EPA/600/R-16/175 | August 2016 | www.epa.gov/research

Petroleum Vapor Intrusion Modeling Assessment with PVIScreen

EPA/600/R-16/175 August 2016

Petroleum Vapor Intrusion Modeling Assessment with PVIScreen

James W. Weaver United States Environmental Protection Agency Office of Research and Development National Risk Management Research Laboratory Groundwater, Watershed, and Ecosystem Restoration Division Ada, Oklahoma 74820

Robin V. Davis Utah Department of Environmental Quality Salt Lake City, Utah 84116

Table of Contents

ABSTRACT	iv
DISCLAIMER	iv
1.BACKGROUND	1
1.1 Outline	1
1.2 Environmental Models and Vapor Intrusion	1
1.3 Empirical Basis for Bioattenuation	2
1.4 The Biovapor Model	3
1.4.1 Uncertainty Analysis	
1.5 PVIScreen Use in Context of a Petroleum Vapor Intrusion Assessment	6
2. GETTING STARTED	7
3. RUNNING THE MODEL	7
3.1 PVIScreen User Interface	7
3.1.1 File Selection	7
3.1.2 PVIScreen File Names	9
3.1.3 Editing an Existing Data Set	9
3.1.4 Editing the Data Screens	9
3.1.5 Treatment of Ground Water Samples	
3.1.6 Vadose Zone	
3.1.7 Preparing for Run	
3.1.8 Running PVIScreen	
3.1.9 Displaying and Understanding Statistics Output	
3.1.10 Automated Report	
4. EXAMPLES	
4.1 Soil Gas Source Example	
4.1.1 Site Investigation	
4.1.2 PVIScreen Model Parameters	
4.1.3 PVIScreen Model Results	
4.2 Ground Water Data Example	
4.3 Ground Water Example Indicating Possibility of Vapor Intrusion	
5. THEORETICAL BACKGROUND	
5.1 Oil Phase Weathering	
5.2 BioVapor Equations	
REFERENCES	
APPENDIX A Running PVIScreen in Command Line and Batch Mode	A1
A.1 Batch Mode	A1
APPENDIX B Microsoft Excel Comma Separated Value (.csv) Format	B1
APPENDIX C Unit Conversions in PVIScreen	C1
APPENDIX D Post-Processed Output File	D1
D.1 File Identification	D1
D.2 Reprinting Output Results	D1
D.3 Simple Statistical Results	D1
D.4 Histograms	D1

AP	PENDIX E Entry of Deterministic and Stochastic (Monte Carlo) Data	. E1
	E.1 For Deterministic Models	. E1
	E.2 For Stochastic (Monte Carlo) Models	. E1
	E.2.1 Constant Parameter Values in Stochastic Models	. E1
	E.2.2 Variable Parameters in Stochastic Models	. E3
	E.3 Uniformly Distributed Parameter Values	. E3
	E.4 Triangular Distribution	. E4
	E.5 Truncated Normally Distributed Parameter Values	. E5

Figures

Figure 1.	Comparison between the processes governing non-biodegrading solvent vapor intrusion and petroleum vapor intrusion	1
Figure 2.	Thickness of clean soil associated with attenuation of benzene vapors	2
Figure 3.	Thickness of clean soil associated with attenuation of TPH vapors	2
Figure 4.	Schematic illustration of petroleum hydrocarbon (PHC) flux & distribution and oxygen flux & distribution	3
Figure 5.	Building, vadose zone, ground water contamination layout used in PVIScreen for a soil gas source	3
Figure 6.	Building, vadose zone, petroleum (NAPL) contamination, and aquifer layout used in PVIScreen for a ground water source	3
Figure 7.	Vapor attenuation factors predicted by three-dimensional numerical model as a function of separation distance from a residential building foundation to an underlying petroleum contaminant vapor source concentration of 10 mg/L (10,000,000 μ g/m ³) with various first-order biodegradation rates	4
Figure 8.	Example cumulative probability curve	5
Figure 9.	Petroleum vapor intrusion site assessment flow chart	6
Figure 10.	File selection in PVIScreen	7
Figure 11.	Opening a template file in PVIScreen	7
Figure 12.	New folder created for a PVIScreen project	8
Figure 13.	Selection of existing input or previous results	8
Figure 14.	Identification & Options input screen	9
Figure 15.	Illustration of input distribution choices	. 10
Figure 16.	Building & Foundation input screen	. 10
Figure 17.	Chemicals input screen	. 11
Figure 18.	Reduction in water phase TCE concentration across the capillary fringe from a laboratory experiment	. 12
Figure 19.	Schematic illustration of capillary rise and the tension saturated zone	. 12
Figure 20.	Vadose zone input screen	. 13
Figure 21.	Average shallow ground water temperature in the U.S.	. 13
Figure 22.	Suggested values: air flow and oxygen input screen	. 14
Figure 23.	Suggested value for the ground water concentration factor	. 14

Figure 24.	Suggested values: model control input screen	15
Figure 25.	Schematic representation of spatial relationships in a PVIScreen run with a petroleum (NAPL) source	.15
Figure 26.	Running PVIScreen after an input file has been selected	16
Figure 27.	Result for simulation of benzene where petroleum vapor intrusion is unlikely	16
Figure 28.	List form of PVIScreen output	17
Figure 29.	Graphical form of PVIScreen output for a case with high potential for vapor intrusion	17
Figure 30.	PVIScreen options after simulation completed	18
Figure 31.	Example PVIScreen-generated report displayed in the user's browser window	18
Figure 32.	The highlighted html file (extension htm) contains an automated report summarizing the output from a run of samplegroundwaterinput-commercial.pvi made on 9/13/2017	. 18
Figure 33.	Site plan for the convenience store and off-site restaurant simulations	19
Figure 34.	Cross section summarizing site data in the vicinity of the off-site restaurant	20
Figure 35.	Identifications and options input screen for the off-site restaurant simulation	21
Figure 36.	Building and foundation input screen for the off-site restaurant simulation	22
Figure 37.	Vadose zone input screen for the off-site restaurant simulation	22
Figure 38.	Chemicals input screen for the off-site restaurant simulation	23
Figure 39.	Screening levels input screen for the off-site restaurant simulation	23
Figure 40.	Off-site restaurant simulation of benzene showing no simulation results above the screening level of 0.5 $\mu g/m^3$	24
Figure 41.	Schematic for the MW-9 simulation with sample depth of 6.9 ft	25
Figure 42.	Simulation results for MW-9 using ground water data	26
Figure 43.	Site plan indicating benzene concentration and free product thicknesses for April 28, 2015	.27
Figure 44.	Cross section summarizing site data in the vicinity of the convenience store	28
Figure 45.	Building and foundation input parameters for convenience store simulation	29
Figure 46.	Vadose zone inputs for convenience store simulation	30
Figure 47.	Chemical inputs for convenience store simulation	30
Figure 48.	Schematic for simulation of convenience store	31
Figure 49.	Benzene results indicating high probability for petroleum vapor intrusion	31
Figure 50.	Gasoline range organics (TPH-GRO) results indicating high probability for petroleum vapor intrusion	.32
Figure 51.	Diesel range organics (TPH-DRO) results indicating a strong possibility of vapor intrusion	32
Figure A1.	Executable jar file (PVIScreenBatchRun.jar) used to execute the batch version of PVIScreen	A1
Figure B1.	Microsoft Excel output ("Save As") dialog box showing choice of other formats to write a comma separated value (*.csv) file	B1
Figure B2.	Microsoft Excel output dialog showing "csv" file type selected for PVIScreen input file	B2
Figure E1.	Cumulative frequency for a constant or deterministic parameter	E2
Figure E2.	Alternate specification of constant parameter by specifying a uniform probability distribution	E2
Figure E3.	Uniform cumulative probability distribution with a range from 10 ft/d to 20 ft/d	E3
Figure E4.	Triangular distribution (line) and its approximation by 11 points (squares)	E4
Figure E5.	Truncated cumulative normal distribution with mean of 15 ft/d and standard deviation of 1.5 ft/d	. E5

