    | Piscataquis County             | 17,235                   | ND                  | ND                     | ND                | 0.07                | 0.06 | ND                                    | ND    | ND       | ND       | ND                             | ND             |
|       | Sagadahoc County               | 35,214                   | ND                  | ND                     | ND                | 0.09                | 0.08 | ND                                    | ND    | ND       | ND       | ND                             | ND             |
| ME    | York County                    | 186,742                  | ND                  | ND                     | 0.010             | 0.09                | 0.07 | ND                                    | ND    | 9.4      | 24       | ND                             | ND             |
| MD    | Anne Arundel County            | 489,656                  | ND                  | ND                     | IN                | 0.12                | 0.10 | 25                                    | 48    | 16.1     | IN       | 0.006                          | 0.024          |
| MD    | Baltimore County               | 754,292                  | ND                  | ND                     | 0.017             | 0.11                | 0.08 | 15                                    | 33    | IN       | IN       | ND                             | ND             |
| MD    | Calvert County                 | 74,563                   | ND                  | ND                     | ND                | 0.11                | 0.09 | ND                                    | ND    | ND       | ND       | ND                             | ND             |
|       | Carroll County                 | 150,897                  | ND                  | ND                     | ND                | 0.11                | 0.09 | ND                                    | ND    | ND       | ND       | ND                             | ND             |
| MD    | Cecil County                   | 85,951                   | ND                  | ND                     | ND                | 0.13                | 0.11 | IN                                    | 27    | 14.1     | 25       | ND                             | ND             |
|       | Charles County                 | 120,546                  | ND                  | ND                     | ND                | 0.11                | 0.09 | ND                                    | ND    | ND       | ND       | ND                             | ND             |
|       | Frederick County               | 195,277                  | ND                  | ND                     | ND                | 0.11                | 0.09 | ND                                    | ND    | ND       | ND       | ND                             | ND             |
|       | Harford County                 | 218,590                  | ND                  | ND                     | IN                | 0.11                | 0.09 | ND                                    | ND    | 15.5     | IN       | ND                             | ND             |
| MD    | Kent County                    | 19,197                   | ND                  | ND                     | ND                | 0.13                | 0.11 | ND                                    | ND    | ND       | ND       | ND                             | ND             |
| MD    | Montgomery County              | 873,341                  | ND                  | ND                     | ND                | 0.09                | 0.08 | ND                                    | ND    | 14.3     | 25       | ND                             | ND             |
|       | Prince George's County         | 801,515                  | ND                  | ND                     | ND                | 0.13                | 0.09 | 24                                    | 56    | 17.1     | IN       | ND                             | ND             |
|       | Washington County              | 131,923                  | ND                  | ND                     | ND                | 0.10                | 0.08 | ND                                    | ND    | 15.6     | 29       | ND                             | ND             |
|       | Wicomico County                | 84,644                   | ND                  | ND                     | ND                | ND                  | ND   | 13                                    | 29    | ND       | ND       | ND                             | ND             |
| MD    | Baltimore city                 | 651,154                  | 3                   | 0.01                   | 0.024             | ND                  | ND   | 29                                    | 75    | 19.7     | IN       | ND                             | ND             |
| MA    | Barnstable County              | 222,230                  | ND                  | ND                     | IN                | 0.11                | 0.08 | ND                                    | ND    | ND       | ND       | ND                             | ND             |
| MA    | Berkshire County               | 134,953                  | ND                  | ND                     | ND                | IN                  | IN   | ND                                    | ND    | IN       | IN       | ND                             | ND             |
| MA    | Bristol County                 | 534,678                  | ND                  | ND                     | 0.007             | 0.10                | 0.08 | ND                                    | ND    | 11.7     | 29       | 0.005                          | 0.042          |
| MA    | Essex County                   | 723,419                  | ND                  | ND                     | 0.011             | 0.09                | 0.07 | ND                                    | ND    | IN       | IN       | 0.004                          | 0.020          |
|       | Hampden County                 | 456,228                  | 4                   | ND                     | 0.026             | 0.10                | 0.08 | 28                                    | 57    | 15.9     | 37       | 0.005                          | 0.023          |
| MA    | Hampshire County               | 152,251                  | ND                  | ND                     | 0.006             | 0.10                | 0.08 | 11                                    | 25    | IN       | IN       | 0.002                          | 0.015          |
| MA    | Middlesex County               | 1,465,396                | 3                   | ND                     | ND                | 0.09                | 0.08 | ND                                    | ND    | IN       | IN       | IN                             | 0.034          |
| MA    | Norfolk County                 | 650,308                  | ND                  | ND                     | ND                | ND                  | ND   | ND                                    | ND    | IN       | IN       | ND                             | ND             |
|       | Plymouth County                | 472,822                  | ND                  | ND                     | ND                | ND                  | ND   | ND                                    | ND    | IN       | IN       | ND                             | ND             |
|       | Suffolk County                 | 689,807                  | 2                   | 0.02                   | 0.029             | 0.09                | 0.07 | 29                                    | 59    | 15.8     | IN       | 0.006                          | 0.035          |
|       | Worcester County               | 750,963                  | 3                   | ND                     | 0.018             | 0.10                | 0.08 | 19                                    | 54    | 12.1     | 33       | 0.006                          | 0.019          |
|       | Allegan County                 | 105,665                  | ND                  | ND                     | ND                | 0.12                | 0.08 | ND                                    | ND    | 11.7     | 32       | ND                             | ND             |
|       | Alpena County<br>Bay County    | 31,314                   |                     | ND<br>ND               | ND<br>ND          | ND<br>ND            | ND   |                                       |       | IN<br>IN | IN       | ND                             |                |
| MI    |                                | 110,157                  | ND                  |                        |                   |                     | ND   | ND                                    | ND    |          |          | ND                             | ND             |
| MI    | Benzie County                  | 15,998                   |                     | ND                     | ND                | 0.09                | 0.08 |                                       |       | ND       | ND<br>20 | ND                             |                |
|       | Berrien County                 | 162,453                  |                     | ND                     | ND                | 0.11                | 0.08 | ND                                    | ND    | 12.1     | 30<br>ND | ND                             |                |
|       | Calhoun County                 | 137,985                  |                     | ND                     | ND                | ND                  | ND   |                                       |       | ND       |          |                                |                |
| MI    | Cass County                    | 51,104                   | ND                  | ND                     | ND                | 0.10                | 0.08 | ND                                    | ND    | ND       |          | ND                             | ND             |
|       | Clinton County<br>Delta County | 64,753                   | ND                  | ND                     | ND                | 0.09                | 0.07 | ND                                    | ND    | ND       |          | ND                             | ND             |
| MI    | ,                              | 38,520                   | ND                  | ND                     | ND                | ND                  | ND   | ND                                    | ND    | ND       | ND       | 0.002                          | 0.010          |
|       | Genesee County                 | 436,141                  | ND                  | 0.01                   | ND                | 0.09                | 0.07 | 19<br>ND                              | 36    | 12.9     | 32       | 0.004                          | 0.015          |
|       | Grand Traverse County          | 77,654                   | ND                  | ND                     | ND                | ND                  | ND   | ND                                    | ND    | IN       |          | ND                             | ND             |
| MI    | Huron County                   | 36,079                   | ND                  | ND                     | ND                | 0.09                | 0.07 | ND                                    | ND    | ND       | ND       | ND                             | ND             |

| State | County             | CO<br>2000<br>Population | Pb<br>8-hr<br>(ppm) | NO₂<br>QMax<br>(µg/m³) | O₃<br>AM<br>(ppm) | O₃<br>1-hr<br>(ppm) |      | PM <sub>10</sub><br>Wtd AM<br>(µg/m³) ( | 24-hr |      |    | SO <sub>2</sub><br>AM<br>(ppm) | 24-hr<br>(ppm) |
|-------|--------------------|--------------------------|---------------------|------------------------|-------------------|---------------------|------|-----------------------------------------|-------|------|----|--------------------------------|----------------|
| MI    | Ingham County      | 279,320                  | ND                  | ND                     | IN                | 0.09                | 0.08 | ND                                      | ND    | 13.6 | 38 | ND                             | ND             |
| MI    | Kalamazoo County   | 238,603                  | ND                  | ND                     | ND                | 0.09                | 0.07 | ND                                      | ND    | 15.1 | 37 | ND                             | ND             |
| MI    | Kent County        | 574,335                  | 3                   | 0.00                   | ND                | 0.11                | 0.07 | 21                                      | 49    | 13.8 | 35 | 0.002                          | 0.010          |
| MI    | Lenawee County     | 98,890                   | ND                  | ND                     | ND                | 0.09                | 0.08 | ND                                      | ND    | ND   | ND | ND                             | ND             |
| MI    | Macomb County      | 788,149                  | 1                   | ND                     | ND                | 0.09                | 0.08 | ND                                      | ND    | 13.4 | 33 | 0.003                          | 0.014          |
| MI    | Mason County       | 28,274                   | ND                  | ND                     | ND                | 0.12                | 0.08 | ND                                      | ND    | ND   | ND | ND                             | ND             |
| MI    | Missaukee County   | 14,478                   | ND                  | 0.00                   | 0.004             | 0.08                | 0.07 | ND                                      | ND    | ND   | ND | ND                             | ND             |
| MI    | Monroe County      | 145,945                  | ND                  | ND                     | ND                | ND                  | ND   | ND                                      | ND    | 15.2 | 37 | ND                             | ND             |
| MI    | Muskegon County    | 170,200                  | ND                  | ND                     | ND                | 0.12                | 0.08 | ND                                      | ND    | 11.9 | 35 | ND                             | ND             |
| MI    | Oakland County     | 1,194,156                | 3                   | ND                     | ND                | 0.09                | 0.08 | ND                                      | ND    | 15.4 | IN | ND                             | ND             |
| MI    | Ottawa County      | 238,314                  | ND                  | ND                     | ND                | 0.11                | 0.08 | IN                                      | 40    | 13.2 | 34 | ND                             | ND             |
| MI    | Saginaw County     | 210,039                  | ND                  | ND                     | ND                | ND                  | ND   | ND                                      | ND    | IN   | IN | ND                             | ND             |
| MI    | St. Clair County   | 164,235                  | ND                  | ND                     | ND                | 0.10                | 0.08 | ND                                      | ND    | IN   | IN | 0.006                          | 0.039          |
| MI    | Washtenaw County   | 322,895                  | ND                  | 0.00                   | ND                | 0.09                | 0.08 | ND                                      | ND    | IN   | IN | ND                             | ND             |
| MI    | Wayne County       | 2,061,162                | 5                   | 0.04                   | 0.024             | 0.10                | 0.08 | 43                                      | 113   | 20.1 | 45 | 0.008                          | 0.043          |
| MN    | Anoka County       | 298,084                  | 2                   | ND                     | ND                | 0.09                | 0.07 | ND                                      | ND    | ND   | ND | ND                             | ND             |
| MN    | Crow Wing County   | 55,099                   | ND                  | ND                     | ND                | ND                  | ND   | IN                                      | IN    | IN   | IN | ND                             | ND             |
| MN    | Dakota County      | 355,904                  | 2                   | 0.40                   | 0.012             | 0.08                | 0.07 | IN                                      | IN    | IN   | IN | 0.003                          | 0.016          |
| MN    | Douglas County     | 32,821                   | ND                  | ND                     | ND                | ND                  | ND   | IN                                      | IN    | IN   | IN | ND                             | ND             |
| MN    | Freeborn County    | 32,584                   | ND                  | ND                     | ND                | ND                  | ND   | IN                                      | IN    | IN   | IN | ND                             | ND             |
| MN    | Hennepin County    | 1,116,200                | 3                   | 0.01                   | 0.022             | ND                  | ND   | 31                                      | 103   | IN   | IN | 0.003                          | 0.023          |
| MN    | Itasca County      | 43,992                   | ND                  | ND                     | ND                | ND                  | ND   | IN                                      | IN    | IN   | IN | ND                             | ND             |
| MN    | Kandiyohi County   | 41,203                   | ND                  | ND                     | ND                | ND                  | ND   | IN                                      | IN    | IN   | IN | ND                             | ND             |
| MN    | Koochiching County | 14,355                   | ND                  | ND                     | ND                | ND                  | ND   | ND                                      | ND    | ND   | ND | IN                             | 0.001          |
| MN    | Lake County        | 11,058                   | ND                  | ND                     | ND                | 0.07                | 0.06 | IN                                      | IN    | IN   | IN | ND                             | ND             |
| MN    | McLeod County      | 34,898                   | ND                  | ND                     | ND                | ND                  | ND   | IN                                      | IN    | IN   | IN | ND                             | ND             |
| MN    | Mille Lacs County  | 22,330                   | ND                  | ND                     | ND                | 0.07                | 0.07 | 12                                      | 26    | IN   | IN | ND                             | ND             |
| MN    | Nicollet County    | 29,771                   | ND                  | ND                     | ND                | ND                  | ND   | IN                                      | IN    | IN   | IN | ND                             | ND             |
| MN    | Olmsted County     | 124,277                  | ND                  | ND                     | ND                | ND                  | ND   | ND                                      | ND    | IN   | IN | ND                             | ND             |
| MN    | Otter Tail County  | 57,159                   | ND                  | ND                     | ND                | ND                  | ND   | IN                                      | IN    | IN   | IN | ND                             | ND             |
| MN    | Pine County        | 26,530                   | 2                   | ND                     | ND                | ND                  | ND   | ND                                      | ND    | ND   | ND | ND                             | ND             |
| MN    | Ramsey County      | 511,035                  | 5                   | ND                     | 0.017             | ND                  | ND   | 36                                      | 74    | IN   | IN | 0.002                          | 0.009          |
| MN    | St. Louis County   | 200,528                  | 2                   | ND                     | ND                | 0.07                | 0.07 | 29                                      | 69    | IN   | IN | ND                             | ND             |
| MN    | Scott County       | 89,498                   | ND                  | ND                     | ND                | ND                  | ND   | ND                                      | ND    | IN   | IN | ND                             | ND             |
| MN    | Stearns County     | 133,166                  | 3                   | ND                     | ND                | ND                  | ND   | ND                                      | ND    | IN   | IN | ND                             | ND             |
| MN    | Washington County  | 201,130                  | ND                  | ND                     | ND                | 0.09                | 0.07 | 21                                      | 42    | IN   | IN | 0.002                          | 0.011          |
| MN    | Wright County      | 89,986                   | ND                  | ND                     | ND                | ND                  | ND   | IN                                      | IN    | IN   | IN | ND                             | ND             |
| MS    | Adams County       | 34,340                   | ND                  | ND                     | ND                | 0.10                | 0.09 | ND                                      | ND    | IN   | IN | ND                             | ND             |
| MS    | Bolivar County     | 40,633                   | ND                  | ND                     | ND                | 0.09                | 0.08 | ND                                      | ND    | IN   | IN | ND                             | ND             |
| MS    | DeSoto County      | 107,199                  | ND                  | ND                     | 0.010             | 0.12                | 0.09 | ND                                      | ND    | IN   | IN | ND                             | ND             |
| MS    | Forrest County     | 72,604                   | ND                  | ND                     | ND                | ND                  | ND   | ND                                      | ND    | IN   | IN | ND                             | ND             |
| MS    | Hancock County     | 42,967                   | ND                  | ND                     | 0.005             | 0.14                | 0.09 | ND                                      | ND    | IN   | IN | ND                             | ND             |
| MS    | Harrison County    | 189,601                  | ND                  | ND                     | ND                | 0.12                | 0.09 | ND                                      | ND    | IN   | IN | 0.003                          | 0.033          |
| MS    | Hinds County       | 250,800                  | 3                   | ND                     | ND                | 0.10                | 0.08 | 24                                      | 64    | 15.6 | 35 | 0.002                          | 0.006          |
| MS    | Jackson County     | 131,420                  | ND                  | ND                     | ND                | 0.11                | 0.09 | 16                                      | 35    | IN   | IN | 0.002                          | 0.010          |
| MS    | Jones County       | 64,958                   | ND                  | ND                     | ND                | ND                  | ND   | ND                                      | ND    | IN   | IN | ND                             | ND             |
| MS    | Lauderdale County  | 78,161                   | ND                  | ND                     | ND                | 0.10                | 0.08 | ND                                      | ND    | IN   | IN | ND                             | ND             |
| MS    | Lee County         | 75,755                   | ND                  | ND                     | ND                | 0.10                | 0.08 | 17                                      | 34    | IN   | IN | ND                             | ND             |
|       | Lowndes County     | 61,586                   | ND                  | ND                     | ND                | ND                  | ND   | ND                                      | ND    | IN   | IN | ND                             | ND             |
| MS    | Madison County     | 74,674                   | ND                  | ND                     | ND                | 0.09                | 0.08 | ND                                      | ND    | ND   | ND | ND                             | ND             |
| MS    | Pearl River County | 48,621                   | ND                  | ND                     | ND                | ND                  | ND   | ND                                      | ND    | IN   | IN | ND                             | ND             |
| MS    | Rankin County      | 115,327                  | ND                  | ND                     | ND                | ND                  | ND   | ND                                      | ND    | IN   | IN | ND                             | ND             |
|       | Scott County       | 28,423                   | ND                  | ND                     | ND                | ND                  | ND   | ND                                      | ND    | IN   | IN | ND                             | ND             |
|       | Warren County      | 49,644                   | ND                  | ND                     | ND                | 0.10                | 0.08 | ND                                      | ND    | IN   | IN | ND                             | ND             |
|       | Buchanan County    | 85,998                   | ND                  | ND                     | ND                | ND                  | ND   | 31                                      | 80    | 11.8 | 27 | IN                             | 0.021          |
|       | Cass County        | 82,092                   | ND                  | ND                     | ND                | 0.12                | 0.08 | ND                                      | ND    | -    | 25 | ND                             | ND             |

| State | County                 | CO<br>2000<br>Population | Pb<br>8-hr<br>(ppm) | NO <sub>2</sub><br>QMax<br>(µg/m³) | O₃<br>AM<br>(ppm) | O <sub>3</sub><br>1-hr<br>(ppm) |      | PM <sub>10</sub><br>Wtd AM<br>(µg/m³) |      | Wtd AM |    | SO <sub>2</sub><br>AM<br>(ppm) | 24-hr<br>(ppm) |
|-------|------------------------|--------------------------|---------------------|------------------------------------|-------------------|---------------------------------|------|---------------------------------------|------|--------|----|--------------------------------|----------------|
| МО    | Cedar County           | 13,733                   | ND                  | ND                                 | IN                | 0.11                            | 0.09 | ND                                    | ND   | IN     | IN | ND                             | ND             |
| MO    | Clay County            | 184,006                  | 4                   | ND                                 | 0.014             | 0.12                            | 0.09 | ND                                    | ND   | 13.1   | 29 | 0.002                          | 0.007          |
| MO    | Greene County          | 240,391                  | 3                   | ND                                 | 0.012             | 0.09                            | 0.08 | 18                                    | 35   | 12.3   | 27 | 0.005                          | 0.077          |
| MO    | Holt County            | 5,351                    | ND                  | 0.00                               | ND                | ND                              | ND   | ND                                    | ND   | ND     | ND | ND                             | ND             |
| MO    | Howell County          | 37,238                   | ND                  | ND                                 | ND                | ND                              | ND   | ND                                    | ND   | 13.4   | 28 | ND                             | ND             |
| MO    | Iron County            | 10,697                   | ND                  | 1.00                               | ND                | ND                              | ND   | ND                                    | ND   | ND     | ND | 0.008                          | 0.099          |
| MO    | Jackson County         | 654,880                  | 5                   | 0.01                               | ND                | ND                              | ND   | 29                                    | 56   | 13.4   | 30 | 0.004                          | 0.039          |
| МО    | Jasper County          | 104,686                  | ND                  | ND                                 | ND                | ND                              | ND   | IN                                    | 126  | 13.2   | 26 | ND                             | ND             |
| MO    | Jefferson County       | 198,099                  | ND                  | 6.86                               | ND                | 0.10                            | 0.08 | ND                                    | ND   | IN     | IN | 0.005                          | 0.042          |
|       | Lincoln County         | 38,944                   | ND                  | ND                                 | ND                | ND                              | ND   | 17                                    | 51   | ND     | ND | ND                             | ND             |
|       | Mercer County          | 3,757                    | ND                  | ND                                 | 0.004             | ND                              | ND   | ND                                    | ND   | ND     | ND | ND                             | ND             |
|       | Monroe County          | 9,311                    | ND                  | ND                                 | ND                | 0.09                            | 0.08 | 12                                    | 37   | 10.9   | 30 | 0.003                          | 0.013          |
| MO    | Platte County          | 73,781                   | ND                  | ND                                 | 0.009             | 0.12                            | 0.09 | ND                                    | ND   | ND     | ND | 0.002                          | 0.008          |
| MO    | St. Charles County     | 283,883                  | ND                  | ND                                 | 0.009             | 0.12                            | 0.09 | ND                                    | ND   | 14.9   | 34 | 0.004                          | 0.017          |
| MO    | Ste. Genevieve County  | 17,842                   | ND                  | ND                                 | IN                | 0.12                            | 0.09 | ND                                    | ND   | 15.1   | 33 | ND                             | ND             |
| МО    | St. Louis County       | 1,016,315                | 3                   | 0.01                               | 0.021             | 0.12                            | 0.09 | 19                                    | 50   | 14.8   | 33 | 0.005                          | 0.026          |
| MO    | St. Louis city         | 348,189                  | 4                   | ND                                 | 0.026             | 0.11                            | 0.09 | 39                                    | 92   | 16.4   | 43 | 0.007                          | 0.043          |
| MT    | Big Horn County        | 12,671                   | ND                  | ND                                 | ND                | ND                              | ND   | IN                                    | 106* | ND     | ND | ND                             | ND             |
| MT    | Cascade County         | 80,357                   | 4                   | ND                                 | ND                | ND                              | ND   | ND                                    | ND   | IN     | IN | IN                             | 0.008          |
| MT    | Flathead County        | 74,471                   | 4                   | ND                                 | ND                | IN                              | IN   | 24                                    | 98   | IN     | IN | ND                             | ND             |
| MT    | Gallatin County        | 67,831                   | 5                   | ND                                 | ND                | ND                              | ND   | IN                                    | 65   | IN     | IN | ND                             | ND             |
| MT    | Glacier County         | 13,247                   | ND                  | ND                                 | ND                | ND                              | ND   | 20                                    | 101  | ND     | ND | ND                             | ND             |
| MT    | Jefferson County       | 10,049                   | ND                  | ND                                 | ND                | ND                              | ND   | ND                                    | ND   | ND     | ND | 0.005                          | 0.035          |
|       | Lake County            | 26,507                   | ND                  | ND                                 | ND                | ND                              | ND   | 21                                    | 86   | 12.1   | 33 | ND                             | ND             |
|       | Lewis and Clark County | 55,716                   | ND                  | 0.98                               | ND                | ND                              | ND   | 20                                    | 58   | IN     | IN | 0.006                          | 0.028          |
| MT    | Lincoln County         | 18,837                   | ND                  | ND                                 | ND                | ND                              | ND   | 26                                    | 69   | 17.1   | IN | ND                             | ND             |
| MT    | Missoula County        | 95,802                   | 3                   | ND                                 | ND                | ND                              | ND   | 18                                    | 58   | IN     | IN | ND                             | ND             |
| MT    | Park County            | 15,694                   | ND                  | ND                                 | ND                | ND                              | ND   | IN                                    | 17*  | ND     | ND | ND                             | ND             |
| MT    | Ravalli County         | 36,070                   | ND                  | ND                                 | ND                | ND                              | ND   | 19                                    | 60   | IN     | IN | ND                             | ND             |
| MT    | Roosevelt County       | 10,620                   | ND                  | ND                                 | ND                | ND                              | ND   | IN                                    | IN   | ND     | ND | ND                             | ND             |
| MT    | Rosebud County         | 9,383                    | ND                  | ND                                 | IN                | ND                              | ND   | 29                                    | 124  | IN     | IN | IN                             | 0.002          |
| MT    | Sanders County         | 10,227                   | ND                  | ND                                 | ND                | ND                              | ND   | IN                                    | 41   | 6.9    | 18 | ND                             | ND             |
| MT    | Silver Bow County      | 34,606                   | 5                   | ND                                 | ND                | ND                              | ND   | 20                                    | 66   | IN     | IN | ND                             | ND             |
| MT    | Yellowstone County     | 129,352                  | 5                   | ND                                 | ND                | ND                              | ND   | 18                                    | 43   | 8.1    | 25 | 0.006                          | 0.026          |
| NE    | Cass County            | 24,334                   | ND                  | ND                                 | ND                | ND                              | ND   | IN                                    | 118  | IN     | IN | ND                             | ND             |
| NE    | Cedar County           | 9,615                    | ND                  | ND                                 | ND                | ND                              | ND   | ND                                    | ND   | IN     | IN | ND                             | ND             |
| NE    | Cherry County          | 6,148                    | ND                  | ND                                 | ND                | ND                              | ND   | ND                                    | ND   | IN     | IN | ND                             | ND             |
| NE    | Dawson County          | 24,365                   | ND                  | ND                                 | ND                | ND                              | ND   | IN                                    | 125  | ND     | ND | ND                             | ND             |
| NE    | Deuel County           | 2,098                    | ND                  | ND                                 | ND                | ND                              | ND   | ND                                    | ND   | IN     | IN | ND                             | ND             |
| NE    | Douglas County         | 463,585                  | 3                   | 0.08                               | ND                | 0.08                            | 0.07 | 48                                    | 124  | 11.5   | 28 | 0.001                          | 0.016          |
| NE    | Hall County            | 53,534                   | ND                  | ND                                 | ND                | ND                              | ND   | ND                                    | ND   | IN     | IN | ND                             | ND             |
|       | Lancaster County       | 250,291                  | 3                   | ND                                 | ND                | 0.07                            | 0.06 | ND                                    | ND   | IN     | IN | ND                             | ND             |
|       | Lincoln County         | 34,632                   | ND                  | ND                                 | ND                | ND                              | ND   | ND                                    | ND   | IN     | IN | ND                             | ND             |
|       | Sarpy County           | 122,595                  | ND                  | ND                                 | ND                | ND                              | ND   | ND                                    | ND   | IN     | IN | ND                             | ND             |
|       | Scotts Bluff County    | 36,951                   | ND                  | ND                                 | ND                | ND                              | ND   | ND                                    | ND   | IN     | IN | ND                             | ND             |
|       | Washington County      | 18,780                   | ND                  | ND                                 | ND                | ND                              | ND   | ND                                    | ND   | IN     | IN | ND                             | ND             |
|       | Clark County           | 1,375,765                | 7                   | ND                                 | ND                | 0.09                            | 0.08 | 48                                    | 188  | 10.8   | 32 | ND                             | ND             |
|       | Douglas County         | 41,259                   | 4                   | ND                                 | ND                | 0.09                            | 0.07 | 9                                     | 19   | IN     | IN | ND                             | ND             |
|       | Elko County            | 45,291                   | ND                  | ND                                 | ND                | ND                              | ND   | IN                                    | 91   | ND     | ND | ND                             | ND             |
|       | Lander County          | 5,794                    | ND                  | ND                                 | ND                | ND                              | ND   | 22                                    | 91   | ND     | ND | ND                             | ND             |
|       | Washoe County          | 339,486                  | 5                   | ND                                 | 0.008             | 0.09                            | 0.07 | 42                                    | 96   | 9.0    | 31 | ND                             | ND             |
|       | White Pine County      | 9,181                    | ND                  | ND                                 | ND                | 0.08                            | 0.08 | ND                                    | ND   | ND     | ND | ND                             | ND             |
|       | Carson City            | 52,457                   | 4                   | ND                                 | ND                | 0.08                            | 0.07 | ND                                    | ND   | ND     | ND | ND                             | ND             |
|       | Carroll County         | 43,666                   | ND                  | ND                                 | ND                | 0.07                            | 0.06 | ND                                    | ND   | ND     | ND | ND                             | ND             |
|       | Cheshire County        | 73,825                   | ND                  | ND                                 | ND                | 0.08                            | 0.06 | 19                                    | 41   | IN     | IN | 0.006                          | 0.022          |
| NH    | Coos County            | 33,111                   | ND                  | ND                                 | ND                | IN                              | IN   | 28                                    | 72   | ND     | ND | 0.005                          | 0.030          |

| State | County                         | CO<br>2000<br>Population | Pb<br>8-hr<br>(ppm) | NO₂<br>QMax<br>(µg/m³) | O₃<br>AM<br>(ppm) | O₃<br>1-hr<br>(ppm) |              | Wtd AM   | 24-hr    | PM <sub>2.5</sub><br>Wtd AM<br>(µg/m³) ( |          | SO <sub>2</sub><br>AM<br>(ppm) | 24-hr<br>(ppm) |
|-------|--------------------------------|--------------------------|---------------------|------------------------|-------------------|---------------------|--------------|----------|----------|------------------------------------------|----------|--------------------------------|----------------|
| NH    | Grafton County                 | 81,743                   | ND                  | ND                     | ND                | 0.08                | 0.06         | ND       | ND       | ND                                       | ND       | ND                             | ND             |
| NH    | Hillsborough County            | 380,841                  | 4                   | ND                     | 0.011             | 0.09                | 0.07         | 15       | 39       | IN                                       | IN       | 0.005                          | 0.022          |
| NH    | Merrimack County               | 136,225                  | ND                  | ND                     | ND                | 0.08                | 0.07         | IN       | 26       | ND                                       | ND       | 0.005                          | 0.044          |
| NH    | Rockingham County              | 277,359                  | ND                  | ND                     | 0.006             | 0.08                | 0.07         | IN       | 33       | IN                                       | IN       | 0.003                          | 0.013          |
| NH    | Strafford County               | 112,233                  | ND                  | ND                     | ND                | 0.08                | 0.07         | 13       | 29       | ND                                       | ND       | ND                             | ND             |
|       | Sullivan County                | 40,458                   | ND                  | ND                     | ND                | 0.08                | 0.07         | IN       | 24       | ND                                       | ND       | 0.004                          | 0.015          |
|       | Atlantic County                | 252,552                  | ND                  | ND                     | ND                | 0.11                | 0.09         | 23       | 42       | ND                                       | ND       | 0.003                          | 0.013          |
|       | Bergen County                  | 884,118                  | 3                   | ND                     | ND                | 0.10                | 0.08         | 37       | 86       | 14.6                                     | 36       | 0.005                          | 0.020          |
|       | Burlington County              | 423,394                  | 4                   | ND                     | ND                | ND                  | ND           | ND       | ND       | ND                                       | ND       | 0.004                          | 0.016          |
|       | Camden County                  | 508,932                  | 4                   | 0.01                   | 0.021             | 0.13                | 0.10         | 29       | 76       | 15.5                                     | IN       | 0.006                          | 0.020          |
|       | Cumberland County              | 146,438                  | ND                  | ND                     | ND                | 0.12                | 0.09         | ND       | ND       | ND                                       | ND       | 0.004                          | 0.017          |
|       | Essex County                   | 793,633                  | ND                  | ND                     | 0.029             | ND                  | ND           | ND       | ND       | 15.6                                     | IN       | ND                             | ND             |
|       | Gloucester County              | 254,673                  | ND                  | ND                     | ND                | 0.12                | 0.10         | ND       | ND       | 15.1                                     | 34       | 0.005                          | 0.021          |
|       | Hudson County                  | 608,975                  | 5                   | ND                     | 0.026             | 0.10                | 0.08         | IN       | 63       | 17.5                                     | 69       | 0.008                          | 0.025          |
|       | Hunterdon County               | 121,989                  | ND                  | ND                     | ND                | 0.11                | 0.09         | ND       | ND       | ND                                       | ND       | ND                             | ND             |
|       | Mercer County                  | 350,761                  | ND                  | ND                     | 0.016             | 0.11                | 0.10         | 26       | 55       | 14.7                                     | 43       | ND                             | ND             |
|       | Middlesex County               | 750,162                  | 3                   | 0.15                   | 0.019             | 0.11                | 0.09         | ND       | ND       | IN                                       | IN       | 0.005                          | 0.018          |
|       | Monmouth County                | 615,301                  | 3                   | ND                     | ND                | 0.13                | 0.10         | ND       | ND       | ND                                       | ND       | ND                             | ND             |
|       | Morris County                  | 470,212                  | 3                   | ND                     | 0.011             | 0.11                | 0.09         | ND       | ND       | 12.9                                     | 30       | 0.004                          | 0.021          |
|       | Ocean County                   | 510,916                  | ND                  | ND                     | ND                | 0.14                | 0.11         | ND       | ND       | IN                                       | IN       | ND                             | ND             |
|       | Passaic County                 | 489,049                  | ND                  | ND                     | ND                | 0.10                | 0.08         | ND       | ND       | IN                                       | IN       | ND                             | ND             |
|       | Union County                   | 522,541                  | 5                   | ND                     | 0.041             | ND                  | ND           | 35       | 108      | 18.7                                     | 47       | 0.009                          | 0.025          |
|       | Warren County                  | 102,437                  | ND                  | ND                     | ND                | ND                  | ND           | ND<br>25 | ND       | 13.9                                     | 38       | ND                             |                |
|       | Bernalillo County              | 556,678                  | 4                   | ND                     | 0.017             | 0.09                | 0.08         | 25       | 122      | 7.9                                      | 19       | ND                             | ND             |
|       | Chaves County                  | 61,382                   | ND                  | ND                     | ND                | ND                  | ND           | 20<br>42 | 41       | 6.8                                      | 15<br>31 | ND                             | ND             |
|       | Dona Ana County<br>Eddy County | 174,682<br>51,658        | 4<br>ND             | ND<br>ND               | 0.012<br>0.006    | 0.12<br>0.08        | 0.08<br>0.07 | 42<br>ND | 96<br>ND | 10.5<br>ND                               | ND       | 0.001<br>0.001                 | 0.003<br>0.007 |
|       | Grant County                   | 31,002                   | ND                  | ND                     | 0.000<br>ND       | 0.08<br>ND          | ND           | 20       | 43       | 5.5                                      | 11       | 0.001                          | 0.007          |
|       | Hidalgo County                 | 5,932                    | ND                  | ND                     | ND                | ND                  | ND           | 20<br>IN | 43<br>38 | ND                                       | ND       | 0.004                          | 0.024          |
|       | Lea County                     | 55,511                   | ND                  | ND                     | ND                | ND                  | ND           | 21       | 40       | 6.8                                      | 14       | ND                             | 0.002<br>ND    |
|       | Luna County                    | 25,016                   | ND                  | ND                     | ND                | ND                  | ND           | IN       | 35       | ND                                       | ND       | ND                             | ND             |
|       | Otero County                   | 62,298                   | ND                  | ND                     | ND                | ND                  | ND           | 20       | 57       | ND                                       | ND       | ND                             | ND             |
|       | Sandoval County                | 89,908                   | 1                   | ND                     | 0.010             | 0.09                | 0.08         | 17       | 36       | 6.3                                      | 10       | ND                             | ND             |
|       | San Juan County                | 113,801                  | 2                   | ND                     | 0.011             | 0.09                | 0.08         | 16       | 27       | 6.1                                      | 13       | 0.008                          | 0.032          |
|       | Santa Fe County                | 129,292                  | 2                   | ND                     | ND                | ND                  | ND           | 11       | 28       | 5.2                                      | 10       | ND                             | ND             |
|       | Taos County                    | 29,979                   | ND                  | ND                     | ND                | ND                  | ND           | 10       | 36       | ND                                       | ND       | ND                             | ND             |
|       | Valencia County                | 66,152                   | ND                  | ND                     | ND                | 0.08                | 0.07         | ND       | ND       | ND                                       | ND       | ND                             | ND             |
|       | Albany County                  | 294,565                  | 1                   | ND                     | ND                | 0.08                | 0.07         | ND       | ND       | 12.3                                     | 30       | 0.004                          | 0.020          |
|       | Bronx County                   | 1,332,650                | 4                   | ND                     | 0.032             | 0.10                | 0.07         | 23       | 57       | 16.6                                     | 44       | 0.011                          | 0.042          |
| NY    | Broome County                  | 200,536                  | ND                  | ND                     | ND                | ND                  | ND           | ND       | ND       | IN                                       | IN       | ND                             | ND             |
| NY    | Chautauqua County              | 139,750                  | ND                  | ND                     | ND                | 0.11                | 0.09         | 14       | 32       | IN                                       | IN       | 0.008                          | 0.065          |
| NY    | Chemung County                 | 91,070                   | ND                  | ND                     | ND                | 0.09                | 0.07         | ND       | ND       | ND                                       | ND       | 0.003                          | 0.012          |
|       | Columbia County                | 63,094                   | ND                  | ND                     | ND                | ND                  | ND           | IN       | 29       | ND                                       | ND       | ND                             | ND             |
| NY    | Dutchess County                | 280,150                  | ND                  | ND                     | ND                | 0.11                | 0.08         | ND       | ND       | 11.3                                     | 33       | ND                             | ND             |
| NY    | Erie County                    | 950,265                  | 2                   | ND                     | 0.022             | 0.11                | 0.09         | ND       | ND       | 16.1                                     | 33       | 0.010                          | 0.051          |
|       | Essex County                   | 38,851                   | ND                  | ND                     | ND                | 0.09                | 0.08         | IN       | 21       | 5.5                                      | 18       | 0.002                          | 0.006          |
| NY    | Hamilton County                | 5,379                    | ND                  | ND                     | ND                | 0.09                | 0.07         | ND       | ND       | ND                                       | ND       | 0.002                          | 0.008          |
|       | Herkimer County                | 64,427                   | ND                  | ND                     | ND                | 0.08                | 0.07         | 9        | 23       | ND                                       | ND       | 0.001                          | 0.007          |
|       | Jefferson County               | 111,738                  | ND                  | ND                     | ND                | 0.08                | 0.07         | ND       | ND       | ND                                       | ND       | ND                             | ND             |
|       | Kings County                   | 2,465,326                | 4                   | ND                     | ND                | ND                  | ND           | IN       | IN       | 16.2                                     | 44       | IN                             | 0.000          |
|       | Madison County                 | 69,441                   | ND                  | ND                     | ND                | 0.08                | 0.07         | ND       | ND       | ND                                       | ND       | 0.002                          | 0.012          |
|       | Monroe County                  | 735,343                  | 3                   | ND                     | ND                | 0.08                | 0.07         | ND       | ND       | 11.8                                     | 28       | 0.006                          | 0.021          |
|       | Nassau County                  | 1,334,544                | 3                   | ND                     | 0.024             | ND                  | ND           | 17       | 38       | 12.2                                     | 36       | 0.006                          | 0.025          |
|       | New York County                | 1,537,195                | 4                   | ND                     | 0.038             | 0.07                | 0.06         | 22       | 49       | 18.4                                     | 48       | 0.013                          | 0.046          |
|       | Niagara County                 | 219,846                  | 2                   | 0.02                   | ND                | 0.10                | 0.08         | IN       | 31       | IN                                       | IN       | 0.005                          | 0.017          |
| NY    | Oneida County                  | 235,469                  | ND                  | ND                     | ND                | 0.08                | 0.07         | ND       | ND       | 11.8                                     | 34       | ND                             | ND             |

| State | County              | CO<br>2000<br>Population | Pb<br>8-hr<br>(ppm) | NO₂<br>QMax<br>(µg/m³) | O₃<br>AM<br>(ppm) | O₃<br>1-hr<br>(ppm) |      | PM <sub>10</sub><br>Wtd AM<br>(µg/m³) |    |      |    | SO₂<br>AM<br>(ppm) | 24-hr<br>(ppm) |
|-------|---------------------|--------------------------|---------------------|------------------------|-------------------|---------------------|------|---------------------------------------|----|------|----|--------------------|----------------|
| NY    | Onondaga County     | 458,336                  | 2                   | ND                     | ND                | 0.08                | 0.07 | ND                                    | ND | IN   | IN | 0.003              | 0.022          |
| NY    | Orange County       | 341,367                  | ND                  | 0.18                   | ND                | 0.10                | 0.08 | ND                                    | ND | IN   | IN | ND                 | ND             |
| NY    | Putnam County       | 95,745                   | ND                  | ND                     | ND                | 0.10                | 0.08 | ND                                    | ND | ND   | ND | 0.003              | 0.015          |
| NY    | Queens County       | 2,229,379                | 3                   | ND                     | 0.030             | 0.11                | 0.08 | ND                                    | ND | 14.1 | 43 | 0.007              | 0.025          |
| NY    | Rensselaer County   | 152,538                  | ND                  | ND                     | ND                | ND                  | ND   | ND                                    | ND | ND   | ND | 0.002              | 0.010          |
| NY    | Richmond County     | 443,728                  | ND                  | 0.02                   | ND                | 0.12                | 0.09 | IN                                    | 46 | 14.3 | 42 | IN                 | 0.028          |
| NY    | St. Lawrence County | 111,931                  | ND                  | ND                     | ND                | ND                  | ND   | ND                                    | ND | 7.3  | 22 | ND                 | ND             |
|       | Saratoga County     | 200,635                  | ND                  | ND                     | ND                | 0.09                | 0.07 | ND                                    | ND | ND   | ND | ND                 | ND             |
| NY    | Schenectady County  | 146,555                  | 3                   | ND                     | ND                | 0.08                | 0.06 | ND                                    | ND | 10.8 | 26 | 0.004              | 0.016          |
| NY    | Steuben County      | 98,726                   | ND                  | ND                     | ND                | ND                  | ND   | ND                                    | ND | 9.1  | 31 | ND                 | ND             |
| NY    | Suffolk County      | 1,419,369                | 3                   | ND                     | 0.017             | 0.13                | 0.09 | ND                                    | ND | IN   | IN | 0.007              | 0.023          |
| NY    | Ulster County       | 177,749                  | ND                  | ND                     | ND                | 0.09                | 0.08 | 10                                    | 29 | ND   | ND | 0.002              | 0.009          |
| NY    | Wayne County        | 93,765                   | ND                  | ND                     | ND                | 0.09                | 0.07 | ND                                    | ND | ND   | ND | ND                 | ND             |
| NY    | Westchester County  | 923,459                  | ND                  | ND                     | ND                | 0.11                | 0.08 | ND                                    | ND | IN   | IN | ND                 | ND             |
|       | Alamance County     | 130,800                  | ND                  | ND                     | ND                | ND                  | ND   | ND                                    | ND | 15.4 | IN | ND                 | ND             |
| NC    | Alexander County    | 33,603                   | ND                  | ND                     | ND                | 0.11                | 0.09 | ND                                    | ND | ND   | ND | ND                 | ND             |
| NC    | Avery County        | 17,167                   | ND                  | ND                     | ND                | 0.09                | 0.08 | ND                                    | ND | ND   | ND | ND                 | ND             |
| NC    | Beaufort County     | 44,958                   | ND                  | ND                     | ND                | ND                  | ND   | ND                                    | ND | ND   | ND | 0.004              | 0.020          |
| NC    | Buncombe County     | 206,330                  | ND                  | ND                     | ND                | 0.11                | 0.09 | 18                                    | 38 | 15.1 | IN | ND                 | ND             |
| NC    | Cabarrus County     | 131,063                  | ND                  | ND                     | ND                | ND                  | ND   | 21                                    | 40 | 16.5 | IN | ND                 | ND             |
| NC    | Caldwell County     | 77,415                   | ND                  | ND                     | ND                | 0.10                | 0.09 | ND                                    | ND | ND   | ND | ND                 | ND             |
| NC    | Camden County       | 6,885                    | ND                  | ND                     | ND                | 0.08                | 0.07 | ND                                    | ND | ND   | ND | ND                 | ND             |
| NC    | Caswell County      | 23,501                   | ND                  | ND                     | ND                | 0.12                | 0.09 | ND                                    | ND | 14.9 | 46 | ND                 | ND             |
| NC    | Catawba County      | 141,685                  | ND                  | ND                     | ND                | ND                  | ND   | 22                                    | 42 | 17.4 | 38 | ND                 | ND             |
| NC    | Chatham County      | 49,329                   | ND                  | ND                     | ND                | 0.10                | 0.08 | ND                                    | ND | 13.3 | 32 | ND                 | ND             |
| NC    | Cumberland County   | 302,963                  | 4                   | ND                     | ND                | 0.11                | 0.09 | IN                                    | 52 | 16.2 | 67 | ND                 | ND             |
| NC    | Davidson County     | 147,246                  | ND                  | ND                     | ND                | ND                  | ND   | 21                                    | 41 | 17.8 | 38 | ND                 | ND             |
| NC    | Davie County        | 34,835                   | ND                  | ND                     | ND                | 0.11                | 0.10 | ND                                    | ND | ND   | ND | 0.004              | 0.018          |
| NC    | Duplin County       | 49,063                   | ND                  | ND                     | ND                | 0.10                | 0.08 | ND                                    | ND | 13.1 | 32 | ND                 | ND             |
| NC    | Durham County       | 223,314                  | 1                   | ND                     | ND                | 0.12                | 0.09 | 23                                    | 43 | 15.8 | 40 | ND                 | ND             |
| NC    | Edgecombe County    | 55,606                   | ND                  | ND                     | ND                | 0.11                | 0.09 | 20                                    | 41 | 14.7 | 35 | ND                 | ND             |
| NC    | Forsyth County      | 306,067                  | 4                   | ND                     | 0.018             | 0.11                | 0.09 | 22                                    | 51 | 16.5 | 35 | 0.005              | 0.019          |
| NC    | Franklin County     | 47,260                   | ND                  | ND                     | ND                | 0.11                | 0.09 | ND                                    | ND | ND   | ND | ND                 | ND             |
| NC    | Gaston County       | 190,365                  | ND                  | ND                     | ND                | ND                  | ND   | 21                                    | 37 | 16.0 | 37 | ND                 | ND             |
| NC    | Granville County    | 48,498                   | 1                   | ND                     | ND                | 0.11                | 0.09 | ND                                    | ND | ND   | ND | ND                 | ND             |
| NC    | Guilford County     | 421,048                  | 3                   | ND                     | ND                | 0.12                | 0.09 | 24                                    | 44 | 16.8 | 37 | ND                 | ND             |
| NC    | Harnett County      | 91,025                   | ND                  | ND                     | ND                | ND                  | ND   | 28                                    | 52 | ND   | ND | ND                 | ND             |
| NC    | Haywood County      | 54,033                   | ND                  | ND                     | ND                | 0.10                | 0.09 | 26                                    | 47 | 14.8 | 33 | ND                 | ND             |
| NC    | Henderson County    | 89,173                   | ND                  | ND                     | ND                | ND                  | ND   | 23                                    | 44 | ND   | ND | ND                 | ND             |
| NC    | Jackson County      | 33,121                   | ND                  | ND                     | ND                | 0.10                | 0.09 | ND                                    | ND | IN   | IN | ND                 | ND             |
| NC .  | Johnston County     | 121,965                  | ND                  | ND                     | ND                | 0.12                | 0.08 | ND                                    | ND | ND   | ND | ND                 | ND             |
| NC    | Lenoir County       | 59,648                   | ND                  | ND                     | ND                | 0.10                | 0.08 | ND                                    | ND | 12.7 | 32 | ND                 | ND             |
| NC    | Lincoln County      | 63,780                   | ND                  | ND                     | ND                | 0.11                | 0.09 | ND                                    | ND | ND   | ND | 0.004              | 0.018          |
| NC    | McDowell County     | 42,151                   | ND                  | ND                     | ND                | ND                  | ND   | 22                                    | 45 | 16.4 | 39 | ND                 | ND             |
| NC    | Martin County       | 25,593                   | ND                  | ND                     | ND                | 0.10                | 0.08 | ND                                    | ND | ND   | ND | ND                 | ND             |
| NC    | Mecklenburg County  | 695,454                  | 5                   | ND                     | 0.018             | 0.14                | 0.10 | 31                                    | 62 | 17.2 | 34 | 0.004              | 0.017          |
|       | Mitchell County     | 15,687                   | ND                  | ND                     | ND                | ND                  | ND   | 27                                    | 50 | 16.3 | 37 | ND                 | ND             |
|       | Montgomery County   | 26,822                   | ND                  | ND                     | ND                | ND                  | ND   | ND                                    | ND | IN   | IN | ND                 | ND             |
|       | New Hanover County  | 160,307                  | 4                   | ND                     | ND                | 0.10                | 0.08 | 17                                    | 36 | 12.5 | 32 | 0.006              | 0.030          |
|       | Northampton County  | 22,086                   | ND                  | ND                     | ND                | 0.10                | 0.08 | ND                                    | ND | ND   | ND | 0.004              | 0.012          |
|       | Onslow County       | 150,355                  | ND                  | ND                     | ND                | ND                  | ND   | 17                                    | 32 | 12.3 | 34 | ND                 | ND             |
|       | Orange County       | 118,227                  | IN                  | ND                     | ND                | ND                  | ND   | ND                                    | ND | 14.4 | 30 | ND                 | ND             |
|       | Pasquotank County   | 34,897                   | ND                  | ND                     | ND                | ND                  | ND   | 17                                    | 34 | IN   | IN | ND                 | ND             |
|       | Person County       | 35,623                   | ND                  | ND                     | ND                | 0.10                | 0.08 | ND                                    | ND | ND   | ND | ND                 | ND             |
|       | Pitt County         | 133,798                  | ND                  | ND                     | ND                | 0.11                | 0.08 | 19                                    | 36 | 13.9 | 41 | 0.003              | 0.007          |
|       |                     |                          |                     |                        |                   |                     |      |                                       |    |      |    |                    |                |

| State | County             | CO<br>2000<br>Population | Pb<br>8-hr<br>(ppm) | NO₂<br>QMax<br>(µg/m³) | O <sub>3</sub><br>AM<br>(ppm) | O₃<br>1-hr<br>(ppm) |      | PM <sub>10</sub><br>Wtd AM<br>(µg/m³) | 24-hr |      |    | SO <sub>2</sub><br>AM<br>(ppm) | 24-hr<br>(ppm) |
|-------|--------------------|--------------------------|---------------------|------------------------|-------------------------------|---------------------|------|---------------------------------------|-------|------|----|--------------------------------|----------------|
| NC    | Rockingham County  | 91,928                   | ND                  | ND                     | ND                            | 0.10                | 0.08 | ND                                    | ND    | ND   | ND | ND                             | ND             |
| NC    | Rowan County       | 130,340                  | 1                   | ND                     | ND                            | 0.12                | 0.10 | ND                                    | ND    | ND   | ND | ND                             | ND             |
| NC    | Swain County       | 12,968                   | ND                  | ND                     | ND                            | 0.08                | 0.07 | 19                                    | 33    | 14.1 | 38 | ND                             | ND             |
| NC    | Union County       | 123,677                  | ND                  | ND                     | ND                            | 0.10                | 0.09 | ND                                    | ND    | ND   | ND | ND                             | ND             |
| NC    | Wake County        | 627,846                  | 5                   | ND                     | ND                            | 0.12                | 0.09 | 23                                    | 51    | 16.5 | 52 | ND                             | ND             |
| NC    | Wayne County       | 113,329                  | ND                  | ND                     | ND                            | ND                  | ND   | 21                                    | 40    | 15.8 | 40 | ND                             | ND             |
| NC    | Yancey County      | 17,774                   | ND                  | ND                     | ND                            | 0.11                | 0.09 | ND                                    | ND    | ND   | ND | ND                             | ND             |
| ND    | Billings County    | 888                      | ND                  | ND                     | ND                            | 0.07                | 0.06 | ND                                    | ND    | IN   | IN | 0.001                          | 0.004          |
| ND    | Burke County       | 2,242                    | ND                  | ND                     | 0.003                         | ND                  | ND   | IN                                    | 49    | 5.9  | 12 | 0.002                          | 0.011          |
| ND    | Burleigh County    | 69,416                   | ND                  | ND                     | ND                            | ND                  | ND   | ND                                    | ND    | 6.6  | 14 | ND                             | ND             |
| ND    | Cass County        | 123,138                  | ND                  | ND                     | 0.007                         | 0.07                | 0.06 | 17                                    | 39    | 8.2  | 29 | 0.001                          | 0.003          |
| ND    | Dunn County        | 3,600                    | ND                  | ND                     | 0.003                         | IN                  | IN   | ND                                    | ND    | ND   | ND | 0.001                          | 0.008          |
| ND    | Grand Forks County | 66,109                   | ND                  | ND                     | ND                            | ND                  | ND   | ND                                    | ND    | 8.2  | 25 | ND                             | ND             |
| ND    | McKenzie County    | 5,737                    | ND                  | ND                     | ND                            | ND                  | ND   | 6                                     | 17    | ND   | ND | 0.002                          | 0.011          |
| ND    | McLean County      | 9,311                    | ND                  | ND                     | ND                            | ND                  | ND   | 8                                     | 20    | ND   | ND | 0.002                          | 0.007          |
| ND    | Mercer County      | 8,644                    | ND                  | ND                     | 0.004                         | 0.06                | 0.05 | ND                                    | ND    | 6.2  | 12 | 0.003                          | 0.016          |
| ND    | Morton County      | 25,303                   | ND                  | ND                     | ND                            | ND                  | ND   | ND                                    | ND    | ND   | ND | 0.006                          | 0.053          |
| ND    | Oliver County      | 2,065                    | ND                  | ND                     | 0.003                         | 0.06                | 0.06 | ND                                    | ND    | ND   | ND | 0.002                          | 0.011          |
| ND    | Stark County       | 22,636                   | ND                  | ND                     | ND                            | ND                  | ND   | ND                                    | ND    | 5.4  | 10 | ND                             | ND             |
| ND    | Steele County      | 2,258                    | ND                  | ND                     | 0.003                         | 0.07                | 0.06 | ND                                    | ND    | 6.8  | 21 | 0.001                          | 0.002          |
| ND    | Williams County    | 19,761                   | ND                  | ND                     | ND                            | ND                  | ND   | ND                                    | ND    | ND   | ND | 0.003                          | 0.020          |
| OH .  | Adams County       | 27,330                   | ND                  | ND                     | ND                            | ND                  | ND   | ND                                    | ND    | ND   | ND | 0.007                          | 0.029          |
| OH .  | Allen County       | 108,473                  | ND                  | ND                     | ND                            | 0.10                | 0.09 | IN                                    | 42    | ND   | ND | 0.003                          | 0.015          |
| OH .  | Ashtabula County   | 102,728                  | ND                  | ND                     | ND                            | 0.11                | 0.08 | ND                                    | ND    | ND   | ND | 0.005                          | 0.021          |
| OH .  | Athens County      | 62,223                   | ND                  | ND                     | ND                            | ND                  | ND   | IN                                    | 39    | IN   | IN | ND                             | ND             |
| OH    | Belmont County     | 70,226                   | ND                  | ND                     | ND                            | ND                  | ND   | 28                                    | 62    | ND   | ND | 0.010                          | 0.043          |
| OH    | Butler County      | 332,807                  | ND                  | 0.01                   | ND                            | 0.10                | 0.08 | 32                                    | 69    | 17.0 | 38 | 0.006                          | 0.023          |
| OH    | Clark County       | 144,742                  | ND                  | ND                     | ND                            | 0.11                | 0.09 | ND                                    | ND    | IN   | IN | 0.004                          | 0.018          |
| OH    | Clermont County    | 177,977                  | ND                  | ND                     | ND                            | 0.11                | 0.09 | ND                                    | ND    | ND   | ND | 0.005                          | 0.029          |
| OH    | Clinton County     | 40,543                   | ND                  | ND                     | ND                            | 0.11                | 0.10 | ND                                    | ND    | ND   | ND | ND                             | ND             |
| OH    | Columbiana County  | 112,075                  | ND                  | ND                     | ND                            | ND                  | ND   | IN                                    | 128   | ND   | ND | IN                             | 0.037          |
| OH    | Cuyahoga County    | 1,393,978                | 8                   | 0.20                   | 0.023                         | 0.10                | 0.08 | 43                                    | 122   | 19.8 | 46 | 0.007                          | 0.035          |
| OH    | Delaware County    | 109,989                  | ND                  | ND                     | ND                            | 0.10                | 0.08 | ND                                    | ND    | ND   | ND | ND                             | ND             |
| OH    | Franklin County    | 1,068,978                | 3                   | 0.03                   | ND                            | 0.11                | 0.08 | 34                                    | 73    | 18.5 | IN | 0.004                          | 0.019          |
| OH    | Fulton County      | 42,084                   | ND                  | 0.33                   | ND                            | ND                  | ND   | ND                                    | ND    | ND   | ND | ND                             | ND             |
| OH    | Geauga County      | 90,895                   | ND                  | ND                     | ND                            | 0.11                | 0.09 | ND                                    | ND    | ND   | ND | ND                             | ND             |
| OH    | Greene County      | 147,886                  | ND                  | ND                     | ND                            | 0.11                | 0.08 | 21                                    | 46    | ND   | ND | ND                             | ND             |
| OH    | Hamilton County    | 845,303                  | 2                   | ND                     | 0.022                         | 0.11                | 0.09 | 32                                    | 70    | 19.7 | 44 | 0.007                          | 0.031          |
| OH    | Hancock County     | 71,295                   | ND                  | ND                     | ND                            | ND                  | ND   | IN                                    | 41    | ND   | ND | ND                             | ND             |
| OH .  | Jefferson County   | 73,894                   | 5                   | ND                     | ND                            | 0.10                | 0.08 | 31                                    | 70    | 19.1 | 47 | 0.010                          | 0.045          |
| OH    | Knox County        | 54,500                   | ND                  | ND                     | ND                            | 0.10                | 0.09 | ND                                    | ND    | ND   | ND | ND                             | ND             |
| OH    | Lake County        | 227,511                  | 1                   | ND                     | ND                            | 0.11                | 0.08 | 21                                    | 46    | 13.8 | 40 | 0.009                          | 0.040          |
| OH    | Lawrence County    | 62,319                   | ND                  | ND                     | ND                            | 0.09                | 0.08 | 23                                    | 41    | 17.0 | IN | 0.005                          | 0.025          |
| OH    | Licking County     | 145,491                  | ND                  | ND                     | ND                            | 0.11                | 0.09 | IN                                    | IN    | ND   | ND | ND                             | ND             |
| OH    | Logan County       | 46,005                   | ND                  | 0.24                   | ND                            | ND                  | ND   | ND                                    | ND    | ND   | ND | ND                             | ND             |
| OH    | Lorain County      | 284,664                  | ND                  | ND                     | ND                            | IN                  | IN   | 29                                    | 52    | 15.1 | IN | 0.003                          | 0.021          |
| OH    | Lucas County       | 455,054                  | ND                  | ND                     | ND                            | 0.10                | 0.08 | 23                                    | 60    | IN   | IN | 0.005                          | 0.017          |
|       | Madison County     | 40,213                   | ND                  | ND                     | ND                            | 0.12                | 0.09 | ND                                    | ND    | ND   | ND | ND                             | ND             |
|       | Mahoning County    | 257,555                  | ND                  | ND                     | ND                            | 0.10                | 0.08 | 27                                    | 55    | 15.9 | 35 | 0.007                          | 0.024          |
| OH    | Medina County      | 151,095                  | ND                  | ND                     | ND                            | 0.10                | 0.08 | ND                                    | ND    | ND   | ND | ND                             | ND             |
| OH    | Meigs County       | 23,072                   | ND                  | ND                     | ND                            | ND                  | ND   | ND                                    | ND    | ND   | ND | 0.006                          | 0.034          |
| OH    | Miami County       | 98,868                   | ND                  | ND                     | ND                            | 0.10                | 0.08 | ND                                    | ND    | ND   | ND | ND                             | ND             |
| OH    | Monroe County      | 15,180                   | ND                  | ND                     | ND                            | ND                  | ND   | 25                                    | 48    | ND   | ND | ND                             | ND             |
| OH    | Montgomery County  | 559,062                  | 3                   | ND                     | ND                            | 0.09                | 0.08 | 32                                    | 64    | 18.0 | 43 | 0.004                          | 0.016          |
| OH    | Morgan County      | 14,897                   | ND                  | ND                     | ND                            | ND                  | ND   | ND                                    | ND    | ND   | ND | 0.006                          | 0.040          |
| ОН    | Ottawa County      | 40,985                   | ND                  | ND                     | ND                            | ND                  | ND   | 24                                    | 43    | ND   | ND | ND                             | ND             |

| State | County              | CO<br>2000<br>Population | Pb<br>8-hr<br>(ppm) | NO <sub>2</sub><br>QMax<br>(µg/m³) | O₃<br>AM<br>(ppm) | O₃<br>1-hr<br>(ppm) |      | PM <sub>10</sub><br>Wtd AM<br>(µg/m³) |     |           |          | SO <sub>2</sub><br>AM<br>(ppm) | 24-hr<br>(ppm) |
|-------|---------------------|--------------------------|---------------------|------------------------------------|-------------------|---------------------|------|---------------------------------------|-----|-----------|----------|--------------------------------|----------------|
| ОН    | Portage County      | 152,061                  | ND                  | ND                                 | ND                | 0.11                | 0.09 | ND                                    | ND  | 15.6      | 36       | ND                             | ND             |
| OH    | Preble County       | 42,337                   | ND                  | ND                                 | ND                | 0.09                | 0.07 | ND                                    | ND  | IN        | IN       | ND                             | ND             |
| OH    | Richland County     | 128,852                  | ND                  | ND                                 | ND                | ND                  | ND   | IN                                    | 53  | ND        | ND       | ND                             | ND             |
| OH    | Sandusky County     | 61,792                   | ND                  | ND                                 | ND                | ND                  | ND   | 25                                    | 46  | ND        | ND       | ND                             | ND             |
| OH    | Scioto County       | 79,195                   | ND                  | ND                                 | ND                | ND                  | ND   | 29                                    | 59  | 15.6      | IN       | 0.007                          | 0.024          |
| OH    | Seneca County       | 58,683                   | ND                  | ND                                 | ND                | ND                  | ND   | 22                                    | 100 | ND        | ND       | ND                             | ND             |
| OH    | Stark County        | 378,098                  | 3                   | ND                                 | ND                | 0.10                | 0.09 | 24                                    | 49  | 18.6      | 40       | 0.008                          | 0.028          |
| OH    | Summit County       | 542,899                  | 3                   | ND                                 | ND                | 0.11                | 0.08 | 22                                    | 53  | 16.8      | 36       | 0.009                          | 0.044          |
| OH    | Trumbull County     | 225,116                  | ND                  | ND                                 | ND                | 0.09                | 0.08 | 24                                    | 50  | 15.5      | IN       | ND                             | ND             |
| OH    | Tuscarawas County   | 90,914                   | ND                  | ND                                 | ND                | ND                  | ND   | ND                                    | ND  | ND        | ND       | 0.006                          | 0.031          |
|       | Warren County       | 158,383                  | ND                  | ND                                 | ND                | 0.11                | 0.09 | ND                                    | ND  | ND        | ND       | ND                             | ND             |
|       | Washington County   | 63,251                   | ND                  | ND                                 | ND                | 0.10                | 0.08 | IN                                    | 75  | ND        | ND       | ND                             | ND             |
| OH    | Wood County         | 121,065                  | ND                  | ND                                 | ND                | 0.09                | 0.08 | ND                                    | ND  | ND        | ND       | ND                             | ND             |
|       | Wyandot County      | 22,908                   | ND                  | ND                                 | ND                | ND                  | ND   | 29                                    | 63  | ND        | ND       | ND                             | ND             |
|       | Caddo County        | 30,150                   | ND                  | ND                                 | ND                | ND                  | ND   | ND                                    | ND  | IN        | IN       | ND                             | ND             |
|       | Canadian County     | 87,697                   | ND                  | ND                                 | ND                | ND                  | ND   | ND                                    | ND  | 10.8      | 26       | ND                             | ND             |
|       | Carter County       | 45,621                   | ND                  | ND                                 | ND                | ND                  | ND   | ND                                    | ND  | 10.2      | 24       | ND                             | ND             |
|       | Cherokee County     | 42,521                   | 1                   | ND                                 | 0.008             | 0.10                | 0.09 | ND                                    | ND  | IN        | IN       | 0.001                          | 0.004          |
|       | Cleveland County    | 208,016                  | 2                   | ND                                 | 0.011             | 0.09                | 0.08 | ND                                    | ND  | ND        | ND       | ND                             | ND             |
|       | Comanche County     | 114,996                  | 1                   | ND                                 | ND                | 0.09                | 0.09 | ND                                    | ND  | 9.1       | 19       | ND                             | ND             |
|       | Custer County       | 26,142                   | ND                  | ND                                 | ND                | ND                  | ND   | 23                                    | 50  | 9.7       | 30       | ND                             | ND             |
|       | Garfield County     | 57,813                   | ND                  | ND                                 | 0.007             | ND                  | ND   | ND                                    | ND  | 10.3      | 25       | ND                             | ND             |
|       | Jefferson County    | 6,818                    | ND                  | ND                                 | ND                | 0.10                | 0.09 | ND                                    | ND  | ND        | ND       | ND                             | ND             |
|       | Kay County          | 48,080                   | 1                   | ND                                 | 0.007             | 0.10                | 0.08 | IN                                    | 48  | 10.3      | 23       | 0.005                          | 0.020          |
|       | Latimer County      | 10,692                   | ND                  | ND                                 | IN                | 0.08                | 0.06 | ND                                    | ND  | ND        | ND       | ND                             | ND             |
|       | Lincoln County      | 32,080                   | ND                  | ND                                 | ND                | ND                  | ND   | ND                                    | ND  | IN        | IN       | ND                             | ND             |
|       | Love County         | 8,831                    | ND                  | ND                                 | ND                | 0.12                | 0.10 | ND                                    | ND  | ND        | ND       | ND                             | ND             |
|       | McClain County      | 27,740                   | ND                  | ND                                 | ND                | 0.10                | 0.08 | ND                                    | ND  | ND        | ND       | ND                             | ND             |
|       | Marshall County     | 13,184                   | ND                  | ND                                 | ND                | 0.10                | 0.09 | ND                                    | ND  | ND        | ND       | ND                             | ND             |
|       | Ma County           | 38,369                   | ND                  | ND                                 | 0.007             | ND                  | ND   | ND                                    | ND  | 11.1      | 30       | ND                             | ND             |
|       | Muskogee County     | 69,451                   | ND                  | ND                                 | 0.008             | ND                  | ND   | IN                                    | 99  | IN        | IN       | 0.003                          | 0.019          |
|       | Oklahoma County     | 660,448                  | 4                   | ND                                 | 0.013             | 0.10                | 0.09 | 26                                    | 62  | 11.5      | 29       | 0.003                          | 0.007          |
|       | Ottawa County       | 33,194                   | ND                  | ND                                 | ND                | ND                  | ND   | ND                                    | ND  | IN        | IN       | ND                             | ND             |
| OK    | Pawnee County       | 16,612                   | ND                  | ND                                 | ND                | ND                  | ND   | ND                                    | ND  | IN        | IN       | ND                             | ND             |
| OK    | Payne County        | 68,190                   | ND                  | ND                                 | ND                | ND                  | ND   | ND                                    | ND  | IN        | IN       | ND                             | ND             |
|       | Pittsburg County    | 43,953                   | ND                  | ND                                 | ND                | ND                  | ND   | IN                                    | 43  | IN        | IN       | ND                             | ND             |
| OK    | Pottawatomie County | 65,521                   | ND                  | ND                                 | ND                | ND                  | ND   | ND                                    | ND  | 10.8      | 24       | ND                             | ND             |
| OK    | Seminole County     | 24,894                   | ND                  | ND                                 | ND                | ND                  | ND   | ND                                    | ND  | IN        | IN       | ND                             | ND             |
|       | Tulsa County        | 563,299                  | 4                   | ND                                 | 0.015             | 0.12                | 0.09 | 25                                    | 58  | 12.1      | 30       | 0.006                          | 0.027          |
| OR    | Benton County       | 78,153                   | ND                  | ND                                 | ND                | ND                  | ND   | ND                                    | ND  | 8.1       | 30       | ND                             | ND             |
|       | Clackamas County    | 338,391                  | ND                  | ND                                 | ND                | 0.08                | 0.07 | IN                                    | IN  | ND        | ND       | ND                             | ND             |
|       | Columbia County     | 43,560                   | ND                  | ND                                 | ND                | 0.08                | 0.05 | ND                                    | ND  | 7.0       | 18       | ND                             | ND             |
|       | Deschutes County    | 115,367                  | 4                   | ND                                 | ND                | ND                  | ND   | IN                                    | 109 | 7.3       | 27       | ND                             | ND             |
|       | Harney County       | 7,609                    | ND                  | ND                                 | ND                | ND                  | ND   | ND                                    | ND  | IN        | IN       | ND                             | ND             |
|       | Jackson County      | 181,269                  | 5                   | ND                                 | ND                | 0.08                | 0.07 | IN                                    | 68  | 11.4      | 49       | ND                             | ND             |
|       | Josephine County    | 75,726                   | ND                  | ND                                 | ND                | ND                  | ND   | IN                                    | 40  | 8.9       | 33       | ND                             | ND             |
|       | Klamath County      | 63,775                   | IN                  | ND                                 | ND                | ND                  | ND   | IN                                    | 93  | 9.6       | 48       | ND                             | ND             |
|       | Lake County         | 7,422                    | ND                  | ND                                 | ND                | ND                  | ND   | IN                                    | 78  | 7.0       | 46       | ND                             | ND             |
|       | Lane County         | 322,959                  | 4                   | ND                                 | ND                | IN                  | IN   | IN                                    | 69  | IN        | IN<br>10 | ND                             | ND             |
|       | Linn County         | 103,069                  | ND                  | ND                                 | ND                | ND                  | ND   | ND                                    | ND  | 9.1       | 42       | ND                             | ND             |
|       | Marion County       | 284,834                  | IN                  | ND                                 | ND                | 0.07                | 0.06 | ND                                    | ND  | 8.9       | 31       | ND                             | ND             |
|       | Multnomah County    | 660,486                  | 4                   | ND                                 | 0.012             | ND                  | ND   | IN                                    | 45  | 9.6       | 31       | ND                             | ND             |
|       | Umatilla County     | 70,548                   | ND                  | ND                                 | ND                | ND                  | ND   | IN                                    | 45  | 8.9       | 37       | ND                             | ND             |
|       | Union County        | 24,530                   | ND                  | ND                                 | ND                | ND                  | ND   | IN                                    | 71  | IN<br>0.7 | IN       | ND                             | ND             |
|       | Wasco County        | 23,791                   | ND                  | ND                                 | ND                | ND                  | ND   | ND                                    | ND  | 9.7       | 30       | ND                             | ND             |
| OR    | Washington County   | 445,342                  | ND                  | ND                                 | ND                | ND                  | ND   | ND                                    | ND  | 9.9       | 34       | ND                             | ND             |

| State    | County                                 | CO<br>2000<br>Population | Pb<br>8-hr<br>(ppm) | NO <sub>2</sub><br>QMax<br>(µg/m <sup>3</sup> ) | O <sub>3</sub><br>AM<br>(ppm) | O₃<br>1-hr<br>(ppm) |              | PM <sub>10</sub><br>Wtd AM<br>(µg/m³) | 24-hr    |             |          | SO <sub>2</sub><br>AM<br>(ppm) | 24-hr<br>(ppm) |
|----------|----------------------------------------|--------------------------|---------------------|-------------------------------------------------|-------------------------------|---------------------|--------------|---------------------------------------|----------|-------------|----------|--------------------------------|----------------|
| OR       | Yamhill County                         | 84,992                   | ND                  | 0.11                                            | ND                            | ND                  | ND           | ND                                    | ND       | ND          | ND       | ND                             | ND             |
| PA       | Adams County                           | 91,292                   | 1                   | ND                                              | 0.004                         | ND                  | ND           | ND                                    | ND       | IN          | IN       | ND                             | ND             |
| PA       | Allegheny County                       | 1,281,666                | 3                   | 0.03                                            | 0.025                         | 0.11                | 0.09         | 39                                    | 124      | 20.0        | 84       | 0.011                          | 0.054          |
| PA       | Armstrong County                       | 72,392                   | ND                  | ND                                              | ND                            | 0.10                | 0.08         | ND                                    | ND       | ND          | ND       | ND                             | ND             |
| PA       | Beaver County                          | 181,412                  | 1                   | 0.07                                            | 0.017                         | 0.10                | 0.08         | IN                                    | 52       | 16.3        | IN       | 0.013                          | 0.086          |
| PA       | Berks County                           | 373,638                  | 2                   | 0.33                                            | 0.020                         | 0.11                | 0.08         | IN                                    | 45       | 16.9        | 34       | 0.008                          | 0.028          |
| PA       | Blair County                           | 129,144                  | 1                   | ND                                              | 0.014                         | 0.10                | 0.08         | IN                                    | 51       | ND          | ND       | 0.006                          | 0.045          |
| PA       | Bucks County                           | 597,635                  | 4                   | ND                                              | 0.017                         | 0.12                | 0.10         | IN                                    | 39       | IN          | IN       | 0.007                          | 0.027          |
| PA       | Cambria County                         | 152,598                  | 2                   | 0.05                                            | 0.015                         | 0.10                | 0.09         | IN                                    | 51       | 15.9        | IN       | 0.007                          | 0.026          |
| PA       | Carbon County                          | 58,802                   | ND                  | 0.11                                            | ND                            | ND                  | ND           | ND                                    | ND       | ND          | ND       | ND                             | ND             |
| PA       | Centre County                          | 135,758                  |                     | ND                                              | ND                            | 0.11                | 0.08         | ND                                    | ND       |             |          | ND                             | ND             |
| Pa<br>Pa | Chester County                         | 433,501                  | ND<br>ND            | ND<br>ND                                        | ND<br>ND                      | IN<br>0.11          | IN<br>0.08   | ND<br>ND                              | ND<br>ND | ND<br>ND    | ND<br>ND | ND<br>ND                       | ND<br>ND       |
| PA<br>PA | Clearfield County<br>Cumberland County | 83,382<br>213,674        | ND                  | ND                                              | ND                            | ND                  | 0.08<br>ND   | ND                                    | ND       | IN          | IND      | ND                             | ND             |
| PA       | Dauphin County                         | 251,798                  | 2                   | ND                                              | 0.017                         | 0.11                | 0.09         | IN                                    | 53       | 15.8        | IN       | 0.005                          | 0.024          |
| PA       | Delaware County                        | 550,864                  | ND                  | 0.05                                            | 0.017                         | 0.11                | 0.09         | IN                                    | 45       | 16.0        | 30       | 0.000                          | 0.024          |
| PA       | Erie County                            | 280,843                  | 6                   | ND                                              | 0.010                         | 0.12                | 0.08         | IN                                    | 41       | IN          | IN       | 0.008                          | 0.020          |
| PA       | Franklin County                        | 129,313                  | ND                  | ND                                              | ND                            | 0.10                | 0.09         | ND                                    | ND       | ND          | ND       | ND                             | ND             |
| PA       | Greene County                          | 40,672                   | 0                   | ND                                              | ND                            | 0.11                | 0.09         | ND                                    | ND       | ND          | ND       | 0.007                          | 0.022          |
| PA       | Lackawanna County                      | 213,295                  | 2                   | ND                                              | 0.015                         | 0.09                | 0.08         | IN                                    | 40       | 11.7        | 31       | 0.004                          | 0.021          |
| PA       | Lancaster County                       | 470,658                  | 2                   | ND                                              | 0.014                         | 0.11                | 0.09         | IN                                    | 56       | 18.4        | IN       | 0.005                          | 0.024          |
| PA       | Lawrence County                        | 94,643                   | 2                   | ND                                              | 0.019                         | 0.09                | 0.07         | IN                                    | 62       | ND          | ND       | 0.008                          | 0.031          |
| PA       | Lehigh County                          | 312,090                  | 3                   | ND                                              | 0.013                         | 0.11                | 0.09         | IN                                    | 79       | 14.5        | 37       | 0.007                          | 0.027          |
| PA       | Luzerne County                         | 319,250                  | 2                   | ND                                              | 0.014                         | 0.09                | 0.08         | IN                                    | 46       | 12.7        | 33       | 0.006                          | 0.026          |
| PA       | Lycoming County                        | 120,044                  | ND                  | ND                                              | ND                            | 0.09                | 0.07         | IN                                    | IN       | ND          | ND       | 0.005                          | 0.019          |
| PA       | Mercer County                          | 120,293                  | ND                  | ND                                              | ND                            | 0.10                | 0.08         | ND                                    | ND       | IN          | IN       | 0.007                          | 0.024          |
| PA       | Montgomery County                      | 750,097                  | 2                   | ND                                              | 0.018                         | 0.13                | 0.10         | IN                                    | 41       | IN          | IN       | 0.005                          | 0.022          |
| PA       | Northampton County                     | 267,066                  | 2                   | ND                                              | 0.017                         | 0.11                | 0.09         | IN                                    | 85       | IN          | IN       | 0.008                          | 0.023          |
| PA       | Perry County                           | 43,602                   | ND                  | ND                                              | 0.007                         | 0.10                | 0.07         | ND                                    | ND       | 12.2        | 23       | 0.003                          | 0.015          |
| PA       | Philadelphia County                    | 1,517,550                | 4                   | 0.05                                            | 0.028                         | 0.11                | 0.09         | IN                                    | IN       | IN          | IN       | 0.006                          | 0.027          |
| PA       | Schuylkill County                      | 150,336                  | 1                   | ND                                              | ND                            | ND                  | ND           | ND                                    | ND       | ND          | ND       | 0.006                          | 0.025          |
| PA       | Tioga County                           | 41,373                   | ND                  | ND                                              | ND                            | 0.10                | 0.08         | ND                                    | ND       | ND          | ND       | ND                             | ND             |
| PA       | Warren County                          | 43,863                   | ND                  | ND                                              | ND                            | ND                  | ND           | ND                                    | ND       | ND          | ND       | 0.013                          | 0.092          |
| PA       | Washington County                      | 202,897                  | 1                   | ND                                              | 0.015                         | 0.11                | 0.08         | IN                                    | 78       | 15.4        | 30       | 0.009                          | 0.031          |
| PA       | Westmoreland County                    | 369,993                  | 2<br>2              | 0.04                                            | 0.017                         | 0.10                | 0.08         | IN                                    | 45       | 16.0        | IN       | 0.010                          | 0.029          |
| PA       | York County                            | 381,751                  | ND                  | ND<br>ND                                        | 0.018                         | 0.11<br>0.12        | 0.09<br>0.09 | IN<br>12                              | 53<br>26 | 16.6        | 31<br>26 | 0.006<br>ND                    | 0.020<br>ND    |
| RI<br>RI | Kent County<br>Providence County       | 167,090<br>621,602       | ND<br>4             | ND                                              | IN<br>0.020                   | 0.12                | 0.09         | 29                                    | 20<br>91 | 8.8<br>14.9 | 20<br>36 | 0.007                          | 0.026          |
| RI       | Washington County                      | 123,546                  | ND                  | ND                                              | 0.020<br>ND                   | 0.12                | 0.00         | ND                                    | ND       | 8.8         | 21       | 0.007<br>ND                    | 0.020<br>ND    |
| SC       | Abbeville County                       | 26,167                   | ND                  | ND                                              | ND                            | 0.12                | 0.09         | ND                                    | ND       | ND          | ND       | ND                             | ND             |
| SC       | Aiken County                           | 142,552                  | ND                  | 0.01                                            | 0.005                         | 0.10                | 0.09         | 21                                    | 34       | ND          | ND       | ND                             | ND             |
|          | Anderson County                        | 165,740                  | ND                  | ND                                              | ND                            | 0.10                | 0.08         | ND                                    | ND       | ND          | ND       | ND                             | ND             |
|          | Barnwell County                        | 23,478                   | ND                  | ND                                              | 0.004                         | 0.11                | 0.09         | 21                                    | 42       | ND          | ND       | 0.002                          | 0.007          |
|          | Beaufort County                        | 120,937                  | ND                  | 0.00                                            | ND                            | ND                  | ND           | ND                                    | ND       | 12.6        | 23       | ND                             | ND             |
| SC       | Berkeley County                        | 142,651                  | ND                  | ND                                              | ND                            | 0.09                | 0.08         | ND                                    | ND       | ND          | ND       | ND                             | ND             |
| SC       | Charleston County                      | 309,969                  | 3                   | 0.02                                            | 0.011                         | 0.11                | 0.08         | 23                                    | 52       | 14.8        | 31       | 0.003                          | 0.013          |
| SC       | Cherokee County                        | 52,537                   | ND                  | ND                                              | ND                            | 0.12                | 0.09         | ND                                    | ND       | ND          | ND       | ND                             | ND             |
| SC       | Chester County                         | 34,068                   | ND                  | ND                                              | ND                            | 0.09                | 0.08         | ND                                    | ND       | ND          | ND       | ND                             | ND             |
|          | Chesterfield County                    | 42,768                   | ND                  | ND                                              | ND                            | ND                  | ND           | ND                                    | ND       | IN          | IN       | ND                             | ND             |
| SC       | Colleton County                        | 38,264                   | ND                  | ND                                              | ND                            | 0.10                | 0.08         | ND                                    | ND       | IN          | IN       | ND                             | ND             |
|          | Darlington County                      | 67,394                   | ND                  | ND                                              | ND                            | 0.11                | 0.09         | ND                                    | ND       | ND          | ND       | ND                             | ND             |
|          | Dillon County                          | 30,722                   | ND                  | 0.00                                            | ND                            | ND                  | ND           | ND                                    | ND       | ND          | ND       | ND                             | ND             |
|          | Edgefield County                       | 24,595                   | ND                  | ND                                              | ND                            | 0.09                | 0.08         | ND                                    | ND       | 14.8        | 27       | ND                             | ND             |
|          | Fairfield County                       | 23,454                   | ND                  | ND                                              | ND                            | ND                  | ND           | 23                                    | 40       | ND          | ND       | ND                             | ND             |
|          | Florence County                        | 125,761                  | ND                  | 0.01                                            | ND                            | ND                  | ND           | ND                                    | ND       | 14.4        | 25       | ND                             | ND             |
| SC       | Georgetown County                      | 55,797                   | ND                  | 0.02                                            | ND                            | ND                  | ND           | 33                                    | 72       | 15.6        | 28       | IN                             | 0.010          |

| State | County              | CO<br>2000<br>Population | Pb<br>8-hr<br>(ppm) | NO₂<br>QMax<br>(µg/m³) | O₃<br>AM<br>(ppm) | O₃<br>1-hr<br>(ppm) |      | PM <sub>10</sub><br>Wtd AM<br>(µg/m³) |     | Wtd AM |    | SO <sub>2</sub><br>AM<br>(ppm) | 24-hr<br>(ppm) |
|-------|---------------------|--------------------------|---------------------|------------------------|-------------------|---------------------|------|---------------------------------------|-----|--------|----|--------------------------------|----------------|
| SC    | Greenville County   | 379,616                  | 4                   | 0.02                   | 0.016             | IN                  | IN   | IN                                    | 54  | 16.5   | 32 | 0.003                          | 0.011          |
| SC    | Greenwood County    | 66,271                   | ND                  | 0.02                   | ND                | ND                  | ND   | ND                                    | ND  | 15.3   | 27 | ND                             | ND             |
| SC    | Hampton County      | 21,386                   | ND                  | 0.00                   | ND                | ND                  | ND   | ND                                    | ND  | ND     | ND | ND                             | ND             |
| SC    | Horry County        | 196,629                  | ND                  | 0.01                   | ND                | ND                  | ND   | ND                                    | ND  | IN     | IN | ND                             | ND             |
| SC    | Laurens County      | 69,567                   | ND                  | 0.01                   | ND                | ND                  | ND   | ND                                    | ND  | ND     | ND | ND                             | ND             |
| SC    | Lexington County    | 216,014                  | ND                  | 0.02                   | ND                | ND                  | ND   | 46                                    | 132 | 16.3   | 26 | 0.003                          | 0.014          |
|       | Oconee County       | 66,215                   | ND                  | ND                     | ND                | 0.10                | 0.08 | ND                                    | ND  | IN     | IN | 0.002                          | 0.009          |
| SC    | Pickens County      | 110,757                  | ND                  | ND                     | ND                | 0.10                | 0.08 | ND                                    | ND  | ND     | ND | ND                             | ND             |
|       | Richland County     | 320,677                  | 4                   | 0.07                   | 0.014             | 0.12                | 0.10 | 26                                    | 109 | 16.3   | 28 | 0.003                          | 0.010          |
| SC    | Spartanburg County  | 253,791                  | ND                  | 0.01                   | ND                | 0.11                | 0.09 | 24                                    | 44  | 15.4   | 31 | ND                             | ND             |
| SC    | Sumter County       | 104,646                  | ND                  | 0.01                   | ND                | ND                  | ND   | ND                                    | ND  | ND     | ND | ND                             | ND             |
|       | Union County        | 29,881                   | ND                  | ND                     | ND                | 0.09                | 0.08 | ND                                    | ND  | ND     | ND | ND                             | ND             |
|       | Williamsburg County | 37,217                   | ND                  | ND                     | ND                | 0.09                | 0.08 | ND                                    | ND  | ND     | ND | ND                             | ND             |
| SC    | York County         | 164,614                  | ND                  | 0.04                   | ND                | 0.09                | 0.08 | 28                                    | 46  | IN     | IN | ND                             | ND             |
| SD    | Brookings County    | 28,220                   | ND                  | ND                     | ND                | ND                  | ND   | 23                                    | 71  | IN     | IN | ND                             | ND             |
|       | Brown County        | 35,460                   | ND                  | ND                     | ND                | ND                  | ND   | 19                                    | 50  | IN     | IN | ND                             | ND             |
| SD    | Jackson County      | 2,930                    | ND                  | ND                     | ND                | ND                  | ND   | 12                                    | 35  | IN     | IN | ND                             | ND             |
| SD    | Minnehaha County    | 148,281                  | ND                  | ND                     | ND                | IN                  | IN   | 20                                    | 53  | IN     | IN | ND                             | ND             |
| SD    | Pennington County   | 88,565                   | ND                  | ND                     | ND                | IN                  | IN   | 38                                    | 139 | IN     | IN | ND                             | ND             |
| ΤN    | Anderson County     | 71,330                   | ND                  | ND                     | ND                | 0.11                | 0.09 | ND                                    | ND  | ND     | ND | 0.004                          | 0.018          |
| ΤN    | Blount County       | 105,823                  | ND                  | ND                     | IN                | 0.11                | 0.10 | ND                                    | ND  | IN     | IN | 0.010                          | 0.060          |
| ΤN    | Bradley County      | 87,965                   | ND                  | ND                     | 0.014             | ND                  | ND   | 33                                    | 105 | ND     | ND | 0.008                          | 0.026          |
| ΤN    | Davidson County     | 569,891                  | 6                   | ND                     | 0.019             | 0.11                | 0.08 | 34                                    | 65  | IN     | IN | 0.004                          | 0.017          |
| ΤN    | Dickson County      | 43,156                   | ND                  | ND                     | IN                | IN                  | IN   | ND                                    | ND  | ND     | ND | IN                             | 0.012          |
| ΤN    | Dyer County         | 37,279                   | ND                  | ND                     | ND                | ND                  | ND   | ND                                    | ND  | IN     | IN | ND                             | ND             |
| ΤN    | Greene County       | 62,909                   | ND                  | ND                     | ND                | ND                  | ND   | IN                                    | 66  | ND     | ND | ND                             | ND             |
| ΤN    | Hamilton County     | 307,896                  | ND                  | ND                     | ND                | 0.12                | 0.10 | 30                                    | 67  | IN     | IN | ND                             | ND             |
| ΤN    | Hawkins County      | 53,563                   | ND                  | ND                     | ND                | ND                  | ND   | ND                                    | ND  | ND     | ND | 0.007                          | 0.043          |
| ΤN    | Haywood County      | 19,797                   | ND                  | ND                     | ND                | 0.12                | 0.09 | ND                                    | ND  | ND     | ND | ND                             | ND             |
| ΤN    | Humphreys County    | 17,929                   | ND                  | ND                     | ND                | ND                  | ND   | ND                                    | ND  | ND     | ND | 0.004                          | 0.025          |
| ΤN    | Jefferson County    | 44,294                   | ND                  | ND                     | ND                | 0.12                | 0.10 | ND                                    | ND  | ND     | ND | ND                             | ND             |
| ΤN    | Knox County         | 382,032                  | 3                   | 0.00                   | 0.013             | 0.13                | 0.10 | 30                                    | 73  | IN     | IN | 0.002                          | 0.012          |
| ΤN    | Lawrence County     | 39,926                   | ND                  | ND                     | ND                | 0.09                | 0.08 | ND                                    | ND  | IN     | IN | ND                             | ND             |
| ΤN    | McMinn County       | 49,015                   | ND                  | ND                     | 0.015             | ND                  | ND   | 40                                    | 96  | IN     | IN | 0.006                          | 0.022          |
| ΤN    | Madison County      | 91,837                   | ND                  | ND                     | ND                | ND                  | ND   | 23                                    | 44  | IN     | IN | ND                             | ND             |
| ΤN    | Maury County        | 69,498                   | ND                  | ND                     | ND                | ND                  | ND   | ND                                    | ND  | IN     | IN | ND                             | ND             |
|       | Meigs County        | 11,086                   | ND                  | ND                     | ND                | 0.11                | 0.10 | ND                                    | ND  | ND     | ND | ND                             | ND             |
| ΤN    | Montgomery County   | 134,768                  | ND                  | ND                     | IN                | 0.11                | 0.09 | 23                                    | 51  | IN     | IN | 0.006                          | 0.018          |
| ΤN    | Polk County         | 16,050                   | ND                  | ND                     | ND                | ND                  | ND   | ND                                    | ND  | ND     | ND | 0.009                          | 0.023          |
| ΤN    | Putnam County       | 62,315                   | ND                  | ND                     | ND                | 0.10                | 0.09 | ND                                    | ND  | IN     | IN | ND                             | ND             |
| ΤN    | Roane County        | 51,910                   | ND                  | ND                     | 0.008             | 0.12                | 0.09 | 27                                    | 77  | IN     | IN | 0.003                          | 0.018          |
| ΤN    | Rutherford County   | 182,023                  | ND                  | ND                     | ND                | 0.10                | 0.09 | ND                                    | ND  | ND     | ND | ND                             | ND             |
| ΤN    | Sevier County       | 71,170                   | ND                  | ND                     | ND                | 0.12                | 0.10 | ND                                    | ND  | ND     | ND | ND                             | ND             |
| ΤN    | Shelby County       | 897,472                  | 4                   | 0.59                   | 0.025             | 0.12                | 0.09 | 28                                    | 71  | IN     | IN | 0.006                          | 0.038          |
| ΤN    | Stewart County      | 12,370                   | ND                  | ND                     | ND                | ND                  | ND   | ND                                    | ND  | ND     | ND | 0.002                          | 0.010          |
| TN    | Sullivan County     | 153,048                  | 2                   | 0.20                   | 0.015             | 0.13                | 0.10 | ND                                    | ND  | IN     | IN | 0.011                          | 0.043          |
| ΤN    | Sumner County       | 130,449                  | ND                  | ND                     | ND                | 0.12                | 0.09 | ND                                    | ND  | IN     | IN | 0.004                          | 0.040          |
|       | Union County        | 17,808                   | ND                  | ND                     | ND                | ND                  | ND   | 34                                    | 125 | ND     | ND | ND                             | ND             |
|       | Williamson County   | 126,638                  | ND                  | 1.50                   | ND                | 0.12                | 0.09 | ND                                    | ND  | ND     | ND | ND                             | ND             |
|       | Wilson County       | 88,809                   | ND                  | ND                     | ND                | 0.10                | 0.09 | ND                                    | ND  | ND     | ND | ND                             | ND             |
|       | Bexar County        | 1,392,931                | 3                   | ND                     | 0.018             | 0.10                | 0.08 | IN                                    | IN  | IN     | IN | ND                             | ND             |
|       | Bowie County        | 89,306                   | ND                  | ND                     | ND                | ND                  | ND   | ND                                    | ND  | 14.7   | 31 | ND                             | ND             |
|       | Brazoria County     | 241,767                  | ND                  | ND                     | ND                | 0.14                | 0.08 | ND                                    | ND  | IN     | IN | ND                             | ND             |
|       | Brewster County     | 8,866                    | ND                  | ND                     | ND                | 0.07                | 0.06 | ND                                    | ND  | ND     | ND | IN                             | 0.002          |
|       | Caldwell County     | 32,194                   | ND                  | ND                     | ND                | ND                  | ND   | ND                                    | ND  | IN     | IN | ND                             | ND             |
|       | Cameron County      | -=,                      |                     |                        |                   |                     |      |                                       |     |        |    |                                |                |

