

ASBESTOS

FACT SHEET ON A DRINKING WATER CHEMICAL CONTAMINANT

GENERAL INFORMATION

Synonyms

None

Chemical Description:

 Generic name for a group of naturally occurring hydrated silicate minerals of the amphibole or serpentine groups which are characterized by fibers or bundles of fine single crystal fibers

Properties:

- Asbestos fibers have a high tensile strength, flexibility, heat and chemical resistance, low heat and electrical conductance, low porosity, and favorable frictional properties
- White, gray, green, or brown fibers that do not clump together
- · Slightly soluble in water

Production and Use:

- · Properties of the fibers determine their uses
 - · asbestos cement pipe and sheet
 - · flooring products
 - · roofing products
 - friction products
 - packing and gaskets
 - thermal insulation
 - electrical insulation
 - · coatings and compounds
 - filtration media
 - asbestos paper
 - plastics
- Chrysotile (serpentine group) accounts for approximately 94% by weight of asbestos use in the U.S.

ENVIRONMENTAL PROFILE

Ocurrence:

- Common contaminant of domestic water supplies, but EPA has concluded that about 95% of water consumers are exposed to asbestos fiber concentrations of less than one million fibers per liter (MFL)
- Occurs naturally through erosion of mineral deposits of serpentine and other asbestoscontaining materials in surface water systems

Releases:

 Contamination of drinking water may be attributed to erosion of natural mineral deposits, runoff from tailings from mining operations, improper disposal of asbestos wastes (predominantly household waste), and deterioration and/or tapping of asbestos/ cement (A/C) pipes in municipal water distribution systems

Environmental Fate:

- Highly persistent in water
- Low potential for bioaccumulation
- Asbestos wastes are discharged predominantly to land, and least to water
- Not likely to migrate to ground water if released to soil

HEALTH EFFECTS

Humans:

- Little data on experiments with humans
- Case studies have indicated that inhalation of asbestos fibers causes cancer in humans, also causes asbestosis (diffuse interstitial fibrosis of the lung)

Experimental Animals:

- Exposure via inhalation or ingestion (inhalation is the more common exposure pathway and the more detrimental to health)
- · Low acute toxicity:
 - the bulk of inhaled asbestos (the longer fibers) is rapidly cleared from the respiratory tract to the gastrointestinal tract
 - most asbestos fibers entering the gastrointestinal tract are passed through the digestive system and are excreted with the feces; however, evidence indicates that they may penetrate the walls of the tract
- Chronic exposure to asbestos via inhalation causes asbestosis and cancer (lung cancer, cancer of the chest cavity; may also cause cancer of the abdominal wall, digestive system, larynx, ovaries, and uterus)

REGULATORY PROFILE

Existing Standards:

- ·Clean Air Act (CAA): Regulated
- ·Clean Water Act (CWA):

Criteria established

Resource Conservation and Recovery Act (RCRA):

Not regulated

- •Superfund (CERCLA):
 - · Hazardous waste
 - SARA: Toxic substance
- Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA):

Not registered

•Toxic Substances Control Act (TSCA):

Regulated

HEALTH INFORMATION

Maximum Contaminant Level Goals (MCLG):

- Non-enforceable levels based solely on an evaluation of possible health risks and exposure, and taking into consideration a margin for public safety
- Set at 7 MFL to protect against cancer

MCLG for Asbestos = 7 MFL* (effective July 1992)

Maximum Contaminant Levels (MCL):

- Legally enforceable levels for contaminants in public drinking water supplies
- Based on health risks associated with the contaminants, analytical methods for their assay, and water treatment feasibility and practicality aspects
- Exceedance of the MCL in drinking water may result in adverse effects which will depend upon the contaminant concentration in water, amount of water/contaminant ingested, length of exposure, and other biological parameters

MCL for Asbestos = 7 MFL* (effective July 1992)

EPA Health Advisories (HA):

• Short-term HAs: Provide acceptable concentrations of contaminants in water for up to 10 day exposures, primarily to evaluate the public health risk resulting from an accidental spill or an emergency contamination situation

- Longer-term HAs: Provide guidance for persistent water contamination situations to cover a period of up to 7 years
- Lifetime HAs: Derived in the same way as ar MCLG

Health Advisories

(EPA has not established HAs for asbestos in water)

ANALYTICAL METHODS

 Transmission Electron Microscopy EPA-600/4-83-043

WATER TREATMENT

Permanent Treatment:

Best Available Technology (BAT):

- Coagulation/Filtration
- Direct Filtration
- Diatomite Filtration
- Corrosion Control

SHORT-TERM HAZARD ELIMINATION

 If the drinking water standards are exceeded, install BAT or use an alternative drinking water supply such as bottled water

ADDITIONAL HELP

- State or county health officials can indicate a certified laboratory for testing
- Experts in the state Department of Environmental Protection or Natural Resources may also be of help
- The EPA has toll-free numbers for further information on drinking water quality, treatment technologies, for obtaining Health Advisories, and for other regulatory information
- EPA Hotlines are available Monday through friday

Safe Drinking Water.