Tables

Table 1.	Chemicals in the PVIScreen database	11
Table 2.	Field results, PVIScreen input concentrations and UTAH DEQ screening levels for the off-site restaurant simulation	20
Table 3.	Ground water data for MW-6, MW-9, and MW-20 of Figure 34	25
Table 4.	Benzene simulation results for the restaurant with ground water concentration data as the source of contamination	26
Table 5.	Ground water sampling data from MW-3 and MW-4 when no free product was present	28
Table 6.	Sub-slab, indoor air, and screening concentrations for the Utah convenience store	29
Table C1.	. Excerpt of file showing default set of unit conversion factors in file 01PVIScreenUnitConversion.csv	C1
Table E1.	Cumulative probability curve example	E3
Table E2.	Approximate triangular distribution with minimum of 10, maximum of 20 and most likely value of 13	E4
Table E3.	. Cumulative normal distribution frequencies, symbolic values and example	E5

Abstract

Vapor intrusion of petroleum compounds differs from that of chlorinated solvents because of the dominant effect of aerobic biodegradation on the concentration and distribution of petroleum vapors. To better understand the behavior of petroleum compounds, a model called PVIScreen was developed that applies the theory developed for the BioVapor model (DeVaull, 2007) to a lens of petroleum hydrocarbons in the subsurface that is capable of acting as a source of petroleum vapors. The PVIScreen model automatically conducts an uncertainty analysis using Monte Carlo simulations. The model is intended to make uncertainty analysis practical for application at petroleum vapor intrusion sites. The model can be run in either a batch mode, using Microsoft Excel files for both input and model outputs, and an interactive mode using a graphical user interface. Each of these is described, along with required inputs, example problems and the theoretical background of the model. Model simulations are in agreement with an EPA-sponsored analysis of field data that illustrate and document the attenuation of concentrations of petroleum compounds in soil gas with distance above the source of the vapors.

Disclaimer

The U.S. Environmental Protection Agency through its Office of Research and Development funded and managed the research described here. It has been subjected to the Agency's peer and administrative review and has been approved for publication as an EPA document. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

1. Background

1.1 Outline

This report describes the basis of the PVIScreen model, the procedure to run the model using the PVIScreen user interface, detailed description of input files, statistical inputs, example problems and the theoretical background of the model.

1.2 Environmental Models and Vapor Intrusion

Environmental models are based on the application of mass conservation principles to transport and transformation of chemicals in the environment. Generally, all environmental models are based on a two-part conceptualization: an empirically-determined principle relating chemical, physical and biological quantities, and empirical coefficients. Taken together these two components have the potential for representing transport and transformation of petroleum vapors in the vadose zone below a building.

Although models may represent important processes, the ability to determine definitively that there are no vapor impacts to buildings ("screen for PVI") also depends on application-related factors. These factors include the degree to which the site conceptual model matches the structure of the mathematical model, the inherent limitations imposed by the assumptions in the mathematical model, the values chosen for input parameters, and the ability to calibrate the mathematical model to site conditions. Many of these factors are difficult to address at leaking underground storage tank sites, so as will be noted below, model results should be viewed as one line of evidence in a site assessment.

Over ten years ago, vapor intrusion and its evaluation through modeling approaches were identified as a potential problem at subsurface contamination sites (Obamascik, 2002). Application of simplified models using mostly generic default parameters has contributed to confusion over appropriate assessment strategies for these sites. One of the primary models in use, the Johnson-Ettinger model (JEM) was presented as a heuristic screening model (Johnson and Ettinger, 1991). Essentially, the model consists of two completely-mixed compartments, one representing the interior of a building and the other the soil below. This conceptualization reflects the potential for both features of the building and the subsurface to contribute to indoor air contamination. In its original form, the model simply related the concentration in the soil gas to the concentration in indoor air. No biodegradation of the compound was included as the model conceptualization only related concentration between the two compartments. Later extension of the JEM included diffusive flux from a deeper source zone to the bottom of the foundation. Even though the JEM does not include biodegradation, the JEM could be a valid conceptualization for chlorinated solvents, because most of these compounds do not undergo aerobic biodegradation.

Petroleum hydrocarbons, however, are readily degraded under aerobic conditions so the JEM excludes a process with the potential for greatly affecting petroleum vapor intrusion (Figure 1). Chlorinated solvents are not degraded in the presence of oxygen, so dissolved contamination in the aquifer (saturated zone) almost always has the potential to contaminate indoor air (Figure 1, left). In contrast, petroleum hydrocarbons can be degraded under aerobic conditions, so the prospect for vapor intrusion is more limited, but also more dependent on the specific configuration of a source, presence of light non-aqueous phase liquid (LNAPL), and depth to water, among other factors (Figure 1, right).

Figure 1. Comparison between the processes governing non-biodegrading solvent vapor intrusion (left) and petroleum vapor intrusion (right) (U.S. EPA, 2012).

1.3 Empirical Basis for Bioattenuation

In 2013, EPA published a report that evaluated a large set of empirical petroleum vapor data from the United States, Canada and Australia (USEPA 2013). This evaluation confirmed model simulation results, and that aerobic biodegradation of petroleum hydrocarbons is a well-documented, widespread and robust process that has been demonstrated under a wide range of environmental conditions. Important factors influencing aerobic biodegradation of petroleum vapors include:

- Vapor source concentration, flux, and composition;
- Minimal oxygen concentration is required to support aerobic biodegradation;
- Oxygen supply and demand;
- Distance between the vapor source and a building foundation;
- Soil type and properties (e.g., porosity and moisture); and
- Size and characteristics of the building and adjacent land surface.

The empirical data show that the capacity for biodegradation of petroleum hydrocarbons is high. In cases where uncontaminated soil overlies dissolved benzene and total petroleum hydrocarbon concentrations in ground water, vapors have been shown to be attenuated (Figure 2 and Figure 3). The thickness of clean soil associated with attenuation depends on the concentration in ground water as higher levels in ground water require greater thickness of clean soil. These data demonstrate the ability of the vadose zone to attenuated benzene and TPH vapor concentrations, and formed the basis for the EPA approach to screening sites that was published in 2015 (U.S EPA, 2015), which is discussed in section 1.5 "PVIScreen Use in the Context of a Petroleum Vapor Intrusion Assessment".

Figure 2. Thickness of clean soil associated with attenuation of benzene vapors (Davis, 2009).

Figure 3. Thickness of clean soil associated with attenuation of TPH vapors (Davis, 2009).

1.4 The BioVapor Model

The BioVapor code was developed (DeVaull, 2007; API, 2010) to account for:

- aerobic biodegradation in the vadose zone,
- limits on oxygen supply imposed by the diffusive flux into the vadose zone,
- the oxygen demand of any number of compounds present in soil gas, and
- oxygen consumption by native soil respiration.

Conceptually, oxygen from the atmosphere (Figure 4) permeates the soil gas providing the electron acceptor needed for aerobic biodegradation of petroleum hydrocarbons. Because of the typical large flux of oxygen from the atmosphere, petroleum hydrocarbons react in a zone near their source and consequently their concentrations may be reduced relatively deeply in the vadose zone.