| State | County                | CO<br>2000<br>Population | Pb<br>8-hr<br>(ppm) | NO₂<br>QMax<br>(µg/m³) | O₃<br>AM<br>(ppm) | O <sub>3</sub><br>1-hr<br>(ppm) |      | PM <sub>10</sub><br>Wtd AM<br>(µg/m³) | 24-hr |      |     | SO <sub>2</sub><br>AM<br>(ppm) | 24-hr<br>(ppm) |
|-------|-----------------------|--------------------------|---------------------|------------------------|-------------------|---------------------------------|------|---------------------------------------|-------|------|-----|--------------------------------|----------------|
| тх    | Collin County         | 491,675                  | ND                  | 0.54                   | ND                | 0.12                            | 0.10 | ND                                    | ND    | 11.6 | 26  | ND                             | ND             |
| ТΧ    | Dallas County         | 2,218,899                | 2                   | 0.13                   | 0.014             | 0.13                            | 0.10 | 29                                    | 55    | 13.2 | 32  | 0.002                          | 0.005          |
| ТΧ    | Denton County         | 432,976                  | ND                  | ND                     | 0.009             | 0.12                            | 0.10 | ND                                    | ND    | ND   | ND  | ND                             | ND             |
| ТΧ    | Ector County          | 121,123                  | ND                  | ND                     | ND                | ND                              | ND   | ND                                    | ND    | IN   | IN  | ND                             | ND             |
| ТΧ    | Ellis County          | 111,360                  | ND                  | ND                     | 0.009             | 0.12                            | 0.10 | 28                                    | 58    | ND   | ND  | 0.006                          | 0.047          |
| ТΧ    | El Paso County        | 679,622                  | 9                   | 0.10                   | 0.029             | 0.12                            | 0.08 | 46                                    | 124   | 9.8  | 23  | 0.002                          | 0.006          |
| ТΧ    | Galveston County      | 250,158                  | ND                  | ND                     | 0.005             | 0.14                            | 0.09 | 27                                    | 53    | IN   | IN  | 0.004                          | 0.037          |
| ТΧ    | Gregg County          | 111,379                  | ND                  | ND                     | 0.006             | 0.13                            | 0.10 | ND                                    | ND    | 13.4 | 29  | 0.002                          | 0.011          |
| ТΧ    | Harris County         | 3,400,578                | 4                   | 0.01                   | 0.021             | 0.19                            | 0.12 | 46                                    | 102   | IN   | IN  | 0.006                          | 0.031          |
| ТΧ    | Hidalgo County        | 569,463                  | ND                  | ND                     | ND                | 0.09                            | 0.08 | IN                                    | 53    | 11.0 | 23  | ND                             | ND             |
| ТΧ    | Hood County           | 41,100                   | ND                  | ND                     | ND                | 0.10                            | 0.08 | ND                                    | ND    | ND   | ND  | ND                             | ND             |
| ТΧ    | Jefferson County      | 252,051                  | ND                  | ND                     | 0.008             | 0.16                            | 0.10 | ND                                    | ND    | IN   | 122 | 0.006                          | 0.046          |
| ТΧ    | Johnson County        | 126,811                  | ND                  | ND                     | ND                | 0.11                            | 0.08 | ND                                    | ND    | ND   | ND  | ND                             | ND             |
| ТΧ    | Kaufman County        | 71,313                   | ND                  | ND                     | 0.007             | IN                              | IN   | ND                                    | ND    | ND   | ND  | 0.002                          | 0.005          |
| ТΧ    | Lubbock County        | 242,628                  | ND                  | ND                     | ND                | ND                              | ND   | IN                                    | 38    | 7.4  | 19  | ND                             | ND             |
| ТΧ    | McLennan County       | 213,517                  | ND                  | ND                     | ND                | ND                              | ND   | ND                                    | ND    | IN   | IN  | ND                             | ND             |
| ТΧ    | Marion County         | 10,941                   | ND                  | ND                     | 0.005             | 0.12                            | 0.10 | ND                                    | ND    | 12.3 | 29  | ND                             | ND             |
|       | Montgomery County     | 293,768                  | ND                  | ND                     | 0.006             | 0.14                            | 0.10 | ND                                    | ND    | IN   | IN  | ND                             | ND             |
| ТΧ    | Nueces County         | 313,645                  | ND                  | ND                     | ND                | 0.10                            | 0.08 | 36                                    | 71    | IN   | IN  | 0.003                          | 0.017          |
| ТΧ    | Orange County         | 84,966                   | ND                  | ND                     | 0.008             | 0.12                            | 0.09 | ND                                    | ND    | IN   | IN  | ND                             | ND             |
| ТΧ    | Parker County         | 88,495                   | ND                  | ND                     | ND                | IN                              | IN   | ND                                    | ND    | ND   | ND  | ND                             | ND             |
| ТΧ    | Potter County         | 113,546                  | ND                  | ND                     | ND                | ND                              | ND   | ND                                    | ND    | IN   | IN  | ND                             | ND             |
| ТΧ    | Rockwall County       | 43,080                   | ND                  | ND                     | ND                | 0.12                            | 0.09 | ND                                    | ND    | ND   | ND  | ND                             | ND             |
| ТΧ    | Smith County          | 174,706                  | ND                  | ND                     | 0.006             | 0.10                            | 0.09 | ND                                    | ND    | ND   | ND  | ND                             | ND             |
| ТΧ    | Tarrant County        | 1,446,219                | 2                   | ND                     | 0.015             | 0.12                            | 0.10 | 23                                    | 42    | 12.7 | 29  | ND                             | ND             |
| ТΧ    | Travis County         | 812,280                  | 1                   | ND                     | 0.005             | 0.11                            | 0.09 | 23                                    | 50    | 12.1 | 27  | ND                             | ND             |
| ТΧ    | Victoria County       | 84,088                   | ND                  | ND                     | ND                | 0.09                            | 0.08 | ND                                    | ND    | ND   | ND  | ND                             | ND             |
| ТΧ    | Webb County           | 193,117                  | 6                   | 0.04                   | ND                | 0.09                            | 0.07 | 31                                    | 56    | 12.1 | 23  | ND                             | ND             |
| UT    | Box Elder County      | 42,745                   | ND                  | ND                     | ND                | ND                              | ND   | ND                                    | ND    | IN   | IN  | ND                             | ND             |
| UT    | Cache County          | 91,391                   | 3                   | ND                     | ND                | 0.08                            | 0.07 | 25                                    | 79    | IN   | IN  | ND                             | ND             |
| UT    | Davis County          | 238,994                  | 3                   | ND                     | 0.019             | 0.10                            | 0.08 | ND                                    | ND    | 9.0  | 40  | 0.002                          | 0.013          |
| UT    | Grand County          | 8,485                    | ND                  | ND                     | ND                | ND                              | ND   | 20                                    | 44    | ND   | ND  | ND                             | ND             |
| UT    | Salt Lake County      | 898,387                  | 5                   | 0.07                   | 0.026             | 0.10                            | 0.08 | 46                                    | 117   | 14.2 | 57  | 0.004                          | 0.013          |
| UT    | San Juan County       | 14,413                   | ND                  | ND                     | ND                | IN                              | IN   | ND                                    | ND    | ND   | ND  | ND                             | ND             |
| UT    | Tooele County         | 40,735                   | ND                  | ND                     | ND                | ND                              | ND   | ND                                    | ND    | 7.1  | 30  | ND                             | ND             |
| UT    | Utah County           | 368,536                  | 6                   | ND                     | 0.024             | 0.10                            | 0.08 | 32                                    | 89    | 10.1 | 34  | ND                             | ND             |
| UT    | Weber County          | 196,533                  | 6                   | ND                     | IN                | 0.09                            | 0.07 | IN                                    | IN    | 7.6  | 25  | ND                             | ND             |
| VT    | Bennington County     | 36,994                   | ND                  | ND                     | ND                | 0.09                            | 0.07 | 15                                    | 28    | 9.5  | 20  | ND                             | ND             |
| VT    | Chittenden County     | 146,571                  | 2                   | ND                     | IN                | 0.08                            | 0.07 | 12                                    | 28    | 8.3  | 17  | IN                             | 0.007          |
| VT    | Rutland County        | 63,400                   | 3                   | ND                     | 0.011             | ND                              | ND   | 18                                    | 42    | 11.1 | 24  | 0.005                          | 0.033          |
| VT    | Washington County     | 58,039                   | ND                  | ND                     | ND                | ND                              | ND   | 17                                    | 43    | 10.1 | 20  | ND                             | ND             |
| VA    | Arlington County      | 189,453                  | 3                   | ND                     | 0.023             | 0.11                            | 0.08 | ND                                    | ND    | 14.6 | 28  | ND                             | ND             |
|       | Caroline County       | 22,121                   | ND                  | ND                     | IN                | 0.10                            | 0.08 | ND                                    | ND    | ND   | ND  | ND                             | ND             |
|       | Carroll County        | 29,245                   | ND                  | ND                     | ND                | ND                              | ND   | 20                                    | 52    | ND   | ND  | ND                             | ND             |
|       | Charles City County   | 6,926                    | ND                  | ND                     | 0.011             | 0.09                            | 0.08 | ND                                    | ND    | IN   | IN  | 0.006                          | 0.017          |
|       | Chesterfield County   | 259,903                  | ND                  | ND                     | ND                | 0.10                            | 0.08 | ND                                    | ND    | 15.1 | 29  | ND                             | ND             |
| VA    | Culpeper County       | 34,262                   | ND                  | ND                     | ND                | ND                              | ND   | 18                                    | 39    | ND   | ND  | ND                             | ND             |
|       | Fairfax County        | 969,749                  | 4                   | ND                     | 0.021             | 0.11                            | 0.09 | 20                                    | 45    | 14.0 | 34  | 0.011                          | 0.030          |
|       | Fauquier County       | 55,139                   | ND                  | ND                     | ND                | 0.09                            | 0.08 | ND                                    | ND    | ND   | ND  | ND                             | ND             |
|       | Frederick County      | 59,209                   | ND                  | ND                     | ND                | 0.09                            | 0.08 | ND                                    | ND    | ND   | ND  | ND                             | ND             |
| VA    | Henrico County        | 262,300                  | ND                  | ND                     | ND                | 0.11                            | 0.08 | ND                                    | ND    | 14.6 | 30  | ND                             | ND             |
|       | King William County   | 13,146                   | ND                  | ND                     | ND                | ND                              | ND   | 18                                    | 40    | ND   | ND  | ND                             | ND             |
|       | Loudoun County        | 169,599                  | ND                  | ND                     | 0.013             | 0.09                            | 0.08 | ND                                    | ND    | 13.5 | 28  | ND                             | ND             |
|       | Madison County        | 12,520                   | ND                  | ND                     | ND                | 0.09                            | 0.08 | ND                                    | ND    | ND   | ND  | 0.003                          | 0.011          |
|       | Northumberland County | 12,259                   | ND                  | ND                     | ND                | ND                              | ND   | 18                                    | 38    | ND   | ND  | ND                             | ND             |
| VA    | Page County           | 23,177                   | ND                  | ND                     | ND                | 0.09                            | 0.08 | ND                                    | ND    | 13.2 | 25  | ND                             | ND             |

| State | County                                | CO<br>2000<br>Population | Pb<br>8-hr<br>(ppm) | NO₂<br>QMax<br>(µg/m³) | O₃<br>AM<br>(ppm) | O₃<br>1-hr<br>(ppm) |      | PM₁₀<br>Wtd AM<br>(µg/m³) |     | Wtd AM |    | SO <sub>2</sub><br>AM<br>(ppm) | 24-hr<br>(ppm) |
|-------|---------------------------------------|--------------------------|---------------------|------------------------|-------------------|---------------------|------|---------------------------|-----|--------|----|--------------------------------|----------------|
| VA    | Prince William County                 | 280,813                  | ND                  | ND                     | 0.009             | 0.09                | 0.08 | IN                        | 47  | ND     | ND | ND                             | ND             |
| VA    | Roanoke County                        | 85,778                   | ND                  | ND                     | 0.011             | 0.10                | 0.08 | ND                        | ND  | ND     | ND | 0.003                          | 0.014          |
| VA    | Rockbridge County                     | 20,808                   | ND                  | ND                     | ND                | 0.09                | 0.08 | ND                        | ND  | ND     | ND | ND                             | ND             |
| VA    | Rockingham County                     | 67,725                   | ND                  | ND                     | ND                | ND                  | ND   | 26                        | 59  | ND     | ND | 0.003                          | 0.008          |
| VA    | Stafford County                       | 92,446                   | ND                  | ND                     | ND                | 0.10                | 0.08 | ND                        | ND  | ND     | ND | ND                             | ND             |
| VA    | Warren County                         | 31,584                   | ND                  | ND                     | ND                | ND                  | ND   | 20                        | 43  | ND     | ND | ND                             | ND             |
| VA    | Wise County                           | 40,123                   | ND                  | ND                     | ND                | ND                  | ND   | IN                        | IN  | ND     | ND | ND                             | ND             |
| VA    | Wythe County                          | 27,599                   | ND                  | ND                     | ND                | 0.09                | 0.08 | ND                        | ND  | ND     | ND | ND                             | ND             |
| VA    | Alexandria city                       | 128,283                  | 3                   | ND                     | 0.023             | 0.10                | 0.08 | ND                        | ND  | ND     | ND | 0.006                          | 0.020          |
| VA    | Bristol city                          | 17,367                   | ND                  | ND                     | ND                | ND                  | ND   | ND                        | ND  | 16.4   | 29 | ND                             | ND             |
| VA    | Charlottesville city                  | 45,049                   | ND                  | ND                     | ND                | ND                  | ND   | 23                        | 70  | ND     | ND | ND                             | ND             |
| VA    | Chesapeake city                       | 199,184                  | ND                  | ND                     | ND                | ND                  | ND   | IN                        | 40  | IN     | IN | ND                             | ND             |
| VA    | Fredericksburg city                   | 19,279                   | ND                  | ND                     | ND                | ND                  | ND   | 18                        | 36  | ND     | ND | ND                             | ND             |
|       | Hampton city                          | 146,437                  | 2                   | ND                     | ND                | 0.09                | 0.08 | 20                        | 41  | IN     | IN | 0.005                          | 0.017          |
| VA    | Lynchburg city                        | 65,269                   | ND                  | ND                     | ND                | ND                  | ND   | ND                        | ND  | IN     | IN | ND                             | ND             |
| VA    | Newport News city                     | 180,150                  | ND                  | ND                     | ND                | ND                  | ND   | ND                        | ND  | 13.0   | 24 | ND                             | ND             |
| VA    | Norfolk city                          | 234,403                  | 4                   | ND                     | 0.016             | ND                  | ND   | 22                        | 39  | 13.6   | 26 | 0.007                          | 0.023          |
| VA    | Richmond city                         | 197,790                  | 3                   | ND                     | 0.017             | ND                  | ND   | IN                        | 42  | IN     | IN | 0.005                          | 0.015          |
| VA    | Roanoke city                          | 94,911                   | 3                   | ND                     | ND                | ND                  | ND   | 32                        | 66  | 15.9   | 31 | ND                             | ND             |
| VA    | Salem city                            | 24,747                   | ND                  | ND                     | ND                | ND                  | ND   | ND                        | ND  | 15.5   | 33 | ND                             | ND             |
| VA    | Suffolk city                          | 63,677                   | ND                  | ND                     | ND                | 0.10                | 0.08 | ND                        | ND  | ND     | ND | ND                             | ND             |
| VA    | Virginia Beach city                   | 425,257                  | ND                  | ND                     | ND                | ND                  | ND   | ND                        | ND  | 13.0   | 25 | ND                             | ND             |
| VA    | Winchester city                       | 23,585                   | ND                  | ND                     | ND                | ND                  | ND   | 20                        | 43  | ND     | ND | ND                             | ND             |
| WA    | Adams County                          | 16,428                   | ND                  | ND                     | ND                | ND                  | ND   | ND                        | ND  | IN     | IN | ND                             | ND             |
| WA    | Asotin County                         | 20,551                   | ND                  | ND                     | ND                | ND                  | ND   | 27                        | 59  | ND     | ND | ND                             | ND             |
| WA    | Benton County                         | 142,475                  | ND                  | ND                     | ND                | ND                  | ND   | IN                        | 140 | IN     | IN | ND                             | ND             |
| WA    | Chelan County                         | 66,616                   | ND                  | ND                     | ND                | ND                  | ND   | 20                        | 49  | ND     | ND | ND                             | ND             |
| WA    | Clallam County                        | 64,525                   | ND                  | ND                     | ND                | 0.06                | 0.05 | ND                        | ND  | 10.8   | 26 | 0.002                          | 0.005          |
| WA    | Clark County                          | 345,238                  | 6                   | ND                     | ND                | 0.07                | 0.06 | 16                        | 41  | 10.8   | 40 | ND                             | ND             |
| WA    | Cowlitz County                        | 92,948                   | ND                  | ND                     | ND                | ND                  | ND   | 21                        | 49  | ND     | ND | ND                             | ND             |
| WA    | Jefferson County                      | 25,953                   | ND                  | ND                     | ND                | ND                  | ND   | ND                        | ND  | 9.1    | 25 | ND                             | ND             |
| WA    | King County                           | 1,737,034                | 6                   | ND                     | 0.021             | 0.10                | 0.07 | 23                        | 66  | 12.7   | 36 | 0.003                          | 0.011          |
| WA    | Kittitas County                       | 33,362                   | ND                  | ND                     | ND                | ND                  | ND   | IN                        | 104 | ND     | ND | ND                             | ND             |
| WA    | Klickitat County                      | 19,161                   | ND                  | ND                     | ND                | 0.07                | 0.07 | ND                        | ND  | ND     | ND | ND                             | ND             |
|       | Lewis County                          | 68,600                   | ND                  | ND                     | ND                | IN                  | IN   | ND                        | ND  | IN     | IN | ND                             | ND             |
|       | Pierce County                         | 700,820                  | 6                   | ND                     | ND                | 0.08                | 0.06 | 28                        | 58  | 13.0   | 49 | ND                             | ND             |
|       | Skagit County                         | 102,979                  | ND                  | ND                     | ND                | 0.06                | 0.05 | ND                        | ND  | 8.2    | 18 | ND                             | ND             |
|       | Snohomish County                      | 606,024                  | 6                   | ND                     | ND                | ND                  | ND   | IN                        | 47  | 12.6   | 43 | ND                             | ND             |
| WA    | Spokane County                        | 417,939                  | 6                   | ND                     | ND                | 0.08                | 0.07 | 28                        | 87  | 11.0   | 38 | ND                             | ND             |
| WA    | Stevens County                        | 40,066                   | ND                  | ND                     | ND                | ND                  | ND   | 30                        | 137 | ND     | ND | ND                             | ND             |
|       | Thurston County                       | 207,355                  | 5                   | ND                     | ND                | 0.08                | 0.06 | 15                        | 36  | 10.3   | 41 | ND                             | ND             |
| WA    | Walla Walla County                    | 55,180                   | ND                  | ND                     | ND                | ND                  | ND   | 29                        | 108 | ND     | ND | ND                             | ND             |
|       | Whatcom County                        | 166,814                  | ND                  | ND                     | ND                | 0.06                | 0.05 | 15                        | 29  | 8.4    | 21 | ND                             | ND             |
|       | Whitman County                        | 40,740                   | ND                  | ND                     | ND                | ND                  | ND   | ND                        | ND  | 6.8    | 19 | ND                             | ND             |
| WA    | Yakima County                         | 222,581                  | 3                   | ND                     | ND                | ND                  | ND   | 27                        | 58  | IN     | IN | ND                             | ND             |
| WV    | Berkeley County                       | 75,905                   | ND                  | ND                     | ND                | ND                  | ND   | 24                        | 68  | 16.1   | 46 | ND                             | ND             |
|       | Brooke County                         | 25,447                   | ND                  | ND                     | ND                | ND                  | ND   | 26                        | 54  | 16.6   | 35 | 0.013                          | 0.060          |
|       | Cabell County                         | 96,784                   | ND                  | ND                     | ND                | 0.09                | 0.08 | 24                        | 60  | 17.6   | 40 | 0.006                          | 0.028          |
|       | Greenbrier County                     | 34,453                   | ND                  | ND                     | ND                | 0.09                | 0.08 | ND                        | ND  | ND     | ND | ND                             | ND             |
|       | Hancock County                        | 32,667                   | 8                   | ND                     | ND                | 0.09                | 0.07 | 31                        | 95  | 16.5   | 45 | 0.014                          | 0.069          |
|       | Harrison County                       | 68,652                   | ND                  | ND                     | ND                | ND                  | ND   | 20                        | 43  | 14.9   | 31 | ND                             | ND             |
|       | Kanawha County                        | 200.073                  | ND                  | ND                     | ND                | 0.09                | 0.09 | 27                        | 50  | 18.1   | 37 | 0.012                          | 0.046          |
|       | Marion County                         | 56,598                   | ND                  | ND                     | ND                | ND                  | ND   | 23                        | 54  | 15.9   | IN | ND                             | ND             |
|       | Marshall County                       | 35,519                   | ND                  | ND                     | ND                | ND                  | ND   | IN                        | 43  | 16.3   | 33 | 0.013                          | 0.044          |
|       | Mercer County                         | 62,980                   | ND                  | ND                     | ND                | ND                  | ND   | 22                        | 48  | 13.5   | 33 | ND                             | ND             |
|       | · · · · · · · · · · · · · · · · · · · | ,•                       |                     |                        |                   |                     |      |                           |     |        |    |                                |                |

### Table A-14. Maximum Air Quality Concentrations by County, 2000 (continued)

| State | County                | CO<br>2000<br>Population | Pb<br>8-hr<br>(ppm) | NO <sub>2</sub><br>QMax<br>(µg/m <sup>3</sup> ) | O₃<br>AM<br>(ppm) | O₃<br>1-hr<br>(ppm) |      | PM₁₀<br>Wtd AM<br>(µg/m³) | 24-hr |      |    | SO₂<br>AM<br>(ppm) | 24-hr<br>(ppm) |
|-------|-----------------------|--------------------------|---------------------|-------------------------------------------------|-------------------|---------------------|------|---------------------------|-------|------|----|--------------------|----------------|
| WV    | Ohio County           | 47,427                   | 2                   | ND                                              | ND                | 0.09                | 0.07 | 23                        | 43    | 15.5 | 35 | 0.009              | 0.041          |
|       | Raleigh County        | 79,220                   | ND                  | ND                                              | ND                | ND                  | ND   | 19                        | 43    | 13.8 | 32 | ND                 | ND             |
|       | Summers County        | 12,999                   | ND                  | ND                                              | ND                | ND                  | ND   | 16                        | 41    | 10.4 | 30 | ND                 | ND             |
|       | Wayne County          | 42,903                   | ND                  | ND                                              | ND                | ND                  | ND   | ND                        | ND    | ND   | ND | 0.012              | 0.046          |
|       | Wood County           | 87,986                   | ND                  | ND                                              | ND                | 0.11                | 0.09 | 21                        | 42    | 17.5 | 36 | 0.011              | 0.036          |
| WI    | Brown County          | 226,778                  | ND                  | ND                                              | ND                | 0.09                | 0.07 | ND                        | ND    | 11.3 | 32 | 0.004              | 0.016          |
|       | Columbia County       | 52,468                   | ND                  | ND                                              | ND                | 0.09                | 0.07 | ND                        | ND    | ND   | ND | ND                 | ND             |
|       | Dane County           | 426,526                  | 2                   | ND                                              | ND                | 0.09                | 0.07 | 22                        | 57    | 13.2 | 34 | ND                 | ND             |
|       | Dodge County          | 85,897                   | ND                  | ND                                              | ND                | 0.09                | 0.07 | ND                        | ND    | 11.7 | 28 | ND                 | ND             |
|       | Door County           | 27,961                   | ND                  | ND                                              | ND                | 0.10                | 0.08 | ND                        | ND    | 7.2  | 26 | ND                 | ND             |
|       | Douglas County        | 43,287                   | ND                  | ND                                              | ND                | ND                  | ND   | 19                        | 35    | 8.2  | 24 | ND                 | ND             |
|       | Florence County       | 5,088                    | ND                  | ND                                              | ND                | 0.08                | 0.07 | ND                        | ND    | ND   | ND | ND                 | ND             |
|       | Fond du Lac County    | 97,296                   | ND                  | ND                                              | ND                | 0.08                | 0.07 | ND                        | ND    | ND   | ND | ND                 | ND             |
|       | Grant County          | 49,597                   | ND                  | ND                                              | ND                | ND                  | ND   | ND                        | ND    | 12.3 | 27 | ND                 | ND             |
|       | Green County          | 33,647                   | ND                  | ND                                              | ND                | IN                  | IN   | ND                        | ND    | ND   | ND | ND                 | ND             |
|       | Jefferson County      | 74,021                   | ND                  | ND                                              | ND                | IN                  | IN   | ND                        | ND    | 12.1 | 33 | ND                 | ND             |
|       | Kenosha County        | 149,577                  | ND                  | ND                                              | ND                | 0.10                | 0.09 | ND                        | ND    | 11.4 | 27 | ND                 | ND             |
|       | Kewaunee County       | 20,187                   | ND                  | ND                                              | ND                | 0.10                | 0.08 | ND                        | ND    | ND   | ND | ND                 | ND             |
|       | Manitowoc County      | 82,887                   | ND                  | ND                                              | ND                | 0.09                | 0.08 | ND                        | ND    | 10.1 | 30 | ND                 | ND             |
|       | Marathon County       | 125,834                  | ND                  | ND                                              | ND                | 0.08                | 0.07 | IN                        | IN    | ND   | ND | ND                 | ND             |
|       | Milwaukee County      | 940,164                  | 2                   | ND                                              | 0.021             | 0.10                | 0.08 | 20                        | 59    | 14.2 | 35 | 0.004              | 0.026          |
| WI    | Oneida County         | 36,776                   | ND                  | ND                                              | ND                | 0.07                | 0.07 | ND                        | ND    | ND   | ND | 0.006              | 0.075          |
| WI    | Outagamie County      | 160,971                  | ND                  | ND                                              | ND                | 0.08                | 0.07 | ND                        | ND    | 11.5 | 32 | ND                 | ND             |
| WI    | Ozaukee County        | 82,317                   | ND                  | ND                                              | IN                | 0.10                | 0.09 | ND                        | ND    | 11.5 | 27 | ND                 | ND             |
| WI    | Racine County         | 188,831                  | 2                   | ND                                              | ND                | 0.10                | 0.08 | ND                        | ND    | ND   | ND | ND                 | ND             |
| WI    | Rock County           | 152,307                  | ND                  | ND                                              | ND                | 0.10                | 0.08 | ND                        | ND    | 13.3 | 29 | ND                 | ND             |
| WI    | St. Croix County      | 63,155                   | ND                  | ND                                              | ND                | 0.09                | 0.07 | ND                        | ND    | IN   | IN | ND                 | ND             |
| WI    | Sauk County           | 55,225                   | ND                  | ND                                              | ND                | 0.08                | 0.07 | ND                        | ND    | ND   | ND | ND                 | ND             |
| WI    | Sheboygan County      | 112,646                  | ND                  | ND                                              | ND                | 0.11                | 0.09 | ND                        | ND    | ND   | ND | ND                 | ND             |
| WI    | Vernon County         | 28,056                   | ND                  | ND                                              | ND                | 0.08                | 0.07 | ND                        | ND    | ND   | ND | ND                 | ND             |
| WI    | Vilas County          | 21,033                   | ND                  | ND                                              | ND                | 0.07                | 0.07 | 7                         | 20    | 5.4  | 17 | ND                 | ND             |
| WI    | Walworth County       | 93,759                   | ND                  | ND                                              | ND                | 0.09                | 0.08 | ND                        | ND    | ND   | ND | ND                 | ND             |
| WI    | Washington County     | 117,493                  | ND                  | ND                                              | ND                | 0.09                | 0.08 | ND                        | ND    | ND   | ND | ND                 | ND             |
|       | Waukesha County       | 360,767                  | 2                   | ND                                              | ND                | 0.09                | 0.08 | 21                        | 45    | 13.4 | 31 | ND                 | ND             |
| WI    | Winnebago County      | 156,763                  | ND                  | ND                                              | ND                | 0.09                | 0.07 | ND                        | ND    | 11.4 | 32 | ND                 | ND             |
| WI    | Wood County           | 75,555                   | ND                  | ND                                              | ND                | ND                  | ND   | ND                        | ND    | 10.9 | 35 | IN                 | 0.019          |
| WY    | Albany County         | 32,014                   | ND                  | ND                                              | ND                | ND                  | ND   | IN                        | 64    | ND   | ND | ND                 | ND             |
| WY    | Campbell County       | 33,698                   | ND                  | ND                                              | ND                | ND                  | ND   | 47                        | 143   | ND   | ND | ND                 | ND             |
| WY    | Converse County       | 12,052                   | ND                  | ND                                              | ND                | ND                  | ND   | 26                        | 62    | ND   | ND | ND                 | ND             |
| WY    | Fremont County        | 35,804                   | ND                  | ND                                              | ND                | ND                  | ND   | 22                        | 53    | IN   | IN | ND                 | ND             |
| WY    | Laramie County        | 81,607                   | ND                  | ND                                              | ND                | ND                  | ND   | 16                        | 30    | 5.6  | 13 | ND                 | ND             |
| WY    | Natrona County        | 66,533                   | ND                  | ND                                              | ND                | ND                  | ND   | 17                        | 38    | ND   | ND | ND                 | ND             |
| WY    | Park County           | 25,786                   | ND                  | ND                                              | ND                | ND                  | ND   | 20                        | 62    | ND   | ND | ND                 | ND             |
| WY    | Sheridan County       | 26,560                   | ND                  | ND                                              | ND                | ND                  | ND   | IN                        | 67    | 11.6 | 36 | ND                 | ND             |
| WY    | Sweetwater County     | 37,613                   | ND                  | ND                                              | ND                | ND                  | ND   | 26                        | 124   | ND   | ND | ND                 | ND             |
| WY    | Teton County          | 18,251                   | ND                  | ND                                              | ND                | 0.07                | 0.07 | IN                        | IN    | ND   | ND | ND                 | ND             |
| PR    | Barceloneta Municipio | 22,322                   | ND                  | ND                                              | ND                | ND                  | ND   | IN                        | 74    | ND   | ND | IN                 | 0.016          |
| PR    | Bayamon Municipio     | 224,044                  | ND                  | ND                                              | ND                | ND                  | ND   | 25                        | 77    | 7.3  | 18 | 0.004              | 0.058          |
| PR    | Carolina Municipio    | 186,076                  | ND                  | ND                                              | ND                | ND                  | ND   | IN                        | 74    | ND   | ND | ND                 | ND             |
|       | Catano Municipio      | 30,071                   | ND                  | ND                                              | 0.018             | 0.10                | 0.05 | 30                        | 89    | ND   | ND | 0.006              | 0.027          |
| PR    | Fajardo Municipio     | 40,712                   | ND                  | ND                                              | ND                | ND                  | ND   | IN                        | 84    | IN   | IN | ND                 | ND             |
| PR    | Guayama Municipio     | 44,301                   | ND                  | ND                                              | ND                | ND                  | ND   | 26                        | 77    | IN   | IN | ND                 | ND             |
| PR    | Guayanilla Municipio  | 23,072                   | ND                  | ND                                              | ND                | ND                  | ND   | ND                        | ND    | IN   | IN | ND                 | ND             |
|       | Guaynabo Municipio    | 100,053                  | ND                  | ND                                              | ND                | ND                  | ND   | 37                        | 102   | IN   | IN | ND                 | ND             |
| PR    | Humacao Municipio     | 59,035                   | ND                  | ND                                              | ND                | ND                  | ND   | IN                        | IN    | IN   | IN | ND                 | ND             |
|       | Lares Municipio       | 34,415                   | ND                  | ND                                              | ND                | ND                  | ND   | ND                        | ND    | IN   | IN | ND                 | ND             |
| PR    | Manati Municipio      | 45,409                   | ND                  | ND                                              | ND                | ND                  | ND   | IN                        | 73    | ND   | ND | ND                 | ND             |

| Table A-14. | Maximum Air | Quality | Concentrations | by | County, 2000 | (continued) |
|-------------|-------------|---------|----------------|----|--------------|-------------|
|             |             |         |                |    |              |             |

| State | e County             | CO<br>2000<br>Population | Pb<br>8-hr<br>(ppm) | NO₂<br>QMax<br>(µg/m³) | O₃<br>AM<br>(ppm) | O <sub>3</sub><br>1-hr<br>(ppm) | • • • • |    |    | PM <sub>2.5</sub><br>Wtd AM<br>) (µg/m³) |    | SO <sub>2</sub><br>AM<br>(ppm) | 24-hr<br>(ppm) |
|-------|----------------------|--------------------------|---------------------|------------------------|-------------------|---------------------------------|---------|----|----|------------------------------------------|----|--------------------------------|----------------|
| PR    | Mayaguez Municipio   | 98,434                   | ND                  | ND                     | ND                | ND                              | ND      | ND | ND | IN                                       | IN | ND                             | ND             |
| PR    | Ponce Municipio      | 186,475                  | ND                  | ND                     | ND                | ND                              | ND      | 40 | 77 | IN                                       | IN | ND                             | ND             |
| PR    | Rio Grande Municipio | 52,362                   | ND                  | ND                     | ND                | ND                              | ND      | IN | 71 | ND                                       | ND | ND                             | ND             |
| PR    | San Juan Municipio   | 434,374                  | 6                   | 0.02                   | IN                | ND                              | ND      | IN | 60 | ND                                       | ND | ND                             | ND             |
| PR    | Vieques Municipio    | 9,106                    | ND                  | ND                     | ND                | ND                              | ND      | IN | IN | ND                                       | ND | ND                             | ND             |

co Highest second maximum non-overlapping 8-hour concentration (Applicable NAAQS is 9 ppm) \_

Pb \_ Highest quarterly maximum concentration (Applicable NAAQS is 1.5 µg/m3)

 $\begin{array}{c} NO_{2} & - \\ O_{3} (1-hr) & - \\ O_{3} (8-hr) & - \\ PM_{10} & - \end{array}$ 

Highest qualities of the second daily maximum concentration (*Applicable NAAQS is 0.053 ppm*) Highest second daily maximum 1-hour concentration (*Applicable NAAQS is 0.12 ppm*) Highest fourth daily maximum 8-hour concentration (*Applicable NAAQS is 0.08 ppm*)

Highest weighted annual mean concentration (Applicable NAAQS is 50 µg/m3)

- \_
- SO, \_

Highest second maximum 24-hour concentration (*Applicable NAAQS is 150 \mug/m3*) Highest annual mean concentration (*Applicable NAAQS is 0.03 ppm*) Highest second maximum 24-hour concentration (*Applicable NAAQS is 0.14 ppm*) \_

- ND Indicates data not available
- IN \_ Indicates insufficient data to calculate summary statistic
- Weighted \_ Wtd
- Annual mean AM \_
- µg/m³ \_ Units are micrograms per cubic meter

PPM \_ Units are parts per million

Data from exceptional events not included.

(\*) - These PM<sub>10</sub> statistics were converted from local temperature and pressure to standard temperature and pressure to ensure all PM<sub>10</sub> data in this table reflect standard conditions.

Note: The reader is cautioned that this summary is not adequate in itself to numerically rank MSAs according to their air quality. The monitoring data represent the quality of air in the vicinity of the monitoring site but may not necessarily represent urban-wide air quality.

### Table A-15. Maximum Air Quality Concentrations by Metropolitan Statistical Area, 2000

| Metropolitan Statistical Area<br>Population | CO<br>2000<br>(ppm) | Pb<br>8-hr<br>(µg/m³) | NO <sub>2</sub><br>QMax<br>(ppm) | O <sub>3</sub><br>AM<br>(ppm) | O <sub>3</sub><br>1-hr<br>(ppm) |          | PM₁₀<br>Wtd AM<br>) (µg/m³) ( |          | Wtd AM      |          | SO <sub>2</sub><br>AM<br>(ppm) | 24-hr       |
|---------------------------------------------|---------------------|-----------------------|----------------------------------|-------------------------------|---------------------------------|----------|-------------------------------|----------|-------------|----------|--------------------------------|-------------|
| Akron, OH PMSA                              | 694,960             | 3                     | ND                               | ND                            | 0.11                            | 0.09     | 22                            | 53       | 16.8        | 36       | 0.009                          | 0.044       |
| Albany, GA MSA                              | 120,822             | ND                    | ND                               | ND                            | ND                              | ND       | IN                            | IN       | 17.4        | IN       | ND                             | ND          |
| Albany—Schenectady—Troy, NY MSA             | 875,583             | 3                     | ND                               | ND                            | 0.09                            | 0.07     | ND                            | ND       | 12.3        | 30       | 0.004                          | 0.020       |
| Albuquerque, NM MSA                         | 712,738             | 4                     | ND                               | 0.017                         | 0.09                            | 0.08     | 25                            | 122      | 7.9         | 19       | ND                             | ND          |
| Alexandria, LA MSA                          | 126,337             | ND                    | ND                               | ND                            | ND                              | ND       | ND                            | ND       | 13.3        | 30       | ND                             | ND          |
| Allentown—Bethlehem—Easton, PA MSA          | 637,958             | 3                     | 0.11                             | 0.017                         | 0.11                            | 0.09     | IN                            | 85       | 14.5        | 37       | 0.008                          | 0.027       |
| Altoona, PA MSA                             | 129,144             | 1                     | ND                               | 0.014                         | 0.10                            | 0.08     | IN                            | 51       | ND          | ND       | 0.006                          | 0.045       |
| Amarillo, TX MSA                            | 217,858             | ND                    | ND                               | ND                            | ND                              | ND       | ND                            | ND       | IN          | IN       | ND                             | ND          |
| Anchorage, AK MSA                           | 260,283             | 6                     | ND                               | ND                            | ND                              | ND       | IN                            | 108      | 6.1         | 20       | ND                             | ND          |
| Ann Arbor, MI PMSA                          | 578,736             | ND                    | 0.00                             | ND                            | 0.09                            | 0.08     | ND                            | ND       | IN          | IN       | ND                             | ND          |
| Appleton—Oshkosh—Neenah, WI                 | 358,365             | ND                    | ND                               | ND                            | 0.09                            | 0.07     | ND                            | ND       | 11.5        | 32       | ND                             | ND          |
| Asheville, NC MSA                           | 225,965             | ND                    | ND                               | ND                            | 0.11                            | 0.09     | 18                            | 38       | 15.1        | IN       | ND                             | ND          |
| Athens, GA MSA                              | 153,444             | ND                    | ND                               | ND                            | ND                              | ND       | ND                            | ND       | 19.0        | IN       | ND                             | ND          |
| Atlanta, GA MSA                             | 4,112,198           | 3                     | 0.04                             | 0.023                         | 0.16                            | 0.11     | 36                            | 85       | 21.4        | 50       | 0.005                          | 0.019       |
| Atlantic—Cape May, NJ PMSA                  | 354,878             | ND                    | ND                               | ND                            | 0.11                            | 0.09     | 23                            | 42       | ND          | ND       | 0.003                          | 0.013       |
| Augusta—Aiken, GA—SC MSA                    | 477,441             | ND                    | 0.01                             | 0.005                         | 0.12                            | 0.09     | 21                            | 48       | 17.5        | 27       | ND                             | ND          |
| Austin—San Marcos, TX MSA                   | 1,249,763           | 1                     | ND                               | 0.005                         | 0.11                            | 0.09     | 23                            | 50       | 12.1        | 27       | ND                             | ND          |
| Bakersfield, CA MSA                         | 661,645             | 5                     | 0.00                             | 0.023                         | 0.14                            | 0.11     | 46                            | 136      | 21.7        | 100      | ND                             | ND          |
| Baltimore, MD PMSA                          | 2,552,994           | 3                     | 0.01                             | 0.024                         | 0.12                            | 0.10     | 29                            | 75       | 19.7        | IN       | 0.006                          | 0.024       |
| Bangor, ME MSA                              | 90,864              | ND                    | ND                               | ND                            | IN                              | IN       | 17                            | 37       | 9.0         | 24       | ND                             | ND          |
| Baton Rouge, LA MSA                         | 602,894             | 4                     | ND                               | 0.017                         | 0.14                            | 0.10     | IN                            | 68       | 15.0        | 36       | 0.006                          | 0.031       |
| Beaumont—Port Arthur, TX MSA                | 385,090             | ND                    | ND                               | 0.008                         | 0.16                            | 0.10     | ND                            | ND       | IN          | 122      | 0.006                          | 0.046       |
| Bellingham, WA MSA                          | 166,814             | ND                    | ND                               | ND                            | 0.06                            | 0.05     | 15                            | 29       | 8.4         | 21       | ND                             | ND          |
| Benton Harbor, MI MSA                       | 162,453             | ND                    | ND                               | ND                            | 0.11                            | 0.08     | ND                            | ND       | 12.1        | 30       | ND                             | ND          |
| Bergen—Passaic, NJ PMSA                     | 1,373,167           | 3                     | ND                               | ND                            | 0.10                            | 0.08     | 37                            | 86       | 14.6        | 36       | 0.005                          | 0.020       |
| Billings, MT MSA                            | 129,352             | 5                     | ND                               | ND                            | ND                              | ND       | 18                            | 43       | 8.1         | 25       | 0.006                          | 0.026       |
| Biloxi—Gulfport—Pascagoula, MS MSA          | 363,988             | ND                    | ND                               | 0.005                         | 0.14                            | 0.09     | 16                            | 35       | IN          | IN       | 0.003                          | 0.033       |
| Binghamton, NY MSA                          | 252,320             | ND                    | ND                               | ND                            | ND                              | ND       | ND                            | ND       | IN<br>22.2  | IN<br>52 | ND                             | ND          |
| Birmingham, AL MSA                          | 921,106             | 5                     | ND                               | 0.011                         | 0.13                            | 0.10     | 27                            | 125      | 22.3        | 53       | IN<br>0.000                    | IN<br>0.052 |
| Bismarck, ND MSA                            | 94,719<br>150,422   |                       | ND<br>ND                         | ND<br>ND                      |                                 | ND<br>ND | ND<br>ND                      | ND<br>ND | 6.6         | 14       | 0.006<br>ND                    | 0.053       |
| Bloomington—Normal, IL MSA                  | 150,433<br>432,345  | ND<br>5               | ND                               | IN                            | ND<br>ND                        | ND       | 34                            | 88       | 14.9<br>9.7 | 33<br>38 | ND                             | ND<br>ND    |
| Boise City, ID MSA<br>Boston, MA—NH PMSA    | 3,406,829           | 2                     | 0.02                             | 0.029                         | 0.09                            | 0.08     | 29                            | 59       | 15.8        | IN       | 0.006                          | 0.030       |
| Boulder—Longmont, CO PMSA                   | 291,288             | 4                     | 0.02<br>ND                       | 0.029<br>ND                   | 0.09                            | 0.08     | 29                            | 74       | 9.5         | 25       | 0.000<br>ND                    | 0.030<br>ND |
| Brazoria, TX PMSA                           | 291,200             | ND                    | ND                               | ND                            | 0.09<br>0.14                    | 0.07     | ND                            | ND       | J.J<br>IN   | IN       | ND                             | ND          |
| Bridgeport, CT PMSA                         | 459,479             | 2                     | ND                               | 0.018                         | 0.12                            | 0.00     | 20                            | 51       | IN          | IN       | 0.006                          | 0.024       |
| Brockton, MA PMSA                           | 255,459             | ND                    | ND                               | 0.010                         | 0.02                            | 0.07     | ND                            | ND       | IN          | IN       | 0.000<br>ND                    | ND          |
| Brownsville—Harlingen—San Benito, T         | 335,227             | 2                     | 0.01                             | ND                            | 0.08                            | 0.06     | 25                            | 58       | IN          | IN       | 0.001                          | 0.002       |
| Buffalo—Niagara Falls, NY MSA               | 1,170,111           | 2                     | 0.02                             | 0.022                         | 0.11                            | 0.09     | IN                            | 31       | 16.1        | 33       | 0.010                          | 0.051       |
| Burlington, VT MSA                          | 169,391             | 2                     | ND                               | IN                            | ND                              | ND       | 12                            | 28       | 8.3         | 17       | IN                             | IN          |
| Canton—Massillon, OH MSA                    | 406,934             | 3                     | ND                               | ND                            | 0.10                            | 0.09     | 24                            | 49       | 18.6        | 40       | 0.008                          | 0.028       |
| Casper, WY MSA                              | 66,533              | ND                    | ND                               | ND                            | ND                              | ND       | 17                            | 38       | ND          | ND       | ND                             | ND          |
| Cedar Rapids, IA MSA                        | 191,701             | 2                     | ND                               | 0.005                         | 0.08                            | 0.08     | IN                            | 60       | 10.7        | 29       | 0.003                          | 0.037       |
| Champaign—Urbana, IL MSA                    | 179,669             | ND                    | ND                               | ND                            | 0.08                            | 0.07     | ND                            | ND       | 14.8        | 28       | 0.002                          | 0.016       |
| Charleston—North Charleston, SC MSA         | 549,033             | 3                     | 0.02                             | 0.011                         | 0.11                            | 0.08     | 23                            | 52       | 14.8        | 31       | 0.003                          | 0.013       |
| Charleston, WV MSA                          | 251,662             | ND                    | ND                               | ND                            | 0.09                            | 0.09     | 27                            | 50       | 18.1        | 37       | 0.012                          | 0.046       |
| Charlotte—Gastonia—Rock Hill, NC—S          | 1,499,293           | 5                     | 0.04                             | 0.018                         | 0.14                            | 0.10     | 31                            | 62       | 17.2        | 37       | 0.004                          | 0.018       |
| Charlottesville, VA MSA                     | 159,576             | ND                    | ND                               | ND                            | ND                              | ND       | 23                            | 70       | ND          | ND       | ND                             | ND          |
| Chattanooga, TN—GA MSA                      | 465,161             | ND                    | ND                               | ND                            | 0.12                            | 0.10     | 30                            | 67       | IN          | IN       | ND                             | ND          |
| Cheyenne, WY MSA                            | 81,607              | ND                    | ND                               | ND                            | ND                              | ND       | 16                            | 30       | 5.6         | 13       | ND                             | ND          |
| Chicago, IL PMSA                            | 8,272,768           | 4                     | 0.15                             | 0.032                         | 0.10                            | 0.08     | 35                            | 123      | 20.2        | 43       | 0.012                          | 0.075       |
| Chico—Paradise, CA MSA                      | 203,171             | 4                     | 0.00                             | 0.012                         | 0.10                            | 0.09     | 27                            | 77       | 16.3        | 70       | ND                             | ND          |
| Cincinnati, OH—KY—IN PMSA                   | 1,646,395           | 2                     | ND                               | 0.022                         | 0.11                            | 0.09     | 32                            | 70       | 19.7        | 44       | 0.009                          | 0.053       |
| Clarksville—Hopkinsville, TN—KY MSA         | 207,033             | ND                    | ND                               | IN                            | 0.11                            | 0.09     | 23                            | 51       | IN          | IN       | 0.006                          | 0.018       |
| Cleveland—Lorain—Elyria, OH PMSA            | 2,250,871           | 8                     | 0.20 <sup>a</sup>                | 0.023                         | 0.11                            | 0.09     | 43                            | 122      | 19.8        | 46       | 0.009                          | 0.040       |

| Metropolitan Statistical Area<br>Population | CO<br>2000<br>(ppm) | Pb<br>8-hr<br>(µg/m³) | NO₂<br>QMax<br>(ppm) | O <sub>3</sub><br>AM<br>(ppm) | O <sub>3</sub><br>1-hr<br>(ppm) |                      | PM₁₀<br>Wtd AM<br>) (µg/m³) |             |                     |            | SO <sub>2</sub><br>AM<br>(ppm) | 24-hr         |
|---------------------------------------------|---------------------|-----------------------|----------------------|-------------------------------|---------------------------------|----------------------|-----------------------------|-------------|---------------------|------------|--------------------------------|---------------|
| Colorado Springs, CO MSA                    | 516,929             | 4                     | 0.01                 | 0.035                         | 0.09                            | 0.07                 | 25                          | 87          | 7.5                 | 16         | 0.004                          | 0.014         |
| Columbia, SC MSA                            | 536,691             | 4                     | 0.07                 | 0.014                         | 0.12                            | 0.10                 | 46                          | 1 <b>32</b> | <b>1</b> 6.3        | 28         | 0.003                          | 0.014         |
| Columbus, GA—AL MSA                         | 274,624             | ND                    | 0.11b                | ND                            | 0.11                            | 0.09                 | 26                          | 59          | 19.2                | 71         | ND                             | ND            |
| Columbus, OH MSA                            | 1,540,157           | 3                     | 0.03 <b>c</b>        | ND                            | 0.12                            | 0.09                 | 34                          | 73          | 18.5                | IN         | 0.004                          | 0.019         |
| Corpus Christi, TX MSA                      | 380,783             | ND                    | ND                   | ND                            | 0.10                            | 0.08                 | 36                          | 71          | IN                  | IN         | 0.003                          | 0.017         |
| Dallas, TX PMSA                             | 3,519,176           | 2                     | 0.54d                | 0.014                         | 0.13                            | 0.10                 | 29                          | 58          | 13.2                | 32         | 0.006                          | 0.047         |
| Danbury, CT PMSA                            | 217,980             | ND                    | ND                   | ND                            | 0.12                            | 0.09                 | ND                          | ND          | IN                  | IN         | 0.003                          | 0.017         |
| Davenport-Moline-Rock Island, IA-I          | 359,062             | ND                    | ND                   | IN                            | 0.09                            | 0.08                 | 41                          | 141         | 13.6                | 30         | 0.003                          | 0.014         |
| Dayton—Springfield, OH MSA                  | 950,558             | 3                     | ND                   | ND                            | 0.11                            | 0.09                 | 32                          | 64          | 18.0                | 43         | 0.004                          | 0.018         |
| Daytona Beach, FL MSA                       | 493,175             | ND                    | ND                   | ND                            | 0.09                            | 0.08                 | 21                          | 53          | 10.5                | 26         | ND                             | ND            |
| Decatur, AL MSA                             | 145,867             | ND                    | ND                   | ND                            | <b>0</b> .11                    | 0.09                 | 23                          | 53          | IN                  | IN         | 0.002                          | 0.005         |
| Decatur, IL MSA                             | 114,706             | ND                    | ND                   | ND                            | 0.09                            | 0.08                 | ND                          | ND          | 15. <b>0</b>        | 31         | 0.005                          | 0.025         |
| Denver, CO PMSA                             | 2,109,282           | 5                     | 0.15                 | 0.016                         | 0.11                            | 0.08                 | 43                          | 134         | 11.6                | 41         | 0.003                          | 0.009         |
| Des Moines, IA MSA                          | 456,022             | 5                     | ND                   | ND                            | 0.08                            | 0.07                 | 31                          | 134         | 10.8                | 28         | ND                             | ND            |
| Detroit, MI PMSA                            | 4,441,551           | 5                     | 0.04                 | 0.024                         | 0.10                            | 0.08                 | 43                          | 113         | 20.1                | 45         | 0.0 <b>08</b>                  | 0.043         |
| Dothan, AL MSA                              | 137,916             | ND                    | ND                   | ND                            | ND                              | ND                   | 24                          | 70          | IN                  | IN         | ND                             | ND            |
| Dover, DE MSA                               | 126,697             | ND                    | ND                   | ND                            | 0.13                            | 0.09                 | ND                          | ND          | 12.9                | 23         | ND                             | ND            |
| Duluth—Superior, MN—WI MSA                  | 243,815             | 2                     | ND                   | ND                            | 0.07                            | 0.07                 | 29                          | 69          | 8.2                 | 24         | ND                             | ND            |
| Dutchess County, NY PMSA                    | 280,150             | ND                    | ND                   | ND                            | 0.07                            | 0.07                 | ND                          | ND          | 11.3                | 33         | ND                             | ND            |
| El Paso, TX MSA                             | 679,622             | 9                     | 0.10                 | 0.029                         | 0.12                            | 0.08                 | 46                          | 124         | 9.8                 | 23         | 0.002                          | 0.006         |
| Elkhart—Goshen, IN MSA                      | 182,791             | ND                    | ND                   | 0.023<br>ND                   | 0.02                            | 0.06                 | ND                          | ND          | 15.7                | IN         | 0.002<br>ND                    | ND            |
| Elmira, NY MSA                              | 91,070              | ND                    | ND                   | ND                            | 0.00                            | 0.00                 | ND                          | ND          | ND                  | ND         | 0.003                          | 0.012         |
| Enid, OK MSA                                | 57,813              | ND                    | ND                   | 0.007                         | ND                              | ND                   | ND                          | ND          | 10.3                | 25         | 0.003<br>ND                    | ND            |
| Erie, PA MSA                                | 280,843             | 6                     | ND                   | 0.007                         | 0.10                            | 0.08                 | IN                          | 41          | 10.3<br>IN          | IN         | 0.008                          | 0.041         |
| Eugene—Springfield, OR MSA                  | 322,959             | 4                     | ND                   | 0.012<br>ND                   | IN                              | U.UO<br>IN           | IN                          | 69          | IN                  | IN         | 0.008<br>ND                    | 0.041<br>ND   |
| Evansville—Henderson, IN—KY MSA             | 296,195             | 4                     | ND                   | 0.016                         | 0.10                            | 0.09                 | 28                          | 68          | 16.1                | 39         | 0.015                          | 0.084         |
|                                             |                     | N D                   | ND                   | 0.010                         |                                 | 0.09<br><b>0.</b> 06 | 20<br>17                    | 39          |                     | 29         | 0.015                          | 0.004         |
| Fargo-Moorhead, ND-MN MSA                   | 174,367<br>302,963  | 4                     | ND                   | 0.007<br>ND                   | 0. <b>07</b><br>0.11            | 0.00                 | IN                          | 59<br>52    | 8.2<br><b>16</b> .2 | 29<br>67   | 0.001<br>ND                    | 0.003<br>ND   |
| Fayetteville, NC MSA                        |                     | ND 4                  | ND                   | ND                            | ND                              | ND                   | ND                          | N D         | IN                  | IN         | ND                             | ND            |
| Fayetteville—Springdale—Rogers, AR          | 311,121             |                       |                      |                               |                                 |                      |                             |             |                     |            |                                |               |
| Fitchburg—Leominster, MA PMSA               | 142,284             | ND<br>ND              | ND<br>ND             | ND<br>ND                      | ND<br>0.08                      | ND<br>0.07           | ND<br>16                    | ND<br>33    | IN<br>IN            | IN<br>IN   | N <b>D</b><br>ND               | ND            |
| Flagstaff, AZ—UT MSA                        | 122,366             | ND                    | 0.01                 | ND                            | 0.08                            | 0.07                 | 16<br>19                    | 36<br>36    | 12.9                | 32         | 0.004                          | 0.015         |
| Flint, MI PMSA                              | <b>436,14</b> 1     |                       |                      |                               |                                 |                      |                             |             |                     |            |                                |               |
| Florence, AL MSA                            | 142,950             | ND                    | ND                   | ND                            | ND                              | ND                   | ND                          | ND          | IN                  | IN         | 0.003                          | 0.017         |
| Florence, SC MSA                            | 125,761             | ND                    | 0.01                 | ND                            | ND                              | ND                   | ND                          | ND          | 14.4                | 25         | ND                             | ND            |
| Fort Collins—Loveland, CO MSA               | 251,494             | 4                     | ND                   | ND                            | 0.10                            | 0.08                 | IN<br>10                    | 66          | 8·3                 | 20         | ND                             | ND            |
| Fort Lauderdale, FL PMSA                    | 1,623,018           | 4                     | 0.05                 | 0.010                         | 0.09                            | 0.07                 | 19                          | 31          | 9.6                 | 36         | 0.003                          | 0.026         |
| Fort Myers—Cape Coral, FL MSA               | 440,888             | ND                    | ND                   | ND                            | 0.09                            | 0.08                 | 19                          | 43          | 9.6                 | 25         | ND<br>N <sup>D</sup>           | ND            |
| Fort Pierce—Port St. Lucie, FL MSA          | 319,426             | ND                    | ND                   | 0.010                         | 0.08                            | 0.07                 | 18                          | 35          | 10.1                | 23         |                                | ND            |
| Fort Smith, AR—OK MSA                       | 207,290             | ND                    | ND                   | ND                            | ND                              | ND                   | ND                          | ND          | 13.5                | 27         | ND                             | ND            |
| Fort Wayne, IN MSA                          | 502,141             | 4                     | ND                   | ND                            | 0.10                            | 0.09                 | 24                          | 60          | 15.7                | 47         | ND                             | ND            |
| Fort Worth—Arlington, TX PMSA               | 1,702,625           | 2                     | ND                   | 0.015                         | 0.12                            | 0.10                 | 23                          | 42          | 12.7                | 29         | ND                             | ND            |
| Fresno, CA MSA                              | 922, <b>516</b>     | 6                     | 0.00                 | 0.020                         | 0.15                            | 0.11                 | 41                          | 122         | 25.4                | 89         | ND                             | ND            |
| Gadsden, AL MSA                             | 103,459             | ND                    | ND                   | ND                            | ND                              | ND                   | <b>2</b> 6                  | 64          | IN                  | IN<br>07   | ND                             | ND            |
| Gainesville, FL MSA                         | 217,955             | ND                    | ND                   | ND                            | 0.10                            | 0.08                 | 20                          | 36          | 1 <b>1.9</b>        | <b>2</b> 7 | ND                             | ND            |
| Galveston—Texas City, TX PMSA               | 250,158             | ND                    | ND                   | 0.005                         | 0.14                            | 0.09                 | 27                          | 5 <b>3</b>  | IN                  | IN         | 0.0 <b>04</b>                  | <b>0.</b> 037 |
| Gary, IN PMSA                               | 631,362             | 3                     | 0.11                 | 0.020                         | 0.10                            | 0.09                 | 31                          | 123         | 1 <b>7.1</b>        | <b>3</b> 8 | 0.006                          | 0.046         |
| Goldsboro, NC MSA                           | 113,329             | ND                    | ND                   | ND                            | ND                              | ND                   | 21                          | 40          | 15.8                | 40         | ND                             | ND            |
| Grand Forks, ND—MN MSA                      | 97,478              | ND                    | ND                   | ND                            | ND                              | ND                   | ND                          | ND          | 8.2                 | 25         | ND                             | ND            |
| Grand Junction, CO MSA                      | 116,255             | 4                     | ND                   | ND                            | ND                              | ND                   | 20                          | 53          | 7.4                 | 26         | ND                             | ND            |
| Grand Rapids—Muskegon—Holland, MI M         | 1,088,514           | 3                     | 0.00                 | ND                            | 0.12                            | 0.08                 | 21                          | 49          | 13.8                | 35         | 0.002                          | 0.010         |
| Great Falls, MT MSA                         | 80,357              | 4                     | ND                   | ND                            | ND                              | ND                   | ND                          | ND          | IN                  | IN         | IN                             | IN            |
| Greeley, CO PMSA                            | 180,936             | 4                     | ND                   | ND                            | 0.09                            | 0.07                 | 21                          | 58          | 8.9                 | 28         | ND                             | ND            |
| Green Bay, WI MSA                           | 226, <b>778</b>     | ND                    | ND                   | ND                            | 0.09                            | 0.07                 | ND                          | ND          | 11.3                | 32         | 0.004                          | 0.016         |
| Greensboro—Winston-Salem—High Point         | 1,251,509           | 4                     | ND                   | 0.018                         | 0.12                            | 0.10                 | 24                          | 51          | 17. <sup>8</sup>    | 38         | 0.005                          | 0.019         |

| Metropolitan Statistical Area<br>Population  | CO<br>2000<br>(ppm)  | Pb<br>8-hr<br>(µg/m³) | NO <sub>2</sub><br>QMax<br>(ppm) | O <sub>3</sub><br>AM<br>(ppm) | O <sub>3</sub><br>1-hr<br>(ppm) |              | PM₁₀<br>Wtd AM<br>) (µg/m³) ( |             |              |            | SO <sub>2</sub><br>AM<br>(ppm) | 24-hr         |
|----------------------------------------------|----------------------|-----------------------|----------------------------------|-------------------------------|---------------------------------|--------------|-------------------------------|-------------|--------------|------------|--------------------------------|---------------|
| Greenville, NC MSA                           | 133,798              | ND                    | ND                               | ND                            | 0.11                            | 0.08         | 19                            | 36          | 13.9         | 41         | 0.003                          | 0.007         |
| Greenville—Spa <b>rtanb</b> urg—Anderson, SC | 962,441              | 4                     | 0.02                             | 0.016                         | 0.12                            | 0.09         | 24                            | 54          | 16.5         | 32         | 0.003                          | 0.011         |
| Hagerstown, MD PMSA                          | 131,923              | ND                    | ND                               | ND                            | 0.10                            | 0.08         | ND                            | ND          | 15.6         | 29         | ND                             | ND            |
| Hamilton—Middletown, OH PMSA                 | 332,807              | ND                    | 0.01                             | ND                            | 0.10                            | 0.08         | 32                            | 69          | 17.0         | 38         | 0.006                          | 0.023         |
| Harrisburg-Lebanon-Carlisle, PA MSA          | 629,401              | 2                     | ND                               | 0.017                         | <b>0.</b> 11                    | 0.09         | IN                            | 53          | 15.8         | 23         | 0.005                          | 0.024         |
| Hartford, CT MSA                             | 1,183,110            | 7                     | ND                               | 0.017                         | <b>0.</b> 12                    | 0.09         | 18                            | 39          | IN           | IN         | 0.004                          | 0.021         |
| Hattiesburg, MS MSA                          | 111,674              | ND                    | ND                               | ND                            | ND                              | ND           | ND                            | ND          | IN           | IN         | ND                             | ND            |
| Hickory-Morganton-Lenoir, NC MSA             | 341,851              | ND                    | ND                               | ND                            | 0.11                            | 0 <b>.09</b> | 22                            | 42          | 17.4         | 3 <b>8</b> | ND                             | ND            |
| Honolulu, HI MSA                             | 876,156              | 2                     | ND                               | 0.005                         | 0.05                            | 0.04         | 16                            | 52          | 4.9          | 10         | 0.002                          | 0.007         |
| Houma, LA MSA                                | 194,477              | ND                    | ND                               | ND                            | 0.12                            | 0.09         | ND                            | ND          | 12.4         | 29         | ND                             | ND            |
| Houston, TX PMSA                             | 4,177,646            | 4                     | 0.01                             | 0.021                         | 0.19                            | 0.12         | 46                            | 102         | IN           | IN         | 0.006                          | <b>0</b> .031 |
| Huntington—Ashland, WV—KY—OH MSA             | 315,538              | 1                     | ND                               | 0.015                         | 0.09                            | 0.08         | 32                            | 80          | 17.6         | 40         | 0.012                          | 0.046         |
| Huntsville, AL MSA                           | 342,376              | 2                     | ND                               | ND                            | 0.11                            | 0.09         | 24                            | 80          | IN           | IN         | ND                             | ND            |
| Indianapolis, IN MSA                         | 1,607,486            | 4                     | 0.12e                            | 0.017                         | 0.10                            | 0.09         | 27                            | 67          | 17.8         | 36         | 0.007                          | 0.025         |
| Iowa City, IA MSA                            | 111,006              | ND                    | ND                               | ND                            | ND                              | ND           | ND                            | ND          | 10.9         | 28         | ND                             | ND            |
| Jackson, MS MSA                              | 440,801              | 3                     | ND                               | ND                            | 0.10                            | 0.08         | 24                            | 64          | 15.6         | 35         | 0.002                          | 0.006         |
| Jackson, TN MSA                              | 107,377              | ND                    | ND                               | ND                            | ND                              | ND           | 23                            | 44          | IN           | IN         | ND                             | ND            |
| Jacksonville, FL MSA                         | 1,100,491            | 4                     | 0.03                             | 0.015                         | 0.11                            | 0.08         | 26                            | 65          | IN           | IN         | 0.007                          | 0.055         |
| Jacksonville, NC MSA                         | 150,355              | ND                    | ND                               | ND                            | ND                              | ND           | 17                            | 32          | 12.3         | 34         | ND                             | ND            |
| Jamestown, NY MSA                            | 139,750              | ND                    | ND                               | ND                            | 0.11                            | 0.09         | 14                            | 32          | IN           | IN         | 0.008                          | 0.065         |
| Janesville-Beloit, WI MSA                    | 152,307              | ND                    | ND                               | ND                            | 0.10                            | 0.08         | ND                            | ND          | 13.3         | 29         | ND                             | ND            |
| Jersey City, NJ PMSA                         | 608,975              | 5                     | ND                               | 0.026                         | 0.10                            | 0.08         | IN                            | 63          | 17.5         | 69         | 0.008                          | 0.025         |
| Johnson City—Kingsport—Bristol, TN-          | 480,091              | 2                     | 0.20                             | 0.015                         | 0.13                            | 0.10         | ND                            | ND          | 16.4         | 29         | 0.011                          | 0.043         |
| Johnstown, PA MSA                            | 232, <sup>6</sup> 21 | 2                     | 0.05                             | 0.015                         | 0.10                            | 0.09         | IN                            | 51          | 15.9         | IN         | 0.007                          | 0.026         |
| Jonesboro, AR MSA                            | 82,148               | ND                    | ND                               | ND                            | ND                              | ND           | ND                            | ND          | 15.2         | IN         | ND                             | ND            |
| Joplin, MO MSA                               | 157,322              | ND                    | ND                               | ND                            | ND                              | ND           | IN                            | 126         | 13.2         | 26         | ND                             | ND            |
| Kalamazoo—Battle Creek, MI MSA               | 452,851              | ND                    | ND                               | ND                            | 0.09                            | 0.07         | IN                            | IN          | 15.1         | 37         | ND                             | ND            |
| Kansas City, MO—KS MSA                       | 1,776,062            | 5                     | 0.01                             | 0.017                         | 0.12                            | 0.09         | 37                            | 64          | 13.4         | 32         | 0.004                          | 0.039         |
| Kenosha, WI PMSA                             | 149,577              | ND                    | ND                               | ND                            | 0.10                            | 0.09         | ND                            | ND          | 11.4         | 27         | ND                             | ND            |
| Knoxville, TN MSA                            | 687,249              | 3                     | 0.00                             | 0.013                         | 0.13                            | 0.10         | 34                            | 125         | IN           | IN         | 0.010                          | 0.060         |
| Kokomo, IN MSA                               | 101,541              | ND                    | ND                               | ND                            | ND                              | ND           | ND                            | ND          | 15.6         | 35         | ND                             | ND            |
| Lafayette, LA MSA                            | 385,647              | ND                    | ND                               | ND                            | 0.12                            | 0.09         | ND                            | ND          | 13.0         | 33         | ND                             | ND            |
| Lafayette, IN MSA                            | 182,821              | ND                    | ND                               | ND                            | ND                              | ND           | ND                            | ND          | 15.6         | 35         | ND                             | ND            |
| Lake Charles, LA MSA                         | 183,577              | ND                    | ND                               | 0.005                         | 0.13                            | 0.09         | ND                            | ND          | 13.1         | 34         | 0.004                          | 0.013         |
| Lakeland—Winter Haven, FL MSA                | 483,924              | ND                    | ND                               | ND                            | 0.10                            | 0.08         | 23                            | 12 <b>1</b> | 12.2         | 28         | 0.005                          | 0.018         |
| Lancaster, PA MSA                            | 470,658              | 2                     | ND                               | 0.014                         | 0.11                            | 0.09         | IN                            | 56          | 18.4         | IN         | 0.005                          | 0.024         |
| Lansing—East Lansing, MI MSA                 | 447,728              | ND                    | ND                               | IN                            | 0.09                            | 0.08         | ND                            | ND          | 13.6         | 38         | ND                             | ND            |
| Laredo, TX MSA                               | 193,117              | 6                     | 0.04                             | ND                            | 0.09                            | 0.07         | 31                            | 56          | 12.1         | 23         | ND                             | ND            |
| Las Cruces, NM MSA                           | 174, <b>682</b>      | 4                     | ND                               | 0.012                         | 0.12                            | <b>0.</b> 08 | 42                            | 9 <b>6</b>  | <b>10.</b> 5 | 31         | 0.001                          | 0.003         |
| Las Vegas, NV—AZ MSA                         | 1,563,282            | 7                     | ND                               | ND                            | 0.09                            | 0.08         | 48                            | 188         | 10.8         | 32         | ND                             | ND            |
| Lawrence, MA—NH PMSA                         | 396,230              | ND                    | ND                               | ND                            | 0.07                            | 0.06         | ND                            | ND          | IN           | IN         | 0.004                          | 0.020         |
| Lawton, OK MSA                               | 114,996              | 1                     | ND                               | ND                            | 0.09                            | 0.09         | ND                            | ND          | 9.1          | 19         | ND                             | ND            |
| Lewiston—Auburn, ME MSA                      | 90,830               | ND                    | ND                               | ND                            | ND                              | ND           | IN                            | 36          | 9.6          | 26         | 0.004                          | 0.018         |
| Lexington, KY MSA                            | 479,198              | 2                     | ND                               | 0.013                         | 0.09                            | 0.08         | 21                            | 49          | IN           | IN         | 0.005                          | 0.020         |
| Lima, OH MSA                                 | 155,084              | ND                    | ND                               | ND                            | 0.10                            | 0.09         | IN                            | 42          | ND           | ND         | 0.003                          | 0.015         |
| Lincoln, NE MSA                              | 250,291              | 3                     | ND                               | ND                            | 0.07                            | 0.06         | ND                            | ND          | IN           | IN         | ND                             | ND            |
| Little Rock—North Little Rock, AR MS         | 583,845              | 3                     | ND                               | 0.010                         | 0.11                            | 0.09         | 25                            | 48          | 15.7         | 34         | 0.002                          | 0.007         |
| Longview—Marshall, TX MSA                    | 208,780              | ND                    | ND                               | 0.006                         | 0.13                            | 0.10         | ND                            | ND          | 13.4         | 29         | 0.002                          | 0.011         |
| Los Angeles—Long Beach, CA PMSA              | 9,519,338            | 10                    | 0.06                             | 0.044                         | 0.17                            | 0.11         | 46                            | 93          | 23.9         | 83         | 0.002                          | 0.010         |
| Louisville, KY—IN MSA                        | 1,025,598            | 4                     | ND                               | 0.013                         | 0.11                            | 0.09         | 31                            | 84          | 18.6         | IN         | 0.015                          | 0.037         |
| Lowell, MA—NH PMSA                           | 301,686              | 3                     | ND                               | ND                            | ND                              | ND           | ND                            | ND          | IN           | IN         | ND                             | ND            |
| Lubbock, TX MSA                              | 242,628              | ND                    | ND                               | ND                            | ND                              | ND           | IN                            | 38          | 7.4          | 19         | ND                             | ND            |
| Lynchburg, VA MSA                            | 214,911              | ND                    | ND                               | ND                            | ND                              | ND           | ND                            | ND          | IN           | IN         | ND                             | ND            |
|                                              |                      | ND                    | ND                               | ND                            | 0.13                            | 0.10         | IN                            | 48          | 18.6         | 37         | 0.003                          | 0.015         |
| Macon, GA MSA                                | 322,549              |                       |                                  |                               |                                 |              | 11/1                          |             |              |            |                                |               |

| Metropolitan Statistical Area<br>Population | CO<br>2000<br>(ppm) | Pb<br>8-hr<br>(µg/m³) | NO <sub>2</sub><br>QMax<br>(ppm) | O <sub>3</sub><br>AM<br>(ppm) | O <sub>3</sub><br>1-hr<br>(ppm) |              |            | 24-hr | PM <sub>2.5</sub><br>Wtd AM<br>(µg/m³) |            | SO <sub>2</sub><br>AM<br>(ppm) | 24-hr |
|---------------------------------------------|---------------------|-----------------------|----------------------------------|-------------------------------|---------------------------------|--------------|------------|-------|----------------------------------------|------------|--------------------------------|-------|
| Manchester. NH PMSA                         | 198,378             | ND                    | ND                               | 0.011                         | 0.09                            | 0.06         | IN         | 39    | IN                                     | IN         | 0.005                          | 0.022 |
| Mansfield, OH MSA                           | 175,818             | ND                    | ND                               | ND                            | ND                              | ND           | IN         | 53    | ND                                     | ND         | ND                             | ND    |
| Mayaguez, PR MSA                            | 253,347             | ND                    | ND                               | ND                            | ND                              | ND           | ND         | ND    | IN                                     | IN         | ND                             | ND    |
| McAllen—Edinburg—Mission, TX MSA            | 569,463             | ND                    | ND                               | ND                            | 0.09                            | 0.08         | IN         | 53    | 11.0                                   | 23         | ND                             | ND    |
| Medford—Ashland, OR MSA                     | 181,269             | 5                     | ND                               | ND                            | 0.08                            | 0.07         | IN         | 68    | 11.4                                   | 49         | ND                             | ND    |
| Melbourne—Titusville—Palm Bay, FL M         | 476,230             | ND                    | ND                               | ND                            | <b>0.</b> 09                    | 0.08         | IN         | 34    | IN                                     | IN         | ND                             | ND    |
| Memphis, TN—AR—MS MSA                       | 1,135,614           | 4                     | 0.59f                            | 0.025                         | 0.12                            | 0.09         | 28         | 71    | 15.7                                   | IN         | 0.006                          | 0.038 |
| Merced, CA MSA                              | 210,554             | ND                    | ND                               | 0.012                         | 0.12                            | 0.10         | 35         | 89    | 17.3                                   | 47         | ND                             | ND    |
| Miami, FL PMSA                              | 2,253,362           | 3                     | ND                               | 0.016                         | 0.09                            | 0.08         | 26         | 51    | 11.3                                   | 24         | 0.002                          | 0.003 |
| Middlesex—Somerset—Hunterdon, NJ PM         | 1,169,641           | 3                     | 0.15g                            | 0.019                         | 0.11                            | 0.09         | ND         | ND    | IN                                     | IN         | 0.005                          | 0.018 |
| Milwaukee—Waukesha, WI PMSA                 | 1,500,741           | 2                     | NĎ                               | 0.021                         | 0.10                            | 0.09         | 21         | 59    | 14.2                                   | 35         | 0.004                          | 0.026 |
| Minneapolis-St. Paul, MN-WI MSA             | 2,968,806           | 5                     | 0.40h                            | 0.022                         | 0.09                            | 0.07         | 36         | 103   | IN                                     | IN         | 0.003                          | 0.023 |
| Mobile, AL MSA                              | 540,258             | ND                    | ND                               | ND                            | 0.12                            | 0.10         | 24         | 150   | IN                                     | IN         | 0.002                          | 0.008 |
| Modesto, CA MSA                             | 446,997             | 4                     | 0.00                             | 0.018                         | 0.11                            | 0.09         | 35         | 100   | 18.9                                   | 71         | ND                             | ND    |
| Monmouth—Ocean, NJ PMSA                     | 1,126,217           | 3                     | ND                               | ND                            | 0.14                            | 0.11         | ND         | ND    | IN                                     | IN         | ND                             | ND    |
| Monroe, LA MSA                              | 147,250             | ND                    | ND                               | ND                            | 0.10                            | 0.08         | ND         | ND    | 13.3                                   | 27         | 0.002                          | 0.003 |
| Montgomery, AL MSA                          | 333,055             | ND                    | ND                               | ND                            | 0.11                            | 0.09         | 25         | 61    | IN                                     | IN         | ND                             | ND    |
| Muncie, IN MSA                              | 118,769             | ND                    | 0.58i                            | ND                            | ND                              | ND           | ND         | ND    | 16.1                                   | 49         | ND                             | ND    |
| Myrtle Beach, SC MSA                        | 196,629             | ND                    | 0.01                             | ND                            | ND                              | ND           | ND         | ND    | IN                                     | IN         | ND                             | ND    |
| Naples, FL MSA                              | 251,377             | ND                    | ND                               | ND                            | ND                              | ND           | IN         | IN    | ND                                     | ND         | ND                             | ND    |
| Nashua, NH PMSA                             | 190,949             | 4                     | ND                               | ND                            | 0.09                            | 0.07         | 15         | 33    | ND                                     | ND         | 0.004                          | 0.020 |
| Nashville <sup>,</sup> TN MSA               | 1,231,311           | 6                     | 1.50j                            | 0.019                         | 0.12                            | 0.09         | 34         | 65    | IN                                     | IN         | 0.004                          | 0.040 |
| Nassau—Suffolk, NY PMSA                     | 2,753, <b>913</b>   | 3                     | ND                               | 0.024                         | 0.13                            | 0.09         | 17         | 38    | 12.2                                   | 36         | 0.007                          | 0.025 |
| New Bedford, MA PMSA                        | 175,198             | ND                    | ND                               | ND                            | 0.10                            | 0.08         | ND         | ND    | IN                                     | IN         | ND                             | ND    |
| New Haven—Meriden, CT PMSA                  | 542,149             | 3                     | ND                               | 0.025                         | 0.14                            | 0.09         | 32         | 86    | 16.2                                   | 40         | 0.006                          | 0.031 |
| New London—Norwich, CT—RI MSA               | 293,566             | ND                    | ND                               | ND                            | 0.14                            | 0.08         | 16         | 40    | IN                                     | IN         | ND                             | ND    |
| New Orleans, LA MSA                         | 1,337,726           | 4                     | 0.12                             | 0.019                         | 0.12                            | 0.10         | IN         | 57    | 14.1                                   | 37         | 0.005                          | 0.020 |
| New York, NY PMSA                           | 9,314,235           | 4                     | 0.02                             | 0.038                         | 0 <b>.12</b>                    | 0.09         | 23         | 57    | 18.4                                   | 48         | 0.013                          | 0.046 |
| Newark, NJ PMSA                             | 2,032,989           | 5                     | ND                               | 0.041                         | 0.11                            | 0.09         | 35         | 108   | 18.7                                   | 47         | 0.009                          | 0.025 |
| Newburgh, NY—PA PMSA                        | <b>387</b> ,669     | ND                    | 0.18k                            | ND                            | 0.10                            | 0.08         | ND         | ND    | IN                                     | IN         | ND                             | ND    |
| Norfolk—Virginia Beach—Newport News         | 1,569,541           | 4                     | ND                               | 0.016                         | 0.10                            | 0.08         | 22         | 41    | 13.6                                   | 26         | 0.007                          | 0.023 |
| Oakland, CA PMSA                            | 2,392,557           | 3                     | 0.00                             | 0.020                         | 0.13                            | 0.08         | 22         | 63    | 11.2                                   | 50         | 0.003                          | 0.021 |
| Ocala, FL MSA                               | 258,916             | ND                    | ND                               | ND                            | 0.09                            | 0.08         | ND         | ND    | 11.0                                   | 24         | ND                             | ND    |
| Odessa—Midland, TX MSA                      | 237,132             | ND                    | ND                               | ND                            | ND                              | ND           | ND         | ND    | IN                                     | IN         | ND                             | ND    |
| Oklahoma City, OK MSA                       | 1,083,34 <b>6</b>   | 4                     | ND                               | 0.013                         | 0.10                            | 0.09         | 26         | 62    | 11.5                                   | 29         | 0.003                          | 0.007 |
| Olympia, WA PMSA                            | 207,355             | 5                     | ND                               | ND                            | 0.08                            | 0 <b>.06</b> | 1 <b>5</b> | 36    | 10 <b>.3</b>                           | <b>4</b> 1 | ND                             | ND    |
| Omaha, NE—IA MSA                            | 716,998             | 3                     | 0.081                            | ND                            | 0.08                            | 0.07         | 48         | 124   | 11.5                                   | 28         | 0.001                          | 0.016 |
| Orange County, CA PMSA                      | 2,846,289           | 6                     | ND                               | 0.029                         | <b>0</b> .12                    | 0.0 <b>8</b> | 40         | 119   | 20.4                                   | 37         | 0.002                          | 0.005 |
| Orlando, FL MSA                             | 1,644,561           | 3                     | ND                               | 0.012                         | 0.11                            | 0.08         | 26         | 53    | 12.1                                   | 31         | 0.003                          | 0.009 |
| Owensboro, KY MSA                           | 91,545              | 1                     | ND                               | 0.011                         | 0.08                            | 0.07         | 20         | 64    | IN                                     | IN         | 0.005                          | 0.018 |
| Panama City, FL MSA                         | 148,217             | ND                    | ND                               | ND                            | 0.12                            | 0.09         | 25         | 46    | ND                                     | ND         | ND                             | ND    |
| Parkersburg—Marietta, WV—OH MSA             | 151,237             | ND                    | ND                               | ND                            | 0.11                            | 0.09         | 21         | 75    | 17.5                                   | 36         | 0.011                          | 0.036 |
| Pensacola, FL MSA                           | 412,153             | ND                    | ND                               | 0.010                         | 0.12                            | 0.10         | 22         | 38    | 13.9                                   | 32         | 0.005                          | 0.032 |
| Peoria—Pekin, IL MSA                        | 347,387             | 3                     | 0.02                             | ND                            | 0.08                            | 0.07         | 24         | 54    | 14.8                                   | 32         | 0.006                          | 0.063 |
| Philadelphia, PA—NJ PMSA                    | 5,100,931           | 4                     | 0.05                             | 0.028                         | 0.13                            | 0.10         | 29         | 76    | 16.0                                   | 34         | 0.010                          | 0.027 |
| Phoenix— <b>Mesa, AZ</b> MSA                | 3,2 <b>51,8</b> 76  | 7                     | ND                               | 0.036                         | 0.11                            | 0.09         | 70         | 232   | IN                                     | IN         | 0.003                          | 0.016 |
| Pine Bluff, AR MSA                          | 84,278              | ND                    | ND                               | ND                            | ND                              | ND           | ND         | ND    | 15.0                                   | 27         | ND                             | ND    |
| Pittsburgh, PA MSA                          | 2,358,695           | 3                     | 0.07                             | 0.025                         | 0.11                            | 0.09         | 39         | 124   | 20.0                                   | 84         | 0.013                          | 0.086 |
| Pittsfield, MA MSA                          | 84,699              | ND                    | ND                               | ND                            | IN                              | IN           | ND         | ND    | IN                                     | IN         | ND                             | ND    |
| Pocatello, ID MSA                           | 75,565              | ND                    | ND                               | ND                            | ND                              | ND           | 31         | 94    | 10.5                                   | 57         | 0.008                          | 0.036 |
| Ponce, PR MSA                               | 36 <b>1,09</b> 4    | ND                    | ND                               | ND                            | ND                              | ND           | 40         | 77    | IN                                     | IN         | ND                             | ND    |
| Portland, ME MSA                            | 243,537             | ND                    | ND                               | ND                            | 0.08                            | 0. <b>07</b> | <b>2</b> 7 | 74    | 11.0                                   | 35         | 0.005                          | 0.018 |
| Portland—Vancouver, OR—WA PMSA              | 1,918,009           | 6                     | 0.11                             | 0.012                         | 0.08                            | 0.07         | 16         | 45    | 10.8                                   | 40         | ND                             | ND    |
| Portsmouth—Rochester, NH—ME PMSA            | 240,698             | ND                    | ND                               | 0.010                         | 0.09                            | 0.07         | 13         | 33    | IN                                     | IN         | 0.003                          | 0.013 |
| Providence—Fall River—Warwick, RI—          | 1,188,613           | 4                     | ND                               | 0.020                         | 0.12                            | 0.09         | 29         | 91    | 14.9                                   | 36         | 0.007                          | 0.042 |

| Metropolitan Statistical Area<br>Population | CO<br>2000<br>(ppm)    | Pb<br>8-hr<br>(µg/m³) | NO <sub>2</sub><br>QMax<br>(ppm) | O <sub>3</sub><br>AM<br>(ppm) | O <sub>3</sub><br>1-hr<br>(ppm) |              |          | 24-hr     | PM <sub>2.5</sub><br>Wtd AM<br>) (µg/m³) |          | SO <sub>2</sub><br>AM<br>(ppm) | 24-hr       |
|---------------------------------------------|------------------------|-----------------------|----------------------------------|-------------------------------|---------------------------------|--------------|----------|-----------|------------------------------------------|----------|--------------------------------|-------------|
| Provo—Orem, UT MSA                          | 368,536                | 6                     | ND                               | 0.024                         | 0.10                            | 0.08         | 32       | 89        | 10.1                                     | 34       | ND                             | ND          |
| Pueblo, CO MSA                              | 141,472                | ND                    | ND                               | ND                            | ND                              | ND           | 24       | 64        | 7.9                                      | 22       | ND                             | ND          |
| Racine, WI PMSA                             | 188,831                | 2                     | ND                               | ND                            | 0.10                            | 0.08         | ND       | ND        | ND                                       | ND       | ND                             | ND          |
| Raleigh—Durham—Chapel Hill, NC MSA          | 1,187,941              | 5                     | ND                               | ND                            | 0.12                            | 0.09         | 23       | 51        | 16.5                                     | 52       | ND                             | ND          |
| Rapid City, SD MSA                          | 88,565                 | ND                    | ND                               | ND                            | IN                              | IN           | 38       | 139       | IN                                       | IN       | ND                             | ND          |
| Reading, PA MSA                             | 373,638                | 2                     | 0.33m                            | 0.020                         | 0.11                            | 0.08         | IN       | 45        | 16.9                                     | 34       | 0.008                          | 0.028       |
| Redding, CA MSA                             | 163,256                | ND                    | ND                               | ND                            | 0.11                            | 0.08         | 24       | 47        | IN                                       | IN       | ND                             | ND          |
| Reno, NV MSA                                | 339,486                | 5                     | ND                               | 0.008                         | 0.09                            | 0.07         | 42       | 96        | 9.0                                      | 31       | ND                             | ND          |
| Richland—Kennewick—Pasco, WA MSA            | 191,822                | ND                    | ND                               | ND                            | ND                              | ND           | IN       | 140       | IN                                       | IN       | ND                             | ND          |
| Richmond—Petersburg, VA MSA                 | 996,512                | 3                     | ND                               | 0.017                         | 0.11                            | 0.08         | IN       | 42        | 15.1                                     | 30       | 0.006                          | 0.017       |
| Riverside—San Bernardino, CA PMSA           | 3,254,821              | 4                     | 0.05                             | 0.038                         | 0.17                            | 0.12         | 59       | 190       | 28.4                                     | 81       | 0.003                          | 0.026       |
| Roanoke, VA MSA                             | 235,932                | 3                     | ND                               | 0.011                         | 0.10                            | 0.08         | 32       | 66        | 15.9                                     | 33       | 0.003                          | 0.014       |
| Rochester, MN MSA                           | 124,277                | ND                    | ND                               | ND                            | ND                              | ND           | ND       | ND        | IN                                       | IN       | ND                             | ND          |
| Rochester, NY MSA                           | 1,098,201              | 3                     | ND                               | ND                            | 0.09                            | 0.07         | ND       | ND        | 11.8                                     | 28       | 0.006                          | 0.021       |
| Rockford, IL MSA                            | 371,236                | 3                     | ND                               | ND                            | 0.08                            | 0.07         | ND       | ND        | 15.0                                     | 36       | ND                             | ND          |
| Rocky Mount, NC MSA                         | 143,026                | ND                    | ND                               | ND                            | 0.11                            | 0.09         | 20       | 41        | 14.7                                     | 35       | ND                             | ND          |
| Sacramento, CA PMSA                         | 1,628,197              | 6                     | 0.00                             | 0.019                         | 0.13                            | 0.10         | 27       | 82        | 12.3                                     | 81       | IN                             | IN          |
| Saginaw—Bay City—Midland, MI MSA            | 403,070                | ND                    | ND                               | ND                            | ND                              | ND           | ND       | ND        | IN                                       | IN       | ND                             | ND          |
| St. Cloud, MN MSA                           | 167,392                | 3                     | ND                               | ND                            | ND                              | ND           | ND       | ND        | IN                                       | IN       | ND                             | ND          |
| St. Joseph, MO MSA                          | 102,490                | ND                    | ND                               | ND                            | ND                              | ND           | 31       | 80        | 11.8                                     | 27       | IN                             | IN          |
| St. Louis, MO—IL MSA                        | 2,603,607              | 4                     | 6.86n                            | 0.026                         | 0.12                            | 0.09         | 45       | 116       | 20.6                                     | 43       | 0.008                          | 0.043       |
| Salem, OR PMSA                              | 347,214                | IN                    | ND                               | ND                            | 0.07                            | 0.06         | ND       | ND        | 8.9                                      | 31       | ND                             | ND          |
| Salinas, CA MSA                             | 401,762                | 1                     | ND                               | 0.007                         | 0.08                            | 0.06         | 30       | 70        | 8.0                                      | 22       | ND                             | ND          |
| Salt Lake City—Ogden, UT MSA                | 1,333,914              | 6<br>3                | 0.07                             | 0.026                         | 0.10                            | 0.08         | 46       | 117<br>IN | 14.2                                     | 57<br>IN | 0.004                          | 0.013       |
| San Antonio, TX MSA                         | 1,592,383              | 5                     | ND<br>0.02                       | 0.018<br>0.024                | 0.10<br>0.12                    | 0.08<br>0.10 | IN<br>31 | IN<br>86  | IN<br>15.9                               | IN       | ND<br>0.004                    | ND<br>0.011 |
| San Diego, CA MSA<br>San Francisco, CA PMSA | 2,813,833              | 4                     | 0.02                             | 0.024                         | 0.12                            | 0.10         | 24       | 53        | 10.9                                     | 43       | 0.004                          | 0.007       |
| San Jose, CA PMSA                           | 1,731,183<br>1,682,585 | 4                     | 0.00                             | 0.020                         | 0.08                            | 0.05         | 24<br>27 | 68        | 13.5                                     | 43<br>57 | 0.002<br>ND                    | 0.007<br>ND |
| San Juan–Bayamon, PR PMSA                   | 1,967,627              | 6                     | 0.00                             | 0.025                         | 0.10                            | 0.07         | 37       | 102       | 7.3                                      | 18       | 0.006                          | 0.058       |
| San Luis Obispo—Atascadero—Paso Rob         | 246,681                | 2                     | ND                               | 0.010                         | 0.10                            | 0.03         | 21       | 102       | 10.5                                     | 41       | 0.000                          | 0.038       |
| Santa Barbara—Santa Maria—Lompoc, C         | 399,347                | 2                     | 0.00                             | 0.012                         | 0.00                            | 0.07         | 26       | 62        | 9.7                                      | 19       | 0.003                          | 0.020       |
| Santa Cruz—Watsonville, CA PMSA             | 255,602                | 1                     | ND                               | 0.005                         | 0.09                            | 0.00         | 26       | 50        | 7.9                                      | 18       | 0.002                          | 0.003       |
| Santa Fe, NM MSA                            | 147,635                | 2                     | ND                               | ND                            | ND                              | ND           | 11       | 28        | 5.2                                      | 10       | ND                             | ND          |
| Santa Rosa, CA PMSA                         | 458,614                | 3                     | ND                               | 0.013                         | 0.08                            | 0.06         | 18       | 40        | 10.3                                     | 40       | ND                             | ND          |
| Sarasota—Bradenton, FL MSA                  | 589,959                | 4                     | ND                               | 0.009                         | 0.00                            | 0.09         | 26       | 48        | 11.0                                     | 30       | 0.002                          | 0.019       |
| Savannah, GA MSA                            | 293,000                | ND                    | ND                               | ND                            | 0.10                            | 0.08         | 26       | 66        | 15.1                                     | IN       | 0.003                          | 0.024       |
| Scranton—Wilkes-Barre—Hazleton, PA          | 624,776                | 2                     | ND                               | 0.015                         | 0.09                            | 0.08         | IN       | 46        | 12.7                                     | 33       | 0.006                          | 0.026       |
| Seattle—Bellevue—Everett, WA PMSA           | 2,414,616              | 6                     | ND                               | 0.021                         | 0.10                            | 0.07         | 23       | 66        | 12.7                                     | 43       | 0.003                          | 0.011       |
| Sharon, PA MSA                              | 120,293                | ND                    | ND                               | ND                            | 0.10                            | 0.08         | ND       | ND        | IN                                       | IN       | 0.007                          | 0.024       |
| Sheboygan, WI MSA                           | 112,646                | ND                    | ND                               | ND                            | 0.11                            | 0.09         | ND       | ND        | ND                                       | ND       | ND                             | ND          |
| Shreveport—Bossier City, LA MSA             | 392,302                | ND                    | ND                               | ND                            | 0.13                            | 0.09         | 24       | 51        | 13.8                                     | 31       | 0.002                          | 0.006       |
| Sioux City, IA-NE MSA                       | 124,130                | ND                    | ND                               | ND                            | ND                              | ND           | 25       | 76        | 9.5                                      | 31       | ND                             | ND          |
| Sioux Falls, SD MSA                         | 172,412                | ND                    | ND                               | ND                            | IN                              | IN           | 20       | 53        | IN                                       | IN       | ND                             | ND          |
| South Bend, IN MSA                          | 265,559                | ND                    | ND                               | 0.016                         | 0.10                            | 0.08         | 19       | 35        | 13.7                                     | 36       | ND                             | ND          |
| Spokane, WA MSA                             | 417,939                | 6                     | ND                               | ND                            | 0.08                            | 0.07         | 28       | 87        | 11.0                                     | 38       | ND                             | ND          |
| Springfield, IL MSA                         | 201,437                | 2                     | ND                               | ND                            | 0.10                            | 0.08         | 26       | 54        | 13.4                                     | 32       | 0.005                          | 0.035       |
| Springfield, MO MSA                         | 325,721                | 3                     | ND                               | 0.012                         | 0.09                            | 0.08         | 18       | 35        | 12.3                                     | 27       | 0.005                          | 0.077       |
| Springfield, MA MSA                         | 591,932                | 4                     | ND                               | 0.026                         | 0.10                            | 0.08         | 28       | 57        | 15.9                                     | 37       | 0.005                          | 0.023       |
| Stamford—Norwalk, CT PMSA                   | 353,556                | 3                     | ND                               | ND                            | 0.12                            | 0.08         | 31       | 67        | IN                                       | IN       | 0.005                          | 0.026       |
| State College, PA MSA                       | 135,758                | ND                    | ND                               | ND                            | 0.11                            | 0.08         | ND       | ND        | IN                                       | IN       | ND                             | ND          |
| Steubenville—Weirton, OH—WV MSA             | 132,008                | 8                     | ND                               | ND                            | 0.10                            | 0.08         | 31       | 95        | 19.1                                     | 47       | 0.014                          | 0.069       |
| Stockton-Lodi, CA MSA                       | 563,598                | 4                     | 0.00                             | 0.020                         | 0.11                            | 0.08         | 32       | 79        | 17.3                                     | IN       | ND                             | ND          |
| Sumter, SC MSA                              | 104,646                | ND                    | 0.01                             | ND                            | ND                              | ND           | ND       | ND        | ND                                       | ND       | ND                             | ND          |
| Syracuse, NY MSA                            | 732,117                | 2                     | ND                               | ND                            | 0.08                            | 0.07         | ND       | ND        | IN                                       | IN       | 0.003                          | 0.022       |

| Metropolitan Statistical Area<br>Population | CO<br>2000<br>(ppm) | Pb<br>8-hr<br>(µg/m³) | NO <sub>2</sub><br>QMax<br>(ppm) | O <sub>3</sub><br>AM<br>(ppm) | O <sub>3</sub><br>1-hr<br>(ppm) |      | PM₁₀<br>Wtd AM<br>) (µg/m³) |     | Wtd AM |     | SO <sub>2</sub><br>AM<br>(ppm) | 24-hi |
|---------------------------------------------|---------------------|-----------------------|----------------------------------|-------------------------------|---------------------------------|------|-----------------------------|-----|--------|-----|--------------------------------|-------|
| Tacoma, WA PMSA                             | 700,820             | 6                     | ND                               | ND                            | 0.08                            | 0.06 | 28                          | 58  | 13.0   | 49  | ND                             | ND    |
| Tallahassee, FL MSA                         | 284,539             | ND                    | ND                               | ND                            | 0.09                            | 0.08 | 18                          | 46  | IN     | IN  | ND                             | ND    |
| Tampa—St. Petersburg—Clearwater, FL         | 2,395,997           | 3                     | 2.010                            | 0.013                         | 0.11                            | 0.08 | 33                          | 73  | 13.5   | 43  | 0.006                          | 0.031 |
| Terre Haute, IN MSA                         | 149,192             | ND                    | ND                               | ND                            | 0.09                            | 0.08 | 25                          | 54  | 15.7   | 37  | 0.012                          | 0.055 |
| Texarkana, TX—Texarkana, AR MSA             | 129,749             | ND                    | ND                               | ND                            | ND                              | ND   | ND                          | ND  | 14.7   | 31  | ND                             | ND    |
| Toledo, OH MSA                              | 618,203             | ND                    | 0.33                             | ND                            | 0.10                            | 0.08 | 23                          | 60  | IN     | IN  | 0.005                          | 0.017 |
| Topeka, KS MSA                              | 169,871             | ND                    | ND                               | ND                            | ND                              | ND   | 20                          | 49  | 10.8   | 23  | ND                             | ND    |
| Trenton, NJ PMSA                            | 350,761             | ND                    | ND                               | 0.016                         | 0.11                            | 0.10 | 26                          | 55  | 14.7   | 43  | ND                             | ND    |
| Tucson, AZ MSA                              | 843,746             | 5                     | ND                               | 0.017                         | 0.09                            | 0.08 | 39                          | 123 | IN     | IN  | 0.002                          | 0.007 |
| Tulsa, OK MSA                               | 803,235             | 4                     | ND                               | 0.015                         | 0.12                            | 0.09 | 25                          | 58  | 12.1   | 30  | 0.006                          | 0.027 |
| Tuscaloosa, AL MSA                          | 164,875             | ND                    | ND                               | ND                            | ND                              | ND   | IN                          | 68  | IN     | IN  | ND                             | ND    |
| Tyler, TX MSA                               | 174,706             | ND                    | ND                               | 0.006                         | 0.10                            | 0.09 | ND                          | ND  | ND     | ND  | ND                             | ND    |
| Utica—Rome, NY MSA                          | 299,896             | ND                    | ND                               | ND                            | 0.08                            | 0.07 | 9                           | 23  | 11.8   | 34  | 0.001                          | 0.007 |
| Vallejo—Fairfield—Napa, CA PMSA             | 518,821             | 5                     | ND                               | 0.013                         | 0.10                            | 0.07 | 18                          | 46  | 11.6   | 60  | 0.002                          | 0.005 |
| Ventura, CA PMSA                            | 753,197             | 3                     | 0.00                             | 0.020                         | 0.12                            | 0.10 | 31                          | 80  | IN     | IN  | 0.002                          | 0.007 |
| Victoria, TX MSA                            | 84,088              | ND                    | ND                               | ND                            | 0.09                            | 0.08 | ND                          | ND  | ND     | ND  | ND                             | ND    |
| Vineland—Millville—Bridgeton, NJ PM         | 146,438             | ND                    | ND                               | ND                            | 0.12                            | 0.09 | ND                          | ND  | ND     | ND  | 0.004                          | 0.017 |
| Visalia—Tulare—Porterville, CA MSA          | 368,021             | 3                     | ND                               | 0.018                         | 0.12                            | 0.11 | 53                          | 127 | 23.7   | 103 | ND                             | ND    |
| Waco, TX MSA                                | 213,517             | ND                    | ND                               | ND                            | ND                              | ND   | ND                          | ND  | IN     | IN  | ND                             | ND    |
| Washington, DC—MD—VA—WV PMSA                | 4,923,153           | 5                     | 0.00                             | 0.023                         | 0.13                            | 0.09 | 24                          | 68  | 18.9   | 50  | 0.011                          | 0.030 |
| Waterbury, CT PMSA                          | 228,984             | ND                    | 0.02                             | ND                            | ND                              | ND   | 21                          | 41  | IN     | IN  | 0.004                          | 0.017 |
| Waterloo—Cedar Falls, IA MSA                | 128,012             | ND                    | ND                               | ND                            | ND                              | ND   | 31                          | 71  | 11.6   | 29  | ND                             | ND    |
| Wausau, WI MSA                              | 125,834             | ND                    | ND                               | ND                            | 0.08                            | 0.07 | IN                          | IN  | ND     | ND  | ND                             | ND    |
| West Palm Beach—Boca Raton, FL MSA          | 1,131,184           | 3                     | ND                               | 0.016                         | 0.09                            | 0.08 | IN                          | 38  | 9.4    | 27  | 0.002                          | 0.008 |
| Wheeling, WV—OH MSA                         | 153,172             | 2                     | ND                               | ND                            | 0.09                            | 0.07 | 28                          | 62  | 16.3   | 35  | 0.013                          | 0.044 |
| Wichita, KS MSA                             | 545,220             | 6                     | ND                               | ND                            | 0.09                            | 0.08 | 26                          | 87  | 12.7   | 29  | ND                             | ND    |
| Williamsport, PA MSA                        | 120,044             | ND                    | ND                               | ND                            | 0.09                            | 0.07 | IN                          | IN  | ND     | ND  | 0.005                          | 0.019 |
| Wilmington—Newark, DE—MD PMSA               | 586,216             | 3                     | ND                               | IN                            | 0.13                            | 0.11 | 26                          | 46  | 16.8   | 29  | 0.007                          | 0.047 |
| Wilmington, NC MSA                          | 233,450             | 4                     | ND                               | ND                            | 0.10                            | 0.08 | 17                          | 36  | 12.5   | 32  | 0.006                          | 0.030 |
| Worcester, MA—CT PMSA                       | 511,389             | 3                     | ND                               | 0.018                         | 0.10                            | 0.08 | 19                          | 54  | 12.1   | 33  | 0.006                          | 0.019 |
| Yakima, WA MSA                              | 222,581             | 3                     | ND                               | ND                            | ND                              | ND   | 27                          | 58  | IN     | IN  | ND                             | ND    |
| Yolo, CA PMSA                               | 168,660             | 1                     | ND                               | 0.011                         | 0.10                            | 0.08 | 26                          | 66  | 10.3   | 38  | ND                             | ND    |
| York, PA MSA                                | 381,751             | 2                     | ND                               | 0.018                         | 0.11                            | 0.09 | IN                          | 53  | 16.6   | 31  | 0.006                          | 0.020 |
| Youngstown—Warren, OH MSA                   | 594,746             | ND                    | ND                               | ND                            | 0.10                            | 0.08 | 27                          | 128 | 15.9   | 35  | 0.007                          | 0.024 |
| Yuba City, CA MSA                           | 139,149             | 4                     | ND                               | 0.013                         | 0.10                            | 0.08 | 28                          | 66  | 11.5   | 38  | ND                             | ND    |
| Yuma, AZ MSA                                | 160,026             | ND                    | ND                               | ND                            | 0.08                            | 0.06 | IN                          | IN  | ND     | ND  | ND                             | ND    |

| со                   | _    | Highest second maximum non-overlapping 8-hour concentration (Applicable NAAQS is 9 ppm)        |
|----------------------|------|------------------------------------------------------------------------------------------------|
| Pb                   | _    | Highest quarterly maximum concentration (Applicable NAAQS is $1.5 \mu g/m^3$ )                 |
| NO <sub>2</sub>      | -    | Highest arithmetic mean concentration (Applicable NAAQS is 0.053 ppm)                          |
| O <sub>3</sub> (1-hr | r) — | Highest second daily maximum 1-hour concentration (Applicable NAAQS is 0.12 ppm)               |
| 0 <sub>3</sub> (8-hr | r) — | Highest fourth daily maximum 8-hour concentration (Applicable NAAQS is 0.08 ppm)               |
| PM <sub>10</sub>     | -    | Highest weighted annual mean concentration (Applicable NAAQS is 50 $\mu$ g/m <sup>3</sup> )    |
|                      | -    | Highest second maximum 24-hour concentration (Applicable NAAQS is 150 $\mu$ g/m <sup>3</sup> ) |
| SO,                  | _    | Highest annual mean concentration (Applicable NAAQS is 0.03 ppm)                               |
| -                    | _    | Highest second maximum 24-hour concentration (Applicable NAAQS is 0.14 ppm)                    |
| ND                   | _    | Indicates data not available                                                                   |
| IN                   | _    | Indicates insufficient data to calculate summary statistic                                     |
| Wtd                  | _    | Weighted                                                                                       |
| AM                   | _    | Annual mean                                                                                    |
| ua/m <sup>3</sup>    | _    | Linits are micrograms per cubic meter                                                          |