800-426-4791

National Pesticides:
 Superfund/RCRA:

800-858-7378 800-424-9346

- For information on the Clean Water Act, call (202) 260-7301
- For information on the Toxic Substances Control Act, call (202) 554-1404
- For information on the Clean Air Act, call (919) 541-2777

MFL = million fibers/liter (longer than 10 μm)

ASBESTOS

FACT SHEET ON A DRINKING WATER CHEMICAL CONTAMINANT

GENERAL INFORMATION

Synonyms

• None

Chemical Description:

 Generic name for a group of naturally occurring hydrated silicate minerals of the amphibole or serpentine groups which are characterized by fibers or bundles of fine single crystal fibers

Properties:

- Asbestos fibers have a high tensile strength, flexibility, heat and chemical resistance, low heat and electrical conductance, low porosity, and favorable frictional properties
- White, gray, green, or brown fibers that do not clump together
- · Slightly soluble in water

Production and Use:

- Properties of the fibers determine their uses
 - asbestos cement pipe and sheet
 - · flooring products
 - · roofing products
 - friction products
 - · packing and gaskets
 - thermal insulation
 - electrical insulation
 - · coatings and compounds
 - · filtration media
 - · asbestos paper
 - plastics
- Chrysotile (serpentine group) accounts for approximately 94% by weight of asbestos use in the U.S.

ENVIRONMENTAL PROFILE

Ocurrence:

- Common contaminant of domestic water supplies, but EPA has concluded that about 95% of water consumers are exposed to asbestos fiber concentrations of less than one million fibers per liter (MFL)
- Occurs naturally through erosion of mineral deposits of serpentine and other asbestoscontaining materials in surface water systems

Releases:

 Contamination of drinking water may be attributed to erosion of natural mineral deposits, runoff from tailings from mining operations, improper disposal of asbestos wastes (predominantly household waste), and deterioration and/or tapping of asbestos/ cement (A/C) pipes in municipal water distribution systems

Environmental Fate:

- Highly persistent in water
- Low potential for bioaccumulation
- Asbestos wastes are discharged predominantly to land, and least to water
- Not likely to migrate to ground water if released to soil

HEALTH EFFECTS

Humans:

- · Little data on experiments with humans
- Case studies have indicated that inhalation of asbestos fibers causes cancer in humans, also causes asbestosis (diffuse interstitial fibrosis of the lung)

Experimental Animals:

- Exposure via inhalation or ingestion (inhalation is the more common exposure pathway and the more detrimental to health)
- · Low acute toxicity:
 - the bulk of inhaled asbestos (the longer fibers) is rapidly cleared from the respiratory tract to the gastrointestinal tract
 - most asbestos fibers entering the gastrointestinal tract are passed through the digestive system and are excreted with the feces; however, evidence indicates that they may penetrate the walls of the tract
- Chronic exposure to asbestos via inhalation causes asbestosis and cancer (lung cancer, cancer of the chest cavity; may also cause cancer of the abdominal wall, digestive system, larynx, ovaries, and uterus)

REGULATORY PROFILE

Existing Standards:

- ·Clean Air Act (CAA): Regulated
- Clean Water Act (CWA):
 Criteria established
- Resource Conservation and Recovery Act (RCRA);

Not regulated

- ·Superfund (CERCLA):
 - · Hazardous waste
 - *SARA: Toxic substance
- Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA):

Not registered

·Toxic Substances Control Act (TSCA):

Regulated

HEALTH INFORMATION

Maximum Contaminant Level Goals (MCLG):

- Non-enforceable levels based solely on an evaluation of possible health risks and exposure, and taking into consideration a margin for public safety
- Set at 7 MFL to protect against cancer

MCLG for Asbestos = 7 MFL* (effective July 1992)

Maximum Contaminant Levels (MCL):

- Legally enforceable levels for contaminants in public drinking water supplies
- Based on health risks associated with the contaminants, analytical methods for their assay, and water treatment feasibility and practicality aspects
- Exceedance of the MCL in drinking water may result in adverse effects which will depend upon the contaminant concentration in water, amount of water/contaminant ingested, length of exposure, and other biological parameters

MCL for Asbestos = 7 MFL* (effective July 1992)

EPA Health Advisories (HA):

• Short-term HAs: Provide acceptable concentrations of contaminants in water for up to 10 day exposures, primarily to evaluate the public health risk resulting from an accidental spill or an emergency contamination situation

* MFL = million fibers/liter (longer than 10 μm)

- Longer-term HAs: Provide guidance for persistent water contamination situations to cover a period of up to 7 years
- Lifetime HAs: Derived in the same way as ar MCLG

Health Advisories

(EPA has not established HAs for asbestos in water)

ANALYTICAL METHODS

 Transmission Electron Microscopy EPA-600/4-83-043

WATER TREATMENT

Permanent Treatment:

Best Available Technology (BAT):

- Coagulation/Filtration
- Direct Filtration
- Diatomite filtration
- Corrosion Control

SHORT-TERM HAZARD ELIMINATION

 If the drinking water standards are exceeded, install BAT or use an alternative drinking water supply such as bottled water

ADDITIONAL HELP

- State or county health officials can indicate a certified laboratory for testing
- Experts in the state Department of Environmental Protection or Natural Resources may also be of help
- The EPA has toil-free numbers for further information on drinking water quality, treatment technologies, for obtaining Health Advisories, and for other regulatory information
- EPA Hotlines are available Monday through Friday

Safe Drinking Water:
National Pesticides:
Superfund/RCRA:
800-426-4791
800-858-7378
800-424-9346

- For information on the Clean Water Act, call (202) 260-7301
- For information on the Toxic Substances Control Act, call (202) 554-1404
- For information on the Clean Air Act, call (919) 541-2777