BioVapor was developed as a Microsoft Excel spreadsheet application. BioVapor balances the supply of oxygen from the atmosphere with the degradation-driven demand for oxygen in the soil gas. The outputs of the model include the depth of the aerobic zone, indoor air concentration for all chemicals included in the simulation, and the chemical concentrations at other points in the soil profile.

PVIScreen is an object-oriented petroleum vapor intrusion model, which extends the concepts of BioVapor by

• implementing an automated uncertainty analysis,

- linking directly to a fuel leaching model,
- providing the capability to use a flexible unit conversion system,
- displaying key outputs in an intuitive fashion.

In PVIScreen, the building, vadose zone and aquifer are defined in a layout which relates the bottom of the foundation to a zone of petroleum contamination. Input parameters describe the size and characteristics of each component in the model. Data on vadose zone contamination are needed to drive the simulation. These are expected to be soil gas (Figure 5) or ground water data (Figure 6).

Figure 5. Building, vadose zone, ground water contamination layout used in PVIScreen for a **soil gas** source.

Figure 6. Building, vadose zone, petroleum (NAPL) contamination, and aquifer layout used in PVIScreen for a **ground water** source.

1.4.1 Uncertainty Analysis

1.4.1.1 The General Need for Uncertainty Analysis

Uncertainty analysis, as used here, uses the response of the model to changes in parameter values to assess the uncertainty in model output. The method used in PVIScreen is to presume that some or all parameters of the model are uncertain. The probability of a parameter taking on a value is governed by a cumulative probability curve. The graphical user interface allows for two choices: a constant parameter, and a parameter defined by a minimum and maximum value¹.

If the model is used in batch mode more options are available. These include entering sets of points defining the input probabilities. No assumptions of particular distributions (i.e., normal) are needed, although a normal distribution can be approximated empirically. (See Appendix Entry of Deterministic and Stochastic (Monte Carlo) Data").

1.4.1.2 Uncertainty in Biodegradation Rates

The need for uncertainty analysis is illustrated by numerical model simulations by Abreu et al. (2009). The results were presented as attenuation factors, defined as the indoor air concentration ($C_{building}$) divided by the source concentration (C_{source}):

$$\alpha = AF = \frac{C_{building}}{C_{source}}$$

When this factor is low, the vapor concentration in the building is reduced over that in the subsurface, and the potential for vapor intrusion is low. Briefly summarizing the results, the attenuation factors are much lower when aerobic biodegradation is included as compared to the non-biodegradation case (TCE and other solvents). The literature shows that degradation rates, however, are not known with certainty; neither are they measured at typical field sites. Thus, the degradation rate is one that should be (and is) treated as uncertain in PVIScreen (Figure 7).

Figure 7. Vapor attenuation factors predicted by three-dimensional numerical model as a function of separation distance from a residential building foundation to an underlying petroleum contaminant vapor source concentration of 10 mg/L (10,000,000 ug/m³), with various first-order biodegradation rates (Abreu and Johnson, 2005; Abreu et al., 2009).

¹Use of the minimum and maximum values correspond to a uniform distribution where there is a straight-line (linear) relationship between the two specified values.

1.4.1.3 Uncertainty Analysis in PVIScreen

In the Monte Carlo procedure, the model is run a specified number of times and the uncertain parameters are chosen randomly from the probability curves. A sampling technique called Latin Hypercube Sampling (LHS) is used to assure that parameter values are drawn from all parts of the probability distributions. LHS generally reduces the number of simulations required. After completing all required runs of the model, the results are processed into output probability curves and a summary table for each chemical specified in soil gas.

The main PVIScreen outputs are cumulative probability (or frequency) curves. As an illustrative example, 1000 runs of the model produced the aerobic zone thicknesses ranging

from 10.88 cm to 120.86 cm (Figure 8). No result had an aerobic zone thickness less than 10.88 cm and no simulation had one that exceeded 120.86 cm. There was a 100% probability that the result was between these two values. The probability that the result was between 10.88 cm and 60 cm (vertical blue arrow on Figure 8) was 31% (horizontal blue arrow on Figure 8). The probability that the aerobic zone thickness was between 60 cm and 120.86 cm was 69%, as indicated by the upward-sloping, red-colored, cross hatching on Figure 8.

The main display of PVIScreen output is based on the cumulative probability curve (Figure 8). The probability that simulations exceed a risk-based concentration is displayed as output. This result is directly analogous to the crosshatched area in Figure 8.

Figure 8. Example cumulative probability curve. The probability that the aerobic zone depth is 60 cm is 31%, while the probability that the aerobic zone thickness is greater than 60 cm is 69%.

1.5 PVIScreen Use in Context of a Petroleum Vapor Intrusion Assessment

The use of models in general, and PVIScreen specifically, should be integrated with site assessment. EPA's PVI guidance document outlined steps for an assessment. Because PVIScreen needs measured concentrations to represent the source of contamination, its use comes after sufficient characterization of the site and construction of a conceptual site model (Figure 9). Professional judgment is needed to determine when the characterization data is sufficient. Two possibilities for PVIScreen use follow:

An option is to use the model in parallel with determination of a vertical separation distance (box outlined with dashed line in Figure 9). For this scenario, the model provides an additional line of evidence to support site decision making. Because the model is essentially based on the same set of observations as the empirical database, these two lines of evidence should provide similar results. The model may, however, allow for unique site-specific factors to be incorporated, such as commercial rather than residential air exchange rates.

A second option is to use the model where the site fails the vertical separation zone criteria, or is a marginal case (the circled "NO" in Figure 9). Here the use of the model results may provide an additional line of evidence to support a site decision (which could be to conduct further sampling or which could be that no further investigation is needed).

Figure 9. Petroleum vapor intrusion site assessment flow chart. PVIScreen could be used anytime after the site has been characterized and a conceptual site model constructed (outside dark gray box). One scenario is to use the model in parallel with determination of a vertical separation distance (box outlined with a dashed line). A second is to use the model when the vertical separation criteria fails or is marginal (circled "NO").

2. Getting Started

The PVIScreen distribution file (*PVIScreen.zip*) needs only to be copied to *C:\MyDocuments\PVIScreen*, followed by extraction of all the files to this location. PVIScreen will open by double clicking on the *PVIScreen.jar* file². All needed data files and examples will be available in the *SRC \systemData and projects\examples* directories.

3. Running the Model

3.1 PVIScreen User Interface

PVIScreen is incorporated into a user interface (UI) that facilitates preparing and editing input files, running the model and displaying the results³. The interface is designed so that the model options are selected from left to right. As more options become available, more of the buttons turn green (Figure 10).

3.1.1 File Selection

PVIScreen *must* begin with an existing data file. There are two options:

 For a new project, template files are provided for the common types of inputs. Template files are available for cases with soil gas sources and ground water sources, and residential and commercial buildings. These are found in the directory PVIScreen/projects/templates (Figure 11)⁴.

After editing, these must be saved under new names in a project directory. A new directory is created by rightclicking on the directory pane and selecting "New", renaming to match project, and then saving input file in the new directory (Figure 12).

2) When later coming back to a project, the original input data can be accessed or previously-created results files can be accessed. The input file can be run again or the previous results displayed (Figure 13).

EPA PVIScreen		-	_							_ D ×
Existing Input Previous Results	Select File	View/Edit Input	View Schematic	Prepare to Run	Run PVIScreen	Results	Write Report	About	Exit	2
Welcome to PVI	Screen: Sele	ct an input file to	begin							

Figure 10. File selection in PVIScreen.

