How do treatment wetlands work?

Natural wetlands perform many functions that are beneficial to both humans and wildlife. One of their most important functions is water filtration. As water flows through a wetland, it slows down and many of the suspended solids become trapped by vegetation and settle out. Other pollutants are transformed to less soluble forms taken up by plants or become inactive. Wetland plants also foster the necessary conditions for microorganisms to live there. Through a series of complex processes, these microorganisms also transform and remove pollutants from the water.

Nutrients, such as nitrogen and phosphorous, are deposited into wetlands from stormwater runoff, from areas where fertilizers or manure have been applied and from leaking septic fields. These excess nutrients are often absorbed by wetland soils and taken up by plants and microorganisms. For example, wetland microbes can convert organic nitrogen into useable, inorganic forms (NO$_3^-$ and NH$_4^+$) that are necessary for plant growth and into gasses that escape to the atmosphere.

Why build them?

Wetlands are some of the most biologically diverse and productive natural ecosystems in the world. While not all constructed wetlands replicate natural ones, it makes sense to construct wetlands that improve water quality and support wildlife habitat. Constructed wetlands can also be a cost-effective and technically feasible approach to treating wastewater. Wetlands are often less expensive to build than traditional wastewater treatment options, have low operating and maintenance expenses and can handle fluctuating water levels. Additionally, they are aesthetically pleasing and can reduce or eliminate odors associated with wastewater.

How are they built?

Constructed wetlands are generally built on uplands and outside floodplains or floodways in order to avoid damage to natural wetlands and other aquatic resources. Wetlands are frequently constructed by excavating, backfilling, grading, diking and installing water control structures to establish desired hydraulic flow patterns. If the site has highly permeable soils, an impervious, compacted clay liner is usually installed and the original soil placed over the liner. Wetland vegetation is then planted or allowed to establish naturally.
In 1990, city managers in Phoenix, Arizona, needed to improve the performance of their 91st Avenue Wastewater Treatment Plant to meet new water quality standards issued by the Arizona Department of Environmental Quality. After learning that upgrading their treatment plant might cost as much as $635 million, the managers started to look for a more cost-effective way to polish the treatment plant’s wastewater discharge into the Salt River. A preliminary study suggested that the city consider a constructed wetland system that would polish effluent, while supporting high-quality wetland habitat for migratory waterfowl and shorebirds, including endangered species, and protecting downstream residents from flooding at a lower cost than retrofitting their existing treatment plant. As a result, the 12-acre Tres Rios Demonstration Project began in 1993 with assistance from the U.S. Army Corps of Engineers, the Bureau of Reclamation and EPA’s Environmental Technology Initiative and now receives about two million gallons of effluent per day. The demonstration project was so successful that the city and the Bureau of Reclamation asked EPA for help in expanding the project to a full-scale, 800-acre project. For more information on the Tres Rios Constructed Wetlands Project, visit, http://phoenix.gov/TRESRIOS/

This hog operation in Taylor County, Iowa, uses a wetland system constructed on a series of hillside terraces to filter and purify wastewater. Water quality tests indicated that the effluent from the treatment wetland was cleaner than that required for wastewater treatment plants.

Wetland Resources