 Units are micrograms per cubic meter
 Units are parts per million µg/m³ PPM

# Table A-16. Metropolitan Statistical Area Air Quality Trends, 1993–2002

| Metropolita         | an Statistical Area                                        | Trend        | #Trend<br>Sites | 1993         | 1994         | 1995         | 1996         | 1997        | 1998        | 1999          | 2000           | 2001          | 2002          |
|---------------------|------------------------------------------------------------|--------------|-----------------|--------------|--------------|--------------|--------------|-------------|-------------|---------------|----------------|---------------|---------------|
| akron, of           | 4                                                          |              |                 |              |              |              |              |             |             |               |                |               |               |
| CO                  | 2nd max (daily-non-overlapping 8-h)                        | down         | 1               | 3.1          | 5.3          | 3.3          | 3.4          | 3.2         | 2.6         | 2.5           | 2.4            | 2.7           | 1.8           |
| SO <sub>2</sub>     | 2nd daily max                                              | ns           | 1               | 0.056        | 0.042        | 0.046        | 0.042        | 0.072       | 0.044       | 0.065         | 0.044          | 0.044         | 0.06          |
| 2                   | Annual mean                                                | ns           | 1               | 0.015        | 0.012        | 0.009        | 0.01         | 0.012       | 0.01        | 0.011         | 0.009          | 0.01          | 0.01          |
| Ozone               | 2nd highest daily max                                      | ns           | 2               | 0.108        | 0.1          | 0.117        | 0.105        | 0.103       | 0.112       | 0.115         | 0.106          | 0.113         | 0.12          |
|                     | 4th highest daily max 8-h average                          | ns           | 2               | 0.093        | 0.086        | 0.092        | 0.091        | 0.087       | 0.097       | 0.097         | 0.085          | 0.096         | 0.1           |
| PM <sub>2.5</sub> * | 98th percentile                                            | NA           | 2               | ND           | ND           | ND           | ND           | ND          | ND          | 41.45         | 37.15          | 44.1          | 41.9          |
|                     | Weighted annual mean                                       | NA           | 2               | ND           | ND           | ND           | ND           | ND          | ND          | 17.215        | 16.435         | 16.75         | 16.745        |
| ALBANY, G           |                                                            |              |                 |              |              |              |              |             |             |               |                |               |               |
| PM <sub>2.5</sub> * | 98th percentile                                            | NA           | 1               | ND           | ND           | ND           | ND           | ND          | ND          | ND            | 37.7           | 36.1          | 30.5          |
|                     | Weighted annual mean                                       | NA           | 1               | ND           | ND           | ND           | ND           | ND          | ND          | ND            | 16.61          | 14.64         | 13.82         |
|                     | CHENECTADY-TROY, NY                                        |              |                 |              |              |              |              |             |             |               |                |               |               |
| CO                  | 2nd max (daily-non-overlapping 8-h)                        | down         | 1               | 3.8          | 5.2          | 4.3          | 3.7          | 4.5         | 4.4         | 4.2           | 2.9            | 2.4           | 3.4           |
| SO <sub>2</sub>     | 2nd daily max                                              | down         | 1               | 0.028        | 0.037        | 0.023        | 0.025        | 0.02        | 0.016       | 0.016         | 0.02           | 0.024         | 0.019         |
|                     | Annual mean                                                | ns           | 1               | 0.006        | 0.007        | 0.003        | 0.004        | 0.003       | 0.004       | 0.003         | 0.004          | 0.005         | 0.004         |
| Ozone               | 2nd highest daily max                                      | ns           | 2               | 0.102        | 0.103        | 0.101        | 0.095        | 0.094       | 0.096       | 0.106         | 0.08           | 0.104         | 0.113         |
|                     | 4th highest daily max 8-h average                          | ns           | 2               | 0.083        | 0.078        | 0.08         | 0.077        | 0.077       | 0.075       | 0.082         | 0.066          | 0.086         |               |
| PM <sub>2.5</sub> * | 98th percentile                                            | NA           | 2               | ND           | ND           | ND           | ND           | ND          | ND          | ND            | 25.3           | 32.1          |               |
|                     | Weighted annual mean                                       | NA           | 2               | ND           | ND           | ND           | ND           | ND          | ND          | ND            | 10.54          | 10.685        | 10.91         |
|                     | QUE, NM                                                    |              | 0               |              | -            | 4.05         |              | 1.05        | 0.05        | 4.05          | 0.45           | 0.05          |               |
| CO                  | 2nd max (daily-non-overlapping 8-h)                        | down         | 2               | 6.2          | 5            | 4.35         | 4.3          | 4.05        | 3.85        | 4.05          | 3.45           | 3.25          | 2.8           |
| NO <sub>2</sub>     | Annual mean                                                | ns           | 1               | 0.024        | 0.023        | 0.018        | 0.022        | 0.019       | 0.016       | 0.016         | 0.017          | 0.017         | 0.019         |
| Ozone               | 2nd highest daily max                                      | ns           | 2               | 0.086        | 0.078        | 0.082        | 0.089        | 0.088       | 0.089       | 0.091         | 0.088          | 0.085         | 0.08          |
|                     | 4th highest daily max 8-h average                          | up           | 2               | 0.065        | 0.063        | 0.061        | 0.071        | 0.071       | 0.07        | 0.071         | 0.07           | 0.07          |               |
| PM <sub>10</sub> *  | 90th percentile                                            | down         | 2               | 43           | 36           | 36.5         | 30.5         | 30.5        | 28.5        | 28.5          | 29.5           | 27.5          | 39.           |
|                     | Weighted annual mean                                       | down         | 2               | 26.85        | 22.6         | 22.4         | 20.5         | 19.7        | 19.2        | 19.3          | 18.65          |               | 24.5          |
| PM <sub>2.5</sub> * | 98th percentile                                            | NA<br>NA     | 1<br>1          | ND<br>ND     | ND<br>ND     | ND<br>ND     | ND<br>ND     | ND<br>ND    | ND<br>ND    | 22.1<br>6.54  | 17.5<br>6.39   | 19.7<br>6.39  | 18.           |
|                     | Weighted annual mean                                       | INA          | I               | ND           | ND           | ND           | ND           | ND          | ND          | 0.54          | 0.39           | 0.39          | 6.31          |
|                     |                                                            | NIA          | 1               |              | ND           | ND           |              | ND          | ND          | 20.7          | 20.1           | 20.4          | 24-           |
| PM <sub>2.5</sub> * | 98th percentile                                            | NA<br>NA     | 1               | ND<br>ND     | ND<br>ND     | ND<br>ND     | ND<br>ND     | ND<br>ND    | ND<br>ND    | 30.7<br>14.29 | 30.1<br>13.35  | 29.4<br>12.15 | 24.7<br>10.55 |
|                     | Weighted annual mean                                       | NA           | I               | ND           | ND           | ND           | ND           | ND          | ND          | 14.29         | 15.55          | 12.15         | 10.50         |
|                     | /N-BETHLEHEM-EASTON, PA                                    | <b>n</b> c   | 1               | 0 101        | 0 1 2 1      | 0.074        | 0.002        | 0.093       | 0 1 2       | 0.071         | 0 1 1 1        | 0.071         | 0.000         |
| Lead<br>CO          | Maximum quarterly value                                    | ns           | 1               | 0.181        | 0.131        | 0.074        | 0.083        |             | 0.12<br>2.9 | 0.071<br>3.2  | 0.111          | 0.071         | 0.088         |
|                     | 2nd max (daily-non-overlapping 8-h)                        | down<br>down | 1               | 3.5<br>0.034 | 4.7<br>0.053 | 4.8<br>0.028 | 3.2<br>0.035 | 2.7<br>0.03 | 0.03        | 0.03          | 2.6<br>0.027   | 3.3<br>0.028  | 0.02          |
| SO <sub>2</sub>     | 2nd daily max<br>Annual mean                               | ns           | 1               | 0.034        | 0.003        | 0.028        | 0.035        | 0.003       | 0.003       | 0.005         | 0.027          | 0.028         | 0.02          |
| $NO_2$              | Annual mean                                                | down         | 1               | 0.007        | 0.000        | 0.000        | 0.000        | 0.008       | 0.008       | 0.000         | 0.007          | 0.007         |               |
| Ozone               | 2nd highest daily max                                      | up           | 1               | 0.102        | 0.105        | 0.109        | 0.018        | 0.010       | 0.106       | 0.015         | 0.013          |               | 0.01          |
| OZONC               | 4th highest daily max 8-h average                          | ns           | 1               | 0.082        | 0.084        | 0.091        | 0.094        | 0.101       | 0.095       | 0.125         | 0.091          | 0.094         |               |
| PM <sub>2.5</sub> * | 98th percentile                                            | NA           | 2               | 0.002<br>ND  | 0.004<br>ND  | ND           | 0.074<br>ND  | ND          | ND          | 31.4          | 37.75          | 42.85         | 39.9          |
| 2.5                 | Weighted annual mean                                       | NA           | 2               | ND           | ND           | ND           | ND           | ND          | ND          |               | 13.975         |               | 13.6          |
| LTOONA,             |                                                            |              | 2               | ND           | ND           | ne           | ne           | ne          | ne          | 12.07         | 10.770         | 10.210        | 10.0          |
| CO                  | 2nd max (daily-non-overlapping 8-h)                        | down         | 1               | 2            | 2.4          | 1.7          | 1.9          | 1.5         | 1.2         | 1.6           | 1              | 1.1           | 0.            |
| SO,                 | 2nd daily max                                              | ns           | 1               | 0.052        | 0.058        | 0.037        | 0.033        | 0.046       | 0.032       | 0.03          | 0.045          | 0.042         |               |
| 502                 | Annual mean                                                | ns           | 1               | 0.002        | 0.000        | 0.008        | 0.008        | 0.040       | 0.008       | 0.007         | 0.006          | 0.009         | 0.00          |
| NO <sub>2</sub>     | Annual mean                                                | ns           | 1               | 0.007        | 0.015        |              | 0.013        |             | 0.000       | 0.007         | 0.000          | 0.014         |               |
| Ozone               | 2nd highest daily max                                      | ns           | 1               | 0.013        |              | 0.112        | 0.101        | 0.114       | 0.114       | 0.010         |                | 0.107         |               |
| 020110              | 4th highest daily max 8-h average                          | ns           | 1               | 0.086        |              | 0.091        | 0.083        |             | 0.098       | 0.091         |                | 0.083         |               |
| NCHORAC             | 5 , 5                                                      |              | •               | 0.000        | 01072        | 0.071        | 0.000        | 0.070       | 0.070       | 01071         | 0.00           | 0.000         | 0.00          |
| PM <sub>2.5</sub> * | 98th percentile                                            | NA           | 1               | ND           | ND           | ND           | ND           | ND          | ND          | ND            | 20.2           | 16.3          | 18.2          |
| 2.5                 | Weighted annual mean                                       | NA           | 1               | ND           | ND           | ND           | ND           | ND          | ND          | ND            | 6.05           | 6.17          | 6.9           |
| NN ARBO             | 5                                                          | 101          | •               | ND           | ND           | ne           | 110          | ne          | ND          | ND            | 0.00           | 0.17          | 0.7           |
| Ozone               | 2nd highest daily max                                      | ns           | 1               | 0.09         | 0.094        | 0.11         | 0.104        | 0.089       | 0.097       | 0.09          | 0.094          | 0.103         | 0.            |
| OZUNE               | 4th highest daily max 8-h average                          | ns           | 1               | 0.074        | 0.094        | 0.089        | 0.085        | 0.009       | 0.097       | 0.083         | 0.094          | 0.086         |               |
| PM <sub>2.5</sub> * | 98th percentile                                            | NA           | 2               | 0.074<br>ND  | 0.084<br>ND  | 0.089<br>ND  | 0.085<br>ND  | 0.078<br>ND | 0.080<br>ND | 0.083<br>ND   | 31.7           | 39.1          | 31.           |
| 2.5                 | Weighted annual mean                                       | NA           | 2               | ND           | ND           | ND           | ND           | ND          | ND          | ND            |                | 13.995        |               |
| SHEVILLE            |                                                            | 1973         | 2               |              | ND           |              |              |             |             |               | 10.70          |               | 1021          |
| Ozone               | -                                                          | 110          | 1               | 0 070        | 0.001        |              | 0 001        | 0.00        | 0 1 1 4     | 0.099         | 0 107          | 0.001         | 0 10          |
| Ozone               | 2nd highest daily max<br>4th highest daily max 8-b average | up           | 1               | 0.079        | 0.084        | 0.085        | 0.084        | 0.09        | 0.114       |               | 0.107          | 0.091         | 0.10          |
| DN/ *               | 4th highest daily max 8-h average                          | up           | 1               | 0.066        | 0.069        | 0.076        | 0.074        | 0.075       | 0.09        | 0.084         | 0.09           | 0.076         | 0.09          |
| PM <sub>10</sub> *  | 90th percentile                                            | ns           | 1               | 43           | 30<br>10     | 28           | 29<br>10 0   | 38          | 36          | 36<br>20 F    | 33             | 26<br>17 5    | 28            |
| DN/ *               | Weighted annual mean                                       | down         | 1               | 22.3         | 19<br>ND     | 18.4         | 18.8<br>ND   | 20.7<br>ND  | 20.1        | 20.5          | 18.3           | 17.5<br>20.4  | 7.0<br>20.4   |
| PM <sub>2.5</sub> * | 98th percentile<br>Weighted annual mean                    | NA<br>NA     | 1<br>1          | ND<br>ND     | ND<br>ND     |              | ND           | ND<br>ND    | ND<br>ND    | 31.6<br>15.61 | 30.5<br>14.195 | 29.4          | 30.           |
|                     | vvelumeu annuär mean                                       | INA          | 1               | IND.         | ND           | ND           | ND           | IND         | ND          | 10.01         | 14.195         | 12.78         | 15./          |

| Metropolita              | an Statistical Area                                        | Trend    | #Trend<br>Sites | 1993          | 1994          | 1995         | 1996           | 1997         | 1998         | 1999           | 2000         | 2001           | 2002        |
|--------------------------|------------------------------------------------------------|----------|-----------------|---------------|---------------|--------------|----------------|--------------|--------------|----------------|--------------|----------------|-------------|
| ATHENS, G                | 5A                                                         |          |                 |               |               |              |                |              |              |                |              |                |             |
| PM <sub>2.5</sub> *      | 98th percentile                                            | NA       | 1               | ND            | ND            | ND           | ND             | ND           | ND           | 48.2           | 39.7         | 50.9           | 27.8        |
| 2.5                      | Weighted annual mean                                       | NA       | 1               | ND            | ND            | ND           | ND             | ND           | ND           | 19.84          | 18.48        | 17.53          | 14.96       |
| ATLANTA,                 | GA                                                         |          |                 |               |               |              |                |              |              |                |              |                |             |
| Lead                     | Maximum quarterly value                                    | ns       | 1               | 0.02          | 0.02          | 0.027        | 0.02           | 0.017        | 0.013        | 0.053          | 0.04         | 0.05           | 0.037       |
| CO                       | 2nd max (daily-non-overlapping 8-h)                        | down     | 1               | 4.9           | 5.3           | 4.5          | 3.7            | 4.3          | 4.1          | 4.1            | 3.2          | 4.1            | 3.6         |
| SO <sub>2</sub>          | 2nd daily max                                              | down     | 2               | 0.026         | 0.026         | 0.019        | 0.021          | 0.023        | 0.018        | 0.019          | 0.019        | 0.015          | 0.018       |
| -                        | Annual mean                                                | down     | 2               | 0.006         | 0.005         | 0.004        | 0.004          | 0.004        | 0.004        | 0.004          | 0.004        | 0.003          | 0.003       |
| NO <sub>2</sub>          | Annual mean                                                | ns       | 1               | 0.025         | 0.023         | 0.019        | 0.027          | 0.025        | 0.024        | 0.024          | 0.023        | 0.023          | 0.019       |
| Ozone                    | 2nd highest daily max                                      | ns       | 1               | 0.158         | 0.125         | 0.145        | 0.137          | 0.133        | 0.157        | 0.156          | 0.158        | 0.114          |             |
|                          | 4th highest daily max 8-h average                          | ns       | 1               | 0.122         | 0.089         | 0.118        | 0.11           | 0.104        | 0.126        | 0.124          | 0.113        | 0.084          | 0.1         |
| PM <sub>10</sub> *       | 90th percentile                                            | ns       | 1               | 57            | 53            | 56           | 48             | 61           | 53           | 56             | 52           | 85             | 45          |
|                          | Weighted annual mean                                       | ns       | 1               | 35.1          | 32.2          | 33.3         | 31.2           | 32.2         | 31.1         | 34.9           | 36           | 37.6           | 26.4        |
| PM <sub>2.5</sub> *      | 98th percentile                                            | NA       | 3               | ND            | ND            | ND           | ND             | ND           | ND           | 46.05          |              | 37.867         |             |
|                          | Weighted annual mean                                       | NA       | 3               | ND            | ND            | ND           | ND             | ND           | ND           | 22.035         | 19.987       | 17.79          | 15.93       |
|                          | CAPE MAY, NJ                                               |          |                 |               |               |              |                |              |              |                |              |                |             |
| SO <sub>2</sub>          | 2nd daily max                                              | down     | 1               | 0.014         | 0.019         | 0.011        | 0.014          | 0.011        | 0.01         | 0.009          | 0.013        | 0.01           | 0.009       |
|                          | Annual mean                                                | down     | 1               | 0.003         | 0.003         | 0.003        | 0.003          | 0.003        | 0.003        | 0.003          | 0.003        | 0.003          | 0.003       |
| Ozone                    | 2nd highest daily max                                      | ns       | 1               | 0.115         | 0.099         | 0.116        | 0.108          | 0.131        | 0.118        | 0.118          | 0.108        | 0.105          | 0.107       |
|                          | 4th highest daily max 8-h average                          | ns       | 1               | 0.093         | 0.083         | 0.1          | 0.095          | 0.106        | 0.091        | 0.095          | 0.085        | 0.095          | 0.093       |
|                          | AIKEN, GA-SC                                               |          |                 |               |               |              |                |              |              |                |              |                |             |
| Lead                     | Maximum quarterly value                                    | down     | 1               | 0.012         | 0.011         | 0.006        | 0.004          | 0.009        | 0.02         | 0.003          | 0.006        | 0.004          | 0.002       |
| NO <sub>2</sub>          | Annual mean                                                | ns       | 1               | 0.005         | 0.005         | 0.005        | 0.005          | 0.005        | 0.005        | 0.005          | 0.005        | 0.004          | 0.004       |
| Ozone                    | 2nd highest daily max                                      | ns       | 3               | 0.1           | 0.093         | 0.1          | 0.098          | 0.104        | 0.116        | 0.106          | 0.106        | 0.096          | 0.107       |
| D14 *                    | 4th highest daily max 8-h average                          | ns       | 3               | 0.084         | 0.08          | 0.079        | 0.083          | 0.083        | 0.096        | 0.087          | 0.087        | 0.08           | 0.092       |
| PM <sub>10</sub> *       | 90th percentile                                            | ns       | 1               | 35            | 35            | 29           | 29             | 31           | 38           | 35             | 30           | 27             | 28          |
|                          | Weighted annual mean                                       | ns       | 1               | 22.1          | 21.3          | 18.7         | 18.7           | 21.4         | 22.4         | 21.1           | 20.5         | 16.7           | 17.2        |
| PM <sub>2.5</sub> *      | 98th percentile                                            | NA       | 2               | ND            | ND            | ND           | ND             | ND           | ND           | 42.3           | 34.9         | 28.45          | 28.4        |
|                          | Weighted annual mean                                       | NA       | 2               | ND            | ND            | ND           | ND             | ND           | ND           | 19.89          | 16.005       | 13.78          | 13.295      |
|                          | N MARCOS, TX                                               |          | 1               | 0.001         | 0 1 0 0       | 0.105        | 0.000          | 0.000        | 0 1 1 5      | 0 1 0 0        | 0 107        | 0.001          | 0 1 0 0     |
| Ozone                    | 2nd highest daily max                                      | ns       | 1               | 0.091         | 0.102         | 0.105        | 0.098          | 0.089        | 0.115        | 0.102          | 0.107        | 0.091          |             |
|                          | 4th highest daily max 8-h average                          | ns       | 1               | 0.08          | 0.085         | 0.089        | 0.08           | 0.075        | 0.088        | 0.087          | 0.088        | 0.078          | 0.091       |
| PM <sub>2.5</sub> *      | 98th percentile                                            | NA       | 2               | ND            | ND            | ND           | ND             | ND           | ND           | ND             | 24.5         | 20.85          |             |
|                          | Weighted annual mean                                       | NA       | 2               | ND            | ND            | ND           | ND             | ND           | ND           | ND             | 10.925       | 9.625          | 10.505      |
| BAKERSFIE                |                                                            | dayua    | 1               | 0.010         | 0.010         | 0.010        | 0.010          | 0.011        | 0.015        | 0.01           | 0.011        | 0.000          | 0 000       |
| Lead<br>CO               | Maximum quarterly value                                    | down     | 1               | 0.013         | 0.013         | 0.013        | 0.012          | 0.011        | 0.015        | 0.01           | 0.011        | 0.008          | 0.008       |
|                          | 2nd max (daily-non-overlapping 8-h)                        | ns       | 1<br>2          | 3.6           | 3.6           | 3.6<br>0.018 | 3.6            | 2.7<br>0.016 | 2.8<br>0.016 | 5              | 5.2<br>0.016 | 3.2            | 2.5         |
| NO <sub>2</sub><br>Ozone | Annual mean                                                | down     | 2               | 0.02<br>0.136 | 0.02<br>0.133 | 0.018        | 0.019<br>0.144 | 0.010        | 0.010        | 0.018<br>0.122 | 0.010        | 0.012<br>0.124 | 0.017 0.133 |
| OZUNE                    | 2nd highest daily max<br>4th highest daily max 8-h average | ns<br>ns | 2               | 0.130         | 0.133         | 0.133        | 0.144          | 0.122        | 0.132        | 0.122          | 0.120        | 0.124          | 0.133       |
| PM <sub>10</sub> *       | 90th percentile                                            | ns       | 1               | 103           | 103           | 103          | 87             | 69           | 103          | 109            | 87           | 111            | 87          |
| 1 10 10                  | Weighted annual mean                                       | ns       | 1               | 58.2          | 58.2          | 58.2         | 53.6           | 46.5         | 47           | 59.3           | 53.6         | 59.8           | 59.1        |
| PM <sub>2.5</sub> *      | 98th percentile                                            | NA       | 1               | ND            | ND            | ND           | ND             | ND           | ND           | 95.3           | 93.9         | 95.9           | 80.4        |
| 2.5                      | Weighted annual mean                                       | NA       | 1               | ND            | ND            | ND           | ND             | ND           | ND           | 26.36          | 22.63        | 21.83          | 24.08       |
| BALTIMOR                 |                                                            |          |                 |               |               |              |                |              |              | 20.00          | 22.00        | 21100          | 200         |
| CO                       | 2nd max (daily-non-overlapping 8-h)                        | down     | 1               | 4.9           | 5.7           | 4.2          | 3.9            | 4.8          | 3.3          | 4.6            | 3.4          | 3.3            | 3           |
| SO <sub>2</sub>          | 2nd daily max                                              | ns       | 1               | 0.024         | 0.029         | 0.022        | 0.028          | 0.025        | 0.021        | 0.02           | 0.024        | 0.026          | 0.021       |
| 002                      | Annual mean                                                | down     | 1               | 0.024         | 0.0027        | 0.022        | 0.020          | 0.007        | 0.021        | 0.002          | 0.024        | 0.020          |             |
| NO <sub>2</sub>          | Annual mean                                                | down     | 1               | 0.033         | 0.032         | 0.026        | 0.027          | 0.026        | 0.026        | 0.024          | 0.024        | 0.023          |             |
| Ozone                    | 2nd highest daily max                                      | ns       | 3               | 0.135         | 0.121         | 0.135        | 0.112          | 0.134        | 0.12         | 0.135          | 0.111        | 0.122          |             |
| - 20110                  | 4th highest daily max 8-h average                          | ns       | 3               | 0.106         | 0.09          | 0.104        | 0.086          | 0.1          | 0.098        | 0.107          | 0.089        | 0.094          |             |
| PM <sub>10</sub> *       | 90th percentile                                            | down     | 4               | 49.5          | 48            | 46           | 40.75          | 43.75        | 45           | 39.5           | 44           | 41.75          |             |
|                          | Weighted annual mean                                       | down     | 4               | 29.375        | 29.225        |              | 25.9           | 27.058       |              | 24.975         |              | 24.95          |             |
| PM <sub>2.5</sub> *      | 98th percentile                                            | NA       | 5               | ND            | ND            | ND           | ND             | ND           | ND           | ND             | 37.24        |                | 39.08       |
| 2.5                      | Weighted annual mean                                       | NA       | 5               | ND            | ND            | ND           | ND             | ND           | ND           | ND             |              | 16.052         |             |
| BANGOR, N                | ИЕ                                                         |          |                 |               |               |              |                |              |              |                |              |                |             |
| PM <sub>10</sub> *       | 90th percentile                                            | ns       | 1               | 34            | 35            | 32           | 27             | 33           | 34           | 24             | 31           | 32             | 33          |
| * 10                     | Weighted annual mean                                       | down     | 1               | 22.2          | 21.9          | 20           | 18.8           | 21.1         | 17.5         | 16.7           | 17.3         | 17.1           | 16.6        |
|                          | 5                                                          |          |                 |               |               |              |                |              |              |                |              |                |             |
| PM <sub>2.5</sub> *      | 98th percentile                                            | NA       | 1               | ND            | ND            | ND           | ND             | ND           | ND           | 25.7           | 22.8         | 31.1           | 27          |

| tan Statistical Area                | Trend | #Trend<br>Sites | 1993        | 1994          | 1995             | 1996                | 1997                | 1998                   | 1999                      | 2000                         | 2001                              | 200                                    |
|-------------------------------------|-------|-----------------|-------------|---------------|------------------|---------------------|---------------------|------------------------|---------------------------|------------------------------|-----------------------------------|----------------------------------------|
| DUGE, LA                            |       |                 |             |               |                  |                     |                     |                        |                           |                              |                                   |                                        |
| 2nd max (daily-non-overlapping 8-h) | ns    | 1               | 9           | 4.6           | 3.4              | 4.7                 | 5.4                 | 3.9                    | 4.5                       | 3.6                          | 4.8                               | 3.7                                    |
| 2nd daily max                       | ns    | 2               | 0.023       | 0.021         | 0.026            | 0.022               | 0.023               | 0.027                  | 0.022                     | 0.023                        | 0.021                             | 0.027                                  |
| Annual mean                         | ns    | 2               | 0.006       | 0.006         | 0.005            | 0.006               | 0.006               | 0.006                  | 0.005                     | 0.005                        | 0.005                             | 0.006                                  |
| Annual mean                         | ns    | 2               | 0.015       | 0.017         | 0.017            | 0.018               | 0.017               | 0.017                  | 0.017                     | 0.017                        | 0.017                             | 0.017                                  |
| 2nd highest daily max               | ns    | 3               | 0.117       | 0.121         | 0.12             | 0.118               | 0.122               | 0.123                  | 0.117                     | 0.127                        | 0.106                             | 0.112                                  |
| 4th highest daily max 8-h average   | ns    | 3               | 0.084       | 0.084         | 0.091            | 0.089               | 0.09                | 0.087                  | 0.087                     | 0.093                        | 0.08                              | 0.078                                  |
| 90th percentile                     | up    | 1               | 29          | 40            | 40               | 40                  | 45                  | 48.5                   | 52                        | 52                           | 55                                | 3                                      |
| Weighted annual mean                | up    | 1               | 18.2        | 26.8          | 25.9             | 26.4                | 27                  | 30.35                  | 33.7                      | 31.8                         | 32.6                              | 26.4                                   |
| 98th percentile                     | NA    | 2               | ND          | ND            | ND               | ND                  | ND                  | ND                     | 32.05                     | 35.55                        | 30.2                              | 23.                                    |
| Weighted annual mean                | NA    | 2               | ND          | ND            | ND               | ND                  | ND                  | ND                     | 15.005                    | 14.42                        | 13.39                             | 12.1                                   |
| IT-PORT ARTHUR, TX                  |       |                 |             |               |                  |                     |                     |                        |                           |                              |                                   |                                        |
| 2nd daily max                       | ns    | 1               | 0.059       | 0.05          | 0.031            | 0.044               | 0.038               | 0.028                  | 0.023                     | 0.046                        | 0.039                             | 0.0                                    |
| Annual mean                         | down  | 1               | 0.008       | 0.007         | 0.006            | 0.006               | 0.006               | 0.004                  | 0.003                     | 0.005                        | 0.005                             | 0.00                                   |
| Annual mean                         | down  | 2               | 0.009       | 0.01          | 0.01             | 0.01                | 0.01                | 0.008                  | 0.01                      | 0.008                        | 0.009                             | 0.00                                   |
| 2nd highest daily max               | ns    | 1               | 0.11        | 0.118         | 0.12             | 0.119               | 0.156               | 0.11                   | 0.092                     | 0.124                        | 0.093                             | 0.11                                   |
| 4th highest daily max 8-h average   | ns    | 1               | 0.085       | 0.082         | 0.088            | 0.08                | 0.09                | 0.073                  | 0.064                     | 0.087                        | 0.073                             | 0.08                                   |
| IAM, WA                             |       |                 |             |               |                  |                     |                     |                        |                           |                              |                                   |                                        |
| 2nd highest daily max               | down  | 1               | 0.08        | 0.082         | 0.079            | 0.078               | 0.07                | 0.07                   | 0.062                     | 0.063                        | 0.061                             | 0.06                                   |
| 4th highest daily max 8-h average   | down  | 1               | 0.058       | 0.059         | 0.054            | 0.062               | 0.052               | 0.056                  | 0.05                      | 0.052                        | 0.05                              | 0.05                                   |
| 98th percentile                     | NA    | 1               | ND          | ND            | ND               | ND                  | ND                  | ND                     | 24.5                      | 20.7                         | 18.3                              | 23.                                    |
| Weighted annual mean                | NA    | 1               | ND          | ND            | ND               | ND                  | ND                  | ND                     | 8.08                      | 8.38                         | 7.17                              | 7.                                     |
| IARBOR, MI                          |       |                 |             |               |                  |                     |                     |                        |                           |                              |                                   |                                        |
| 2nd highest daily max               | ns    | 1               | 0.093       | 0.116         | 0.115            | 0.125               | 0.118               | 0.136                  | 0.107                     | 0.107                        | 0.117                             | 0.11                                   |
| 4th highest daily max 8-h average   | ns    | 1               | 0.079       | 0.086         | 0.098            | 0.098               | 0.099               | 0.093                  | 0.096                     | 0.077                        | 0.088                             | 0.09                                   |
| 98th percentile                     | NA    | 1               | ND          | ND            | ND               | ND                  | ND                  | ND                     | 35.4                      | 29.7                         | 32.3                              | 30.                                    |
| Weighted annual mean                | NA    | 1               | ND          | ND            | ND               | ND                  | ND                  | ND                     | 12.27                     | 12.11                        | 13.16                             | 12.5                                   |
| PASSAIC, NJ                         |       |                 |             |               |                  |                     |                     |                        |                           |                              |                                   |                                        |
| 2nd max (daily-non-overlapping 8-h) | down  | 1               | 4.5         | 5.3           | 5                | 3.6                 | 3.65                | 3.7                    | 3.8                       | 3.4                          | 2.6                               | 2.                                     |
| 2nd daily max                       | ns    | 1               | 0.023       | 0.028         | 0.023            | 0.018               | 0.018               | 0.018                  | 0.02                      | 0.02                         | 0.018                             | 0.01                                   |
| Annual mean                         | down  | 1               | 0.023       | 0.020         | 0.005            | 0.005               | 0.004               | 0.004                  | 0.005                     | 0.005                        | 0.005                             | 0.00                                   |
| 90th percentile                     | ns    | 1               | 59          | 71            | 53               | 58                  | 58.5                | 59                     | 53                        | 61                           | 63                                | 4                                      |
| Weighted annual mean                | ns    | 1               | 36.5        | 40.9          | 34.6             | 37.4                | 38.25               | 39.1                   | 34.3                      | 36.5                         | 36.3                              | 28.                                    |
| 98th percentile                     | NA    | 2               | ND          | ND            | ND               | ND                  | ND                  | ND                     | 39.65                     |                              | 34.775                            | 33.9                                   |
| Weighted annual mean                | NA    | 2               | ND          | ND            | ND               | ND                  | ND                  | ND                     |                           | 14.155                       |                                   | 12.9                                   |
| , MT                                |       | -               | 110         |               |                  |                     |                     |                        | 121700                    |                              | 101710                            |                                        |
| 2nd daily max                       | down  | 2               | 0.099       | 0.073         | 0.066            | 0.048               | 0.033               | 0.024                  | 0.02                      | 0.02                         | 0.025                             | 0.02                                   |
| Annual mean                         | down  | 2               | 0.077       | 0.073         | 0.000            | 0.048               | 0.005               | 0.024                  | 0.002                     | 0.02                         | 0.025                             | 0.02                                   |
| 98th percentile                     | NA    | 1               | 0.023<br>ND | ND            | ND               | 0.000<br>ND         | 0.000<br>ND         | 0.000<br>ND            | 16.6                      | 24.7                         | 23.4                              | 14.                                    |
| Weighted annual mean                | NA    | 1               | ND          | ND            | ND               | ND                  | ND                  | ND                     | 7.98                      | 8.07                         | 7.55                              | 6.5                                    |
| JLFPORT-PASCAGOULA, MS              | IN/A  | I               | ND          | ND            | ND               | ND                  | ND                  | ND                     | 7.70                      | 0.07                         | 7.55                              | 0.5                                    |
|                                     |       | 2               | 0.00/       | 0.010         | 0.010            | 0.02                | 0.001               | 0.010                  | 0.00                      | 0 0 2 2                      | 0.011                             | 0.00                                   |
| 2nd daily max                       | ns    | 2               | 0.026       | 0.018         | 0.018            | 0.03                | 0.021               | 0.019                  | 0.02                      | 0.022                        | 0.011                             | 0.02                                   |
| Annual mean                         | down  | 2               | 0.005       | 0.003         | 0.003            | 0.003               | 0.003               | 0.003                  | 0.003                     | 0.003                        | 0.002                             | 0.00                                   |
| 2nd highest daily max               | ns    | 2<br>2          | 0.094       | 0.105         | 0.104            | 0.103               | 0.103               | 0.113                  | 0.107                     | 0.121                        | 0.097                             | 0.0                                    |
| 4th highest daily max 8-h average   | ns    | 2               | 0.076       | 0.085         | 0.085            | 0.079<br>28         | 0.087               | 0.093                  | 0.09<br>28                | 0.09                         | 0.083                             | 0.07                                   |
| 90th percentile                     | ns    | 1               | 31<br>20.4  | 32<br>20.9    | 26<br>18.7       |                     | 40<br>21.4          | 36<br>20.3             |                           | 29                           | 26                                | 2<br>15.                               |
| Weighted annual mean                | down  |                 |             |               |                  | 17.7<br>ND          |                     |                        | 14.7                      | 16.2                         | 17.7<br>24.15                     |                                        |
| 98th percentile                     | NA    | 2<br>2          | ND<br>ND    | ND<br>ND      | ND<br>ND         | ND<br>ND            | ND<br>ND            | ND<br>ND               | 32.65                     |                              | 24.15                             | 21                                     |
| Weighted annual mean                | NA    | Z               | ND          | ND            | ND               | ND                  | ND                  | ND                     | 14.95                     | 12.825                       | 11.215                            | 10.2                                   |
| TON, NY                             |       | 4               | ND          |               |                  | ND                  | ND                  | ND                     | ND                        | 05.0                         | <u> </u>                          |                                        |
| 98th percentile                     | NA    | 1               | ND          | ND            | ND               | ND                  | ND                  | ND                     | ND                        | 25.3                         | 29.6                              | 38.                                    |
| Weighted annual mean                | NA    | 1               | ND          | ND            | ND               | ND                  | ND                  | ND                     | ND                        | 11.6                         | 11.1                              | 11.5                                   |
| IAM, AL                             |       |                 |             |               |                  |                     |                     |                        |                           |                              |                                   |                                        |
| 2nd max (daily-non-overlapping 8-h) | down  | 1               | 7.1         | 6.9           | 6.4              | 4.9                 | 5.9                 | 4.4                    | 4.4                       | 3.7                          | 6.3                               | 3                                      |
| 2nd daily max                       | ns    | 1               | 0.05        | 0.037         | 0.016            | 0.015               | 0.018               | 0.032                  | 0.057                     | 0.057                        | 0.019                             |                                        |
| Annual mean                         | ns    | 1               | 0.009       | 0.007         | 0.006            | 0.004               | 0.006               | 0.007                  | 0.009                     | 0.01                         | 0.004                             |                                        |
| 2nd highest daily max               | ns    | 2               | 0.118       | 0.103         | 0.124            | 0.122               | 0.113               | 0.132                  | 0.121                     | 0.119                        | 0.107                             | 0.1                                    |
| 4th highest daily max 8-h average   | ns    | 2               | 0.091       | 0.081         | 0.1              | 0.094               | 0.085               | 0.104                  | 0.096                     | 0.093                        | 0.084                             |                                        |
| 98th percentile                     | NA    | 2               | ND          | ND            | ND               | ND                  | ND                  | ND                     | 52.7                      | 45.5                         | 36.25                             | 35                                     |
| Weighted annual mean                | NA    | 2               | ND          | ND            | ND               | ND                  | ND                  | ND                     | 23.41                     | 19.51                        | 16.275                            | 14.89                                  |
| K, ND                               |       |                 |             |               |                  |                     |                     |                        |                           |                              |                                   |                                        |
| 98th percentile                     | NA    | 1               | ND          | ND            | ND               | ND                  | ND                  | ND                     | 23                        | 14.3                         | 17.1                              | 15                                     |
| Weighted annual mean                |       |                 |             |               |                  |                     |                     |                        |                           |                              |                                   | 6.3                                    |
| K, ND<br>98th perce                 | ntile | ntile NA        | ntile NA 1  | ntile NA 1 ND | ntile NA 1 ND ND | ntile NA 1 ND ND ND | ntile NA 1 ND ND ND | ntile NA 1 ND ND ND ND | ntile NA 1 ND ND ND ND ND | ntile NA 1 ND ND ND ND ND 23 | ntile NA 1 ND ND ND ND ND 23 14.3 | ntile NA 1 ND ND ND ND ND 23 14.3 17.1 |

| Metropolita          | an Statistical Area                                  | Trend        | #Trend<br>Sites | 1993         | 1994         | 1995          | 1996           | 1997         | 1998         | 1999         | 2000          | 2001          | 2002         |
|----------------------|------------------------------------------------------|--------------|-----------------|--------------|--------------|---------------|----------------|--------------|--------------|--------------|---------------|---------------|--------------|
| BLOOMING             | TON-NORMAL, IL                                       |              |                 |              |              |               |                |              |              |              |               |               |              |
| PM <sub>2.5</sub> *  | 98th percentile                                      | NA           | 1               | ND           | ND           | ND            | ND             | ND           | ND           | ND           | 32.5          | 32.4          | 25.7         |
|                      | Weighted annual mean                                 | NA           | 1               | ND           | ND           | ND            | ND             | ND           | ND           | ND           | 14.86         | 14.79         | 12.85        |
| BOISE CITY           | , ID                                                 |              |                 |              |              |               |                |              |              |              |               |               |              |
| CO                   | 2nd max (daily-non-overlapping 8-h)                  | down         | 1               | 6.4          | 5.4          | 6.4           | 5              | 6.2          | 3.9          | 4.6          | 3.1           | 3.2           | 3.1          |
| PM <sub>10</sub> *   | 90th percentile                                      | ns           | 1               | 62           | 57           | 47            | 40             | 40           | 30           | 47           | 41            | 34            | 49           |
| <b>D1</b> +          | Weighted annual mean                                 | down         | 1               | 32.9         | 31.5         | 24.8          | 23.7           | 24.1         | 17.7         | 23.7         | 23            | 22.9          | 25.7         |
| PM <sub>2.5</sub> *  | 98th percentile                                      | NA           | 2               | ND           | ND           | ND            | ND             | ND           | ND           | 31.35        | 36.3          | 44.7          | 32.65        |
|                      | Weighted annual mean                                 | NA           | 2               | ND           | ND           | ND            | ND             | ND           | ND           | 9.045        | 9.24          | 10.37         | 9.69         |
| BOSTON, N            |                                                      | douus        | 2               | 27           | 10           | 2 55          | 2.25           | 2.2          | 2.0          | 2.0          | 2.25          | 2.45          | 1 /          |
| 00                   | 2nd max (daily-non-overlapping 8-h)                  | down         | 2<br>3          | 3.6<br>0.035 | 4.3<br>0.035 | 3.55<br>0.025 | 3.25           | 3.3<br>0.032 | 2.9<br>0.028 | 3.9<br>0.024 | 2.35<br>0.025 | 2.45<br>0.019 | 1.6<br>0.018 |
| SO <sub>2</sub>      | 2nd daily max<br>Annual mean                         | down<br>down | 3               | 0.035        | 0.035        | 0.025         | 0.023<br>0.007 | 0.032        | 0.028        | 0.024        | 0.025         | 0.019         | 0.018        |
| NO <sub>2</sub>      | Annual mean                                          | down         | 4               | 0.01         | 0.009        | 0.007         | 0.007          | 0.008        | 0.008        | 0.007        | 0.005         | 0.005         | 0.005        |
| Ozone                | 2nd highest daily max                                | ns           | 1               | 0.1020       | 0.121        | 0.024         | 0.105          | 0.105        | 0.113        | 0.115        | 0.085         | 0.122         | 0.145        |
| 020110               | 4th highest daily max 8-h average                    | ns           | 1               | 0.078        | 0.09         | 0.094         | 0.083          | 0.091        | 0.1          | 0.088        | 0.07          | 0.122         | 0.110        |
| PM <sub>10</sub> *   | 90th percentile                                      | ns           | 1               | 44           | 45           | 41            | 33             | 37           | 42           | 43           | 36            | 40            | 41           |
|                      | Weighted annual mean                                 | ns           | 1               | 30.2         | 28.2         | 26.2          | 24.4           | 24.7         | 26.4         | 29.6         | 24.5          | 26.8          | 24.6         |
| PM <sub>2.5</sub> *  | 98th percentile                                      | NA           | 1               | ND           | ND           | ND            | ND             | ND           | ND           | 33           | 27.2          | 31.5          | 29.3         |
| 2.0                  | Weighted annual mean                                 | NA           | 1               | ND           | ND           | ND            | ND             | ND           | ND           | 11.31        | 11.35         | 12.13         | 10.06        |
| BOULDER-L            | ONGMONT, CO                                          |              |                 |              |              |               |                |              |              |              |               |               |              |
| CO                   | 2nd max (daily-non-overlapping 8-h)                  | down         | 1               | 6.4          | 6.2          | 4.7           | 5.5            | 5.4          | 4.7          | 3.7          | 3.1           | 3.5           | 3.2          |
| Ozone                | 2nd highest daily max                                | ns           | 1               | 0.092        | 0.092        | 0.09          | 0.087          | 0.092        | 0.111        | 0.099        | 0.09          | 0.088         | 0.094        |
|                      | 4th highest daily max 8-h average                    | ns           | 1               | 0.072        | 0.072        | 0.074         | 0.075          | 0.072        | 0.089        | 0.075        | 0.072         | 0.071         | 0.078        |
| PM <sub>10</sub> *   | 90th percentile                                      | ns           | 1               | 35           | 35           | 35            | 30             | 31           | 36           | 35           | 32            | 36            | 37           |
| <b>D1</b> +          | Weighted annual mean                                 | up           | 1               | 19.5         | 19.5         | 19.5          | 19.6           | 20.9         | 24.1         | 22.5         | 22.4          | 24.2          | 23.4         |
| PM <sub>2.5</sub> *  | 98th percentile                                      | NA           | 2               | ND           | ND           | ND            | ND             | ND           | ND           | 21.4         | 20.1          | 22.85         | 22.95        |
|                      | Weighted annual mean                                 | NA           | 2               | ND           | ND           | ND            | ND             | ND           | ND           | 7.53         | 8.82          | 9.145         | 8.635        |
| BRAZORIA,            |                                                      |              | 1               | 0 1 2 2      | 0 1 1 0      | 0 1 40        | 0.11           | 0 1 2 7      | 0 1 1 1      | 01/1         | 0 1 2 /       | 0 1 1 2       | 0 1 2 /      |
| Ozone                | 2nd highest daily max                                | ns           | 1               | 0.132        | 0.112        | 0.148         | 0.11           | 0.137        | 0.111        | 0.161        | 0.136         | 0.113         |              |
| PM <sub>2.5</sub> *  | 4th highest daily max 8-h average<br>98th percentile | ns<br>NA     | 1<br>1          | 0.092<br>ND  | 0.085<br>ND  | 0.113<br>ND   | 0.079<br>ND    | 0.085<br>ND  | 0.09<br>ND   | 0.112<br>ND  | 0.079<br>25.3 | 0.084<br>24.9 | 0.095 22.7   |
| F 1VI <sub>2.5</sub> | Weighted annual mean                                 | NA           | 1               | ND           | ND           | ND            | ND             | ND           | ND           | ND           | 10.48         | 10.21         | 9.47         |
| BRIDGEPOF            | 8                                                    | 11/1         | I               | ND           | ND           | ND            | ND             | ND           | ND           | ND           | 10.40         | 10.21         | 7.47         |
| CO                   | 2nd max (daily-non-overlapping 8-h)                  | down         | 1               | 3.7          | 5.8          | 4.9           | 3              | 4            | 2.8          | 3.2          | 2.4           | 2.7           | 2.5          |
| SO <sub>2</sub>      | 2nd daily max                                        | ns           | 1               | 0.035        | 0.049        | 0.028         | 0.023          | 0.031        | 0.024        | 0.023        | 0.024         | 0.029         | 0.029        |
| 002                  | Annual mean                                          | down         | 1               | 0.01         | 0.01         | 0.007         | 0.006          | 0.007        | 0.007        | 0.006        | 0.006         | 0.007         |              |
| Ozone                | 2nd highest daily max                                | ns           | 1               | 0.165        | 0.174        | 0.14          | 0.123          | 0.135        | 0.134        | 0.14         | 0.122         | 0.144         | 0.145        |
|                      | 4th highest daily max 8-h average                    | ns           | 1               | 0.111        | 0.093        | 0.115         | 0.096          | 0.103        | 0.097        | 0.096        | 0.09          | 0.102         | 0.103        |
| PM <sub>10</sub> *   | 90th percentile                                      | ns           | 1               | 43           | 46           | 37            | 32             | 34           | 33           | 30           | 37            | 36            | 34           |
| 10                   | Weighted annual mean                                 | down         | 1               | 20.8         | 25.7         | 21.8          | 20.6           | 21.4         | 20.8         | 19.4         | 20.4          | 19.3          | 17.4         |
| PM <sub>2.5</sub> *  | 98th percentile                                      | NA           | 1               | ND           | ND           | ND            | ND             | ND           | ND           | 31.1         | 41.5          | 40.1          | 32.9         |
|                      | Weighted annual mean                                 | NA           | 1               | ND           | ND           | ND            | ND             | ND           | ND           | 13.06        | 13.89         | 13.73         | 12.7         |
| BROCKTON             | , MA                                                 |              |                 |              |              |               |                |              |              |              |               |               |              |
| PM <sub>2.5</sub> *  | 98th percentile                                      | NA           | 1               | ND           | ND           | ND            | ND             | ND           | ND           | 26           | 28.95         | 31.9          | 35.9         |
|                      | Weighted annual mean                                 | NA           | 1               | ND           | ND           | ND            | ND             | ND           | ND           | 11.08        | 11.63         | 12.18         | 11.64        |
|                      | LLE-HARLINGEN-SAN BENITO, TX M                       |              |                 |              |              |               |                |              |              |              |               |               |              |
| CO                   | 2nd max (daily-non-overlapping 8-h)                  | down         | 1               | 3.8          | 3.8          | 2.6           | 2.2            | 3.2          | 3.2          | 2.6          | 1.6           | 1.5           | 1.9          |
| Ozone                | 2nd highest daily max                                | ns           | 1               | 0.034        | 0.085        | 0.084         | 0.077          | 0.08         | 0.081        | 0.075        | 0.08          | 0.074         | 0.077        |
| DN4 *                | 4th highest daily max 8-h average                    | down         | 1               | 0.072        | 0.072        | 0.069         | 0.065          | 0.065        | 0.069        | 0.066        | 0.064         | 0.063         |              |
| PM <sub>10</sub> *   | 90th percentile                                      | ns           | 1<br>1          | 45           | 36<br>22 F   | 35            | 28             | 36           | 45           | 32<br>21 5   | 47<br>25.4    | 31            | 33           |
| PM <sub>2.5</sub> *  | Weighted annual mean<br>98th percentile              | ns<br>NA     | 1               | 22.4<br>ND   | 22.5<br>ND   | 21.4<br>ND    | 18.9<br>ND     | 20.6<br>ND   | 24.6<br>ND   | 21.5<br>ND   | 25.4<br>18.3  | 19.3<br>18    | 20<br>22.7   |
| F 1VI <sub>2.5</sub> | Weighted annual mean                                 | NA           | 1               | ND           | ND           | ND            | ND             | ND           | ND           | ND           | 9.59          | 9.75          | 9.79         |
|                      | IIAGARA FALLS, NY                                    |              | '               | ND           |              | ND            | ND             | ND           | ND           |              | 7.57          | 7.15          | 7.17         |
| CO                   | 2nd max (daily-non-overlapping 8-h)                  | down         | 1               | 4.4          | 4.2          | 3.1           | 3.7            | 3.3          | 3.1          | 2.2          | 2             | 1.9           | 1.8          |
| SO <sub>2</sub>      | 2nd daily max                                        | ns           | 2               | 0.04         | 4.2<br>0.043 | 0.039         | 0.033          |              | 0.034        | 0.037        | 0.038         | 0.037         |              |
| 30 <sub>2</sub>      | Annual mean                                          | ns           | 2               | 0.04         | 0.043        | 0.0039        | 0.003          | 0.007        | 0.0034       | 0.0037       | 0.038         | 0.0037        |              |
| NO <sub>2</sub>      | Annual mean                                          | ns           | 2               | 0.017        | 0.019        | 0.000         | 0.000          | 0.007        | 0.000        | 0.019        | 0.000         | 0.000         |              |
| Ozone                | 2nd highest daily max                                | up           | 1               | 0.088        | 0.088        | 0.099         | 0.091          | 0.088        | 0.111        | 0.102        |               | 0.116         |              |
|                      | 4th highest daily max 8-h average                    | up           | 1               | 0.072        | 0.079        | 0.082         |                |              | 0.094        | 0.09         |               | 0.102         |              |
| PM <sub>2.5</sub> *  | 98th percentile                                      | NA           | 3               | ND           | ND           | ND            | ND             | ND           | ND           |              | 30.033        |               |              |
| 2.0                  | Weighted annual mean                                 | NA           | 3               | ND           | ND           | ND            | ND             | ND           | ND           | ND           |               | 13.29         |              |

| L <sup>2</sup> Weighted anual mean         NA         1         ND         ND <th>Metropolita</th> <th>an Statistical Area</th> <th>Trend</th> <th>#Trend<br/>Sites</th> <th>1993</th> <th>1994</th> <th>1995</th> <th>1996</th> <th>1997</th> <th>1998</th> <th>1999</th> <th>2000</th> <th>2001</th> <th>2002</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Metropolita          | an Statistical Area               | Trend | #Trend<br>Sites | 1993  | 1994  | 1995  | 1996  | 1997  | 1998  | 1999   | 2000       | 2001        | 2002         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------|-------|-----------------|-------|-------|-------|-------|-------|-------|--------|------------|-------------|--------------|
| Weighted annual mean         NA         1         ND         ND <th>BURLINGT</th> <th>ON, VT</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BURLINGT             | ON, VT                            |       |                 |       |       |       |       |       |       |        |            |             |              |
| Weighted annual mean         NA         1         ND         ND <th>PM<sub>25</sub>*</th> <th>98th percentile</th> <th>NA</th> <th>1</th> <th>ND</th> <th>ND</th> <th>ND</th> <th>ND</th> <th>ND</th> <th>ND</th> <th>ND</th> <th>22.7</th> <th>29.9</th> <th>38</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PM <sub>25</sub> *   | 98th percentile                   | NA    | 1               | ND     | 22.7       | 29.9        | 38           |
| CO         2nd max (dally-non-overlapping 8-h)         ns         1         3.2         5.2         3         2.5         2.5         3.5         2.5         2.5         3.5         2.3         2.62         0.28         0.028         0.028         0.028         0.028         0.028         0.028         0.028         0.029         0.028         0.028         0.029         0.028         0.029         0.028         0.029         0.024         0.029         0.024         0.029         0.049         0.049         0.046         0.059         0.046         0.050         0.045         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.043         0.041         0.043         0.011         0.014         0.010         0.010         0.010         0.010         0.010         0.010         0.010         0.016         0.005         0.003         0.003         0.003         0.003         0.003         0.003         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.5                  | Weighted annual mean              | NA    | 1               | ND     | 8.32       | 9.74        | 9.89         |
| CO         2nd max (dally-non-overlapping 8-h)         ns         1         3.2         5.2         3         2.5         2.5         3.5         0.29         0.028         0.028         0.028         0.028         0.028         0.028         0.028         0.028         0.028         0.028         0.029         0.028         0.029         0.028         0.029         0.028         0.029         0.028         0.029         0.024         0.029         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.049         0.043         0.011         0.014         0.010         0.014         0.010         0.014         0.010         0.010         0.010         0.010         0.010         0.010         0.011         0.015         0.016         0.003         0.003         0.003         0.003         0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CANTON-M             | ASSILLON, OH                      |       |                 |       |       |       |       |       |       |        |            |             |              |
| Annual mean         ns         1         0.01         0.009         0.006         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                   | ns    | 1               | 3.2   | 5.2   | 3     | 2.5   | 2.5   | 3.5   | 2.3    | 2.6        | 2.6         | 2.8          |
| Occes         2nd highest daily max         ns         2         0.104         0.098         0.111         0.096         0.094         0.116         0.095         0.083         0.095         0.083         0.096         0.094         0.096         0.098         0.015         0.098         0.096         0.090         0.096         0.098         0.096         0.090         0.096         0.090         0.096         0.096         0.090         0.096         0.096         0.090         0.096         0.090         0.096         0.090         0.096         0.090         0.096         0.090         0.096         0.090         0.096         0.090         0.090         0.090         0.001         0.003         0.001         0.001         0.011         0.010         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SO <sub>2</sub>      | 2nd daily max                     | down  | 1               | 0.046 | 0.052 | 0.033 | 0.032 | 0.025 | 0.029 | 0.028  | 0.028      | 0.025       | 0.021        |
| 4th highest dally max B-h average         ns         2         0.09         0.084         0.093         0.085         0.083         0.096         0.094         0.094         0.094         0.095         0.083         0.036         0.096         0.094         0.094         0.094         0.094         0.094         0.094         0.085         0.083         0.033         0.033         0.033         0.076         0.017         0.017         0.017         0.017         0.017         0.017         0.017         0.017         0.017         0.018         0.018         0.019         0.018         0.019         0.018         0.019         0.018         0.019         0.018         0.018         0.017         0.015         0.017         0.015         0.018         0.017         0.016         0.001         0.011         0.017         0.016         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.016         0.002         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                    | Annual mean                       | ns    |                 | 0.01  | 0.009 | 0.006 | 0.006 | 0.007 | 0.007 | 0.007  | 0.008      | 0.007       | 0.007        |
| PM, **         Year of the second | Ozone                | 2nd highest daily max             | ns    |                 |       |       |       |       |       |       |        | 0.099      | 0.105       | 0.108        |
| Weighted annual mean         down         3         24.633         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.33         27.43         27.33         27.43         27.33         27.43         27.33         27.43         27.33         27.43         27.33 <th27.33< th=""></th27.33<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                                   |       |                 |       |       |       |       |       |       |        |            | 0.089       | 0.096        |
| PM <sub>x</sub> 98it percentile         NA         2         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PM <sub>10</sub> *   | •                                 |       |                 |       |       |       |       |       |       |        |            | 33          | 39           |
| Weighted annual mean         NA         2         ND         ND <td><b></b></td> <td>8</td> <td></td> <td>21.733</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b></b>              | 8                                 |       |                 |       |       |       |       |       |       |        |            | 21.733      |              |
| CASPER, WY         PM,**         90th percentile         ns         1         27         34         32         33         29         31         29         36           CEDAR RAPIDS, IA         C0         2nd max (daily-non-overlapping 8-h)         down         1         3.2         4.2         2.6         7.8         2.4         2.5         2         1           CO         2nd max (daily-non-overlapping 8-h)         down         1         3.2         4.2         2.6         7.8         2.4         2.5         2         1         50           CO         2nd max (daily-non-overlapping 8-h)         down         1         3.2         4.3         3.1         4.1         2.4         2.4         2.5         2.7         2.6         2.7         2.6         2.7         2.6         2.7         2.6         2.7         2.6         2.7         2.6         2.7         2.6         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7         2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PM <sub>2.5</sub> *  |                                   |       |                 |       |       |       |       |       |       |        |            | 44.6        | 40.4         |
| PM <sub>bc</sub> * 90th percentile         ns         1         27         34         32         33         29         31         29         32           CEDAR RAPIDS, IA         ns         1         17.7         17.3         19.4         19.1         15.7         17.2         19.7         17.2           CEDAR RAPIDS, IA         ns         2         0.017         0.016         0.013         0.011         0.012         0.01         0.016         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.004         0.003         0.003         0.004         0.003         0.004         0.008         0.004         0.003         0.004         0.003         0.004         0.008         0.004         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      | 0                                 | NA    | 2               | ND    | ND    | ND    | ND    | ND    | ND    | 17.735 | 17.785     | 17.225      | 16.515       |
| "Weighted annual mean         ns         1         17.7         17.3         19.4         19.1         15.7         17.2         19.7         17.7           CEDAR RAPIDS, IA         CO         2nd max (daily-non-overlapping 8-h)         down         1         3.2         4.2         2.6         7.8         2.4         2.5         2         1.8           SQ, 2nd daily max         ns         2         0.013         0.013         0.011         0.012         0.016         0.003           PM,**         90th percentile         up         1         3.2         3.3         3.4         3.4         1.4         2.3         3.4         3.4         1.4         2.4         2.5         2.6         4.2         3.3         3.4         1.4         2.4         2.5         2.7         4.4         2.3         3.4         3.4         1.4         1.7         10.7         10.7.6         0.024         0.011         0.018         0.019         0.011         0.017         0.024         0.011         0.013         0.018         0.019         0.01         0.016         0.049         0.03         0.004         0.03         0.004         0.03         0.004         0.03         0.004         0.03         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                                   |       |                 |       |       |       |       |       |       |        |            |             |              |
| CEDAR RAPIDS, IA         CO         2nd max (daily-non-overlapping 8-h)         down         1         3.2         4.2         2.6         7.8         2.4         2.5         2         1.8           SO,         2nd daily max         ns         2         0.017         0.016         0.013         0.001         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.004         0.015         0.12         0.017         0.016         0.016         0.016         0.016         0.016         0.010         0.016         0.010         0.010         0.004         0.033         0.004         0.035         0.012         0.021         0.021         0.021         0.021         0.021         0.021         0.021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PM <sub>10</sub> *   |                                   |       |                 |       |       |       |       |       |       |        |            | 31          | 30           |
| CO         2nd max (daily-non-overlapping 8-h)         down         1         3.2         4.2         2.6         7.8         2.4         4.5         2         1           SO2         2nd daily max         ns         2         0.003         0.003         0.001         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      | 0                                 | ns    | 1               | 17.7  | 17.3  | 19.4  | 19.1  | 15.7  | 17.2  | 19.7   | 17         | 18.7        | 17.1         |
| SO,<br>2         2nd daily max         In solution         2         0.017         0.016         0.012         0.011         0.011         0.012         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.004         0.003         0.004         0.003         0.004         0.003         0.004         0.003         0.004         0.003         0.004         0.003         0.004         0.003         0.004         0.003         0.004         0.003         0.004         0.003         0.004         0.003         0.004         0.003         0.004         0.003         0.004         0.003         0.004         0.003         0.004         0.003         0.004         0.003         0.004         0.003         0.004         0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                                   |       |                 |       |       |       |       |       |       |        |            |             |              |
| <sup>4</sup> Annual mean         ns         2         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.001         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                                   |       |                 |       |       |       |       |       |       |        |            | 1.9         | 1.4          |
| PM <sub>0</sub> *         90th percentile         up         1         32         33         41         42         34         47           PM <sub>2</sub> *         98th percentile         NA         2         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $SO_2$               | 5                                 |       |                 |       |       |       |       |       |       |        |            | 0.015       | 0.018        |
| Weighted annual mean         up         1         20.7         21.5         21.4         20.9         25.7         26.4         23.3         31.6           PM2,5*         98th percentile         NA         2         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D14 *                |                                   |       |                 |       |       |       |       |       |       |        |            | 0.002       | 0.002        |
| PM25*         98th percentile         NA         2         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PM <sub>10</sub> ^   |                                   |       |                 |       |       |       |       |       |       |        |            | 39          | 35           |
| Weighted annual mean         NA         2         ND         ND <td>DM *</td> <td>0</td> <td></td> <td>26.7</td> <td>24</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DM *                 | 0                                 |       |                 |       |       |       |       |       |       |        |            | 26.7        | 24           |
| CHAMPAIGN-UFĞANA, IL         S0,       2nd daily max       ns       1       0.015       0.024       0.011       0.013       0.013       0.019       0.01       0.010       0.010       0.010       0.010       0.010       0.010       0.010       0.010       0.010       0.010       0.010       0.010       0.010       0.010       0.010       0.010       0.010       0.010       0.010       0.010       0.010       0.010       0.010       0.010       0.010       0.003       0.002       0.003       0.004       0.008       0.084       0.085       0.094       0.083       0.094       0.003       0.004       0.003       0.001       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01       0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PIVI <sub>2.5</sub>  |                                   |       |                 |       |       |       |       |       |       |        |            | 33.9        | 26.1         |
| S02       2nd daily max       ns       1       0.015       0.018       0.018       0.019       0.001       0.002         Ozone       Annual mean       down       1       0.004       0.003       0.003       0.004       0.003       0.002       0.002         Ozone       Anhighest daily max       ns       1       0.004       0.095       0.094       0.085       0.076       0.083       0.094       0.003       0.004       0.003       0.004       0.003       0.004       0.003       0.004       0.003       0.004       0.003       0.004       0.003       0.004       0.003       0.004       0.003       0.004       0.003       0.004       0.007       0.016       0.011       0.016       0.011       0.016       0.011       0.010       0.01       0.021       0.01       0.022       0.01       0.022       0.013       0.013       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003 <td< td=""><td></td><td>5</td><td>INA</td><td>Z</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>11.7</td><td>10.70</td><td>11.055</td><td>11.045</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 5                                 | INA   | Z               | ND    | ND    | ND    | ND    | ND    | ND    | 11.7   | 10.70      | 11.055      | 11.045       |
| 2         Annual mean         down         1         0.004         0.003         0.003         0.004         0.003         0.002         0.002           Ozone         2nd highest daily max         ns         1         0.074         0.094         0.093         0.002         0.002         0.002           Quene         2nd highest daily max         ns         1         0.074         0.094         0.093         0.004         0.003         0.002         0.002           PM_z*         98th percentile         NA         1         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                   | nc    | 1               | 0.015 | 0.024 | 0.011 | 0.012 | 0.010 | 0.010 | 0.01   | 0.014      | 0.014       | 0.014        |
| Ozone         2nd highest daily max         ns         1         0.074         0.094         0.095         0.094         0.088         0.105         0.108         0.084           PM_2.5*         98th percentile         NA         1         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30 <sub>2</sub>      | 5                                 |       |                 |       |       |       |       |       |       |        |            | 0.016 0.002 | 0.016 0.002  |
| 4th highest daily max 8-h average       ns       1       0.066       0.083       0.084       0.085       0.076       0.083       0.094       0.073         PM25*       98th percentile       NA       1       ND       N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ozono                |                                   |       |                 |       |       |       |       |       |       |        |            | 0.002       | 0.002        |
| PM <sub>2.5</sub> *         98th percentile         NA         1         ND         ND <td>020110</td> <td></td> <td>0.073</td> <td>0.082</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 020110               |                                   |       |                 |       |       |       |       |       |       |        |            | 0.073       | 0.082        |
| Weighted annual mean         NA         1         ND         ND <td>PM*</td> <td></td> <td>29.3</td> <td>23.4</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PM*                  |                                   |       |                 |       |       |       |       |       |       |        |            | 29.3        | 23.4         |
| OCHARLESTON-NORTH CHARLESTON, SC           Lead         Maximum quarterly value         ns         2         0.012         0.015         0.01         0.016         0.011         0.021         0.012         0.01         0.016         0.011         0.021         0.011         0.012           CO         2nd max (daily-non-overlapping 8-h)         down         1         0.025         0.038         0.02         0.021         0.022         0.033         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.003         0.001         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.5                  |                                   |       |                 |       |       |       |       |       |       |        |            | 12.59       | 12.2         |
| Lead         Maximum quarterly value         ns         2         0.012         0.015         0.01         0.016         0.011         0.021         0.02           CO         2nd max (daily-non-overlapping 8-h)         down         1         5.8         4         6.4         4.7         3.9         2.9         4         2.7           SO2         2nd daily max         down         1         0.025         0.038         0.02         0.011         0.011         0.011         0.013         0.003         0.003         0.002         0.003         0.002         0.003         0.002         0.003         0.002         0.003         0.002         0.003         0.002         0.003         0.002         0.003         0.002         0.003         0.002         0.003         0.002         0.003         0.002         0.003         0.002         0.003         0.002         0.003         0.004         0.005         0.076         0.072         0.083         0.081         0.005         0.076         0.072         0.083         0.081         0.005         0.076         0.072         0.083         0.081         0.005         0.076         0.072         0.083         0.081         0.005         0.076         0.72 <t< td=""><td>CHARLEST</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHARLEST             | 0                                 |       |                 |       |       |       |       |       |       |        |            |             |              |
| CO         2nd max (daily-non-overlapping 8-h)         down         1         5.8         4         6.4         4.7         3.9         2.9         4         2.7           SO2         2nd daily max         down         1         0.025         0.038         0.02         0.021         0.022         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.013         0.029         0.033         0.021         0.018         0.032         0.016         0.076         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      | -                                 | ns    | 2               | 0.012 | 0.015 | 0.01  | 0.016 | 0.011 | 0.021 | 0.01   | 0.02       | 0.008       | 0.005        |
| SO2       2nd daily max       down       1       0.025       0.038       0.02       0.021       0.022       0.013       0.011       0.013         Annual mean       down       1       0.004       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003       0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                                   |       |                 |       |       |       |       |       |       |        | 2.7        | 3           | 2.8          |
| Annual mean         down         1         0.004         0.004         0.003         0.003         0.003         0.002         0.003           NO2,<br>Annual mean         ns         1         0.012         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.014         0.087         0.087         0.087         0.087         0.087         0.087         0.087         0.087         0.087         0.087         0.087         0.087         0.087         0.087         0.087         0.087         0.087         0.087         0.087         0.016         0.022         2.81         2.6         24         21.1         21.4<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                                   |       |                 |       |       |       |       |       |       | 0.011  | 0.013      | 0.011       | 0.01         |
| Ozone       2nd highest daily max       ns       1       0.109       0.097       0.087       0.099       0.09       0.106       0.099       0.093         4th highest daily max 8-h average       ns       1       0.076       0.074       0.066       0.076       0.072       0.083       0.081       0.083         PM <sub>10</sub> *       90th percentile       ns       2       40.5       38.5       30.5       32.5       31       40       31.5       35.5         PM <sub>2.5</sub> *       98th percentile       NA       1       ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 2                  | 5                                 |       |                 |       |       |       |       |       |       |        | 0.003      | 0.003       | 0.003        |
| Ozone       2nd highest daily max       ns       1       0.109       0.097       0.087       0.099       0.09       0.106       0.099       0.093         4th highest daily max 8-h average       ns       1       0.076       0.074       0.066       0.076       0.072       0.083       0.081       0.083         PM <sub>10</sub> *       90th percentile       ns       2       40.5       38.5       30.5       32.5       31       40       31.5       35.5         PM <sub>2.5</sub> *       98th percentile       NA       1       ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NO <sub>2</sub>      | Annual mean                       | ns    | 1               | 0.012 | 0.011 | 0.011 | 0.01  | 0.011 | 0.01  | 0.01   | 0.011      | 0.011       | 0.01         |
| PM <sub>10</sub> *       90th percentile       ns       2       40.5       38.5       30.5       32.5       31       40       31.5       35.5         PM <sub>2.5</sub> *       98th percentile       NA       1       ND       ND <td></td> <td>2nd highest daily max</td> <td>ns</td> <td>1</td> <td>0.109</td> <td>0.097</td> <td>0.087</td> <td>0.099</td> <td>0.09</td> <td>0.106</td> <td>0.099</td> <td>0.093</td> <td>0.085</td> <td>0.095</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | 2nd highest daily max             | ns    | 1               | 0.109 | 0.097 | 0.087 | 0.099 | 0.09  | 0.106 | 0.099  | 0.093      | 0.085       | 0.095        |
| Weighted annual mean         down         2         25.65         24.9         20.7         21.65         21         22.8         20.8         22.6           PM <sub>2.5</sub> *         98th percentile         NA         1         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 4th highest daily max 8-h average | ns    |                 | 0.076 | 0.074 | 0.066 | 0.076 | 0.072 | 0.083 | 0.081  | 0.08       | 0.071       | 0.074        |
| Weighted annual mean         down         2         25.65         24.9         20.7         21.65         21         22.8         20.8         22.6           PM <sub>2.5</sub> *         98th percentile         NA         1         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PM <sub>10</sub> *   |                                   | ns    |                 |       |       |       |       |       |       |        | 35.5       | 32          | 26.5         |
| Weighted annual mean         NA         1         ND         ND         ND         ND         ND         ND         ND         ND         1.44           CHARLESTON, WV         PM <sub>10</sub> *         90th percentile         ns         1         52         49         40         41         32         35         37         44           Weighted annual mean         ns         1         29.2         28.1         26         24         21.1         21.4         21.9         26.5           PM <sub>25</sub> *         98th percentile         NA         1         ND         ND         ND         ND         ND         ND         38.7         37           CHARLOTTE-GASTONIA-ROCK HILL, NC-SC M         NA         1         ND         ND         ND         ND         ND         ND         0.018         0.042           CO         2nd max (daily-non-overlapping 8-h)         down         1         5.8         5.8         4.7         4.4         6         5         4.3         4.7           Ozone         2nd highest daily max         ns         2         0.126         0.114         0.114         0.127         0.115         0.13         0.126         0.123           Ozone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      | 5                                 |       |                 |       |       |       |       |       |       |        | 22.6       | 20.45       | 17.8         |
| OUT           PM10*         90th percentile         ns         1         52         49         40         41         32         35         37         44           Weighted annual mean         ns         1         29.2         28.1         26         24         21.1         21.4         21.9         26.5           PM2.s*         98th percentile         NA         1         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PM <sub>2.5</sub> *  |                                   |       |                 |       |       |       |       |       |       |        |            | 25.8        | 27.2         |
| PM10*       90th percentile       ns       1       52       49       40       41       32       35       37       44         Weighted annual mean       ns       1       29.2       28.1       26       24       21.1       21.4       21.9       26.5         PM2.5*       98th percentile       NA       1       ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                                   | NA    | 1               | ND     | 13.44      | 11.97       | 11.64        |
| Weighted annual mean         ns         1         29.2         28.1         26         24         21.1         21.4         21.9         26.5           PM_25*         98th percentile         NA         1         ND         ND <td< td=""><td>CHARLEST</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CHARLEST             |                                   |       |                 |       |       |       |       |       |       |        |            |             |              |
| PM <sub>2.5</sub> *         98th percentile<br>Weighted annual mean         NA         1         ND         ND </td <td>PM<sub>10</sub>*</td> <td></td> <td>44</td> <td>41</td> <td>36</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PM <sub>10</sub> *   |                                   |       |                 |       |       |       |       |       |       |        | 44         | 41          | 36           |
| Weighted annual mean         NA         1         ND         ND <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>24.8</td> <td>23.4</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                                   |       | -               |       |       |       |       |       |       |        |            | 24.8        | 23.4         |
| CHARLOTTE-GASTONIA-ROCK HILL, NC-SC M           Maximum quarterly value         ns         1         0.016         0.032         0.013         0.01         0.007         0.021         0.018         0.042           CO         2nd max (daily-non-overlapping 8-h)         down         1         5.8         5.8         4.7         4.4         6         5         4.3         4.7           Ozone         2nd highest daily max         ns         2         0.126         0.114         0.114         0.127         0.115         0.13         0.126         0.123           4th highest daily max 8-h average         ns         2         0.098         0.099         0.099         0.098         0.107         0.104         0.094           PM <sub>10</sub> *         90th percentile         ns         3         41.333         43.667         41.3667         43.667         47.333           Weighted annual mean         ns         3         28.467         29.1         27.767         30.4         28.433         29.767         27.8         29.267           PM <sub>2.5</sub> *         98th percentile         NA         2         ND         ND         ND         ND         ND         ND         ND         ND         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PIM <sub>2.5</sub> ^ |                                   |       |                 |       |       |       |       |       |       |        |            | 44.5        | 38.6         |
| Maximum quarterly value         ns         1         0.016         0.032         0.013         0.01         0.007         0.021         0.018         0.042           CO         2nd max (daily-non-overlapping 8-h)         down         1         5.8         5.8         4.7         4.4         6         5         4.3         4.7           Ozone         2nd highest daily max         ns         2         0.126         0.114         0.114         0.127         0.115         0.13         0.126         0.123           4th highest daily max 8-h average         ns         2         0.098         0.099         0.099         0.098         0.0107         0.104         0.094           PM <sub>10</sub> *         90th percentile         ns         3         41.333         43.667         41.667         44         43.667         43.667         47.333           Weighted annual mean         ns         3         28.467         29.1         27.767         30.4         28.433         29.767         27.8         29.267           PM <sub>2.5</sub> *         98th percentile         NA         2         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                                   | NA    | I               | ND    | ND    | ND    | ND    | ND    | ND    | 17.89  | 18.2       | 18.1        | 17.2         |
| CO         2nd max (daily-non-overlapping 8-h)         down         1         5.8         5.8         4.7         4.4         6         5         4.3         4.7           Ozone         2nd highest daily max         ns         2         0.126         0.114         0.114         0.127         0.115         0.13         0.126         0.123           4th highest daily max         ns         2         0.098         0.089         0.099         0.098         0.107         0.104         0.094           PM <sub>10</sub> *         90th percentile         ns         3         41.333         43.667         41.667         44         43.667         49.667         43.667         47.333           Weighted annual mean         ns         3         28.467         29.1         27.767         30.4         28.433         29.767         27.8         29.267           PM <sub>2.5</sub> *         98th percentile         NA         2         ND         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HARLUII              |                                   |       | 4               | 0.01/ | 0.000 | 0.010 | 0.01  | 0 007 | 0.001 | 0.010  | 0.040      | 0.000       | 0.007        |
| Ozone         2nd highest daily max         ns         2         0.126         0.114         0.117         0.115         0.13         0.126         0.123           4th highest daily max 8-h average         ns         2         0.098         0.089         0.099         0.098         0.107         0.104         0.094           PM <sub>10</sub> *         90th percentile         ns         3         41.333         43.667         41.43.667         44.43.667         43.667         43.667         47.333           Weighted annual mean         ns         3         28.467         29.1         27.767         30.4         28.433         29.767         27.8         29.267           PM <sub>2.5</sub> *         98th percentile         NA         2         ND         ND<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>             |                                   |       |                 |       |       |       |       |       |       |        |            | 0.008       | 0.006        |
| 4th highest daily max 8-h average         ns         2         0.098         0.094         0.099         0.098         0.107         0.104         0.094           PM <sub>10</sub> *         90th percentile         ns         3         41.333         43.667         41.667         44         43.667         43.667         47.333           Weighted annual mean         ns         3         28.467         29.1         27.767         30.4         28.433         29.767         27.8         29.267           PM <sub>2.5</sub> *         98th percentile         NA         2         ND         ND         ND         ND         ND         37.5         32.95           Weighted annual mean         NA         2         ND         ND         ND         ND         ND         ND         ND         17.58         16.54           CHARLOTTESVILLE, VA         VA         2         ND         ND         ND         ND         ND         ND         17.58         16.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                                   |       |                 |       |       |       |       |       |       |        |            | 4.3         | 3.2          |
| PM <sub>10</sub> *         90th percentile         ns         3         41.333         43.667         44         43.667         49.667         43.667         47.333           Weighted annual mean         ns         3         28.467         29.1         27.767         30.4         28.433         29.767         27.8         29.267           PM <sub>2.5</sub> *         98th percentile         NA         2         ND         ND         ND         ND         ND         ND         37.5         32.95           Weighted annual mean         NA         2         ND         ND         ND         ND         ND         ND         17.58         16.54           CHARLOTTESVILLE, VA         VA         2         ND         ND         ND         ND         ND         17.58         16.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OZONE                |                                   |       |                 |       |       |       |       |       |       |        |            |             | 0.125        |
| Weighted annual mean         ns         3         28.467         29.1         27.767         30.4         28.433         29.767         27.8         29.267           PM2.5         98th percentile         NA         2         ND         ND         ND         ND         ND         ND         37.5         32.95           Weighted annual mean         NA         2         ND         ND         ND         ND         ND         ND         17.58         16.54           CHARLOTTESVILLE, VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DN1 *                |                                   |       |                 |       |       |       |       |       |       |        |            |             | 0.101<br>41  |
| PM2.5*         98th percentile         NA         2         ND         ND <td>F 1VI<sub>10</sub></td> <td></td> <td>41<br/>24.933</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F 1VI <sub>10</sub>  |                                   |       |                 |       |       |       |       |       |       |        |            |             | 41<br>24.933 |
| Weighted annual mean NA 2 ND ND ND ND ND 17.58 16.54<br>CHARLOTTESVILLE, VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | РМ *                 |                                   |       |                 |       |       |       |       |       |       |        |            |             | 24.733<br>31 |
| CHARLOTTESVILLE, VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.5                  |                                   |       |                 |       |       |       |       |       |       |        |            | 15.16       |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                   | i NA  | 2               | ND    | ND    |       | ND    | ND    | ND    | 17.50  | 10.04      | 13.10       | 17.20        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                   | ns    | 1               | 40    | 20    | /1    | 32    | 24    | 22    | 20     | 12         | 32          | 30           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                   |                                   |       |                 |       |       |       |       |       |       |        | 43<br>22.9 | 17.8        | 30<br>19.4   |