EPA PVIScreen		and the second se	and the second se		
Existing Input Previous Results	Select File View/Edit I	nput. View Schematic	Prepare to Run Run PVIScreen	Results Write Re	About About
Existing Input file	e named: null				
	PVIScreen File Input				
	😋 🔾 ~ Jim ~ M	ly Documents + PVIScreen + p	rojects 🕶 templates	•	Search tem
	Organize 🔻 New folder				
	🔆 Favorites		Name *	Date modified	Туре
	E Desktop		SampleGroundWaterInput-Commercial.pvi	9/13/2017 10:17 AM	PVI File
	Downloads		SampleGroundWaterInput-Residential.pvi	9/11/2017 3:14 PM	PVI File
	Recent Places		SampleSoilGasInput-Commercial.pvi	9/13/2017 10:17 AM	PVI File
	Cibraries		SampleSoilGasInput-Residential.pvi	9/6/2017 9:35 AM	PVI File
	Documents				

²If the model fails to execute, make sure that the Java runtime environment is in the computer's path. Check with your system administrator for guidance.

³PVIScreen can be run in a command line mode, which is described in Appendix A. Running PVIScreen in Command Line and Batch Mode.

⁴PVIScreen regenerates all the template files each time it is run. When template files are used, they must be renamed and/or moved to save data for future use.

EPA PVIScreen	and the second		
Existing Input Previous Results Select File View/Edit Input	View Schematic Prepare to Run	Run PVIScreen Results Wr	ite Report Ab
Press Run PVIScreen to run C:\Users\Jim\Doc	uments\PVIScreen\projects\templates	SampleGroundWaterInput-Con	mmercial.pvi
Save Changes To Input Data?			
C	reen + projects +	▼ 60	Search projects
Organiza - Nau Elder			
Organize + New Tolder	1 constant	1 sectors	1
🙀 Favorites	Name *	Date modified	Туре
Desktop	i examples	9/13/2017 10:11 AM	File folder
Downloads	3 New folder	9/6/2017 9:48 AM	File folder
Recent Places	📕 templates	9/13/2017 10:10 AM	File folder
Libraries			
Documents			
J Music			
Pictures			
Videos			

Figure 12. New folder created for a PVIScreen project.

Figure 13. Selection of existing input or previous results.

PVIScreen uses Microsoft Excel spreadsheet files in a comma-separated-value format for both input and output

(Appendix B. Microsoft Excel Comma Separated Value (.csv) Format). These are saved to the user's computer disk.

3.1.2 PVIScreen File Names

Several types of files are used in PVIScreen. An input file is named:

SampleSoilGasInput.pvi

The "pvi" extension is used to identify the file as a PVI Screen input file. The format of this file is the Microsoft Excel comma-separated-value. Thus the file can be opened and read by Microsoft Excel.

3.1.2.1 PVIScreen Output Files

PVIScreen produces an output file for each run of the model with a file name related to the input file. For example, the input file:

SampleSoilGasInput.pvi

has a results file called:

SampleSoilGasInput2016-May-31-16h-52m-13.0s.PVI Screen.Results.csv

where the input file name is given a date/time stamp and ".PVIScreen.Results" is added to the file name. The final ".cvs" extension identifies the file as a comma-separated-value and allows its editing in Microsoft Excel and other spreadsheet software.

3.1.3 Editing an Existing Data Set

The first input screen lists general information on the simulation (Figure 14). This and each other tab of the input data screens can be edited in turn. Detailed examples follow in the soil gas and soil sample source examples below.

3.1.4 Editing the Data Screens

3.1.4.1 Identification & Options

The Identification & Options screen (Figure 14) contains general information on the simulation and choices for cancer risk level, hazard quotient and oil distribution⁵.

Previous Results	elect File View/Ed	dit Input	View Sche	matic	Prepa	re to Run	Run PVIScree
Identification & Options	Building & Foundation	Vadose Zone	Chemicals	Screenin	g Levels	Suggested V	alues
Site		(LUSTLine Re	staur			
SiteLocation		ſ	MW-9 1-8-1	5			
City		ſ	хх				
State		Ĩ	UT				
Analyst		Ĩ	wwc				
Affiliation			US EPA				
Risk Level		1.00E-06		-			
HazardQuotient		1		-	Ĩ		
Oil Distribution			none				

Figure 14. Identification & Options input screen.

⁵These are in the process of being removed as they are typically overridden elsewhere, especially through the use of predetermined screening levels.

3.1.4.2 General Input Parameter Information

Each numerical parameter of the model can be specified as constant or uniformly distributed (Figure 15). Constant parameters are chosen to be values that can be determined with a high degree of confidence. Typically, these include the building width, length and ceiling height. Other parameters are either unmeasured or unlikely to be estimated very precisely. For these, a uniform distribution is available, where a minimum and a maximum value are specified. Parameters likely to be in this category are crack width, air exchange rate, and porosity. More options including standard statistical and empirical distributions are available in the command line mode of running the model. See *Appendix A Running PVIScreen in Command Line and Batch Mode*.

3.1.4.3 Building & Foundation

The Building & Foundation screen contains the specification of building and foundation parameters (Figure 16).

Dirt Floor: yes or no. Only buildings with a true dirt floor should answer "yes."⁶

Width: From measurement of building.

Length: From measurement of building.

Ceiling Height: The JEM and other models include a mixing zone height. Examination of example values show that these correspond to ceiling heights of 8 to 12 (US EPA, 2004). The mixing zone may not correspond exactly to ceiling height, but an independent evaluation of mixing zone height is not expected to be available.

Foundation Depth Below Grade: This is the depth of the bottom of the foundation below grade.

Foundation Thickness: Measurement of building.

Crack Width: US EPA (2003) lists crack widths from hairline (<0.1 mm) to 5 mm.

Air Exchange Rate: Values of 0.1 hr^{-1} to 1.5 hr^{-1} were developed by US EPA (2003) for residential buildings.

entification & Options	Bui	Iding & Foundation	Vadose Zone	Chemicals	Screening	Levels	Suggested	Values		
dirt floor			no		•					
Constant	+	one value	Width					60.00	ft	*
Constant	+	one value	Length					80.00	ft	*
Constant	*	one value	CeilingHeig	ght				9.000	ft	+
Constant	*	one value	Foundation	DepthBelow	Grade			6.000	in	-
Uniform	*	min	Foundation	Thickness				6.000	in	-
		max	Foundation	Thickness				6.000	cm	-
Uniform	*	min	CrackWidt	1				0.5000	mm	*
		max	CrackWidt	h				5.000	mm	*
Uniform	*	min	AirExchang	geRate				3.000	1/hr	+
		max	AirExchan	geRate				10.00	1/hr	*

Figure 16. Building & Foundation input screen.

⁶The only current option is a concrete floor.

3.1.4.4 Chemicals

The Chemicals screen contains the specification of chemical parameters (Figure 17). Chemicals that appear in the PVIScreen database (Table 1) can be selected as a component of the contaminant source. In the example in Figure 17, BTEX and petroleum hydrocarbon equivalent carbon number fractions have been chosen. The source type given (Fuel Phase Concentration By Volume) is determined in the template for the input data set⁷. Templates are available for soil gas and water sample input files.

Table 1. Chemicals in the PVIScreen database.
Benzene
Toluene
Ethylbenzene
xylenes
TPH-GRO
TPH-DRO
C8 To C9 Aromatic
C9 To C10 Aromatic
C10 To C11 Aromatic
Naphthalene
C5 To C6 Aliphatic
C6 To C7 Aliphatic
C7 To C8 Aliphatic
C8 To C9 Aliphatic
MTBE
EDB

evious Results	amed: San	npleGrour	ndWaterIn	put-Com	mercial.pvi	are to Run	Run Pyiocieen	Mesuits	White Kepon	ADOUL	Exil
ntification & Options	Building & F	oundation \	/adose Zone	Chemicals	Screening Levels	Suggested V	alues				
Add or Remove	Chemical		Ŧ	Add/Re	move						
Constant	· one val	lue	benzene			Wa	terPhaseConcentration		0.03300	mg/l	•
Constant	* one val	lue	toluene			Wa	terPhaseConcentration		0.001000	mg/l	*
Constant	* one val	lue	ethylbenze	ne		Wa	terPhaseConcentration		0.001000	mg/l	*
Constant	· one val	lue	xylenes			Wa	terPhaseConcentration		0.001000	mg/l	*
Constant	· one val	lue	naphthalen	e		Wa	terPhaseConcentration		0.001000	mg/l	*
Constant	· one val	lue	MTBE			Wa	terPhaseConcentration		0.001000	mg/l	*
Constant	* one val	lue	TPH-GRO			Wa	terPhaseConcentration		0,1400	mg/l	-

Figure 17. Chemicals input screen.

⁷In an updated version of the model these will be editable from the input data screen.

3.1.5 Treatment of Ground Water Samples

A soil sample is used as a direct input to PVIScreen, because soil gas is the media through which contaminants are transported in the vadose zone. No adjustments to the concentration are needed. For ground water samples, a paradigm is needed to simulate the transition between water and soil gas. Once in the soil gas, the calculation proceeds as for a soil gas sample. The following describes the approach used in PVIScreen.

Transport across the capillary fringe follows a complex process. Data from McCarthy and Johnson (1993) are used to develop a simplified water table paradigm for PVIScreen. Trichloroethene (TCE) in aqueous solution was used to generate a distribution of concentration through the capillary in a laboratory column. The concentrations in pore water were measured for both a rising and falling water table. Because TCE would not be subject to aerobic biodegradation in this experiment as in the case of chlorinated solvent vapor intrusion (Figure 1), it permits study of the mechanical aspects of transport, without additional impacts from biodegradation. For ground water flow in a moderate flow range (i.e., 0.1 m/d), McCarthy and Johnson (1993) found that the concentration of TCE in the capillary fringe was reduced by a factor of 10 at the top of the tension saturated zone (Figure 18 and Figure 19). The factor is included in the Suggested Value tab of PVIScreen, with the value set to 0.1.

Experimental results from McCarthy and Johnson demonstrate the reduction in water phase concentration occurring through the capillary fringe. By comparing the moisture content and relative concentration, these experiments showed a roughly 1/10-fold to 1/100-fold reduction in water phase concentration (Figure 18). These relationships held during both imbibition and drainage⁸.

Although factors greater than 10 may be justified, the data from McCarthy and Johnson (1993) represent only one set of laboratory conditions. Ground water data, also, might have representational problems. A primary concern is a sample that is obtained from a depth below the water table. If that sample is drawn from a screen that crosses a contaminant plume so water with differing concentrations are mixed together, then the concentration is not representative of the concentration at the water table.

Figure 18. Reduction in water phase TCE concentration across the capillary fringe from a laboratory experiment (McCarthy and Johnson, 1993, used by permission, John Wiley and Sons).

Figure 19. Schematic illustrating capillary rise and the tension saturated zone, which is an area above the water table where the water fills the pore space and is held by capillary suction. Air is admitted to the pore space above the tension saturated zone.

⁸Imbibition is defined as the replacement of a non-wetting fluid by a wetting fluid, and drainage is defined as the replacement of a wetting fluid by a non-wetting fluid.

3.1.6 Vadose Zone

The Vadose Zone screen contains the specification of the vadose zone parameters (Figure 20).

Depth To Sample: Depth from the surface to the sample that is treated as the source of contamination.

Depth To Water: Depth from the surface to the water table.

Depth To Historic Water Table: Depth to the deepest water table depth (that contributed to a smear zone.)

Depth To Bottom: Depth from the surface to the bottom of the aquifer.

Moisture Content: Volumetric moisture content of soil must be less than the porosity.

Porosity: Fraction of void volume in vadose zone.

Fraction Organic Carbon: Typically below the root zone, the fraction organic carbon is 0.0001 to 0.001, but depends on soil type.

Soil Temperature: Historic ground water temperatures in the U.S. range from 3°C (37°F) to 25°C (77°F) and give a rough guide for soil temperatures (Figure 21).

Existing Input Previous Results isting Input file na	elect File amed: \$	e View/E SampleGro	dit Input undWaterl	View Schematic nput-Commercia	Prepare to Run	Run PVISci	een Results	Write Report A
dentification & Options	Building	& Foundation	Vadose Zone	Chemicals Screen	ing Levels Suggested	Values		
Constant	* on	e value	DepthTo	Sample		6,900	ft	*
Constant	* on	e value	DepthTo	Water		6.900	ft	*
Constant	+ on	e value	DepthTol	HistoricWaterTable		6.900	ft	+
Constant	* on	e value	DepthTol	Bottom		20.00	ft	*
Uniform	- mi	n	Moisture	Content		0.04900	dimensio	-
	ma	x	Moisture	Content		0.2127	dimensio	*
Uniform	+ mi	n	Porosity			0.2900	dimensio	*
	ma	x	Porosity			0.4840	dimensio	*
Uniform	* mi	n	FractionC	OrganicCarbon		7.5E-4	dimensio	*
	ma	EX.	FractionC	organicCarbon		0.001250	dimensio	*
Uniform	* m	in	SoilTem	perature		11.25	C	-
	m	ах	SoilTem	perature		18.75	C	-

Figure 20. Vadose Zone input screen.

Figure 21. Average shallow ground water temperature in the U.S. (Collins, 1925).

3.1.6.1 Suggested Values

Practitioners are unlikely to have ready access to some specialized parameters of the model, so suggested values are provided (Figure 22 through Figure 24).

3.1.6.2 Suggested Values: Air Flow and Oxygen

On Figure 22:

 \mathbf{Q}_{soil} : US EPA (2003) gives a "typical" range for houses on coarse-grained soils is on the order of 1 to 10 L/ min. In PVIScreen a second air flow parameter, the Air Flow Below Building, is set equal to \mathbf{Q}_{soil} based on the suggestion by API (2010).

Soil Respiration Rate: Estimated by DeVaull (2007) as 1.69 mg/g-d.

Diffusion In Air: The diffusion coefficient of oxygen in air, as estimated by the methods used in Lyman et al., 1982.

Diffusion In Water: The diffusion coefficient of oxygen in water, as estimated by the methods used in Lyman et al., 1982.

Surface Concentration: Value from atmospheric concentration of oxygen.

Minimum Biodegradation Concentration: The minimum concentration allowing biodegradation is taken as 1%.

3.1.6.3 Suggested Values: Concentration Adjustment

The Suggested Values: Concentration Adjustment screen holds the value of the ground water concentration factor (Figure 23). This value is saved with the input data file and its selection is described in Section 3.1.5, "Treatment of Ground Water Samples".

3.1.6.4 Suggested Values: Model Control

The Suggested Values: Model Control screen contains miscellaneous parameters which control the simulation and presentation of the results (Figure 24). Under normal circumstances, these should not be modified.