| Metropolit          | an Statistical Area                                            | Trend        | #Trend<br>Sites | 1993         | 1994        | 1995         | 1996         | 1997         | 1998         | 1999         | 2000         | 2001        | 2002         |
|---------------------|----------------------------------------------------------------|--------------|-----------------|--------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|--------------|
| CHATTANO            | OGA, TN-GA                                                     |              |                 |              |             |              |              |              |              |              |              |             |              |
| Ozone               | 2nd highest daily max                                          | ns           | 2               | 0.104        | 0.114       | 0.108        | 0.113        | 0.107        | 0.129        | 0.117        | 0.119        | 0.106       | 0.111        |
|                     | 4th highest daily max 8-h average                              | ns           | 2               | 0.088        | 0.088       | 0.09         | 0.088        | 0.088        | 0.1          | 0.096        | 0.097        | 0.085       | 0.097        |
| PM <sub>10</sub> *  | 90th percentile                                                | down         | 1               | 49           | 50          | 51           | 49           | 43           | 43           | 42           | 45           | 42          | 33           |
|                     | Weighted annual mean                                           | down         | 1               | 32.1         | 33.9        | 32.1         | 32.5         | 26.4         | 27           | 26.9         | 28.9         | 26.9        | 21.8         |
| CHEYENNE            | E, WY                                                          |              |                 |              |             |              |              |              |              |              |              |             |              |
| PM <sub>10</sub> *  | 90th percentile                                                | ns           | 1               | 24           | 28          | 26           | 25           | 20           | 22           | 23           | 24           | 26          | 29           |
|                     | Weighted annual mean                                           | ns           | 1               | 15.5         | 17.8        | 14.6         | 15.1         | 12.9         | 13.9         | 14.9         | 15.7         | 15.7        | 16.4         |
| PM <sub>2.5</sub> * | 98th percentile                                                | NA           | 1               | ND           | ND          | ND           | ND           | ND           | ND           | 12.4         | 13.2         | 12.2        | 13.8         |
|                     | Weighted annual mean                                           | NA           | 1               | ND           | ND          | ND           | ND           | ND           | ND           | 5.57         | 5.58         | 5.03        | 4.66         |
| CHICAGO,            |                                                                |              |                 |              |             |              |              |              |              |              |              |             |              |
|                     | Maximum quarterly value                                        | down         | 2               | 0.076        | 0.077       | 0.061        | 0.059        | 0.059        | 0.063        | 0.042        | 0.085        | 0.038       | 0.037        |
| CO                  | 2nd max (daily-non-overlapping 8-h)                            | down         | 2               | 5.45         | 5.8         | 4.1          | 4.05         | 4.15         | 4.6          | 3.9          | 3.2          | 2.9         | 2.85         |
| SO <sub>2</sub>     | 2nd daily max                                                  | ns           | 3               | 0.044        | 0.042       | 0.032        | 0.028        | 0.033        | 0.039        | 0.036        | 0.043        | 0.023       | 0.022        |
| NO                  | Annual mean                                                    | ns           | 3               | 0.007        | 0.007       | 0.006        | 0.006        | 0.007        | 0.007        | 0.007        | 0.007        | 0.005       | 0.005        |
| NO <sub>2</sub>     | Annual mean                                                    | ns           | 1               | 0.031        | 0.032       | 0.032        | 0.031        | 0.034        | 0.032        | 0.032        | 0.032        | 0.032       | 0.032        |
| Ozone               | 2nd highest daily max                                          | ns           | 3               | 0.085        | 0.098       | 0.114        | 0.102        | 0.105        | 0.096        | 0.104        | 0.083        | 0.093       | 0.104 0.082  |
| DM *                | 4th highest daily max 8-h average<br>90th percentile           | ns           | 3<br>1          | 0.068<br>67  | 0.076<br>67 | 0.085<br>67  | 0.077<br>61  | 0.082<br>59  | 0.078<br>59  | 0.089<br>66  | 0.067<br>68  | 0.073<br>72 | 0.082        |
| PM <sub>10</sub> *  | Weighted annual mean                                           | ns<br>ns     | 1               | 37.4         | 37.4        | 37.4         | 35.8         | 33.9         | 35.2         | 36.1         | 35.1         | 38          | 36.1         |
| <b>РМ *</b>         | 98th percentile                                                | NA           | 2               | 57.4<br>ND   | 37.4<br>ND  | ND           | ND           | ND           | ND           | 54.1         | 40.65        | 45.95       | 40.35        |
| PM <sub>2.5</sub> * | Weighted annual mean                                           | NA           | 2               | ND           | ND          | ND           | ND           | ND           | ND           |              | 19.265       | 20.12       | 17.11        |
|                     | 5                                                              | 1471         | 2               | ND           | ND          | ND           | ND           | ND           | ND           | 21.00        | 17.200       | 20.12       | 17.11        |
| CHICO-PAR           | RADISE, CA                                                     | nc           | 1               | 0.01         | 0.008       | 0.005        | 0.005        | 0.006        | 0.006        | 0.004        | 0.005        | 0.005       | 0.005        |
| CO                  | Maximum quarterly value<br>2nd max (daily-non-overlapping 8-h) | ns<br>ns     | 1               | 3.9          | 4.1         | 3.5          | 3.4          | 0.006<br>3.5 | 3.8          | 0.004        | 3.5          | 3.8         | 3.4          |
| NO <sub>2</sub>     | Annual mean                                                    | down         | 1               | 0.016        | 0.015       | 0.014        | 0.013        | 0.013        | 0.013        | 0.015        | 0.012        | 0.012       | 0.012        |
| Ozone               | 2nd highest daily max                                          | ns           | 1               | 0.010        | 0.013       | 0.091        | 0.096        | 0.074        | 0.103        | 0.013        | 0.012        | 0.012       | 0.092        |
| 020110              | 4th highest daily max 8-h average                              | ns           | 1               | 0.076        | 0.082       | 0.076        | 0.074        | 0.066        | 0.078        | 0.087        | 0.078        | 0.08        | 0.081        |
| PM <sub>10</sub> *  | 90th percentile                                                | ns           | 1               | 60           | 55          | 52           | 40           | 40           | 37           | 50           | 56           | 47          | 49           |
| 10                  | Weighted annual mean                                           | ns           | 1               | 27.2         | 33.3        | 26.3         | 25           | 25.9         | 22.3         | 28.6         | 27.4         | 29.2        | 28.1         |
| PM <sub>2.5</sub> * | 98th percentile                                                | NA           | 1               | ND           | ND          | ND           | ND           | ND           | ND           | ND           | 70           | 56          | 53           |
| 2.5                 | Weighted annual mean                                           | NA           | 1               | ND           | ND          | ND           | ND           | ND           | ND           | ND           | 16.26        | 13.01       | 15.13        |
| CINCINNAT           | ΓΙ, ΟΗ-̈́KY-IN                                                 |              |                 |              |             |              |              |              |              |              |              |             |              |
| CO                  | 2nd max (daily-non-overlapping 8-h)                            | down         | 1               | 4.8          | 4.1         | 3.1          | 2.7          | 2.4          | 2.5          | 2.5          | 2.4          | 2.2         | 2.6          |
| SO <sub>2</sub>     | 2nd daily max                                                  | ns           | 1               | 0.037        | 0.051       | 0.025        | 0.045        | 0.045        | 0.036        | 0.03         | 0.053        | 0.042       | 0.043        |
| 2                   | Annual mean                                                    | ns           | 1               | 0.011        | 0.009       | 0.007        | 0.011        | 0.01         | 0.01         | 0.008        | 0.009        | 0.011       | 0.01         |
| Ozone               | 2nd highest daily max                                          | ns           | 1               | 0.104        | 0.118       | 0.114        | 0.112        | 0.11         | 0.121        | 0.105        | 0.11         | 0.106       | 0.115        |
|                     | 4th highest daily max 8-h average                              | ns           | 1               | 0.08         | 0.099       | 0.098        | 0.088        | 0.084        | 0.091        | 0.091        | 0.087        | 0.082       | 0.096        |
| PM <sub>10</sub> *  | 90th percentile                                                | down         | 2               | 54.5         | 47.5        | 53           | 41           | 44           | 43.75        | 42           | 43           | 40.5        | 37.5         |
|                     | Weighted annual mean                                           | down         | 2               | 28.75        | 28.25       | 29.9         | 25.6         |              | 25.675       | 24.7         | 25           |             | 21.95        |
| PM <sub>2.5</sub> * | 98th percentile                                                | NA           | 4               | ND           | ND          | ND           | ND           | ND           | ND           | 35.433       | 37.2         |             | 40.375       |
|                     | Weighted annual mean                                           | NA           | 4               | ND           | ND          | ND           | ND           | ND           | ND           | 17           | 16.83        | 15.695      | 15.763       |
|                     | LLE-HOPKINSVILLE, TN-KY                                        |              |                 |              |             |              |              |              |              |              |              |             |              |
| $SO_2$              | 2nd daily max                                                  | down         | 1               | 0.058        | 0.037       | 0.019        | 0.023        | 0.026        | 0.02         | 0.016        | 0.018        | 0.017       |              |
| 0                   | Annual mean                                                    | ns           | 1               | 0.01         | 0.007       | 0.006        | 0.006        | 0.005        | 0.006        | 0.005        | 0.006        | 0.005       | 0.007        |
| Ozone               | 2nd highest daily max                                          | ns           | 1               | 0.103        | 0.103       |              | 0.1          | 0.099        | 0.111        | 0.115        | 0.099        |             | 0.1          |
| DM *                | 4th highest daily max 8-h average                              | ns           | 1               | 0.082        |             | 0.086        | 0.079        | 0.082        | 0.086        | 0.092        |              | 0.082       | 0.093        |
| PM <sub>10</sub> *  | 90th percentile                                                | down         | 1               | 40           | 40          | 40           | 41           | 35           | 39           | 36           | 40           | 31          | 30           |
|                     | Weighted annual mean                                           | down         | 1               | 25.8         | 25.8        | 25.8         | 24.9         | 21.4         | 23.1         | 22.9         | 23.3         | 20.4        | 19.3         |
| PM <sub>2.5</sub> * | 98th percentile                                                | NA           | 1<br>1          | ND           | ND          | ND           | ND           | ND           | ND           | 30.1         | 38.3         | 27.2        | 29.3         |
|                     | Weighted annual mean                                           | NA           | 1               | ND           | ND          | ND           | ND           | ND           | ND           | 15.12        | 15.45        | 13.51       | 13.09        |
| CLEVELAN            | D-LORAIN-ELYRIA, OH                                            | dayun        | 1               | 0.11         | 0.07        | 0.050        | 0.027        | 0.05         | 0.042        | 0.02         | 0 0 2 2      | 0.02        | 0 0 0 7      |
| <u> </u>            | Maximum quarterly value                                        | down         | 1               | 0.11         | 0.06        | 0.053        | 0.037        | 0.05         | 0.043        | 0.03         | 0.023        | 0.03        | 0.027        |
| C0<br>S0            | 2nd max (daily-non-overlapping 8-h)                            | down<br>down | 1<br>2          | 4.6<br>0.053 | 7.7         | 8.2<br>0.039 | 4.9<br>0.037 | 4.5<br>0.044 | 3.9<br>0.046 | 3.9<br>0.044 | 3.2<br>0.031 | 3.5         | 2.2<br>0.029 |
| SO <sub>2</sub>     | 2nd daily max<br>Annual mean                                   | down         | 2               | 0.053        | 0.047       | 0.039        | 0.037        | 0.044        | 0.046        | 0.044        | 0.031        |             | 0.029        |
| NO <sub>2</sub>     | Annual mean                                                    | down         | 1               | 0.014        | 0.012       | 0.01         | 0.01         | 0.01         | 0.01         | 0.01         | 0.008        |             | 0.008        |
| Ozone               | 2nd highest daily max                                          | ns           | 1               | 0.028        | 0.028       | 0.027        | 0.020        | 0.028        | 0.027        | 0.025        | 0.023        |             | 0.022        |
| 020110              | 4th highest daily max 8-h average                              | ns           | 1               | 0.084        | 0.073       | 0.088        | 0.089        | 0.090        | 0.098        | 0.092        | 0.081        |             | 0.088        |
| PM <sub>10</sub> *  | 90th percentile                                                | down         | 3               | 81           | 76.667      | 78           | 65           | 67.667       |              | 67.333       | 69           |             | 55.333       |
| 10                  | Weighted annual mean                                           | down         | 3               | 38.867       | 46.933      |              |              | 40.1         | 42.5         | 41.4         | 40.4         |             | 33.033       |
| PM <sub>2.5</sub> * | 98th percentile                                                | NA           | 3               | ND           | ND          | ND           | ND           | ND           | ND           | 43.967       |              |             | 41.467       |
| F IVI               |                                                                |              |                 |              |             |              |              |              |              |              |              |             |              |

| Metropolit          | an Statistical Area                     | Trend    | #Trend<br>Sites | 1993   | 1994        | 1995    | 1996   | 1997        | 1998        | 1999   | 2000        | 2001   | 2002          |
|---------------------|-----------------------------------------|----------|-----------------|--------|-------------|---------|--------|-------------|-------------|--------|-------------|--------|---------------|
| COLORADO            | ) SPRINGS, CO                           |          |                 |        |             |         |        |             |             |        |             |        |               |
|                     | Maximum quarterly value                 | ns       | 1               | 0.013  | 0.014       | 0.01    | 0.004  | 0.004       | 0.012       | 0.009  | 0.011       | 0.009  | 0.006         |
| CO                  | 2nd max (daily-non-overlapping 8-h)     | down     | 1               | 5.7    | 4.9         | 5.5     | 5      | 4.9         | 3.8         | 4.2    | 3           | 2.8    | 5.2           |
| SO <sub>2</sub>     | 2nd daily max                           | down     | 1               | 0.011  | 0.01        | 0.01    | 0.008  | 0.007       | 0.007       | 0.008  | 0.006       | 0.006  | 0.006         |
| 2                   | Annual mean                             | down     | 1               | 0.003  | 0.004       | 0.003   | 0.002  | 0.002       | 0.002       | 0.002  | 0.002       | 0.002  | 0.002         |
| NO <sub>2</sub>     | Annual mean                             | ns       | 1               | 0.008  | 0.008       | 0.008   | 0.007  | 0.008       | 0.007       | 0.007  | 0.009       | 0.008  | 0.008         |
| PM_10*              | 90th percentile                         | ns       | 3               | 40     | 36          | 35      | 31.333 | 28.333      | 30.667      | 27     | 30.333      | 32     | 34.333        |
|                     | Weighted annual mean                    | ns       | 3               | 23.067 | 21.5        | 19.7    | 19.333 | 18.7        | 18.833      | 18.233 | 18.6        | 20.2   | 21.533        |
| PM <sub>2.5</sub> * | 98th percentile                         | NA       | 1               | ND     | ND          | ND      | ND     | ND          | ND          | ND     | 14.6        | 15.5   | 19.6          |
| 2.0                 | Weighted annual mean                    | NA       | 1               | ND     | ND          | ND      | ND     | ND          | ND          | ND     | 7.58        | 7.72   | 7.77          |
| OLUMBIA             | , SC                                    |          |                 |        |             |         |        |             |             |        |             |        |               |
| SO <sub>2</sub>     | 2nd daily max                           | ns       | 2               | 0.013  | 0.013       | 0.011   | 0.015  | 0.015       | 0.016       | 0.013  | 0.012       | 0.014  | 0.014         |
| 2                   | Annual mean                             | ns       | 2               | 0.003  | 0.002       | 0.002   | 0.003  | 0.003       | 0.003       | 0.003  | 0.003       | 0.003  | 0.003         |
| NO <sub>2</sub>     | Annual mean                             | ns       | 1               | 0.013  | 0.011       | 0.013   | 0.013  | 0.011       | 0.014       | 0.014  | 0.014       | 0.014  | 0.012         |
| Ozone               | 2nd highest daily max                   | ns       | 1               | 0.112  | 0.103       | 0.104   | 0.088  | 0.108       | 0.116       | 0.117  | 0.113       | 0.104  | 0.101         |
|                     | 4th highest daily max 8-h average       | ns       | 1               | 0.089  | 0.082       | 0.079   | 0.074  | 0.086       | 0.098       | 0.094  | 0.096       | 0.082  | 0.084         |
| PM <sub>10</sub> *  | 90th percentile                         | ns       | 2               | 73.5   | 71          | 72      | 69     | 75.5        | 89.5        | 83.5   | 70.5        | 65.5   | 60.5          |
| '10                 | Weighted annual mean                    | ns       | 2               | 41     | 40.65       | 40.6    | 38.75  | 42.75       | 48.6        | 47.55  | 40.6        | 39.75  | 34.6          |
| PM <sub>2.5</sub> * | 98th percentile                         | NA       | 2               | ND     | 40.05<br>ND | ND      | ND     | 42.75<br>ND | ND          | 36.6   | 29.5        | 25     | 28.1          |
| 2.5                 | Weighted annual mean                    | NA       | 2               | ND     | ND          | ND      | ND     | ND          | ND          |        | 15.795      | 13.58  | 12.99         |
|                     |                                         |          | 2               | ND     |             | ND      | ND     | ND          | ΠD          | 13.7   | 10.770      | 15.50  | 12.77         |
| OLUMBUS             |                                         | 20       | 1               | 0 007  | 0.007       | 0 1 1 2 | 0.005  | 0.004       | 0 100       | 0 107  | 0.105       | 0.000  | 0.005         |
| Ozone               | 2nd highest daily max                   | ns       | 1               | 0.097  | 0.097       | 0.113   | 0.095  | 0.094       | 0.108       | 0.107  | 0.105       | 0.088  | 0.095         |
| D14 *               | 4th highest daily max 8-h average       | ns       | 1               | 0.075  | 0.075       | 0.089   | 0.08   | 0.08        | 0.091       | 0.089  | 0.087       | 0.073  | 0.079         |
| PM <sub>10</sub> *  | 90th percentile                         | ns       | 1               | 37     | 44          | 46      | 33     | 39          | 45          | 40     | 44          | 39     | 33            |
|                     | Weighted annual mean                    | ns       | 1               | 25.4   | 26.5        | 28.2    | 22.2   | 26.4        | 30.1        | 26.5   | 25.6        | 22.4   | 22.6          |
| PM <sub>2.5</sub> * | 98th percentile                         | NA       | 2               | ND     | ND          | ND      | ND     | ND          | ND          | 44.1   | 46.5        | 40.1   | 33.1          |
|                     | Weighted annual mean                    | NA       | 2               | ND     | ND          | ND      | ND     | ND          | ND          | 19.885 | 18.975      | 15.695 | 14.45         |
| OLUMBUS             | S, OH                                   |          |                 |        |             |         |        |             |             |        |             |        |               |
| CO                  | 2nd max (daily-non-overlapping 8-h)     | down     | 1               | 5.3    | 4.1         | 4.9     | 2.7    | 2.9         | 3.7         | 2.5    | 2.8         | 2.6    | 2.5           |
| S0,                 | 2nd daily max                           | ns       | 1               | 0.032  | 0.04        | 0.016   | 0.015  | 0.021       | 0.018       | 0.015  | 0.019       | 0.017  | 0.017         |
| 2                   | Annual mean                             | ns       | 1               | 0.007  | 0.006       | 0.003   | 0.004  | 0.005       | 0.005       | 0.004  | 0.004       | 0.004  | 0.004         |
| Ozone               | 2nd highest daily max                   | ns       | 1               | 0.101  | 0.102       | 0.106   | 0.106  | 0.095       | 0.113       | 0.111  | 0.105       | 0.097  | 0.112         |
|                     | 4th highest daily max 8-h average       | ns       | 1               | 0.083  | 0.088       | 0.088   | 0.087  | 0.083       | 0.094       | 0.095  | 0.079       | 0.08   | 0.095         |
| PM <sub>10</sub> *  | 90th percentile                         | ns       | 1               | 50     | 46          | 53      | 39     | 63          | 70          | 62     | 54          | 52     | 44            |
| 10                  | Weighted annual mean                    | ns       | 1               | 27.1   | 26.7        | 30.6    | 24.8   | 30.9        | 34.2        | 32.6   | 34.1        | 30.5   | 29.2          |
| PM <sub>2.5</sub> * | 98th percentile                         | NA       | 3               | ND     | ND          | ND      | ND     | ND          | ND          | 38.633 | 39.167      | 40.433 | 39.567        |
| 2.5                 | Weighted annual mean                    | NA       | 3               | ND     | ND          | ND      | ND     | ND          | ND          | 17.603 | 17.597      | 17.083 | 16.003        |
| DRPUS C             | HRISŤI, TX                              |          |                 |        |             |         |        |             |             |        |             |        |               |
| Ozone               | 2nd highest daily max                   | ns       | 1               | 0.11   | 0.103       | 0.109   | 0.099  | 0.094       | 0.102       | 0.103  | 0.099       | 0.092  | 0.104         |
| 020110              | 4th highest daily max 8-h average       | ns       | 1               | 0.08   | 0.079       | 0.089   | 0.083  | 0.074       | 0.082       | 0.084  | 0.083       | 0.072  | 0.084         |
| PM <sub>10</sub> *  | 90th percentile                         | ns       | 1               | 57     | 48          | 47      | 0.083  | 50          | 0.002<br>57 | 62     | 0.003<br>54 | 41     | 48            |
| 10                  | Weighted annual mean                    | ns       | 1               | 30.6   | 31.3        | 31.1    | 25.1   | 30.5        | 34.5        | 34.9   | 35.7        | 27.2   | 32.9          |
| י י י י אייסר       |                                         | 113      | I               | 50.0   | 51.5        | 51.1    | 20.1   | 50.5        | 54.5        | 54.7   | 55.7        | 21.2   | 52.7          |
|                     | -                                       | NA       | 1               |        |             |         |        |             |             | 21 L   | 20.1        | 27 F   | ר דר          |
| PM <sub>2.5</sub> * | 98th percentile                         | NA       |                 | ND     | ND          | ND      | ND     | ND          | ND          | 31.6   | 30.1        | 27.5   | 27.3          |
|                     | Weighted annual mean                    | NA       | 1               | ND     | ND          | ND      | ND     | ND          | ND          | 7.05   | 7.88        | 7.26   | 7.64          |
| ALLAS, T            |                                         |          |                 |        |             |         |        |             |             |        |             |        |               |
| CO                  | 2nd max (daily-non-overlapping 8-h)     | down     | 1               | 4.4    | 4.4         | 4.4     | 5.3    | 4.6         | 4.4         | 3.2    | 2.2         | 2.4    | 2.1           |
| SO <sub>2</sub>     | 2nd daily max                           | ns       | 2               | 0.012  | 0.012       | 0.012   | 0.012  | 0.013       | 0.007       | 0.01   | 0.01        | 0.01   | 0.01          |
| -                   | Annual mean                             | down     | 2               | 0.003  | 0.003       | 0.003   | 0.002  | 0.002       | 0.002       | 0.002  | 0.002       | 0.002  | 0.001         |
| $NO_2$              | Annual mean                             | down     | 1               | 0.02   | 0.02        | 0.02    | 0.02   | 0.018       | 0.02        | 0.021  | 0.019       | 0.019  | 0.018         |
| PM_10*              | 90th percentile                         | ns       | 2               | 42.5   | 44          | 45      | 42     | 39.5        | 45.5        | 42.5   | 41.5        | 41.5   | 45.5          |
|                     | Weighted annual mean                    | ns       | 2               | 25.1   | 25.6        | 26.65   | 25.7   | 24.8        | 27.7        | 26.7   | 27.05       | 27.2   | 26.1          |
| PM <sub>2.5</sub> * | 98th percentile                         | NA       | 1               | ND     | ND          | ND      | ND     | ND          | ND          | ND     | 33          | 31.3   | 37.6          |
| 2.0                 | Weighted annual mean                    | NA       | 1               | ND     | ND          | ND      | ND     | ND          | ND          | ND     | 13.45       | 13.91  | 13.57         |
| ANBURY,             | СТ                                      |          |                 |        |             |         |        |             |             |        |             |        |               |
| SO <sub>2</sub>     | 2nd daily max                           | ns       | 1               | 0.024  | 0.037       | 0.02    | 0.02   | 0.024       | 0.02        | 0.024  | 0.017       | 0.022  | 0 023         |
| 002                 | Annual mean                             | down     | 1               | 0.024  | 0.006       | 0.002   | 0.005  | 0.005       | 0.002       | 0.024  | 0.004       | 0.022  | 0.023         |
| Ozone               | 2nd highest daily max                   |          | 1               | 0.008  | 0.000       | 0.004   | 0.005  | 0.005       | 0.004       | 0.004  | 0.004       | 0.004  |               |
| OZUNE               |                                         | ns       | 1               |        |             |         |        |             |             |        |             |        |               |
| DM *                | 4th highest daily max 8-h average       | ns<br>NA |                 | 0.096  | 0.093       | 0.093   | 0.081  | 0.105       | 0.092       | 0.106  | 0.09        | 0.096  |               |
| PM <sub>2.5</sub> * | 98th percentile<br>Weighted annual mean | NA<br>NA | 1<br>1          | ND     | ND          | ND      | ND     | ND          | ND          | ND     | 32.9        | 35.2   | 30.7<br>12.59 |
|                     |                                         | NIA      | 1               | ND     | ND          | ND      | ND     | ND          | ND          | ND     | 12.73       | 1.7.)  | 1750          |

| Metropolit            | an Statistical Area                                            | Trend      | #Trend<br>Sites | 1993          | 1994         | 1995         | 1996        | 1997        | 1998         | 1999           | 2000          | 2001          | 2002          |
|-----------------------|----------------------------------------------------------------|------------|-----------------|---------------|--------------|--------------|-------------|-------------|--------------|----------------|---------------|---------------|---------------|
| DAVENPOR              | RT-MOLINE-ROCK ISLAND, IA-IL M                                 |            |                 |               |              |              |             |             |              |                |               |               |               |
| SO <sub>2</sub>       | 2nd daily max                                                  | down       | 1               | 0.022         | 0.034        | 0.02         | 0.014       | 0.02        | 0.018        | 0.014          | 0.014         | 0.01          | 0.013         |
| 2                     | Annual mean                                                    | down       | 1               | 0.005         | 0.006        | 0.006        | 0.004       | 0.005       | 0.004        | 0.004          | 0.003         | 0.002         | 0.002         |
| PM <sub>10</sub> *    | 90th percentile                                                | down       | 1               | 79            | 92           | 108          | 89          | 90          | 68           | 80             | 70            | 63            | 70            |
|                       | Weighted annual mean                                           | down       | 1               | 46.5          | 59.9         | 66.8         | 50          | 49.3        | 37.9         | 43.5           | 40.2          | 36.2          | 42            |
| PM <sub>2.5</sub> *   | 98th percentile                                                | NA         | 1               | ND            | ND           | ND           | ND          | ND          | ND           | 29.7           | 30.3          | 33            | 29.5          |
|                       | Weighted annual mean                                           | NA         | 1               | ND            | ND           | ND           | ND          | ND          | ND           | 13.14          | 12.75         | 13.21         | 12.25         |
|                       | PRINGFIELD, OH                                                 | down       | 1               | 4             | 4.4          | 27           | 2           | 4           | 2.4          | 2.0            | 2.1           | 2.4           | 1 0           |
| CO<br>SO <sub>2</sub> | 2nd max (daily-non-overlapping 8-h)<br>2nd daily max           | down<br>ns | 1               | 4<br>0.028    | 4.4<br>0.034 | 3.7<br>0.017 | 3<br>0.031  | 4<br>0.022  | 3.4<br>0.016 | 2.8<br>0.017   | 3.1<br>0.018  | 2.6<br>0.017  | 1.8<br>0.023  |
| 30 <sub>2</sub>       | Annual mean                                                    | ns         | 1               | 0.028         | 0.004        | 0.0017       | 0.005       | 0.022       | 0.010        | 0.0017         | 0.018         | 0.004         | 0.023         |
| Ozone                 | 2nd highest daily max                                          | ns         | 3               | 0.109         | 0.114        | 0.116        | 0.113       | 0.107       | 0.117        | 0.116          | 0.004         | 0.097         | 0.000         |
|                       | 4th highest daily max 8-h average                              | ns         | 3               | 0.087         | 0.091        | 0.091        | 0.097       | 0.089       | 0.096        | 0.093          | 0.086         | 0.083         | 0.096         |
| PM <sub>10</sub> *    | 90th percentile                                                | ns         | 1               | 50            | 44           | 48           | 38          | 40          | 45           | 45             | 44            | 42            | 37            |
| 10                    | Weighted annual mean                                           | ns         | 1               | 24.9          | 25.5         | 27.3         | 22.7        | 24.5        | 24.5         | 23.6           | 26.7          | 25.2          | 23.8          |
| DAYTONA I             | BEACH, FL                                                      |            |                 |               |              |              |             |             |              |                |               |               |               |
| Ozone                 | 2nd highest daily max                                          | ns         | 2               | 0.094         | 0.084        | 0.083        | 0.079       | 0.086       | 0.094        | 0.087          | 0.087         | 0.085         | 0.085         |
|                       | 4th highest daily max 8-h average                              | ns         | 2               | 0.074         | 0.072        | 0.068        | 0.066       | 0.072       | 0.079        | 0.075          | 0.075         | 0.072         | 0.068         |
| PM <sub>2.5</sub> *   | 98th percentile                                                | NA         | 1               | ND            | ND           | ND           | ND          | ND          | ND           | 25.2           | 26            | 21.7          | 21.6          |
|                       | Weighted annual mean                                           | NA         | 1               | ND            | ND           | ND           | ND          | ND          | ND           | 11.36          | 10.48         | 10            | 8.75          |
| DECATUR,              |                                                                |            |                 |               |              |              |             |             |              |                |               |               |               |
| SO <sub>2</sub>       | 2nd daily max                                                  | ns         | 1               | 0.025         | 0.03         | 0.024        | 0.022       | 0.021       | 0.02         | 0.027          | 0.025         | 0.025         | 0.021         |
| 0                     | Annual mean                                                    | down       | 1               | 0.006         | 0.007        | 0.005        | 0.005       | 0.006       | 0.005        | 0.006          | 0.005         | 0.005         | 0.004         |
| Ozone                 | 2nd highest daily max                                          | ns         | 1               | 0.077         | 0.095        | 0.097        | 0.1         | 0.087       | 0.094        | 0.102          | 0.092         | 0.078         | 0.094         |
| DM *                  | 4th highest daily max 8-h average                              | ns<br>NA   | 1               | 0.065         | 0.079        | 0.08         | 0.094       | 0.077<br>ND | 0.078<br>ND  | 0.087          | 0.077<br>30.9 | 0.071<br>34.7 | 0.085         |
| PM <sub>2.5</sub> *   | 98th percentile                                                | NA         | 1<br>1          | ND            | ND           | ND           | ND          |             | ND           | ND             |               |               | 33.9          |
|                       | Weighted annual mean                                           | NA         | I               | ND            | ND           | ND           | ND          | ND          | ND           | ND             | 15.04         | 14.27         | 14.1          |
| ENVER, C              |                                                                | <b>P</b> C | 1               | 0 100         | 0.047        | 0.054        | 0.05        | 0.03        | 0 104        | 0 0 7 0        | 0 1 4 0       | 0 102         | 0 11 /        |
| CO                    | Maximum quarterly value<br>2nd max (daily-non-overlapping 8-h) | ns<br>down | 1               | 0.108<br>10.4 | 0.067<br>8.2 | 0.054<br>9.5 | 0.05<br>7.3 | 0.03<br>5.5 | 0.106<br>4.7 | 0.078<br>5     | 0.149<br>5.4  | 0.103<br>4.1  | 3.7           |
| SO,                   | 2nd daily max                                                  | ns         | 1               | 0.035         | 0.034        | 0.019        | 0.024       | 0.026       | 0.023        | 0.024          | 0.025         | 0.026         | 0.023         |
| 50 <sub>2</sub>       | Annual mean                                                    | down       | 1               | 0.009         | 0.007        | 0.005        | 0.0024      | 0.006       | 0.004        | 0.005          | 0.005         | 0.005         | 0.005         |
| $NO_2$                | Annual mean                                                    | up         | 1               | 0.034         | 0.035        | 0.035        | 0.033       | 0.034       | 0.035        | 0.036          | 0.036         | 0.037         | 0.035         |
| Ozone                 | 2nd highest daily max                                          | ns         | 2               | 0.103         | 0.098        | 0.098        | 0.103       | 0.095       | 0.115        | 0.099          | 0.101         | 0.102         | 0.105         |
|                       | 4th highest daily max 8-h average                              | ns         | 2               | 0.079         | 0.076        | 0.077        | 0.081       | 0.076       | 0.087        | 0.079          | 0.081         | 0.08          | 0.086         |
| PM <sub>10</sub> *    | 90th percentile                                                | ns         | 1               | 23            | 20           | 19           | 22          | 18          | 23           | 20             | 24            | 24            | 24            |
|                       | Weighted annual mean                                           | ns         | 1               | 14.3          | 12.7         | 9.7          | 11.6        | 9.4         | 12.6         | 11.8           | 13.1          | 13.1          | 13.1          |
| PM <sub>2.5</sub> *   | 98th percentile                                                | NA         | 1               | ND            | ND           | ND           | ND          | ND          | ND           | ND             | 27.9          | 37.2          | 24.5          |
|                       | Weighted annual mean                                           | NA         | 1               | ND            | ND           | ND           | ND          | ND          | ND           | ND             | 10.78         | 11.81         | 10.1          |
| DES MOIN              |                                                                |            |                 |               |              |              |             |             |              |                |               |               |               |
| CO                    | 2nd max (daily-non-overlapping 8-h)                            | down       | 1               | 5.4           | 4.9          | 5.7          | 3.6         | 3           | 4.1          | 3.5            | 2.7           | 2.3           | 2.7           |
| Ozone                 | 2nd highest daily max                                          | ns         | 1               | 0.08          | 0.073        | 0.081        | 0.082       | 0.075       | 0.065        | 0.069          | 0.071         | 0.067         | 0.071         |
|                       | 4th highest daily max 8-h average                              | ns         | 1               | 0.04          | 0.052        | 0.071        | 0.064       | 0.063       | 0.056        | 0.059          | 0.061         | 0.06          | 0.059         |
| PM <sub>10</sub> *    | 90th percentile<br>Weighted annual mean                        | ns         | 2<br>2          | 52<br>31.7    | 57.5<br>32.8 | 53<br>30.1   | 56<br>32.8  | 65<br>34    | 55.5<br>30.3 | 50.75<br>28.15 | 48<br>28.4    | 57<br>33.2    | 40.5<br>24.3  |
| PM <sub>2.5</sub> *   | 98th percentile                                                | ns<br>NA   | 2               | 31.7<br>ND    | 32.8<br>ND   | 30.1<br>ND   | 32.8<br>ND  | 34<br>ND    | 30.3<br>ND   | 28.15          | 28.4<br>32.3  | 33.2<br>29.9  | 24.3          |
| 2.5                   | Weighted annual mean                                           | NA         | 1               | ND            | ND           | ND           | ND          | ND          | ND           | 20.3<br>11.39  | 32.3<br>10.56 | 10.61         |               |
| DETROIT, I            | MI                                                             |            |                 | ND            | ND           | ND           | ND          | ND          | ND           | 11.57          | 10.00         | 10.01         | 10.00         |
|                       | Maximum Quarterly Value                                        | ns         | 2               | 0.038         | 0.047        | 0.047        | 0.034       | 0.063       | 0.043        | 0.056          | 0.03          | 0.031         | 0.031         |
| CO                    | 2nd max (daily-non-overlapping 8-h)                            | down       | 2               | 4.15          | 5.8          | 5            | 3.55        | 3.15        | 3.15         | 3.85           | 3.9           | 2.5           | 3             |
| S0,                   | 2nd daily max                                                  | up         | 2               | 0.031         | 0.038        | 0.039        | 0.032       | 0.037       | 0.036        | 0.044          | 0.038         |               | 0.042         |
| 2                     | Annual mean                                                    | ns         | 2               | 0.008         | 0.008        | 0.007        | 0.007       | 0.007       |              | 0.009          | 0.007         | 0.007         |               |
| $NO_2$                | Annual mean                                                    | ns         | 1               | 0.022         | 0.025        | 0.022        | 0.02        | 0.026       | 0.023        | 0.024          | 0.024         | 0.023         |               |
| Ozone                 | 2nd highest daily max                                          | ns         | 2               | 0.102         | 0.128        | 0.114        | 0.099       | 0.115       | 0.115        | 0.112          | 0.091         | 0.112         | 0.11          |
|                       | 4th highest daily max 8-h average                              | ns         | 2               | 0.076         | 0.095        | 0.081        | 0.085       | 0.085       | 0.092        | 0.09           | 0.076         | 0.091         |               |
| PM <sub>10</sub> *    | 90th percentile                                                | down       | 3               | 63.667        | 71.667       |              | 53          | 55.667      |              | 61.667         | 59            |               | 52.333        |
|                       | Weighted annual mean                                           | ns         | 3               | 37.567        | 43.5         | 38.7         | 33.6        |             | 33.833       | 35.733         |               |               |               |
| PM <sub>2.5</sub> *   | 98th percentile                                                | NA         | 5               | ND            | ND           | ND           | ND          | ND          | ND           | 31.9           |               | 42.64         |               |
|                       | Weighted annual mean                                           | NA         | 5               | ND            | ND           | ND           | ND          | ND          | ND           | 12.72          | 16.54         | 16.924        | 16.428        |
| OTHAN, A              |                                                                |            |                 |               |              |              |             |             |              |                |               |               |               |
| PM <sub>10</sub> *    | 90th percentile                                                | down       | 1               | 52            | 47           | 46           | 36          | 45          | 41           | 43             | 48            | 37            | 31            |
| <b>D1</b>             | Weighted annual mean                                           | ns         | 1               | 26.4          | 27.8         | 28.1         | 22.3        | 24.9        | 27.3         | 28.8           | 24.4          | 22.5          | 21            |
| PM <sub>2.5</sub> *   | 98th percentile<br>Weighted annual mean                        | NA<br>NA   | 1<br>1          | ND<br>ND      | ND<br>ND     | ND<br>ND     | ND<br>ND    | ND<br>ND    | ND<br>ND     | 39.7<br>19.58  | 34.6<br>15.42 | 26.6<br>14    | 26.7<br>13.03 |
|                       |                                                                |            |                 |               |              |              |             |             |              |                |               |               | 1 2 112       |

| Metropolita         | an Statistical Area                                        | Trend        | #Trend<br>Sites | 1993          | 1994           | 1995           | 1996           | 1997           | 1998           | 1999           | 2000           | 2001           | 2002          |
|---------------------|------------------------------------------------------------|--------------|-----------------|---------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|---------------|
| DOVER, DE           |                                                            |              |                 |               |                |                |                |                |                |                |                |                |               |
| Ozone               | 2nd highest daily max                                      | down         | 1               | 0.137         | 0.137          | 0.137          | 0.11           | 0.124          | 0.131          | 0.12           | 0.126          | 0.117          | 0.112         |
|                     | 4th highest daily max 8-h average                          | ns           | 1               | 0.097         | 0.097          | 0.097          | 0.088          | 0.099          | 0.102          | 0.097          | 0.093          | 0.091          | 0.094         |
| PM <sub>2.5</sub> * | 98th percentile                                            | NA           | 1               | ND            | ND             | ND             | ND             | ND             | ND             | 28.5           | 34.4           | 34.4           | 37.1          |
|                     | Weighted annual mean                                       | NA           | 1               | ND            | ND             | ND             | ND             | ND             | ND             | 12.47          | 13.2           | 13.05          | 12.38         |
|                     | UPERIOR, MN-WI                                             |              |                 |               |                |                |                |                |                |                |                |                |               |
| CO                  | 2nd max (daily-non-overlapping 8-h)                        | down         | 1               | 4.1           | 4.3            | 4.5            | 4.5            | 3.2            | 3.7            | 2.9            | 2.1            | 2.5            | 2.1           |
| PM <sub>10</sub> *  | 90th percentile                                            | ns           | 2<br>2          | 36            | 33.5           | 35<br>20.5     | 31<br>20.05    | 32.5<br>19.85  | 31<br>21.3     | 37<br>21.75    | 44<br>23.9     | 34.5<br>22.25  | 36.5<br>21.05 |
| PM <sub>2.5</sub> * | Weighted annual mean<br>98th percentile                    | ns<br>NA     | 2               | 21.4<br>ND    | 20.65<br>ND    | 20.5<br>ND     | 20.05<br>ND    | 19.65<br>ND    | 21.3<br>ND     | 21.75          | 25.9<br>25.2   | 22.25          | 23.25         |
| 2.5                 | Weighted annual mean                                       | NA           | 2               | ND            | ND             | ND             | ND             | ND             | ND             | 8.64           | 8.385          |                | 7.855         |
| DUTCHESS            | COUNTY, NY                                                 | 101          | 2               | ND            | ND             | ne             | nib            | ND             | ne             | 0.01           | 0.000          | 0.10           | 7.000         |
| Ozone               | 2nd highest daily max                                      | ns           | 1               | 0.139         | 0.117          | 0.115          | 0.109          | 0.111          | 0.108          | 0.12           | 0.105          | 0.109          | 0.152         |
| OZONO               | 4th highest daily max 8-h average                          | ns           | 1               | 0.099         | 0.087          | 0.093          | 0.089          | 0.089          | 0.089          | 0.093          | 0.079          | 0.091          | 0.111         |
| PM <sub>2.5</sub> * | 98th percentile                                            | NA           | 1               | ND            | ND             | ND             | ND             | ND             | ND             | ND             | 30.8           | 27.6           | 31.2          |
| 2.5                 | Weighted annual mean                                       | NA           | 1               | ND            | ND             | ND             | ND             | ND             | ND             | ND             | 11.55          | 11.17          | 10.74         |
| EL PASO, T          | X                                                          |              |                 |               |                |                |                |                |                |                |                |                |               |
|                     | Maximum quarterly value                                    | down         | 1               | 0.229         | 0.14           | 0.192          | 0.153          | 0.108          | 0.144          | 0.145          | 0.099          | 0.099          | 0.099         |
| CO                  | 2nd max (daily-non-overlapping 8-h)                        | down         | 1               | 10.6          | 7.6            | 7.5            | 9.1            | 7.2            | 8.3            | 5.7            | 7.3            | 5.8            | 4.8           |
| Ozone               | 2nd highest daily max                                      | ns           | 1               | 0.098         | 0.115          | 0.126          | 0.123          | 0.114          | 0.122          | 0.108          | 0.114          | 0.116          | 0.127         |
|                     | 4th highest daily max 8-h average                          | ns           | 1               | 0.059         | 0.075          | 0.084          | 0.078          | 0.071          | 0.088          | 0.071          | 0.08           | 0.075          | 0.089         |
| PM <sub>2.5</sub> * | 98th percentile                                            | NA           | 1               | ND            | ND             | ND             | ND             | ND             | ND             | 20.7           | 23             | 23.8           | 29.5          |
|                     | Weighted annual mean                                       | NA           | 1               | ND            | ND             | ND             | ND             | ND             | ND             | 9.24           | 9.18           | 9.34           | 10.61         |
|                     | SOSHEN, IN                                                 |              |                 |               |                |                |                |                |                |                |                |                |               |
| PM <sub>2.5</sub> * | 98th percentile                                            | NA           | 1               | ND            | ND             | ND             | ND             | ND             | ND             | ND             | 38.6           | 37.5           | 35.2          |
|                     | Weighted annual mean                                       | NA           | 1               | ND            | ND             | ND             | ND             | ND             | ND             | ND             | 15.67          | 15.7           | 14.98         |
| Elmira, n'          |                                                            |              |                 | 0.010         | 0.000          | 0.014          | 0.01/          | 0.045          | 0.014          | 0.045          | 0.010          | 0.045          | 0.010         |
| SO <sub>2</sub>     | 2nd daily max                                              | ns           | 1               | 0.019         | 0.023          | 0.014          | 0.016          | 0.015          | 0.011          | 0.015          | 0.012          |                | 0.013         |
| Ozone               | Annual mean                                                | ns           | 1               | 0.005<br>0.09 | 0.004<br>0.084 | 0.004<br>0.088 | 0.004<br>0.088 | 0.003<br>0.081 | 0.003<br>0.094 | 0.003<br>0.092 | 0.003<br>0.089 | 0.004<br>0.094 | 0.004 0.098   |
| OZOHE               | 2nd highest daily max<br>4th highest daily max 8-h average | up<br>ns     | 1               | 0.09          | 0.084          | 0.088          | 0.088          | 0.081          | 0.094          | 0.092          | 0.089          | 0.094          | 0.098         |
| ENID, OK            | the highest daily max of have age                          | 115          |                 | 0.00          | 0.074          | 0.070          | 0.072          | 0.075          | 0.002          | 0.002          | 0.075          | 0.002          | 0.007         |
| PM <sub>2.5</sub> * | 98th percentile                                            | NA           | 1               | ND            | ND             | ND             | ND             | ND             | ND             | ND             | 24.8           | 28.7           | 27.8          |
| 2.5                 | Weighted annual mean                                       | NA           | 1               | ND            | ND             | ND             | ND             | ND             | ND             | ND             | 10.24          | 10.73          | 9.7           |
| ERIE, PA            |                                                            |              |                 |               |                |                |                |                |                |                |                |                |               |
| SO <sub>2</sub>     | 2nd daily max                                              | down         | 1               | 0.072         | 0.076          | 0.05           | 0.066          | 0.035          | 0.068          | 0.043          | 0.041          | 0.043          | 0.037         |
| 002                 | Annual mean                                                | ns           | 1               | 0.011         | 0.01           | 0.009          | 0.011          | 0.009          | 0.01           | 0.01           | 0.008          | 0.01           | 0.011         |
| NO <sub>2</sub>     | Annual mean                                                | down         | 1               | 0.014         | 0.015          | 0.015          | 0.015          | 0.015          | 0.014          | 0.015          | 0.012          |                | 0.012         |
| Ozóne               | 2nd highest daily max                                      | ns           | 1               | 0.107         | 0.101          | 0.105          | 0.1            | 0.103          | 0.122          | 0.112          | 0.095          | 0.104          | 0.114         |
|                     | 4th highest daily max 8-h average                          | ns           | 1               | 0.081         | 0.09           | 0.088          | 0.083          | 0.087          | 0.098          | 0.096          | 0.078          | 0.089          | 0.098         |
| PM <sub>2.5</sub> * | 98th percentile                                            | NA           | 1               | ND            | ND             | ND             | ND             | ND             | ND             | ND             | 28.2           | 37.5           | 42.9          |
|                     | Weighted annual mean                                       | NA           | 1               | ND            | ND             | ND             | ND             | ND             | ND             | ND             | 13.99          | 13.83          | 13.21         |
|                     | PRINGFIELD, OR                                             |              |                 |               |                |                |                |                |                |                |                |                |               |
| CO                  | 2nd max (daily-nonoverlapping 8-h)                         | down         | 1               | 5.9           | 6.4            | 5.7            | 5.7            | 5.2            | 4.6            | 5              | 4.3            | 4.1            | 4.2           |
| Ozone               | 2nd highest daily max                                      | ns           | 1               | 0.072         | 0.082          | 0.077          | 0.111          | 0.073          | 0.089          | 0.068          | 0.056          | 0.077          | 0.08          |
| DM *                | 4th highest daily max 8-h average                          | ns           | 1               | 0.054         | 0.068          | 0.06           | 0.084          | 0.056          | 0.073          | 0.056          | 0.047          | 0.061          | 0.067         |
| PM <sub>10</sub> *  | 90th percentile<br>Weighted annual mean                    | down<br>down | 2<br>2          | 72<br>27.9    | 53<br>23.65    | 49<br>21.5     | 37<br>18.6     | 41.5<br>20.1   | 36<br>17       | 36.5<br>17.9   | 36.5<br>18.4   | 40<br>18.35    | 36.5<br>19.4  |
| PM <sub>2.5</sub> * | 98th percentile                                            | NA           | 2               | ND            | 23.05<br>ND    | ND             | ND             | ND             | ND             | 46.65          | 45.75          | 46.9           | 50.8          |
| 2.5                 | Weighted annual mean                                       | NA           | 2               | ND            | ND             | ND             | ND             | ND             | ND             | 10.65          |                |                | 11.88         |
| VANSVILL            | E-HENDERSON, IN-KY                                         |              | _               |               |                |                |                |                |                |                |                |                |               |
| CO                  | 2nd max (daily-nonoverlapping 8-h)                         | down         | 2               | 4.35          | 4.05           | 3.2            | 3.05           | 3.65           | 3.05           | 2.95           | 2.3            | 2.4            | 2.3           |
| SO <sub>2</sub>     | 2nd daily max                                              | ns           | 3               | 0.06          | 0.055          | 0.051          | 0.064          | 0.062          |                | 0.074          | 0.062          | 0.05           | 0.051         |
| - 2                 | Annual mean                                                | ns           | 3               | 0.014         | 0.012          | 0.01           | 0.01           | 0.01           | 0.012          | 0.012          | 0.011          | 0.01           | 0.01          |
| NO <sub>2</sub>     | Annual mean                                                | ns           | 1               | 0.017         | 0.018          | 0.017          | 0.017          | 0.016          | 0.018          | 0.016          | 0.016          | 0.016          | 0.016         |
| Ozóne               | 2nd highest daily max                                      | ns           | 1               | 0.094         | 0.096          | 0.108          | 0.092          | 0.086          | 0.103          | 0.109          | 0.092          | 0.09           | 0.09          |
|                     | 4th highest daily max 8-h average                          | ns           | 1               | 0.071         |                | 0.089          | 0.081          | 0.075          | 0.078          | 0.081          |                | 0.072          |               |
| PM <sub>10</sub> *  | 90th percentile                                            | down         | 3               | 50            |                | 51.333         |                |                | 44.333         | 43.333         |                |                |               |
|                     | Weighted annual mean                                       | down         | 3               | 29.733        | 31.333         |                |                | 25.667         |                | 25.167         |                | 24.733         |               |
| PM <sub>2.5</sub> * | 98th percentile                                            | NA           | 1               | ND            | ND             | ND             | ND             | ND             | ND             | ND             | 37.3           | 36.4           | 46.7          |
|                     | Weighted annual mean                                       | NA           | 1               | ND            | ND             | ND             | ND             | ND             | ND             | ND             | 16.08          | 15.57          | 15.36         |

| Metropolitan         | Statistical Area                   | Trend    | #Trend<br>Sites | 1993     | 1994     | 1995     | 1996     | 1997     | 1998     | 1999          | 2000  | 2001   | 2002           |
|----------------------|------------------------------------|----------|-----------------|----------|----------|----------|----------|----------|----------|---------------|-------|--------|----------------|
|                      | RHEAD, ND-MN                       |          |                 |          |          |          |          |          |          |               |       |        |                |
|                      | 98th percentile                    | NA       | 1               | ND       | ND       | ND       | ND       | ND       | ND       | 26.7          | 26.4  | 23.9   | 21             |
|                      | Weighted annual mean               | NA       | 1               | ND       | ND       | ND       | ND       | ND       | ND       | 9.39          | 7.71  | 8.43   | 7.35           |
| FAYETTEVILL          |                                    | N/ C     |                 | ND       | ND       | ND       | ND       | ND       | ND       | 7.57          | 7.71  | 0.45   | 7.55           |
|                      | 2nd highest daily max              | ns       | 1               | 0.115    | 0.098    | 0.1      | 0.099    | 0.098    | 0.112    | 0.12          | 0.101 | 0.108  | 0.113          |
|                      | 4th highest daily max 8-h average  | ns       | 1               | 0.093    | 0.098    | 0.081    | 0.033    | 0.098    | 0.093    | 0.12          | 0.086 | 0.108  | 0.094          |
|                      | 90th percentile                    | ns       | 1               | 41       | 40       | 35       | 39       | 41       | 41       | 39            | 39    | 39     | 39             |
|                      | Weighted annual mean               | ns       | 1               | 27.3     | 25.1     | 23.3     | 25.3     | 24.8     | 26.5     | 24.4          | 28    | 28     | 28             |
|                      | 98th percentile                    | NA       | 1               | ND       | ND       | ND       | ND       | ND       | ND       | 33.5          | 33    | 27     | 30.6           |
| 2.5                  | Weighted annual mean               | NA       | 1               | ND       | ND       | ND       | ND       | ND       | ND       | 16.19         | 15.86 | 14.28  | 13.64          |
|                      | E-SPRINGDALE-ROGERS, AR            |          |                 |          |          |          |          |          |          |               | 10100 |        |                |
|                      | 98th percentile                    | NA       | 1               | ND            | 31.4  | 25     | 25.8           |
|                      | Weighted annual mean               | NA       | 1               | ND            | 12.5  | 11.56  | 10.76          |
|                      | LEOMINSTER, MA                     | N/ Y     |                 | ND            | 12.5  | 11.50  | 10.70          |
|                      | 98th percentile                    | NA       | 1               | ND       | ND       | ND       | ND       | ND       | ND       | 34.5          | 21.1  | 23.35  | 25.6           |
| F IVI <sub>2.5</sub> | •                                  | NA       | 1               | ND       | ND       | ND       | ND       | ND       | ND       | 9.39          | 9.79  | 9.595  | 25.0           |
| FLAGSTAFF,           | Weighted annual mean               | N/A      | I               | ND       | שמ       | ND       | ND       | ND       | ND       | 7.37          | 7.19  | 7.373  | 7.4            |
|                      |                                    |          | 1               | 0.07     | 0.001    | 0.075    | 0.000    | 0.07/    | 0.07/    | 0.007         | 0 000 | 0 074  | 0.000          |
|                      | 2nd highest daily max              | ns       | 1               | 0.07     | 0.081    | 0.075    | 0.082    | 0.076    | 0.076    | 0.086         | 0.082 | 0.074  | 0.085          |
|                      | 4th highest daily max 8-h average  | ns       | I               | 0.066    | 0.073    | 0.069    | 0.073    | 0.072    | 0.072    | 0.076         | 0.071 | 0.07   | 0.079          |
| FLINT, MI            | An income an anti-star             |          |                 | 0.047    | 0.014    | 0.01.    | 0.010    | 0.014    | 0.045    | 0.014         | 0.014 | 0.010  | 0.045          |
|                      | Maximum quarterly value            | ns       | 1               | 0.016    | 0.011    | 0.014    | 0.012    | 0.011    | 0.015    | 0.014         | 0.011 | 0.012  | 0.015          |
| 2                    | 2nd daily max                      | down     | 1               | 0.017    | 0.017    | 0.016    | 0.012    | 0.012    | 0.014    | 0.011         | 0.015 | 0.014  |                |
|                      | Annual mean                        | down     | 1               | 0.005    | 0.004    | 0.003    | 0.002    | 0.002    | 0.002    | 0.003         | 0.004 | 0.002  |                |
|                      | 2nd highest daily max              | ns       | 1               | 0.106    | 0.09     | 0.097    | 0.113    | 0.094    | 0.104    | 0.108         | 0.086 | 0.108  | 0.102          |
|                      | 4th highest daily max 8-h average  | ns       | 1               | 0.068    | 0.077    | 0.082    | 0.089    | 0.081    | 0.089    | 0.089         | 0.072 | 0.091  | 0.088          |
|                      | 90th percentile                    | ns       | 1               | 40       | 36       | 37       | 31       | 33       | 37       | 33            | 32    | 42     | 32             |
|                      | Weighted annual mean               | down     | 1               | 23.9     | 20.1     | 21.1     | 20.2     | 20.2     | 20.6     | 19            | 18.6  | 20     | 17.4           |
| Z.J .                | 98th percentile                    | NA       | 1               | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | 32.8<br>12.02 | 32.2  | 38     | 30.8<br>12.54  |
|                      | Weighted annual mean               | NA       | I               | ND       | ND       | ND       | ND       | ND       | ND       | 12.02         | 12.95 | 13.12  | 12.34          |
| FLORENCE, A          |                                    |          | 4               | 0.000    | 0.000    | 0.010    | 0.040    | 0.00     | 0.010    | 0.047         | 0.047 | 0.01/  | 0.040          |
| 2                    | 2nd daily max                      | down     | 1               | 0.022    | 0.022    | 0.018    | 0.019    | 0.02     | 0.019    | 0.017         | 0.017 |        | 0.013          |
|                      | Annual mean                        | down     | 1               | 0.004    | 0.003    | 0.003    | 0.003    | 0.003    | 0.003    | 0.003         | 0.003 | 0.003  | 0.002          |
| 2.5                  | 98th percentile                    | NA       | 1               | ND       | ND       | ND       | ND       | ND       | ND       | 35.6          | 32.4  | 28.7   | 33.5           |
|                      | Weighted annual mean               | NA       | 1               | ND       | ND       | ND       | ND       | ND       | ND       | 17.32         | 15.62 | 12.82  | 12.81          |
| FLORENCE, S          |                                    |          | 4               | ND       |          | ND       |          | ND       | ND       | 04 7          | 04.0  |        | 00 5           |
| 2.5                  | 98th percentile                    | NA       | 1               | ND       | ND       | ND       | ND       | ND       | ND       | 31.7          | 31.3  | 24.3   | 30.5           |
|                      | Weighted annual mean               | NA       | 1               | ND       | ND       | ND       | ND       | ND       | ND       | 14.37         | 14.4  | 13.11  | 12.11          |
|                      | IS-LOVELAND, CO                    |          |                 |          |          |          |          |          |          |               |       |        |                |
|                      | 2nd max (daily-nonoverlapping 8-h) | down     | 1               | 6.6      | 6        | 5.2      | 5.1      | 5.2      | 4.1      | 5.1           | 3.8   | 3      | 2.9            |
|                      | 2nd highest daily max              | ns       | 2               | 0.091    | 0.095    | 0.089    | 0.092    | 0.088    | 0.092    | 0.085         | 0.093 | 0.086  | 0.097          |
|                      | 4th highest daily max 8-h average  | ns       | 2               | 0.068    | 0.072    | 0.072    | 0.069    | 0.07     | 0.076    | 0.069         | 0.074 | 0.069  | 0.08           |
| 2.5                  | 98th percentile                    | NA       | 1               | ND            | 19.7  | 24.7   | 18             |
|                      | Weighted annual mean               | NA       | 1               | ND            | 8.3   | 8.63   | 7.73           |
| FORT LAUDE           |                                    |          |                 |          |          |          | o / =    |          |          |               |       |        |                |
|                      | 2nd max (daily-nonoverlapping 8-h) | down     | 2               | 4.45     | 4.65     | 5.15     | 3.65     | 3.7      | 2.8      | 4.05          | 3.2   | 3.55   | 3.2            |
|                      | 2nd daily max                      | ns       | 1               | 0.011    | 0.013    | 0.008    | 0.008    | 0.011    | 0.017    | 0.015         | 0.026 | 0.016  | 0.011          |
|                      | Annual mean                        | ns       | 1               | 0.002    | 0.002    | 0.002    | 0.002    | 0.002    | 0.003    | 0.003         | 0.003 |        | 0.002          |
| 2                    | Annual mean                        | ns       | 1               | 0.01     | 0.009    | 0.011    | 0.01     | 0.01     | 0.01     | 0.011         | 0.01  | 0.009  | 0.008          |
|                      | 2nd highest daily max              | ns       | 2               | 0.102    | 0.097    | 0.097    |          | 0.091    | 0.1      | 0.102         | 0.091 | 0.1    | 0.091          |
|                      | 4th highest daily max 8-h average  | ns       | 2               | 0.081    | 0.071    | 0.066    | 0.066    | 0.071    | 0.077    | 0.073         |       | 0.074  | 0.063          |
|                      | 90th percentile                    | ns       | 3               | 28.667   |          | 23.667   |          | 25.333   |          | 23            |       | 29.333 | 22             |
| DN1 * /              | Weighted annual mean               | ns<br>NA | 3               | 18.967   |          | 16.767   |          | 17.733   |          | 17.3          |       | 18.033 | 15.5           |
|                      | 98th percentile                    | NA<br>NA | 2<br>2          | ND<br>ND | ND       | ND       | ND       | ND<br>ND | ND       | 25.2          | 24.55 | 21.6   | 18.25<br>7.915 |
|                      | Weighted annual mean               | NA       | 2               | ND       | ND       | ND       | ND       | ND       | ND       | 9.23          | 9.41  | 8.485  | 7.915          |
|                      | S-CAPE CORAL, FL                   | NIA      | 4               |          |          |          |          |          |          | 01.0          | 245   | 21.0   | 1/ 4           |
|                      | 98th percentile                    | NA       | 1               | ND       | ND       | ND       | ND       | ND       | ND       | 21.2          | 24.5  | 21.9   | 16.4           |
|                      | Weighted annual mean               | NA       | 1               | ND       | ND       | ND       | ND       | ND       | ND       | 10.12         | 9.55  | 9.21   | 7.81           |
|                      | -PORT ST. LUCIE, FL                |          |                 |          |          |          |          |          |          |               |       |        |                |
|                      | 98th percentile                    | NA       | 1               | ND       | ND       | ND       | ND       | ND       | ND       | 18.7          | 23.4  | 21     | 16.9           |
|                      | Weighted annual mean               | NA       | 1               | ND       | ND       | ND       | ND       | ND       | ND       | 9.63          | 10.06 | 8.99   | 8.01           |
| FORT SMITH,          |                                    |          |                 |          |          |          |          |          |          |               |       |        |                |
|                      | 98th percentile                    | NA       | 1               | ND            | 27.3  | 29.5   | 26.2           |
| 2.0                  | Weighted annual mean               | NA       | 1               | ND            | 13.54 | 13.74  | 11.75          |

| Metropoli           | tan Statistical Area                                          | Trend        | #Trend<br>Sites | 1993           | 1994          | 1995           | 1996          | 1997         | 1998         | 1999          | 2000         | 2001        | 2002   |
|---------------------|---------------------------------------------------------------|--------------|-----------------|----------------|---------------|----------------|---------------|--------------|--------------|---------------|--------------|-------------|--------|
| FORT WAY            | νe, in                                                        |              |                 |                |               |                |               |              |              |               |              |             |        |
| CO                  | 2nd max (daily-nonoverlapping 8-h)                            | ns           | 1               | 4.7            | 4.7           | 4.7            | 2.7           | 6.3          | 3            | 3.3           | 3.9          | 2.6         | 3.3    |
| Ozone               | 2nd highest daily max                                         | ns           | 2               | 0.093          | 0.113         | 0.109          | 0.1           | 0.095        | 0.103        | 0.1           | 0.093        | 0.091       | 0.11   |
|                     | 4th highest daily max 8-h average                             | ns           | 2               | 0.081          | 0.094         | 0.094          | 0.091         | 0.087        | 0.089        | 0.089         | 0.086        | 0.078       | 0.095  |
| PM <sub>10</sub> *  | 90th percentile                                               | ns           | 1               | 36             | 43            | 44             | 28            | 28           | 39           | 31            | 32           | 33          | 34     |
|                     | Weighted annual mean                                          | ns           | 1               | 22.9           | 23.5          | 23.9           | 17.2          | 19.6         | 23.7         | 17            | 20.2         | 18          | 17.9   |
| PM <sub>2.5</sub> * | 98th percentile                                               | NA           | 1               | ND             | ND            | ND             | ND            | ND           | ND           | 35.5          | 33.6         | 32          | 32.1   |
|                     | Weighted annual mean                                          | NA           | 1               | ND             | ND            | ND             | ND            | ND           | ND           | 13.33         | 15.65        | 14.16       | 14.88  |
|                     | RTH-ARLINGTON, TX                                             |              |                 |                |               |                |               |              |              |               |              |             |        |
| CO                  | 2nd max (daily-nonoverlapping 8-h)                            | down         | 1               | 3.5            | 2.7           | 3.3            | 2.8           | 2.8          | 2.5          | 2.6           | 2.1          | 2           | 2.1    |
| NO <sub>2</sub>     | Annual mean                                                   | ns           | 1               | 0.013          | 0.017         | 0.017          | 0.015         | 0.016        | 0.013        | 0.017         | 0.012        | 0.012       |        |
| Ozone               | 2nd highest daily max                                         | ns           | 2               | 0.113          | 0.133         | 0.141          | 0.129         | 0.123        | 0.126        | 0.145         | 0.118        | 0.125       | 0.13   |
|                     | 4th highest daily max 8-h average                             | ns           | 2               | 0.093          | 0.101         | 0.104          | 0.094         | 0.092        | 0.099        | 0.102         | 0.094        | 0.098       | 0.101  |
| PM <sub>2.5</sub> * | 98th percentile                                               | NA           | 2<br>2          | ND<br>ND       | ND<br>ND      | ND<br>ND       | ND<br>ND      | ND<br>ND     | ND<br>ND     | 22.7<br>12.58 | 27.8         | 26.75       | 34.7   |
|                     | Weighted annual mean                                          | NA           | Z               | ND             | ND            | ND             | ND            | ND           | ND           | 12.00         | 12.36        | 12.10       | 12.275 |
| FRESNO, (           |                                                               | dours        | 1               | 0.005          | 0.00          | 0.015          | 0.000         | 0.011        | 0.010        | 0 000         | 0.01         | 0.01        | 0 000  |
| CO                  | Maximum quarterly value<br>2nd max (daily-nonoverlapping 8-h) | down<br>down | 1<br>4          | 0.025<br>4.175 | 0.02<br>4.925 | 0.015<br>4.225 | 0.008<br>4.15 | 0.011<br>3.5 | 0.013<br>3.5 | 0.008<br>3.4  | 0.01<br>3.35 | 0.01<br>3.1 | 0.009  |
| NO <sub>2</sub>     | Annual mean                                                   | down         | 4               | 0.021          | 4.925         | 0.02           | 0.019         | 0.018        | 0.018        | 0.021         | 0.018        |             |        |
| Ozone               | 2nd highest daily max                                         | ns           | 4               | 0.021          | 0.02          | 0.02           | 0.019         | 0.018        | 0.155        | 0.021         | 0.018        | 0.134       |        |
| OZUNE               | 4th highest daily max 8-h average                             | ns           | 4               | 0.14           | 0.127         |                | 0.107         | 0.120        | 0.133        | 0.129         |              | 0.104       |        |
| PM <sub>10</sub> *  | 90th percentile                                               | ns           | 3               | 91.667         |               | 83.333         |               | 81           | 62           | 96.333        |              | 78.333      |        |
| 10110               | Weighted annual mean                                          | ns           | 3               | 46.9           | 42.567        |                |               | 42.767       |              |               | 41.933       |             |        |
| PM <sub>2.5</sub> * | 98th percentile                                               | NA           | 2               | ND             | ND            | ND             | ND            | ND           | ND           | 89.6          | 85.75        | 74.75       | 64.1   |
| 2.5                 | Weighted annual mean                                          | NA           | 2               | ND             | ND            | ND             | ND            | ND           | ND           |               | 20.115       |             | 18.905 |
| GAINESVIL           |                                                               |              | -               |                |               |                |               |              |              | 20170         | 201110       |             |        |
| PM <sub>10</sub> *  | 90th percentile                                               | ns           | 1               | 30             | 33            | 27             | 23            | 32           | 29           | 29            | 31           | 29          | 29     |
| 10                  | Weighted annual mean                                          | ns           | 1               | 19.5           | 18.5          | 17.5           | 17.1          | 20.7         | 19.9         | 19            | 19.9         | 19.7        | 19.7   |
| PM <sub>2.5</sub> * | 98th percentile                                               | NA           | 2               | ND             | ND            | ND             | ND            | ND           | ND           | 25.9          | 26.5         | 23.25       | 24.55  |
| 2.5                 | Weighted annual mean                                          | NA           | 2               | ND             | ND            | ND             | ND            | ND           | ND           |               | 11.505       |             | 9.88   |
| GALVESTO            | N-TEXAS CITY, TX                                              |              |                 |                |               |                |               |              |              |               |              |             |        |
| SO <sub>2</sub>     | 2nd daily max                                                 | down         | 1               | 0.056          | 0.052         | 0.089          | 0.067         | 0.053        | 0.039        | 0.04          | 0.037        | 0.045       | 0.025  |
| 2                   | Annual mean                                                   | ns           | 1               | 0.005          | 0.006         | 0.006          | 0.014         | 0.006        | 0.004        | 0.007         | 0.004        | 0.005       |        |
| Ozone               | 2nd highest daily max                                         | ns           | 1               | 0.176          | 0.125         | 0.198          | 0.107         | 0.175        | 0.146        | 0.172         | 0.127        | 0.113       | 0.109  |
|                     | 4th highest daily max 8-h average                             | ns           | 1               | 0.114          | 0.088         | 0.14           | 0.08          | 0.097        | 0.095        | 0.108         | 0.09         | 0.076       | 0.083  |
| GARY, IN            |                                                               |              |                 |                |               |                |               |              |              |               |              |             |        |
| -                   | Maximum quarterly value                                       | ns           | 1               | 0.044          | 0.052         | 0.044          | 0.064         | 0.043        | 0.04         | 0.077         | 0.108        | 0.017       | 0.032  |
| CO                  | 2nd max (daily-nonoverlapping 8-h)                            | down         | 1               | 5              | 4.6           | 3.7            | 2.8           | 3.8          | 3.2          | 3.1           | 3.2          | 3.2         | 2.6    |
| SO <sub>2</sub>     | 2nd daily max                                                 | down         | 1               | 0.044          | 0.055         | 0.039          | 0.031         | 0.032        | 0.055        | 0.028         | 0.025        | 0.03        | 0.013  |
| -                   | Annual mean                                                   | down         | 1               | 0.008          | 0.008         | 0.008          | 0.007         | 0.008        | 0.009        | 0.007         | 0.006        | 0.006       | 0.004  |
| Ozone               | 2nd highest daily max                                         | ns           | 2               | 0.1            | 0.11          | 0.118          | 0.112         | 0.113        | 0.109        | 0.11          | 0.094        | 0.106       | 0.122  |
|                     | 4th highest daily max 8-h average                             | ns           | 2               | 0.083          | 0.088         | 0.097          | 0.094         | 0.093        | 0.085        | 0.095         | 0.081        | 0.087       |        |
| PM <sub>2.5</sub> * | 98th percentile                                               | NA           | 1               | ND             | ND            | ND             | ND            | ND           | ND           | 43.8          | 43.6         | 50.2        | 39.5   |
|                     | Weighted annual mean                                          | NA           | 1               | ND             | ND            | ND             | ND            | ND           | ND           | 15.87         | 17.38        | 18.11       | 16.43  |
| GOLDSBO             |                                                               |              |                 |                |               |                |               |              |              |               |              |             |        |
| PM <sub>2.5</sub> * | 98th percentile                                               | NA           | 1               | ND             | ND            | ND             | ND            | ND           | ND           | 40.6          | 34.4         | 29.2        | 28.8   |
|                     | Weighted annual mean                                          | NA           | 1               | ND             | ND            | ND             | ND            | ND           | ND           | 15.42         | 15.77        | 14.65       | 13.18  |
|                     | ORKS, ND-MN                                                   |              |                 |                | •             | • •-           |               | •            |              |               |              |             |        |
| PM <sub>2.5</sub> * | 98th percentile                                               | NA           | 1               | ND             | ND            | ND             | ND            | ND           | ND           | 26.3          | 24.6         | 22.5        | 22.5   |
|                     | Weighted annual mean                                          | NA           | 1               | ND             | ND            | ND             | ND            | ND           | ND           | 10.23         | 8.18         | 8.28        | 8.28   |
|                     | INCTION, CO                                                   |              |                 |                |               |                |               |              |              |               |              |             |        |
| CO                  | 2nd max (daily-nonoverlapping 8-h)                            | down         | 1               | 6.1            | 6             | 5.4            | 5.8           | 5.4          | 5.3          | 4.7           | 4.1          | 3.7         | 3.6    |
| PM <sub>10</sub> *  | 90th percentile                                               | ns           | 1               | 31             | 32            | 31             | 30            | 28           | 29           | 31            | 37           | 35          | 39     |
|                     | Weighted annual mean                                          | ns           | 1               | 21.5           | 21.4          | 21.7           | 20.6          | 19.6         | 19.8         | 20            | 23.6         | 23.6        | 26.5   |
| PM <sub>2.5</sub> * | 98th percentile                                               | NA           | 1               | ND             | ND            | ND             | ND            | ND           | ND           | 18.3          | 18.4         | 20.7        | 18.2   |
|                     | Weighted annual mean                                          | NA           | 1               | ND             | ND            | ND             | ND            | ND           | ND           | 6.93          | 7.21         | 7.86        | 8.1    |

| Metropolita         | an Statistical Area                | Trend | #Trend<br>Sites | 1993  | 1994  | 1995   | 1996     | 1997    | 1998  | 1999   | 2000   | 2001   | 2002   |
|---------------------|------------------------------------|-------|-----------------|-------|-------|--------|----------|---------|-------|--------|--------|--------|--------|
| GRAND RA            | PIDS-MUSKEGON-HOLLAND, MI          |       |                 |       |       |        |          |         |       |        |        |        |        |
| CO                  | 2nd max (daily-nonoverlapping 8-h) | ns    | 1               | 3.2   | 4     | 4.6    | 3.3      | 2.4     | 2.9   | 3.5    | 2.6    | 3.1    | 2.8    |
| SO <sub>2</sub>     | 2nd daily max                      | down  | 1               | 0.012 | 0.013 | 0.011  | 0.011    | 0.008   | 0.008 | 0.006  | 0.01   | 0.007  |        |
|                     | Annual mean                        | down  | 1               | 0.003 | 0.003 | 0.002  | 0.002    | 0.002   | 0.002 | 0.001  | 0.002  | 0.002  |        |
| Ozone               | 2nd highest daily max              | ns    | 4               | 0.103 | 0.113 | 0.129  | 0.122    | 0.107   | 0.109 | 0.111  | 0.112  | 0.112  |        |
|                     | 4th highest daily max 8-h average  | ns    | 4               | 0.083 | 0.088 | 0.101  | 0.09     | 0.086   | 0.088 | 0.093  | 0.076  | 0.089  |        |
| PM <sub>10</sub> *  | 90th percentile                    | down  | 2               | 39    | 46    | 40     | 35.5     | 32      | 38.5  | 36     | 31     | 36.5   | 34     |
|                     | Weighted annual mean               | down  | 2               | 21.85 | 26.9  | 20.95  | 20.25    | 18.65   | 21.25 | 18.9   | 18.65  |        | 18.45  |
| PM <sub>2.5</sub> * | 98th percentile                    | NA    | 3               | ND    | ND    | ND     | ND       | ND      | ND    | 36.733 |        | 37     | 36.2   |
|                     | Weighted annual mean               | NA    | 3               | ND    | ND    | ND     | ND       | ND      | ND    | 12.977 | 12.917 | 13.693 | 13.113 |
| GREAT FAL           | LS, MT                             |       |                 |       |       |        |          |         |       |        |        |        |        |
| PM <sub>2.5</sub> * | 98th percentile                    | NA    | 1               | ND    | ND    | ND     | ND       | ND      | ND    | ND     | 23     | 17.3   | 17.6   |
|                     | Weighted annual mean               | NA    | 1               | ND    | ND    | ND     | ND       | ND      | ND    | ND     | 6.13   | 5.39   | 5.25   |
| GREELEY,            | CO                                 |       |                 |       |       |        |          |         |       |        |        |        |        |
| CO                  | 2nd max (daily-nonoverlapping 8-h) | down  | 1               | 5.8   | 5.2   | 5.3    | 7        | 4.8     | 4.4   | 3.4    | 3.8    | 3.7    | 3.7    |
| Ozone               | 2nd highest daily max              | ns    | 1               | 0.087 | 0.087 | 0.093  | 0.097    | 0.095   | 0.102 | 0.092  | 0.093  | 0.105  | 0.064  |
|                     | 4th highest daily max 8-h average  | ns    | 1               | 0.063 | 0.071 | 0.072  | 0.07     | 0.069   | 0.075 | 0.069  | 0.069  | 0.074  | 0.057  |
| PM <sub>10</sub> *  | 90th percentile                    | ns    | 1               | 40    | 37    | 34     | 30       | 30      | 30    | 29     | 34     | 33     | 34     |
|                     | Weighted annual mean               | ns    | 1               | 22.6  | 23.1  | 19.9   | 17.7     | 17.8    | 16.4  | 17.5   | 20.5   | 20.8   | 21     |
| PM <sub>2.5</sub> * | 98th percentile                    | NA    | 1               | ND    | ND    | ND     | ND       | ND      | ND    | ND     | 20.4   | 35.7   | 25.9   |
|                     | Weighted annual mean               | NA    | 1               | ND    | ND    | ND     | ND       | ND      | ND    | ND     | 8.93   | 10.61  | 9.22   |
| <b>GREEN BAY</b>    | (, WI                              |       |                 |       |       |        |          |         |       |        |        |        |        |
| SO <sub>2</sub>     | 2nd daily max                      | ns    | 1               | 0.018 | 0.015 | 0.017  | 0.011    | 0.017   | 0.011 | 0.011  | 0.016  | 0.013  | 0.013  |
| 2                   | Annual mean                        | down  | 1               | 0.003 | 0.003 | 0.004  | 0.003    | 0.003   | 0.003 | 0.003  | 0.004  | 0.003  | 0.002  |
| Ozone               | 2nd highest daily max              | ns    | 1               | 0.085 | 0.085 | 0.112  | 0.105    | 0.091   | 0.098 | 0.097  | 0.09   | 0.107  | 0.094  |
|                     | 4th highest daily max 8-h average  | ns    | 1               | 0.069 | 0.069 | 0.083  | 0.091    | 0.073   | 0.077 | 0.085  | 0.071  | 0.088  | 0.084  |
| PM <sub>2.5</sub> * | 98th percentile                    | NA    | 2               | ND    | ND    | ND     | ND       | ND      | ND    | 33.4   | 32.1   | 33.85  | 28.45  |
| 2.5                 | Weighted annual mean               | NA    | 2               | ND    | ND    | ND     | ND       | ND      | ND    | 10.81  | 10.96  | 11.35  | 10.75  |
| GREENSBO            | RO-WINSTON-SALEM-HIGH POINT, N     | IC    |                 |       |       |        |          |         |       |        |        |        |        |
| SO <sub>2</sub>     | 2nd daily max                      | ns    | 1               | 0.022 | 0.021 | 0.025  | 0.026    | 0.023   | 0.023 | 0.02   | 0.019  | 0.016  | 0.024  |
| 2                   | Annual mean                        | down  | 1               | 0.006 | 0.007 | 0.007  | 0.007    | 0.007   | 0.006 | 0.005  | 0.005  | 0.005  | 0.005  |
| NO <sub>2</sub>     | Annual mean                        | down  | 1               | 0.017 | 0.017 | 0.016  | 0.016    | 0.017   | 0.017 | 0.016  | 0.016  | 0.016  | 0.014  |
| Ozóne               | 2nd highest daily max              | ns    | 2               | 0.112 | 0.104 | 0.114  | 0.106    | 0.11    | 0.117 | 0.112  | 0.11   | 0.109  | 0.124  |
|                     | 4th highest daily max 8-h average  | up    | 2               | 0.089 | 0.084 | 0.09   | 0.082    | 0.089   | 0.099 | 0.098  | 0.09   | 0.09   | 0.102  |
| PM <sub>10</sub> *  | 90th percentile                    | ns    | 2               | 40.5  | 35.5  | 37.5   | 37.5     | 38      | 41    | 38.5   | 36.5   | 36.5   | 34.5   |
|                     | Weighted annual mean               | down  | 2               | 24.8  | 23.95 | 25.25  | 24.65    | 24.2    | 25.2  | 23.9   | 22.3   | 22.7   | 21.95  |
| PM <sub>2.5</sub> * | 98th percentile                    | NA    | 3               | ND    | ND    | ND     | ND       | ND      | ND    | 36.8   | 35.633 | 35.267 | 32.533 |
| 2.0                 | Weighted annual mean               | NA    | 3               | ND    | ND    | ND     | ND       | ND      | ND    | 16.897 | 17.04  | 15.667 | 14.88  |
| GREENVILL           | LE, NC                             |       |                 |       |       |        |          |         |       |        |        |        |        |
| Ozone               | 2nd highest daily max              | ns    | 1               | 0.108 | 0.086 | 0.098  | 0.097    | 0.122   | 0.109 | 0.109  | 0.109  | 0.091  | 0.106  |
|                     | 4th highest daily max 8-h average  | ns    | 1               | 0.091 | 0.074 | 0.082  | 0.086    | 0.097   | 0.089 | 0.093  | 0.082  | 0.077  | 0.091  |
| PM <sub>2.5</sub> * | 98th percentile                    | NA    | 1               | ND    | ND    | ND     | ND       | ND      | ND    | ND     | 30.5   | 27.8   | 30.6   |
| 2.5                 | Weighted annual mean               | NA    | 1               | ND    | ND    | ND     | ND       | ND      | ND    | ND     | 13.92  | 12.52  | 12.28  |
| GREENVILI           | LE-SPARTANBURG-ANDERSON, SC M      | S     |                 |       |       |        |          |         |       |        |        |        |        |
|                     | Maximum quarterly value            | ns    | 1               | 0.02  | 0.018 | 0.012  | 0.011    | 0.01    | 0.011 | 0.012  | 0.021  | 0.01   | 0.01   |
| CO                  | 2nd max (daily-nonoverlapping 8-h) | down  | 1               | 5.4   | 5.5   | 5.3    | 4.6      | 5.6     | 4.3   | 4.8    | 3.7    | 3.4    | 3.3    |
| SO <sub>2</sub>     | 2nd daily max                      | ns    | 1               | 0.012 | 0.016 | 0.007  | 0.012    | 0.014   | 0.015 | 0.009  | 0.011  | 0.013  |        |
|                     | Annual mean                        | up    | 1               | 0.003 | 0.003 | 0.001  |          | 0.003   | 0.003 | 0.003  | 0.003  |        | 0.003  |
| NO <sub>2</sub>     | Annual mean                        | down  | 1               | 0.018 | 0.018 | 0.017  | 0.016    | 0.017   | 0.017 | 0.017  | 0.016  | 0.015  |        |
| Ozone               | 2nd highest daily max              | ns    | 2               | 0.116 | 0.101 | 0.1170 | .103 0.1 | 030.118 | 0.12  | 0.107  | 0.104  | 0.112  |        |
|                     | 4th highest daily max 8-h average  | up    | 2               | 0.085 | 0.085 | 0.09   | 0.086    | 0.087   | 0.099 | 0.1    | 0.087  | 0.089  | 0.093  |
| PM <sub>10</sub> *  | 90th percentile                    | down  | 2               | 41    | 42.5  | 45.5   | 46.5     | 38.5    | 39.5  | 40.5   | 38.5   | 35.5   | 35     |
| 10                  | Weighted annual mean               | down  | 2               | 25.95 | 26.4  | 30.6   | 31.3     | 23.5    | 25    | 25.5   | 23.95  |        | 21.15  |
|                     | 8                                  |       |                 |       |       |        |          |         |       |        |        |        |        |
| HAGERSTO            | WN. MD                             |       |                 |       |       |        |          |         |       |        |        |        |        |
| HAGERSTO            | 98th percentile                    | NA    | 1               | ND    | ND    | ND     | ND       | ND      | ND    | ND     | 39.9   | 41.6   | 42.7   |

| Metropolita         | n Statistical Area                      | Trend      | #Trend<br>Sites | 1993         | 1994          | 1995       | 1996        | 1997         | 1998     | 1999          | 2000       | 2001        | 2002       |
|---------------------|-----------------------------------------|------------|-----------------|--------------|---------------|------------|-------------|--------------|----------|---------------|------------|-------------|------------|
| HAMILTON-           | MIDDLETOWN, OH                          |            |                 |              |               |            |             |              |          |               |            |             |            |
| SO <sub>2</sub>     | 2nd daily max                           | ns         | 1               | 0.042        | 0.046         | 0.02       | 0.026       | 0.035        | 0.022    | 0.021         | 0.023      | 0.027       | 0.034      |
| 2                   | Annual mean                             | ns         | 1               | 0.008        | 0.008         | 0.005      | 0.006       | 0.006        | 0.006    | 0.007         | 0.006      | 0.006       | 0.006      |
| Ozone               | 2nd highest daily max                   | ns         | 1               | 0.121        | 0.103         | 0.121      | 0.107       | 0.104        | 0.109    | 0.117         | 0.095      | 0.107       | 0.115      |
|                     | 4th highest daily max 8-h average       | ns         | 1               | 0.086        | 0.087         | 0.089      | 0.092       | 0.088        | 0.089    | 0.096         | 0.082      | 0.083       | 0.1        |
| PM <sub>10</sub> *  | 90th percentile                         | down       | 3               | 62.667       |               | 57.333     | 43          |              | 53.667   | 48            | 51         |             | 39.333     |
|                     | Weighted annual mean                    | down       | 3               | 31.567       | 30.667        |            |             | 30.933       |          |               | 29.867     |             |            |
| PM <sub>2.5</sub> * | 98th percentile                         | NA         | 1               | ND           | ND            | ND         | ND          | ND           | ND       | 37            | 38.1       | 41.7        | 40.7       |
|                     | Weighted annual mean                    | NA         | 1               | ND           | ND            | ND         | ND          | ND           | ND       | 18.82         | 16.96      | 16.43       | 16.83      |
|                     | RG-LEBANON-CARLISLE, PA                 |            |                 |              |               |            |             |              |          |               |            |             |            |
| SO <sub>2</sub>     | 2nd daily max                           | down       | 1               | 0.025        | 0.04          | 0.02       | 0.022       | 0.022        | 0.021    | 0.021         | 0.024      | 0.015       | 0.013      |
|                     | Annual mean                             | down       | 1               | 0.006        | 0.007         | 0.005      | 0.006       | 0.007        | 0.006    | 0.005         | 0.005      | 0.005       |            |
| NO <sub>2</sub>     | Annual mean                             | down       | 1               | 0.015        | 0.022         | 0.02       | 0.021       | 0.019        | 0.019    | 0.018         | 0.017      | 0.018       | 0.016      |
| Ozone               | 2nd highest daily max                   | ns         | 1               | 0.118        | 0.118         | 0.099      | 0.096       | 0.112        | 0.116    | 0.114         | 0.101      | 0.099       | 0.126      |
|                     | 4th highest daily max 8-h average       | ns         | 1               | 0.095        | 0.091         | 0.084      | 0.078       | 0.084        | 0.097    | 0.095         | 0.079      | 0.086       | 0.098      |
| PM <sub>10</sub> *  | 90th percentile                         | down       | 1               | 45           | 40            | 37         | 38          | 37           | 35       | 34            | 33         | 39          | 35         |
| D14 *               | Weighted annual mean                    | down       | 1               | 27.5         | 23.6          | 21.7       | 23.4        | 22.2         | 20.4     | 20.3          | 20.2       | 21.9        | 19.6       |
| PM <sub>2.5</sub> * | 98th percentile                         | NA         | 1               | ND           | ND            | ND         | ND          | ND           | ND       | 39.7          | 45.8       | 47.7        | 42.7       |
|                     | Weighted annual mean                    | NA         | 1               | ND           | ND            | ND         | ND          | ND           | ND       | 14.39         | 15.69      | 16.5        | 14.5       |
| HARTFORD            |                                         |            |                 |              |               |            |             |              |          |               |            |             |            |
| CO                  | 2nd max (daily-nonoverlapping 8-h)      | down       | 1               | 7.2          | 7.9           | 7          | 6.45        | 5.9          | 7.1      | 5.5           | 7.3        | 4.5         | 5.1        |
| SO <sub>2</sub>     | 2nd daily max                           | down       | 1               | 0.023        | 0.031         | 0.023      | 0.022       | 0.025        | 0.019    | 0.019         | 0.021      | 0.023       | 0.018      |
|                     | Annual mean                             | down       | 1               | 0.006        | 0.007         | 0.005      | 0.006       | 0.005        | 0.005    | 0.004         | 0.004      | 0.005       | 0.004      |
| NO <sub>2</sub>     | Annual mean                             | ns         | 1               | 0.018        | 0.02          | 0.017      | 0.016       | 0.018        | 0.02     | 0.018         | 0.017      | 0.02        | 0.017      |
| Ozone               | 2nd highest daily max                   | ns         | 3               | 0.146        | 0.133         | 0.134      | 0.098       | 0.143        | 0.12     | 0.138         | 0.106      | 0.137       | 0.14       |
| D14 *               | 4th highest daily max 8-h average       | ns         | 3               | 0.1          | 0.099         | 0.097      | 0.082       | 0.099        | 0.09     | 0.097         | 0.082      | 0.099       | 0.104      |
| PM <sub>10</sub> *  | 90th percentile                         | ns         | 1               | 22           | 25            | 19         | 23          | 27           | 22       | 23            | 22         | 20          | 20         |
| DM *                | Weighted annual mean                    | down       | 1               | 12.9         | 14.3          | 12.1       | 12.4        | 13.8         | 13.7     | 11.9          | 11.3       | 10.8        | 10.5       |
| PM <sub>2.5</sub> * | 98th percentile                         | NA         | 1               | ND           | ND            | ND         | ND          | ND           | ND       | 29.5          | 32.3       | 32.8        | 31.5       |
|                     | Weighted annual mean                    | NA         | 1               | ND           | ND            | ND         | ND          | ND           | ND       | 10.79         | 10.67      | 12.27       | 11.28      |
| HATTIESBUI          | -                                       |            | 4               | ND           | ND            | ND         |             | ND           | ND       |               | <u> </u>   |             | 04 5       |
| PM <sub>2.5</sub> * | 98th percentile                         | NA         | 1               | ND           | ND            | ND         | ND          | ND           | ND       | ND            | 29.6       | 30          | 31.5       |
|                     | Weighted annual mean                    | NA         | 1               | ND           | ND            | ND         | ND          | ND           | ND       | ND            | 14.93      | 13.56       | 12.78      |
|                     | ORGANTON-LENOIR, NC                     |            |                 |              |               |            |             |              |          |               |            |             |            |
| Ozone               | 2nd highest daily max                   | up         | 1               | 0.092        | 0.092         | 0.093      | 0.094       | 0.099        | 0.133    | 0.106         | 0.107      | 0.099       | 0.111      |
| D14 *               | 4th highest daily max 8-h average       | up         | 1               | 0.075        | 0.075         | 0.077      | 0.078       | 0.08         | 0.096    | 0.082         | 0.091      | 0.088       | 0.095      |
| PM <sub>10</sub> *  | 90th percentile                         | ns         | 1               | 44           | 39            | 36         | 37          | 37           | 37       | 43            | 33         | 33          | 37         |
| DM *                | Weighted annual mean                    | down       | 1               | 26.4         | 26.3          | 23.2       | 24.1        | 23.7         | 23.1     | 25            | 22         | 21          | 22         |
| PM <sub>2.5</sub> * | 98th percentile                         | NA         | 1               | ND           | ND            | ND         | ND          | ND           | ND       | 34            | 34.2       | 32          | 33.5       |
|                     | Weighted annual mean                    | NA         | 1               | ND           | ND            | ND         | ND          | ND           | ND       | 17.43         | 17.35      | 15.98       | 15.16      |
| HONOLULU            |                                         |            |                 |              |               |            |             |              |          |               |            |             |            |
| CO                  | 2nd max (daily-nonoverlapping 8-h)      | down       | 2               | 2            | 1.8           | 1.85       | 1.9         | 1.7          | 1.45     | 1.25          | 1.3        | 1.15        | 1          |
| SO <sub>2</sub>     | 2nd daily max                           | down       | 2               | 0.011        | 0.007         | 0.004      | 0.008       | 0.004        | 0.008    | 0.003         | 0.005      | 0.004       | 0.003      |
| NO                  | Annual mean                             | ns         | 2               | 0.002        | 0.001         | 0.001      | 0.002       | 0.002        | 0.002    | 0.001         | 0.001      | 0.001       | 0.001      |
| NO <sub>2</sub>     | Annual mean                             | ns         | 1               | 0.004        | 0.004         | 0.003      | 0.003       | 0.003        | 0.003    | 0.003         | 0.004      | 0.004       | 0.004      |
| Ozone               | 2nd highest daily max                   | ns         | 1               | 0.055        | 0.055         | 0.056      | 0.047       | 0.053        | 0.056    | 0.054         | 0.048      | 0.051       |            |
| DM *                | 4th highest daily max 8-h average       | down       | 1               | 0.049        | 0.052         | 0.051      | 0.041       | 0.047        | 0.049    | 0.048         | 0.044      | 0.042       |            |
| PM <sub>10</sub> *  | 90th percentile<br>Weighted annual mean | ns<br>down | 2<br>2          | 24.5<br>17.7 | 22.5<br>16.25 | 21<br>16.1 | 23<br>17.05 | 21.5<br>16.1 | 23<br>16 | 18.5<br>13.95 | 23<br>15.6 | 24<br>16.05 | 24<br>15.8 |
|                     |                                         | uowii      | 2               | 17.7         | 10.25         | 10.1       | 17.05       | 10.1         | 10       | 13.75         | 15.0       | 10.05       | 15.0       |
| HOUMA, LA           |                                         | N10        | 1               |              |               |            |             |              |          |               | 20.7       | 24.2        | 17.0       |
| PM <sub>2.5</sub> * | 98th percentile                         | NA         | 1<br>1          | ND<br>ND     | ND            | ND<br>ND   | ND          | ND           | ND       | ND            | 28.7       | 26.2        | 17.8       |
|                     | Weighted annual mean                    | NA         | I               | ND           | ND            | ND         | ND          | ND           | ND       | ND            | 12.38      | 10.89       | 9.33       |
| HOUSTON,            |                                         |            | 0               | 4 75         | 4.45          |            | 4.05        | 0.45         | 0.45     | 0.05          |            | 0.05        |            |
| C0                  | 2nd max (daily-nonoverlapping 8-h)      | down       | 2               | 4.75         | 4.15          | 3.8        | 4.85        | 3.45         | 3.45     | 3.35          | 3.2        | 3.35        | 2.8        |
| SO <sub>2</sub>     | 2nd daily max                           | down       | 2               | 0.023        | 0.02          | 0.02       | 0.024       | 0.018        | 0.019    | 0.016         | 0.021      | 0.017       |            |
| NO                  | Annual mean                             | down       | 2               | 0.005        | 0.005         | 0.004      | 0.004       | 0.004        | 0.004    | 0.004         | 0.004      |             | 0.003      |
| NO <sub>2</sub>     | Annual mean                             | ns         | 2               | 0.016        | 0.017         | 0.019      | 0.019       | 0.018        | 0.016    | 0.018         | 0.016      | 0.017       |            |
| Ozone               | 2nd highest daily max                   | ns         | 2               | 0.166        | 0.154         | 0.173      | 0.154       | 0.203        | 0.185    | 0.144         | 0.161      | 0.139       |            |
|                     | 4th highest daily max 8-h average       | ns         | 2               | 0.09         | 0.099         | 0.114      | 0.113       | 0.113        | 0.119    | 0.102         | 0.106      | 0.097       |            |
| PM <sub>10</sub> *  | 90th percentile                         | ns         | 2               | 56           | 62            | 59.5       | 46.5        | 59.5         | 75       | 57.5          | 57         | 48          | 47         |
|                     | Weighted annual mean                    | ns         | 2               | 34.6         | 37.6          | 33.85      | 30.5        | 34.65        | 40.25    | 35.6          | 35.4       | 30.65       | 28.5       |
| PM <sub>2.5</sub> * | 98th percentile                         | NA         | 2               | ND           | ND            | ND         | ND          | ND           | ND       | ND            | 25.6       |             | 31.35      |
|                     | Weighted annual mean                    | NA         | 2               | ND           | ND            | ND         | ND          | ND           | ND       | NII )         | 12.745     | 124         | 12.925     |

| Metropolit          | an Statistical Area                | Trend | #Trend<br>Sites | 1993   | 1994   | 1995  | 1996   | 1997   | 1998   | 1999         | 2000   | 2001        | 2002   |
|---------------------|------------------------------------|-------|-----------------|--------|--------|-------|--------|--------|--------|--------------|--------|-------------|--------|
| HUNTINGT            | ON-ASHLAND, WV-KY-OH               |       |                 |        |        |       |        |        |        |              |        |             |        |
| SO <sub>2</sub>     | 2nd daily max                      | down  | 3               | 0.05   | 0.048  | 0.04  | 0.031  | 0.034  | 0.031  | 0.029        | 0.038  | 0.028       | 0.028  |
|                     | Annual mean                        | down  | 3               | 0.012  | 0.01   | 0.01  | 0.01   | 0.009  | 0.009  | 0.009        | 0.01   | 0.008       | 0.008  |
| Ozone               | 2nd highest daily max              | ns    | 1               | 0.119  | 0.12   | 0.122 | 0.113  | 0.124  | 0.136  | 0.115        | 0.092  | 0.11        |        |
|                     | 4th highest daily max 8-h average  | ns    | 1               | 0.099  | 0.097  | 0.092 | 0.086  | 0.086  | 0.105  | 0.096        | 0.081  | 0.087       |        |
| PM <sub>10</sub> *  | 90th percentile                    | down  | 1               | 61     | 65     | 64    | 52     | 62     | 53     | 68           | 50     | 50          | 47     |
|                     | Weighted annual mean               | ns    | 1               | 33.1   | 39     | 38.4  | 37     | 39     | 35.2   | 39.1         | 32.7   | 30          | 27.9   |
| PM <sub>2.5</sub> * | 98th percentile                    | NA    | 2               | ND     | ND     | ND    | ND     | ND     | ND     | 35.25        | 36.8   |             | 42.55  |
|                     | Weighted annual mean               | NA    | 2               | ND     | ND     | ND    | ND     | ND     | ND     | 16.175       | 16.63  | 16.385      | 16.135 |
| HUNTSVIL            |                                    |       |                 |        |        |       |        |        |        |              |        |             |        |
| CO                  | 2nd max (daily-nonoverlapping 8-h) | down  | 1               | 4      | 3.5    | 3.6   | 3      | 3.1    | 3.3    | 4.3          | 2.3    | 2.3         | 2.3    |
| Ozone               | 2nd highest daily max              | ns    | 1               | 0.112  | 0.107  | 0.102 | 0.096  | 0.096  | 0.118  | 0.106        | 0.111  | 0.088       | 0.098  |
|                     | 4th highest daily max 8-h average  | ns    | 1               | 0.087  | 0.075  | 0.08  | 0.081  | 0.086  | 0.092  | 0.093        | 0.088  | 0.08        | 0.078  |
| PM <sub>10</sub> *  | 90th percentile                    | ns    | 3               | 38.667 | 34.333 |       |        |        | 36.667 | 36.667       | 37.333 |             |        |
|                     | Weighted annual mean               | ns    | 3               | 23.267 | 23.233 | 22.1  | 20.7   | 20.867 |        | 23.4         |        | 21.033      | 18.9   |
| PM <sub>2.5</sub> * | 98th percentile                    | NA    | 1               | ND     | ND     | ND    | ND     | ND     | ND     | 30.9         | 41.5   | 29.7        | 34.1   |
|                     | Weighted annual mean               | NA    | 1               | ND     | ND     | ND    | ND     | ND     | ND     | 15.61        | 16.28  | 14.6        | 13.8   |
| INDIANAPO           | OLIS, IN                           |       |                 |        |        |       |        |        |        |              |        |             |        |
| CO                  | 2nd max (daily-nonoverlapping 8-h) | down  | 2               | 4      | 3.45   | 3.85  | 2.75   | 3.15   | 2.65   | 2.4          | 3.3    | 2.35        | 3.3    |
| SO <sub>2</sub>     | 2nd daily max                      | ns    | 3               | 0.04   | 0.041  | 0.022 | 0.027  | 0.025  | 0.022  | 0.021        | 0.023  | 0.022       | 0.023  |
| 2                   | Annual mean                        | down  | 3               | 0.009  | 0.008  | 0.006 | 0.006  | 0.006  | 0.005  | 0.006        | 0.006  | 0.005       | 0.005  |
| NO <sub>2</sub>     | Annual mean                        | ns    | 1               | 0.018  | 0.019  | 0.02  | 0.018  | 0.015  | 0.019  | 0.018        | 0.017  | 0.017       | 0.018  |
| Ozóne               | 2nd highest daily max              | ns    | 2               | 0.094  | 0.107  | 0.108 | 0.118  | 0.101  | 0.105  | 0.106        | 0.097  | 0.092       | 0.126  |
|                     | 4th highest daily max 8-h average  | ns    | 2               | 0.079  | 0.09   | 0.091 | 0.093  | 0.086  | 0.09   | 0.095        | 0.08   | 0.08        | 0.103  |
| PM <sub>10</sub> *  | 90th percentile                    | down  | 2               | 54     | 57.5   | 49.5  | 34     | 40.5   | 43.5   | 37           | 38.5   | 32.5        | 27.5   |
| 10                  | Weighted annual mean               | down  | 2               | 31.4   | 32     | 29.6  | 22     | 24.05  | 25.45  | 21           | 22.3   | 20.7        | 18.1   |
| PM <sub>2.5</sub> * | 98th percentile                    | NA    | 2               | ND     | ND     | ND    | ND     | ND     | ND     | 39.2         | 38.725 | 41.8        | 40.75  |
| 2.5                 | Weighted annual mean               | NA    | 2               | ND     | ND     | ND    | ND     | ND     | ND     | 17.32        | 17.618 | 17.855      | 17.56  |
| <b>IOWA CITY</b>    | 7, IA                              |       |                 |        |        |       |        |        |        |              |        |             |        |
| PM <sub>2.5</sub> * | 98th percentile                    | NA    | 1               | ND     | ND     | ND    | ND     | ND     | ND     | 32.4         | 28.4   | 34.5        | 25.6   |
| 2.5                 | Weighted annual mean               | NA    | 1               | ND     | ND     | ND    | ND     | ND     | ND     | 12.32        | 10.93  | 11.67       | 11.38  |
| JACKSON,            | MS                                 |       |                 |        |        |       |        |        |        |              |        |             |        |
| CO                  | 2nd max (daily-nonoverlapping 8-h) | down  | 1               | 6.2    | 5.1    | 4.4   | 4.8    | 3.8    | 3.7    | 5            | 3.2    | 4.2         | 3      |
| SO <sub>2</sub>     | 2nd daily max                      | ns    | 1               | 0.01   | 0.008  | 0.007 | 0.008  | 0.007  | 0.008  | 0.007        | 0.006  |             | 0.008  |
| 2                   | Annual mean                        | ns    | 1               | 0.003  | 0.002  | 0.002 | 0.002  | 0.002  | 0.002  | 0.002        | 0.002  | 0.002       | 0.002  |
| Ozone               | 2nd highest daily max              | ns    | 2               | 0.089  | 0.086  | 0.09  | 0.093  | 0.095  | 0.105  | 0.103        | 0.096  | 0.091       | 0.09   |
|                     | 4th highest daily max 8-h average  | ns    | 2               | 0.073  | 0.073  | 0.076 | 0.078  | 0.077  | 0.084  | 0.083        | 0.08   | 0.076       | 0.074  |
| PM <sub>10</sub> *  | 90th percentile                    | ns    | 1               | 42     | 35     | 39    | 35     | 44     | 48     | 38           | 36     | 33          | 33     |
| 10                  | Weighted annual mean               | ns    | 1               | 22.8   | 22.1   | 21.9  | 21.8   | 25.6   | 28     | 24.9         | 23.5   | 20.6        | 20.6   |
| PM <sub>2.5</sub> * | 98th percentile                    | NA    | 3               | ND     | ND     | ND    | ND     | ND     | ND     | 33.65        | 35.633 | 29.2        | 29.433 |
| 2.5                 | Weighted annual mean               | NA    | 3               | ND     | ND     | ND    | ND     | ND     | ND     | 16.195       | 15.233 | 13.45       | 12.233 |
| JACKSON,            | TN                                 |       |                 |        |        |       |        |        |        |              |        |             |        |
| PM <sub>2.5</sub> * | 98th percentile                    | NA    | 1               | ND     | ND     | ND    | ND     | ND     | ND     | 37.5         | 30.4   | 27.4        | 32.2   |
| 2.5                 | Weighted annual mean               | NA    | 1               | ND     | ND     | ND    | ND     | ND     | ND     | 16.22        | 14.99  | 13.56       | 12.23  |
| JACKSONV            |                                    |       |                 |        |        |       |        |        |        |              |        |             |        |
| 5/10/10/011         | Maximum quarterly value            | ns    | 1               | 0.022  | 0.017  | 0.027 | 0.023  | 0.015  | 0.017  | 0.017        | 0.029  | 0.017       | 0.008  |
| CO                  | 2nd max (daily-nonoverlapping 8-h) | down  | 1               | 4.8    | 3.4    | 3.7   | 3.1    | 2.8    | 2.8    | 3.9          | 2.6    | 2.7         | 2.9    |
| SO <sub>2</sub>     | 2nd daily max                      | ns    | 2               | 0.032  | 0.041  | 0.033 | 0.024  | 0.025  | 0.03   | 0.028        | 0.032  |             | 0.032  |
| 002                 | Annual mean                        | ns    | 2               | 0.002  | 0.004  | 0.003 | 0.0024 | 0.0023 | 0.004  | 0.020        | 0.0052 | 0.0027      | 0.002  |
| NO <sub>2</sub>     | Annual mean                        | ns    | 1               | 0.015  | 0.004  | 0.016 | 0.004  | 0.003  | 0.004  | 0.016        | 0.005  |             | 0.015  |
| Ozone               | 2nd highest daily max              | ns    | 1               | 0.103  | 0.087  | 0.010 | 0.015  | 0.085  | 0.013  | 0.103        | 0.013  |             | 0.013  |
| 020110              | 4th highest daily max 8-h average  | ns    | 1               | 0.08   | 0.069  | 0.068 | 0.073  | 0.003  | 0.08   | 0.08         | 0.071  | 0.072       |        |
| PM <sub>2.5</sub> * | 98th percentile                    | NA    | 1               | ND     | ND     | ND    | ND     | ND     | ND     | ND           | 30.1   | 26.2        | 22.3   |
| 2.5                 | Weighted annual mean               | NA    | 1               | ND     | ND     | ND    | ND     | ND     | ND     | ND           | 12.1   | 10.94       | 9.29   |
| JACKSONV            | 8                                  |       |                 | ND     | ND     |       |        | ND     | ND     | ND           | 12.1   | 10.74       | /.2/   |
|                     | 98th percentile                    | NA    | 1               | ND     | ND     | ND    | ND     | ND     | ND     | 35.7         | 27.7   | 26          | 23.8   |
| PM <sub>2.5</sub> * | Weighted annual mean               |       | 1               | ND     | ND     | ND    |        | ND     | ND     | 35.7<br>12.7 |        | 20<br>11.45 |        |
|                     | weighten annual mean               | NA    | I               | ND     | ND     | ND    | ND     | ND     | ND     | 12.7         | 12.28  | 11.45       | 10.88  |

| Metropolita           | an Statistical Area                                 | Trend      | #Trend<br>Sites | 1993       | 1994       | 1995       | 1996          | 1997       | 1998           | 1999       | 2000             | 2001           | 2002       |
|-----------------------|-----------------------------------------------------|------------|-----------------|------------|------------|------------|---------------|------------|----------------|------------|------------------|----------------|------------|
| JAMESTOW              | /N. NY                                              |            |                 |            |            |            |               |            |                |            |                  |                |            |
| SO <sub>2</sub>       | 2nd daily max                                       | down       | 1               | 0.032      | 0.033      | 0.023      | 0.027         | 0.019      | 0.019          | 0.022      | 0.023            | 0.02           | 0.016      |
| 2                     | Annual mean                                         | down       | 1               | 0.007      | 0.006      | 0.005      | 0.005         | 0.005      | 0.005          | 0.005      | 0.005            | 0.005          | 0.004      |
| Ozone                 | 2nd highest daily max                               | ns         | 1               | 0.104      | 0.094      | 0.104      | 0.097         | 0.101      | 0.112          | 0.101      | 0.101            | 0.097          | 0.109      |
|                       | 4th highest daily max 8-h average                   | ns         | 1               | 0.081      | 0.08       | 0.089      | 0.081         | 0.085      | 0.095          | 0.087      | 0.083            | 0.085          | 0.094      |
| PM <sub>10</sub> *    | 90th percentile                                     | ns         | 1               | 26         | 32         | 32         | 28            | 32         | 35             | 32         | 29               | 25             | 21         |
| <b>D1</b> +           | Weighted annual mean                                | down       | 1               | 15.4       | 14.4       | 15.7       | 15.1          | 15.4       | 16.9           | 14.1       | 13.7             | 11.7           | 12.4       |
| PM <sub>2.5</sub> *   | 98th percentile                                     | NA         | 1               | ND         | ND         | ND         | ND            | ND         | ND             | ND         | 30.6             | 34.2           | 37.8       |
|                       | Weighted annual mean                                | NA         | 1               | ND         | ND         | ND         | ND            | ND         | ND             | ND         | 11.38            | 11.06          | 11.25      |
|                       | E-BELOIT, WI                                        |            |                 | 0.400      | 0.400      | 0.400      | 0.400         | 0.007      |                | 0.405      | 0.000            | 0.000          | 0.000      |
| Ozone                 | 2nd highest daily max                               | down       | 1               | 0.108      | 0.108      | 0.103      | 0.103         | 0.097      | 0.1            | 0.105      | 0.098            |                | 0.098      |
|                       | 4th highest daily max 8-h average                   | ns         | 1               | 0.077      | 0.077      | 0.087      | 0.085         | 0.085      | 0.084          | 0.093      | 0.083            | 0.084          | 0.087      |
| JERSEY CIT            |                                                     |            |                 |            |            |            |               |            |                |            |                  | _              |            |
| CO                    | 2nd max (daily-nonoverlapping 8-h)                  | down       | 1               | 5.6        | 5.9        | 6.2        | 4.9           | 4.3        | 4.1            | 3.9        | 3.8              | 3              | 2.8        |
| SO <sub>2</sub>       | 2nd daily max                                       | down       | 2               | 0.03       | 0.036      | 0.026      | 0.027         | 0.025      | 0.022          | 0.024      | 0.024            | 0.027          | 0.022      |
| NO                    | Annual mean                                         | down       | 2               | 0.009      | 0.009      | 0.007      | 0.008         | 0.008      | 0.007          | 0.007      | 0.007            | 0.008          | 0.006      |
| NO <sub>2</sub>       | Annual mean                                         | ns         | 1               | 0.027      | 0.026      | 0.026      | 0.027         | 0.026      | 0.027          | 0.026      | 0.026            | 0.026          | 0.023      |
| Ozone                 | 2nd highest daily max                               | ns         | 1               | 0.131      | 0.118      | 0.125      | 0.12<br>0.087 | 0.119      | 0.118<br>0.089 | 0.139      | 0.103<br>0.082   | 0.132<br>0.091 | 0.109      |
| DM *                  | 4th highest daily max 8-h average                   | ns         | 1               | 0.103      | 0.095      | 0.104      |               | 0.105      |                | 0.106      | 0.082            |                | 0.09       |
| PM <sub>10</sub> *    | 90th percentile<br>Weighted annual mean             | ns<br>down | 1               | 54<br>34.3 | 62<br>38.8 | 48<br>30.8 | 51<br>32.8    | 50<br>30.6 | 42<br>26.9     | 43<br>27.8 | 30.6             | 53<br>29.3     | 50<br>28.3 |
| DM *                  | 98th percentile                                     | NA         | 1               | 34.3<br>ND | 30.0<br>ND | 30.8<br>ND | 32.0<br>ND    | 30.0<br>ND | 20.9<br>ND     | 27.0<br>46 | 30.0<br>39.5     | 29.3<br>34.1   | 34.3       |
| PM <sub>2.5</sub> *   | Weighted annual mean                                | NA         | 1               | ND         | ND         | ND         | ND            | ND         | ND             | 16.13      | 16.83            | 14.1           | 14.35      |
|                       | 0                                                   | NA         | 1               | ND         | ND         | ND         | ND            | ND         | ND             | 10.15      | 10.05            | 14.1           | 14.55      |
|                       | CITY-KINGSPORT-BRISTOL, TN-VA                       | down       | 1               | 6.5        | 3.4        | 3.1        | 3             | 3.5        | 3.4            | 2.8        | 2.2              | 2.1            | 1.9        |
| CO<br>SO <sub>2</sub> | 2nd max (daily-nonoverlapping 8-h)<br>2nd daily max | down<br>ns | 1               | 0.045      | 0.05       | 0.038      | 0.05          | 0.042      | 0.039          | 0.038      | 0.043            | 0.037          | 0.044      |
| 302                   | Annual mean                                         | ns         | 1               | 0.043      | 0.03       | 0.030      | 0.012         | 0.042      | 0.037          | 0.038      | 0.043            | 0.037          | 0.044      |
| NO <sub>2</sub>       | Annual mean                                         | down       | 1               | 0.017      | 0.017      | 0.018      | 0.012         | 0.011      | 0.017          | 0.016      | 0.011            | 0.015          | 0.000      |
| Ozone                 | 2nd highest daily max                               | ns         | 1               | 0.125      | 0.103      | 0.114      | 0.099         | 0.010      | 0.115          | 0.106      | 0.109            | 0.11           | 0.109      |
| 020110                | 4th highest daily max 8-h average                   | ns         | 1               | 0.088      | 0.083      | 0.091      | 0.082         | 0.082      | 0.096          | 0.086      | 0.092            | 0.085          | 0.093      |
| PM <sub>2.5</sub> *   | 98th percentile                                     | NA         | 1               | ND         | ND         | ND         | ND            | ND         | ND             | ND         | 42.2             | 37.1           | 34         |
| 2.5                   | Weighted annual mean                                | NA         | 1               | ND         | ND         | ND         | ND            | ND         | ND             | ND         | 17.17            | 15.4           | 14.3       |
| JOHNSTOW              |                                                     |            |                 |            |            |            |               |            |                |            |                  |                |            |
| CO                    | 2nd max (daily-nonoverlapping 8-h)                  | down       | 1               | 4.2        | 4.1        | 3.5        | 4.8           | 2.7        | 3.1            | 2.8        | 2                | 2.1            | 2.6        |
| SO,                   | 2nd daily max                                       | down       | 1               | 0.049      | 0.08       | 0.042      | 0.034         | 0.03       | 0.027          | 0.025      | 0.026            | 0.031          | 0.025      |
| 2                     | Annual mean                                         | down       | 1               | 0.015      | 0.014      | 0.012      | 0.011         | 0.009      | 0.008          | 0.009      | 0.007            | 0.008          | 0.007      |
| NO <sub>2</sub>       | Annual mean                                         | down       | 1               | 0.017      | 0.018      | 0.015      | 0.018         | 0.016      | 0.015          | 0.015      | 0.015            | 0.014          | 0.012      |
| Ozóne                 | 2nd highest daily max                               | up         | 1               | 0.099      | 0.094      | 0.101      | 0.098         | 0.104      | 0.124          | 0.107      | 0.104            | 0.106          | 0.106      |
|                       | 4th highest daily max 8-h average                   | ns         | 1               | 0.083      | 0.083      | 0.09       | 0.083         | 0.092      | 0.098          | 0.09       | 0.086            | 0.09           | 0.088      |
| PM <sub>2.5</sub> *   | 98th percentile                                     | NA         | 1               | ND         | ND         | ND         | ND            | ND         | ND             | 31         | 34.1             | 40.1           | 46.6       |
|                       | Weighted annual mean                                | NA         | 1               | ND         | ND         | ND         | ND            | ND         | ND             | 14.78      | 15.34            | 15.85          | 16.09      |
| JONESBOR              | O, AR                                               |            |                 |            |            |            |               |            |                |            |                  |                |            |
| PM <sub>2.5</sub> *   | 98th percentile                                     | NA         | 1               | ND         | ND         | ND         | ND            | ND         | ND             | ND         | 27.9             | 28.6           | 31.5       |
|                       | Weighted annual mean                                | NA         | 1               | ND         | ND         | ND         | ND            | ND         | ND             | ND         | 14.64            | 12.69          | 11.16      |
| JOPLIN, MO            | 0                                                   |            |                 |            |            |            |               |            |                |            |                  |                |            |
| PM <sub>2.5</sub> *   | 98th percentile                                     | NA         | 1               | ND         | ND         | ND         | ND            | ND         | ND             | 26.7       | 29.5             | 28.7           | 31.5       |
|                       | Weighted annual mean                                | NA         | 1               | ND         | ND         | ND         | ND            | ND         | ND             | 13.11      | 13.49            | 14.48          | 13.9       |
| KALAMAZO              | O-BATTLE CREEK, MI                                  |            |                 |            |            |            |               |            |                |            |                  |                |            |
| PM <sub>10</sub> *    | 90th percentile                                     | ns         | 1               | 40         | 44         | 50         | 33            | 38         | 47             | 44         | 49               | 49             | 49         |
|                       | Weighted annual mean                                | ns         | 1               | 24         | 25.9       | 26         | 22            | 22.6       | 26.7           | 22.5       | 26.3             | 26.3           | 26.3       |
| PM <sub>2.5</sub> *   | 98th percentile                                     | NA         | 1               | ND         | ND         | ND         | ND            | ND         | ND             | 38         | 35.5             | 40             | 32.3       |
|                       | Weighted annual mean                                | NA         | 1               | ND         | ND         | ND         | ND            | ND         | ND             | 14.89      | 15.1             | 15.63          | 14.78      |
| KANSAS CI             |                                                     |            |                 |            |            |            |               |            |                |            |                  |                |            |
| SO <sub>2</sub>       | 2nd daily max                                       | ns         | 1               | 0.025      | 0.033      | 0.023      | 0.033         | 0.021      | 0.01           | 0.009      | 0.039            | 0.009          | 0.015      |
| -                     | Annual mean                                         | ns         | 1               | 0.002      | 0.002      | 0.002      | 0.003         | 0.003      | 0.002          | 0.002      | 0.004            | 0.002          |            |
| NO <sub>2</sub>       | Annual mean                                         | ns         | 1               | 0.009      | 0.008      | 0.009      | 0.009         | 0.009      | 0.009          | 0.009      | 0.009            | 0.008          |            |
| Ozone                 | 2nd highest daily max                               | ns         | 1               | 0.114      | 0.112      | 0.131      | 0.114         | 0.121      | 0.133          | 0.111      | 0.115            | 0.106          |            |
|                       | 4th highest daily max 8-h average                   | ns         | 1               | 0.082      | 0.09       | 0.099      | 0.087         | 0.098      | 0.095          | 0.082      | 0.091            | 0.079          |            |
| PM <sub>10</sub> *    | 90th percentile                                     | ns         | 1               | 43         | 47         | 41         | 58            | 38         | 47             | 41         | 47               | 47             | 53         |
| <b>D1</b> *           | Weighted annual mean                                | ns         | 1               | 30.7       | 33.8       | 19.1       | 32.6          | 26.2       | 29.7           | 27.8       | 29.1             | 31.6           | 36.2       |
| PM <sub>2.5</sub> *   | 98th percentile                                     | NA         | 3               | ND         | ND         | ND         | ND            | ND         | ND             |            | 27.333<br>12.647 |                |            |
|                       | Weighted annual mean                                | NA         | 3               | ND         | ND         | ND         | ND            | ND         | ND             | 1160       | 11611            | 1 2 2 2 2 2    | 12 712     |

| Metropolita         | an Statistical Area                     | Trend    | #Trend<br>Sites | 1993          | 1994          | 1995           | 1996           | 1997           | 1998           | 1999         | 2000          | 2001           | 2002         |
|---------------------|-----------------------------------------|----------|-----------------|---------------|---------------|----------------|----------------|----------------|----------------|--------------|---------------|----------------|--------------|
| KENOSHA,            | WI                                      |          |                 |               |               |                |                |                |                |              |               |                |              |
| Ozone               | 2nd highest daily max                   | ns       | 2               | 0.114         | 0.119         | 0.119          | 0.13           | 0.111          | 0.121          | 0.121        | 0.097         | 0.12           | 0.14         |
| OZONC               | 4th highest daily max 8-h average       | ns       | 2               | 0.085         | 0.088         | 0.103          | 0.084          | 0.087          | 0.09           | 0.097        | 0.084         | 0.098          | 0.113        |
| PM <sub>2.5</sub> * | 98th percentile                         | NA       | 1               | ND            | ND            | ND             | ND             | ND             | ND             | 34.2         | 27.2          | 33             | 31.7         |
| 2.5                 | Weighted annual mean                    | NA       | 1               | ND            | ND            | ND             | ND             | ND             | ND             | 12.35        | 11.38         | 12.7           | 11.57        |
| KNOXVILLE           | 8                                       | 1177     |                 | ND            | ND            | ND             | ND             | ND             | ND             | 12.55        | 11.50         | 12.7           | 11.57        |
|                     |                                         | down     | 1               | 14            | 12            | 11             | 3.3            | 4.8            | 3.9            | 3.8          | 3.1           | 3              | 3            |
| C0                  | 2nd max (daily-nonoverlapping 8-h)      | down     | 1               | 4.6           | 4.3<br>0.057  | 4.1            | د.<br>0.058    |                | 0.038          |              | 0.06          | د<br>0.089     | د<br>0.07    |
| SO <sub>2</sub>     | 2nd daily max                           | ns       |                 | 0.063         |               | 0.053          |                | 0.048          |                | 0.056        |               |                |              |
| 07070               | Annual mean                             | ns       | 1               | 0.009         | 0.01          | 0.01           | 0.009          | 0.008          | 0.007          | 0.009        | 0.01          | 0.01           | 0.011        |
| Ozone               | 2nd highest daily max                   | ns       | 2<br>2          | 0.11<br>0.088 | 0.109<br>0.09 | 0.117<br>0.098 | 0.102<br>0.086 | 0.111<br>0.091 | 0.114<br>0.099 | 0.123<br>0.1 | 0.11<br>0.095 | 0.101<br>0.086 | 0.117 0.101  |
|                     | 4th highest daily max 8-h average       | ns       | 1               | 0.088<br>64   | 0.09          | 0.098          | 0.080<br>54    | 0.091          | 0.099<br>47    | 43           | 0.095<br>46   | 0.080<br>44    | 36           |
| PM <sub>10</sub> *  | 90th percentile                         | down     |                 |               |               |                |                |                |                |              |               |                |              |
|                     | Weighted annual mean                    | down     | 1<br>1          | 39.6<br>ND    | 38.1<br>ND    | 37.1<br>ND     | 35.3<br>ND     | 33.1<br>ND     | 29.9<br>ND     | 30.1<br>42.8 | 28.9<br>45.7  | 26.3<br>36.8   | 23.2<br>34.3 |
| PM <sub>2.5</sub> * | 98th percentile                         | NA       | 1               |               |               | ND             |                |                |                |              |               | 30.0<br>17.45  |              |
|                     | Weighted annual mean                    | NA       | I               | ND            | ND            | ND             | ND             | ND             | ND             | 22.72        | 20.08         | 17.45          | 16.48        |
| KOKOMO, I           |                                         | N/A      | 4               |               |               |                | ND             |                |                |              |               | 20.4           | ~~ ~         |
| PM <sub>2.5</sub> * | 98th percentile                         | NA       | 1               | ND            | ND            | ND             | ND             | ND             | ND             | ND           | 34.3          | 38.1           | 29.7         |
|                     | Weighted annual mean                    | NA       | 1               | ND            | ND            | ND             | ND             | ND             | ND             | ND           | 15.59         | 15.01          | 14.72        |
| Lafayette, I        |                                         |          |                 |               |               |                |                |                |                |              |               |                |              |
| Ozone               | 2nd highest daily max                   | ns       | 1               | 0.101         | 0.101         | 0.109          | 0.098          | 0.105          | 0.1            | 0.094        | 0.123         | 0.09           | 0.095        |
|                     | 4th highest daily max 8-h average       | ns       | 1               | 0.083         | 0.083         | 0.09           | 0.084          | 0.078          | 0.084          | 0.081        | 0.092         | 0.077          | 0.074        |
| PM <sub>2.5</sub> * | 98th percentile                         | NA       | 2               | ND            | ND            | ND             | ND             | ND             | ND             | 26.9         | 32            | 29.75          | 22.6         |
|                     | Weighted annual mean                    | NA       | 2               | ND            | ND            | ND             | ND             | ND             | ND             | 12.85        | 13.07         | 11.445         | 10.05        |
| LAKE CHAR           | RLES, LA                                |          |                 |               |               |                |                |                |                |              |               |                |              |
| SO <sub>2</sub>     | 2nd daily max                           | ns       | 1               | 0.019         | 0.017         | 0.018          | 0.018          | 0.012          | 0.012          | 0.015        | 0.013         | 0.012          | 0.017        |
| Z                   | Annual mean                             | ns       | 1               | 0.006         | 0.004         | 0.005          | 0.003          | 0.003          | 0.003          | 0.004        | 0.004         | 0.003          | 0.004        |
| NO <sub>2</sub>     | Annual mean                             | ns       | 1               | 0.004         | 0.006         | 0.005          | 0.005          | 0.005          | 0.005          | 0.005        | 0.005         | 0.005          | 0.004        |
| Ozóne               | 2nd highest daily max                   | ns       | 3               | 0.11          | 0.094         | 0.103          | 0.096          | 0.119          | 0.119          | 0.103        | 0.117         | 0.097          | 0.089        |
|                     | 4th highest daily max 8-h average       | ns       | 3               | 0.081         | 0.074         | 0.078          | 0.074          | 0.084          | 0.085          | 0.079        | 0.085         | 0.078          | 0.072        |
| PM <sub>2.5</sub> * | 98th percentile                         | NA       | 2               | ND            | ND            | ND             | ND             | ND             | ND             | 35.4         | 33.75         | 30.55          | 30.35        |
| 2.5                 | Weighted annual mean                    | NA       | 2               | ND            | ND            | ND             | ND             | ND             | ND             | 12.99        | 12.795        | 11.235         | 10.005       |
| LAKELAND            | -WINTER HAVEN, FL                       |          |                 |               |               |                |                |                |                |              |               |                |              |
| SO <sub>2</sub>     | 2nd daily max                           | ns       | 2               | 0.019         | 0.016         | 0.013          | 0.019          | 0.016          | 0.022          | 0.016        | 0.017         | 0.014          | 0.01         |
| 2                   | Annual mean                             | ns       | 2               | 0.004         | 0.004         | 0.004          | 0.005          | 0.005          | 0.006          | 0.005        | 0.005         | 0.004          | 0.004        |
| Ozone               | 2nd highest daily max                   | ns       | 2               | 0.103         | 0.088         | 0.089          | 0.089          | 0.101          | 0.104          | 0.097        | 0.101         | 0.108          | 0.09         |
|                     | 4th highest daily max 8-h average       | ns       | 2               | 0.082         | 0.072         | 0.073          | 0.07           | 0.078          | 0.087          | 0.078        | 0.078         | 0.084          | 0.072        |
| PM <sub>2.5</sub> * | 98th percentile                         | NA       | 1               | ND            | ND            | ND             | ND             | ND             | ND             | 23.4         | 28.1          | 25.9           | 24.4         |
| 2.5                 | Weighted annual mean                    | NA       | 1               | ND            | ND            | ND             | ND             | ND             | ND             | 11.03        | 12.21         | 11.14          | 10.09        |
| LANCASTE            |                                         |          |                 |               |               |                |                |                |                |              |               |                |              |
| CO                  | 2nd max (daily-non-overlapping 8-h)     | ns       | 1               | 3             | 3.8           | 2.4            | 2.6            | 3.3            | 1.9            | 2.1          | 1.9           | 2.2            | 2.2          |
| SO <sub>2</sub>     | 2nd daily max                           | ns       | 1               | 0.026         | 0.03          | 0.018          | 0.021          | 0.023          | 0.02           | 0.021        | 0.024         | 0.018          | 0.014        |
| 002                 | Annual mean                             | down     | 1               | 0.007         | 0.006         | 0.006          | 0.005          | 0.007          | 0.006          | 0.005        | 0.005         | 0.004          | 0.005        |
| NO <sub>2</sub>     | Annual mean                             | down     | 1               | 0.015         | 0.000         | 0.000          | 0.003          | 0.007          | 0.015          | 0.005        | 0.003         | 0.004          |              |
| Ozone               | 2nd highest daily max                   | ns       | 1               | 0.013         | 0.111         | 0.010          | 0.101          | 0.133          | 0.119          | 0.127        | 0.107         | 0.127          | 0.115        |
| 020110              | 4th highest daily max 8-h average       | ns       | 1               | 0.095         | 0.093         | 0.102          | 0.085          | 0.100          | 0.101          | 0.102        | 0.09          | 0.097          | 0.096        |
| PM <sub>2.5</sub> * | 98th percentile                         | NA       | 1               | ND            | ND            | ND             | ND             | ND             | ND             | 38.2         | 47.4          | 42.1           | 40.2         |
| 2.5                 | Weighted annual mean                    | NA       | 1               | ND            | ND            | ND             | ND             | ND             | ND             | 15.64        | 18.22         | 17.11          |              |
|                     | AST LANSING, MI                         | in A     | I               |               | ND            | ND             | ND             | ND             | ND             | 15.04        | 10.22         | 17.11          | 10.13        |
|                     |                                         |          | 2               | 0.00/         | 0.000         | 0.00/          | 0.007          | 0.007          | 0.1            | 0.1          | 0.001         | 0.105          | 0.00/        |
| Ozone               | 2nd highest daily max                   | ns       | 2               | 0.096         | 0.093         | 0.096          | 0.087          | 0.087          | 0.1            | 0.1          | 0.091         | 0.105          | 0.096        |
| DM *                | 4th highest daily max 8-h average       | ns<br>NA | 2               | 0.079         | 0.079         | 0.082          | 0.077          | 0.077          | 0.08           | 0.088        | 0.076         | 0.085          | 0.087        |
| PM <sub>2.5</sub> * | 98th percentile                         | NA       | 1               | ND            | ND            | ND             | ND             | ND             | ND             | 34.6         | 37.2          | 37.2           | 32.8         |
|                     | Weighted annual mean                    | NA       | 1               | ND            | ND            | ND             | ND             | ND             | ND             | 12.6         | 13.07         | 14.04          | 13.52        |
| LAREDO, T           |                                         |          | 4               |               |               |                |                |                |                |              | 00.0          |                | <u></u>      |
| PM <sub>2.5</sub> * | 98th percentile                         | NA       | 1               | ND            | ND            | ND             | ND             | ND             | ND             | ND           | 23.2          | 26.4           | 25.5         |
|                     | Weighted annual mean                    | NA       | 1               | ND            | ND            | ND             | ND             | ND             | ND             | ND           | 12.1          | 10.29          | 10.06        |
| LAS CRUCE           |                                         |          |                 |               |               |                |                |                |                |              |               |                |              |
| CO                  | 2nd max (daily-non-overlapping 8-h)     | down     | 1               | 8.7           | 5             | 4.4            | 4.3            | 4.8            | 4.2            | 3.8          | 3.7           | 3.3            | 3            |
| SO <sub>2</sub>     | 2nd daily max                           | down     | 2               | 0.055         | 0.023         | 0.021          | 0.03           | 0.014          | 0.012          | 0.005        | 0.003         | 0.004          |              |
| -                   | Annual mean                             | down     | 2               | 0.006         | 0.004         | 0.004          | 0.004          | 0.003          | 0.003          | 0.001        | 0.001         | 0.001          | 0.001        |
| Ozone               | 2nd highest daily max                   | down     | 3               | 0.107         | 0.104         | 0.105          | 0.104          | 0.09           | 0.1            | 0.092        | 0.1           | 0.087          | 0.089        |
|                     | 4th highest daily max 8-h average       | ns       | 3               | 0.073         | 0.074         | 0.074          | 0.075          | 0.067          | 0.072          | 0.074        | 0.073         | 0.068          | 0.072        |
|                     | 90th percentile                         | up       | 1               | 51            | 62            | 65             | 60             | 56             | 58             | 80           | 73            | 74             | 80           |
| PIVI <sub>10</sub>  |                                         |          | 1               | 31.3          | 36            | 38.4           | 37.2           | 31.6           | 32.3           | 44.6         | 41.6          | 37.3           | 39.5         |
| PM <sub>10</sub> *  | Weighted annual mean                    | ns       |                 | 51.5          | 50            |                |                |                |                |              |               |                |              |
| PM <sub>10</sub> ** | Weighted annual mean<br>98th percentile | NA       | 1               | ND            | ND            | ND             | ND             | ND             | ND             | 26.8         | 30.5          | 30.3           | 38.7         |

|                     |                                                      | Trend        | #Trend<br>Sites | 1993        | 1994        | 1995         | 1996         | 1997        | 1998        | 1999          | 2000          | 2001          | 2002          |
|---------------------|------------------------------------------------------|--------------|-----------------|-------------|-------------|--------------|--------------|-------------|-------------|---------------|---------------|---------------|---------------|
| LAS VEGAS           | , NV-AZ                                              |              |                 |             |             |              |              |             |             |               |               |               |               |
| Ozone               | 2nd highest daily max                                | ns           | 1               | 0.099       | 0.099       | 0.086        | 0.096        | 0.09        | 0.103       | 0.09          | 0.086         | 0.092         | 0.096         |
| <b></b>             | 4th highest daily max 8-h average                    | ns           | 1               | 0.082       | 0.077       | 0.074        | 0.082        | 0.075       | 0.084       | 0.074         | 0.074         | 0.07          | 0.078         |
| PM <sub>10</sub> *  | 90th percentile                                      | down         | 2               | 81.5        | 77.5        | 82.5         | 83           | 76          | 69.75       | 70            | 63            | 65.5          | 68            |
| DM *                | Weighted annual mean                                 | ns<br>NA     | 2<br>1          | 43.4<br>ND  | 45.55<br>ND | 45.2         | 51.7<br>ND   | 47.5<br>ND  | 41.95<br>ND | 40.8          | 38.4          | 40.4          | 45.7          |
| PM <sub>2.5</sub> * | 98th percentile<br>Weighted annual mean              | NA<br>NA     | 1               | ND          | ND          | ND<br>ND     | ND           | ND          | ND          | 32.6<br>11.71 | 31.6<br>10.53 | 33.3<br>10.62 | 28.8<br>11.68 |
| LAWRENCE            | 8                                                    | NA NA        | I               | ND          | ND          | ND           | ND           | ND          | ND          | 11.71         | 10.55         | 10.02         | 11.00         |
| SO <sub>2</sub>     | 2nd daily max                                        | down         | 1               | 0.027       | 0.032       | 0.033        | 0.023        | 0.027       | 0.031       | 0.021         | 0.02          | 0.021         | 0.015         |
| 502                 | Annual mean                                          | down         | 1               | 0.027       | 0.002       | 0.007        | 0.025        | 0.027       | 0.008       | 0.021         | 0.002         | 0.021         | 0.0013        |
| Ozone               | 2nd highest daily max                                | ns           | 1               | 0.007       | 0.101       | 0.081        | 0.092        | 0.097       | 0.096       | 0.09          | 0.072         | 0.081         | 0.124         |
| 020110              | 4th highest daily max 8-h average                    | ns           | 1               | 0.076       | 0.082       | 0.069        | 0.079        | 0.078       | 0.076       | 0.068         | 0.06          |               | 0.088         |
| LAWTON, O           |                                                      |              |                 |             |             |              |              |             |             |               |               |               |               |
| CO                  | 2nd max (daily-non-overlapping 8-h)                  | ns           | 1               | 2.6         | 1.9         | 3.1          | 2.667        | 2.233       | 1.8         | 1.7           | 1.4           | 2.2           | 2.1           |
| PM <sub>2.5</sub> * | 98th percentile                                      | NA           | 1               | ND          | ND          | ND           | ND           | ND          | ND          | ND            | 19.2          | 26.2          | 25.2          |
| 2.0                 | Weighted annual mean                                 | NA           | 1               | ND          | ND          | ND           | ND           | ND          | ND          | ND            | 9.08          | 9.91          | 9.35          |
| LEWISTON-           | AUBŬRN, ME                                           |              |                 |             |             |              |              |             |             |               |               |               |               |
| SO <sub>2</sub>     | 2nd daily max                                        | down         | 1               | 0.025       | 0.025       | 0.02         | 0.018        | 0.017       | 0.019       | 0.016         | 0.018         | 0.015         | 0.016         |
| 2                   | Annual mean                                          | down         | 1               | 0.007       | 0.006       | 0.004        | 0.004        | 0.004       | 0.004       | 0.004         | 0.003         | 0.004         | 0.004         |
| PM <sub>10</sub> *  | 90th percentile                                      | ns           | 1               | 50          | 35          | 37           | 31           | 35          | 31          | 31            | 28            | 37            | 37            |
|                     | Weighted annual mean                                 | ns           | 1               | 24.3        | 20.2        | 19.8         | 20           | 20.6        | 18.2        | 18.6          | 17.5          | 20.7          | 18.8          |
| PM <sub>2.5</sub> * | 98th percentile                                      | NA           | 1               | ND          | ND          | ND           | ND           | ND          | ND          | 35.7          | 25.8          | 32.5          | 30.3          |
|                     | Weighted annual mean                                 | NA           | 1               | ND          | ND          | ND           | ND           | ND          | ND          | 9.99          | 9.6           | 11.31         | 10.45         |
| LEXINGTON           |                                                      |              |                 |             |             |              |              |             |             |               |               |               |               |
| SO <sub>2</sub>     | 2nd daily max                                        | ns           | 1               | 0.026       | 0.037       | 0.016        | 0.02         | 0.016       | 0.023       | 0.02          | 0.02          | 0.029         | 0.016         |
|                     | Annual mean                                          | down         | 1               | 0.007       | 0.008       | 0.006        | 0.006        | 0.006       | 0.006       | 0.008         | 0.005         | 0.005         | 0.004         |
| NO <sub>2</sub>     | Annual mean                                          | down         | 1               | 0.017       | 0.016       | 0.017        | 0.014        | 0.014       | 0.011       | 0.013         | 0.013         | 0.013         | 0.012         |
| Ozone               | 2nd highest daily max                                | ns           | 2               | 0.102       | 0.102       | 0.103        | 0.089        | 0.098       | 0.104       | 0.108         | 0.085         | 0.088         | 0.095         |
| DM *                | 4th highest daily max 8-h average                    | ns           | 2               | 0.081       | 0.086       | 0.088        | 0.081        | 0.081       | 0.089       | 0.087         | 0.077         | 0.077         | 0.083         |
| PM <sub>10</sub> *  | 90th percentile<br>Weighted annual mean              | down<br>down | 2<br>2          | 42<br>23.85 | 46<br>27.6  | 39.5<br>22.8 | 37.5<br>23.1 | 37<br>21.85 | 40<br>23    | 40<br>22.55   | 37.5<br>22.95 | 35<br>22.2    | 36.5<br>21.45 |
| PM <sub>2.5</sub> * | 98th percentile                                      | NA           | 2               | 23.05<br>ND | 27.0<br>ND  | ND           | 23.1<br>ND   | 21.05<br>ND | ND          | 35.2          | 37.45         | 34.2          | 41.3          |
| 2.5                 | Weighted annual mean                                 | NA           | 2               | ND          | ND          | ND           | ND           | ND          | ND          | 15.475        |               | 15.955        | 15.32         |
| LIMA, OH            | Weighted annual mean                                 | 101          | 2               | ND          | ND          | ND           | ND           | ND          | ND          | 10.170        | 10.07         | 10.700        | 10.02         |
| SO <sub>2</sub>     | 2nd daily max                                        | down         | 1               | 0.023       | 0.036       | 0.015        | 0.015        | 0.016       | 0.017       | 0.013         | 0.015         | 0.013         | 0.01          |
| 502                 | Annual mean                                          | ns           | 1               | 0.025       | 0.005       | 0.003        | 0.003        | 0.003       | 0.003       | 0.003         | 0.003         | 0.003         | 0.003         |
| Ozone               | 2nd highest daily max                                | ns           | 1               | 0.099       | 0.102       | 0.106        | 0.11         | 0.091       | 0.102       | 0.107         | 0.1           | 0.096         | 0.109         |
|                     | 4th highest daily max 8-h average                    | ns           | 1               | 0.09        | 0.089       | 0.092        | 0.092        | 0.083       | 0.089       | 0.093         | 0.085         | 0.081         | 0.098         |
| PM <sub>10</sub> *  | 90th percentile                                      | down         | 1               | 40          | 42          | 38           | 38           | 43          | 37          | 26            | 36            | 29            | 36            |
| 10                  | Weighted annual mean                                 | down         | 1               | 27.9        | 30.6        | 27.2         | 24.9         | 24          | 24.3        | 16.6          | 24.6          | 20.8          | 24.4          |
| LINCOLN, N          | IE                                                   |              |                 |             |             |              |              |             |             |               |               |               |               |
| CO                  | 2nd max (daily-non-overlapping 8-h)                  | ns           | 1               | 5.1         | 5.3         | 6.2          | 4.7          | 6.9         | 6           | 5.7           | 2.9           | 4             | 3.7           |
| Ozone               | 2nd highest daily max                                | ns           | 1               | 0.057       | 0.075       | 0.07         | 0.06         | 0.061       | 0.068       | 0.062         | 0.072         | 0.061         | 0.063         |
|                     | 4th highest daily max 8-h average                    | ns           | 1               | 0.049       | 0.062       | 0.06         | 0.054        | 0.054       | 0.058       | 0.053         | 0.057         | 0.051         | 0.054         |
| PM <sub>2.5</sub> * | 98th percentile                                      | NA           | 1               | ND          | ND          | ND           | ND           | ND          | ND          | 25.2          | 25.1          | 23.4          | 26            |
|                     | Weighted annual mean                                 | NA           | 1               | ND          | ND          | ND           | ND           | ND          | ND          | 10.57         | 10.25         | 10.08         | 9.55          |
| LITTLE ROC          | K-NORTH LITTLE ROCK, AR                              |              |                 |             |             |              |              |             |             |               |               |               |               |
| SO <sub>2</sub>     | 2nd daily max                                        | down         | 1               | 0.017       | 0.009       | 0.008        | 0.009        | 0.006       | 0.006       | 0.005         | 0.007         |               | 0.005         |
| NG                  | Annual mean                                          | down         | 1               | 0.006       | 0.003       | 0.002        | 0.002        | 0.002       | 0.002       | 0.002         | 0.002         | 0.002         |               |
| NO <sub>2</sub>     | Annual mean                                          | ns           | 1               | 0.009       | 0.011       | 0.011        | 0.011        | 0.01        | 0.011       | 0.011         | 0.01          | 0.01          | 0.01          |
| Ozone               | 2nd highest daily max                                | ns           | 2               | 0.096       | 0.09        | 0.106        | 0.096        | 0.099       | 0.096       | 0.103         | 0.113         | 0.102         |               |
| DM *                | 4th highest daily max 8-h average                    | up           | 2               | 0.076       | 0.076       | 0.086        |              | 0.077       | 0.078       | 0.083         | 0.09<br>22 5  | 0.079         |               |
| PM <sub>2.5</sub> * | 98th percentile                                      | NA           | 1               | ND          | ND          | ND           | ND           | ND          | ND          | ND            | 33.5          | 32            | 31.9          |
|                     | Weighted annual mean                                 | NA           | 1               | ND          | ND          | ND           | ND           | ND          | ND          | ND            | 15.47         | 14.72         | 13.24         |
|                     | MARSHALL, TX                                         | <b>n</b> 0   | 1               | 0 11 /      | 0 10 4      | 0 1 4 5      | 0.107        | 0 1 2 4     | 0 1 2 0     | 0 1 2 4       | 0 1 1 1       | 0 1 1 1       | 0.11          |
| Ozone               | 2nd highest daily max                                | ns           | 1               | 0.114       | 0.104       | 0.145        | 0.106        | 0.124       | 0.129       | 0.134         | 0.131         | 0.111         | 0.11          |
| DN1 *               | 4th highest daily max 8-h average<br>98th percentile | ns<br>NA     | 1<br>1          | 0.093       | 0.081       | 0.102        | 0.082        | 0.091<br>ND | 0.104<br>ND | 0.105         | 0.099         |               | 0.084         |
| PM <sub>2.5</sub> * | Weighted annual mean                                 | NA<br>NA     | 1               |             | ND<br>ND    | ND<br>ND     | ND<br>ND     | ND          | ND<br>ND    |               | 28.8<br>13 /1 | 28<br>12 18   | 39.2          |
|                     | weigi iteu annuai mean                               | NA           | I               | ND          | ND          | ND           | ND           | ND          | ND          | ND            | 13.41         | 12.18         | 12.30         |

| Metropolit          | an Statistical Area                 | Trend | #Trend<br>Sites | 1993   | 1994   | 1995   | 1996     | 1997   | 1998  | 1999   | 2000         | 2001   | 2002   |
|---------------------|-------------------------------------|-------|-----------------|--------|--------|--------|----------|--------|-------|--------|--------------|--------|--------|
| LOS ANGE            | LES-LONG BEACH, CA                  |       |                 |        |        |        |          |        |       |        |              |        |        |
|                     | Maximum quarterly value             | ns    | 2               | 0.088  | 0.072  | 0.058  | 0.053    | 0.067  | 0.045 | 0.094  | 0.059        | 0.08   | 0.036  |
| CO                  | 2nd max (daily-non-overlapping 8-h) | down  | 4               | 8.725  | 10.75  | 9.525  | 9.25     | 8.55   | 7.575 | 7.475  | 6.5          | 5.025  | 5.125  |
| SO <sub>2</sub>     | 2nd daily max                       | ns    | 2               | 0.008  | 0.006  | 0.005  | 0.006    | 0.006  | 0.007 | 0.006  | 0.006        | 0.006  |        |
|                     | Annual mean                         | ns    | 2               | 0.002  | 0.002  | 0.002  | 0.002    | 0.002  | 0.002 | 0.002  | 0.002        | 0.002  |        |
| NO <sub>2</sub>     | Annual mean                         | down  | 3               | 0.039  | 0.046  | 0.045  | 0.043    | 0.039  | 0.039 | 0.041  | 0.039        | 0.037  |        |
| Ozone               | 2nd highest daily max               | down  | 4               | 0.15   | 0.165  | 0.14   | 0.126    | 0.112  | 0.138 | 0.101  | 0.118        | 0.104  | 0.103  |
|                     | 4th highest daily max 8-h average   | down  | 4               | 0.098  | 0.101  | 0.089  | 0.085    | 0.081  | 0.088 | 0.07   | 0.08         | 0.074  | 0.073  |
| PM <sub>10</sub> *  | 90th percentile                     | ns    | 2               | 74.5   | 62.5   | 73.5   | 71       | 70     | 62.5  | 75     | 64.5         | 67     | 58     |
|                     | Weighted annual mean                | ns    | 2               | 44     | 41.1   | 45.15  | 43.35    | 45.55  | 38.3  | 50     | 42.7         | 43.1   | 41.75  |
| PM <sub>2.5</sub> * | 98th percentile                     | NA    | 4               | ND     | ND     | ND     | ND       | ND     | ND    |        | 66.475       |        |        |
| 2.0                 | Weighted annual mean                | NA    | 4               | ND     | ND     | ND     | ND       | ND     | ND    | 23.955 | 23.211       | 24.325 | 23.355 |
| LOUISVILL           | .E, KY-IN                           |       |                 |        |        |        |          |        |       |        |              |        |        |
| CO                  | 2nd max (daily-non-overlapping 8-h) | ns    | 1               | 4.5    | 4.6    | 3.6    | 3.4      | 3.8    | 3.8   | 3.3    | 3.8          | 3.9    | 4.8    |
| SO <sub>2</sub>     | 2nd daily max                       | down  | 2               | 0.038  | 0.038  | 0.036  | 0.033    | 0.029  | 0.027 | 0.027  | 0.033        | 0.031  | 0.024  |
| 2                   | Annual mean                         | down  | 2               | 0.011  | 0.011  | 0.01   | 0.008    | 0.006  | 0.005 | 0.009  | 0.007        | 0.005  | 0.005  |
| NO <sub>2</sub>     | Annual mean                         | ns    | 1               | 0.026  | 0.026  | 0.022  | 0.02     | 0.02   | 0.023 | 0.022  | 0.022        | 0.023  | 0.02   |
| Ozóne               | 2nd highest daily max               | ns    | 2               | 0.123  | 0.124  | 0.124  | 0.109    | 0.126  | 0.136 | 0.114  | 0.097        | 0.101  | 0.12   |
|                     | 4th highest daily max 8-h average   | ns    | 2               | 0.096  | 0.099  | 0.097  | 0.087    | 0.091  | 0.102 | 0.092  | 0.081        | 0.081  | 0.099  |
| PM <sub>10</sub> *  | 90th percentile                     | ns    | 2               | 54.5   | 45.5   | 49     | 49       | 49.5   | 43    | 44.5   | 57.5         | 48.75  | 42     |
| 10                  | Weighted annual mean                | ns    | 2               | 29.65  | 30.5   | 29     | 28.25    | 30.45  | 26.35 | 26.35  | 31.1         | 28.7   | 25.9   |
| PM <sub>2.5</sub> * | 98th percentile                     | NA    | 3               | ND     | ND     | ND     | ND       | ND     | ND    | 39.267 |              | 41.383 |        |
| 2.5                 | Weighted annual mean                | NA    | 3               | ND     | ND     | ND     | ND       | ND     | ND    |        | 16.673       |        | 16.41  |
| LOWELL,             | 5                                   |       |                 |        |        |        |          |        |       |        |              |        |        |
| CO                  | 2nd max (daily-non-overlapping 8-h) | down  | 1               | 5.1    | 6.5    | 7.8    | 4.5      | 3.6    | 3.4   | 4.2    | 3.2          | 2.7    | 2.4    |
| LUBBOCK,            |                                     | down  |                 | 5.1    | 0.5    | 7.0    | 4.5      | 5.0    | 5.4   | 4.2    | J.Z          | 2.7    | 2.4    |
|                     |                                     |       | 1               | 20     | 22     | 24     | 24       | 77     | 27    | 27     | 22           | 20     | 20     |
| PM <sub>10</sub> *  | 90th percentile                     | ns    | 1               | 30     | 33     | 34     | 34       | 27     | 37    | 26     | 32           | 29     | 29     |
|                     | Weighted annual mean                | ns    | 1               | 19.9   | 23     | 20.8   | 21.7     | 16.7   | 20.5  | 18.1   | 19           | 19.7   | 19.7   |
| PM <sub>2.5</sub> * | 98th percentile                     | NA    | 1               | ND     | ND     | ND     | ND       | ND     | ND    | ND     | 18.5         | 17.2   | 21.3   |
|                     | Weighted annual mean                | NA    | 1               | ND     | ND     | ND     | ND       | ND     | ND    | ND     | 7.42         | 7.66   | 7.55   |
| MACON, G            |                                     |       |                 |        |        |        |          |        |       |        | a / 15       |        |        |
| PM <sub>2.5</sub> * | 98th percentile                     | NA    | 2               | ND     | ND     | ND     | ND       | ND     | ND    | 49.2   | 36.45        |        | 31.75  |
|                     | Weighted annual mean                | NA    | 2               | ND     | ND     | ND     | ND       | ND     | ND    | 18.21  | 17.505       | 14.935 | 14.635 |
| MADISON,            | WI                                  |       |                 |        |        |        |          |        |       |        |              |        |        |
| Ozone               | 2nd highest daily max               | ns    | 1               | 0.079  | 0.082  | 0.1    | 0.094    | 0.088  | 0.089 | 0.098  | 0.087        | 0.088  | 0.09   |
|                     | 4th highest daily max 8-h average   | ns    | 1               | 0.066  | 0.071  | 0.08   | 0.079    | 0.079  | 0.076 | 0.085  | 0.071        | 0.078  | 0.08   |
| PM <sub>10</sub> *  | 90th percentile                     | ns    | 1               | 37     | 33     | 43     | 30       | 34     | 43    | 38     | 34           | 32     | 31     |
| 10                  | Weighted annual mean                | ns    | 1               | 21     | 22.4   | 22.8   | 19.6     | 20.3   | 26.6  | 20.8   | 22           | 22     | 19     |
| PM <sub>2.5</sub> * | 98th percentile                     | NA    | 1               | ND     | ND     | ND     | ND       | ND     | ND    | 33.4   | 34.2         | 36.6   | 32.7   |
| 2.0                 | Weighted annual mean                | NA    | 1               | ND     | ND     | ND     | ND       | ND     | ND    | 13.43  | 12.75        | 13.31  | 12.31  |
| MANSFIEL            | D, OH                               |       |                 |        |        |        |          |        |       |        |              |        |        |
| PM <sub>10</sub> *  | 90th percentile                     | down  | 1               | 44     | 49     | 42     | 40       | 40     | 41    | 39     | 37           | 37     | 37     |
| 10                  | Weighted annual mean                | down  | 1               | 27.7   | 29.2   | 24.7   | 24.3     | 23.3   | 23.8  | 22.6   | 23.7         | 23.7   | 23.7   |
| MAYAGUEZ            | 5                                   |       |                 |        |        |        |          |        |       |        |              |        |        |
| PM <sub>2.5</sub> * | 98th percentile                     | NA    | 1               | ND     | ND     | ND     | ND       | ND     | ND    | 18.8   | 16.4         | 15.7   | 16.7   |
| 2.5                 | Weighted annual mean                | NA    | 1               | ND     | ND     | ND     | ND       | ND     | ND    | 8.79   | 7.91         | 8.08   | 7.8    |
| MCALLEN             | EDINBURG-MISSION, TX                | 1 1/1 |                 | ND     | ND     | ND     |          | ND     | ND    | 0.77   | 7.71         | 0.00   | 7.0    |
|                     |                                     | NA    | n               | ND     |        |        |          | ND     |       |        | <u></u> 22.4 | 21 /5  | 20 E E |
| PM <sub>2.5</sub> * | 98th percentile                     | NA    | 2<br>2          | ND     | ND     | ND     | ND<br>ND | ND     | ND    | ND     | 22.4         |        | 28.55  |
|                     | Weighted annual mean                | NA    | 2               | ND     | ND     | ND     | ND       | ND     | ND    | ND     | 10.835       | 10.52  | 10.48  |
|                     | -ASHLAND, OR                        |       |                 |        |        |        |          |        |       |        |              |        |        |
| Ozone               | 2nd highest daily max               | ns    | 1               | 0.081  | 0.087  | 0.091  | 0.101    | 0.074  | 0.117 | 0.077  | 0.079        |        | 0.099  |
|                     | 4th highest daily max 8-h average   | ns    | 1               | 0.066  |        | 0.071  | 0.075    | 0.063  | 0.085 | 0.065  |              | 0.064  |        |
| PM <sub>10</sub> *  | 90th percentile                     | down  | 3               | 50.667 | 45.667 | 37.333 | 37       | 36.333 | 33    | 42     | 38.333       |        |        |
|                     | Weighted annual mean                | down  | 3               | 28.767 | 27.6   | 22.067 | 21.167   | 22.2   | 21    | 24.1   | 20.933       | 19.8   | 21.033 |
| PM <sub>2.5</sub> * | 98th percentile                     | NA    | 3               | ND     | ND     | ND     | ND       | ND     | ND    | 33.95  | 34.6         | 26.1   | 33.6   |
| 1 1012 5            |                                     |       |                 |        |        |        |          |        |       |        |              |        |        |

| Metropolita                                           | an Statistical Area                                        | Trend              | #Trend<br>Sites | 1993           | 1994           | 1995             | 1996           | 1997             | 1998             | 1999               | 2000               | 2001               | 2002               |
|-------------------------------------------------------|------------------------------------------------------------|--------------------|-----------------|----------------|----------------|------------------|----------------|------------------|------------------|--------------------|--------------------|--------------------|--------------------|
| MEMPHIS,                                              | TN-AR-MS                                                   |                    |                 |                |                |                  |                |                  |                  |                    |                    |                    |                    |
| CO                                                    | 2nd max (daily-non-overlapping 8-h)                        | down               | 1               | 8.5            | 7.8            | 6.2              | 5              | 4.2              | 5.1              | 4.6                | 4.4                | 4.1                | 3.5                |
| $NO_2$                                                | Annual mean                                                | ns                 | 1               | 0.026          | 0.027          | 0.027            | 0.024          | 0.028            | 0.029            | 0.025              | 0.025              | 0.025              | 0.022              |
| Ozone                                                 | 2nd highest daily max                                      | ns                 | 1               | 0.102          | 0.109          | 0.14             | 0.114          | 0.122            | 0.1              | 0.13               | 0.112              | 0.121              | 0.126              |
|                                                       | 4th highest daily max 8-h average                          | ns                 | 1               | 0.077          | 0.084          | 0.099            | 0.096          | 0.091            | 0.085            | 0.095              | 0.091              | 0.092              | 0.1                |
| PM <sub>10</sub> *                                    | 90th percentile                                            | down               | 2               | 49.5           | 45.5           | 47               | 39.5           | 45.5             | 41.5             | 42                 | 37.5               | 36                 | 30.5               |
|                                                       | Weighted annual mean                                       | down               | 2               | 29.55          | 28.05          | 28.7             | 26.15          | 27.55            | 25.8             | 26.1               | 26.2               | 23.9               | 19.4               |
| PM <sub>2.5</sub> *                                   | 98th percentile                                            | NA                 | 1               | ND             | ND             | ND               | ND             | ND               | ND               | 34.9               | 36                 | 31.9               | 36.3               |
|                                                       | Weighted annual mean                                       | NA                 | 1               | ND             | ND             | ND               | ND             | ND               | ND               | 15.85              | 16.3               | 14.53              | 13.78              |
| MERCED, C                                             |                                                            |                    |                 |                |                |                  |                |                  |                  |                    |                    |                    |                    |
| NO <sub>2</sub>                                       | Annual mean                                                | ns                 | 1               | 0.015          | 0.013          | 0.012            | 0.012          | 0.013            | 0.011            | 0.012              | 0.012              | 0.012              |                    |
| Ozone                                                 | 2nd highest daily max                                      | ns                 | 1               | 0.12           | 0.119          | 0.13             | 0.124          | 0.09             | 0.14             | 0.125              | 0.12               | 0.113              | 0.137              |
| DV4 *                                                 | 4th highest daily max 8-h average                          | ns                 | 1               | 0.096          | 0.097          | 0.107            | 0.102          | 0.074            | 0.112            | 0.105              | 0.103              | 0.096              | 0.105              |
| PM <sub>2.5</sub> *                                   | 98th percentile                                            | NA                 | 1               | ND             | ND             | ND               | ND             | ND               | ND               | ND                 | 68.4               | 70.1               | 55.1               |
|                                                       | Weighted annual mean                                       | NA                 | 1               | ND             | ND             | ND               | ND             | ND               | ND               | ND                 | 17.28              | 16.75              | 18.74              |
| AIAMI, FL                                             | Ond may (dolly non-syndromize 0.1)                         | dou                | 4               |                | 4.0            | F 1              | A /            | 4 1              | 2.4              | 2.0                | 2.4                | 4.0                | ~                  |
| CO                                                    | 2nd max (daily-non-overlapping 8-h)                        | down               | 1               | 5.5            | 4.9            | 5.1              | 4.6            | 4.1              | 3.4              | 3.9                | 3.4                | 4.2                | 3                  |
| SO <sub>2</sub>                                       | 2nd daily max                                              | ns                 | 1               | 0.004          | 0.004          | 0.004            | 0.005          | 0.004            | 0.004            | 0.003              | 0.003              | 0.004              | 0.004              |
| NO                                                    | Annual mean                                                | ns                 | 1               | 0.001          | 0.001          | 0.002            | 0.002          | 0.001            | 0.001            | 0.001              | 0.002              |                    | 0.002              |
| NO <sub>2</sub>                                       | Annual mean                                                | ns                 | 2               | 0.012          | 0.01           | 0.011            | 0.011          | 0.012            | 0.011            | 0.012              | 0.011              | 0.011              | 0.01               |
| Ozone                                                 | 2nd highest daily max                                      | ns                 | 2               | 0.105          | 0.092          | 0.098            | 0.092          | 0.101            | 0.103            | 0.107              | 0.088              |                    | 0.089              |
|                                                       | 4th highest daily max 8-h average                          | ns                 | 2               | 0.081          | 0.072          | 0.072            | 0.069          | 0.073            | 0.083            | 0.077              | 0.074              | 0.067              |                    |
| PM <sub>10</sub> *                                    | 90th percentile                                            | ns                 | 3               | 39             | 33.667         |                  |                |                  | 35.667           | 32.667             |                    |                    | 33.333             |
|                                                       | Weighted annual mean                                       | down               | 3               | 27.533         | 25.067         |                  |                | 23.467           | 26               | 23.067             |                    |                    | 21.4               |
| PM <sub>2.5</sub> *                                   | 98th percentile                                            | NA<br>NA           | 2<br>2          | ND<br>ND       | ND<br>ND       | ND<br>ND         | ND<br>ND       | ND<br>ND         | ND<br>ND         | 21.75<br>10.33     | 22.65              | 19.45<br>8.97      | 19.6               |
|                                                       | Weighted annual mean                                       | NA                 | Z               | ND             | ND             | ND               | ND             | ND               | ND               | 10.55              | 10.075             | 0.97               | 8.27               |
|                                                       | X-SOMERSET-HUNTERDON, NJ PMS                               |                    |                 | 0.7            |                | <b>F</b> 4       |                |                  |                  |                    |                    |                    |                    |
| CO                                                    | 2nd max (daily-non-overlapping 8-h)                        | down               | 1               | 3.7            | 4.3            | 5.4              | 3.3            | 3.8              | 3                | 3.2                | 3.2                | 3.3                | 2.6                |
| SO <sub>2</sub>                                       | 2nd daily max                                              | ns                 | 1               | 0.018          | 0.028          | 0.018            | 0.024          | 0.019            | 0.018            | 0.016              | 0.018              | 0.024              | 0.016              |
| NO                                                    | Annual mean                                                | ns                 | 1               | 0.005          | 0.005          | 0.004            | 0.005          | 0.005            | 0.005            | 0.005              | 0.005              | 0.005              | 0.005              |
| NO <sub>2</sub>                                       | Annual mean                                                | ns                 | 1               | 0.019          | 0.019          | 0.019            | 0.02           | 0.018            | 0.019            | 0.019              | 0.019              | 0.018              | 0.016              |
| Ozone                                                 | 2nd highest daily max                                      | ns                 | 2               | 0.088          | 0.085          | 0.133            | 0.117          | 0.13             | 0.118            | 0.144              | 0.111              |                    | 0.121              |
|                                                       | 4th highest daily max 8-h average                          | ns                 | 2               | 0.069          | 0.065          | 0.106            | 0.092          | 0.105            | 0.098            | 0.11               | 0.093              | 0.103              | 0.101              |
| PM <sub>2.5</sub> *                                   | 98th percentile                                            | NA                 | 1               | ND             | ND             | ND               | ND             | ND               | ND               | 31.4               | 34.5               | 34.1               | 26                 |
| ALL \ A / A     / -                                   | Weighted annual mean                                       | NA                 | 1               | ND             | ND             | ND               | ND             | ND               | ND               | 11.49              | 13.14              | 13.23              | 11.13              |
|                                                       | E-WAUKESHA, WI                                             |                    |                 |                |                |                  |                |                  |                  |                    |                    |                    |                    |
| CO                                                    | 2nd max (daily-non-overlapping 8-h)                        | down               | 1               | 2.9            | 3              | 2.4              | 1.9            | 1.8              | 1.9              | 1.9                | 1.5                | 1.5                | 1.5                |
| SO <sub>2</sub>                                       | 2nd daily max                                              | ns                 | 1               | 0.018          | 0.032          | 0.025            | 0.028          | 0.028            | 0.022            | 0.024              | 0.026              | 0.018              | 0.018              |
|                                                       | Annual mean                                                | ns                 | 1               | 0.003          | 0.004          | 0.004            | 0.004          | 0.004            | 0.004            | 0.004              | 0.004              |                    | 0.003              |
| NO <sub>2</sub>                                       | Annual mean                                                | down               | 1               | 0.017          | 0.017          | 0.017            | 0.017          | 0.016            | 0.016            | 0.016              | 0.016              |                    | 0.016              |
| Ozone                                                 | 2nd highest daily max                                      | ns                 | 2               | 0.103          | 0.133          | 0.123            | 0.112          | 0.118            | 0.118            | 0.116              | 0.096              |                    | 0.118              |
|                                                       | 4th highest daily max 8-h average                          | ns                 | 2               | 0.082          | 0.087          | 0.103            | 0.086          | 0.083            | 0.084            | 0.091              | 0.08               | 0.093              | 0.091              |
| PM <sub>10</sub> *                                    | 90th percentile                                            | ns                 | 2               | 44             | 37.5           | 51               | 34.5           | 33.5             | 37.5             | 36                 | 32.5               | 33.5               | 38.5               |
|                                                       | Weighted annual mean                                       | ns                 | 2               | 23.95          | 24.25          | 25.65            | 23.35          | 22.1             | 24.65            | 22.3               | 20.55              | 22.05              | 22.5               |
| PM <sub>2.5</sub> *                                   | 98th percentile                                            | NA                 | 3               | ND             | ND             | ND               | ND             | ND               | ND               |                    | 31.233             |                    | 35.033             |
|                                                       | Weighted annual mean                                       | NA                 | 3               | ND             | ND             | ND               | ND             | ND               | ND               | 14.427             | 13.253             | 13.67              | 12.8/3             |
|                                                       | LIS-ST. PAUL, MN-WI                                        |                    |                 |                |                |                  |                |                  |                  |                    |                    |                    |                    |
| CO                                                    | 2nd max (daily-non-overlapping 8-h)                        | down               | 3               | 3.933          | 4.833          | 3.867            | 3.067          | 3.233            | 4                | 3.033              | 3.067              |                    | 2.633              |
| SO <sub>2</sub>                                       | 2nd daily max                                              | ns                 | 2               | 0.021          | 0.025          | 0.018            | 0.019          | 0.024            | 0.019            | 0.022              | 0.02               |                    | 0.015              |
| NO                                                    | Annual mean                                                | down               | 2               | 0.003          | 0.004          | 0.003            | 0.003          | 0.004            | 0.003            | 0.003              | 0.003              | 0.003              |                    |
| NO <sub>2</sub>                                       | Annual mean                                                | down               | 1               | 0.019          | 0.019          | 0.019            | 0.015          | 0.014            | 0.013            | 0.014              | 0.012              | 0.012              | 0.01               |
| Ozone                                                 | 2nd highest daily max                                      | ns                 | 2               | 0.074          | 0.081          | 0.101            | 0.092          | 0.088            | 0.092            | 0.085              | 0.088              | 0.097              |                    |
|                                                       | 4th highest daily max 8-h average                          | ns                 | 2               | 0.058          | 0.069          | 0.077            | 0.071          | 0.076            | 0.071            | 0.074              | 0.068              | 0.075              |                    |
| PM <sub>2.5</sub> *                                   | 98th percentile                                            | NA                 | 1               | ND             | ND             | ND               | ND             | ND               | ND               | ND                 | 42.7               | 34.7               | 24.3               |
|                                                       | Weighted annual mean<br>, MT                               | NA                 | 1               | ND             | ND             | ND               | ND             | ND               | ND               | ND                 | 13.12              | 13.02              | 11.33              |
| IISSOULA                                              |                                                            |                    |                 |                |                |                  |                |                  |                  |                    |                    |                    |                    |
|                                                       | 90th percentile                                            | down               | 1               | 76             | 63             | 45               | 45             | 40               | 37               | 20                 | 30                 | 24                 | 21                 |
| NISSOULA<br>PM <sub>10</sub> *                        | 90th percentile<br>Weighted appual mean                    | down               | 1               | 76<br>45       | 63<br>33       | 45<br>24 2       | 45<br>24       | 40<br>21 3       | 37<br>20.2       | 29<br>17 7         | 30<br>18 3         | 34<br>19 9         |                    |
| MISSOULA<br>PM <sub>10</sub> *<br>PM <sub>2.5</sub> * | 90th percentile<br>Weighted annual mean<br>98th percentile | down<br>down<br>NA | 1<br>1<br>1     | 76<br>45<br>ND | 63<br>33<br>ND | 45<br>24.2<br>ND | 45<br>24<br>ND | 40<br>21.3<br>ND | 37<br>20.2<br>ND | 29<br>17.7<br>29.3 | 30<br>18.3<br>33.8 | 34<br>19.9<br>43.7 | 31<br>16.4<br>24.8 |

| Metropolita         | an Statistical Area                 | Trend | #Trend<br>Sites | 1993        | 1994        | 1995  | 1996  | 1997  | 1998  | 1999  | 2000  | 2001   | 2002  |
|---------------------|-------------------------------------|-------|-----------------|-------------|-------------|-------|-------|-------|-------|-------|-------|--------|-------|
| MOBILE, A           | I                                   |       |                 |             |             |       |       |       |       |       |       |        |       |
| Ozone               | ■ 2nd highest daily max             | ns    | 1               | 0.098       | 0.085       | 0.108 | 0.104 | 0.117 | 0.114 | 0.118 | 0.115 | 0.095  | 0.094 |
| OZONE               | 4th highest daily max 8-h average   | ns    | 1               | 0.078       | 0.003       | 0.079 | 0.081 | 0.081 | 0.098 | 0.085 | 0.089 | 0.075  | 0.074 |
| PM <sub>2.5</sub> * | 98th percentile                     | NA    | 1               | 0.074<br>ND | 0.072<br>ND | ND    | ND    | ND    | ND    | 36.1  | 39.7  | 26.7   | 22.8  |
| 2.5                 | Weighted annual mean                | NA    | 1               | ND          | ND          | ND    | ND    | ND    | ND    | 16.81 | 15.27 | 12.35  | 10.57 |
| MODECTO             | 6                                   | NA NA | I               | ND          | ND          | ND    | ND    | ND    | ND    | 10.01 | 13.27 | 12.33  | 10.57 |
| MODESTO,            |                                     |       | 2               | 4.45        | Г 1         | 10    | 10    | 2 7   | 10    | 4.00  | 1 25  | 2.05   | 2.2   |
| CO                  | 2nd max (daily-non-overlapping 8-h) | ns    | 2               | 4.65        | 5.1         | 4.2   | 4.3   | 3.7   | 4.3   | 4.85  | 4.25  | 3.95   | 3.2   |
| NO <sub>2</sub>     | Annual mean                         | down  | 2               | 0.02        | 0.02        | 0.019 | 0.019 | 0.019 | 0.019 | 0.02  | 0.017 | 0.018  | 0.017 |
| Ozone               | 2nd highest daily max               | ns    | 2               | 0.12        | 0.112       | 0.125 | 0.124 | 0.11  | 0.14  | 0.109 | 0.108 | 0.11   | 0.115 |
| <b></b>             | 4th highest daily max 8-h average   | ns    | 2               | 0.093       | 0.09        | 0.099 | 0.096 | 0.086 | 0.103 | 0.089 | 0.089 | 0.093  | 0.095 |
| PM <sub>10</sub> *  | 90th percentile                     | ns    | 2               | 52.5        | 52.5        | 69.5  | 48    | 51.5  | 54.5  | 71    | 53    | 54.5   | 53.5  |
|                     | Weighted annual mean                | ns    | 2               | 34.45       | 34.45       | 33.7  | 28.6  | 31.55 | 28.15 | 38.55 | 30    | 32.4   | 31    |
| PM <sub>2.5</sub> * | 98th percentile                     | NA    | 1               | ND          | ND          | ND    | ND    | ND    | ND    | 100   | 71    | 69     | 69    |
|                     | Weighted annual mean                | NA    | 1               | ND          | ND          | ND    | ND    | ND    | ND    | 24.88 | 18.92 | 15.58  | 18.67 |
| MONMOUT             | H-OCEAN, NJ                         |       |                 |             |             |       |       |       |       |       |       |        |       |
| CO                  | 2nd max (daily-non-overlapping 8-h) | down  | 1               | 6.4         | 5           | 3.6   | 4.6   | 3.2   | 2.9   | 3.4   | 3.2   | 3.8    | 1.9   |
| Ozone               | 2nd highest daily max               | ns    | 1               | 0.123       | 0.119       | 0.149 | 0.118 | 0.15  | 0.135 | 0.135 | 0.136 | 0.13   | 0.146 |
|                     | 4th highest daily max 8-h average   | ns    | 1               | 0.103       | 0.099       | 0.117 | 0.095 | 0.113 | 0.104 | 0.105 | 0.114 | 0.108  | 0.125 |
| PM <sub>2.5</sub> * | 98th percentile                     | NA    | 1               | ND          | ND          | ND    | ND    | ND    | ND    | 36.8  | 36.6  | 32.55  | 28.5  |
| 2.5                 | Weighted annual mean                | NA    | 1               | ND          | ND          | ND    | ND    | ND    | ND    | 10.37 |       | 11.165 | 10.81 |
|                     | 5                                   | 101   |                 | ND          | ND          | ND    | ND    | ND    | ND    | 10.07 | 11.02 | 11.100 | 10.01 |
| MONROE, I           |                                     | NIA   | 1               | ND          | ND          | ND    | ND    | ND    | ND    | 28.2  | 27.2  | 27.2   | 32.9  |
| PM <sub>2.5</sub> * | 98th percentile                     | NA    |                 |             |             |       |       |       |       |       |       |        |       |
|                     | Weighted annual mean                | NA    | 1               | ND          | ND          | ND    | ND    | ND    | ND    | 13.93 | 13.33 | 11.85  | 10.77 |
| MONTGOM             | ERY, AL                             |       |                 |             |             |       |       |       |       |       |       |        |       |
| Ozone               | 2nd highest daily max               | ns    | 2               | 0.116       | 0.098       | 0.097 | 0.097 | 0.085 | 0.119 | 0.103 | 0.105 | 0.093  | 0.099 |
|                     | 4th highest daily max 8-h average   | ns    | 2               | 0.086       | 0.078       | 0.082 | 0.072 | 0.069 | 0.092 | 0.085 | 0.085 | 0.077  | 0.081 |
| PM <sub>10</sub> *  | 90th percentile                     | ns    | 2               | 37          | 38          | 42    | 36    | 39.5  | 40    | 40    | 42.5  | 40     | 33    |
|                     | Weighted annual mean                | ns    | 2               | 24.35       | 25.45       | 25    | 21.85 | 23.4  | 27.25 | 24.65 | 25.25 | 22.1   | 21.2  |
| PM <sub>2.5</sub> * | 98th percentile                     | NA    | 1               | ND          | ND          | ND    | ND    | ND    | ND    | 44.5  | 42.2  | 29     | 28.4  |
| 2.5                 | Weighted annual mean                | NA    | 1               | ND          | ND          | ND    | ND    | ND    | ND    | 18.94 | 17.2  | 14.4   | 14.56 |
| MUNCIE, IN          | 8                                   |       |                 |             |             |       |       |       |       |       |       |        |       |
| PM <sub>2.5</sub> * | 98th percentile                     | NA    | 1               | ND          | ND          | ND    | ND    | ND    | ND    | ND    | 34.8  | 35.7   | 30    |
| 2.5                 | Weighted annual mean                | NA    | 1               | ND          | ND          | ND    | ND    | ND    | ND    | ND    | 16.24 | 14.49  | 14.51 |
|                     | 5                                   | INA   | 1               | ND          | ND          | ND    | ND    | ND    | ND    | ND    | 10.24 | 14.49  | 14.51 |
| MYRTLE BE           |                                     |       | 4               | 0.00/       | 0.00/       | 0.004 | 0.004 | 0.000 | 0.000 | 0.04  | 0.005 | 0.000  | 0 000 |
|                     | Maximum quarterly value             | ns    | 1               | 0.006       | 0.006       | 0.004 | 0.004 | 0.003 | 0.009 | 0.01  | 0.005 | 0.008  | 0.002 |
| NASHUA, N           | NH                                  |       |                 |             |             |       |       |       |       |       |       |        |       |
| CO                  | 2nd max (daily-non-overlapping 8-h) | down  | 1               | 5.8         | 8           | 7.6   | 7.8   | 5.3   | 5.3   | 5.3   | 4.1   | 4      | 3.7   |
| SO <sub>2</sub>     | 2nd daily max                       | down  | 2               | 0.019       | 0.023       | 0.019 | 0.019 | 0.02  | 0.016 | 0.015 | 0.016 | 0.014  | 0.013 |
| -                   | Annual mean                         | down  | 2               | 0.005       | 0.006       | 0.004 | 0.004 | 0.005 | 0.004 | 0.004 | 0.003 | 0.004  | 0.003 |
| Ozone               | 2nd highest daily max               | ns    | 1               | 0.125       | 0.105       | 0.111 | 0.098 | 0.115 | 0.1   | 0.1   | 0.089 | 0.108  | 0.12  |
|                     | 4th highest daily max 8-h average   | ns    | 1               | 0.086       | 0.083       | 0.088 | 0.081 | 0.094 | 0.084 | 0.089 | 0.07  | 0.091  | 0.094 |
| PM <sub>10</sub> *  | 90th percentile                     | ns    | 2               | 28.5        | 32.5        | 26    | 28.5  | 30    | 29    | 28    | 25    | 32.5   | 30.5  |
| 10                  | Weighted annual mean                | ns    | 2               | 16.55       | 14.8        | 13.85 | 16.9  | 18.25 | 16.65 | 16.5  | 15.05 | 16.85  | 15.5  |
| PM <sub>2.5</sub> * | 98th percentile                     | NA    | 1               | ND          | ND          | ND    | ND    | ND    | ND    | 50.9  | 20.8  | 28.2   | 28.2  |
| 2.5                 | Weighted annual mean                | NA    | 1               | ND          | ND          | ND    | ND    | ND    | ND    | 13.5  | 10.29 | 10.83  | 10.83 |
| NASHVILLE           | 5                                   |       | •               |             |             |       |       |       |       | . 0.0 |       |        |       |
| CO                  |                                     | down  | 1               | 7.3         | 7.1         | 7.3   | 5     | 6.3   | 5.6   | 5.4   | 5.6   | 5.8    | 5.1   |
|                     | 2nd max (daily-non-overlapping 8-h) | down  |                 |             |             |       |       |       |       |       |       |        |       |
| SO <sub>2</sub>     | 2nd daily max                       | down  | 2               | 0.063       | 0.041       | 0.025 | 0.049 | 0.059 | 0.035 | 0.029 | 0.029 | 0.026  | 0.015 |
| NO                  | Annual mean                         | down  | 2               | 0.01        | 0.007       | 0.005 | 0.006 | 0.006 | 0.005 | 0.004 | 0.004 | 0.004  | 0.003 |
| NO <sub>2</sub>     | Annual mean                         | ns    | 1               | 0.012       | 0.02        | 0.014 | 0.012 | 0.013 | 0.011 | 0.019 | 0.019 | 0.018  | 0.016 |
| Ozone               | 2nd highest daily max               | ns    | 2               | 0.098       | 0.093       | 0.095 | 0.096 | 0.113 | 0.105 | 0.116 | 0.096 | 0.086  | 0.098 |
|                     | 4th highest daily max 8-h average   | ns    | 2               | 0.074       | 0.076       | 0.078 | 0.078 | 0.092 | 0.088 | 0.092 | 0.079 | 0.073  | 0.082 |
| PM <sub>10</sub> *  | 90th percentile                     | ns    | 2               | 41.5        | 45.5        | 44    | 39    | 40.5  | 43    | 40.5  | 44.5  | 39.5   | 41    |
|                     | Weighted annual mean                | down  | 2               | 27.25       | 26.1        | 27.2  | 25.55 | 24.45 | 25.4  | 24.2  | 26.95 | 24.15  | 22.4  |
| PM <sub>2.5</sub> * | 98th percentile                     | NA    | 1               | ND          | ND          | ND    | ND    | ND    | ND    | 43    | 36.9  | 34.7   | 33.3  |
| 2.0                 | Weighted annual mean                | NA    | 1               | ND          | ND          | ND    | ND    | ND    | ND    | 18.83 | 16.97 | 15.23  | 14.3  |
| NASSAU-SI           | UFFOLK, NY                          |       |                 |             |             |       |       |       |       |       |       |        |       |
| NO <sub>2</sub>     | Annual mean                         | down  | 1               | 0.026       | 0.028       | 0.025 | 0.026 | 0.025 | 0.022 | 0.025 | 0.024 | 0.024  | 0.022 |
| Ozone               | 2nd highest daily max               | ns    | 1               | 0.020       | 0.028       | 0.025 | 0.020 | 0.025 | 0.022 | 0.025 | 0.024 | 0.024  | 0.022 |
| OZUNE               |                                     |       |                 |             |             |       |       |       |       |       |       |        |       |
| DM +                | 4th highest daily max 8-h average   | ns    | 1               | 0.097       | 0.092       | 0.11  | 0.091 | 0.106 | 0.096 | 0.091 | 0.086 | 0.084  | 0.108 |
| PM <sub>10</sub> *  | 90th percentile                     | ns    | 1               | 30          | 41          | 37    | 29    | 35    | 29    | 25    | 29    | 26     | 31    |
|                     | Weighted annual mean                | down  | 1               | 19.4        | 23.9        | 20.1  | 18    | 21.3  | 18.1  | 15.9  | 17    | 17.4   | 17.5  |
| PM <sub>2.5</sub> * | 98th percentile                     | NA    | 1               | ND          | ND          | ND    | ND    | ND    | ND    | ND    | 32.1  | 31.3   | 31.9  |
|                     | Weighted annual mean                | NA    | 1               | ND          | ND          | ND    | ND    | ND    | ND    | ND    | 12.22 | 12.86  | 44 05 |