Existin	ng Input	Selec	t File View/Ed	dit Input	View Sche	matic Prepa	re to Run	Run PVIScr	een Result	Write Rep
xisting	g Input file	name	ed: SampleGrou	undWaterIn	put-Com	mercial pvi				
Identific	ation & Option	ns Bu	ilding & Foundation	Vadose Zone	Chemicals	Screening Levels	Suggested \	/alues		
Air Flow	and Oxygen	Conce	entration Adjustment	Model Contro	k					
	Uniform	*	min	Qsoil				1.000	L/m	*
			max	Qsoil				10.00	L/m	-
	Constant	+	one value	SoilRespira	tionRate			1.690	mg/g-d	*
	Constant	*	one value	DiffusionIn	Air			0.1750	cm2/s	*
	Constant	*	one value	DiffusionIn	Water			1.7E-5	cm2/s	*
	Constant		one value	SurfaceCor	ncentration			289000.0	mg/m3	*
	Constant	*	one value	MinimumB	odegradatio	nConcentration		13800.0	ma/m3	*

Figure 22. Suggested Values: Air Flow and Oxygen input screen.

EPA PVIScreen		~			_				
Existing Input Previous Results	Select File	View/Ed	dit Input	View Sche	matic	Prepa	re to Run	Run PVIScreen	Results
Existing Input file	e named: Sa	mpleGrou	undWaterIr	nput-Com	mercia	l.pvi			
Identification & Optio	ons Building &	Foundation	Vadose Zone	Chemicals	Screeni	ng Levels	Suggested V	alues	
Air Flow and Oxygen	Concentration	Adjustment	Model Contro	ol					
GroundWater	ConcentrationFa	ector		0.1000					

Figure 23. Suggested Value for the ground water concentration factor. This factor is applied to input ground water sample concentrations to generate the source term for PVIScreen. Section "Treatment of Ground Water Samples" discusses the rationale for selecting a value.

Previous Results	elect File View/Ed	dit Input	/iew Sche	matic Prepa	re to Run	Run PVIScreen	Rest
Identification & Options	Building & Foundation	Vadose Zone	Chemicals	Screening Levels	Suggested Value	es	
Air Flow and Oxygen C	oncentration Adjustment	Model Control]				
Bisection		Low	er Limit		1.0E-4		
Bisection		Max	iterations		5000.0		
Bisection		toler	ance		1.000e-1	12	
max alpha		2	200.0				
Number of Simul	ations	1	1000.0				
Number of freque	ency distribution intervals	5	50.00				

Figure 24. Suggested Values: Model Control input screen.

3.1.7 Preparing for Run

After editing and saving the input file, the schematic should be viewed (Figure 25). The schematic shows the spatial relationships between the foundation, sample and water table. Once the spatial relationships and other data have been checked the "Prepare to Run" button completes preparation for running PVIScreen. If the input data have been changed, a dialog will ask to save changes to the input.

Figure 25. Schematic representation of spatial relationships in a PVIScreen run with a petroleum (NAPL) source.

3.1.8 Running PVIScreen

After editing and checking the input file the "Run PVIScreen" button is used to execute the model (Figure 26). The interface automatically displays the Monte Carlo results when completed. A simulation is shown where none of the benzene simulation results exceeded the screening level (Figure 27).

	EXI	About	Write Report	Results	Run PVIScreen	Prepare to Run	View Schematic	View/Edit Input	Select File	Existing Input Previous Results
Press Run PVIScreen to run C:\Users\Jim\Documents\PVIScreen\projects\templates\SampleGroundWaterInput-Commercial.pvi		/i	-Commercial.pv	WaterInput	es\SampleGround	n\projects\template	uments\PVIScree	C:\Users\Jim\Doc	creen to run	Press Run PVIS

Figure 26. Running PVIScreen after an input file has been selected.

Figure 27. Result for simulation of benzene where petroleum vapor intrusion is unlikely. None of the simulations exceed the screening level of 0.5 as indicated by the "L" on the chart being located at a frequency of 1.0 and the notation in the righthand column that 0.0% of the simulations exceed the screening criteria.

3.1.9 Displaying and Understanding Statistics Output

The model results are presented on separate tabs for each chemical in the simulation. Each tab has a list output (Figure 28) and a chart output (Figure 29), which summarize the same information.

3.1.9.1 List Output

The list form of PVIScreen output gives first the percentage of simulations above the chosen screening level (Figure 28). Here the chemical is benzene, so there are cancer and non-cancer screening levels.

18.58% of the simulations exceeded the $1x10^{-6}$ screening level of 0.29 µg/m³. All of the Monte Carlo simulations fell below the non-cancer hazard level of 30 µg/m³, and no vapor intrusion is indicated by the non-cancer screening. Given the benzene result, the model is indicating a strong possibility of a vapor intrusion problem. Note that this example has a petroleum (NAPL) source fairly close to the bottom of the building (Figure 25).

The list output gives the result of maximum probability ("M") and the averaged-parameter result ("V"). The most probable result is close to the cancer screening level of 0.29 μ g/m³, and is another indicator that vapor intrusion could be a problem for this case. The averaged-parameter result is several orders of magnitude lower in concentration (0.00605 μ g/m³) and illustrates the necessity for the uncertainty analysis (as it misleadingly indicates no possibility for vapor intrusion).

3.1.9.2 Graphical Output

The graphical form of output consists of a cumulative probability curve and contains all of the results from the Monte Carlo simulation,⁹ ranked from smallest to largest. Concentration is plotted on the horizontal axis and the corresponding cumulative probability (or frequency) is plotted on the vertical axis (Figure 29). Because the calculated indoor air concentrations range over many orders of magnitude in typical problems, the horizontal axis uses a log base 10 scale for concentration. The curve is marked for the cancer and non-cancer screening level concentrations; averaged-parameter and most probable results.

-	concerne risher materials
	C" indicates specified cancer risk level
1	8.58% Above Risk 1.0E-6 Level (0.29 ug/m3)
0	.0 % Above Hazard Quotient of 1.0 (30 ug/m3)
	H" indicates specified hazard quotient
F	Probability That Chosen Risk Level(s) Are Exceeded
-	ligh model probability of exceedence
-1	ow or moderate model probability of exceedence
F	Probability
-	M" indicates maximum probability result
-	lost Probable Individual Result: 0.28 ug/m3
	(which is exceeded by 19.12 % of simulations)
	V" indicates averaged-parameter solution
- A	weraged-Parameter Result: 6.05E-3 ug/m3
	(which is exceeded by 64.93 % of simulations)

henzene ricks/hazards

Figure 28. List Form of PVIScreen output.

 9 Results with concentrations below $10^{-5} \mu g/m^{3}$ are omitted as they are much less than measureable values.

3.1.10 Automated Report

PVIScreen automatically generates a report (Figure 30 and Figure 31). The report is written in HTML and is automatically displayed in a browser window. The report

summarizes the model assumptions, specific run information, tabular results and all choices of input parameters. Alternatively, the report can be viewed from a standard browser by double-clicking the html form of the simulation output (Figure 32).

Figure 30. PVIScreen options after simulation completed. Writing the automatically-generated report is now an available option.

Figure 31. Example PVIScreen-generated report displayed in the User's browser window.