| Metropolit               | tan Statistical Area                 | Trend    | #Trend<br>Sites | 1993           | 1994           | 1995           | 1996           | 1997           | 1998           | 1999           | 2000             | 2001         | 2002          |
|--------------------------|--------------------------------------|----------|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|------------------|--------------|---------------|
| NEW BEDF                 | ORD. MA                              |          |                 |                |                |                |                |                |                |                |                  |              |               |
| Ozone                    | 2nd highest daily max                | ns       | 1               | 0.088          | 0.096          | 0.138          | 0.118          | 0.123          | 0.101          | 0.125          | 0.101            | 0.136        | 0.113         |
|                          | 4th highest daily max 8-h average    | ns       | 1               | 0.073          | 0.077          | 0.107          | 0.092          | 0.092          | 0.083          | 0.098          | 0.082            |              | 0.087         |
| PM <sub>2.5</sub> *      | 98th percentile                      | NA       | 1               | ND             | ND             | ND             | ND             | ND             | ND             | 30             | 34.65            | 39.3         | 23.1          |
| 2.5                      | Weighted annual mean                 | NA       | 1               | ND             | ND             | ND             | ND             | ND             | ND             | 12.12          | 12.395           | 12.67        | 10.25         |
| NEW HAVE                 | N-MERIDEN, CT                        |          |                 |                |                |                |                |                |                |                |                  |              |               |
| CO                       | 2nd max (daily-non-overlapping 8-h)  | down     | 1               | 3.7            | 3.7            | 3.7            | 2.9            | 3.9            | 2.7            | 3.1            | 2.6              | 2.5          | 2.3           |
| SO <sub>2</sub>          | 2nd daily max                        | ns       | 1               | 0.044          | 0.056          | 0.038          | 0.031          | 0.032          | 0.031          | 0.027          | 0.031            | 0.037        | 0.032         |
| 2                        | Annual mean                          | ns       | 1               | 0.009          | 0.01           | 0.008          | 0.008          | 0.006          | 0.006          | 0.007          | 0.006            | 0.007        | 0.007         |
| NO <sub>2</sub>          | Annual mean                          | ns       | 1               | 0.027          | 0.03           | 0.025          | 0.026          | 0.024          | 0.027          | 0.026          | 0.025            | 0.027        | 0.025         |
| Ozone                    | 2nd highest daily max                | ns       | 1               | 0.147          | 0.148          | 0.165          | 0.12           | 0.145          | 0.13           | 0.143          | 0.136            | 0.146        | 0.146         |
|                          | 4th highest daily max 8-h average    | ns       | 1               | 0.105          | 0.093          | 0.117          | 0.095          | 0.109          | 0.097          | 0.104          | 0.087            | 0.1          | 0.11          |
| PM <sub>10</sub> *       | 90th percentile                      | ns       | 2               | 48             | 61.5           | 48.5           | 40             | 38.5           | 35.5           | 38             | 38.5             | 43.5         | 39            |
|                          | Weighted annual mean                 | down     | 2               | 28.05          | 34             | 26.7           | 24.35          | 24.95          | 23.95          | 23.5           | 24.15            | 24.85        | 22.2          |
| PM <sub>2.5</sub> *      | 98th percentile                      | NA       | 3               | ND             | ND             | ND             | ND             | ND             | ND             |                | 37.133           |              | 34.067        |
|                          | Weighted annual mean                 | NA       | 3               | ND             | ND             | ND             | ND             | ND             | ND             | 15.525         | 13.94            | 14.377       | 13.403        |
| NEW LONE                 | DON-NORWICH, CT-RI                   |          |                 |                |                |                |                |                |                |                |                  |              |               |
| Ozone                    | 2nd highest daily max                | ns       | 1               | 0.126          | 0.118          | 0.14           | 0.121          | 0.15           | 0.116          | 0.127          | 0.135            | 0.11         | 0.134         |
|                          | 4th highest daily max 8-h average    | ns       | 1               | 0.099          | 0.093          | 0.101          | 0.095          | 0.104          | 0.083          | 0.096          | 0.084            |              | 0.095         |
| PM <sub>10</sub> *       | 90th percentile                      | down     | 1               | 32             | 40             | 31             | 31             | 30             | 29             | 25             | 26               | 32           | 28            |
|                          | Weighted annual mean                 | down     | 1               | 18.8           | 22.7           | 17.6           | 19.4           | 18.9           | 18             | 16.5           | 16.2             | 17.1         | 14.6          |
| PM <sub>2.5</sub> *      | 98th percentile                      | NA       | 1               | ND             | 27.6             | 34.4         | 25.7          |
|                          | Weighted annual mean                 | NA       | 1               | ND             | 11.05            | 12.74        | 11.13         |
| NEW ORLE                 | EANS, LA                             |          |                 |                |                |                |                |                |                |                |                  |              |               |
|                          | Maximum quarterly value              | ns       | 1               | 0.074          | 0.121          | 0.411          | 0.093          | 0.055          | 0.115          | 0.078          | 0.115            | 0.103        | 0.125         |
| CO                       | 2nd max (daily-non-overlapping 8-h)  | ns       | 1               | 5.2            | 4.3            | 3.1            | 4              | 3.2            | 3              | 3.1            | 4                | 3.6          | 3.6           |
| SO <sub>2</sub>          | 2nd daily max                        | ns       | 1               | 0.025          | 0.027          | 0.022          | 0.035          | 0.017          | 0.026          | 0.023          | 0.02             | 0.026        | 0.016         |
|                          | Annual mean                          | down     | 1               | 0.006          | 0.008          | 0.007          | 0.006          | 0.005          | 0.004          | 0.005          | 0.005            | 0.005        | 0.004         |
| NO <sub>2</sub>          | Annual mean                          | ns       | 1               | 0.019          | 0.02           | 0.021          | 0.018          | 0.018          | 0.02           | 0.022          | 0.019            |              | 0.017         |
| Ozone                    | 2nd highest daily max                | ns       | 3               | 0.108          | 0.11           | 0.11           | 0.106          | 0.098          | 0.11           | 0.108          | 0.115            | 0.098        | 0.102         |
|                          | 4th highest daily max 8-h average    | ns       | 3               | 0.079          | 0.084          | 0.086          | 0.084          | 0.078          | 0.083          | 0.087          | 0.089            | 0.078        | 0.073         |
| PM <sub>10</sub> *       | 90th percentile                      | ns       | 1               | 42             | 42             | 35             | 33             | 39             | 43             | 47             | 44               | 49           | 37            |
|                          | Weighted annual mean                 | ns       | 1               | 26.7           | 26.7           | 24.6           | 23.1           | 25.8           | 26.45          | 27.1           | 26.2             | 29.6         | 23.3          |
| PM <sub>2.5</sub> *      | 98th percentile                      | NA       | 2               | ND             | ND             | ND             | ND             | ND             | ND             | 36             | 33.45            | 29           | 22.2          |
|                          | Weighted annual mean                 | NA       | 2               | ND             | ND             | ND             | ND             | ND             | ND             | 15.04          | 14.02            | 13.135       | 11.13         |
| NEW YORK                 |                                      |          |                 |                |                |                |                |                |                |                |                  |              |               |
|                          | Maximum quarterly value              | ns       | 1               | 0.031          | 0.031          | 0.024          | 0.024          | 0.022          | 0.021          | 0.022          | 0.023            |              | 0.024         |
| CO                       | 2nd max (daily-non-overlapping 8-h)  | down     | 3               | 4.7            | 4.967          | 5.633          | 4.467          | 3.667          | 3.767          | 4.167          | 3.533            | 2.833        |               |
| SO <sub>2</sub>          | 2nd daily max                        | down     | 1               | 0.052          | 0.064          | 0.047          | 0.047          | 0.04           | 0.038          | 0.045          | 0.046            |              | 0.036         |
| NO                       | Annual mean                          | down     | 1               | 0.018          | 0.017          | 0.015          | 0.015          | 0.012          | 0.012          | 0.013          | 0.013            |              | 0.012         |
| NO <sub>2</sub>          | Annual mean                          | down     | 2               | 0.037          | 0.038          | 0.036          | 0.037          | 0.035          | 0.035          | 0.035          | 0.034            |              | 0.033         |
| Ozone                    | 2nd highest daily max                | ns       | 2               | 0.116          | 0.121          | 0.123          | 0.12           | 0.14           | 0.104          | 0.142          | 0.106            | 0.111        | 0.125         |
|                          | 4th highest daily max 8-h average    | ns       | 2               | 0.094          | 0.099          | 0.1            | 0.089          | 0.109          | 0.078          | 0.104          | 0.083            | 0.087        | 0.098         |
| PM <sub>10</sub> *       | 90th percentile                      | down     | 1               | 35             | 34             | 30             | 31             | 30             | 29             | 35             | 31               | 28           | 27            |
| DM *                     | Weighted annual mean                 | down     | 1               | 19.7<br>ND     | 20.7<br>ND     | 19.1<br>ND     | 20<br>ND       | 19.6           | 17.5           | 16.2           | 18.8             | 15.9         | 18.3          |
| PM <sub>2.5</sub> *      | 98th percentile                      | NA       | 4<br>4          | ND             | ND             | ND             | ND             | ND<br>ND       | ND<br>ND       |                | 38.525<br>15.108 |              |               |
|                          | Weighted annual mean                 | NA       | 4               | ND             | 15.106           | 15.155       | 13.703        |
| NEWARK,                  |                                      | douw     | 1               | ,              | 11.0           |                | ,              | Г 1            | Г 1            |                | 47               | 4.0          |               |
| 00                       | 2nd max (daily-non-overlapping 8-h)  | down     | 1               | 6              | 11.3           | 7.7            | 6              | 5.1            | 5.1            | 6.6            | 4.7              | 4.8          | 4.4           |
| SO <sub>2</sub>          | 2nd daily max                        | down     | 2               | 0.025          | 0.033          | 0.026<br>0.005 | 0.027          | 0.025          | 0.021          | 0.022          | 0.023            | 0.023        | 0.02<br>0.006 |
| NO                       | Annual mean                          | ns       | 2<br>2          | 0.007<br>0.024 | 0.007<br>0.027 | 0.005          | 0.006<br>0.026 | 0.006<br>0.026 | 0.006<br>0.027 | 0.006<br>0.026 | 0.006<br>0.026   |              | 0.006         |
| NO <sub>2</sub><br>Ozone | Annual mean<br>2nd highest daily max | ns       | 2<br>1          | 0.024 0.121    | 0.027          | 0.025          | 0.026          | 0.026          | 0.027          | 0.026          | 0.026            |              | 0.025         |
| OZUNE                    | 4th highest daily max 8-h average    | ns       | 1               | 0.121          | 0.119          | 0.125          | 0.114          | 0.111          | 0.119          | 0.119          | 0.11             | 0.121        |               |
| DM *                     | 90th percentile                      | ns       | 1               | 0.104<br>59    | 0.094<br>62    | 48             | 0.093<br>52    | 0.097          | 0.097<br>49    | 0.102          | 0.09             | 50           | 0.105         |
| PM <sub>10</sub> *       | Weighted annual mean                 | ns<br>ns | 1               | 33.7           | 36.7           | 40<br>28.9     | 35.6           | 32             | 49<br>31.2     | 32.7           | 35.3             | 32.4         | 29.8          |
| PM <sub>2.5</sub> *      | 98th percentile                      | NA       | 2               | 33.7<br>ND     | 30.7<br>ND     | 28.9<br>ND     | 35.0<br>ND     | 32<br>ND       | ND             | 32.7<br>35.25  | 35.3<br>37.2     | 32.4<br>36.6 | 29.0<br>36.7  |
| 2.5                      | Weighted annual mean                 | NA       | 2               | ND             | ND             | ND             | ND             | ND             | ND             | 13.365         | 14.03            |              | 12.58         |
| NEWBURG                  |                                      | 11/71    | 2               | ND             | ND             | ND             | ND             | ND             | ND             | 13.303         | 14.03            | 13.70        | 12.00         |
|                          |                                      |          | 1               | 0 115          | 0 115          | 0.115          | 0 1 2          | 0 100          | 0 104          | 0 1 1 0        | 0.007            | 0 100        | 0 000         |
| Ozone                    | 2nd highest daily max                | ns       | 1               | 0.115          | 0.115          | 0.115          | 0.12           | 0.102          | 0.104          | 0.119          | 0.096            | 0.108        | 0.099         |
| DM *                     | 4th highest daily max 8-h average    | down     | 1               | 0.095          | 0.095          | 0.095          | 0.091          | 0.088          | 0.088          | 0.094          | 0.078            |              | 0.085         |
| PM <sub>2.5</sub> *      | 98th percentile                      | NA       | 1               | ND             | 29.8             | 27.8         | 30.5          |
|                          | Weighted annual mean                 | NA       | 1               | ND             | 11.87            | 11.58        | 11.04         |

| Vetropolit          | an Statistical Area                     | Trend    | #Trend<br>Sites | 1993     | 1994     | 1995        | 1996          | 1997           | 1998          | 1999     | 2000         | 2001           | 2002       |
|---------------------|-----------------------------------------|----------|-----------------|----------|----------|-------------|---------------|----------------|---------------|----------|--------------|----------------|------------|
| NORFOLK-            | VIRGINIA BEACH-NEWPORT NEWS, V          |          |                 |          |          |             |               |                |               |          |              |                |            |
| CO                  | 2nd max (daily-non-overlapping 8-h)     | down     | 2               | 5.55     | 6.3      | 4.7         | 5.05          | 3.7            | 5.55          | 4.25     | 3.65         | 3.85           | 3.6        |
| S0 <sub>2</sub>     | 2nd daily max                           | ns       | 1               | 0.027    | 0.025    | 0.028       | 0.025         | 0.023          | 0.021         | 0.022    | 0.023        | 0.023          | 0.031      |
| -                   | Annual mean                             | ns       | 1               | 0.007    | 0.008    | 0.007       | 0.007         | 0.007          | 0.006         | 0.007    | 0.007        | 0.006          | 0.006      |
| NO <sub>2</sub>     | Annual mean                             | ns       | 1               | 0.021    | 0.019    | 0.018       | 0.018         | 0.019          | 0.019         | 0.017    | 0.016        | 0.018          | 0.018      |
| Ozone               | 2nd highest daily max                   | ns       | 1               | 0.123    | 0.101    | 0.099       | 0.097         | 0.113          | 0.104         | 0.135    | 0.094        | 0.1            | 0.128      |
|                     | 4th highest daily max 8-h average       | ns       | 1               | 0.095    | 0.085    | 0.082       | 0.083         | 0.097          | 0.09          | 0.097    | 0.081        | 0.085          | 0.102      |
| PM <sub>2.5</sub> * | 98th percentile                         | NA       | 2               | ND       | ND       | ND          | ND            | ND             | ND            | 35.4     | 29.75        | 30.4           | 28.05      |
| 2.0                 | Weighted annual mean                    | NA       | 2               | ND       | ND       | ND          | ND            | ND             | ND            | 13.33    | 13.585       | 13.515         | 12.155     |
| AKLAND,             | CA                                      |          |                 |          |          |             |               |                |               |          |              |                |            |
|                     | Maximum quarterly value                 | down     | 1               | 0.015    | 0.012    | 0.009       | 0.009         | 0.005          | 0.006         | 0.007    | 0.012        | 0.005          | 0.005      |
| PM <sub>2.5</sub> * | 98th percentile                         | NA       | 1               | ND       | ND       | ND          | ND            | ND             | ND            | ND       | 38.3         | 54.4           | 50.5       |
| 2.5                 | Weighted annual mean                    | NA       | 1               | ND       | ND       | ND          | ND            | ND             | ND            | ND       | 11.21        | 11.93          | 13.83      |
| CALA, FL            |                                         |          |                 |          |          |             |               |                |               |          |              |                |            |
| PM <sub>2.5</sub> * | 98th percentile                         | NA       | 1               | ND       | ND       | ND          | ND            | ND             | ND            | 21.3     | 23.9         | 22.8           | 24.8       |
| 2.5                 | Weighted annual mean                    | NA       | 1               | ND       | ND       | ND          | ND            | ND             | ND            | 11.4     | 10.95        | 10.37          | 9.82       |
|                     | A CITY, OK                              |          | •               |          |          |             |               |                |               |          | 10170        | 10107          | ,          |
| CO                  | 2nd max (daily-non-overlapping 8-h)     | down     | 1               | 6.2      | 5.3      | 4.8         | 5.2           | 5.4            | 4.1           | 4.3      | 4.2          | 4              | 3          |
| NO <sub>2</sub>     | Annual mean                             |          | 1               | 0.013    | 0.015    | 0.014       | 0.014         | 0.015          | 0.015         | 0.014    | 0.013        | 0.013          | 0.014      |
|                     |                                         | ns       | 1               | 0.013    | 0.015    | 0.103       | 0.014         |                | 0.015         | 0.014    | 0.013        | 0.013          | 0.014      |
| Ozone               | 2nd highest daily max                   | down     | 1               | 0.103    | 0.079    |             | 0.102         | 0.103<br>0.084 | 0.109         | 0.097    | 0.091        | 0.093          | 0.091      |
| DM *                | 4th highest daily max 8-h average       | ns       |                 |          |          | 0.085<br>42 | 49            |                |               |          |              | 38             | 0.00       |
| PM <sub>10</sub> *  | 90th percentile                         | ns       | 1               | 39       | 35       |             |               |                | 42.667        | 43.333   | 44<br>25.4   |                | ەد<br>22.5 |
|                     | Weighted annual mean<br>98th percentile | ns<br>NA | 2               | 23.9     | 23.3     | 22.8        | 27.4          | 23.8           | 24.4          | 25       | 25.6<br>25.9 | 22.9<br>26     | 22.5       |
| PM <sub>2.5</sub> * | 1                                       | NA       | 2               | ND<br>ND | ND<br>ND | ND<br>ND    | ND<br>ND      | ND<br>ND       | ND<br>ND      | ND<br>ND |              | 10.895         |            |
|                     | Weighted annual mean                    | NA       | Z               | ND       | ND       | ND          | ND            | ND             | ND            | ND       | 10.00        | 10.090         | 10.440     |
| LYMPIA,             |                                         |          | 4               | 10       |          | 05          |               |                |               |          | 0.4          |                | 0.5        |
| PM <sub>10</sub> *  | 90th percentile                         | down     | 1               | 49       | 30       | 35          | 30            | 36             | 22            | 26       | 31           | 26             | 25         |
|                     | Weighted annual mean                    | down     | 1               | 23.8     | 17.7     | 16.8        | 15.4          | 16             | 14.1          | 14.4     | 15.4         | 15.4           | 13.9       |
| PM <sub>2.5</sub> * | 98th percentile                         | NA       | 1               | ND       | ND       | ND          | ND            | ND             | ND            | 29.4     | 41.2         | 36.4           | 30.1       |
|                     | Weighted annual mean                    | NA       | 1               | ND       | ND       | ND          | ND            | ND             | ND            | 9.21     | 10.33        | 9.64           | 9.04       |
| maha, n             | E-IA                                    |          |                 |          |          |             |               |                |               |          |              |                |            |
| CO                  | 2nd max (daily-non-overlapping 8-h)     | ns       | 1               | 7.3      | 4.2      | 7.5         | 6.9           | 5.4            | 7.7           | 8.8      | 3            | 3.8            | 3.9        |
| Ozone               | 2nd highest daily max                   | ns       | 1               | 0.058    | 0.078    | 0.088       | 0.074         | 0.074          | 0.075         | 0.088    | 0.077        | 0.07           | 0.08       |
|                     | 4th highest daily max 8-h average       | ns       | 1               | 0.048    | 0.065    | 0.075       | 0.063         | 0.063          | 0.065         | 0.068    | 0.063        | 0.056          | 0.07       |
| PM <sub>10</sub> *  | 90th percentile                         | ns       | 2               | 50       | 55       | 49          | 53            | 59.5           | 69.5          | 83.5     | 60           | 57             | 59         |
|                     | Weighted annual mean                    | up       | 2               | 31.95    | 35.05    | 30.1        | 36.2          | 35.4           | 36.15         | 44.55    | 39.3         | 36.7           | 36.85      |
| PM <sub>2.5</sub> * | 98th percentile                         | NA       | 2               | ND       | ND       | ND          | ND            | ND             | ND            | ND       | 25.8         | 23.75          | 27.1       |
|                     | Weighted annual mean                    | NA       | 2               | ND       | ND       | ND          | ND            | ND             | ND            | ND       | 10.775       | 10.52          | 10.615     |
| RANGE C             | OUNTY, CA                               |          |                 |          |          |             |               |                |               |          |              |                |            |
| CO                  | 2nd max (daily-non-overlapping 8-h)     | down     | 2               | 6.65     | 7.95     | 6.3         | 6.35          | 5.2            | 5.7           | 5.675    | 5.45         | 4.1            | 4.15       |
| S0,                 | 2nd daily max                           | ns       | 1               | 0.006    | 0.005    | 0.005       | 0.004         | 0.006          | 0.005         | 0.005    | 0.005        | 0.004          | 0.009      |
| 2                   | Annual mean                             | ns       | 1               | 0.002    | 0.002    | 0.003       | 0.001         | 0.001          | 0.002         | 0.002    | 0.002        | 0.002          | 0.002      |
| NO <sub>2</sub>     | Annual mean                             | down     | 2               | 0.03     | 0.032    | 0.031       | 0.027         | 0.026          | 0.026         | 0.027    | 0.025        | 0.022          | 0.021      |
| Ozone               | 2nd highest daily max                   | down     | 2               | 0.14     | 0.131    | 0.117       | 0.105         | 0.097          | 0.126         | 0.108    | 0.1          | 0.094          | 0.092      |
|                     | 4th highest daily max 8-h average       | down     | 2               | 0.084    | 0.085    | 0.078       | 0.075         | 0.071          | 0.08          | 0.073    | 0.071        | 0.068          | 0.068      |
| PM <sub>10</sub> *  | 90th percentile                         | ns       | 1               | 63       | 54       | 74          | 57            | 58             | 53            | 89       | 59           | 55             | 40         |
| 10                  | Weighted annual mean                    | ns       | 1               | 38.3     | 37.5     | 43.5        | 35.2          | 38.8           | 35.8          | 44.3     | 39.5         | 36             | 33.5       |
| PM <sub>2.5</sub> * | 98th percentile                         | NA       | 2               | ND       | ND       | ND          | ND            | ND             | ND            | ND       | 51.4         | 52.05          |            |
| 2.5                 | Weighted annual mean                    | NA       | 2               | ND       | ND       | ND          | ND            | ND             | ND            | ND       | 17.53        | 18.91          |            |
| RLANDO,             |                                         |          | -               |          |          |             |               |                |               |          |              | 10171          |            |
| CO                  | 2nd max (daily-non-overlapping 8-h)     | down     | 2               | 3.8      | 3.6      | 3.3         | 3.25          | 3.55           | 2.95          | 2.75     | 2.5          | 2.05           | 2.5        |
| SO2                 |                                         |          | 1               | 0.011    | 0.012    | دد<br>0.006 | 3.25<br>0.008 | 0.006          | 2.95<br>0.007 | 0.007    | 2.5<br>0.009 | 2.05           |            |
| 30 <sub>2</sub>     | 2nd daily max                           | ns       |                 |          |          |             |               |                |               |          | 0.009        |                |            |
| NO                  | Annual mean                             | ns       | 1               | 0.002    | 0.002    | 0.002       |               | 0.002          |               | 0.002    |              | 0.002<br>0.012 |            |
| NO <sub>2</sub>     | Annual mean                             | ns       | 1               | 0.012    | 0.011    |             | 0.013         | 0.013          | 0.011         | 0.012    |              |                |            |
| Ozone               | 2nd highest daily max                   | ns       | 2               | 0.097    | 0.101    | 0.099       | 0.1           | 0.103          | 0.109         | 0.101    | 0.104        | 0.094          |            |
|                     | 4th highest daily max 8-h average       | ns       | 2               | 0.081    | 0.082    |             |               |                | 0.089         | 0.082    | 0.08         | 0.078          |            |
| PM <sub>10</sub> *  | 90th percentile                         | ns       | 3               | 32.333   |          | 30.333      |               |                | 34.667        | 33.333   |              |                | 27.667     |
|                     | Weighted annual mean                    | ns       | 3               | 22.333   | 21.6     |             | 22.267        | 21.8           | 23.9          | 23.2     | 22.8         |                | 18.96      |
| PM <sub>2.5</sub> * | 98th percentile                         | NA       | 2               | ND       | ND       | ND          | ND            | ND             | ND            | 24.6     | 29.7         | 27             | 21.8       |
| 2.5                 | Weighted annual mean                    | NA       | 2               | ND       | ND       | ND          | ND            | ND             |               | 11.275   |              | 10.795         |            |

| Metropolit           | an Statistical Area                     | Trend    | #Trend<br>Sites | 1993           | 1994           | 1995          | 1996          | 1997          | 1998           | 1999           | 2000           | 2001           | 2002          |
|----------------------|-----------------------------------------|----------|-----------------|----------------|----------------|---------------|---------------|---------------|----------------|----------------|----------------|----------------|---------------|
| OWENSBO              | RO, KY                                  |          |                 |                |                |               |               |               |                |                |                |                |               |
| SO,                  | 2nd daily max                           | down     | 1               | 0.05           | 0.035          | 0.028         | 0.02          | 0.027         | 0.023          | 0.024          | 0.017          | 0.019          | 0.02          |
| 2                    | Annual mean                             | down     | 1               | 0.009          | 0.009          | 0.007         | 0.007         | 0.007         | 0.007          | 0.006          | 0.005          | 0.004          | 0.004         |
| NO <sub>2</sub>      | Annual mean                             | down     | 1               | 0.012          | 0.012          | 0.013         | 0.011         | 0.012         | 0.013          | 0.011          | 0.011          | 0.01           | 0.01          |
| Ozone                | 2nd highest daily max                   | ns       | 1               | 0.106          | 0.107          | 0.109         | 0.107         | 0.108         | 0.11           | 0.102          | 0.082          | 0.086          | 0.109         |
|                      | 4th highest daily max 8-h average       | ns       | 1               | 0.081          | 0.092          | 0.088         | 0.086         | 0.087         | 0.086          | 0.09           | 0.074          | 0.073          | 0.086         |
| PM <sub>10</sub> *   | 90th percentile                         | down     | 1               | 43             | 42             | 42            | 40            | 39            | 40             | 38             | 32             | 34             | 33            |
|                      | Weighted annual mean                    | down     | 1               | 24.9           | 25.6           | 24.9          | 23.4          | 22.8          | 23.1           | 22             | 20             | 20.6           | 19.9          |
| PM <sub>2.5</sub> *  | 98th percentile                         | NA       | 1               | ND             | ND             | ND            | ND            | ND            | ND             | 33.1           | 32.3           | 31.5           | 29.5          |
|                      | Weighted annual mean                    | NA       | 1               | ND             | ND             | ND            | ND            | ND            | ND             | 15.22          | 15.2           | 15.18          | 14.64         |
|                      | •                                       |          | 1               | 47             | 24             | 27            | 21            | 20            | 41             | 25             | 27             | 21             | 21            |
| PM <sub>10</sub> *   | 90th percentile                         | ns       | 1               | 46             | 34             | 37            | 31            | 38            | 41<br>25.4     | 35             | 37             | 31             | 31            |
|                      | Weighted annual mean                    | ns       | 1               | 29.3           | 22.6           | 23.4          | 21.9          | 25.1          | 25.4           | 25.2           | 24.8           | 22.4           | 20.8          |
|                      | BURG-MARIETTA, WV-OH                    |          | 1               | 0.0/5          | 0.004          | 0.041         | 0.04/         | 0.050         | 0.000          |                | 0.027          | 0.025          | 0 0 0 0       |
| $SO_2$               | 2nd daily max                           | ns       | 1               | 0.065          | 0.084          | 0.041         | 0.046         | 0.052         | 0.089          | 0.058          | 0.036          | 0.035          | 0.038         |
| Ozone                | Annual mean<br>2nd highest daily max    | ns<br>ns | 1<br>2          | 0.014<br>0.114 | 0.017<br>0.113 | 0.01<br>0.117 | 0.01<br>0.107 | 0.01<br>0.106 | 0.013<br>0.113 | 0.013<br>0.121 | 0.011<br>0.104 | 0.009<br>0.106 | 0.01<br>0.114 |
| OZUNE                | 4th highest daily max 8-h average       | ns       | 2               | 0.114          | 0.113          | 0.097         | 0.088         | 0.106         | 0.093          | 0.121          | 0.104          | 0.085          | 0.095         |
| PM <sub>10</sub> *   | 90th percentile                         | ns       | 2               | 0.092          | 0.095          | 40            | 0.088<br>34   | 0.085         | 0.093<br>44    | 0.090          | 0.085          | 0.085          | 0.095         |
| 10110                | Weighted annual mean                    | down     | 1               | 29.2           | 27.3           | 25.3          | 22.7          | 23.1          | 23.1           | 20.5           | 21.4           | 22.1           | 23.5          |
| PM <sub>2.5</sub> *  | 98th percentile                         | NA       | 1               | ND             | ND             | ND            | ND            | ND            | ND             | 42.8           | 38             | 42.1           | 37            |
| 2.5                  | Weighted annual mean                    | NA       | 1               | ND             | ND             | ND            | ND            | ND            | ND             | 17.27          | 17.68          | 17.4           | 15.76         |
| PENSACOL             | 0                                       |          |                 |                |                |               |               |               |                |                |                |                |               |
| SO <sub>2</sub>      | 2nd daily max                           | ns       | 2               | 0.047          | 0.045          | 0.023         | 0.024         | 0.031         | 0.023          | 0.024          | 0.027          | 0.025          | 0.021         |
| 2                    | Annual mean                             | down     | 2               | 0.006          | 0.005          | 0.003         | 0.004         | 0.004         | 0.004          | 0.004          | 0.004          | 0.003          | 0.003         |
| Ozone                | 2nd highest daily max                   | ns       | 2               | 0.102          | 0.108          | 0.117         | 0.098         | 0.11          | 0.121          | 0.102          | 0.113          | 0.093          | 0.09          |
|                      | 4th highest daily max 8-h average       | ns       | 2               | 0.08           | 0.085          | 0.083         | 0.079         | 0.085         | 0.095          | 0.084          | 0.09           | 0.079          | 0.073         |
| PM <sub>10</sub> *   | 90th percentile                         | ns       | 2               | 39             | 34.5           | 31.5          | 31            | 41.5          | 37             | 38             | 32.5           | 30             | 27.5          |
|                      | Weighted annual mean                    | down     | 2               | 25.8           | 23             | 21.7          | 20            | 23.7          | 21.9           | 23.25          | 21.8           | 20.9           | 17.7          |
| PM <sub>2.5</sub> *  | 98th percentile                         | NA       | 1               | ND             | ND             | ND            | ND            | ND            | ND             | 29.8           | 31.8           | 22.2           | 22.4          |
|                      | Weighted annual mean                    | NA       | 1               | ND             | ND             | ND            | ND            | ND            | ND             | 14.82          | 13.93          | 11.39          | 10.95         |
| PEORIA-PE            | EKIN, IL                                |          |                 |                |                |               |               |               |                |                |                |                |               |
|                      | Maximum quarterly value                 | down     | 1               | 0.032          | 0.019          | 0.026         | 0.024         | 0.019         | 0.017          | 0.017          | 0.018          | 0.019          | 0.013         |
| CO                   | 2nd max (daily-non-overlapping 8-h)     | down     | 1               | 7.3            | 5.7            | 5.6           | 4.6           | 4.7           | 5.8            | 4.6            | 3.4            | 3.5            | 3.1           |
| SO <sub>2</sub>      | 2nd daily max                           | ns       | 2               | 0.039          | 0.05           | 0.084         | 0.045         | 0.042         | 0.041          | 0.036          | 0.05           | 0.054          | 0.043         |
|                      | Annual mean                             | down     | 2               | 0.007          | 0.007          | 0.007         | 0.007         | 0.007         | 0.007          | 0.006          | 0.006          | 0.006          | 0.005         |
| Ozone                | 2nd highest daily max                   | ns       | 2               | 0.079          | 0.089          | 0.094         | 0.089         | 0.086         | 0.085          | 0.098          | 0.083          | 0.081          | 0.098         |
|                      | 4th highest daily max 8-h average       | ns       | 2<br>1          | 0.064          | 0.076          | 0.082         | 0.081         | 0.072         | 0.076          | 0.082          | 0.072          | 0.074          | 0.083         |
| PM <sub>10</sub> *   | 90th percentile                         | ns       | 1               | 35             | 39             | 38            | 31<br>20.6    | 41<br>26.2    | 42<br>25.5     | 40<br>23.1     | 43<br>24.3     | 36<br>22.3     | 36<br>21.2    |
| PM <sub>2.5</sub> *  | Weighted annual mean<br>98th percentile | ns<br>NA | 1               | 19.6<br>ND     | 20.6<br>ND     | 20.1<br>ND    | 20.8<br>ND    | 20.2<br>ND    | 25.5<br>ND     | 23.1           | 24.3<br>32.2   | 22.3<br>36.4   | 33.6          |
| F 1VI <sub>2.5</sub> | Weighted annual mean                    | NA       | 1               | ND             | ND             | ND            | ND            | ND            | ND             | 16.04          | 14.85          | 13.94          | 13.88         |
|                      | PHIA, PA-NJ                             | 1071     |                 | ND             | ND             | ND            | ND            | ND            | ND             | 10.04          | 14.00          | 13.74          | 15.00         |
| FIILADELI            | Maximum quarterly value                 | down     | 2               | 0.076          | 0.06           | 0.058         | 0.05          | 0.045         | 0.037          | 0.039          | 0.049          | 0.031          | 0.03          |
| CO                   | 2nd max (daily-non-overlapping 8-h)     | down     | 5               | 5.4            | 6.16           | 4.36          | 4.72          | 0.045         | 3.6            | 3.86           | 3.58           | 3.34           | 2.36          |
| SO <sub>2</sub>      | 2nd daily max                           | down     | 4               | 0.029          | 0.04           | 0.028         | 0.026         | 0.026         | 0.022          | 0.022          | 0.024          | 0.025          | 0.023         |
| 0.02                 | Annual mean                             | down     | 4               | 0.0027         | 0.009          | 0.020         | 0.007         | 0.020         | 0.007          | 0.002          | 0.007          | 0.025          |               |
| NO <sub>2</sub>      | Annual mean                             | down     | 4               | 0.024          | 0.027          | 0.024         |               |               | 0.023          | 0.022          |                | 0.022          |               |
| Ozone                | 2nd highest daily max                   | ns       | 5               | 0.121          | 0.115          | 0.131         | 0.12          | 0.117         | 0.115          | 0.126          | 0.113          | 0.116          |               |
|                      | 4th highest daily max 8-h average       | ns       | 5               | 0.096          | 0.088          | 0.106         | 0.091         | 0.095         | 0.093          | 0.099          | 0.09           | 0.094          |               |
| PM <sub>10</sub> *   | 90th percentile                         | down     | 2               | 48             | 59             | 48.5          | 49            | 49            | 42             | 37.5           | 42             | 42             | 38.5          |
|                      | Weighted annual mean                    | down     | 2               | 28.25          | 32.75          | 29.25         | 29.9          | 28.25         | 24.5           |                | 23.825         |                | 23.25         |
| PM <sub>2.5</sub> *  | 98th percentile                         | NA       | 4               | ND             | ND             | ND            | ND            | ND            | ND             |                | 36.975         |                |               |
|                      | Weighted annual mean                    | NA       | 4               | ND             | ND             | ND            | ND            | ND            | ND             | 13.353         | 14.895         | 15.244         | 14.148        |
| PHOENIX-N            |                                         |          |                 |                |                |               |               |               |                |                |                |                |               |
| CO                   | 2nd max (daily-non-overlapping 8-h)     | down     | 2               | 6.5            | 7.25           | 6.1           | 5.95          | 5.2           | 6.35           | 5.5            | 5.15           | 4.55           | 4.1           |
| SO <sub>2</sub>      | 2nd daily max                           | ns       | 1               | 0.008          | 0.008          | 0.008         | 0.017         | 0.009         | 0.011          | 0.012          | 0.012          |                | 0.01          |
| -                    | Annual mean                             | ns       | 1               | 0.002          | 0.002          | 0.002         | 0.003         | 0.004         | 0.004          | 0.003          | 0.003          | 0.003          | 0.003         |
| NO <sub>2</sub>      | Annual mean                             | ns       | 1               | 0.029          | 0.029          | 0.029         | 0.029         | 0.028         | 0.028          | 0.031          | 0.029          | 0.026          | 0.029         |
| Ozone                | 2nd highest daily max                   | ns       | 2               | 0.116          | 0.108          | 0.123         | 0.111         | 0.105         | 0.113          | 0.109          | 0.103          | 0.098          | 0.11          |
| DI                   | 4th highest daily max 8-h average       | ns       | 2               | 0.081          | 0.077          | 0.088         | 0.088         | 0.085         | 0.088          | 0.088          | 0.084          | 0.081          | 0.085         |
| PM <sub>10</sub> *   | 90th percentile                         | ns       | 2               | 56             | 62             | 64.5          | 64            | 67            | 59.5           | 74             | 70             | 54             | 62.5          |
|                      | Weighted annual mean                    | ns       | 2               | 38.55          | 38.85          | 39.9          | 39.9          | 43.75         | 34.15          | 42.95          | 44.9           | 36.1           | 45.15         |

| Metropolita         | an Statistical Area                 | Trend | #Trend<br>Sites | 1993    | 1994    | 1995   | 1996   | 1997   | 1998   | 1999  | 2000   | 2001   | 2002    |
|---------------------|-------------------------------------|-------|-----------------|---------|---------|--------|--------|--------|--------|-------|--------|--------|---------|
| PITTSBUR            | GH, PA                              |       |                 |         |         |        |        |        |        |       |        |        |         |
|                     | Maximum quarterly value             | ns    | 1               | 0.134   | 0.171   | 0.115  | 0.058  | 0.075  | 0.061  | 0.081 | 0.07   | 0.057  | 0.111   |
| CO                  | 2nd max (daily-non-overlapping 8-h) | down  | 1               | 5.4     | 7       | 5.9    | 4.3    | 3.8    | 3.8    | 3.9   | 3.2    | 3.4    | 2.7     |
| SO <sub>2</sub>     | 2nd daily max                       | down  | 2               | 0.077   | 0.087   | 0.073  | 0.053  | 0.068  | 0.073  | 0.065 | 0.064  | 0.063  | 0.057   |
|                     | Annual mean                         | down  | 2               | 0.016   | 0.016   | 0.013  | 0.013  | 0.013  | 0.013  | 0.013 | 0.011  | 0.012  |         |
| NO <sub>2</sub>     | Annual mean                         | down  | 1               | 0.024   | 0.027   | 0.023  | 0.024  | 0.022  | 0.026  | 0.024 | 0.022  | 0.021  | 0.02    |
| Ozone               | 2nd highest daily max               | ns    | 3               | 0.116   | 0.114   | 0.124  | 0.107  | 0.114  | 0.114  | 0.128 | 0.098  | 0.105  | 0.117   |
|                     | 4th highest daily max 8-h average   | ns    | 3               | 0.094   | 0.097   | 0.104  | 0.09   | 0.094  | 0.095  | 0.096 | 0.082  | 0.089  | 0.103   |
| PM <sub>10</sub> *  | 90th percentile                     | down  | 2               | 79      | 82      | 71     | 68     | 67.5   | 70     | 61.5  | 65.5   | 67     | 63      |
|                     | Weighted annual mean                | down  | 2               | 38.45   | 43.3    | 37.1   | 35.55  | 34.3   | 35.75  | 32.2  | 34.05  | 35.85  | 31.6    |
| PM <sub>2.5</sub> * | 98th percentile                     | NA    | 2               | ND      | ND      | ND     | ND     | ND     | ND     | 49.3  | 49.15  | 52.8   | 50.65   |
|                     | Weighted annual mean                | NA    | 2               | ND      | ND      | ND     | ND     | ND     | ND     | 18.8  | 18.275 | 19.815 | 17.815  |
| PITTSFIELD          | D, MA                               |       |                 |         |         |        |        |        |        |       |        |        |         |
| Ozone               | 2nd highest daily max               | ns    | 1               | 0.112   | 0.085   | 0.086  | 0.108  | 0.087  | 0.078  | 0.092 | 0.088  | 0.112  | 0.103   |
|                     | 4th highest daily max 8-h average   | ns    | 1               | 0.083   | 0.074   | 0.072  | 0.081  | 0.078  | 0.069  | 0.075 | 0.072  | 0.092  | 0.086   |
| PM <sub>2.5</sub> * | 98th percentile                     | NA    | 1               | ND      | ND      | ND     | ND     | ND     | ND     | 47.7  | 28.8   | 33.8   | 31.5    |
| 2.5                 | Weighted annual mean                | NA    | 1               | ND      | ND      | ND     | ND     | ND     | ND     | 12.78 | 11.8   | 13.35  | 11.44   |
| POCATELLO           | D, ID                               |       |                 |         |         |        |        |        |        |       |        |        |         |
| SO,                 | 2nd daily max                       | ns    | 1               | 0.037   | 0.037   | 0.037  | 0.03   | 0.034  | 0.034  | 0.046 | 0.036  | 0.037  | 0.027   |
| 2                   | Annual mean                         | ns    | 1               | 0.007   | 0.007   | 0.007  | 0.006  | 0.005  | 0.006  | 0.007 | 0.008  | 0.007  | 0.005   |
| PM <sub>10</sub> *  | 90th percentile                     | ns    | 1               | 56      | 50      | 40     | 46     | 39     | 37     | 48    | 45     | 48     | 45      |
| • •••10             | Weighted annual mean                | ns    | 1               | 39.4    | 30.5    | 23.2   | 24.4   | 22.9   | 22.4   | 25.3  | 24.9   | 26     | 25.4    |
| PM <sub>2.5</sub> * | 98th percentile                     | NA    | 2               | ND      | ND      | ND     | ND     | ND     | ND     | 72.25 | 51.1   | 36.2   | 36.85   |
| 2.5                 | Weighted annual mean                | NA    | 2               | ND      | ND      | ND     | ND     | ND     | ND     | 9.64  | 10.46  | 9.32   | 8.66    |
| PONCE, PR           |                                     | 101   | 2               | ND      | ne      | ND     | ND     | ND     | ND     | 7.01  | 10.10  | 7.02   | 0.00    |
|                     | 98th percentile                     | NA    | 2               | ND      | ND      | ND     | ND     | ND     | ND     | 17.35 | 17.95  | 14.25  | 13.1    |
| PM <sub>2.5</sub> * | Weighted annual mean                | NA    | 2               | ND      | ND      | ND     | ND     | ND     | ND     | 8.19  | 7.27   | 7.24   | 7.23    |
|                     | 6                                   | NA NA | Z               | ND      | ND      | ND     | ND     | ND     | ND     | 0.17  | 1.21   | 7.24   | 1.23    |
| PORTLAND            |                                     |       | 1               | 0 1 1 0 | 0 1 2 2 | 0.11/  | 0.1    | 0.10   | 0.10   | 0.105 | 0 077  | 0.11/  | 0 1 0 0 |
| Ozone               | 2nd highest daily max               | ns    | 1               | 0.112   | 0.122   | 0.116  | 0.1    | 0.13   | 0.12   | 0.105 | 0.077  | 0.116  | 0.122   |
| DM *                | 4th highest daily max 8-h average   | ns    | 1               | 0.089   | 0.088   | 0.096  | 0.083  | 0.103  | 0.089  | 0.076 | 0.067  | 0.097  | 0.096   |
| PM <sub>10</sub> *  | 90th percentile                     | ns    | 1               | 51      | 46      | 69     | 43     | 51     | 46     | 33    | 46     | 46     | 53      |
|                     | Weighted annual mean                | down  | 1               | 29      | 26.5    | 34.3   | 27.1   | 29.3   | 26.7   | 21.4  | 23.7   | 25.6   | 24.6    |
| PM <sub>2.5</sub> * | 98th percentile                     | NA    | 2               | ND      | ND      | ND     | ND     | ND     | ND     | 34.2  | 27.1   | 30.5   | 28.3    |
|                     | Weighted annual mean                | NA    | 2               | ND      | ND      | ND     | ND     | ND     | ND     | 10.01 | 9.565  | 10.28  | 9.58    |
|                     | -VANCOUVER, OR-WA                   |       |                 |         |         |        |        |        |        |       |        |        |         |
| CO                  | 2nd max (daily-non-overlapping 8-h) | down  | 1               | 6.8     | 7.8     | 6.3    | 6.4    | 6      | 5.5    | 6.7   | 6.2    | 4.7    | 5.7     |
| Ozone               | 2nd highest daily max               | ns    | 1               | 0.082   | 0.106   | 0.092  | 0.124  | 0.079  | 0.136  | 0.094 | 0.082  | 0.093  | 0.099   |
|                     | 4th highest daily max 8-h average   | ns    | 1               | 0.062   | 0.078   | 0.073  | 0.099  | 0.062  | 0.081  | 0.072 | 0.065  | 0.069  | 0.063   |
| PM <sub>10</sub> *  | 90th percentile                     | down  | 3               | 47.667  | 41.333  | 35     | 33     | 34.333 | 31.667 |       | 31.667 | 26.333 | 27.667  |
|                     | Weighted annual mean                | down  | 3               | 26.867  | 25.2    | 21.433 | 21.267 | 22.667 | 20.533 | 19.3  | 18.667 | 17.1   | 17.1    |
| PM <sub>2.5</sub> * | 98th percentile                     | NA    | 4               | ND      | ND      | ND     | ND     | ND     | ND     | 30.55 | 32.325 | 27.325 | 34.525  |
|                     | Weighted annual mean                | NA    | 4               | ND      | ND      | ND     | ND     | ND     | ND     | 9.115 | 10.028 | 8.998  | 9.323   |
| PORTSMOU            | JTH-ROCHESTER, NH-ME                |       |                 |         |         |        |        |        |        |       |        |        |         |
| SO <sub>2</sub>     | 2nd daily max                       | down  | 1               | 0.019   | 0.022   | 0.017  | 0.015  | 0.018  | 0.016  | 0.019 | 0.013  | 0.013  | 0.013   |
| 2                   | Annual mean                         | down  | 1               | 0.006   | 0.006   | 0.004  | 0.004  | 0.004  | 0.004  | 0.004 | 0.003  | 0.003  | 0.003   |
| NO <sub>2</sub>     | Annual mean                         | down  | 1               | 0.014   |         | 0.012  |        |        | 0.012  | 0.01  |        | 0.011  |         |
| Ozone               | 2nd highest daily max               | ns    | 2               | 0.117   | 0.118   | 0.122  | 0.097  | 0.121  | 0.11   | 0.107 | 0.087  | 0.102  | 0.106   |
|                     | 4th highest daily max 8-h average   | ns    | 2               | 0.085   | 0.087   | 0.087  |        | 0.091  | 0.087  | 0.087 | 0.069  | 0.079  |         |
| PM <sub>10</sub> *  | 90th percentile                     | down  | 1               | 31      | 29      | 27     | 30     | 29     | 27     | 30    | 26     | 26     | 26      |
| 10                  | Weighted annual mean                | down  | 1               | 19      | 15.3    | 15.3   | 17.8   | 17.9   | 16.4   | 16.2  | 14.5   | 14.5   | 14.5    |
| PROVIDEN            | CE-FALL RIVER-WARWICK, RI-MA        |       | -               |         | 2.5     | 2.2    |        |        |        |       |        |        |         |
| CO                  | 2nd max (daily-non-overlapping 8-h) | down  | 1               | 5.4     | 6.7     | 7      | 4.4    | 5.6    | 4.7    | 3.9   | 3.5    | 3.8    | 2.7     |
| SO,                 | 2nd daily max                       | ns    | 3               | 0.034   | 0.035   | 0.024  | 0.03   | 0.031  | 0.025  | 0.024 | 0.031  | 0.028  | 0.022   |
| 50 <sub>2</sub>     | Annual mean                         | down  | 3               | 0.034   | 0.035   | 0.024  | 0.003  | 0.031  | 0.025  | 0.024 | 0.031  | 0.028  | 0.022   |
| NO <sub>2</sub>     | Annual mean                         | ns    | 3<br>1          | 0.008   | 0.008   | 0.008  | 0.007  | 0.007  | 0.008  | 0.008 | 0.008  |        | 0.005   |
|                     |                                     |       |                 |         |         |        |        |        |        |       |        |        |         |
| Ozone               | 2nd highest daily max               | ns    | 1               | 0.12    | 0.12    | 0.131  | 0.112  | 0.108  | 0.098  | 0.108 | 0.115  | 0.128  |         |
|                     | 4th highest daily max 8-h average   | ns    | 1               | 0.089   | 0.089   | 0.096  | 0.083  | 0.084  | 0.077  | 0.08  | 0.08   | 0.102  |         |
| PM <sub>10</sub> *  | 90th percentile                     | down  | 1               | 46      | 46      | 36     | 40     | 35     | 32     | 35    | 31     | 38     | 30      |
|                     | Weighted annual mean                | down  | 1               | 28.6    | 28.6    | 21.5   | 24.5   | 24.1   | 22.5   | 23.1  | 21.3   | 21.7   | 18.3    |
|                     | 98th percentile                     | NA    | 3               | ND      | ND      | ND     | ND     | ND     | ND     | 36    | 28.867 | 33.267 | 29.067  |
| PM <sub>2.5</sub> * | Weighted annual mean                | NA    | 3               | ND      | ND      | ND     | ND     | ND     | ND     | 11.75 |        | 12.383 |         |

| Metropolita          | an Statistical Area                 | Trend | #Trend<br>Sites | 1993       | 1994        | 1995       | 1996       | 1997       | 1998       | 1999             | 2000   | 2001          | 2002   |
|----------------------|-------------------------------------|-------|-----------------|------------|-------------|------------|------------|------------|------------|------------------|--------|---------------|--------|
| PROVO-ORI            | EM, UT                              |       |                 |            |             |            |            |            |            |                  |        |               |        |
| NO <sub>2</sub>      | Annual mean                         | ns    | 1               | 0.026      | 0.024       | 0.023      | 0.024      | 0.023      | 0.024      | 0.024            | 0.024  | 0.024         | 0.025  |
| Ozóne                | 2nd highest daily max               | ns    | 1               | 0.084      | 0.084       | 0.083      | 0.097      | 0.08       | 0.102      | 0.096            | 0.085  | 0.086         | 0.096  |
|                      | 4th highest daily max 8-h average   | ns    | 1               | 0.068      | 0.069       | 0.068      | 0.078      | 0.07       | 0.083      | 0.073            | 0.071  | 0.067         | 0.077  |
| PM <sub>10</sub> *   | 90th percentile                     | ns    | 2               | 71.5       | 55          | 48.5       | 56.5       | 49.5       | 44         | 51.5             | 52     | 53            | 48.5   |
|                      | Weighted annual mean                | ns    | 2               | 37.5       | 34.25       | 28.8       | 33.7       | 30         | 26.25      | 29.6             | 29.1   | 31.4          | 30.15  |
| PM <sub>2.5</sub> *  | 98th percentile                     | NA    | 2               | ND         | ND          | ND         | ND         | ND         | ND         | 31.15            | 33.75  | 55.15         | 41.4   |
|                      | Weighted annual mean                | NA    | 2               | ND         | ND          | ND         | ND         | ND         | ND         | 9.355            | 9.925  | 11.685        | 11.26  |
| PUEBLO, CO           | 0                                   |       |                 |            |             |            |            |            |            |                  |        |               |        |
| PM <sub>2.5</sub> *  | 98th percentile                     | NA    | 1               | ND         | ND          | ND         | ND         | ND         | ND         | ND               | 19.9   | 19.4          | 16.9   |
| 2.5                  | Weighted annual mean                | NA    | 1               | ND         | ND          | ND         | ND         | ND         | ND         | ND               | 7.81   | 8.52          | 7.76   |
| RACINE, WI           | 1                                   |       |                 |            |             |            |            |            |            |                  |        |               |        |
| CO                   | 2nd max (daily-non-overlapping 8-h) | down  | 1               | 4.1        | 4.3         | 4.3        | 3          | 3.1        | 3          | 2.7              | 2.3    | 2.1           | 2      |
| Ozone                | 2nd highest daily max               | ns    | 1               | 0.103      | 0.114       | 0.113      | 0.129      | 0.117      | 0.124      | 0.114            | 0.096  |               | 0.141  |
|                      | 4th highest daily max 8-h average   | ns    | 1               | 0.08       | 0.088       | 0.096      | 0.083      | 0.098      | 0.084      | 0.093            | 0.078  | 0.092         | 0.111  |
| RAI FIGH-D           | URHAM-CHAPEL HILL, NC               |       |                 |            |             |            |            |            |            |                  |        |               |        |
| Ozone                | 2nd highest daily max               | ns    | 4               | 0.103      | 0.101       | 0.102      | 0.095      | 0.106      | 0.115      | 0.122            | 0.11   | 0.103         | 0.116  |
| 020110               | 4th highest daily max 8-h average   | ns    | 4               | 0.085      | 0.081       | 0.084      | 0.08       | 0.09       | 0.095      | 0.097            | 0.086  | 0.085         | 0.1    |
| PM <sub>10</sub> *   | 90th percentile                     | ns    | 2               | 39         | 31          | 33.5       | 39         | 39.5       | 40         | 36.5             | 35.5   | 37            | 34.5   |
| 10                   | Weighted annual mean                | ns    | 2               | 24.75      | 21.8        | 23.3       | 25.1       | 24.6       | 24.4       | 22.15            | 23.05  | 23.15         | 21.55  |
| PM <sub>25</sub> *   | 98th percentile                     | NA    | 4               | ND         | ND          | ND         | ND         | ND         | ND         | 35.375           |        | 30.85         |        |
| 2.5                  | Weighted annual mean                | NA    | 4               | ND         | ND          | ND         | ND         | ND         | ND         | 15.258           |        |               | 13.12  |
| RAPID CITY           |                                     |       |                 |            |             |            |            |            |            | 101200           |        |               | 10112  |
|                      | 98th percentile                     | NA    | 3               | ND         | ND          | ND         | ND         | ND         | ND         | 25               | 23.133 | 10 522        | 22.6   |
| PM <sub>2.5</sub> *  | Weighted annual mean                | NA    | 3               | ND         | ND          | ND         | ND         | ND         | ND         | 9.09             |        | 7.917         | 7.37   |
|                      | 0                                   | INA   | 3               | ND         | ND          | ND         | ND         | ND         | ND         | 9.09             | 1.033  | 1.917         | 1.57   |
| READING, F           |                                     |       |                 | 0.007      | 0.007       | 0.000      | 0.007      | 0.000      | 0.000      | 0.007            | 0.000  | 0.005         | 0.010  |
| SO <sub>2</sub>      | 2nd daily max                       | down  | 1               | 0.027      | 0.037       | 0.032      | 0.037      | 0.028      | 0.022      | 0.027            | 0.028  | 0.025         | 0.019  |
| NO                   | Annual mean                         | down  | 1               | 0.009      | 0.01        | 0.009      | 0.009      | 0.008      | 0.009      | 0.008            | 0.008  | 0.007         | 0.007  |
| NO <sub>2</sub>      | Annual mean                         | down  | 1               | 0.021      | 0.023       | 0.021      | 0.022      | 0.021      | 0.021      | 0.021            | 0.02   |               | 0.019  |
| Ozone                | 2nd highest daily max               | ns    | 2               | 0.108      | 0.104       | 0.112      | 0.105      | 0.115      | 0.105      | 0.126            | 0.103  | 0.122         | 0.11   |
|                      | 4th highest daily max 8-h average   | ns    | 2               | 0.088      | 0.084       | 0.093      | 0.086      | 0.092      | 0.091      | 0.101            | 0.08   | 0.095         | 0.093  |
| PM <sub>2.5</sub> *  | 98th percentile                     | NA    | 1               | ND         | ND          | ND         | ND         | ND         | ND         | 35.7             | 37.5   | 43            | 48.5   |
|                      | Weighted annual mean                | NA    | 1               | ND         | ND          | ND         | ND         | ND         | ND         | 13.51            | 16.87  | 16.49         | 16.66  |
| REDDING, O           |                                     |       | _               |            |             |            |            |            |            |                  |        |               |        |
| PM <sub>10</sub> *   | 90th percentile                     | ns    | 1               | 47         | 47          | 47         | 39         | 37         | 46         | 40               | 37     | 41            | 42     |
| <b></b>              | Weighted annual mean                | ns    | 1               | 29.9       | 29.9        | 25.2       | 24.1       | 22.2       | 23.4       | 28.5             | 23.6   | 23.6          | 25.4   |
| PM <sub>2.5</sub> *  | 98th percentile                     | NA    | 1               | ND         | ND          | ND         | ND         | ND         | ND         | 55               | 42     | 29            | 38     |
|                      | Weighted annual mean                | NA    | 1               | ND         | ND          | ND         | ND         | ND         | ND         | 11.53            | 10.355 | 9.18          | 10.68  |
| RENO, NV             |                                     |       |                 |            |             |            |            |            |            |                  |        |               |        |
| CO                   | 2nd max (daily-non-overlapping 8-h) | down  | 3               | 6.067      | 7.633       | 5.533      | 6.467      | 6.533      | 6.033      | 7                | 4.633  | 4.5           | 4.3    |
| Ozone                | 2nd highest daily max               | ns    | 2               | 0.087      | 0.088       | 0.083      | 0.096      | 0.084      | 0.093      | 0.094            | 0.083  | 0.087         | 0.095  |
|                      | 4th highest daily max 8-h average   | ns    | 2               | 0.063      | 0.07        | 0.069      | 0.074      | 0.068      | 0.075      | 0.075            | 0.067  | 0.07          | 0.076  |
| PM <sub>10</sub> *   | 90th percentile                     | ns    | 3               | 81.333     | 74          | 58         | 61         |            | 64.333     |                  | 64.333 |               | 56     |
|                      | Weighted annual mean                | down  | 3               | 45.767     | 41.767      |            |            | 37.133     |            | 40.233           |        | 34.367        | 35.1   |
| PM <sub>2.5</sub> *  | 98th percentile                     | NA    | 1               | ND         | ND          | ND         | ND         | ND         | ND         | 32.8             | 31.4   | 36.4          | 25.9   |
|                      | Weighted annual mean                | NA    | 1               | ND         | ND          | ND         | ND         | ND         | ND         | 9.93             | 8.92   | 9.82          | 9.12   |
|                      | KENNEWICK-PASCO, WA                 |       |                 |            |             |            |            |            |            |                  |        |               |        |
| PM <sub>10</sub> *   | 90th percentile                     | up    | 1               | 27         | 27          | 34         | 38         | 33         | 30         | 42               | 40     | 38            | 42     |
|                      | Weighted annual mean                | up    | 1               | 15.1       | 15.1        | 17.8       | 20.3       | 19.4       | 19.9       | 20.8             | 24     | 22            | 22.8   |
| PM <sub>2.5</sub> *  | 98th percentile                     | NA    | 1               | ND         | ND          | ND         | ND         | ND         | ND         | ND               | 31.2   | 18.2          | 22.5   |
| 2.0                  | Weighted annual mean                | NA    | 1               | ND         | ND          | ND         | ND         | ND         | ND         | ND               | 8.4    | 6.76          | 6.39   |
| RICHMOND             | -PETERSBURG, VA                     |       |                 |            |             |            |            |            |            |                  |        |               |        |
| CO                   | 2nd max (daily-non-overlapping 8-h) | down  | 1               | 3          | 2.7         | 2.3        | 2.5        | 2.5        | 1.7        | 1.9              | 2      | 2.3           | 2      |
| SO <sub>2</sub>      | 2nd daily max                       | down  | 1               | 0.032      | 0.024       | 0.023      | 0.022      | 0.017      | 0.019      | 0.017            | 0.017  | 0.019         | 0.021  |
| 002                  | Annual mean                         | down  | 1               | 0.002      | 0.006       | 0.005      | 0.002      | 0.006      | 0.006      | 0.005            | 0.006  | 0.005         | 0.005  |
| NO <sub>2</sub>      | Annual mean                         | ns    | 1               | 0.01       | 0.012       | 0.011      | 0.01       | 0.012      | 0.012      | 0.000            | 0.011  | 0.012         |        |
| Ozone                | 2nd highest daily max               | ns    | 1               | 0.132      | 0.101       | 0.106      | 0.104      | 0.123      | 0.116      | 0.133            | 0.094  | 0.119         |        |
| 020110               | 4th highest daily max 8-h average   | ns    | 1               | 0.132      | 0.082       | 0.088      | 0.084      | 0.123      | 0.092      | 0.097            | 0.074  | 0.089         |        |
| PM <sub>10</sub> *   | 90th percentile                     | down  | 1               | 45         | 36          | 43         | 44         | 39         | 39         | 28               | 38     | 35            | 29     |
| 10                   | Weighted annual mean                | down  | 1               | 24.2       | 22.1        | 24.3       | 23.8       | 22.7       | 23.4       | 18.6             | 22.2   | 20.4          | 18.1   |
| PM <sub>2.5</sub> *  | 98th percentile                     | NA    | 4               | 24.2<br>ND | ZZ. I<br>ND | 24.3<br>ND | 23.0<br>ND | 22.7<br>ND | 23.4<br>ND | 35.467           |        | 20.4<br>33.1  |        |
| F 1VI <sub>2.5</sub> | Weighted annual mean                | NA    | 4               |            | ND          | ND         | ND         | ND         | ND         | 35.467<br>14.117 |        | 33.1<br>13.74 |        |
|                      | vveidnied annuäl mean               | INA   | 4               | ND         | ND          | ND         | ND         | INI J      | INI J      | 14 11/           | 14 3 3 | 1.5/4         | 13.093 |

| Metropolita         | an Statistical Area                 | Trend | #Trend<br>Sites | 1993     | 1994     | 1995  | 1996  | 1997   | 1998  | 1999   | 2000   | 2001   | 200     |
|---------------------|-------------------------------------|-------|-----------------|----------|----------|-------|-------|--------|-------|--------|--------|--------|---------|
| RIVERSIDE           | -SAN BERNARDINO, CA                 |       |                 |          |          |       |       |        |       |        |        |        |         |
|                     | Maximum quarterly value             | ns    | 1               | 0.036    | 0.026    | 0.033 | 0.031 | 0.045  | 0.046 | 0.038  | 0.032  | 0.029  | 0.02    |
| CO                  | 2nd max (daily-non-overlapping 8-h) | down  | 2               | 5.55     | 5.8      | 5.5   | 4.8   | 4.95   | 4.4   | 4      | 4      | 3.45   | 3.2     |
| NO <sub>2</sub>     | Annual mean                         | down  | 2               | 0.036    | 0.036    | 0.038 | 0.033 | 0.03   | 0.029 | 0.032  | 0.03   | 0.031  | 0.0     |
| Ozóne               | 2nd highest daily max               | down  | 3               | 0.223    | 0.218    | 0.216 | 0.195 | 0.163  | 0.205 | 0.143  | 0.16   | 0.158  | 0.148   |
|                     | 4th highest daily max 8-h average   | down  | 3               | 0.162    | 0.153    | 0.151 | 0.138 | 0.118  | 0.152 | 0.112  | 0.115  | 0.121  | 0.11!   |
| PM <sub>10</sub> *  | 90th percentile                     | down  | 2               | 81.5     | 71.5     | 77    | 67    | 68.5   | 66    | 73     | 64.5   | 71.5   | 60      |
|                     | Weighted annual mean                | ns    | 2               | 51.35    | 45.8     | 44.45 | 43.3  | 43.35  | 41.65 | 49.55  | 41.6   | 46.2   | 44.     |
| PM <sub>2.5</sub> * | 98th percentile                     | NA    | 3               | ND       | ND       | ND    | ND    | ND     | ND    | 70.15  | 55.633 |        | 53.33   |
|                     | Weighted annual mean                | NA    | 3               | ND       | ND       | ND    | ND    | ND     | ND    | 28.875 | 21.85  | 23.547 | 22.7    |
| OANOKE,             |                                     |       | 4               |          |          | 5.0   | 5.0   |        |       | 0.7    | 0.1    |        |         |
| CO                  | 2nd max (daily-non-overlapping 8-h) | down  | 1               | 4.5      | 5.7      | 5.2   | 5.9   | 4.3    | 3.9   | 3.7    | 3.1    | 3.4    | 0.00    |
| SO <sub>2</sub>     | 2nd daily max                       | ns    | 1               | 0.018    | 0.011    | 0.01  | 0.014 | 0.013  | 0.009 | 0.01   | 0.014  | 0.009  | 0.00    |
| NO                  | Annual mean                         | down  | 1               | 0.004    | 0.004    | 0.003 | 0.003 | 0.003  | 0.003 | 0.003  | 0.003  | 0.003  |         |
| NO <sub>2</sub>     | Annual mean                         | ns    | 1               | 0.015    | 0.013    | 0.013 | 0.013 | 0.013  | 0.014 | 0.012  | 0.011  | 0.014  | 0.01    |
| Ozone               | 2nd highest daily max               | ns    | 1               | 0.103    | 0.102    | 0.093 | 0.084 | 0.102  | 0.126 | 0.105  | 0.095  | 0.101  | 0.10    |
|                     | 4th highest daily max 8-h average   | ns    | 1               | 0.084    | 0.084    | 0.079 | 0.073 | 0.084  | 0.099 | 0.089  | 0.081  | 0.089  | 0.09    |
| PM <sub>10</sub> *  | 90th percentile                     | down  | 1               | 63       | 63       | 64    | 71    | 64     | 54    | 54     | 57     | 42     | 4<br>20 |
|                     | Weighted annual mean                | down  | 1               | 40       | 40       | 40.3  | 37.9  | 34.6   | 33.3  | 34.7   | 31.5   | 26.6   | 28      |
| PM <sub>2.5</sub> * | 98th percentile                     | NA    | 1               | ND<br>ND | ND<br>ND | ND    | ND    | ND     | ND    | 31.8   | 35.5   | 34.2   | 15 0    |
| OCULCTE             | Weighted annual mean                | NA    | I               | ND       | ND       | ND    | ND    | ND     | ND    | 13.82  | 15.52  | 15.1   | 15.0    |
| OCHESTE             |                                     | dayun | 2               | 2.15     | 4 5      | 2.15  | 2 7   | 1.0    | 2.7   | 2 5    | 2.2    | 1 75   | 2       |
| CO                  | 2nd max (daily-non-overlapping 8-h) | down  | 2               | 3.15     | 4.5      | 3.15  | 3.7   | 1.9    | 2.7   | 2.5    | 2.2    | 1.75   | 2       |
| SO <sub>2</sub>     | 2nd daily max                       | down  | 2               | 0.041    | 0.043    | 0.038 | 0.033 | 0.038  | 0.053 | 0.03   | 0.021  | 0.025  | 0.01    |
| 0                   | Annual mean                         | down  | 2               | 0.01     | 0.011    | 0.01  | 0.009 | 0.009  | 0.009 | 0.006  | 0.006  | 0.007  | 0.00    |
| Ozone               | 2nd highest daily max               | ns    | 1               | 0.092    | 0.099    | 0.103 | 0.083 | 0.097  | 0.088 | 0.096  | 0.08   | 0.099  | 0.11    |
|                     | 4th highest daily max 8-h average   | ns    | 1               | 0.074    | 0.079    | 0.09  | 0.068 | 0.085  | 0.077 | 0.088  | 0.073  | 0.084  | 0.09    |
| PM <sub>2.5</sub> * | 98th percentile                     | NA    | 1               | ND       | ND       | ND    | ND    | ND     | ND    | ND     | 28.4   | 37.5   | 31      |
|                     | Weighted annual mean                | NA    | 1               | ND       | ND       | ND    | ND    | ND     | ND    | ND     | 11.76  | 11.66  | 11.2    |
| OCKFORD             |                                     |       | 4               |          |          |       |       | 0.7    |       |        |        |        | 0       |
| CO                  | 2nd max (daily-non-overlapping 8-h) | down  | 1               | 4        | 4        | 4.5   | 3.2   | 3.7    | 3.6   | 3.8    | 2.9    | 2.9    | 2.      |
| Ozone               | 2nd highest daily max               | ns    | 1               | 0.079    | 0.101    | 0.104 | 0.089 | 0.08   | 0.085 | 0.093  | 0.084  | 0.086  | 0.09    |
|                     | 4th highest daily max 8-h average   | ns    | 1               | 0.062    | 0.079    | 0.084 | 0.077 | 0.071  | 0.073 | 0.082  | 0.069  | 0.078  | 0.07    |
| OCKY MO             |                                     |       |                 |          |          |       |       |        |       |        |        |        |         |
| Ozone               | 2nd highest daily max               | ns    | 1               | 0.11     | 0.104    | 0.097 | 0.091 | 0.106  | 0.107 | 0.104  | 0.106  | 0.099  | 0.10    |
|                     | 4th highest daily max 8-h average   | ns    | 1               | 0.092    | 0.088    | 0.084 | 0.08  | 0.089  | 0.09  | 0.092  | 0.085  | 0.085  | 0.09    |
| ACRAMEN             |                                     |       |                 |          |          |       |       |        |       |        |        |        |         |
| ~~                  | Maximum quarterly value             | down  | 1               | 0.01     | 0.007    | 0.005 | 0.006 | 0.005  | 0.046 | 0.005  | 0.005  | 0.005  |         |
| CO                  | 2nd max (daily-non-overlapping 8-h) | down  | 3               | 6.5      | 6.633    | 5     | 5     | 4.8    | 4.933 | 4.9    | 3.767  | 4.167  | 3.      |
| SO <sub>2</sub>     | 2nd daily max                       | up    | 2               | 0.004    | 0.005    | 0.005 | 0.004 | 0.005  | 0.01  | 0.008  | 0.01   | 0.01   |         |
|                     | Annual mean                         | up    | 2               | 0.001    | 0.001    | 0.002 | 0.002 | 0.002  | 0.002 | 0.003  | 0.003  | 0.002  |         |
| NO <sub>2</sub>     | Annual mean                         | ns    | 3               | 0.018    | 0.016    | 0.017 | 0.017 | 0.015  | 0.016 | 0.017  | 0.016  |        |         |
| Ozone               | 2nd highest daily max               | ns    | 3               | 0.117    | 0.105    | 0.131 | 0.12  | 0.095  | 0.14  | 0.113  | 0.113  |        |         |
| <b></b>             | 4th highest daily max 8-h average   | ns    | 3               | 0.085    | 0.086    | 0.093 | 0.093 | 0.078  | 0.093 | 0.088  | 0.086  |        |         |
| PM <sub>10</sub> *  | 90th percentile                     | ns    | 3               | 57.667   | 44.333   |       |       | 37     | 45    | 54.333 |        | 46.667 | 4       |
|                     | Weighted annual mean                | ns    | 3               | 30.6     | 28.367   | 26.7  |       | 23.033 |       | 29.333 |        |        |         |
| PM <sub>2.5</sub> * | 98th percentile                     | NA    | 1               | ND       | ND       | ND    | ND    | ND     | ND    | 67     | 49     | 53     | 6       |
|                     | Weighted annual mean                | NA    | 1               | ND       | ND       | ND    | ND    | ND     | ND    | 16.58  | 12.37  | 11.63  | 14.3    |
| T. CLOUD            |                                     |       |                 |          |          | -     |       |        |       |        | -      | -      | -       |
| CO                  | 2nd max (daily-non-overlapping 8-h) | down  | 1               | 5        | 6.4      | 4.4   | 4     | 4      | 3.8   | 3.3    | 2.7    | 2.6    | 2.      |
| t. Joseph           |                                     |       |                 |          |          |       |       |        |       |        |        |        |         |
| PM <sub>2.5</sub> * | 98th percentile                     | NA    | 1               | ND       | ND       | ND    | ND    | ND     | ND    | 28.2   | 26.8   | 29     | 30      |
| 2.3                 | Weighted annual mean                | NA    | 1               | ND       | ND       | ND    | ND    | ND     | ND    | 12.48  | 11.89  | 12.9   | 1       |
| T. LOUIS,           | MO-IL                               |       |                 |          |          |       |       |        |       |        |        |        |         |
| CO                  | 2nd max (daily-non-overlapping 8-h) | ns    | 1               | 3.6      | 3.8      | 3.2   | 3.9   | 3.7    | 4     | 2.3    | 2.2    | 2.6    | 6       |
| SO <sub>2</sub>     | 2nd daily max                       | ns    | 3               | 0.048    | 0.051    | 0.047 | 0.059 | 0.042  |       | 0.042  | 0.038  | 0.043  |         |
| - 2                 | Annual mean                         | down  | 3               | 0.011    | 0.012    | 0.01  | 0.011 | 0.009  | 0.009 | 0.009  | 0.007  | 0.006  |         |
| NO <sub>2</sub>     | Annual mean                         | ns    | 1               | 0.024    | 0.028    | 0.026 | 0.025 | 0.025  | 0.026 | 0.027  | 0.026  |        | 0.02    |
| Ozone               | 2nd highest daily max               | ns    | 3               | 0.118    | 0.020    | 0.020 | 0.111 | 0.106  | 0.020 | 0.126  | 0.108  | 0.103  |         |
| 020110              | 4th highest daily max 8-h average   | ns    | 3               | 0.085    | 0.095    | 0.095 | 0.089 | 0.083  | 0.091 | 0.120  | 0.083  |        | 0.09    |
|                     | nan nghost dany max o navorago      |       |                 |          |          |       |       |        |       |        |        |        |         |
| PM <sub>2.5</sub> * | 98th percentile                     | NA    | 2               | ND       | ND       | ND    | ND    | ND     | ND    | 35.85  | 33.3   | 33.55  | 44      |

| Metropolit          | an Statistical Area                                  | Trend        | #Trend<br>Sites | 1993          | 1994           | 1995          | 1996          | 1997          | 1998          | 1999           | 2000           | 2001         | 2002          |
|---------------------|------------------------------------------------------|--------------|-----------------|---------------|----------------|---------------|---------------|---------------|---------------|----------------|----------------|--------------|---------------|
| SALEM, OF           | {                                                    |              |                 |               |                |               |               |               |               |                |                |              |               |
| Ozone               | 2nd highest daily max                                | ns           | 1               | 0.1           | 0.1            | 0.1           | 0.117         | 0.081         | 0.112         | 0.082          | 0.074          | 0.081        | 0.096         |
|                     | 4th highest daily max 8-h average                    | ns           | 1               | 0.064         | 0.064          | 0.064         | 0.092         | 0.061         | 0.077         | 0.065          | 0.059          | 0.057        | 0.063         |
| PM <sub>2.5</sub> * | 98th percentile                                      | NA           | 1               | ND            | ND             | ND            | ND            | ND            | ND            | 26.3           | 28.7           | 32.7         | 34.8          |
|                     | Weighted annual mean                                 | NA           | 1               | ND            | ND             | ND            | ND            | ND            | ND            | 7.51           | 8.94           | 8.15         | 8.15          |
| SALINAS, (          |                                                      |              |                 | 0.00          | 0.00           | 0.00          | 0.000         | 0.070         | 0.070         | 0.074          | 0.004          | 0.070        | 0 0 7 7       |
| Ozone               | 2nd highest daily max                                | down         | 1               | 0.09          | 0.09           | 0.08          | 0.089         | 0.078         | 0.073         | 0.074          | 0.084          | 0.078        | 0.077         |
| DM *                | 4th highest daily max 8-h average<br>90th percentile | ns           | 1<br>1          | 0.077<br>25   | 0.068<br>24    | 0.064<br>23   | 0.07<br>23    | 0.061<br>21   | 0.057<br>17   | 0.063<br>26    | 0.063<br>19    | 0.063<br>23  | 0.066<br>23   |
| PM <sub>10</sub> *  | Weighted annual mean                                 | ns<br>ns     | 1               | 15.7          | 15.3           | 13.4          | 14.2          | 14.3          | 12.2          | 15.4           | 12.7           | 14.6         | 23<br>14.4    |
| <b>δαιτι</b> Δκε    | CITY-OGDEN, UT                                       | 115          |                 | 10.7          | 15.5           | 10.4          | 14.2          | 14.5          | 12.2          | 10.4           | 12.7           | 14.0         | 14.4          |
|                     | Maximum quarterly value                              | ns           | 1               | 0.096         | 0.054          | 0.066         | 0.032         | 0.105         | 0.094         | 0.082          | 0.068          | 0.042        | 0.055         |
| CO                  | 2nd max (daily-non-overlapping 8-h)                  | down         | 2               | 5.95          | 5.7            | 5             | 6.55          | 5.95          | 5.3           | 5.1            | 4.55           | 3.95         | 3.4           |
| SO <sub>2</sub>     | 2nd daily max                                        | down         | 1               | 0.052         | 0.014          | 0.012         | 0.021         | 0.011         | 0.01          | 0.01           | 0.013          | 0.013        | 0.01          |
| 2                   | Annual mean                                          | down         | 1               | 0.009         | 0.005          | 0.004         | 0.004         | 0.004         | 0.004         | 0.004          | 0.004          | 0.004        | 0.004         |
| NO <sub>2</sub>     | Annual mean                                          | ns           | 2               | 0.022         | 0.021          | 0.021         | 0.023         | 0.022         | 0.021         | 0.023          | 0.022          | 0.022        | 0.021         |
| Ozone               | 2nd highest daily max                                | ns           | 2               | 0.104         | 0.109          | 0.115         | 0.114         | 0.102         | 0.122         | 0.107          | 0.096          | 0.105        | 0.107         |
| DM *                | 4th highest daily max 8-h average                    | ns           | 2               | 0.079         | 0.081          | 0.083         | 0.085         | 0.077         | 0.094         | 0.08           | 0.075          | 0.079        | 0.085         |
| PM <sub>10</sub> *  | 90th percentile<br>Weighted annual mean              | ns<br>ns     | 2<br>2          | 80<br>43.9    | 66<br>38.65    | 65<br>36.75   | 79<br>41.35   | 63<br>36.65   | 56<br>32.9    | 69<br>36.95    | 66<br>37.65    | 64<br>37.95  | 66.5<br>36.65 |
| PM <sub>2.5</sub> * | 98th percentile                                      | NA           | 4               | 43.7<br>ND    | 38.05<br>ND    | 30.75<br>ND   | 41.33<br>ND   | 30.05<br>ND   | ND            | 42.925         |                | 61.55        |               |
| 2.5                 | Weighted annual mean                                 | NA           | 4               | ND            | ND             | ND            | ND            | ND            | ND            | 10.315         |                |              |               |
| SAN ANTO            |                                                      |              | ·               |               |                |               |               |               |               | 101010         |                | 121100       | 101270        |
| CO                  | 2nd max (daily-non-overlapping 8-h)                  | down         | 1               | 5.3           | 3.3            | 4.3           | 4.5           | 4.4           | 4.6           | 4.2            | 2.7            | 2.7          | 2.6           |
| Ozone               | 2nd highest daily max                                | ns           | 1               | 0.111         | 0.101          | 0.121         | 0.11          | 0.103         | 0.107         | 0.109          | 0.094          | 0.089        | 0.126         |
|                     | 4th highest daily max 8-h average                    | ns           | 1               | 0.084         | 0.083          | 0.095         | 0.082         | 0.084         | 0.089         | 0.091          | 0.077          | 0.078        | 0.104         |
| PM <sub>2.5</sub> * | 98th percentile                                      | NA           | 2               | ND            | ND             | ND            | ND            | ND            | ND            | ND             | 22             | 17.7         | 26.15         |
|                     | Weighted annual mean                                 | NA           | 2               | ND            | ND             | ND            | ND            | ND            | ND            | ND             | 9.365          | 8.2          | 9.005         |
| SAN DIEGO           |                                                      |              | _               |               |                |               |               |               |               |                |                |              |               |
| ~~                  | Maximum quarterly value                              | ns           | 2               | 0.032         | 0.017          | 0.026         | 0.023         | 0.024         | 0.018         | 0.028          | 0.035          | 0.045        | 0.024         |
| CO                  | 2nd max (daily-non-overlapping 8-h)                  | down         | 5<br>3          | 5.14<br>0.009 | 5.42<br>0.013  | 4.74<br>0.012 | 4.96<br>0.015 | 4.26<br>0.012 | 4.02<br>0.011 | 4.28<br>0.012  | 4.18<br>0.01   | 4.22<br>0.01 | 3.32<br>0.009 |
| SO <sub>2</sub>     | 2nd daily max<br>Annual mean                         | ns<br>ns     | 3               | 0.009         | 0.003          | 0.012         | 0.015         | 0.012         | 0.003         | 0.012          | 0.001          | 0.003        | 0.009         |
| NO <sub>2</sub>     | Annual mean                                          | ns           | 5               | 0.002         | 0.003          | 0.000         | 0.019         | 0.000         | 0.000         | 0.000          | 0.000          | 0.003        | 0.019         |
| Ozone               | 2nd highest daily max                                | down         | 5               | 0.122         | 0.111          | 0.119         | 0.106         | 0.115         | 0.106         | 0.098          | 0.097          | 0.099        | 0.096         |
|                     | 4th highest daily max 8-h average                    | down         | 5               | 0.089         | 0.084          | 0.084         | 0.084         | 0.082         | 0.082         | 0.072          | 0.074          | 0.074        | 0.074         |
| PM <sub>10</sub> *  | 90th percentile                                      | ns           | 3               | 57.667        | 60.667         | 70.667        | 49.667        | 54.667        | 49.667        | 61             | 54             | 62           | 59            |
| PM <sub>2.5</sub> * | Weighted annual mean                                 | ns           | 3               | 37.1          |                | 37.967        |               |               | 30.733        | 38.267         |                |              |               |
|                     | 98th percentile                                      | NA           | 3               | ND            | ND             | ND            | ND            | ND            | ND            | 40.067         |                |              |               |
|                     | Weighted annual mean                                 | NA           | 3               | ND            | ND             | ND            | ND            | ND            | ND            | 16.91          | 14.85          | 16.523       | 15.157        |
| SAN FRAN            |                                                      |              | 1               | 0.00/         | 0.01/          | 0.007         | 0.014         | 0.00          | 0.010         | 0.010          | 0.011          | 0.01         | 0.014         |
| CO                  | Maximum quarterly value                              | down<br>down | 1<br>3          | 0.026<br>4.3  | 0.016<br>3.967 | 0.027<br>3.2  | 0.014<br>3.5  | 0.02<br>3.167 | 0.013<br>3.5  | 0.012<br>3.333 | 0.011<br>2.767 |              | 0.014 2.233   |
| SO <sub>2</sub>     | 2nd max (daily-non-overlapping 8-h)<br>2nd daily max | ns           | 1               | 0.01          | 0.005          | 0.005         | 0.007         | 0.006         | 0.006         | 0.006          | 0.007          |              | 0.005         |
| 50 <sub>2</sub>     | Annual mean                                          | ns           | 1               | 0.002         | 0.000          | 0.003         | 0.002         | 0.002         | 0.002         | 0.000          | 0.007          | 0.002        | 0.002         |
| NO <sub>2</sub>     | Annual mean                                          | down         | 3               | 0.022         | 0.001          | 0.002         | 0.002         | 0.002         | 0.002         | 0.002          | 0.002          | 0.002        |               |
| Ozóne               | 2nd highest daily max                                | ns           | 3               | 0.083         | 0.072          | 0.094         | 0.082         | 0.074         | 0.063         | 0.082          | 0.067          | 0.074        | 0.069         |
|                     | 4th highest daily max 8-h average                    | ns           | 3               | 0.048         | 0.049          | 0.061         | 0.055         | 0.048         | 0.045         | 0.052          | 0.045          |              | 0.049         |
| PM <sub>10</sub> *  | 90th percentile                                      | ns           | 3               | 40.333        | 42.667         | 35            | 35            | 32.333        |               | 43.667         |                |              |               |
|                     | Weighted annual mean                                 | down         | 3               | 25.967        | 25.267         |               |               | 23.1          | 21.4          | 24.333         |                | 23           | 21.2          |
| PM <sub>2.5</sub> * | 98th percentile                                      | NA           | 1               | ND            | ND             | ND            | ND            | ND            | ND            | 53.4           | 36.9           | 46.1         | 36.3          |
|                     | Weighted annual mean                                 | NA           | 1               | ND            | ND             | ND            | ND            | ND            | ND            | 12.13          | 10.9           | 11.31        | 12.6          |
| SAN JOSE,           | Maximum quarterly value                              | down         | 1               | 0.03          | 0.019          | 0.018         | 0.013         | 0.012         | 0.016         | 0.012          | 0.014          | 0.011        | 0.011         |
| CO                  | 2nd max (daily-non-overlapping 8-h)                  | ns           | 1               | 6.7           | 0.019<br>7.5   | 5.8           | 0.013<br>5.8  | 5.6           | 6.3           | 6.2            | 0.014<br>6.9   | 0.011        | 0.011         |
| NO <sub>2</sub>     | Annual mean                                          | down         | 1               | 0.027         | 0.028          | 0.027         | 0.025         | 0.025         | 0.025         | 0.2            | 0.9            | 0.024        | 0.024         |
| Ozone               | 2nd highest daily max                                | ns           | 2               | 0.1           | 0.102          | 0.12          | 0.109         | 0.087         | 0.121         | 0.107          | 0.092          | 0.106        | 0.09          |
|                     | 4th highest daily max 8-h average                    | down         | 2               | 0.074         | 0.073          | 0.084         | 0.08          | 0.064         | 0.078         | 0.071          | 0.06           | 0.07         | 0.064         |
| PM <sub>10</sub> *  | 90th percentile                                      | ns           | 1               | 48            | 57             | 48            | 36            | 36            | 41            | 47             | 52             | 46           | 46            |
| 10                  | Weighted annual mean                                 | ns           | 1               | 27.6          | 30.4           | 25.3          | 24.5          | 25.4          | 25.1          | 28.7           | 26.8           | 28.9         | 28.9          |
|                     | Sayamon, PR                                          |              |                 |               |                |               |               |               |               |                |                |              |               |
| PM <sub>2.5</sub> * | 98th percentile                                      | NA           | 1               | ND            | ND             | ND            | ND            | ND            | ND            | 16.8           | 18.1           | 14.9         | 11.4          |
|                     | Weighted annual mean                                 | NA           | 1               | ND            | ND             | ND            | ND            | ND            | ND            | 7.51           | 7.26           | 6.83         | 6.43          |

| Metropolit                                | an Statistical Area                 | Trend | #Trend<br>Sites | 1993   | 1994   | 1995   | 1996   | 1997   | 1998  | 1999   | 2000   | 2001   | 2002    |
|-------------------------------------------|-------------------------------------|-------|-----------------|--------|--------|--------|--------|--------|-------|--------|--------|--------|---------|
| SAN LUIS OBISPO-ATASCADERO-PASO ROBLES    |                                     |       |                 |        |        |        |        |        |       |        |        |        |         |
| CO                                        | 2nd max (daily-non-overlapping 8-h) | down  | 1               | 3.1    | 3.1    | 2.4    | 2.3    | 2.3    | 2     | 2.9    | 2.2    | 1.7    | 1.6     |
| SO <sub>2</sub>                           | 2nd daily max                       | ns    | 1               | 0.028  | 0.028  | 0.028  | 0.029  | 0.026  | 0.03  | 0.027  | 0.028  | 0.028  | 0.021   |
|                                           | Annual mean                         | down  | 1               | 0.006  | 0.006  | 0.006  | 0.006  | 0.005  | 0.005 | 0.005  | 0.005  | 0.005  | 0.004   |
| $NO_2$                                    | Annual mean                         | down  | 2               | 0.014  | 0.014  | 0.012  | 0.012  | 0.012  | 0.012 | 0.013  | 0.012  | 0.011  | 0.01    |
| Ozone                                     | 2nd highest daily max               | ns    | 3               | 0.088  | 0.087  | 0.091  | 0.1    | 0.079  | 0.093 | 0.085  | 0.078  | 0.085  | 0.083   |
|                                           | 4th highest daily max 8-h average   | ns    | 3               | 0.067  | 0.07   | 0.071  | 0.079  | 0.066  | 0.076 | 0.069  | 0.065  | 0.068  | 0.07    |
| PM <sub>10</sub> *<br>PM <sub>2.5</sub> * | 90th percentile                     | ns    | 2               | 45.5   | 37     | 39     | 31.5   | 29     | 28    | 34     | 36.5   | 30.5   | 30.5    |
|                                           | Weighted annual mean                | down  | 2               | 23.2   | 21.15  | 22.25  | 19.4   | 20.75  | 17.35 | 20.75  | 19.95  | 19.65  | 19.8    |
|                                           | 98th percentile                     | NA    | 1               | ND     | ND     | ND     | ND     | ND     | ND    | 26.9   | 41     | 50.7   | 25.7    |
|                                           | Weighted annual mean                | NA    | 1               | ND     | ND     | ND     | ND     | ND     | ND    | 9.32   | 10.31  | 10.12  | 9.23    |
|                                           | RBARA-SANTA MARIA-LOMPOC, CA M      |       |                 |        |        |        |        |        |       |        |        |        |         |
| CO                                        | 2nd max (daily-non-overlapping 8-h) | down  | 3               | 1.867  | 1.933  | 1.333  | 1.267  | 1.267  | 1.267 | 1.267  | 1.2    | 1.333  | 1.1     |
| SO <sub>2</sub>                           | 2nd daily max                       | down  | 4               | 0.004  | 0.004  | 0.003  | 0.003  | 0.002  | 0.002 | 0.002  | 0.002  | 0.002  | 0.002   |
|                                           | Annual mean                         | ns    | 4               | 0.001  | 0.001  | 0.001  | 0.001  | 0.001  | 0.001 | 0.001  | 0.001  | 0.001  | 0.001   |
| NO <sub>2</sub>                           | Annual mean                         | down  | 5               | 0.007  | 0.007  | 0.007  | 0.007  | 0.007  | 0.006 | 0.007  | 0.007  | 0.006  | 0.006   |
| Ozone                                     | 2nd highest daily max               | down  | 5               | 0.103  | 0.101  | 0.118  | 0.114  | 0.089  | 0.093 | 0.083  | 0.088  | 0.085  | 0.082   |
|                                           | 4th highest daily max 8-h average   | down  | 5               | 0.079  | 0.077  | 0.081  | 0.084  | 0.073  | 0.07  | 0.068  | 0.069  | 0.07   | 0.067   |
| PM <sub>10</sub> *                        | 90th percentile                     | ns    | 3               | 35.333 |        | 28.667 |        | 31.333 |       |        | 33.333 |        | 29      |
| PM <sub>2.5</sub> *                       | Weighted annual mean                | ns    | 3               | 21.1   | 20.733 |        | 17.267 | 20.067 |       |        | 20.433 |        |         |
|                                           | 98th percentile                     | NA    | 1               | ND     | ND     | ND     | ND     | ND     | ND    | ND     | 19.3   | 23.4   | 19.4    |
|                                           | Weighted annual mean                | NA    | 1               | ND     | ND     | ND     | ND     | ND     | ND    | ND     | 9.77   | 10.4   | 9.52    |
|                                           | UZ-WATSONVILLE, CA                  |       |                 |        |        |        |        |        |       |        |        |        |         |
| CO                                        | 2nd max (daily-non-overlapping 8-h) | ns    | 1               | 1      | 1.2    | 0.8    | 0.7    | 0.7    | 0.8   | 0.7    | 0.7    | 0.9    | 0.8     |
| SO <sub>2</sub>                           | 2nd daily max                       | ns    | 1               | 0.006  | 0.006  | 0.008  | 0.003  | 0.002  | 0.003 | 0.002  | 0.003  | 0.006  | 0.007   |
|                                           | Annual mean                         | ns    | 1               | 0.002  | 0.002  | 0.001  | 0.002  | 0.001  | 0.001 | 0.001  | 0.001  | 0.001  | 0.001   |
| $NO_2$                                    | Annual mean                         | down  | 1               | 0.006  | 0.006  | 0.005  | 0.005  | 0.004  | 0.004 | 0.005  | 0.005  | 0.005  | 0.005   |
| Ozone                                     | 2nd highest daily max               | ns    | 2               | 0.075  | 0.074  | 0.073  | 0.086  | 0.071  | 0.074 | 0.078  | 0.074  | 0.075  | 0.074   |
|                                           | 4th highest daily max 8-h average   | ns    | 2               | 0.06   | 0.056  | 0.058  | 0.062  | 0.057  | 0.059 | 0.064  | 0.057  | 0.059  | 0.058   |
| PM <sub>10</sub> *                        | 90th percentile                     | ns    | 1               | 49     | 49     | 65     | 61     | 65     | 47    | 53     | 41     | 50     | 45      |
|                                           | Weighted annual mean                | ns    | 1               | 31.1   | 31.1   | 36.4   | 32.8   | 36.9   | 28.5  | 30.9   | 26.2   | 28.7   | 26.8    |
| PM <sub>2.5</sub> *                       | 98th percentile                     | NA    | 1               | ND     | ND     | ND     | ND     | ND     | ND    | 21.9   | 17.9   | 23.1   | 22      |
|                                           | Weighted annual mean                | NA    | 1               | ND     | ND     | ND     | ND     | ND     | ND    | 9.2    | 7.93   | 9.13   | 8.6     |
| SANTA FE,                                 |                                     |       |                 |        |        |        |        |        |       |        |        |        |         |
| CO                                        | 2nd max (daily-non-overlapping 8-h) | down  | 1               | 3.4    | 2.7    | 2.3    | 2.2    | 2.1    | 2     | 1.7    | 1.7    | 2.1    | 1.5     |
| PM <sub>10</sub> *<br>PM <sub>2.5</sub> * | 90th percentile                     | ns    | 2               | 21.5   | 21     | 17.5   | 20     | 19     | 20    | 18.5   | 19.5   | 17     | 21      |
|                                           | Weighted annual mean                | ns    | 2               | 14.4   | 13.25  | 12.25  | 13.45  | 13     | 13.6  | 12.95  | 12.05  | 12.15  | 13.75   |
|                                           | 98th percentile                     | NA    | 1               | ND     | ND     | ND     | ND     | ND     | ND    | 11     | 9.5    | 10.1   | 13.9    |
|                                           | Weighted annual mean                | NA    | 1               | ND     | ND     | ND     | ND     | ND     | ND    | 4.89   | 4.9    | 4.73   | 4.94    |
| SANTA RO                                  |                                     |       |                 |        |        |        |        |        |       |        |        |        |         |
| CO                                        | 2nd max (daily-non-overlapping 8-h) | down  | 1               | 3.8    | 3.2    | 2.4    | 3      | 3.1    | 3     | 3.3    | 2.7    | 2.3    | 2       |
| NO <sub>2</sub>                           | Annual mean                         | down  | 1               | 0.016  | 0.015  | 0.015  | 0.014  | 0.013  | 0.015 | 0.014  | 0.013  | 0.013  | 0.013   |
| Ozone<br>PM <sub>10</sub> *               | 2nd highest daily max               | ns    | 2               | 0.085  | 0.085  | 0.089  | 0.08   | 0.089  | 0.084 | 0.096  | 0.07   | 0.083  | 0.075   |
|                                           | 4th highest daily max 8-h average   | ns    | 2               | 0.061  | 0.06   | 0.065  | 0.062  | 0.064  | 0.063 | 0.073  | 0.056  |        | 0.058   |
|                                           | 90th percentile                     | ns    | 3               | 33     |        | 25.333 | 26     | 23.667 |       | 32.333 |        | 28.333 |         |
| <b>D1</b> *                               | Weighted annual mean                | ns    | 3               | 19.133 |        | 15.033 |        | 15.567 | 14.7  | 18.567 |        | 16.833 |         |
| PM <sub>2.5</sub> *                       | 98th percentile                     | NA    | 1               | ND     | ND     | ND     | ND     | ND     | ND    | 44.5   |        | 41.4   | 42.4    |
|                                           | Weighted annual mean                | NA    | 1               | ND     | ND     | ND     | ND     | ND     | ND    | 12.11  | 10.31  | 10.8   | 10.54   |
| SARASOTA                                  | -BRADENTON, FL                      |       |                 |        |        |        |        |        |       |        |        |        |         |
| CO                                        | 2nd max (daily-non-overlapping 8-h) | down  | 1               | 6.5    | 5.3    | 5.9    | 5.1    | 5.3    | 5.6   | 4.95   | 4.3    | 3.4    | 3.4     |
| SO <sub>2</sub>                           | 2nd daily max                       | ns    | 1               | 0.012  | 0.012  | 0.012  |        | 0.012  |       | 0.011  | 0.019  | 0.013  | 0.013   |
| 2                                         | Annual mean                         | ns    | 1               | 0.003  | 0.003  | 0.002  | 0.002  | 0.002  | 0.003 | 0.002  | 0.002  | 0.002  |         |
| Ozone                                     | 2nd highest daily max               | ns    | 2               | 0.102  | 0.095  | 0.097  |        | 0.104  | 0.12  | 0.111  | 0.106  | 0.109  | 0.088   |
|                                           | 4th highest daily max 8-h average   | ns    | 2               | 0.078  | 0.079  | 0.076  | 0.075  | 0.08   | 0.089 | 0.084  | 0.084  | 0.084  | 0.072   |
| PM <sub>10</sub> *                        | 90th percentile                     | ns    | 2               | 37     | 34.5   | 30.5   | 27     | 32     | 33    | 34     | 33     | 30.5   | 29      |
|                                           | Weighted annual mean                | ns    | 2               | 25.25  | 21.5   | 19.75  | 19.05  | 21.1   | 21.25 | 21.55  | 22.2   | 21.6   | 18.2    |
| PM <sub>2.5</sub> *                       | 98th percentile                     | NA    | 2               | ND     | ND     | ND     | ND     | ND     | ND    | 30.75  | 26.9   | 28.6   | 21.7    |
|                                           | Weighted annual mean                | NA    | 2               | ND     | ND     | ND     | ND     | ND     | ND    | 11.095 | 10.64  | 10.205 | 0 0 0 5 |