Organize 🔻 🧓 Open 🔻 Share	with 🔻 Burn New folder			
🔆 Favorites	Name	Type -	Size	Date modified
Desktop	SampleGroundWaterInput-Commercial-2 2017-Sep-13-10h-36m-37.0s.PVIScreen.Results.csv.htm	Firefox HTML Document	14 KB	9/13/2017
A Downloads	BampleGroundWaterInput-Commercial-2 2017-Sep-13-10h-36m-37.0s.PVIScreen.Results.csv	Microsoft Office Excel	5,264 KB	9/13/2017
Recent Places	SampleOllLensInput.PVIScreen.csv	Microsoft Office Excel	5 KB	9/13/2017
Calibrarian	SampleSoilGasInput.PVIScreen.csv	Microsoft Office Excel	3 KB	9/13/2017
Documents	SampleGroundWaterInput-Commercial-2 2017-Sep-13-10h-36m-37.0s.PVIScreen.Results.csv.be	PNG image	34 KB	9/13/2017
J Music	SampleGroundWaterInput-Commercial-2 2017-Sep-13-10h-36m-37.0s.PVIScreen.Results.csv.ht	PNG image	12 KB	9/13/2017
Pictures	SampleGroundWaterInput-Commercial.pvi	PVI File	3 KB	9/13/2017
Videos	SampleGroundWaterInput-Commercial-2.pvi	PVI File	3 KB	9/13/2017
	SampleGroundWaterInput-Residential.pvi	PVI File	3 KB	9/11/2017
Computer	SampleSoilGasInput-Commercial.pvi	PVI File	3 KB	9/13/2017
OS (C:) DVD RW Drive (D:) JimWeaver My Passport (F:) My Passport (G:)	SampleSoilGasInput-Residential.pvi	PVI File	3 KB	9/6/2017 9;,,

Figure 32. The highlighted HTML file (extension htm) contains an automated report summarizing the output from a run of SampleGroundWaterInput-Commercial.pvi made on 9/13/2017. Double clicking this file displays the report in a default browser.

4. Examples

4.1 Soil Gas Source Example

4.1.1 Site Investigation

A site with a 2,000 ft² convenience store and adjacent 4,800 ft² restaurant (the "off-site restaurant") reported a release in August 2010 (Figure 33). The gas station was active with two 10,000 gallon and one 8,000 gallon tanks. The release was assumed to be from spills and overfills.

Four field investigations were made between 2010 and 2015 with 22 monitoring wells and 7 borings made. The groundwater ranged from 5.5 ft to 7.5 ft deep (Figure 34). A 3 ft deep boring was made at the edge of the restaurant. Soil gas data from this boring was used as the source of contamination for the simulation (Table 2). Because the observed concentrations are low (1st row of Table 2), the model result is expected to show that there is a low possibility of vapor intrusion at this location. The complete input file can be found at *projects/examples/LUSTLineRestaurantExample.pvi.*

Figure 33. Site plan for the convenience store and off-site restaurant simulations.

Figure 34. Cross section summarizing site data in the vicinity of the off-site restaurant.

Table 2. Field resul	ts, PVIScree	n input cor	centrations	and Utah DEQ s	creening leve	els for the Off-Site	e Restaurant	simulation.
ID	Sample Depth (ft)	Benzene (μg/m³)	Toluene (μg/m³)	Ethylbenzene (μg/m³)	Total Xylenes (μg/m³)	Naphthalene (µg/m³)	TPH-GRO (μg/m³)	MTBE (µg/m³)
SVP-1	3	< 3.2	10	< 4.4	41	< 5.3	210	< 3.6
PVIScreen Input	3	1.6	10	2.2	41	2.85	210	1.8
Utah DEQ Screening Levels, indoor air, commercial	n/a	0.5	7310	1480	148	4.39	307	4380

4.1.2 PVIScreen Model Parameters

The input parameters for simulation are shown in Figures 35 to 39. The width and length of the building was entered as measured (60 ft x 80 ft), the ceiling height was assumed to be 9 ft, and thickness of foundation 10 cm. The crack width was considered as a variable parameter, using a US EPA range of values (0.5 mm to 5.0 mm). The air exchange rate was set to a range of 3 hr⁻¹ to 10 hr⁻¹ to represent commercial buildings (Figure 36).

Site-specific values were entered for the depth to sample (3 ft), and depth to water (7.5 ft). The other vadose zone parameters were given wide ranges as site-specific values were not available (Figure 37).

The source of contamination was taken to be the soil gas data from the 3 ft deep boring at the edge of the building

(SVP-1 on Figure 33). Concentration values reported at less than the reporting limit were set to half the reporting limit (Table 2 and Figure 38). Site-specific screening levels were calculated from Guidelines for Utah's Corrective Action Process for Leaking Underground Storage Tank Sites (Utah, 2010) and used as input (Figure 39).

4.1.3 PVIScreen Model Results

The PVIScreen simulation showed that all runs of the model were below the screening level of 0.5 μ g/m³ for benzene (Figure 40). Although not shown, the same result was found for each of the other chemical constituents. Therefore, the model results suggest that there is a very low chance of vapor intrusion at the restaurant.

Previous Results	amed: LUSTLineR	dit Input estaurantE	View Scher xample.pv	matic vi	Prepa	re to Run	Run PVIScr
dentification & Options	Building & Foundation	Vadose Zone	Chemicals	Screening	g Levels	Suggested V	alues
Site		[LUSTLine Re	staur			
SiteLocation			MW-9 1-18-1	15			
City		(xx				
State		[UT				
Analyst		(WWC				
Affiliation		[US EPA				
Risk Level		1.00E-06		*			
HazardQuotient		1		-			
Oil Distribution		(none				

Figure 35. Identifications and Options input screen for the off-site restaurant simulation.

ung input me i	lamed. LUSTLINE	RestaurantExample.pvi		
tification & Options	Building & Foundation	Vadose Zone Chemicals Screening Levels	Suggested Values	
dirt floor		no. 💌		
Constant	✓ one value	Width	60.00	ft 🔹
Constant	 one value 	Length	80.00	ft 🔹
Constant	 one value 	CeilingHeight	9.000	ft 🔹
Constant	- one value	FoundationDepthBelowGrade	6.000	in 👻
Uniform	- min	FoundationThickness	6.000	in 👻
	max	FoundationThickness	6,000	cm 🔹
Uniform	- min	CrackWidth	0.5000	mm 💌
	max	CrackWidth	5.000	mm 💌
Uniform	✓ min	AirExchangeRate	3.000	1/hr 👻
	max	AirExchangeRate	10.00	1/hr •

Figure 36. Building and Foundation input screen for the off-site restaurant simulation.

wious Results	name	ed: LUSTLineR	estaurantE	xample.p	vi	Prepa	re to Run	Run Pvisc	reen Kesuits	
ification & Option	s Bui	Iding & Foundation	Vadose Zone	Chemicals	Screenin	g Levels	Suggested	/alues		
Constant	-	one value	DepthToSa	mple				3.000	ft	*
Constant	+	one value	DepthToW	ater				7,500	ft	+
Constant	*	one value	DepthToHi	storic/WaterT	able			7.500	ft	*
Constant	*	one value	DepthToBo	ottom				20.00	ft	*
Uniform	*	min	MoistureCo	ontent				0.04900	dimensio	-
		max	MoistureCo	ontent				0.2127	dimensio	*
Uniform	-	min	Porosity					0.2900	dimensio	-
		max	Porosity					0.4840	dimensio	-
Uniform	*	min	FractionOr	ganicCarbon				7.5E-4	dimensio	
		max	FractionOr	ganicCarbon				0.001250	dimensio	-
Uniform	*	min	SoilTempe	rature				11.25	С	
		max	SoilTempe	rature				18.75	C	-

Figure 37. Vadose Zone input screen for the off-site restaurant simulation.