| Metropolita         | an Statistical Area                     | Trend    | #Trend<br>Sites | 1993  | 1994       | 1995       | 1996  | 1997       | 1998       | 1999          | 2000           | 2001   | 2002         |
|---------------------|-----------------------------------------|----------|-----------------|-------|------------|------------|-------|------------|------------|---------------|----------------|--------|--------------|
| SAVANNAH            | , GA                                    |          |                 |       |            |            |       |            |            |               |                |        |              |
| SO <sub>2</sub>     | 2nd daily max                           | ns       | 1               | 0.023 | 0.023      | 0.023      | 0.03  | 0.024      | 0.027      | 0.018         | 0.024          | 0.02   | 0.022        |
| 2                   | Annual mean                             | down     | 1               | 0.006 | 0.006      | 0.006      | 0.005 | 0.004      | 0.003      | 0.003         | 0.003          | 0.003  |              |
| Ozone               | 2nd highest daily max                   | ns       | 1               | 0.089 | 0.089      | 0.089      | 0.085 | 0.08       | 0.097      | 0.107         | 0.102          | 0.085  | 0.083        |
|                     | 4th highest daily max 8-h average       | ns       | 1               | 0.073 | 0.073      | 0.073      | 0.072 | 0.071      | 0.075      | 0.083         | 0.079          | 0.067  | 0.065        |
| PM <sub>2.5</sub> * | 98th percentile                         | NA       | 1               | ND    | ND         | ND         | ND    | ND         | ND         | ND            | 32.1           | 30.5   | 27.3         |
|                     | Weighted annual mean                    | NA       | 1               | ND    | ND         | ND         | ND    | ND         | ND         | ND            | 15.38          | 14.71  | 13.09        |
| SCRANTON            | -WILKES-BARRE-HAZLETON, PA              |          |                 |       |            |            |       |            |            |               |                |        |              |
| CO                  | 2nd max (daily-non-overlapping 8-h)     | down     | 2               | 2.9   | 3.55       | 2.8        | 3.8   | 3.05       | 2.5        | 2.15          | 2.15           | 2.05   | 2.1          |
| SO <sub>2</sub>     | 2nd daily max                           | ns       | 2               | 0.026 | 0.035      | 0.036      | 0.028 | 0.029      | 0.024      | 0.022         | 0.024          | 0.029  | 0.024        |
| -                   | Annual mean                             | ns       | 2               | 0.007 | 0.007      | 0.005      | 0.006 | 0.007      | 0.005      | 0.006         | 0.005          | 0.006  | 0.006        |
| $NO_2$              | Annual mean                             | down     | 2               | 0.018 | 0.018      | 0.016      | 0.018 | 0.016      | 0.015      | 0.015         | 0.014          | 0.015  | 0.014        |
| Ozone               | 2nd highest daily max                   | ns       | 3               | 0.111 | 0.103      | 0.107      | 0.109 | 0.104      | 0.105      | 0.111         | 0.086          | 0.099  | 0.121        |
|                     | 4th highest daily max 8-h average       | ns       | 3               | 0.091 | 0.086      | 0.09       | 0.083 | 0.089      | 0.088      | 0.094         | 0.074          | 0.087  | 0.092        |
| PM <sub>10</sub> *  | 90th percentile                         | down     | 1               | 35    | 35         | 42         | 36    | 35         | 35         | 32.5          | 30             | 33     | 34           |
|                     | Weighted annual mean                    | ns       | 1               | 16    | 16         | 23.3       | 21    | 20.3       | 20         | 18.6          | 17.2           | 19.5   | 18.4         |
| PM <sub>2.5</sub> * | 98th percentile                         | NA       | 2               | ND    | ND         | ND         | ND    | ND         | ND         | 31.25         | 32.2           | 37.05  | 35.45        |
|                     | Weighted annual mean                    | NA       | 2               | ND    | ND         | ND         | ND    | ND         | ND         | 11.77         | 12.16          | 13.22  | 12.22        |
| SEATTLE-BI          | ELLEVUE-EVERETT, WA                     |          |                 |       |            |            |       |            |            |               |                |        |              |
| CO                  | 2nd max (daily-non-overlapping 8-h)     | down     | 1               | 6.7   | 7          | 6.1        | 6.8   | 6.5        | 5.5        | 5.9           | 5.2            | 6.5    | 5            |
| NO <sub>2</sub>     | Annual mean                             | ns       | 1               | 0.019 | 0.019      | 0.019      | 0.02  | 0.019      | 0.02       | 0.019         | 0.02           | 0.02   | 0.019        |
| Ozóne               | 2nd highest daily max                   | ns       | 1               | 0.097 | 0.106      | 0.087      | 0.098 | 0.072      | 0.111      | 0.067         | 0.08           | 0.069  | 0.071        |
|                     | 4th highest daily max 8-h average       | down     | 1               | 0.06  | 0.06       | 0.062      | 0.073 | 0.058      | 0.063      | 0.054         | 0.056          | 0.051  | 0.054        |
| PM <sub>10</sub> *  | 90th percentile                         | down     | 2               | 61.5  | 42.5       | 46         | 36    | 43.5       | 34.5       | 33.5          | 41             | 30.5   | 28.5         |
| 10                  | Weighted annual mean                    | down     | 2               | 30.7  | 24.35      | 25.4       | 22.75 | 24.85      | 19.7       | 20.6          | 23.5           | 19.55  | 19.1         |
| PM <sub>2.5</sub> * | 98th percentile                         | NA       | 4               | ND    | ND         | ND         | ND    | ND         | ND         | 27.5          | 29.65          | 26.9   | 28.225       |
| 2.5                 | Weighted annual mean                    | NA       | 4               | ND    | ND         | ND         | ND    | ND         | ND         | 9.233         | 10.023         | 9.208  | 9.15         |
| SHARON, P           | A                                       |          |                 |       |            |            |       |            |            |               |                |        |              |
| SO <sub>2</sub>     | 2nd daily max                           | ns       | 1               | 0.029 | 0.047      | 0.032      | 0.029 | 0.032      | 0.029      | 0.039         | 0.024          | 0.033  | 0.024        |
| 2                   | Annual mean                             | down     | 1               | 0.008 | 0.008      | 0.008      | 0.007 | 0.007      | 0.007      | 0.007         | 0.007          | 0.007  |              |
| Ozone               | 2nd highest daily max                   | ns       | 1               | 0.105 | 0.111      | 0.113      | 0.103 | 0.111      | 0.121      | 0.108         | 0.098          |        | 0.118        |
|                     | 4th highest daily max 8-h average       | ns       | 1               | 0.083 | 0.09       | 0.095      | 0.09  | 0.092      | 0.106      | 0.091         | 0.081          | 0.094  |              |
| SHREVEPO            | RT-BOSSIER CITY, LA                     |          |                 |       |            |            |       |            |            |               |                |        |              |
| SO <sub>2</sub>     | 2nd daily max                           | ns       | 1               | 0.011 | 0.008      | 0.004      | 0.004 | 0.007      | 0.01       | 0.006         | 0.006          | 0.004  | 0.005        |
| 002                 | Annual mean                             | ns       | 1               | 0.004 | 0.002      | 0.001      | 0.002 | 0.002      | 0.003      | 0.002         | 0.002          | 0.002  | 0.002        |
| Ozone               | 2nd highest daily max                   | ns       | 1               | 0.122 | 0.094      | 0.092      | 0.096 | 0.103      | 0.111      | 0.108         | 0.129          | 0.105  | 0.091        |
| 020110              | 4th highest daily max 8-h average       | ns       | 1               | 0.092 | 0.08       | 0.078      | 0.078 | 0.083      | 0.088      | 0.094         | 0.093          | 0.084  | 0.076        |
| PM <sub>10</sub> *  | 90th percentile                         | down     | 1               | 45    | 41         | 41         | 31    | 37         | 37         | 37            | 37             | 34     | 35           |
| 10                  | Weighted annual mean                    | down     | 1               | 25.3  | 25.5       | 24.1       | 22.1  | 23.3       | 22.85      | 22.4          | 23.9           | 21.7   | 21.3         |
| PM <sub>25</sub> *  | 98th percentile                         | NA       | 1               | ND    | ND         | ND         | ND    | ND         | ND         | 30.9          | 30.7           | 28.1   | 31.8         |
| 2.5                 | Weighted annual mean                    | NA       | 1               | ND    | ND         | ND         | ND    | ND         | ND         | 14.16         | 13.77          | 13.15  | 12.37        |
| SIOUX CITY          | 8                                       |          |                 |       |            |            |       |            |            |               |                |        |              |
| PM <sub>10</sub> *  | 90th percentile                         | ns       | 1               | 40    | 42         | 55         | 72    | 53         | 45         | 48            | 43             | 51     | 46           |
| 10 10               | Weighted annual mean                    | ns       | 1               | 22.2  | 22.9       | 26         | 32.1  | 27.9       | 27.9       | 28            | 25.4           | 28.6   | 27.1         |
| PM <sub>2.5</sub> * | 98th percentile                         | NA       | 1               | ND    | ND         | ND         | ND    | ND         | ND         | 24.9          | 31.4           | 24.5   | 24.7         |
| 2.5                 | Weighted annual mean                    | NA       | 1               | ND    | ND         | ND         | ND    | ND         | ND         | 9.92          | 9.54           | 10.55  | 9.63         |
| SIOUX FALI          |                                         | 1474     | 1               | ND    | ND         | ND         | ND    | ND         | ND         | 1.12          | 7.54           | 10.55  | 7.05         |
|                     |                                         | 20       | 1               | 27    | 42         | 40         | 32    | 20         | 24         | 37            | 33             | 42     | 31           |
| PM <sub>10</sub> *  | 90th percentile<br>Weighted annual mean | ns       | 1               | 18.2  | 23.5       | 23.1       | 22.2  | 39<br>22.6 | 36<br>22.2 | 22.1          | 19.8           | 24.3   | 20.8         |
| DM *                | 98th percentile                         | ns<br>NA | 2               | ND    | 23.5<br>ND | Z3.1<br>ND | ND    | 22.0<br>ND | ND         | 32.6          | 28.35          | 24.3   | 20.8         |
| PM <sub>2.5</sub> * | Weighted annual mean                    | NA       | 2               | ND    | ND         | ND         | ND    | ND         | ND         | 32.0<br>12.21 | 20.35<br>9.305 | 10.08  | 22.3<br>9.09 |
|                     | 8                                       | NA       | 2               | ND    | ND         | ND         | ND    | ND         | ND         | 12.21         | 7.303          | 10.00  | 9.09         |
| SOUTH BEN           |                                         |          | 2               | 0.007 | 0.007      | 0 1 1 0    | 0 107 | 0 1 1 4    | 0.115      | 0.100         | 0.000          | 0 107  | 0 1 0 0      |
| Ozone               | 2nd highest daily max                   | ns       | 2               | 0.087 | 0.096      | 0.112      | 0.107 | 0.114      | 0.115      | 0.103         | 0.093          |        | 0.123        |
|                     | 4th highest daily max 8-h average       | ns       | 2               | 0.076 | 0.084      | 0.091      | 0.089 | 0.091      | 0.092      | 0.089         | 0.08           | 0.086  | 0.102        |
| PM <sub>10</sub> *  | 90th percentile                         | ns       | 1               | 36    | 43         | 45         | 35    | 30         | 44         | 39            | 30             | 29     | 30           |
|                     | Weighted annual mean                    | down     | 1               | 23.4  | 28.6       | 22.9       | 20.2  | 17         | 23.9       | 23.2          | 19.4           | 17.2   | 16.7         |
| PM <sub>2.5</sub> * | 98th percentile                         | NA       | 2               | ND    | ND         | ND         | ND    | ND         | ND         | ND            | 33.3           |        | 32.05        |
|                     | Weighted annual mean                    | NA       | 2               | ND    | ND         | ND         | ND    | ND         | ND         | ND            | 13.885         | 14 635 | 14 165       |

| Metropolit          | an Statistical Area                 | Trend | #Trend<br>Sites | 1993  | 1994  | 1995  | 1996  | 1997  | 1998  | 1999   | 2000   | 2001   | 2002   |
|---------------------|-------------------------------------|-------|-----------------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|
| SPOKANE,            | WA                                  |       |                 |       |       |       |       |       |       |        |        |        |        |
| CO                  | 2nd max (daily-non-overlapping 8-h) | down  | 1               | 9.8   | 8.1   | 8.4   | 9     | 6.3   | 5.6   | 5.7    | 5.6    | 5.2    | 4.9    |
| Ozone               | 2nd highest daily max               | ns    | 1               | 0.069 | 0.085 | 0.08  | 0.079 | 0.083 | 0.082 | 0.073  | 0.082  | 0.084  | 0.086  |
|                     | 4th highest daily max 8-h average   | up    | 1               | 0.06  | 0.068 | 0.065 | 0.067 | 0.068 | 0.07  | 0.065  | 0.068  | 0.071  | 0.071  |
| PM <sub>10</sub> *  | 90th percentile                     | down  | 2               | 71    | 65    | 55.5  | 52    | 48    | 50    | 47     | 47.5   | 45.5   | 52     |
|                     | Weighted annual mean                | down  | 2               | 39.25 | 36.1  | 29.6  | 30.95 | 28.05 | 28.3  | 26.35  | 27.8   | 27.7   | 29.55  |
| PM <sub>2.5</sub> * | 98th percentile                     | NA    | 1               | ND    | ND    | ND    | ND    | ND    | ND    | 30     | 35.5   | 28.4   | 37.9   |
|                     | Weighted annual mean                | NA    | 1               | ND    | ND    | ND    | ND    | ND    | ND    | 10.26  | 10.95  | 10.12  | 10.2   |
| SPRINGFIE           | ELD, IL                             |       |                 |       |       |       |       |       |       |        |        |        |        |
| CO                  | 2nd max (daily-non-overlapping 8-h) | down  | 1               | 3.9   | 3.1   | 3.2   | 3     | 2.1   | 1.9   | 2.4    | 1.7    | 2.8    | 1.5    |
| SO <sub>2</sub>     | 2nd daily max                       | ns    | 1               | 0.04  | 0.05  | 0.062 | 0.061 | 0.043 | 0.061 | 0.059  | 0.035  | 0.028  | 0.017  |
|                     | Annual mean                         | ns    | 1               | 0.006 | 0.006 | 0.006 | 0.006 | 0.006 | 0.007 | 0.006  | 0.005  | 0.004  | 0.004  |
| Ozone               | 2nd highest daily max               | ns    | 1               | 0.106 | 0.101 | 0.1   | 0.098 | 0.085 | 0.093 | 0.099  | 0.1    | 0.095  | 0.095  |
|                     | 4th highest daily max 8-h average   | ns    | 1               | 0.081 | 0.081 | 0.08  | 0.079 | 0.071 | 0.078 | 0.075  | 0.079  | 0.073  | 0.08   |
| PM <sub>2.5</sub> * | 98th percentile                     | NA    | 1               | ND    | ND    | ND    | ND    | ND    | ND    | 38.8   | 32.2   | 33.3   | 31.5   |
|                     | Weighted annual mean                | NA    | 1               | ND    | ND    | ND    | ND    | ND    | ND    | 15.88  | 13.36  | 13.25  | 13.55  |
| SPRINGFIE           | ELD, MO                             |       |                 |       |       |       |       |       |       |        |        |        |        |
| CO                  | 2nd max (daily-non-overlapping 8-h) | down  | 1               | 5.3   | 5.9   | 4.1   | 3.3   | 4.6   | 4     | 3.1    | 2.6    | 2.9    | 3.3    |
| SO <sub>2</sub>     | 2nd daily max                       | down  | 2               | 0.04  | 0.067 | 0.021 | 0.044 | 0.022 | 0.021 | 0.021  | 0.02   | 0.024  | 0.018  |
|                     | Annual mean                         | ns    | 2               | 0.006 | 0.008 | 0.003 | 0.005 | 0.002 | 0.004 | 0.004  | 0.004  | 0.004  | 0.003  |
| NO <sub>2</sub>     | Annual mean                         | ns    | 1               | 0.011 | 0.013 | 0.012 | 0.011 | 0.011 | 0.012 | 0.013  | 0.012  | 0.013  | 0.011  |
| Ozone               | 2nd highest daily max               | ns    | 2               | 0.075 | 0.093 | 0.098 | 0.086 | 0.08  | 0.09  | 0.094  | 0.088  | 0.089  | 0.087  |
|                     | 4th highest daily max 8-h average   | ns    | 2               | 0.069 | 0.072 | 0.079 | 0.074 | 0.066 | 0.071 | 0.078  | 0.076  | 0.072  | 0.076  |
| PM <sub>10</sub> *  | 90th percentile                     | ns    | 1               | 30    | 28    | 28    | 26    | 24    | 29    | 28     | 30     | 30     | 29     |
|                     | Weighted annual mean                | ns    | 1               | 17.5  | 17.6  | 17.3  | 17.9  | 15.4  | 17.5  | 17.5   | 18.4   | 19.8   | 17.9   |
| PM <sub>2.5</sub> * | 98th percentile                     | NA    | 1               | ND    | ND    | ND    | ND    | ND    | ND    | 30.4   | 26.7   | 28.5   | 27.8   |
|                     | Weighted annual mean                | NA    | 1               | ND    | ND    | ND    | ND    | ND    | ND    | 12.22  | 12.26  | 12.23  | 12.66  |
| SPRINGFIE           | ELD, MA                             |       |                 |       |       |       |       |       |       |        |        |        |        |
| CO                  | 2nd max (daily-non-overlapping 8-h) | down  | 2               | 6.1   | 7.5   | 7.9   | 7.1   | 5.1   | 4.1   | 4.8    | 3.8    | 2.95   | 3.45   |
| SO <sub>2</sub>     | 2nd daily max                       | ns    | 1               | 0.026 | 0.041 | 0.031 | 0.027 | 0.02  | 0.019 | 0.019  | 0.023  | 0.022  | 0.025  |
| 2                   | Annual mean                         | ns    | 1               | 0.007 | 0.008 | 0.006 | 0.006 | 0.005 | 0.004 | 0.004  | 0.005  | 0.006  | 0.005  |
| NO <sub>2</sub>     | Annual mean                         | ns    | 2               | 0.02  | 0.023 | 0.019 | 0.02  | 0.017 | 0.016 | 0.017  | 0.019  | 0.019  | 0.019  |
| Ozóne               | 2nd highest daily max               | ns    | 2               | 0.132 | 0.125 | 0.128 | 0.105 | 0.12  | 0.105 | 0.105  | 0.098  | 0.113  | 0.137  |
|                     | 4th highest daily max 8-h average   | ns    | 2               | 0.097 | 0.092 | 0.093 | 0.082 | 0.092 | 0.087 | 0.085  | 0.075  | 0.086  | 0.103  |
| PM <sub>10</sub> *  | 90th percentile                     | ns    | 2               | 47.5  | 44    | 38.5  | 41    | 38    | 42.5  | 43.5   | 40.5   | 45     | 40.5   |
| 10                  | Weighted annual mean                | ns    | 2               | 24.75 | 27.25 | 22.65 | 25    | 25.15 | 23.35 | 26.6   | 24.4   | 25.75  | 23.8   |
| PM <sub>2.5</sub> * | 98th percentile                     | NA    | 2               | ND    | ND    | ND    | ND    | ND    | ND    | 41.1   | 33.05  | 37.6   | 42.9   |
| 2.0                 | Weighted annual mean                | NA    | 2               | ND    | ND    | ND    | ND    | ND    | ND    | 14.66  | 11.985 | 12.485 | 12.2   |
| STAMFOR             | D-NORWALK, CT                       |       |                 |       |       |       |       |       |       |        |        |        |        |
| CO                  | 2nd max (daily-non-overlapping 8-h) | down  | 1               | 5.2   | 6.2   | 5.4   | 4.1   | 5.1   | 3.8   | 3.8    | 3      | 3.1    | 3.2    |
| SO <sub>2</sub>     | 2nd daily max                       | ns    | 1               | 0.032 | 0.057 | 0.032 | 0.026 | 0.03  | 0.025 | 0.026  | 0.026  | 0.035  | 0.035  |
| 2                   | Annual mean                         | down  | 1               | 0.008 | 0.01  | 0.011 | 0.005 | 0.006 | 0.006 | 0.006  | 0.005  | 0.006  | 0.005  |
| Ozone               | 2nd highest daily max               | ns    | 1               | 0.145 | 0.155 | 0.136 | 0.121 | 0.142 | 0.113 | 0.143  | 0.123  | 0.13   | 0.15   |
|                     | 4th highest daily max 8-h average   | ns    | 1               | 0.101 | 0.107 | 0.102 | 0.093 | 0.101 | 0.089 | 0.107  | 0.084  | 0.098  | 0.103  |
| PM <sub>10</sub> *  | 90th percentile                     | ns    | 1               | 44    | 58    | 56    | 50    | 48    | 42    | 44     | 45     | 48     | 51     |
|                     | Weighted annual mean                | down  | 1               | 29.7  | 36.4  | 32.1  | 32.3  | 31.3  | 28.1  | 28.7   | 30.5   | 28.3   | 27.8   |
| PM <sub>2.5</sub> * | 98th percentile                     | NA    | 2               | ND     | 34.85  | 35.95  | 33.8   |
| 2.5                 | Weighted annual mean                | NA    | 2               | ND     | 12.975 | 12.54  | 12.115 |
| STEUBENV            | ILLE-WEIRTON, OH-WV                 |       |                 |       |       |       |       |       |       |        |        |        |        |
| CO                  | 2nd max (daily-non-overlapping 8-h) | ns    | 2               | 7.55  | 8.9   | 5.95  | 4.85  | 6.1   | 8.95  | 3.45   | 6.4    | 6.25   | 9.2    |
| SO <sub>2</sub>     | 2nd daily max                       | down  | 4               | 0.12  | 0.125 | 0.063 | 0.056 | 0.054 | 0.045 | 0.056  | 0.047  |        |        |
|                     | Annual mean                         | ns    | 4               | 0.024 | 0.021 | 0.011 | 0.011 | 0.013 | 0.012 | 0.013  | 0.012  |        | 0.011  |
| Ozone               | 2nd highest daily max               | ns    | 1               | 0.093 | 0.096 | 0.108 | 0.099 | 0.097 | 0.099 | 0.108  | 0.088  | 0.093  | 0.113  |
|                     | 4th highest daily max 8-h average   | ns    | 1               | 0.081 | 0.082 | 0.091 | 0.082 | 0.083 | 0.088 | 0.091  | 0.072  |        | 0.1    |
| PM <sub>10</sub> *  | 90th percentile                     | down  | 2               | 75.5  | 77.5  | 66.5  | 69    | 59    | 65    | 54     | 55     | 55     | 63     |
|                     | Weighted annual mean                | down  | 2               | 39.95 | 40.75 | 37.9  | 36.6  | 31.9  | 33.1  | 29.5   | 30.15  | 30.85  | 30.65  |
| PM <sub>2.5</sub> * | 98th percentile                     | NA    | 2               | ND    | ND    | ND    | ND    | ND    | ND    | 42.75  | 46.4   | 45.85  | 49.65  |
| 2.5                 | Weighted annual mean                | NA    | 2               | ND    | ND    | ND    | ND    | ND    | ND    | 18.145 |        | 17.79  | 17.4   |

| Metropolita                      | an Statistical Area                                        | Trend    | #Trend<br>Sites | 1993        | 1994       | 1995       | 1996        | 1997       | 1998        | 1999          | 2000          | 2001          | 2002          |
|----------------------------------|------------------------------------------------------------|----------|-----------------|-------------|------------|------------|-------------|------------|-------------|---------------|---------------|---------------|---------------|
| STOCKTON                         | -LODI, CA                                                  |          |                 |             |            |            |             |            |             |               |               |               |               |
|                                  | Maximum quarterly value                                    | down     | 1               | 0.024       | 0.015      | 0.019      | 0.023       | 0.014      | 0.013       | 0.009         | 0.012         | 0.008         | 0.01          |
| CO                               | 2nd max (daily-non-overlapping 8-h)                        | down     | 1               | 5.1         | 6.4        | 4.4        | 5.3         | 3.4        | 5.3         | 4.5           | 3.7           | 3.6           | 3.2           |
| $NO_2$                           | Annual mean                                                | down     | 1               | 0.024       | 0.024      | 0.022      | 0.023       | 0.022      | 0.023       | 0.024         | 0.021         | 0.019         | 0.021         |
| Ozone                            | 2nd highest daily max                                      | ns       | 2               | 0.11        | 0.12       | 0.125      | 0.101       | 0.094      | 0.108       | 0.12          | 0.103         | 0.102         | 0.099         |
|                                  | 4th highest daily max 8-h average                          | down     | 2               | 0.083       | 0.086      | 0.087      | 0.079       | 0.073      | 0.085       | 0.083         | 0.078         | 0.078         | 0.077         |
| PM <sub>10</sub> *               | 90th percentile                                            | ns       | 1               | 84          | 63         | 49         | 40          | 47         | 53          | 69            | 60            | 55            | 56            |
|                                  | Weighted annual mean                                       | ns       | 1               | 39.1        | 36.9       | 31.4       | 27.4        | 29.7       | 29.1        | 36.4          | 31.5          | 35.8          | 34.9          |
| PM <sub>2.5</sub> *              | 98th percentile                                            | NA       | 1               | ND          | ND         | ND         | ND          | ND         | ND          | 79            | 55            | 58            | 50            |
|                                  | Weighted annual mean                                       | NA       | 1               | ND          | ND         | ND         | ND          | ND         | ND          | 19.56         | 15.62         | 13.85         | 16.68         |
| SYRACUSE                         | , NY                                                       |          |                 |             |            |            |             |            |             |               |               |               |               |
| CO                               | 2nd max (daily-non-overlapping 8-h)                        | down     | 1               | 5.6         | 6.5        | 3.3        | 3.9         | 4          | 3           | 3.1           | 2.4           | 2.2           | 2.1           |
| SO <sub>2</sub>                  | 2nd daily max                                              | down     | 2               | 0.018       | 0.02       | 0.016      | 0.014       | 0.017      | 0.01        | 0.014         | 0.017         | 0.011         | 0.012         |
| -                                | Annual mean                                                | down     | 2               | 0.003       | 0.003      | 0.003      | 0.003       | 0.002      | 0.002       | 0.002         | 0.003         | 0.003         | 0.003         |
| Ozone                            | 2nd highest daily max                                      | ns       | 2               | 0.097       | 0.095      | 0.1        | 0.085       | 0.096      | 0.093       | 0.092         | 0.083         | 0.096         | 0.1           |
|                                  | 4th highest daily max 8-h average                          | ns       | 2               | 0.083       | 0.077      | 0.086      | 0.073       | 0.078      | 0.082       | 0.084         | 0.074         | 0.084         | 0.088         |
| PM <sub>2.5</sub> *              | 98th percentile                                            | NA       | 2               | ND          | ND         | ND         | ND          | ND         | ND          | ND            | 28.65         | 35.3          | 38.8          |
|                                  | Weighted annual mean                                       | NA       | 2               | ND          | ND         | ND         | ND          | ND         | ND          | ND            | 11.545        | 11.07         | 11.205        |
| TACOMA, V                        | NA                                                         |          |                 |             |            |            |             |            |             |               |               |               |               |
| CO                               | 2nd max (daily-non-overlapping 8-h)                        | ns       | 1               | 6           | 6          | 6.3        | 6.3         | 6.8        | 5.8         | 6.6           | 5.5           | 5             | 4.5           |
| PM <sub>10</sub> *               | 90th percentile                                            | ns       | 1               | 52          | 41         | 43         | 43          | 50         | 35          | 44            | 48            | 38            | 36            |
|                                  | Weighted annual mean                                       | ns       | 1               | 28.4        | 23.1       | 26         | 23.1        | 27.4       | 21.1        | 23.1          | 28.4          | 20.5          | 20.8          |
| PM <sub>2.5</sub> *              | 98th percentile                                            | NA       | 1               | ND          | ND         | ND         | ND          | ND         | ND          | ND            | 49            | 41.5          | 42.9          |
| 2.5                              | Weighted annual mean                                       | NA       | 1               | ND          | ND         | ND         | ND          | ND         | ND          | ND            | 13            | 11.39         | 10.56         |
| TALLAHAS                         | SEE, FL                                                    |          |                 |             |            |            |             |            |             |               |               |               |               |
| PM <sub>2.5</sub> *              | 98th percentile                                            | NA       | 1               | ND          | ND         | ND         | ND          | ND         | ND          | 31.3          | 29.5          | 31.4          | 28.4          |
| 2.5                              | Weighted annual mean                                       | NA       | 1               | ND          | ND         | ND         | ND          | ND         | ND          | 13.92         | 13.64         | 12.51         | 12.92         |
| TAMPA-ST                         | PETERSBURG-CLEARWATER, FL MS                               |          |                 |             |            |            |             |            |             |               |               |               |               |
| CO                               | 2nd max (daily-non-overlapping 8-h)                        | ns       | 1               | 3.9         | 3.5        | 5          | 3.9         | 3.7        | 4.1         | 3.3           | 3.1           | 3             | 3.8           |
| SO,                              | 2nd daily max                                              | down     | 2               | 0.032       | 0.043      | 0.032      | 0.025       | 0.034      | 0.027       | 0.028         | 0.024         | 0.026         | 0.022         |
| 50 <sub>2</sub>                  | Annual mean                                                | down     | 2               | 0.007       | 0.007      | 0.002      | 0.005       | 0.004      | 0.006       | 0.020         | 0.005         | 0.005         | 0.005         |
| NO <sub>2</sub>                  | Annual mean                                                | ns       | 1               | 0.01        | 0.01       | 0.000      | 0.003       | 0.000      | 0.000       | 0.00          | 0.000         | 0.000         | 0.000         |
| Ozone                            | 2nd highest daily max                                      | ns       | 3               | 0.091       | 0.097      | 0.107      | 0.111       | 0.109      | 0.122       | 0.111         | 0.106         | 0.113         | 0.091         |
| OZONC                            | 4th highest daily max 8-h average                          | ns       | 3               | 0.072       | 0.076      | 0.08       | 0.081       | 0.084      | 0.089       | 0.085         | 0.082         | 0.083         | 0.07          |
| PM <sub>10</sub> *               | 90th percentile                                            | ns       | 2               | 39          | 40.5       | 46         | 49          | 48.5       | 45.5        | 50.5          | 44.5          | 44            | 37            |
| 10                               | Weighted annual mean                                       | ns       | 2               | 28.35       | 27.8       | 28.3       | 29.85       | 30.95      | 29.35       | 30            | 29.6          | 27.6          | 24.75         |
| PM25*                            | 98th percentile                                            | NA       | 1               | 20.00<br>ND | ND         | ND         | 27.00<br>ND | ND         | 27.00<br>ND | 24.6          | 30.6          | 27.9          | 22.3          |
| 2.5                              | Weighted annual mean                                       | NA       | 1               | ND          | ND         | ND         | ND          | ND         | ND          | 12.92         | 12.39         | 11.7          | 10.75         |
| TERRE HAU                        | 8                                                          |          | ·               | nib.        | ND         | ND         | ND          | ND         | ND          | 12.72         | 12.07         | 11.7          | 10.70         |
|                                  | -                                                          | nc       | 1               | 0.035       | 0.033      | 0.035      | 0.039       | 0.025      | 0.032       | 0.024         | 0.055         | 0.058         | 0.027         |
| SO <sub>2</sub>                  | 2nd daily max<br>Annual mean                               | ns       | 1               | 0.035       | 0.033      | 0.035      | 0.039       | 0.025      | 0.032       | 0.024         | 0.055         | 0.058         | 0.027         |
| Ozone                            |                                                            | ns       | 1               | 0.011       | 0.106      | 0.099      | 0.012       | 0.000      | 0.099       | 0.007         | 0.012         | 0.01          | 0.007         |
| OZUNE                            | 2nd highest daily max<br>4th highest daily max 8-h average | ns       | 1               | 0.000       | 0.094      | 0.033      | 0.098       | 0.090      | 0.077       | 0.093         | 0.000         |               | 0.090         |
| DM *                             | 90th percentile                                            | ns<br>ns | 2               | 48.5        | 42.5       | 53         | 39          | 40.5       | 43          | 45            | 44            | 39.5          | 36            |
| PM <sub>10</sub> *               | Weighted annual mean                                       | down     | 2               | 28.15       | 27.7       | 29.5       | 24.95       | 24.8       | 26.1        | 24.75         | 24.35         | 21.85         | 21.15         |
| PM <sub>2.5</sub> *              | 98th percentile                                            | NA       | 1               | 20.15<br>ND | 27.7<br>ND | 29.3<br>ND | 24.95<br>ND | 24.0<br>ND | ND          | 24.75<br>ND   | 34.2          | 38.4          | 40.2          |
| F 1VI <sub>2.5</sub>             | Weighted annual mean                                       | NA       | 1               | ND          | ND         | ND         | ND          | ND         | ND          | ND            | 15.72         | 15.18         | 14.55         |
|                                  |                                                            | NA       |                 | ND          | ND         | ND         | ND          | ND         | ND          | ND            | 13.72         | 15.10         | 14.55         |
|                                  | A, TX-TEXARKANA, AR                                        | NIA      | 1               | ND          |            |            | ND          | ND         | ND          |               | 21            | 20 /          | 25.2          |
| PM <sub>2.5</sub> *              | 98th percentile                                            | NA       | 1<br>1          | ND          | ND         | ND         | ND          | ND         | ND          | ND            | 31            | 29.6          | 35.7          |
|                                  | Weighted annual mean                                       | NA       | I               | ND          | ND         | ND         | ND          | ND         | ND          | ND            | 14.68         | 15.09         | 13.21         |
| TOLEDO, O                        |                                                            |          |                 |             |            |            |             |            |             |               |               |               |               |
| 00                               | Maximum quarterly value                                    | down     | 1               | 0.63        | 0.7        | 0.43       | 0.437       | 0.417      | 0.35        | 0.263         | 0.33          | 0.273         | 0.13          |
| SO <sub>2</sub>                  | 2nd daily max                                              | ns       | 1               | 0.025       | 0.056      | 0.024      | 0.014       | 0.021      | 0.021       | 0.052         | 0.017         |               | 0.026         |
| 0                                | Annual mean                                                | ns       | 1               | 0.006       | 0.007      | 0.004      | 0.003       | 0.003      | 0.004       | 0.009         | 0.005         |               | 0.007         |
| Ozone                            | 2nd highest daily max                                      | ns       | 2               | 0.117       | 0.115      | 0.108      | 0.111       | 0.105      | 0.106       | 0.119         | 0.094         | 0.109         |               |
| <b></b>                          | 4th highest daily max 8-h average                          | ns       | 2               | 0.089       | 0.09       | 0.09       | 0.092       | 0.085      | 0.086       | 0.085         | 0.08          | 0.092         |               |
| PM <sub>2.5</sub> *              | 98th percentile                                            | NA       | 2               | ND          | ND         | ND         | ND          | ND         | ND          |               | 38.575        | 35.85         |               |
|                                  | Weighted annual mean                                       | NA       | 2               | ND          | ND         | ND         | ND          | ND         | ND          | 15.56         | 15.388        | 14.745        | 15.115        |
|                                  | c                                                          |          |                 |             |            |            |             |            |             |               |               |               |               |
|                                  |                                                            |          |                 |             |            |            |             |            |             |               |               |               |               |
| TOPEKA, K<br>PM <sub>2.5</sub> * | 98th percentile                                            | NA<br>NA | 1<br>1          | ND<br>ND    | ND<br>ND   | ND<br>ND   | ND<br>ND    | ND<br>ND   | ND<br>ND    | 26.1<br>12.32 | 23.5<br>10.73 | 22.8<br>10.71 | 29.1<br>11.14 |

| Metropolit          | an Statistical Area                 | Trend | #Trend<br>Sites | 1993     | 1994   | 1995  | 1996  | 1997   | 1998  | 1999   | 2000   | 2001   | 2002   |
|---------------------|-------------------------------------|-------|-----------------|----------|--------|-------|-------|--------|-------|--------|--------|--------|--------|
| TRENTON,            | NJ                                  |       |                 |          |        |       |       |        |       |        |        |        |        |
| NO <sub>2</sub>     | Annual mean                         | ns    | 1               | 0.016    | 0.016  | 0.016 | 0.017 | 0.017  | 0.015 | 0.017  | 0.016  | 0.017  | 0.016  |
| Ozóne               | 2nd highest daily max               | ns    | 1               | 0.135    | 0.14   | 0.132 | 0.121 | 0.126  | 0.113 | 0.149  | 0.113  | 0.134  | 0.133  |
|                     | 4th highest daily max 8-h average   | ns    | 1               | 0.102    | 0.103  | 0.107 | 0.09  | 0.106  | 0.095 | 0.113  | 0.099  | 0.104  | 0.109  |
| PM <sub>10</sub> *  | 90th percentile                     | ns    | 1               | 46       | 52     | 38    | 40    | 40     | 35    | 36     | 41     | 41     | 35     |
|                     | Weighted annual mean                | down  | 1               | 26.6     | 29.1   | 23.9  | 26.7  | 27     | 23.9  | 20.6   | 25.6   | 23.3   | 21.1   |
| PM <sub>2.5</sub> * | 98th percentile                     | NA    | 1               | ND       | ND     | ND    | ND    | ND     | ND    | 28.3   | 31.5   | 31.85  | 32.2   |
| 2.5                 | Weighted annual mean                | NA    | 1               | ND       | ND     | ND    | ND    | ND     | ND    | 11.14  | 12.06  | 11.765 | 11.47  |
| TUCSON, A           | λZ                                  |       |                 |          |        |       |       |        |       |        |        |        |        |
| CO                  | 2nd max (daily-non-overlapping 8 h) | down  | 2               | 4.55     | 4.35   | 4.25  | 3.95  | 3.5    | 3.15  | 2.9    | 3.55   | 2.3    | 2.2    |
| SO <sub>2</sub>     | 2nd daily max                       | ns    | 1               | 0.005    | 0.004  | 0.004 | 0.004 | 0.004  | 0.004 | 0.005  | 0.007  | 0.003  | 0.004  |
| 2                   | Annual mean                         | ns    | 1               | 0.002    | 0.002  | 0.002 | 0.001 | 0.002  | 0.002 | 0.002  | 0.002  | 0.001  | 0.001  |
| NO <sub>2</sub>     | Annual mean                         | down  | 1               | 0.018    | 0.019  | 0.019 | 0.018 | 0.018  | 0.017 | 0.018  | 0.017  | 0.015  | 0.017  |
| Ozóne               | 2nd highest daily max               | down  | 2               | 0.097    | 0.098  | 0.103 | 0.091 | 0.093  | 0.094 | 0.09   | 0.084  | 0.08   | 0.089  |
|                     | 4th highest daily max 8-h average   | down  | 2               | 0.079    | 0.078  | 0.082 | 0.077 | 0.078  | 0.075 | 0.07   | 0.075  | 0.068  | 0.076  |
| PM <sub>10</sub> *  | 90th percentile                     | ns    | 2               | 45       | 36.5   | 56.5  | 45    | 48.5   | 55.5  | 65.5   | 61     | 48     | 52     |
| 10                  | Weighted annual mean                | ns    | 2               | 28.05    | 25.7   | 34.4  | 32.85 | 33.45  | 37.35 | 44.55  | 37.95  | 31.65  | 36.25  |
| PM <sub>2.5</sub> * | 98th percentile                     | NA    | 2               | ND       | ND     | ND    | ND    | ND     | ND    | 21.75  | 11.95  | 17.75  | 20.85  |
| 2.5                 | Weighted annual mean                | NA    | 2               | ND       | ND     | ND    | ND    | ND     | ND    | 9.22   | 7.3    | 7.205  | 6.49   |
| TULSA, OK           | •                                   |       |                 |          |        |       |       |        |       |        |        |        |        |
| CO                  | 2nd max (daily-non-overlapping 8-h) | ns    | 1               | 4.5      | 4.7    | 4.5   | 6.8   | 6.3    | 4.7   | 3.5    | 3.7    | 4.1    | 3      |
| SO <sub>2</sub>     | 2nd daily max                       | ns    | 1               | 0.026    | 0.025  | 0.034 | 0.042 | 0.028  | 0.034 | 0.051  | 0.027  | 0.028  | 0.032  |
| 002                 | Annual mean                         | ns    | 1               | 0.006    | 0.004  | 0.008 | 0.008 | 0.008  | 0.01  | 0.008  | 0.006  | 0.008  | 0.006  |
| Ozone               | 2nd highest daily max               | ns    | 1               | 0.117    | 0.112  | 0.121 | 0.115 | 0.114  | 0.01  | 0.114  | 0.122  | 0.107  | 0.108  |
| 020110              | 4th highest daily max 8-h average   | ns    | 1               | 0.077    | 0.091  | 0.096 | 0.088 | 0.081  | 0.092 | 0.091  | 0.088  | 0.084  | 0.083  |
| PM <sub>2.5</sub> * | 98th percentile                     | NA    | 1               | ND       | ND     | ND    | ND    | ND     | ND    | ND     | 28     | 29.5   | 29.5   |
| 2.5                 | Weighted annual mean                | NA    | 1               | ND       | ND     | ND    | ND    | ND     | ND    | ND     | 12.53  | 12.96  | 12.26  |
| TUSCALOO            | 0                                   | 1471  |                 | ND       | ND     | ND    | ND    | ND     | ND    | ND     | 12.00  | 12.70  | 12.20  |
| PM <sub>10</sub> *  | 90th percentile                     | UD    | 1               | 43       | 41     | 48    | 41    | 44     | 44    | 51     | 59     | 59     | 59     |
| F 1VI <sub>10</sub> | Weighted annual mean                | up    | 1               | 43<br>26 | 25.9   | 27.4  | 26.2  | 25.2   | 28.3  | 28.1   | 28.7   | 28.7   | 28.7   |
|                     | 0                                   | up    | I               | 20       | 20.9   | 27.4  | 20.2  | Z0.Z   | 20.3  | 20.1   | 20.7   | 20.7   | 20.7   |
| UTICA-RON           | -                                   |       | 1               | 0.010    | 0.010  | 0.000 | 0.000 | 0.007  | 0.005 | 0.007  | 0.007  | 0.007  | 0.000  |
| SO <sub>2</sub>     | 2nd daily max                       | ns    | 1               | 0.012    | 0.012  | 0.008 | 0.009 | 0.007  | 0.005 | 0.007  | 0.007  | 0.007  |        |
| 0                   | Annual mean                         | down  | 1               | 0.002    | 0.002  | 0.002 | 0.002 | 0.002  | 0.001 | 0.001  | 0.001  | 0.002  | 0.001  |
| Ozone               | 2nd highest daily max               | ns    | 2               | 0.085    | 0.085  | 0.092 | 0.075 | 0.085  | 0.089 | 0.087  | 0.081  | 0.095  | 0.098  |
| D14 *               | 4th highest daily max 8-h average   | up    | 2               | 0.067    | 0.072  | 0.077 | 0.063 | 0.073  | 0.074 | 0.076  | 0.067  | 0.08   | 0.083  |
| PM <sub>10</sub> *  | 90th percentile                     | ns    | 1               | 24       | 23     | 19    | 24    | 21     | 24    | 24     | 15     | 19     | 23     |
| DM *                | Weighted annual mean                | ns    | 1               | 11.7     | 11.6   | 11.2  | 12.3  | 11.3   | 12.5  | 12     | 8.7    | 9.4    | 11.3   |
| PM <sub>2.5</sub> * | 98th percentile                     | NA    | 1               | ND       | ND     | ND    | ND    | ND     | ND    | ND     | 26.9   | 34.6   | 38.4   |
|                     | Weighted annual mean                | NA    | 1               | ND       | ND     | ND    | ND    | ND     | ND    | ND     | 11.8   | 11.69  | 12.06  |
|                     | AIRFIELD-NAPA, CA                   |       |                 |          |        |       |       |        |       |        |        |        |        |
| CO                  | 2nd max (daily-non-overlapping 8-h) | down  | 2               | 5.55     | 5.2    | 4.2   | 4.15  | 4.4    | 4.2   | 4.15   | 3.75   | 3.35   | 3      |
| SO <sub>2</sub>     | 2nd daily max                       | down  | 1               | 0.007    | 0.007  | 0.005 | 0.006 | 0.005  | 0.005 | 0.006  | 0.005  | 0.004  | 0.004  |
|                     | Annual mean                         | ns    | 1               | 0.002    | 0.002  | 0.002 | 0.002 | 0.002  | 0.002 | 0.002  | 0.002  | 0.001  | 0.002  |
| NO <sub>2</sub>     | Annual mean                         | down  | 2               | 0.015    | 0.015  | 0.015 | 0.014 | 0.013  | 0.013 | 0.014  | 0.013  | 0.013  | 0.013  |
| Ozone               | 2nd highest daily max               | ns    | 2               | 0.1      | 0.095  | 0.106 | 0.1   | 0.08   | 0.104 | 0.102  | 0.073  | 0.081  | 0.086  |
|                     | 4th highest daily max 8-h average   | ns    | 2               | 0.07     |        | 0.076 | 0.071 | 0.054  | 0.064 | 0.075  | 0.056  | 0.062  |        |
| PM <sub>10</sub> *  | 90th percentile                     | ns    | 3               | 33       | 31.667 |       | 29    |        |       | 34.333 |        |        | 33.667 |
|                     | Weighted annual mean                | ns    | 3               |          | 20.867 |       |       | 17.433 |       |        | 16.533 |        |        |
| PM <sub>2.5</sub> * | 98th percentile                     | NA    | 1               | ND       | ND     | ND    | ND    | ND     | ND    | ND     | 44     | 56     | 54     |
|                     | Weighted annual mean                | NA    | 1               | ND       | ND     | ND    | ND    | ND     | ND    | ND     | 11.57  | 12.48  | 13.61  |
| VENTURA,            | CA                                  |       |                 |          |        |       |       |        |       |        |        |        |        |
|                     | Maximum quarterly value             | ns    | 1               | 0.01     | 0.01   | 0.01  | 0.008 | 0.008  | 0.006 | 0.013  | 0.011  | 0.009  | 0.007  |
| CO                  | 2nd max (daily-non-overlapping 8-h) | down  | 2               | 2.45     | 2.75   | 3.15  | 2.35  | 2.35   | 2.25  | 1.9    | 2.05   | 2      | 1.6    |
| SO <sub>2</sub>     | 2nd daily max                       | ns    | 1               | 0.004    | 0.004  | 0.003 | 0.003 | 0.011  | 0.011 | 0.005  | 0.007  | 0.009  | 0.004  |
| 2                   | Annual mean                         | ns    | 1               | 0.001    | 0.001  | 0.001 | 0.001 | 0.003  | 0.003 | 0.002  | 0.002  | 0.004  | 0.001  |
| NO <sub>2</sub>     | Annual mean                         | down  | 2               | 0.018    | 0.02   | 0.02  | 0.019 | 0.017  | 0.016 | 0.018  | 0.017  | 0.015  | 0.013  |
| Ozóne               | 2nd highest daily max               | down  | 2               | 0.13     | 0.136  | 0.137 | 0.131 | 0.114  | 0.119 | 0.108  | 0.1    | 0.102  | 0.1    |
|                     | 4th highest daily max 8-h average   | down  | 2               | 0.098    | 0.101  | 0.104 | 0.103 | 0.09   | 0.093 | 0.084  | 0.084  | 0.084  | 0.078  |
| PM <sub>10</sub> *  | 90th percentile                     | ns    | 2               | 45.5     | 47     | 49.5  | 42    | 45     | 40    | 46     | 41.5   | 47     | 45     |
| 10                  | Weighted annual mean                | ns    | 2               | 28.2     | 29.85  | 27.15 | 26.45 | 29.8   | 22.8  | 28.8   | 27.75  | 29.8   | 28.4   |
|                     | O0th nereentile                     | NA    | 2               | ND       | ND     | ND    | ND    | ND     | ND    | 32.6   | 37.1   | 36.2   |        |
| PM <sub>2.5</sub> * | 98th percentile                     | NA NA | 2               | 110      | ND     |       | ND    | 110    | ND    | JZ.0   | 37.1   |        | 01.00  |

| Metropolita         | an Statistical Area                                  | Trend    | #Trend<br>Sites | 1993           | 1994           | 1995         | 1996           | 1997           | 1998          | 1999           | 2000           | 2001           | 2002          |
|---------------------|------------------------------------------------------|----------|-----------------|----------------|----------------|--------------|----------------|----------------|---------------|----------------|----------------|----------------|---------------|
| /ICTORIA,           | тх                                                   |          |                 |                |                |              |                |                |               |                |                |                |               |
| Ozone               | 2nd highest daily max                                | ns       | 1               | 0.098          | 0.094          | 0.104        | 0.087          | 0.092          | 0.093         | 0.102          | 0.094          |                | 0.096         |
|                     | 4th highest daily max 8-h average                    | ns       | 1               | 0.081          | 0.075          | 0.087        | 0.071          | 0.078          | 0.073         | 0.086          | 0.079          | 0.073          | 0.078         |
|                     | MILLVILLE-BRIDGETON, NJ PMS                          |          |                 |                |                |              |                |                |               |                |                |                |               |
| SO <sub>2</sub>     | 2nd daily max                                        | ns       | 1               | 0.019          | 0.032          | 0.016        | 0.016          | 0.018          | 0.012         | 0.012          | 0.017          | 0.021          | 0.016         |
| 0                   | Annual mean                                          | down     | 1               | 0.006          | 0.005          | 0.004        | 0.005          | 0.004          | 0.004         | 0.003          | 0.004          | 0.004          | 0.004         |
| Ozone               | 2nd highest daily max                                | ns       | 1               | 0.121          | 0.102          | 0.126        | 0.105          | 0.115          | 0.117         | 0.117          | 0.117          | 0.129          | 0.12          |
|                     | 4th highest daily max 8-h average                    | ns       | 1               | 0.103          | 0.086          | 0.091        | 0.086          | 0.104          | 0.098         | 0.096          | 0.094          | 0.101          | 0.101         |
|                     | JLARE-PORTERVILLE, CA                                |          | 1               | 2.5            |                | 10           | 2.0            | 2.5            | 2.4           | 2.0            | 2.2            | 2.2            | 2.0           |
| CO                  | 2nd max (daily-non-overlapping 8-h)                  | down     | 1               | 3.5            | 4              | 4.2          | 3.9            | 3.5            | 3.6           | 3.9            | 3.3            | 3.2            | 2.8           |
| NO <sub>2</sub>     | Annual mean                                          | ns       | 1               | 0.023          | 0.023          | 0.023        | 0.018          | 0.019          | 0.017         | 0.021          | 0.018          | 0.018          | 0.019         |
| Ozone               | 2nd highest daily max                                | down     | 2<br>2          | 0.138<br>0.107 | 0.137<br>0.108 | 0.118<br>0.1 | 0.131<br>0.104 | 0.114<br>0.096 | 0.13<br>0.102 | 0.116<br>0.099 | 0.111<br>0.095 | 0.117<br>0.098 | 0.124 0.105   |
| DM *                | 4th highest daily max 8-h average<br>98th percentile | ns<br>NA | 1               | 0.107<br>ND    | 0.108<br>ND    | ND           | 0.104<br>ND    | 0.090<br>ND    | 0.102<br>ND   | 114            | 103            | 0.098          | 0.103         |
| PM <sub>2.5</sub> * | Weighted annual mean                                 | NA       | 1               | ND             | ND             | ND           | ND             | ND             | ND            | 27.6           | 23.92          | 22.49          | 23.22         |
| илениет             | ON, DC-MD-VA-WV                                      | NA       | 1               | ND             | ND             | ND           | ND             | ND             | ND            | 27.0           | 23.72          | 22.47          | 23.22         |
| CO                  | 2nd max (daily-non-overlapping 8-h)                  | down     | 2               | 5.6            | 5.3            | 4.95         | 4.1            | 4.4            | 3.45          | 4.7            | 3.85           | 3.6            | 3.55          |
| SO <sub>2</sub>     | 2nd daily max                                        | ns       | 2               | 0.023          | 0.03           | 0.021        | 0.036          | 0.023          | 0.021         | 0.022          | 0.022          | 0.024          | 0.02          |
| 30 <sub>2</sub>     | Annual mean                                          | down     | 2               | 0.023          | 0.009          | 0.021        | 0.007          | 0.023          | 0.021         | 0.022          | 0.022          | 0.024          | 0.007         |
| $NO_2$              | Annual mean                                          | ns       | 4               | 0.027          | 0.027          | 0.023        | 0.024          | 0.023          | 0.024         | 0.023          | 0.022          | 0.000          | 0.024         |
| Ozone               | 2nd highest daily max                                | ns       | 3               | 0.127          | 0.127          | 0.12         | 0.109          | 0.127          | 0.113         | 0.126          | 0.11           | 0.121          |               |
| 020110              | 4th highest daily max 8-h average                    | ns       | 3               | 0.099          | 0.09           | 0.097        | 0.083          | 0.093          | 0.097         | 0.099          | 0.081          | 0.096          |               |
| PM <sub>2.5</sub> * | 98th percentile                                      | NA       | 4               | ND             | ND             | ND           | ND             | ND             | ND            |                | 39.725         | 42.25          |               |
| 2.5                 | Weighted annual mean                                 | NA       | 4               | ND             | ND             | ND           | ND             | ND             | ND            |                | 15.523         |                |               |
| ATERBU              | 0                                                    |          |                 |                |                |              |                |                |               |                |                |                |               |
|                     | Maximum quarterly value                              | ns       | 1               | 0.02           | 0.017          | 0.037        | 0.033          | 0.025          | 0.017         | 0.01           | 0.017          | 0.013          | 0.017         |
| S0 <sub>2</sub>     | 2nd daily max                                        | ns       | 1               | 0.021          | 0.03           | 0.019        | 0.022          | 0.02           | 0.021         | 0.02           | 0.017          | 0.018          | 0.02          |
| 2                   | Annual mean                                          | down     | 1               | 0.006          | 0.007          | 0.005        | 0.005          | 0.005          | 0.006         | 0.005          | 0.004          | 0.004          | 0.004         |
| PM <sub>10</sub> *  | 90th percentile                                      | down     | 1               | 43             | 41             | 37           | 45             | 36             | 32            | 32             | 30             | 35             | 34            |
|                     | Weighted annual mean                                 | down     | 1               | 22.6           | 25.1           | 23.6         | 25.4           | 23.3           | 21.6          | 19.2           | 19.9           | 19.8           | 19.1          |
| PM <sub>2.5</sub> * | 98th percentile                                      | NA       | 1               | ND             | ND             | ND           | ND             | ND             | ND            | 38.4           | 34.4           | 35.4           | 32.6          |
|                     | Weighted annual mean                                 | NA       | 1               | ND             | ND             | ND           | ND             | ND             | ND            | 13.22          | 13.56          | 13.97          | 13.13         |
| VATERLOC            | D-CEDAR FALLS, IA                                    |          |                 |                |                |              |                |                |               |                |                |                |               |
| PM <sub>2.5</sub> * | 98th percentile                                      | NA       | 1               | ND             | ND             | ND           | ND             | ND             | ND            | 30.3           | 28.7           | 30.2           | 24.1          |
| 2.0                 | Weighted annual mean                                 | NA       | 1               | ND             | ND             | ND           | ND             | ND             | ND            | 12.05          | 11.37          | 11.8           | 10.95         |
| VAUSAU, V           | WI                                                   |          |                 |                |                |              |                |                |               |                |                |                |               |
| Ozone               | 2nd highest daily max                                | ns       | 1               | 0.081          | 0.077          | 0.088        | 0.079          | 0.08           | 0.098         | 0.095          | 0.081          | 0.078          | 0.08          |
|                     | 4th highest daily max 8-h average                    | ns       | 1               | 0.066          | 0.064          | 0.075        | 0.07           | 0.068          | 0.077         | 0.084          | 0.073          | 0.072          | 0.073         |
| VEST PALI           | M BEACH-BOCA RATON, FL                               |          |                 |                |                |              |                |                |               |                |                |                |               |
| CO                  | 2nd max (daily-non-overlapping 8-h)                  | down     | 1               | 3.1            | 2.8            | 2.8          | 2.5            | 3.5            | 2.5           | 2.8            | 2.7            | 2.2            | 2.3           |
| SO <sub>2</sub>     | 2nd daily max                                        | down     | 1               | 0.028          | 0.016          | 0.019        | 0.014          | 0.013          | 0.004         | 0.013          | 0.008          | 0.003          | 0.002         |
| -                   | Annual mean                                          | down     | 1               | 0.004          | 0.003          | 0.002        | 0.002          | 0.002          | 0.001         | 0.002          | 0.002          | 0.001          | 0.001         |
| $NO_2$              | Annual mean                                          | up       | 1               | 0.013          | 0.012          | 0.012        | 0.013          | 0.013          | 0.013         | 0.014          | 0.016          | 0.017          | 0.017         |
| PM_10*              | 90th percentile                                      | ns       | 1               | 30             | 30             | 30           | 42             | 34             | 34            | 30             | 30             | 30             | 24            |
|                     | Weighted annual mean                                 | ns       | 1               | 18.6           | 18.6           | 18.6         | 22.6           | 20.4           | 25.7          | 19             | 19.4           | 19.7           | 15.4          |
| PM <sub>2.5</sub> * | 98th percentile                                      | NA       | 1               | ND             | ND             | ND           | ND             | ND             | ND            | ND             | 26.9           | 18             | 16.1          |
|                     | Weighted annual mean                                 | NA       | 1               | ND             | ND             | ND           | ND             | ND             | ND            | ND             | 9.37           | 7.69           | 7.04          |
| VHEELING            |                                                      |          |                 |                |                | _            |                |                |               | _              |                |                |               |
| CO                  | 2nd max (daily-non-overlapping 8-h)                  | down     | 1               | 4.1            | 4.6            | 5            | 3.5            | 3.1            | 3.5           | 3              | 2.3            | 1.9            | 1.6           |
| SO <sub>2</sub>     | 2nd daily max                                        | down     | 2               | 0.064          | 0.067          | 0.061        | 0.059          | 0.048          | 0.051         | 0.047          | 0.043          |                | 0.036         |
| 0                   | Annual mean                                          | down     | 2               | 0.018          | 0.016          | 0.013        | 0.012          | 0.012          | 0.013         | 0.012          | 0.011          |                | 0.011         |
| Ozone               | 2nd highest daily max                                | ns       | 1               | 0.11           | 0.095          | 0.104        | 0.105          | 0.11           | 0.104         | 0.1            | 0.093          | 0.104          | 0.111         |
|                     | 4th highest daily max 8-h average                    | ns       | 1               | 0.077          | 0.078          | 0.089        | 0.087          | 0.082          | 0.087         | 0.088          | 0.071          | 0.088          | 0.097         |
| PM <sub>10</sub> *  | 90th percentile                                      | down     | 1               | 49<br>27 5     | 46             | 45<br>27 7   | 38             | 40             | 45            | 43<br>25.1     | 39<br>22 2     | 41             | 39            |
| DN# *               | Weighted annual mean<br>98th percentile              | down     | 1               | 27.5           | 27<br>ND       | 27.7         | 27<br>ND       | 23.2           | 24.8          | 25.1           | 23.2           | 24             | 23.3          |
| PM <sub>2.5</sub> * | Weighted annual mean                                 | NA<br>NA | 2<br>2          | ND<br>ND       | ND<br>ND       | ND<br>ND     | ND<br>ND       | ND<br>ND       | ND<br>ND      | 36.15<br>16.51 | 34.45<br>15.88 | 37.75          | 40.3<br>15.32 |
|                     |                                                      |          |                 |                |                |              |                |                |               |                |                |                |               |

| Come         Zuch highest daily max         ns         1         0.08         0.09         0.09         0.093         0.095         0.093         0.096         0.017         0.008         0.007         0.098         0.097         0.098         0.097         0.098         0.097         0.098         0.097         0.088         0.097         0.088         0.017         0.088         0.017         0.088         0.017         0.088         0.017         0.088         0.017         0.088         0.017         0.088         0.017         0.088         0.017         0.088         0.017         0.088         0.017         0.088         0.017         0.088         0.017         0.088         0.017         0.088         0.017         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.017         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.017         0.044         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Metropolit            | an Statistical Area               | Trend    | #Trend<br>Sites | 1993     | 1994     | 1995     | 1996     | 1997     | 1998     | 1999          | 2000          | 2001          | 2002          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------|----------|-----------------|----------|----------|----------|----------|----------|----------|---------------|---------------|---------------|---------------|
| Q2one         2nd highest daily max         haverage         up         1         0.08         0.09         0.092         0.083         0.096         0.067         0.083         0.079         0.088         0.070         0.080         0.084         0.098         0.097         0.083         0.079         0.088         0.070         0.080         0.084         0.08         0.084         0.08         0.084         0.08         0.047         0.088         0.070         0.088         0.070         0.088         0.070         0.088         0.070         0.088         0.075         0.088         0.075         0.088         0.075         0.088         0.075         0.048         0.075         0.048         0.075         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047         0.047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | ĸs                                |          |                 |          |          |          |          |          |          |               |               |               |               |
| eth höpest dally max 8-h average         up         1         0.059         0.067         0.069         0.079         0.083         0.079         0.081         0.079         0.081         0.079         0.081         0.079         0.081         0.079         0.081         0.079         0.081         0.079         0.081         0.079         0.081         0.079         0.081         0.079         0.081         0.079         0.081         0.079         0.081         0.079         0.081         0.079         0.081         0.079         0.081         0.079         0.081         0.01         2.552         2.52         2.52         2.52         2.52         2.52         2.52         2.52         2.52         2.52         2.52         2.52         2.52         2.55         2.55         0.55         2.55         0.52         2.55         0.55         0.041         0.010         0.010         0.014         0.044         0.040         0.040         0.040         0.040         0.040         0.040         0.040         0.040         0.040         0.040         0.040         0.040         0.040         0.040         0.040         0.040         0.040         0.040         0.040         0.040         0.040         0.040 <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>3.7</th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                                   |          |                 |          |          |          |          |          |          |               |               |               | 3.7           |
| PM <sub>h</sub> * 90th percentile         * 00vm         1         54         42         50         33         94         64         38         38         36           PM <sub>h</sub> * 96th percentile         NA         2         ND         ND <td>Ozone</td> <td></td> <td>0.092</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ozone                 |                                   |          |                 |          |          |          |          |          |          |               |               |               | 0.092         |
| Weighted annual mean         down         1         32.6         24.6         26         25.8         21.8         25.2         23.2         21.7         22.2         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         27         47         41         1.6         1.6         1.1         1.3         1.4         1.6         1.6         1.6         1.6         1.1         1.3         1.4         1.6         1.6         1.1         1.3         1.4         1.6         1.6         1.1         1.3         1.4         1.6         1.6         1.1         1.3         1.4         1.6         1.6         1.1         1.3         1.4         1.6         1.6         1.1         1.3         1.4         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b></b>               |                                   |          |                 |          |          |          |          |          |          |               |               |               | 0.079         |
| PPM <sub>x</sub> Veil percentile         NA         2         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PM <sub>10</sub> *    |                                   |          |                 |          |          |          |          |          |          |               |               |               | 37            |
| Weighted annual mean         NA         2         ND         ND <td>D14 *</td> <td></td> <td>21.6</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D14 *                 |                                   |          |                 |          |          |          |          |          |          |               |               |               | 21.6          |
| WILLINGTON-NËWARK, DE-MD           CO         2rd dalijn-non-overlapping 8-h)         ns         1         7         7         1.5         1.6         1.1         1.3         1.4         1.6         1.6           Go         2rd dalijn-non-overlapping 8-h)         down         1         0.06         0.067         0.057         0.044         0.049         0.048         0.060         0.060         0.060         0.008         0.060         0.008         0.060         0.008         0.008         0.015         0.115         0.112         0.118         0.128         0.118         0.128         0.118         0.128         0.118         0.128         0.118         0.128         0.118         0.128         0.118         0.128         0.118         0.128         0.118         0.128         0.115         0.125         0.11         0.13         0.11         1.3         1.4         1.6         0.027         0.037         0.03         0.03         0.03         0.03         0.03         0.035         0.038         0.038         0.060         0.027         0.03         0.039         0         0.067         0.08         0.066         0.067         0.08         0.066         0.067         0.08         0.066 <td< td=""><td>PIM<sub>2.5</sub>^</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>27.9</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PIM <sub>2.5</sub> ^  |                                   |          |                 |          |          |          |          |          |          |               |               |               | 27.9          |
| CO         2nd max (daily-non-overlapping 8-h)         ns         1         1.7         1.7         1.7         1.5         1.6         1.1         1.3         1.4         1.6         1.6           SD,<br>Cacne         2nd daily max         max         nown         1         0.06         0.068         0.075         0.044         0.049         0.047         0.040         0.068         0.008         0.008         0.008         0.008         0.008         0.009         0.011         0.013         0.008         0.008         0.009         0.01         0.019         0.012         0.12         0.112         0.118         0.108         0.015         0.014         0.118         0.108         0.017         0.019         0.029         0.029         1.0.29         1.4.2         1.1.3         3.6         0.141         1.1.3         3.6         0.014         1.1.3         3.6         0.014         1.014         0.014         0.017         0.017         0.017         0.017         0.017         0.017         0.017         0.017         0.017         0.017         0.017         0.017         0.016         0.017         0.016         0.010         0.010         0.010         0.010         0.010         0.010         0.010<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                                   | NA       | Z               | ND       | ND       | ND       | ND       | ND       | ND       | 12.205        | 11.090        | 11.10         | 10.70         |
| SD,<br>Annual mean         down         1         0.06         0.056         0.078         0.044         0.047         0.043         0.067         0.078         0.078         0.078         0.078         0.078         0.078         0.078         0.078         0.078         0.078         0.078         0.078         0.078         0.079         0.079         0.079         0.079         0.079         0.079         0.079         0.079         0.079         0.079         0.079         0.079         0.079         0.079         0.079         0.079         0.079         0.079         0.079         0.079         0.079         0.079         0.079         0.079         0.079         0.079         0.079         0.079         0.079         0.079         0.079         0.070         0.000         0.009         0.007         0.007         0.006         0.006         0.007         0.007         0.007         0.006         0.007         0.007         0.007         0.007         0.006         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                   |          | 4               | 47       | 4 7      | 4.5      |          |          | 4.0      |               |               |               | 4.0           |
| Annual mean         down         1         0.012         0.011         0.011         0.010         0.008         0.006         0.006         0.006         0.006         0.006         0.006         0.006         0.006         0.006         0.006         0.006         0.006         0.006         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007 <t< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.2</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                                   |          | -               |          |          |          |          |          |          |               |               |               | 1.2           |
| Q20ne         2nd highest daily max         ns         2         0.118         0.108         0.138         0.108         0.138         0.008         0.009         0.093         0.11         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115         0.115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SU <sub>2</sub>       |                                   |          |                 |          |          |          |          |          |          |               |               |               |               |
| 4th highest daily max 8-h average       ns       2       0.086       0.082       0.105       0.085       0.093       0.093       0.11       0.09       0.092       11       0.99       0.092       11       0.99       0.092       11       0.99       0.092       11       0.99       11.133       36.6         WILMINGCTON, NC       S0       2.01 daily max       ns       1       0.0063       0.063       0.036       0.028       0.027       0.03       0.039       0.03         Cone       annual mean       down       1       0.009       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.008       0.006       0.006       0.006       0.006       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.006       0.006       0.006       0.006       0.006       0.006       0.006       0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 07000                 |                                   |          |                 |          |          |          |          |          |          |               |               |               |               |
| PM <sub>2.5</sub> *         98th percentile         NA         3         ND         ND         ND         ND         ND         ND         ND         ND         S3         35         391         11.133         36.4           WILIMINGTON, NC         S0         20.023         0.026         0.027         0.03         0.039         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007 <th< td=""><td>OZUNE</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OZUNE                 |                                   |          |                 |          |          |          |          |          |          |               |               |               |               |
| Weighted annual mean         NA         3         ND         ND <td>PM *</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PM *                  |                                   |          |                 |          |          |          |          |          |          |               |               |               |               |
| WILLMINGTON, NC         SO         2         2nd daily max         ns         1         0.063         0.063         0.063         0.026         0.027         0.03         0.036         0.026         0.027         0.03         0.036         0.026         0.027         0.007         0.007         0.006         0.007         0.007         0.007         0.007         0.007         0.006         0.008         0.007         0.007         0.007         0.006         0.008         0.007         0.007         0.007         0.008         0.007         0.008         0.007         0.008         0.007         0.008         0.007         0.008         0.007         0.008         0.007         0.008         0.007         0.008         0.007         0.008         0.007         0.008         0.007         0.008         0.007         0.008         0.007         0.008         0.007         0.008         0.007         0.008         0.007         0.008         0.007         0.008         0.007         0.008         0.007         0.008         0.007         0.008         0.007         0.008         0.007         0.008         0.007         0.008         0.007         0.006         0.004         0.006         0.004         0.006         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.5                   |                                   |          |                 |          |          |          |          |          |          |               |               |               |               |
| SO2         2nd daily max         ns         1         0.063         0.063         0.064         0.027         0.037         0.037         0.036         0.037         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.008         0.007         0.007         0.007         0.008         0.007         0.008         0.007         0.008         0.007         0.008         0.007         0.007         0.008         0.007         0.007         0.007         0.008         0.007         0.007         0.008         0.007         0.007         0.007         0.008         0.007         0.007         0.008         0.007         0.007         0.007         0.008         0.006         0.006         0.006         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.008         0.006         0.006         0.006         0.007         0.007         0.007         0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | 8                                 |          | 0               | ND       | ND       | ne       | nib      | nib      | ne       | 10.100        | 10.700        | 10.27         | 11.277        |
| Annual mean         down         1         0.009         0.009         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.008         0.007         0.007         0.008         0.007         0.008         0.007         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.004         0.005         0.004         0.005         0.004         0.005         0.004         0.005         0.004         0.005         0.004         0.005         0.004         0.005         0.004         0.005         0.004         0.005         0.004         0.005         0.004         0.005         0.004         0.005         0.004         0.005         0.004         0.005         0.004         0.005 <t< td=""><td></td><td></td><td>ns</td><td>1</td><td>0.063</td><td>0.063</td><td>0.063</td><td>0.036</td><td>0.028</td><td>0.026</td><td>0.027</td><td>0.03</td><td>0 039</td><td>0.04</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                                   | ns       | 1               | 0.063    | 0.063    | 0.063    | 0.036    | 0.028    | 0.026    | 0.027         | 0.03          | 0 039         | 0.04          |
| Ozone         2nd highest daily max         down         1         0.104         0.097         0.09         0.102         0.102         0.081         0.097         0.09         0.027         0.093         0.066         0.067         0.080         0.076         0.083         0.081         0.076         0.083         0.086         0.076         0.083         0.086         0.076         0.083         0.086         0.076         0.083         0.086         0.076         0.083         0.086         0.076         0.083         0.086         0.076         0.083         0.086         0.087         0.08         0.076         0.083         0.086         0.076         0.083         0.086         0.076         0.083         0.086         0.076         0.083         0.086         0.076         0.083         0.086         0.076         0.081         0.017         0.013         0.019         0.012         0.013         0.019         0.013         0.019         0.013         0.019         0.013         0.019         0.013         0.019         0.013         0.019         0.014         0.006         0.005         0.004         0.006         0.005         0.004         0.006         0.013         0.010         0.013         0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30 <sub>2</sub>       |                                   |          |                 |          |          |          |          |          |          |               |               |               | 0.007         |
| 4th highest daily max 8-h average         ns         1         0.081         0.081         0.076         0.083         0.066         0.077         0.08         0.078         0.078         0.078         0.078         0.078         0.078         0.078         0.078         0.078         0.078         0.078         0.078         0.078         0.078         0.078         0.078         0.078         0.078         0.078         0.078         0.078         0.078         0.078         0.078         0.078         0.078         0.078         0.078         0.078         0.078         0.078         0.078         0.078         0.078         0.078         0.078         0.078         0.078         0.078         0.078         0.078         0.071         0.013         0.019         0.022         0.02         0.021         0.019         0.022         0.025         0.024         0.025         0.024         0.025         0.024         0.025         0.024         0.025         0.024         0.025         0.024         0.025         0.024         0.025         0.024         0.025         0.024         0.026         0.025         0.024         0.026         0.025         0.024         0.025         0.024         0.025         0.024         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ozone                 |                                   |          | -               |          |          |          |          |          |          |               |               |               | 0.091         |
| PM <sub>2.5</sub> *         98th percentile         NA         1         ND         ND <td>020110</td> <td>8 3</td> <td></td> <td>0.08</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 020110                | 8 3                               |          |                 |          |          |          |          |          |          |               |               |               | 0.08          |
| Weighted annual mean         NA         1         ND         ND <td>PMar*</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>22.9</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PMar*                 |                                   |          | 1               |          |          |          |          |          |          |               |               |               | 22.9          |
| WORCESTER, MCT         CO         2nd max (daily-non-overlapping 8-h)         down         1         6.1         5.9         4.2         5.3         3.4         3.5         3.3         2.6         2.6         2.5           SO2         2nd daily max (daily-non-overlapping 8-h)         down         1         0.025         0.024         0.023         0.017         0.013         0.019         0.020         0.017         0.013         0.019         0.020         0.019         0.019         0.020         0.019         0.019         0.020         0.014         0.006         0.020         0.019         0.019         0.010         0.019         0.010         0.011         0.018         0.012         0.0118         0.012         0.0118         0.012         0.0118         0.012         0.0118         0.012         0.0118         0.012         0.0118         0.012         0.0118         0.012         0.0118         0.012         0.0118         0.012         0.0118         0.014         0.012         0.0118         0.014         0.012         0.0118         0.014         0.012         0.0118         0.014         0.012         0.012         0.0118         0.014         0.022         0.029         0.017         0.018         0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.5                   |                                   |          |                 |          |          |          |          |          |          |               |               |               | 10.36         |
| C0       2nd max (daily-non-overlapping 8-h)       down       1       6.1       5.9       4.2       5.3       3.4       3.5       3.3       2.6       2.6         S0       2nd daily max       down       1       0.025       0.024       0.021       0.017       0.013       0.019       0.022       0.02         Annual mean       ns       1       0.007       0.008       0.005       0.004       0.005       0.04       0.005       0.04       0.005       0.04       0.005       0.04       0.005       0.04       0.005       0.04       0.05       0.04       0.05       0.04       0.05       0.04       0.05       0.04       0.05       0.04       0.05       0.04       0.05       0.04       0.05       0.04       0.05       0.04       0.05       0.04       0.05       0.04       0.05       0.04       0.05       0.04       0.05       0.04       0.05       0.04       0.05       0.04       0.05       0.04       0.05       0.04       0.05       0.04       0.05       0.04       0.05       0.04       0.05       0.04       0.05       0.04       0.05       0.04       0.05       0.04       0.05       0.04       0.05       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | WORCEST               | 8                                 |          |                 |          |          |          |          |          |          |               |               |               |               |
| SO2         2nd daily max         down         1         0.025         0.024         0.021         0.017         0.013         0.019         0.022         0.02           Annual mean         ns         1         0.007         0.008         0.005         0.004         0.004         0.006         0.004         0.005         0.004         0.005         0.004         0.005         0.004         0.005         0.004         0.005         0.004         0.005         0.004         0.005         0.004         0.005         0.004         0.005         0.004         0.005         0.004         0.005         0.004         0.005         0.004         0.005         0.004         0.005         0.004         0.005         0.004         0.005         0.004         0.005         0.004         0.005         0.004         0.005         0.004         0.005         0.004         0.005         0.004         0.005         0.004         0.005         0.004         0.005         0.004         0.005         0.004         0.005         0.004         0.005         0.004         0.005         0.004         0.005         0.006         0.007         0.005         0.004         0.005         0.007         0.005         0.007         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                   | down     | 1               | 6.1      | 5.9      | 4.2      | 5.3      | 3.4      | 3.5      | 3.3           | 2.6           | 2.6           | 2.9           |
| Δ         Annual mean         ns         1         0.007         0.008         0.006         0.005         0.004         0.006         0.005         0.006         0.005         0.004         0.006         0.005         0.006         0.005         0.006         0.005         0.006         0.005         0.006         0.005         0.004         0.006         0.005         0.004         0.007         0.002         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.02         0.018         0.02         0.020         0.018         0.02         0.018         0.02         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.018         0.018         0.012         0.011         0.018         0.018         0.011         0.022         0.019         0.011         0.019         0.011         0.019         0.011         0.019         0.011         0.019         0.011         0.019         0.011         0.019         0.011         0.019         0.011         0.011         0.029         0.015 </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                                   |          |                 |          |          |          |          |          |          |               |               |               |               |
| NO2         Annual mean         down         1         0.028         0.021         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.019         0.013         0.088         0.08         0.07         0.093         0.076         0.074         0.019         0.015         0.010         0.0115         0.101         0.099         0.11         0.111         0.092         0.109         0.115         0.101         0.099         0.13         0.115         0.110         0.099         0.10         0.115         0.101         0.099         0.10         0.115         0.101         0.097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                     |                                   | ns       | 1               | 0.007    | 0.008    | 0.006    | 0.005    | 0.004    | 0.005    | 0.004         | 0.006         | 0.005         | 0.005         |
| 4th highest daily max 8-h average       ns       1       0.092       0.097       0.092       0.097       0.093       0.076       0.088       0.07         PM <sub>10</sub> *       90th percentile       down       1       37       35       32       29       34       27       34       31       30         Weighted annual mean       down       1       20.3       20.1       19.1       20.3       18.2       20.8       19       17.7       1         PM <sub>2.5</sub> *       98th percentile       NA       2       ND       ND       ND       ND       ND       ND       35.5       29.55       34.75       3       11         YOLO, CA       Weighted annual mean       NA       2       ND       ND       ND       ND       ND       ND       0.097       0.108       0.113       0.092       0.109       0.115       0.101       0.099       0.17       0.108       0.135       0.115       0.101       0.099       0.17       0.108       0.087       0.088       0.087       0.088       0.087       0.088       0.087       0.083       0.087       0.083       0.087       0.09       0.097       1.08       0.029       0.025       0.039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NO <sub>2</sub>       | Annual mean                       | down     |                 | 0.028    | 0.025    | 0.021    | 0.019    | 0.019    | 0.019    | 0.02          | 0.018         | 0.02          | 0.017         |
| PM <sub>10</sub> *       90th percentile       down       1       37       35       32       29       34       27       34       31       30         Weighted annual mean       down       1       20.3       20.3       20.1       19.1       20.3       18.2       20.8       19       17.7       1         PM_2*       98th percentile       NA       2       ND       N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ozóne                 | 2nd highest daily max             | ns       | 1               | 0.155    | 0.125    | 0.118    | 0.091    | 0.106    | 0.124    | 0.113         | 0.098         | 0.118         | 0.127         |
| 10         Weighted annual mean         down         1         20.3         20.1         19.1         20.3         18.2         20.8         19         17.7         1           PM2.5*         98th percentile         NA         2         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       | 4th highest daily max 8-h average | ns       | 1               | 0.092    | 0.097    | 0.096    | 0.074    | 0.092    | 0.097    | 0.093         | 0.076         | 0.088         | 0.091         |
| Weighted annual mean         down         1         20.3         20.1         19.1         20.3         18.2         20.8         19         17.7         1           PM_25*         981h percentile         NA         2         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PM <sub>10</sub> *    | 90th percentile                   | down     | 1               |          | 35       |          |          | 34       |          |               |               |               | 30            |
| Weighted annual mean         NA         2         ND         ND         ND         ND         ND         ND         ND         13.34         11.955         13.01         11           YOLO, CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       | Weighted annual mean              |          |                 |          |          |          |          |          |          |               |               |               | 15.3          |
| YOLO, CA       Ozone       2nd highest daily max       ns       1       0.09       0.097       0.108       0.113       0.092       0.109       0.115       0.101       0.099       0.1         PM_2.5*       98th percentile       NA       1       ND       ND <td< td=""><td>PM<sub>2.5</sub>*</td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>37.5</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PM <sub>2.5</sub> *   | •                                 |          |                 |          |          |          |          |          |          |               |               |               | 37.5          |
| Ozone         2nd highest daily max         ns         1         0.09         0.097         0.108         0.113         0.092         0.109         0.115         0.101         0.099         0.175           PM25*         98th percentile         NA         1         ND         ND <th< td=""><td></td><td>Weighted annual mean</td><td>NA</td><td>2</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>13.34</td><td>11.955</td><td>13.01</td><td>11.23</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       | Weighted annual mean              | NA       | 2               | ND       | ND       | ND       | ND       | ND       | ND       | 13.34         | 11.955        | 13.01         | 11.23         |
| 4th highest daily max 8-h average       ns       1       0.076       0.076       0.083       0.087       0.068       0.087       0.088       0.08       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075       0.075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                                   |          |                 |          |          |          |          |          |          |               |               |               |               |
| PM <sub>2.5</sub> *         98th percentile         NA         1         ND         ND <td>Ozone</td> <td></td> <td>0.104</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ozone                 |                                   |          |                 |          |          |          |          |          |          |               |               |               | 0.104         |
| Weighted annual mean         NA         1         ND         ND <td></td> <td>0.076</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                                   |          |                 |          |          |          |          |          |          |               |               |               | 0.076         |
| YORK, PA         CO         2nd max (daily-non-overlapping 8-h)         down         1         3.3         3.9         2.7         2.8         3.4         2.4         2.4         1.8         2.2         3.3         3.9         2.7         2.8         3.4         2.4         2.4         1.8         2.2         3.3         3.9         2.7         2.8         3.4         2.4         2.4         1.8         2.2         3.3         3.9         2.7         2.8         3.4         2.4         2.4         1.8         2.2         3.3         3.9         2.7         2.8         3.4         2.4         2.4         1.8         2.2         3.4         2.4         2.4         1.8         2.2         3.4         2.4         2.4         1.8         2.2         3.4           SO2         2nd daily max         ns         1         0.008         0.009         0.006         0.007         0.009         0.008         0.006         0.007         0.009         0.008         0.006         0.007         0.009         0.012         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112 <td< td=""><td>PM<sub>2.5</sub>*</td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>31</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PM <sub>2.5</sub> *   | •                                 |          |                 |          |          |          |          |          |          |               |               |               | 31            |
| CO       2nd max (daily-non-overlapping 8-h)       down       1       3.3       3.9       2.7       2.8       3.4       2.4       2.4       1.8       2.2       3.5         SO2       2nd daily max       down       1       0.032       0.041       0.02       0.022       0.026       0.023       0.019       0.02       0.019       0.02         Annual mean       ns       1       0.032       0.024       0.021       0.019       0.019       0.018       0.02       0.02         Ozone       2nd highest daily max       ns       1       0.022       0.024       0.021       0.019       0.019       0.018       0.02       0.02         Ozone       2nd highest daily max       ns       1       0.112       0.115       0.097       0.098       0.109       0.112       0.112       0.112       0.112       0.112       0.112       0.112       0.112       0.112       0.112       0.112       0.112       0.112       0.112       0.112       0.112       0.112       0.112       0.114       0.13       4         PM_25*       98th percentile       NA       1       ND       ND       ND       ND       ND       1.6.55       16.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       | Weighted annual mean              | NA       | 1               | ND       | ND       | ND       | ND       | ND       | ND       | 16.29         | 10.25         | 10.39         | 10.72         |
| SO2       2nd daily max       down       1       0.032       0.041       0.02       0.022       0.023       0.019       0.02       0.019       0.02         Annual mean       ns       1       0.008       0.009       0.006       0.007       0.009       0.008       0.007       0.006       0.006       0.007       0.009       0.008       0.007       0.006       0.006       0.007       0.009       0.008       0.007       0.006       0.006       0.007       0.009       0.019       0.019       0.019       0.019       0.019       0.019       0.019       0.019       0.019       0.019       0.019       0.019       0.019       0.019       0.019       0.019       0.019       0.019       0.019       0.019       0.019       0.019       0.019       0.019       0.019       0.019       0.019       0.019       0.019       0.019       0.019       0.019       0.019       0.019       0.019       0.019       0.019       0.014       0.014       0.014       0.014       0.014       0.014       0.019       0.019       0.019       0.019       0.019       0.019       0.012       0.012       0.012       0.012       0.012       0.012       0.012       0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                   |          |                 |          |          |          |          |          |          |               |               |               |               |
| Annual mean         ns         1         0.008         0.009         0.006         0.007         0.008         0.007         0.006         0.007         0.008         0.007         0.006         0.007         0.009         0.008         0.007         0.006         0.007         0.009         0.008         0.007         0.006         0.007         0.009         0.008         0.007         0.006         0.007         0.009         0.008         0.007         0.006         0.007         0.009         0.019         0.019         0.019         0.019         0.019         0.019         0.012         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.113         0.09         0.094         0.095         0.094         0.095         0.094         0.095         0.094         0.095         0.094         0.095         0.094         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                                   |          |                 |          |          |          |          |          |          |               |               |               | 2.2           |
| NO2         Annual mean         down         1         0.022         0.024         0.021         0.019         0.019         0.018         0.02         0.02           Ozone         2nd highest daily max         ns         1         0.112         0.115         0.097         0.098         0.109         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.113         0.09         0.082         0.086         0.081         0.094         0.095         0.094         0.09         0.087         0.11           PM_2.5         Weighted annual mean         NA         1         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S0 <sub>2</sub>       |                                   |          |                 |          |          |          |          |          |          |               |               |               |               |
| Ozóne         2nd highest daily max         ns         1         0.112         0.112         0.109         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.112         0.113         0.113         0.09         0.094         0.09         0.094         0.09         0.087         0.113         0.094         0.094         0.09         0.094         0.09         0.087         0.113         0.094         0.094         0.09         0.094         0.09         0.087         0.113         0.094         0.094         0.09 <t< td=""><td>NO</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NO                    |                                   |          |                 |          |          |          |          |          |          |               |               |               |               |
| 4th highest daily max 8-h average       ns       1       0.09       0.082       0.086       0.081       0.094       0.095       0.094       0.09       0.087       0.1         PM25       98th percentile       NA       1       ND       ND       ND       ND       ND       ND       ND       34.9       41.1       41.3       4         Weighted annual mean       NA       1       ND       ND       ND       ND       ND       ND       15.4       16.55       16.62       17         YOUNGSTOWN-WARREN, OH       PM10*       90th percentile       down       1       48       46       53       37       41       45       40       40       33         PM10*       90th percentile       down       1       25.9       29.3       32.5       26.2       24.8       26.5       24.7       25.5       22.7       2         PM25*       98th percentile       NA       1       ND       ND       ND       ND       ND       38.6       34.6       44.8       33         PM25*       98th percentile       NA       1       ND       ND       ND       ND       ND       ND       38.6       34.6 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                                   |          |                 |          |          |          |          |          |          |               |               |               |               |
| PM <sub>2.5</sub> *         98th percentile         NA         1         ND         ND         ND         ND         34.9         41.1         41.3         4           Weighted annual mean         NA         1         ND         ND         ND         ND         ND         ND         ND         ND         ND         1.1         41.3         4           YOUNGSTOWN-WARREN, OH         PM <sub>10</sub> *         90th percentile         down         1         48         46         53         37         41         45         40         40         33           PM <sub>10</sub> *         90th percentile         down         1         25.9         29.3         32.5         26.2         24.8         26.5         24.7         25.5         22.7         2           PM <sub>2.5</sub> *         98th percentile         NA         1         ND         ND         ND         ND         ND         38.6         34.6         44.8         33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Uzone                 |                                   |          |                 |          |          |          |          |          |          |               |               |               | 0.124 0.101   |
| Weighted annual mean         NA         1         ND         ND         ND         ND         ND         15.4         16.55         16.62         17           YOUNGSTOWN-WARREN, OH         PM <sub>10</sub> *         90th percentile         down         1         48         46         53         37         41         45         40         40         33           PM <sub>10</sub> *         90th percentile         down         1         25.9         29.3         32.5         26.2         24.8         26.5         24.7         25.5         22.7         2           PM <sub>2.5</sub> *         98th percentile         NA         1         ND         ND         ND         ND         ND         38.6         34.6         44.8         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DM *                  |                                   |          |                 |          |          |          |          |          |          |               |               |               | 47.3          |
| YOUNGSTOWN-WARREN, OH           PM <sub>10</sub> *         90th percentile         down         1         48         46         53         37         41         45         40         40         33           Weighted annual mean         down         1         25.9         29.3         32.5         26.2         24.8         26.5         24.7         25.5         22.7         2           PM <sub>25</sub> *         98th percentile         NA         1         ND         ND         ND         ND         38.6         34.6         44.8         36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F IVI <sub>2.5</sub>  |                                   |          |                 |          |          |          |          |          |          |               |               |               |               |
| PM <sub>10</sub> *         90th percentile         down         1         48         46         53         37         41         45         40         40         33           Weighted annual mean         down         1         25.9         29.3         32.5         26.2         24.8         26.5         24.7         25.5         22.7         2           PM <sub>2.5</sub> *         98th percentile         NA         1         ND         ND         ND         ND         38.6         34.6         44.8         33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | VOUNCET               | 8                                 | NA       | I               | ND       | ND       | ND       | ND       | ND       | ND       | 15.4          | 10.55         | 10.02         | 17.09         |
| Weighted annual mean         down         1         25.9         29.3         32.5         26.2         24.8         26.5         24.7         25.5         22.7         2           PM <sub>2.5</sub> *         98th percentile         NA         1         ND         ND         ND         ND         ND         38.6         34.6         44.8         37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | •                                 | down     | 1               | 40       | A 2      | ED       | 77       | 41       | 45       | 40            | 40            | 22            | 39            |
| PM <sub>25</sub> * 98th percentile NA 1 ND ND ND ND ND 38.6 34.6 44.8 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PIVI <sub>10</sub>    |                                   |          |                 |          |          |          |          |          |          |               |               |               |               |
| riv <sub>2.5</sub> your percentile INA I NU NU NU NU NU NU 38.6 34.6 44.8 3<br>Weighted applied app | DM *                  | 8                                 |          |                 |          |          |          |          |          |          |               |               |               | 22.1          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PIVI <sub>2.5</sub> ^ | Weighted annual mean              | NA<br>NA | 1               | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | 38.6<br>16.94 | 34.6<br>15.97 | 44.8<br>16.36 | 38.3<br>14.75 |

| Metropolit          | an Statistical Area                 | Trend | #Trend<br>Sites | 1993  | 1994  | 1995  | 1996  | 1997  | 1998  | 1999  | 2000  | 2001  | 2002  |
|---------------------|-------------------------------------|-------|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| УИВА СІТҮ           | , CA                                |       |                 |       |       |       |       |       |       |       |       |       |       |
| CO                  | 2nd max (daily-non-overlapping 8-h) | down  | 1               | 5     | 5.6   | 4.1   | 4.1   | 3.9   | 3.9   | 4.2   | 3.6   | 3.4   | 3.2   |
| NO <sub>2</sub>     | Annual mean                         | ns    | 1               | 0.018 | 0.016 | 0.014 | 0.013 | 0.014 | 0.013 | 0.014 | 0.013 | 0.014 | 0.015 |
| Ozóne               | 2nd highest daily max               | ns    | 1               | 0.09  | 0.107 | 0.102 | 0.108 | 0.09  | 0.102 | 0.103 | 0.097 | 0.099 | 0.101 |
|                     | 4th highest daily max 8-h average   | ns    | 1               | 0.078 | 0.089 | 0.085 | 0.085 | 0.072 | 0.088 | 0.083 | 0.079 | 0.081 | 0.08  |
| PM <sub>10</sub> *  | 90th percentile                     | ns    | 1               | 59    | 51    | 68    | 50    | 48    | 44    | 68    | 40    | 52    | 49    |
| 10                  | Weighted annual mean                | ns    | 1               | 30.4  | 34.1  | 32.2  | 29.2  | 28.6  | 23.1  | 38.4  | 27.9  | 29    | 30.4  |
| PM <sub>2.5</sub> * | 98th percentile                     | NA    | 1               | ND    | ND    | ND    | ND    | ND    | ND    | 53    | 37    | 54    | 35    |
| 2.5                 | Weighted annual mean                | NA    | 1               | ND    | ND    | ND    | ND    | ND    | ND    | 15.85 | 11.46 | 11.79 | 12.64 |
| YUMA, AZ            | -                                   |       |                 |       |       |       |       |       |       |       |       |       |       |
| PM <sub>10</sub> *  | 90th percentile                     | up    | 1               | 50    | 51    | 67    | 52    | 62    | 75    | 59    | 68    | 84.5  | 101   |
| 10                  | Weighted annual mean                | up    | 1               | 31.8  | 31.1  | 35.1  | 37.1  | 36.6  | 40.1  | 35.2  | 42.3  | 45.1  | 47.9  |

CO = Highest second maximum non-overlapping 8-hour concentration (Applicable NAAQS is 9 ppm)

Pb = Highest quarterly maximum concentration (Applicable NAAQS is  $1.5 \mu g/m^3$ )

NO<sub>2</sub> = Highest arithmetic mean concentration (Applicable NAAQS is 0.053 ppm)

 $PM_{10}^2$  = Highest second maximum 24-hour concentration (Applicable NAAQS is 150  $\mu$ g/m<sup>3</sup>)

SO<sub>2</sub> = Highest second maximum 24-hour concentration (Applicable NAAQS is 0.14 ppm)

ppm = Units are parts per million

µg/m<sup>3</sup> = Units are micrograms per cubic meter

\*PM<sub>2.5</sub> does not have enough years to assess trends.

# Table A-17.Number of Days with AQI Values Greater Than 100 at Trend Sites, 1993–2002,<br/>and All Sites in 2002

| Metropolitan Statistical Area           | # of<br>Trend<br>Sites | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000* | 2001* | 2002* | Total #<br>of Sites<br>2002 | 2002<br>Count* |
|-----------------------------------------|------------------------|------|------|------|------|------|------|------|-------|-------|-------|-----------------------------|----------------|
| Akron, OH                               | 7                      | 10   | 8    | 12   | 11   | 6    | 14   | 20   | 4     | 12    | 22    | 9                           | 24             |
| Albany–Schenectady–Troy, NY             | 6                      | 5    | 6    | 3    | 4    | 3    | 3    | 6    | 1     | 11    | 8     | 12                          | 18             |
| Albuquerque, NM                         | 23                     | 0    | 1    | 0    | 0    | 0    | 0    | 1    | 0     | 1     | 4     | 31                          | 4              |
| Allentown–Bethlehem–Easton, PA          | 4                      | 3    | 3    | 7    | 6    | 12   | 18   | 19   | 5     | 9     | 18    | 12                          | 27             |
| Atlanta, GA                             | 21                     | 36   | 15   | 36   | 28   | 33   | 52   | 67   | 34    | 18    | 24    | 37                          | 37             |
| Austin–San Marcos, TX                   | 1                      | 2    | 4    | 10   | 0    | 0    | 5    | 8    | 6     | 0     | 5     | 8                           | 5              |
| Bakersfield, CA                         | 27                     | 97   | 105  | 107  | 110  | 58   | 78   | 144  | 132   | 125   | 152   | 29                          | 153            |
| Baltimore, MD                           | 20                     | 48   | 40   | 36   | 28   | 30   | 51   | 40   | 19    | 32    | 42    | 33                          | 44             |
| Baton Rouge, LA                         | 18                     | 13   | 10   | 22   | 12   | 16   | 21   | 26   | 33    | 5     | 6     | 22                          | 7              |
| Bergen–Passaic, NJ                      | 5                      | 0    | 0    | 0    | 0    | 0    | 1    | 0    | 0     | 0     | 0     | 9                           | 21             |
| Birmingham, AL                          | 18                     | 10   | 6    | 32   | 15   | 8    | 23   | 51   | 49    | 35    | 16    | 30                          | 23             |
| Boston, MA–NH                           | 21                     | 2    | 6    | 7    | 4    | 7    | 8    | 10   | 1     | 12    | 16    | 35                          | 26             |
| Buffalo–Niagara Falls, NY               | 8                      | 1    | 4    | 6    | 3    | 1    | 13   | 8    | 5     | 13    | 21    | 15                          | 22             |
| Charleston–North Charleston, SC         | 12                     | 2    | 2    | 1    | 3    | 3    | 3    | 5    | 4     | 0     | 1     | 13                          | 3              |
| Charlotte–Gastonia–Rock Hill, NC–SC     | 15                     | 29   | 15   | 18   | 21   | 29   | 50   | 42   | 28    | 27    | 37    | 26                          | 40             |
| Chicago, IL                             | 51                     | 4    | 13   | 24   | 7    | 10   | 12   | 19   | 2     | 22    | 21    | 70                          | 26             |
| Cincinnati, OH–KY–IN                    | 16                     | 5    | 16   | 19   | 10   | 11   | 13   | 16   | 14    | 14    | 30    | 33                          | 32             |
| Cleveland–Lorain–Elyria, OH             | 42                     | 17   | 25   | 27   | 19   | 13   | 22   | 40   | 22    | 32    | 31    | 48                          | 33             |
| Columbus, OH                            | 9                      | 8    | 12   | 18   | 19   | 13   | 21   | 26   | 10    | 13    | 21    | 15                          | 30             |
| Dallas, TX                              | 21                     | 12   | 24   | 29   | 10   | 27   | 33   | 25   | 22    | 16    | 15    | 40                          | 22             |
| Dayton–Springfield, OH                  | 12                     | 11   | 14   | 11   | 18   | 10   | 19   | 21   | 14    | 7     | 28    | 15                          | 30             |
| Denver, CO                              | 32                     | 6    | 3    | 5    | 2    | 0    | 9    | 5    | 3     | 8     | 8     | 29                          | 8              |
| Detroit, MI                             | 33                     | 5    | 11   | 14   | 13   | 11   | 17   | 20   | 15    | 27    | 26    | 35                          | 28             |
| El Paso, TX                             | 19                     | 7    | 6    | 3    | 6    | 2    | 6    | 5    | 4     | 9     | 13    | 40                          | 18             |
| Fort Lauderdale, FL                     | 16                     | 4    | 1    | 1    | 1    | 0    | 1    | 3    | 2     | 3     | 3     | 21                          | 3              |
| Fort Worth–Arlington, TX                | 5                      | 9    | 31   | 28   | 14   | 14   | 17   | 19   | 16    | 17    | 23    | 19                          | 33             |
| Fresno, CA                              | 19                     | 59   | 55   | 61   | 70   | 75   | 67   | 133  | 131   | 138   | 152   | 25                          | 156            |
| Gary, IN                                | 19                     | 0    | 6    | 18   | 12   | 12   | 9    | 16   | 10    | 19    | 20    | 30                          | 24             |
| Grand Rapids–Muskegon–Holland, MI       | 9                      | 3    | 14   | 18   | 9    | 10   | 19   | 22   | 6     | 17    | 21    | 14                          | 24             |
| Greensboro–Winston Salem–High Point, NC | 15                     | 22   | 7    | 13   | 7    | 14   | 26   | 24   | 14    | 14    | 24    | 22                          | 32             |
| Greenville–Spartanburg–Anderson, SC     | 9                      | 8    | 5    | 7    | 7    | 9    | 28   | 19   | 11    | 13    | 28    | 11                          | 29             |
| Harrisburg–Lebanon–Carlisle, PA         | 9                      | 15   | 12   | 13   | 3    | 9    | 22   | 19   | 16    | 22    | 21    | 11                          | 24             |
| Hartford, CN                            | 9                      | 14   | 18   | 14   | 5    | 16   | 10   | 18   | 7     | 16    | 21    | 13                          | 23             |
| Honolulu, HI                            | 19                     | 0    | 0    | 0    | 0    | 0    | 0    | 2    | 2     | 2     | 2     | 26                          | 2              |
| Houston, TX                             | 29                     | 27   | 41   | 66   | 28   | 47   | 38   | 52   | 42    | 29    | 23    | 60                          | 30             |
| Indianapolis, IN                        | 25                     | 9    | 22   | 21   | 16   | 12   | 19   | 24   | 5     | 10    | 25    | 34                          | 26             |
| Jacksonville, FL                        | 12                     | 0    | 0    | 0    | 0    | 0    | 3    | 2    | 0     | 0     | 1     | 17                          | 1              |
| Jersey City, NJ                         | 7                      | 19   | 12   | 16   | 5    | 9    | 7    | 20   | 4     | 7     | 8     | 9                           | 8              |
| Kansas City, MO–KS                      | 18                     | 4    | 10   | 21   | 7    | 16   | 14   | 3    | 11    | 4     | 7     | 34                          | 12             |
| Knoxville, TN                           | 16                     | 25   | 16   | 26   | 21   | 37   | 54   | 66   | 41    | 23    | 45    | 21                          | 45             |
| Las Vegas, NV–AZ                        | 15                     | 3    | 3    | 3    | 14   | 4    | 5    | 8    | 2     | 1     | 6     | 56                          | 14             |
| Little Rock–North Little Rock, AR       | 6                      | 2    | 2    | 7    | 1    | 1    | 3    | 5    | 16    | 4     | 9     | 14                          | 11             |
| Los Angeles–Long Beach, CA              | 56                     | 134  | 139  | 113  | 94   | 60   | 56   | 56   | 87    | 88    | 80    | 69                          | 108            |
| Louisville, KY–IN                       | 35                     | 23   | 28   | 26   | 17   | 18   | 29   | 47   | 18    | 19    | 29    | 36                          | 29             |
| Memphis, TN-AR-MS                       | 15                     | 15   | 10   | 21   | 19   | 17   | 27   | 35   | 24    | 13    | 16    | 20                          | 17             |
| Miami, FL                               | 16                     | 6    | 1    | 2    | 1    | 3    | 8    | 7    | 2     | 1     | 1     | 16                          | 1              |
| Middlesex-Somerset-Hunterdon, NJ        | 5                      | 13   | 9    | 20   | 15   | 19   | 22   | 26   | 11    | 21    | 29    | 7                           | 30             |
| Milwaukee–Waukesha, WI                  | 20                     | 4    | 12   | 14   | 5    | 5    | 12   | 19   | 5     | 15    | 12    | 28                          | 12             |
| Minneapolis-St. Paul, MN-WI             | 27                     | 0    | 2    | 5    | 0    | 0    | 1    | 1    | 2     | 2     | 1     | 49                          | 2              |
| Monmouth–Ocean, NJ                      | 3                      | 24   | 13   | 20   | 17   | 21   | 31   | 27   | 11    | 21    | 31    | 4                           | 32             |
| Nashville, TN                           | 18                     | 19   | 21   | 26   | 23   | 20   | 30   | 36   | 19    | 7     | 16    | 21                          | 21             |
| Nassau–Suffolk, NY                      | 7                      | 17   | 15   | 10   | 8    | 12   | 11   | 18   | 5     | 3     | 13    | 13                          | 19             |
| New Haven–Meriden, CT                   | 8                      | 12   | 13   | 14   | 8    | 19   | 9    | 19   | 9     | 15    | 25    | 11                          | 29             |
| New Orleans, LA                         | 12                     | 6    | 8    | 20   | 8    | 7    | 7    | 18   | 17    | 5     | 2     | 19                          | 2              |

|                                                   | Trend<br>Sites | 1993 | 1994     | 1995     | 1996     | 1997     | 1998     | 1999     | 2000*   | 2001*    | 2002*    | of Sites<br>2002 | 2002<br>Count* |
|---------------------------------------------------|----------------|------|----------|----------|----------|----------|----------|----------|---------|----------|----------|------------------|----------------|
| New York, NY                                      | 19             | 11   | 16       | 21       | 14       | 23       | 18       | 25       | 19      | 19       | 31       | 44               | 34             |
| Newark, NJ                                        | 11             | 13   | 12       | 20       | 11       | 13       | 22       | 24       | 10      | 16       | 30       | 23               | 30             |
| Norfolk–Virginia Beach–Newport News,VA–NC         | 10             | 19   | 6        | 6        | 4        | 17       | 15       | 17       | 5       | 7        | 15       | 17               | 15             |
| Oakland, CA                                       | 30             | 4    | 3        | 12       | 11       | 0        | 12       | 17       | 12      | 9        | 19       | 45               | 21             |
| Oklahoma City, OK                                 | 9              | 2    | 5        | 13       | 2        | 4        | 7        | 4        | 6       | 2        | 2        | 19               | 4              |
| Omaha, NE–IA                                      | 11             | 1    | 1        | 1        | 1        | 0        | 5        | 5        | 1       | 1        | 0        | 20               | 0              |
| Orange County, CA                                 | 15             | 25   | 15       | 9        | 9        | 3        | 6        | 14       | 31      | 31       | 19       | 16               | 21             |
| Orlando, FL                                       | 14             | 4    | 3        | 1        | 1        | 5        | 14       | 4        | 3       | 6        | 1        | 16               | 1              |
| Philadelphia, PA-NJ                               | 44             | 62   | 37       | 38       | 38       | 38       | 37       | 32       | 22      | 29       | 33       | 60               | 39             |
| Phoenix-Mesa, AZ                                  | 25             | 14   | 10       | 22       | 15       | 12       | 14       | 10       | 10      | 8        | 8        | 68               | 22             |
| Pittsburgh, PA                                    | 57             | 14   | 22       | 27       | 12       | 21       | 39       | 40       | 29      | 52       | 53       | 66               | 55             |
| Portland–Vancouver, OR–WA                         | 13             | 0    | 2        | 2        | 6        | 0        | 3        | 4        | 5       | 4        | 6        | 21               | 6              |
| Providence–Fall River–Warwick, RI–MA              | 9              | 0    | 5        | 7        | 2        | 3        | 2        | 3        | 3       | 10       | 9        | 20               | 15             |
| Raleigh-Durham-Chapel Hill, NC                    | 11             | 17   | 15       | 12       | 14       | 22       | 40       | 29       | 13      | 8        | 29       | 19               | 30             |
| Richmond–Petersburg, VA                           | 8              | 22   | 9        | 14       | 5        | 19       | 22       | 21       | 6       | 15       | 22       | 16               | 25             |
| Riverside–San Bernardino, CA                      | 47             | 168  | 150      | 125      | 118      | 107      | 96       | 123      | 145     | 155      | 145      | 68               | 147            |
| Rochester, NY                                     | 6              | 0    | 100      | 6        | 0        | 6        | 4        | 9        | 1       | 5        | 13       | 8                | 13             |
| Sacramento, CA                                    | 39             | 20   | 37       | 41       | 44       | 17       | 29       | 69       | 45      | 49       | 69       | 52               | 77             |
| St. Louis, MO–IL                                  | 55             | 9    | 33       | 38       | 23       | 15       | 24       | 31       | 18      | 17       | 34       | 68               | 36             |
| Salt Lake City–Ogden, UT                          | 24             | 5    | 17       | 5        | 14       | 2        | 19       | 8        | 15      | 15       | 18       | 37               | 36             |
| San Antonio, TX                                   | 2              | 3    | 3        | 17       | 2        | 3        | 6        | 9        | 0       | 0        | 10       | 12               | 17             |
| San Diego, CA                                     | 36             | 59   | 46       | 48       | 31       | 14       | 33       | 33       | 31      | 31       | 20       | 36               | 20             |
| San Francisco, CA                                 | 16             | 0    | 40       | 2        | 0        | 0        | 0        | 10       | 4       | 12       | 17       | 16               | 17             |
| San Jose, CA                                      | 10             | 4    | 2        | 14       | 8        | 0        | 8        | 23       | 24      | 14       | 11       | 13               | 13             |
| SanJuan–Bayamon, PR                               | 17             | 0    | 0        | 0        | 1        | 1        | 0        | 23       | 0       | 0        | 0        | 31               | 0              |
| Scranton–Wilkes Barre–Hazleton, PA                | 14             | 10   | 7        | 12       | 4        | 11       | 7        | 12       | 3       | 12       | 23       | 12               | 23             |
| Seattle–Bellevue–Everett, WA                      | 13             | 0    | 3        | 2        | 6        | 1        | 3        | 6        | 7       | 3        | 6        | 30               | 7              |
| Springfield, MA                                   | 16             | 13   | 12       | 9        | 5        | 10       | 7        | 15       | 3       | 13       | 12       | 19               | 17             |
| Syracuse, NY                                      | 5              | 4    | 1        | 5        | 0        | 2        | 3        | 4        | 1       | 4        | 9        | 9                | 10             |
| Tacoma, WA                                        | 8              | 0    | 2        | 0        | 1        | 0        | 4        | 4        | 5       | 4        | 0        | 9                | 7              |
| Tampa–St. Petersburg–Clearwater, FL               | 36             | 1    | 2        | 2        | 3        | 4        | 11       | 10       | 8       | 4        | 0        | 47               | 0              |
| Toledo, OH                                        | 30             | 7    | 3<br>8   | 2        | 3<br>11  | 4        | 5        | 4        | °<br>2  | 4<br>9   | 13       | 10               | 18             |
| Tucson, AZ                                        | 23             | 1    | 0        | 3        | 0        | 4        | 0        | 4        | 2       | 9        | 3        | 27               | 3              |
| Tulsa, OK                                         | 23<br>11       | 4    | 12       | 21       | 14       | 7        | 9        | 14       | 10      | 6        | 5        | 17               | 6              |
| Ventura, CA                                       | 21             | 43   | 63       | 66       | 14<br>62 | 45       | 9<br>29  | 14<br>24 | 31      | о<br>25  | э<br>11  | 25               | 16             |
|                                                   | 21<br>46       | 43   | 03<br>22 | 00<br>32 | 02<br>18 | 45<br>30 | 29<br>47 | 24<br>39 | 11      | 25<br>22 | 34       | 65               | 39             |
| Washington, DC-MD-VA-WV                           |                |      |          |          |          |          |          |          |         |          |          |                  |                |
| West Palm Beach–Boca Raton, FL                    | 8              | 3    | 0        | 0        | 0        | 0        | 2        | 1        | 0       | 1        | 0        | 10               | 0              |
| Wilmington–Newark, DE–MD<br>Youngstown–Warren, OH | 8              | 29   | 24<br>5  | 27<br>11 | 13<br>8  | 22<br>10 | 28<br>20 | 21<br>16 | 18<br>5 | 19<br>22 | 21<br>18 | 18<br>15         | 23<br>25       |

 Table A-17.
 Number of Days with AQI Values Greater Than 100 at Trend Sites, 1993–2002, and All Sites in 2002 (continued)

\*Includes  $PM_{2.5}$ .

|                                     |                        |      |      |      | 2, 02 |      | ,<br> |      |      |      |      |                                |               |
|-------------------------------------|------------------------|------|------|------|-------|------|-------|------|------|------|------|--------------------------------|---------------|
| Metropolitan Statistical Area       | # of<br>Trend<br>Sites | 1993 | 1994 | 1995 | 1996  | 1997 | 1998  | 1999 | 2000 | 2001 | 2002 | Total<br># of<br>Sites<br>2002 | 2002<br>Count |
| AKRON, OH                           | 2                      | 10   | 8    | 12   | 11    | 6    | 14    | 20   | 4    | 12   | 22   | 2                              | 22            |
| ALBANY-SCHENECTADY-TROY, NY         | 3                      | 5    | 6    | 3    | 4     | 3    | 3     | 6    | 1    | 11   | 8    | 4                              | 16            |
| ALBUQUERQUE, NM                     | 8                      | 0    | 1    | 0    | 0     | 0    | 0     | 1    | 0    | 1    | 0    | 11                             | 0             |
| ALLENTOWN-BETHLEHEM-EASTON, PA      | 1                      | 3    | 3    | 7    | 6     | 12   | 18    | 19   | 5    | 9    | 18   | 3                              | 21            |
| ATLANTA, GA                         | 5                      | 36   | 15   | 36   | 28    | 33   | 52    | 61   | 27   | 10   | 24   | 12                             | 37            |
| AUSTIN-SAN MARCOS, TX               | 1                      | 2    | 4    | 10   | 0     | 0    | 5     | 8    | 6    | 0    | 5    | 2                              | 5             |
| BAKERSFIELD, CA                     | 8                      | 97   | 105  | 106  | 110   | 58   | 76    | 93   | 82   | 85   | 91   | 8                              | 91            |
| BALTIMORE, MD                       | 7                      | 48   | 40   | 36   | 28    | 30   | 51    | 40   | 16   | 26   | 39   | 8                              | 39            |
| BATON ROUGE, LA                     | 7                      | 12   | 10   | 22   | 12    | 16   | 21    | 26   | 30   | 5    | 6    | 7                              | 6             |
| BERGEN-PASSAIC, NJ                  |                        | 0    | 0    | 0    | 0     | 0    | 0     | 0    | 0    | 0    | 0    | 2                              | 20            |
| BIRMINGHAM, AL                      | 6                      | 10   | 6    | 32   | 15    | 8    | 23    | 30   | 21   | 11   | 13   | 10                             | 15            |
| BOSTON, MA-NH                       | 2                      | 2    | 6    | 7    | 4     | 7    | 8     | 8    | 1    | 12   | 13   | 6                              | 19            |
| BUFFALO-NIAGARA FALLS, NY           | 2                      | 1    | 4    | 6    | 3     | 1    | 13    | 8    | 5    | 13   | 21   | 2                              | 21            |
| CHARLESTON-NORTH CHARLESTON, SC     | 3                      | 2    | 2    | 1    | 3     | 3    | 3     | 5    | 4    | 0    | 1    | 3                              | 1             |
| CHARLOTTE-GASTONIA-ROCK HILL, NC-SC | 6                      | 29   | 15   | 18   | 21    | 29   | 50    | 42   | 24   | 26   | 36   | 8                              | 38            |
| CHICAGO, IL                         | 22                     | 3    | 8    | 24   | 7     | 10   | 12    | 14   | 1    | 16   | 20   | 21                             | 21            |
| CINCINNATI, OH-KY-IN                | 4                      | 5    | 16   | 19   | 10    | 11   | 13    | 11   | 4    | 6    | 26   | 8                              | 29            |
| CLEVELAND-LORAIN-ELYRIA, OH         | 8                      | 16   | 23   | 24   | 18    | 13   | 21    | 20   | 4    | 17   | 29   | 9                              | 31            |
| COLUMBUS, OH                        | 4                      | 8    | 12   | 18   | 19    | 13   | 21    | 22   | 6    | 7    | 19   | 7                              | 28            |
| DALLAS, TX                          | 3                      | 12   | 24   | 29   | 10    | 27   | 33    | 25   | 22   | 16   | 15   | 10                             | 22            |
| DAYTON-SPRINGFIELD, OH              | 4                      | 11   | 14   | 11   | 18    | 10   | 19    | 19   | 6    | 4    | 28   | 5                              | 28            |
| DENVER, CO                          | 8                      | 3    | 2    | 3    | 2     | 0    | 9     | 3    | 2    | 2    | 7    | 8                              | 7             |
| DETROIT, MI                         | 7                      | 5    | 11   | 12   | 12    | 11   | 17    | 14   | 3    | 16   | 21   | 7                              | 21            |
| EL PASO, TX                         | 2                      | 3    | 2    | 3    | 1     | 0    | 6     | 0    | 3    | 1    | 4    | 6                              | 6             |
| FORT LAUDERDALE, FL                 | 2                      | 4    | 1    | 1    | 1     | 0    | 1     | 1    | 1    | 2    | 1    | 3                              | 1             |

7 13

FORT WORTH-ARLINGTON, TX

GRAND RAPIDS-MUSKEGON-HOLLAND, MI

GREENVILLE-SPARTANBURG-ANDERSON, SC

HARRISBURG-LEBANON-CARLISLE, PA

GREENSBORO-WINSTON SALEM-HIGH POINT, NC

FRESNO, CA

HARTFORD, CN

HONOLULU, HI

HOUSTON, TX

INDIANAPOLIS, IN

GARY, IN

# **Table A-18.** Number of Days with Air Quality Index Values Greater Than 100 at Trend Sites, 1993–2002,<br/>and All Sites in 2002, Ozone Only

| Table A-18.         Number of Days with Air Quality Index Values Greater Than 100 at Trend Sites, 1993–2002, |
|--------------------------------------------------------------------------------------------------------------|
| and All Sites in 2002, Ozone Only (continued)                                                                |

| Metropolitan Statistical Area                 | # of<br>Trend<br>Sites | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | Total<br># of<br>Sites<br>2002 | 2002<br>Count |
|-----------------------------------------------|------------------------|------|------|------|------|------|------|------|------|------|------|--------------------------------|---------------|
| JACKSONVILLE, FL                              | 1                      | 0    | 0    | 0    | 0    | 0    | 3    | 2    | 0    | 0    | 0    | 3                              | 0             |
| JERSEY CITY, NJ                               | 1                      | 19   | 12   | 16   | 5    | 9    | 7    | 17   | 3    | 6    | 6    | 1                              | 6             |
| KANSAS CITY, MO-KS                            | 4                      | 3    | 10   | 21   | 6    | 16   | 14   | 3    | 10   | 4    | 7    | 6                              | 12            |
| KNOXVILLE, TN                                 | 7                      | 25   | 16   | 26   | 21   | 37   | 54   | 62   | 36   | 17   | 45   | 7                              | 45            |
| LAS VEGAS, NV-AZ                              | 4                      | 3    | 3    | 0    | 4    | 0    | 3    | 0    | 0    | 1    | 2    | 15                             | 6             |
| LITTLE ROCK-NORTH LITTLE ROCK, AR             | 2                      | 2    | 2    | 7    | 1    | 1    | 2    | 5    | 16   | 4    | 9    | 3                              | 9             |
| LOS ANGELES-LONG BEACH, CA                    | 14                     | 112  | 117  | 97   | 74   | 45   | 46   | 19   | 45   | 37   | 35   | 16                             | 68            |
| LOUISVILLE, KY-IN                             | 7                      | 22   | 28   | 26   | 17   | 18   | 29   | 44   | 10   | 10   | 26   | 7                              | 26            |
| MEMPHIS, TN-AR-MS                             | 4                      | 13   | 10   | 21   | 18   | 17   | 27   | 35   | 24   | 13   | 16   | 4                              | 16            |
| MIAMI, FL                                     | 4                      | 6    | 1    | 2    | 1    | 3    | 8    | 5    | 0    | 1    | 0    | 4                              | 0             |
| MIDDLESEX-SOMERSET-HUNTERDON, NJ              | 2                      | 13   | 9    | 20   | 15   | 19   | 22   | 26   | 11   | 21   | 29   | 2                              | 29            |
| MILWAUKEE-WAUKESHA, WI                        | 9                      | 4    | 12   | 14   | 5    | 5    | 12   | 17   | 4    | 12   | 12   | 9                              | 12            |
| MINNEAPOLIS-ST. PAUL, MN-WI                   | 4                      | 0    | 0    | 3    | 0    | 0    | 1    | 0    | 0    | 2    | 1    | 6                              | 2             |
| MONMOUTH-OCEAN, NJ                            | 2                      | 24   | 13   | 20   | 17   | 21   | 31   | 27   | 11   | 21   | 31   | 2                              | 31            |
| NASHVILLE, TN                                 | 6                      | 18   | 21   | 26   | 22   | 20   | 30   | 33   | 16   | 7    | 16   | 7                              | 21            |
| NASSAU-SUFFOLK, NY                            | 2                      | 17   | 15   | 10   | 8    | 12   | 11   | 18   | 5    | 3    | 13   | 3                              | 18            |
| NEW HAVEN-MERIDEN, CT                         | 1                      | 12   | 13   | 14   | 8    | 19   | 9    | 16   | 6    | 11   | 20   | 2                              | 24            |
| NEW ORLEANS, LA                               | 6                      | 6    | 8    | 20   | 8    | 7    | 7    | 18   | 17   | 5    | 2    | 6                              | 2             |
| NEW YORK, NY                                  | 5                      | 11   | 16   | 20   | 14   | 23   | 18   | 25   | 11   | 16   | 30   | 7                              | 30            |
| NEWARK, NJ                                    | 1                      | 13   | 11   | 20   | 11   | 13   | 22   | 21   | 6    | 13   | 27   | 2                              | 27            |
| NORFOLK-VIRGINIA BEACH-NEWPORT<br>NEWS, VA-NC | 3                      | 19   | 6    | 6    | 4    | 17   | 15   | 16   | 5    | 6    | 15   | 3                              | 15            |
| OAKLAND, CA                                   | 8                      | 4    | 3    | 12   | 11   | 0    | 12   | 8    | 3    | 3    | 5    | 11                             | 6             |
| OKLAHOMA CITY, OK                             | 3                      | 2    | 5    | 13   | 2    | 4    | 7    | 4    | 6    | 2    | 2    | 6                              | 3             |
| OMAHA, NE-IA                                  | 3                      | 0    | 0    | 0    | 0    | 0    | 0    | 2    | 0    | 0    | 0    | 3                              | 0             |
| ORANGE COUNTY, CA                             | 4                      | 25   | 15   | 8    | 9    | 3    | 6    | 1    | 4    | 2    | 0    | 4                              | 1             |
| ORLANDO, FL                                   | 4                      | 4    | 3    | 1    | 1    | 5    | 14   | 4    | 3    | 3    | 1    | 5                              | 1             |
| PHILADELPHIA, PA-NJ                           | 10                     | 51   | 25   | 30   | 22   | 32   | 37   | 32   | 17   | 27   | 33   | 12                             | 37            |
| PHOENIX-MESA, AZ                              | 7                      | 14   | 7    | 19   | 15   | 10   | 14   | 10   | 9    | 6    | 6    | 21                             | 14            |
| PITTSBURGH, PA                                | 11                     | 13   | 20   | 25   | 12   | 20   | 39   | 23   | 4    | 19   | 28   | 12                             | 32            |
| PORTLAND-VANCOUVER, OR-WA                     | 3                      | 0    | 1    | 2    | 6    | 0    | 3    | 0    | 0    | 0    | 1    | 4                              | 1             |
| PROVIDENCE-FALL RIVER-WARWICK, RI-MA          | 1                      | 0    | 5    | 7    | 2    | 3    | 2    | 2    | 2    | 10   | 9    | 2                              | 14            |
| RALEIGH-DURHAM-CHAPEL HILL, NC                | 7                      | 17   | 15   | 12   | 14   | 22   | 40   | 29   | 12   | 8    | 29   | 8                              | 29            |
| RICHMOND-PETERSBURG, VA                       | 3                      | 22   | 9    | 14   | 5    | 19   | 22   | 21   | 5    | 12   | 21   | 4                              | 25            |
| RIVERSIDE-SAN BERNARDINO, CA                  | 15                     | 167  | 149  | 119  | 115  | 104  | 95   | 96   | 98   | 92   | 96   | 18                             | 97            |
| ROCHESTER, NY                                 | 2                      | 0    | 1    | 6    | 0    | 6    | 4    | 9    | 1    | 5    | 13   | 2                              | 13            |

| Table A-18. Number of Days with Air Quality Index Values Greater Than 100 at Trend Sites, 1993–2002, |
|------------------------------------------------------------------------------------------------------|
| and All Sites in 2002, Ozone Only (continued)                                                        |

| Metropolitan Statistical Area       | # of<br>Trend<br>Sites | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | Total<br># of<br>Sites<br>2002 | 2002<br>Count |
|-------------------------------------|------------------------|------|------|------|------|------|------|------|------|------|------|--------------------------------|---------------|
| SACRAMENTO, CA                      | 10                     | 20   | 37   | 41   | 44   | 17   | 29   | 39   | 29   | 34   | 39   | 15                             | 47            |
| ST. LOUIS, MO-IL                    | 15                     | 9    | 31   | 38   | 23   | 14   | 24   | 29   | 16   | 14   | 32   | 17                             | 32            |
| SALT LAKE CITY-OGDEN, UT            | 6                      | 2    | 9    | 5    | 12   | 2    | 19   | 4    | 7    | 4    | 7    | 8                              | 9             |
| SAN ANTONIO, TX                     | 1                      | 3    | 3    | 17   | 2    | 3    | 6    | 9    | 0    | 0    | 17   | 3                              | 17            |
| SAN DIEGO, CA                       | 9                      | 58   | 46   | 48   | 31   | 14   | 33   | 16   | 14   | 17   | 13   | 9                              | 13            |
| SAN FRANCISCO, CA                   | 3                      | 0    | 0    | 2    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 3                              | 0             |
| SAN JOSE, CA                        | 5                      | 4    | 2    | 14   | 8    | 0    | 8    | 3    | 1    | 3    | 6    | 6                              | 6             |
| Sanjuan-Bayamon, Pr                 |                        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 1                              | 0             |
| SCRANTON-WILKES BARRE-HAZLETON, PA  | 4                      | 10   | 7    | 12   | 4    | 11   | 7    | 12   | 1    | 10   | 16   | 4                              | 16            |
| SEATTLE-BELLEVUE-EVERETT, WA        | 2                      | 0    | 3    | 0    | 6    | 1    | 3    | 1    | 1    | 0    | 0    | 4                              | 0             |
| SPRINGFIELD, MA                     | 4                      | 13   | 12   | 9    | 4    | 10   | 7    | 10   | 2    | 13   | 12   | 4                              | 12            |
| SYRACUSE, NY                        | 2                      | 4    | 1    | 5    | 0    | 2    | 3    | 4    | 1    | 4    | 9    | 3                              | 9             |
| TACOMA, WA                          | 2                      | 0    | 2    | 0    | 1    | 0    | 4    | 0    | 0    | 0    | 0    | 4                              | 0             |
| TAMPA-ST. PETERSBURG-CLEARWATER, FL | 7                      | 1    | 3    | 2    | 3    | 4    | 11   | 9    | 6    | 4    | 0    | 10                             | 0             |
| TOLEDO, OH                          | 2                      | 7    | 8    | 9    | 11   | 4    | 5    | 4    | 2    | 9    | 13   | 5                              | 16            |
| TUCSON, AZ                          | 5                      | 1    | 0    | 3    | 0    | 1    | 0    | 1    | 0    | 0    | 1    | 6                              | 1             |
| TULSA, OK                           | 3                      | 4    | 12   | 21   | 14   | 7    | 9    | 14   | 10   | 4    | 5    | 5                              | 6             |
| VENTURA, CA                         | 6                      | 43   | 63   | 66   | 62   | 44   | 29   | 22   | 27   | 19   | 10   | 7                              | 15            |
| WASHINGTON, DC-MD-VA-WV             | 16                     | 52   | 22   | 32   | 18   | 30   | 47   | 39   | 11   | 22   | 34   | 20                             | 38            |
| WEST PALM BEACH-BOCA RATON, FL      | 1                      | 3    | 0    | 0    | 0    | 0    | 2    | 1    | 0    | 1    | 0    | 2                              | 0             |
| WILMINGTON-NEWARK, DE-MD            | 4                      | 29   | 24   | 27   | 13   | 22   | 28   | 21   | 18   | 19   | 21   | 5                              | 21            |
| YOUNGSTOWN-WARREN, OH               | 2                      | 9    | 5    | 11   | 8    | 10   | 20   | 12   | 2    | 12   | 16   | 3                              | 24            |

|      |          |                                               | 1-h Pollutant <sup>c</sup> |    |                 |                         |     |                 | 1-h Population <sup>d</sup> (1000s) |       |     |                |              |
|------|----------|-----------------------------------------------|----------------------------|----|-----------------|-------------------------|-----|-----------------|-------------------------------------|-------|-----|----------------|--------------|
| Stat | e        | Area Name <sup>b</sup>                        | <b>O</b> <sub>3</sub>      | со | SO <sub>2</sub> | <b>PM</b> <sub>10</sub> | Pb  | NO <sub>2</sub> | O3                                  | СО    | SO  | 2 <b>PM</b> 10 | Pb Al        |
| 1    | AK       | Anchorage                                     |                            | 1  |                 | 1                       |     |                 |                                     | 255   |     | 195            | . 25         |
|      | AK       | Fairbanks                                     |                            | 1  |                 |                         |     |                 |                                     | 39    |     | 100            | . 3          |
|      | AK       | Juneau                                        |                            |    |                 | 1                       |     |                 |                                     |       |     | 13             | . 1          |
|      | AL       | Birmingham                                    | 1                          |    |                 |                         |     |                 | 805                                 |       |     |                | . 80         |
|      | AZ       | Ajo                                           | ÷                          |    | 1               | 1                       |     |                 |                                     |       | 7   | 7              |              |
|      | AZ       | Douglas                                       |                            |    | 1               | 1                       |     |                 |                                     |       | 15  | 15             | . 1          |
|      | AZ       | Miami-Hayden                                  |                            |    | 2               | 1                       |     |                 |                                     |       | 4   | 4              |              |
| 8    | AZ       | Morenci                                       |                            |    | 1               |                         |     |                 |                                     |       | 8   |                |              |
| 9    | AZ       | Nogales                                       |                            |    |                 | 1                       |     |                 |                                     |       |     | 24             | . 2          |
| 10   | AZ       | Paul Spur                                     |                            |    |                 | 1                       |     |                 |                                     |       |     | 1              |              |
|      | AZ       | Phoenix                                       | 1                          | 1  |                 | 1                       |     |                 | 3028                                | 3028  |     | 3111           | . 311        |
|      | AZ       | Rillito                                       |                            |    |                 | 1                       |     |                 |                                     |       |     | 0              |              |
|      | AZ       | San Manuel                                    |                            |    | 1               |                         |     |                 |                                     |       | 7   |                |              |
|      | AZ       | Yuma                                          |                            |    |                 | 1                       |     |                 |                                     |       | •   | 82             | . 8          |
|      | CA       | Imperial Valley                               |                            |    | •               | 1                       |     | •               |                                     |       |     | 119            | . 11         |
|      | CA       | Los Angeles-South Coast                       | 1                          | 1  | •               | 1                       | •   | •               | 14550                               | 14550 | •   | 14550          | . 1455       |
|      | CA       | Mono Basin (in Mono Co.)                      | •                          | •  | •               | 1                       | •   | •               | •                                   |       | •   | 0              | •            |
|      | CA       | Owens Valley                                  | ;                          | •  | •               | 1                       | •   | •               |                                     |       | •   | 7              |              |
|      | CA       | Sacramento Metro                              | 1                          | •  | •               | 1                       | •   | •               | 1978                                |       | •   | 1223           | . 197        |
|      | CA       | San Diego                                     | 1                          | •  | •               | •                       | •   | •               | 2813                                |       | •   | •              | . 281        |
|      | CA       | San Francisco-Oakland-San Jose                | 1                          | •  | •               |                         | •   | •               | 6541                                | •     | •   |                | . 654        |
|      | CA       | San Joaquin Valley                            | 2                          | •  | •               | 1                       | •   | •               | 3302                                | •     | •   | 3080           | . 330        |
|      | CA       | Santa Barbara-Santa Maria-Lompoc              | 1                          | •  | •               |                         | •   | •               | 399                                 | •     | •   |                | . 39         |
|      | CA<br>CA | Searles Valley                                | 1                          | •  | •               | 3<br>2                  | •   | •               | 1024                                | •     | •   | 22<br>424      | . 2<br>. 102 |
|      | CA       | Southeast Desert Modified AQMA<br>Ventura Co. | 1                          | •  | •               | 2                       | •   | •               | 753                                 | •     | •   |                |              |
|      | CO       |                                               | 1                          | •  | •               | 1                       | •   | •               | 755                                 | •     | •   | 5              | . 75         |
|      | CO       | Aspen<br>Denver-Boulder                       | •                          | •  | •               | 1                       | •   | ·               | · ·                                 | •     | •   | 2389           | . 238        |
|      | co       | Fort Collins                                  | •                          | 1  | •               | I.                      | •   | •               | •                                   | 143   | •   | 2309           | . 230        |
|      | co       | Lamar                                         | •                          | 1  | •               | 1                       | •   | •               | •                                   | 145   | •   | 8              | . 14         |
|      | co       | Steamboat Springs                             | •                          | •  | •               | 1                       | •   | •               | •                                   | •     | •   | 9              |              |
|      | CT       | Greater Connecticut                           | 1                          | •  | •               | 1                       | •   | •               | 2532                                | •     | •   | 123            | . 253        |
|      | DC-MD-VA | Washington                                    | 1                          | •  | •               |                         | •   | •               | 4544                                | •     | •   | 125            | . 454        |
|      | DE       | Sussex County                                 | 1                          | •  | •               | •                       | •   | •               | 156                                 | •     | •   | •              | . 15         |
|      | GA       | Atlanta                                       | 1                          | •  | •               | •                       |     | •               | 3698                                | •     | •   | •              | . 369        |
|      | GU       | Piti Power Plant                              |                            | •  | 1               | •                       |     |                 | 0000                                | •     | . 1 | •              | . 000        |
|      | GU       | Tanguisson Power Plant                        |                            |    | 1               |                         |     |                 |                                     |       | 1   |                |              |
|      | ID       | Boise                                         |                            | 1  |                 |                         |     |                 |                                     | 197   |     |                | . 19         |
|      | ID       | Bonner Co.(Sandpoint)                         |                            | ÷  |                 | 1                       |     |                 |                                     |       |     | 36             | . 3          |
|      | ID       | Pocatello Area                                |                            |    |                 | 2                       |     |                 |                                     |       |     | 66             | . 6          |
|      | ID       | Shoshone Co.                                  |                            |    |                 | 2                       | -   |                 |                                     |       |     | 12             | . 1          |
|      | IL-IN    | Chicago-Gary-Lake County                      | 1                          |    | 1               | 3                       |     |                 | 8757                                |       | 484 | 322            | . 875        |
|      | LA       | Baton Rouge                                   | 1                          |    |                 |                         |     |                 | 636                                 |       |     | •              | . 63         |
| 44   | MA       | Bostton-Lawerence                             | 1                          |    |                 |                         |     |                 | 5883                                |       |     |                | . 588        |
| 45   | MA       | Springfield (W. Mass)                         | 1                          |    |                 |                         |     |                 | 814                                 |       |     |                | . 81         |
| 46   | MD       | Baltimore                                     | 1                          |    |                 |                         |     |                 | 2512                                |       |     |                | . 251        |
| 47   | MD       | Kent and Queen Anne Cos.                      | 1                          |    |                 |                         |     |                 | 59                                  |       |     |                | . 5          |
| 48   | ME       | Knox/Lincoln County                           | 1                          |    |                 |                         |     |                 | 73                                  |       |     |                | . 7          |
| 49   | ME       | Lewiston-Auburn                               | 1                          |    |                 |                         |     |                 | 220                                 |       |     |                | . 22         |
| 50   | ME       | Portland                                      | 1                          |    |                 |                         |     |                 | 487                                 |       |     |                | . 48         |
| 51   | MO       | Liberty-Arcadia                               |                            |    |                 |                         | 1   |                 |                                     |       |     |                | 6            |
| 52   | MO-IL    | St. Louis                                     | 1                          |    |                 |                         | 1 e |                 | 2482                                |       |     |                | 2 248        |
| 53   | MT       | Billings/Laural                               |                            |    | 1               |                         |     |                 | · .                                 | 6     |     |                |              |
|      | MT       | Butte                                         |                            |    |                 | 1                       |     |                 |                                     |       |     | 34             | . 3          |
|      | MT       | Columbia Falls                                |                            |    |                 |                         |     | 1               |                                     |       |     | 3              |              |
|      | MT       | East Helena                                   |                            |    | 1               |                         | 1   |                 |                                     |       | 2   |                | 2            |
|      | MT       | Kalispell                                     |                            |    |                 | 1                       |     |                 |                                     |       | •   | 15             | . 1          |
|      | MT       | Lame Deer                                     | •                          | •  | •               | •                       | 1   | •               | · ·                                 | •     | •   | 0              |              |
|      | MT       | Libby                                         | •                          | :  | •               | 1                       | •   | •               | · ·                                 |       |     | _3             |              |
|      | MT       | Missoula                                      | •                          | 1  | •               | 1                       | •   | •               | · ·                                 | 52    |     | 52             | . 5          |
|      | MT       | Polson                                        | •                          | •  | •               | 1                       | •   | •               | · ·                                 | •     | •   | 3              | •            |
|      | MT       | Ronan                                         | •                          | •  | •               | 1                       | •   | •               | · ·                                 | •     |     | 2              |              |
|      | MT       | Thompson Falls                                | •                          | •  | •               | 1                       | -   | •               | ·                                   | •     | •   | 1              | •            |
|      | MT       | Whitefish                                     | :                          | •  | •               | 1                       | •   | •               |                                     | •     | •   | 5              |              |
|      | NH       | Manchester                                    | 1                          | •  | •               | •                       | -   | •               | 364                                 | •     | •   | •              | . 36         |
|      | NH       | Portsmouth-Bover-Rocherster                   | 1                          | •  | •               | •                       | •   | •               | 192                                 | •     | •   | •              | . 19         |
|      | NJ       | Atlantic City                                 | 1                          | •  | •               | ;                       | •   | ·               | 354                                 | •     | •   |                | . 35         |
| 68   | NM       | Anthony                                       |                            |    |                 | 1                       |     |                 |                                     |       |     | 2              |              |

# Table A-19. Condensed Nonattainment Areas List<sup>a</sup>

|                | 1-h Pollutant <sup>c</sup>         |                       |    |                 |                         | 1-h Population <sup>d</sup> (1000s) |                 |       |     |      |                         |       |
|----------------|------------------------------------|-----------------------|----|-----------------|-------------------------|-------------------------------------|-----------------|-------|-----|------|-------------------------|-------|
| State          | Area Name <sup>b</sup>             | <b>O</b> <sub>3</sub> | со | SO <sub>2</sub> | <b>PM</b> <sub>10</sub> | Pb                                  | NO <sub>2</sub> | 03    | со  | SO2  | <b>PM</b> <sub>10</sub> | Pb A  |
| 69 NM          | Grant Co.                          |                       |    | 1               |                         |                                     |                 |       |     | 31   |                         | . 3   |
| 70 NM          | Sunland Park                       | 1 <sup>†</sup>        |    |                 |                         |                                     |                 | 10    |     | 0.   |                         | . 1   |
| 71 NV          | Lake Tahoe Nevada                  | •                     | 1  | •               | •                       | •                                   | •               | 10    | 29  | •    | •                       | . 2   |
| 72 NV          | Las Vegas                          | •                     | 1  | •               | 1                       | •                                   |                 | · ·   | 478 | •    | 1375                    | . 137 |
| 73 NV          | Reno                               | 1                     | 1  | •               | 1                       | •                                   | •               | 339   | 178 | •    | 339                     | . 33  |
| 73 NV<br>74 NY | Abany-Schenectedy                  | 1                     |    | •               | •                       | •                                   | •               | 892   | 170 | •    | 559                     | 00    |
| 75 NY          | Buffalo-Niagara Falls              | 1                     | •  | •               | •                       | •                                   | •               | 1170  | •   | •    | •                       | . 89  |
| 76 NY          | "Essex Cy, Whiteface"              | 1                     | •  | •               | -                       | •                                   | -               | 0     | •   | •    | •                       |       |
| 70 NY<br>77 NY | Jefferson County                   | 1                     | •  | •               | •                       | •                                   | •               | 111   | •   | •    | •                       | . 11  |
| 78 NY          | Poughkeepsie                       | 1                     | •  | •               | -                       | •                                   | •               | 600   |     | •    | •                       | . 60  |
|                |                                    |                       | •  | •               | 1                       | •                                   | •               |       | •   | •    | 4507                    |       |
|                | New York-N. New Jersey-Long Island | 1                     | •  | ;               | 1                       | •                                   | •               | 19171 | •   |      | 1537                    |       |
| 80 OH          | Cleveland-Akron-Lorain             | •                     | •  | 1               | •                       | •                                   | •               | · ·   | •   | 1095 | •                       | . 109 |
| 81 OH          | Lucas Co. (Toledo)                 |                       |    | 1               |                         | •                                   | •               | :     | •   | 455  |                         | . 45  |
| 82 OH-KY       | Cinncinnati-Hamilton               | 1                     | •  | •               | •                       | •                                   | •               | 1514  | •   | •    | •                       | . 151 |
| 83 OH-PA       | Youngstown-Warren                  | 1                     | •  |                 |                         |                                     | •               | 120   | •   |      |                         | . 12  |
| 84 OR          | Grants Pass                        |                       |    |                 | 1                       |                                     |                 | · ·   |     |      | 20                      | . 2   |
| 85 OR          | Klamath Falls                      |                       |    |                 | 1                       |                                     |                 |       |     |      | 19                      | . 1   |
| 86 OR          | LaGrande                           |                       |    |                 | 1                       |                                     |                 |       | -   |      | 12                      | . 1   |
| 87 OR          | Lakeview                           |                       |    |                 | 1                       |                                     |                 | · .   |     |      | 3                       |       |
| 88 OR          | Medford                            |                       |    |                 | 1                       |                                     |                 |       |     |      | 78                      | . 7   |
| 89 OR          | Oakridge                           |                       |    |                 | 1                       |                                     |                 |       |     |      | 3                       |       |
| 90 OR          | Springfield-Eugene                 |                       |    |                 | 1                       |                                     |                 |       |     |      | 179                     | . 17  |
| 91 OR          | Salem                              | -                     | 1  | _               |                         |                                     |                 |       | 135 |      |                         | . 13  |
| 92 PA          | Altoona                            | 1                     |    |                 |                         |                                     |                 | 129   |     |      |                         | . 12  |
| 93 PA          | Erie                               | 1                     | •  | •               | •                       | •                                   |                 | 280   | •   | •    | •                       | . 28  |
| 94 PA          | Harrisburg-Lebanon                 | 1                     | •  | •               | •                       | •                                   | •               | 629   | •   | •    | •                       | . 62  |
| 95 PA          | Johnstown                          | 1                     | •  | •               | •                       | •                                   | •               | 232   | •   | •    | •                       | 00    |
| 96 PA          | Lancaster                          | 1                     | •  | •               | -                       | •                                   | -               | 470   | •   | •    | •                       | 47    |
| 97 PA .        |                                    |                       | 1  |                 | 1                       | •                                   | •               | 470   | 225 | 410  | 21                      | . 47  |
|                | Pittsburgh-Beaver Valley           |                       | I  | 2               | 1                       | •                                   | •               | 700   | 335 | 410  | 21                      |       |
|                | Scranton-Wilkes_Barre              | 1                     | •  |                 | •                       | •                                   | •               | 763   | •   | 20   | •                       | . 76  |
| 99 PA          | Warren Co                          | ;                     | •  | 2               | •                       | •                                   | •               |       | •   | 20   | -                       | . 2   |
| 100 PA         | York                               | 1                     |    |                 |                         | •                                   | •               | 473   | •   | •    |                         | . 47  |
|                | MDPhiladelphia-Wilmington-Trenton  | 1                     | •  | ÷               | •                       | •                                   | •               | 6311  | •   | :    | •                       | . 631 |
| 102 PA-NJ      | Allentown-Bethlehem                | 1                     | -  | 1               | -                       | •                                   | •               | 740   | -   | 102  | •                       | . 74  |
| 103 PR         | Guaynabo Co.                       |                       |    |                 | 1                       |                                     | •               | · ·   |     |      | 92                      | . 9   |
| 104 RI         | Providence (all of RI)             | 1                     |    |                 |                         |                                     |                 | 1048  |     |      | -                       | . 104 |
| 105 TX         | Beaumont-Port Arthur               | 1                     |    |                 |                         |                                     |                 | 385   |     |      |                         | . 38  |
| 106 TX         | Dallas-Fort Worth                  | 1                     |    |                 |                         |                                     |                 | 4589  |     |      |                         | . 458 |
| 107 TX         | El Paso                            | 1                     | 1  |                 | 1                       |                                     |                 | 679   | 62  |      | 563                     | . 67  |
| 108 TX         | Houston-Galveston-Brazoria         | 1                     |    |                 |                         |                                     |                 | 4669  |     |      |                         | . 466 |
| 109 UT         | Ogden                              |                       |    |                 | 1                       |                                     |                 |       |     |      | 77                      | . 7   |
| 110 UT         | Salt Lake City                     | -                     | -  | 1               | 1                       |                                     |                 |       | _   | 898  | 898                     | . 89  |
| 111 UT         | Tooele Co.                         |                       |    | 1               |                         |                                     |                 |       | •   | 40   | 000                     | . 4   |
| 112 UT         | Utah Co. (Provo)                   | •                     | 1  | ·               | 1                       |                                     |                 |       | 118 |      | 368                     | . 36  |
| 113 VA         | "Smyth Cy, White Top"              | 1                     |    | •               |                         | •                                   | •               | · ·   | 0   | •    | 000                     |       |
| 114 WA         | Spokane                            | •                     | 1  | •               | 1                       | •                                   | •               | · ·   | 322 |      | 204                     | . 32  |
| 115 WA         | Wallula                            | •                     |    | •               | 1                       | •                                   | •               | · ·   | 522 | •    | 204                     | . 52  |
| 116 WA         | Yakima                             | •                     | 1  | •               | 1                       | •                                   | •               | · ·   |     | •    | 63                      | . 6   |
|                |                                    | 1                     | 1  | •               | 1                       | •                                   | •               |       | •   | •    | 63                      |       |
| 117 WI         | Door County                        |                       | •  |                 | •                       | •                                   | •               | 27    | •   | •    | •                       | . 2   |
| 118 WI         | Manitowoc Co.                      | 1                     | •  | •               | •                       | •                                   | •               | 82    | •   | •    | •                       | . 8   |
| 119 WI         | Milwaukee-Racine                   | 1                     | •  | •               | ;                       | •                                   | •               | 1839  |     | •    |                         | . 183 |
| 120 WV         | Follansbee                         | ·                     | •  |                 | 1                       | •                                   |                 | · ·   | •   | :    | 2                       | -     |
| 121 WV         | New Manchester Gr. (in Hancock Co) |                       |    | 1               | ÷                       |                                     | -               | · ·   |     | 9    | . •                     | •     |
| 122 WV         | WierButler-Clay (in Hancock Co)    |                       |    | 1               | 1                       |                                     |                 | · ·   | •   | 16   | 15                      | . 1   |
| 123 WV-KY      | Huntington-Ashland                 |                       |    | 1               | •                       |                                     |                 | · ·   |     | 49   |                         | . 4   |
| 124 WY         | Sheridan                           |                       |    |                 | 1                       |                                     |                 |       |     |      | 15                      | . 1   |
|                |                                    |                       |    |                 |                         |                                     |                 |       |     |      |                         |       |

## Table A-19. Condensed Nonattainment Areas List<sup>a</sup> (continued)

### Table A-19. Condensed Nonattainment Areas List<sup>a</sup> (continued)

#### Notes:

- <sup>a</sup> This is a simplified listing of Classified Nonattainment areas. Unclassified and Section 185(A) nonattainment areas are not included. In certain cases, footnotes are used to clarify the areas involved. For example, the lead Readers interested in more detailed information should use the official Federal Register Citation (40CFR81).
- <sup>b</sup> Names of nonattainment areas are listed alphabetically within each state. The largest city determines which state is listed first in the case of multiple-city nonattainment areas. When a larger nonattainment area, such as ozone, contains one or more smaller nonattainment areas, such as PM<sub>10</sub> or lead, the common name for the larger nonattainment area is used. Note that several smaller nonattainment areas may be inside one larger nonattainment area, as illustrated in Figure 1. For the purpose of this table, these are considered one nonattainment area and are listed on one line. Occasionally, two nonattainment areas may only partially overlap, as illustrated in Figure 2. These are counted as two distinct nonattainment areas and are listed on separate lines.
- <sup>c</sup> The number of nonattainment areas for each of the criteria pollutants is listed.
- <sup>d</sup> Population figures were obtained from 2000 census data. For nonattainment areas defined as only partial counties, population figures for just the nonattainment area were used when these were available. Otherwise, whole county population figures were used. When a larger nonattainment area encompasses a smaller one, double-counting the population in the "All" column is avoided by only counting the population of the larger nonattainment area.
- e Lead nonattainment area is Herculaneum, Missouri, in Jefferson County.
- f Ozone nonattainment area is a portion of Dona Ana County, New Mexico.

Figure A-1. (Multiple NA areas within a larger NA area) Two  $SO_2$  areas inside the Pittsburgh–Beaver Valley ozone NA. Counted as one NA area.

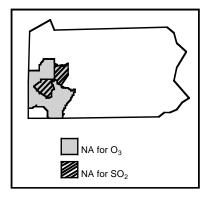
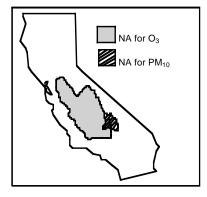




Figure A-2. (Overlapping NA areas) Searles Valley  $PM_{10}$  NA partially overlaps the San Joaquin Valley ozone NA. Counted as two NA areas.



|                     |       |                 |                 | 1991            | -2000           |                 |                 |                 |                 |                 |                 |
|---------------------|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| National Park       | Trend | 1991            | 1992            | 1993            | 1994            | 1995            | 1996            | 1997            | 1998            | 1999            | 2000            |
| Acadia NP           | NS    | 0.095           | 0.080           | 0.080           | 0.075           | 0.092           | 0.073           | 0.077           | 0.088           | 0.092           | 0.070           |
| Big Bend NP         | NS    | 7<br>0.057<br>0 | 1<br>0.061<br>0 | 3<br>0.063<br>0 | 0<br>0.069<br>0 | 5<br>0.065<br>0 | 2<br>0.073<br>0 | 1<br>0.063<br>0 | 4<br>0.070<br>0 | 5<br>0.064<br>0 | 0<br>0.064<br>0 |
| Brigantine          | NS    | 0.111           | 0.094           | 0.093           | 0.083           | 0.100           | 0.095           | 0.106           | 0.091           | 0.095           | 0.085           |
| Canyonlands NP      | UP    | 34<br>nd        | 8<br>0.055      | 13<br>0.063     | 2<br>0.068      | 10<br>0.063     | 13<br>0.074     | 18<br>0.067     | 22<br>0.071     | 13<br>0.073     | 0.076           |
| Cape Cod NS         | NS    | nd<br>0.111     | 0<br>0.096      | 0<br>0.088      | 0<br>0.088      | 0<br>0.105      | 0<br>0.096      | 0<br>0.100      | 0<br>0.084      | 0<br>0.101      | 0<br>0.083      |
| Cape Romain         | UP    | 16<br>0.060     | 6<br>0.072      | 4<br>0.069      | 4<br>0.067      | 9<br>0.075      | 8<br>0.071      | 17<br>0.082     | 2<br>0.076      | 12<br>0.080     | 3<br>0.076      |
| Chamizal            | NS    | 0<br>nd         | 0<br>0.072      | 0<br>0.059      | 0<br>0.075      | 0.084           | 0.078           | 3<br>0.071      | 0<br>880.0      | 2<br>0.071      | 0.080           |
| Chiricahua NM       | NS    | nd<br>0.071     | 2<br>0.065      | 0<br>0.068      | 2<br>0.071      | 3<br>0.069      | 1<br>0.072      | 0<br>0.065      | 6<br>0.067      | 0<br>0.072      | 2<br>0.071      |
| Congaree Swamp      | UP    | 0<br>0.059      | 0<br>0.067      | 0<br>0.063      | 0<br>0.064      | 0<br>0.076      | 0<br>0.074      | 0<br>0.065      | 0<br>0.081      | 0<br>080.0      | 0<br>0.073      |
| Cowpens NB          | UP    | 0<br>0.078      | 0<br>0.086      | 0<br>0.082      | 0<br>0.083      | 1<br>0.084      | 0<br>0.080      | 0<br>0.091      | 0<br>0.096      | 0<br>0.094      | 0<br>0.088      |
| Craters of the Moon | UP    | 1<br>nd         | 4<br>0.040      | 3<br>0.056      | 2<br>0.063      | 3<br>0.057      | 2<br>0.064      | 5<br>0.060      | 15<br>0.065     | 9<br>0.068      | 4<br>0.066      |
| Denali NP           | NS    | nd<br>0.049     | 0<br>0.050      | 0<br>0.048      | 0<br>0.049      | 0<br>0.053      | 0<br>0.053      | 0<br>0.051      | 0<br>0.054      | 0<br>0.054      | 0<br>0.038      |
| Everglades NP       | UP    | 0<br>0.060      | 0<br>0.061      | 0<br>0.064      | 0<br>0.064      | 0<br>0.058      | 0<br>0.063      | 0<br>0.066      | 0<br>0.072      | 0<br>0.067      | 0<br>0.066      |
| Blacier NP          | NS    | 0<br>0.051      | 0<br>0.051      | 0<br>0.044      | 0<br>0.055      | 0<br>nd         | 0<br>0.057      | 0<br>0.040      | 0<br>0.053      | 2<br>0.048      | 0<br>0.050      |
| Grand Canyon NP     | NS    | 0<br>0.073      | 0<br>0.074      | 0<br>0.066      | 0<br>0.073      | nd<br>0.069     | 0<br>0.073      | 0<br>0.072      | 0<br>0.072      | 0<br>0.076      | 0<br>0.071      |
| Great Smoky Mtn     | UP    | 0<br>0.079      | 0<br>880.0      | 0<br>0.088      | 0<br>0.093      | 0<br>0.099      | 0<br>0.088      | 0<br>0.098      | 0<br>0.110      | 0<br>0.106      | 0<br>0.096      |
| Great Smoky Mtn     | UP    | 2<br>0.082      | 5<br>0.075      | 4<br>0.089      | 10<br>0.088     | 13<br>0.093     | 8<br>0.092      | 19<br>0.095     | 35<br>0.106     | 37<br>0.101     | 12<br>0.096     |
| Great Smoky Mtn     | UP    | 1<br>nd         | 3<br>nd         | 7<br>0.074      | 6<br>0.076      | 12<br>0.089     | 12<br>0.087     | 20<br>0.089     | 34<br>0.106     | 36<br>0.101     | 18<br>0.100     |
| assen Volcanic      | NS    | nd<br>0.066     | nd<br>0.069     | 0<br>0.064      | 3<br>0.078      | 9<br>0.074      | 7<br>0.073      | 6<br>0.067      | 33<br>0.078     | 29<br>0.084     | 21<br>0.074     |
| Mammoth Cave NP     | UP    | 0<br>0.078      | 0<br>0.073      | 0<br>0.072      | 1<br>0.075      | 0<br>0.088      | 1<br>0.082      | 0<br>0.078      | 1<br>0.092      | 2<br>0.098      | 0<br>0.088      |
| Nount Rainier       | NS    | 0<br>nd         | 0<br>nd         | 0<br>0.055      | 0.067           | 6<br>0.065      | 2<br>0.065      | 4<br>0.040      | 12<br>0.051     | 19<br>0.064     | 4<br>0.057      |
| Dlympic NP          | NS    | nd<br>0.041     | nd<br>0.046     | 0<br>0.042      | 2<br>0.041      | 0<br>0.044      | 0<br>0.046      | 0<br>0.045      | 0<br>0.041      | 0<br>0.043      | 0<br>0.047      |
| Pinnacles NM        | NS    | 0<br>0.084      | 0<br>0.084      | 0<br>0.060      | 0<br>0.078      | 0<br>0.083      | 0<br>0.094      | 0<br>0.076      | 0<br>880.0      | 0<br>0.082      | 0<br>0.078      |
| Rocky Mountain      | NS    | 3<br>0.076      | 3<br>0.071      | 2<br>0.071      | 0<br>0.076      | 3<br>0.076      | 9<br>0.072      | 1<br>0.070      | 5<br>0.080      | 1<br>0.074      | 0<br>0.078      |
| Saguaro NM          | NS    | 0<br>0.073      | 0<br>0.074      | 1<br>0.082      | 0<br>080.0      | 0<br>0.083      | 0<br>0.076      | 0<br>0.079      | 1<br>0.077      | 1<br>0.069      | 2<br>0.074      |
| Sequoia/Kings C     | NS    | 0<br>0.097      | 1<br>0.102      | 1<br>0.106      | 0<br>0.106      | 2<br>0.095      | 0<br>0.105      | 0<br>0.097      | 0<br>0.094      | 1<br>0.097      | 0<br>0.090      |
| Shenandoah NP       | NS    | 34<br>0.083     | 50<br>0.077     | 48<br>0.083     | 58<br>0.083     | 18<br>0.087     | 50<br>0.081     | 26<br>0.089     | 27<br>0.107     | 39<br>0.093     | 8<br>0.080      |
| heodore Roosevelt   | NS    | 3<br>0.060      | 1<br>0.057      | 2<br>0.055      | 2<br>0.057      | 7<br>0.058      | 1<br>0.059      | 6<br>0.071      | 22<br>0.056     | 15<br>0.058     | 1<br>0.059      |
| /oyageurs NP        | UP    | 0<br>0.050      | 0<br>0.054      | 0<br>0.058      | 0<br>0.062      | 0<br>0.064      | 0<br>0.067      | 0<br>0.071      | 0<br>0.067      | 0<br>0.074      | 0<br>0.065      |
| rellowstone         | UP    | 0<br>0.057      | 0<br>0.063      | 0<br>0.053      | 0<br>0.061      | 0<br>0.060      | 0<br>0.061      | 0<br>0.061      | 0<br>0.066      | 0<br>0.069      | 0<br>0.065      |
| rosemite NP         | UP    | 0<br>0.098      | 0<br>0.091      | 0<br>0.063      | 0<br>0.094      | 0<br>0.091      | 0<br>0.090      | 0<br>0.081      | 0<br>0.094      | 0<br>0.085      | 0<br>0.087      |
|                     |       | 31              | 7               | 0               | 12              | 11              | 10              | 3               | 9               | 4               | 6               |

Table A-20. Trend in 8-hr ozone concentrations (ppm) exceedances at National Park and National Monument sites, 1991-2000

### Notes:

Notes:
 The trends statistic is the annual fourth highest daily maximum 8-hour ozone concentration (ppm). The number of exceedances of the level of the 8-hour ozone NAAQS is shown below the concentration value.
 "nd" indicates no data available for that year.
 "inc" indicates less than 90 days of monitoring data available for that year.
 "NS" indicates no statistically significant trend (at the 0.05 level).
 "UP" indicates a statistically significant upward trend in ozone concentrations.

# Table A-21. Onroad and Nonroad Emissions of 21 Mobile Source Air Toxics, 1996

|                           | Onr     | oad                                          | Nonr    | oad                                          | Mobile Sources |                                              |  |  |
|---------------------------|---------|----------------------------------------------|---------|----------------------------------------------|----------------|----------------------------------------------|--|--|
| Compound                  | Tons    | Percent of<br>Total<br>National<br>Emissions | Tons    | Percent of<br>Total<br>National<br>Emissions | Tons           | Percent of<br>Total<br>National<br>Emissions |  |  |
| 1,3-Butadiene*            | 23,500  | 42%                                          | 9,900   | 18%                                          | 33,400         | 60%                                          |  |  |
| Acetaldehyde*             | 28,700  | 29%                                          | 40,800  | 41%                                          | 69,500         | 70%                                          |  |  |
| Acrolein*                 | 5,000   | 16%                                          | 7,400   | 23%                                          | 12,400         | 39%                                          |  |  |
| Arsenic Compounds*        | 0.25    | 0.06%                                        | 2.01    | 0.51%                                        | 2.26           | 0.57%                                        |  |  |
| Benzene*                  | 168,200 | 48%                                          | 98,700  | 28%                                          | 266,900        | 76%                                          |  |  |
| Chromium Compounds*       | 14      | 1.2%                                         | 35      | 3%                                           | 49             | 4.2%                                         |  |  |
| Dioxins/Furans* 1         | NA      | NA                                           | NA      | NA                                           | NA             | NA                                           |  |  |
| Ethylbenzene              | 80,800  | 47%                                          | 62,200  | 37%                                          | 143,000        | 84%                                          |  |  |
| Formaldehyde*             | 83,000  | 24%                                          | 86,400  | 25%                                          | 169,400        | 49%                                          |  |  |
| Lead Compounds*           | 19      | 0.8%                                         | 546     | 21.8%                                        | 565            | 22.6%                                        |  |  |
| Manganese Compounds*      | 5.8     | 0.2%                                         | 35.5    | 1.3%                                         | 41.3           | 1.5%                                         |  |  |
| Mercury Compounds*        | 0.2     | 0.1%                                         | 6.6     | 4.1%                                         | 6.8            | 4.2%                                         |  |  |
| МТВЕ                      | 65,100  | 47%                                          | 53,900  | 39%                                          | 119,000        | 86%                                          |  |  |
| n-Hexane                  | 63,300  | 26%                                          | 43,600  | 18%                                          | 106,600        | 44%                                          |  |  |
| Naphthalene <sup>2</sup>  | NA      | NA                                           | NA      | NA                                           | NA             | NA                                           |  |  |
| Nickel Compounds*         | 10.7    | 0.9%                                         | 92.8    | 7.6%                                         | 103.5          | 8.5%                                         |  |  |
| POM (as sum of 7 PAH)*    | 42.0    | 4%                                           | 19.3    | 2%                                           | 61.3           | 6%                                           |  |  |
| Styrene                   | 16,300  | 33%                                          | 3,500   | 7%                                           | 19,800         | 40%                                          |  |  |
| Toluene                   | 549,900 | 51%                                          | 252,200 | 23%                                          | 802,100        | 74%                                          |  |  |
| Xylene                    | 311,000 | 43%                                          | 258,400 | 36%                                          | 569,400        | 79%                                          |  |  |
| Diesel Particulate Matter | 182,000 | 34%                                          | 341,000 | 65%                                          | 523,000        | 99%                                          |  |  |

\*On the urban HAPs list for the Integrated Urban Air Toxics Strategy

<sup>1</sup>Dioxin/Furans emission estimates are still under review

<sup>2</sup>Naphthalene emission estimates are currently included in POM. This will be corrected in the 1999 NTI.

# Methodology

### http://www.epa.gov/oar/aqtrnd03/appendb.pdf

# **AQS** Methodology

The ambient air quality data presented in Chapters 2 and 3 of this report are based on data retrieved from the Air Quality System (AQS) on July 2003. These are direct measurements of pollutant concentrations at monitoring stations operated by tribes and state and local governments throughout the nation. The monitoring stations are generally located in larger urban areas. EPA and other federal agencies also operate some air quality monitoring sites on a temporary basis as a part of air pollution research studies. The national monitoring network conforms to uniform criteria for monitor siting, instrumentation, and quality assurance.<sup>1,2</sup>

Emission estimation methods used for historical years prior to 1985 are considered "top-down approaches," e.g., pollutant emissions were estimated by using national average emission characterization techniques (for NO<sub>x</sub>, VOC, CO, Pb, and PM<sub>10</sub>). Emission estimates for the years 1985 to present represent an evolution in methods for significant categories, resulting in a "bottom-up approach" including data submitted directly by state/local agencies (for all criteria pollutants, PM<sub>2 5</sub>, and NH<sub>3</sub>).

In 2002, thousands of monitoring sites reported air quality data for one or more of the six National Ambient Air Quality Standards (NAAQS)

| Pollutant        | No. of Sites with Valid<br>Annual Summary<br>Statistics in 2002 | No. of Trend Sites<br>1992–2002 |
|------------------|-----------------------------------------------------------------|---------------------------------|
| СО               | 331                                                             | 387                             |
| Pb               | 77                                                              | 96                              |
| NO <sub>2</sub>  | 217                                                             | 250                             |
| 0 <sub>3</sub>   | 718                                                             | 785                             |
| PM <sub>10</sub> | 629                                                             | 770                             |
| SO2              | 361                                                             | 449                             |

Table B-1. Number of Ambient Monitors with Valid Annual Summary Statistics

pollutants to AQS, as shown in Table B-1. The sites consist of National Air Monitoring Stations (NAMS), State and Local Air Monitoring Stations (SLAMS), and other special-purpose monitors. NAMS were established to ensure a long-term national network for urban area-oriented ambient monitoring and to provide a systematic, consistent database for air quality comparisons and trends analysis. SLAMS allow state or local governments to develop networks tailored for their immediate monitoring needs.

Air quality monitoring sites are selected as national trends sites if they have complete data for at least 8 of the 10 years. The annual data completeness criteria are specific to each pollutant and measurement methodology. Table B-1 displays the number of sites meeting the 10-year trend completeness criteria. Because of the annual turnover of monitoring sites, the use of a moving 10-year window maximizes the number of sites available for trends and yields a database that is consistent with the current monitoring network.

The air quality data are divided into two major groupings: daily (24-hour) measurements and continuous (1-hour) measurements. The daily measurements are obtained from monitoring instruments that produce one measurement per 24-hour period and typically operate on a systematic sampling schedule of once every 6 days, or 61 samples per year. Such instruments are used to measure PM<sub>10</sub> and lead. More frequent sampling of PM<sub>10</sub> (every other day or every day) also is common. Only PM<sub>10</sub>-weighted (for each quarter to account for seasonality) annual arithmetic means that meet the AOS annual summary criteria are selected as valid means for trends purposes.<sup>3</sup> Only lead sites with at least six

samples per quarter in three of the four calendar quarters qualify as trends sites. Monthly composite lead data are used if at least two monthly samples are available for at least three of the four calendar quarters.

Monitoring instruments that operate continuously produce a measurement every hour for a possible total of 8,760 hourly measurements in a year. For hourly data, only annual averages based on at least 4,380 hourly observations are considered as trends statistics. The SO<sub>2</sub> standard-related daily statistics require at least 183 daily values to be included in the analysis. Ozone sites meet the annual trends data completeness requirement if they have at least 50 percent of the daily data available for the ozone season, which varies by state, but typically runs from May through September.<sup>4</sup>

### **Air Quality Trend Statistics**

The air quality statistics presented in this report relate to the pollutantspecific NAAQS and comply with the recommendations of the Intra-Agency Task Force on Air Quality Indicators.<sup>5</sup> A composite average of each trend statistic is used in the graphical presentations throughout this report. All sites were weighted equally in calculating the composite average trend statistic. Missing annual summary statistics for the second through ninth years for a site are estimated by linear interpolation from the surrounding years. Missing end points are replaced with the nearest valid year of data. The resulting data sets are statistically balanced, allowing simple statistical procedures and graphics to be easily applied. This procedure is conservative since endpoint rates of change are dampened by the interpolated estimates.

# **Emissions Estimate Methodology**

Trends are presented for annual nationwide emissions of CO, lead,  $NO_{x'}$  VOC,  $PM_{10}$ ,  $SO_{2}$ , and  $NH_{3}$ . These trends are estimates of the amount and kinds of pollution being emitted by automobiles, factories, and other sources based on best available engineering calculations. Methodologies for estimating emissions are constantly evolving and resources do not always allow for them to be recalculated for all years. Thus, some apparent changes in the emission trends are actually caused by a methods change rather than an actual change in emissions. Comparison of the estimates for a given year in this report to the same year in previous reports is not appropriate.

The emission estimates presented in this report reflect several major changes in methodologies. For stationary sources, state-derived emission estimates were included primarily for nonutility point and area sources beginning in 1996. Also, 1985–1994 source NO<sub>x</sub> emission rates derived from test data from EPA's Acid Rain Division were used.

For mobile sources, the MOBILE6 model and 2002 draft of the NON-ROAD model were run for several base years and interpolated between modeled years, making mobile source trends and emission methodology consistent across the entire period of years shown. This change in mobile source estimation methods makes for significant changes in the trends, in particular raising estimated emission levels for earlier years over previous reports. New methods have also been developed for estimating emissions from locomotives, aircraft, and commercial marine vessels. Improved methods

for these three categories are based on year-specific activity data and are superior to the previous estimates that were projected from year to year. However, they leave a few data gaps. For instance, the emission estimates erroneously show no PM emissions for commercial aircraft due to problems in confirming a valid emission factor.

In addition to the changes in methodology affecting most source categories and pollutants, other changes were made to the emissions for specific pollutants, source categories, and/or individual sources. Activity data and correction parameters for agricultural crops and paved roads were included. A change in methodology occurred starting in 1996 for calculating  $PM_{10}$ emissions from unpaved roads and in 1999 for calculating emissions from construction. This has led to lower PM<sub>10</sub> emissions than would have been predicted using the previous methods. The development of new emission estimation methodologies has added emissions for open burning of residential yard waste and land-clearing debris burning. Starting in 1999, these estimates contributed to a significant increase in industrial category emissions for CO, PM<sub>10</sub>, and PM<sub>25</sub> between 1998 and 1999. Rule effectiveness from pre-1990 chemical and allied product emissions was removed. Alaska and Hawaii nonutility point and area source emissions from several sources were added. Also, this report incorporates data from continuous emissions monitors (CEMs) collected between 1994 and 1999 for NO<sub>v</sub> and SO<sub>2</sub> emissions at major electric utilities.

Another change is the addition of PM condensible emissions. Previous reports included only the filterable portion of PM for stationary sources. Onroad and nonroad mobile source estimates included condensibles due to the test methodology on which the estimates are based. In this latest report, we have tried to address this by augmenting our estimates to include the condensible portion for point source and selected area source emissions. This primarily affects combustion sources.

All of these changes are part of a broad effort to update and improve emission estimates. Additional emission estimates and a more detailed description of the estimation methodology are available from EPA's Emission Factor and Inventory Group (go to **www.epa.gov/ttn/chief** and click on "Emission Inventories," then click on "National Emissions Inventory Data," then click on the documentation and data for the latest year available).

# IMPROVE Methodology

Data collected from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network is summarized in Chapter 2 (PM<sub>2.5</sub> section) of this report. The completeness criteria and averaging method used to summarize the IMPROVE data are slightly different from those used for the criteria pollutants. (Data handling guidance is currently being developed for the IMPROVE network. Future summaries will be based on this guidance.) The source data sets were obtained from Dr. James Sisler of Colorado State University.

The annual average statistics in these files were used to assess trends in this report. The IMPROVE data are not reported in terms of a calendar year. The IMPROVE year runs from March to February of the following year. It follows that the four seasons are: March to May (spring), June to August (summer), September to November (autumn), and December to the following February (winter). The network samplers monitor on Wednesdays and Saturdays throughout the year, yielding 104 samples per year and 26 samples per season. To be included in this analysis, sites were required to have data for at least 50 percent of the scheduled samples (13 days) for every calendar quarter.

IMPROVE monitoring sites are selected as trends sites if they have complete data for at least 8 of the 10 years between 1990 and 1999 (or 6 of 8 years for those who began monitoring in 1992). A year is valid only if there are at least 13 samples (50 percent complete) per season for both measured and reconstructed PM<sub>2.5</sub>.

Figure B-1. Class I Areas in the IMPROVE Network meeting data completeness criteria.



The same linear interpolation applied to the criteria pollutants is applied here. The IMPROVE sites meeting the data completeness criteria are shown in Figure B-1.

For consistency, the same sites are used in both the  $PM_{2.5}$  section. The exceptions are Washington, DC, and South Lake Tahoe, which are not included in the visibility trends analysis because they are urban sites.

# **Air Toxics Methodology**

# Database

The 1990–1999 ambient air quality data presented in Chapter 5 of this report are based on air toxics data retrieved from AIRS in July 2000, data retrieved from the IMPROVE network in June 2000, and data voluntarily submitted to EPA by state and local monitoring agencies and received by June 30, 2000. For more details about the database, see Rosenbaum et al., 1999.<sup>6</sup> All statistical summaries are based on annual average concentrations. Measurements for hazardous air pollutants (HAPs) are frequently reported as nondetectable concentrations. To calculate annual average concentrations, one-half of the actual or plausible detection limit is used to substitute values for nondetects (or if the reported value is zero). The plausible detection limit, used for cases where the minimum detectable limit (MDL) is missing, is the lowest of the measured concentrations and MDLs for the given monitor and HAP.

Separate summaries are presented for sites in a metropolitan statistical area (MSA)/PMSA (primary MSA), excluding the (primarily rural) sites from the IMPROVE network, and for other sites. Areas (one or more counties) are assigned to either an MSA or a CMSA (consolidated MSA) consisting of two or more PMSAs or are just assigned to a county. Each non-IMPROVE site in an MSA or CMSA was assigned either to its MSA or PMSA. Some analyses allocated MSA/PMSAs to states. If the MSA/PMSA crosses state boundaries, the state containing the largest portion of that MSA/PMSA was used.

# Completeness

All calculations are based on the average of calculated or measured 24-hour values. For each HAP, a series of completeness rules are applied sequentially starting with using the raw hourly data to determine daily completeness. Multiple records for the same HAP, monitoring site, day, and time period are averaged together. A day is complete if the total number of hours monitored for that day is 18 or more (i.e., 75 percent of 24 hours). For example, 18 hourly averages, three 6-hour averages, or three 8-hour averages will satisfy the daily completeness criteria. Once daily completeness is satisfied, quarterly completeness is determined. Calendar quarters are

- (Late winter) January–March
- (Early summer) April–June
- (Late summer) July–September

• (Early winter) October–December. A calendar quarter is complete if it has 75 percent or more complete days out of the expected number of daily samples for that quarter and if there are at least five complete days in the quarter. To determine the expected number of daily samples, the most frequently occurring sampling interval (days from one sample to the next sample) was used; in cases of ties, the minimum sampling interval was applied. A calendar year is complete if both the summer and winter 6-month seasons have at least one complete quarter, that is, if (1) quarter 1 or 4 or both quarters 1 and 4 are complete, and (2) quarter 2 or 3

or both quarters 2 and 3 are complete.

In some cases, collocated samples for the same HAP and location were collected. For AQS data, collocated monitors are identified by having the same 9-digit AQS ID number but a different pollutant occurrence code (POC) number. The higher POC numbers are generally used for quality assurance monitoring data that are not as complete as the primary sampling data. Therefore, if multiple AIRS monitors at the same location meet the above completeness requirements, then only the data from the monitor with the lowest POC number were used for these analyses. For data not reported to AIRS, collocated monitors can have very different monitor identifiers. If multiple monitors at the same latitude and longitude location for a given sampling program and HAP meet the completeness requirements, then only the data from the monitor with the highest monitoring frequency were used for these analyses. In case of tied highest monitoring frequencies, the monitor with the most daily average records (from complete quarters in the trend period) was used.

# **National Analyses**

Based on the available years of monitoring data across the nation, the national analyses were restricted to the 6-year period 1994 to 1999. A site was included for a particular HAP if, and only if, there were four or more complete years for that period.

# **California Analyses**

A similar, but longer term trend analysis was performed on metropolitan sites located only in California using 1990 to 1999 data. A site was included for a given HAP if there was at least one period of 5 years or longer so that at least 75 percent of those years are complete and the period ends in 1997 or later. Only the data from the most recent of the longest such periods were used.

## **Trend Analysis**

Annual averages for years with four complete quarters were computed by averaging the four quarterly averages. If a year had one or more missing or incomplete quarters, then those missing or incomplete quarterly averages were filled in (if possible) using the General Linear Model (GLM) fill-in methodology described below, and the annual average was computed by first averaging the quarterly averages (actual or filledin) for a season and then averaging across the two seasons.<sup>7</sup> Filled-in quarterly averages were used for incomplete quarters even if there were some data for that quarter. Data from incomplete quarters were not used in the analyses. The filled-in quarterly average can be negative sometimes, and occasionally this leads to a negative annual average. To deal with this case, negative or zero filled-in quarterly averages were used to compute the annual average (this avoids biasing the results), but any resulting negative annual averages were reset to zero. In the summary analyses, averages across multiple sites were computed as trimmed means rather than simple arithmetic means in order to reduce the influence of the most extreme monitor averages on the trend line. If there were nine sites or less, then no trimming was performed, so the trimmed mean is the arithmetic mean of all the site averages. If there were between 10 and 40 sites, inclusive, the trimmed mean is the arithmetic mean of all the site averages except for the highest and lowest averages. If there were 41 sites

or more, the trimmed mean is the arithmetic mean of all the site averages except for the highest 2.5 percent and the lowest 2.5 percent of the averages. The reported numbers of sites and percentiles are based on all sites meeting the completeness criteria, that is, including the sites that were excluded for the trimmed mean calculation.

The overall slope (trend) was estimated nonparametrically as the median of the ratios of the difference in the annual average to the difference in calendar year, for all pairs of calendar years. The significance level of the trend was computed using the associated nonparametric Theil test, based on the number of pairs of years where the annual averages increased. The p-values are calculated for a two-sided test for whether or not the annual averages have a trend (which may be increasing or decreasing). The trend is reported as "Significant Up Trend" or "Significant Down Trend" if the corresponding onesided test is significant at the 5 percent significance level; otherwise the result is reported as "Non-significant Up Trend," "No Trend," or "Non-significant Down Trend."

For the tables summarizing the annual average trends by monitor, the GLM fill-in method was not used. Instead, those monitor annual averages were computed by averaging all complete daily averages for each complete quarter, then averaging the complete quarterly averages for each season, and then averaging over the two seasons. All other analyses used the filled-in quarterly averages as described above.

### **GLM Fill-in Methodology**

The GLM fill-in methodology and software used to fill in missing quarterly averages were based on the report by Cohen and Pollack (1990),<sup>8</sup>

which can be consulted for more details. The method was modified to apply to the sequence of quarterly averages (24 values for the 6-year 1994-1999 period) instead of five annual means. The method was also modified to use a fitted statistical model with six year effects and four quarterly adjustments, instead of having 24 independent year/quarter effects. In other words, the fitted model assumes that the seasonal (quarterly) variation is the same for every site and year. Initially, each site is allocated to a region, which for these analyses was the MSA/PMSA for sites within an MSA or PMSA or was the county. Suppose that for each of the four quarters there is at least one site in the region with complete data for that quarter in at least 1 year. Suppose also that for each of the 6 years there is at least one site in the region with complete data for at least one quarter in that year. If these two conditions apply, then the missing quarterly averages for all sites in that region are computed by fitting a GLM so that the expected value for a given site and quarter q is the sum of the site average, a yearly adjustment term, and a quarterly adjustment term. The yearly adjustment term is the fixed effect of the y'th year,  $1 \le y \le 6$ , assumed to be the same value for all sites in the region. The quarterly adjustment term is the fixed effect of the q'th quarter,  $1 \le q \le 4$ , assumed to be the same value for all sites in the region and all years. If a region does not meet these two conditions, then the region is expanded to become a larger, augmented region with some site data for every quarter and some site data for every year, and the GLM approach is applied to the augmented region. Candidates for the augmented region are selected by finding the nearest site(s) in the same



Office of Air Quality and Standards Air Quality Strategies and Standards Division Research Triangle Park, NC

EPA Publication No. EPA 454/R-03-005

state that have complete data for the missing quarter(s) and year(s). The selected augmented region is the region giving the lowest mean square error for the GLM.

Although the GLM methodology filled in most missing quarters, there were some states, HAPs, and years that had no complete quarters for any site in the state. In those cases, the missing quarters were not filled in by the GLM approach (which restricts the augmented regions to sites in the same state). For the national analyses of distributions across sites in different states, the missing site-years were then filled in using the same EPA extrapolation and interpolation method used elsewhere in this report: If the site annual average for 1994 was missing, it was filled in with the 1995 annual average; if the 1995 annual average was also missing, then the 1994 and 1995 annual averages were filled in with the 1996 annual average. If the site annual average for 1999 was missing, it was filled in with the 1998 annual average; if the 1998 annual average was also missing, then the 1999 and 1998 annual averages were filled in with the 1997 annual average. Otherwise, any missing annual averages were filled in using simple linear interpolation from the two surrounding annual averages.

# References

1. Clean Air Act Amendments of 1990, U.S. Code, volume 42, section 7403 (c)(2), 1990.

2. Ambient Air Quality Surveillance, 44 CFR 27558, May 10, 1979.

3. Aerometric Information Retrieval System (AIRS), Volume 2, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC, October, 1993.

4. Ambient Air Quality Surveillance, 51 FR 9597, March 19, 1986.

5. U.S. Environmental Protection Agency Intra-Agency Task Force Report on Air Quality Indicators, EPA-450/4-81-015, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC, February 1981. 6. Rosenbaum, A. S., Stiefer, M. P., and Iwamiya, R. K. November, 1999. *Air Toxics Data Archive and AIRS Combined Dataset: Contents Summary Report.* SYSAPP-99/26d. Systems Applications International, San Rafael, CA.

7. In all cases analyzed, four nonmissing quarterly means were available after applying the GLM method, so that the resulting annual mean is the arithmetic mean of the four quarterly averages.

8. Cohen, J.P. and A. K. Pollack. 1990. *General Linear Models Approach to Estimating National Air Quality Trends Assuming Different Regional Trends*. SYSAPP-90/102. Systems Applications International, San Rafael, CA.