Previous Results	Select	File View/E	dit Input	View Sche	matic Prepa	re to Run	Run PVIScreen	Results	Write Report	About	Exit
asting Input file r	named	I: LUSTLineR	estaurantE	xample.p	VI						
dentification & Option:	s Build	ing & Foundation	Vadose Zone	Chemicals	Screening Levels	Suggested Val	ues				
Add or Remove	Chemic	al	-	Add/Re	emove						
Constant	-	one value	benzene			AirPh	aseConcentration		1.600	ug/m3	
Constant	+	one value	toluene			AirPh	aseConcentration		10.00	ug/m3	-
Constant	+	one value	ethylbenze	ene		AirPh	aseConcentration		2.200	ug/m3	+
Constant	*	one value	xylenes			AirPh	aseConcentration		41.00	ug/m3	-
Constant	+	one value	naphthaler	ne		AirPh	aseConcentration		2.850	ug/m3	
Constant	*	one value	MTBE			AirPh	aseConcentration		1.800	ug/m3	*
Constant	+	one value	TPH-GRO			AirPh	aseConcentration		210.0	ug/m3	+

Figure 38. Chemicals input screen for the off-site restaurant simulation.

Existing Input Previous Results		dit Input	View Schematic Prepare to Run			re to Run	Run PVIScreen	Results
Identification & Options	Building & Foundation	Vadose Zone	Chemicals	Screenii	ng Levels	Suggested Va	lues	
benzene		F	0.5000		mg/cm3	-		
toluene	(7310.0		mg/cm3 👻				
ethylbenzene		(1480.0 mg/cm		mg/cm3	g/cm3 👻		
xylenes			148.0		mg/cm3 👻			
naphthalene	(4,390		mg/cm3 👻				
MTBE	4380.0 mg/d		mg/cm3 🔫					
TPH-GRO	ſ	307.0		mg/cm3	-			

Figure 39. Screening Levels input screen for the off-site restaurant simulation.

Figure 40. Off-site restaurant simulation of benzene showing no simulation results above the screening level of $0.5 \ \mu g/m^3$. The most probable and averaged-parameter results are below the minimum plotting concentration of $10^{-5} \ \mu g/m^3$.

4.2 Ground Water Data Example

The restaurant simulation can also be run using ground water data. The chemical concentrations, their type (i.e., water phase concentration), and depths differ from the previous simulations; all the other parameters were unchanged. The location of the monitoring wells relative to the building guides the selection of the data to drive the model simulation. MW-9 is the closest monitoring well that is upgradient to the building. This well is close to the building, but between the contamination and the building and is the best choice of these for use in the model. MW-20 is downgradient and might be less representative of the potential exposure in the building. MW-6 is located just on the edge of the source, with benzene concentration characteristic approaching that of NAPL¹⁰. For comparison purposes the results of simulation with all three wells is presented below. The schematic and result for MW-9 with 10 x ground water adjustment factor are shown in Figure 41 and Figure 42.

For comparison purposes data from each of the monitoring wells was used in simulation (highlighted in Table 3). The

results from MW-9 (Table 4) show that none of the simulations indicated the possibility of vapor intrusion above the screening level. This was the result for both ground water reduction factors. (Note that if the results show no impact for a reduction factor of 10, the result when using the reduction factor of 100 must also show no impact as the condition is less stringent). Similar results were obtained in this case for MW-20.

For MW-6, which lies on the edge of the NAPL zone (Figure 34), at the reduction factor of 10, a very small number of simulations (0.12%) exceed the screening level for benzene. At the reduction factor of 100, none exceed the screening level. Accepting the conceptualization of the model, in this case the occurrence of an impact depends on the nature of transport across the capillary fringe. Since the true nature of that transport is unknown from the available data, a policy decision is needed for dealing with borderline cases as this. The case is borderline because only a very few simulations exceed the screening level (0.12%), and because the ground water concentration reduction factor of 100 results in 0.0% exceedance.

¹⁰In the EPA PVI benzene concentrations >5 mg/L are presumed to indicate NAPL. Peargin & Kolhatkar presume the presence of NAPL for benzene concentration of 1 mg/L or higher.

Table 3	. Ground wa	ter data	for MW-6, N	1W-9, and M	W-20 of Figu	re 34.			
Well/ Elev.	Date	DTW (feet)	MTBE (mg/L)	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (mg/L)	Naphthalene (mg/L)	TPH-GRO (mg/L)
	MW-6								
99.57	2/18/11	5.35	< 0.00200	2.73	0.181	0.183	0.433	0.138	4.58
	7/11/11	5.29	< 0.00200	1.58	0.0635	0.136	0.231	0.129	3.10
	12/4/12	6.15	< 0.00200	1.93	0.00455	0.0141	0.0276	0.130	2.67
	12/19/13	6.61	< 0.00200	0.590	< 0.00200	0.00803	0.0129	0.0786	1.02
	6/25/14	6.08	< 0.00200	1.63	0.0254	0.0979	0.171	0.0974	2.76
	1/8/15	6.51	< 0.00200	2.04	0.00404	0.0179	0.0296	0.180	2.86
					MW-9				
99.66	12/20/13	7.18	< 0.00200	0.813	< 0.00200	< 0.00200	0.0298	0.0136	1.29
	6/25/14	6.47	< 0.00200	1.84	0.00260	0.00268	0.00515	0.0160	2.40
	1/8/15	6.90	< 0.00200	0.0330	< 0.00200	< 0.00200	< 0.00200	< 0.00200	0.140
					MW-20				
98.90	1/9/15	6.43	< 0.00200	0.336	< 0.00200	< 0.00200	0.0126	0.0349	0.897

Figure 41. Schematic for the MW-9 simulation with sample depth of 6.9 ft.

Figure 42. Simulation results for MW-9 using ground water data.

Table 4. Benzene simulation results for the restaurant with ground water concentration data as the source of contamination.							
Ground Water Data	Simulations Exceeding Screening Level						
MW-6	0.12%						
MW-9	0.0%						
MW-20	0.0%						

4.3 Ground Water Example Indicating Possibility of Vapor Intrusion

The Utah Department of Environmental Quality (UDEQ) investigated potential petroleum vapor intrusion at a convenience store, where leaking underground storage tanks (USTs) released gasoline into soil and groundwater (Figure 43). The potential for PVI was determined highly likely due to presence of free product less than 15 feet below ground surface (bgs) under the site convenience store, and extremely high subslab vapor concentrations of total petroleum hydrocarbons (TPH) and benzene. PVI was ultimately confirmed through collection of indoor air samples from the convenience store in April 2015, which indicated the presence of TPH, benzene, and other gasoline component

vapors at concentrations that exceeded risk-based screening levels (see Table 6, Figure 44, and Davis (2015) for site details and a summary of the site investigation).

Analyte concentrations from MW-4 taken on 10/2/2013 were used to drive the simulation. Since these concentrations were high the possibility exists for an impact to indoor air. The input parameter values are found on Figure 45 to Figure 47, and the site schematic is shown on Figure 48. The model results are suggestive of petroleum vapor intrusion with 69% of the benzene (Figure 49), 69% of the TPH-GRO (Figure 50), and 21% of the TPH-DRO (Figure 51) simulations indicating the potential for petroleum vapor intrusion. These results are consistent with the state's findings (Table 6).

Figure 43. Site plan indicating benzene concentration and free product thicknesses for April 28, 2015.

Figure 44. Cross section summarizing site data in the vicinity of the convenience store.

Table 5. G	round wate	r sampling	data from MW-3	3 and MW-4	4 when no free p	product was	present.			
Date	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (mg/L)	Naphthalene (mg/L)	MTBE (mg/L)	TPH-GRO (mg/L)	TPH-DRO (mg/L)	Depth to Water (ft)	
MW-3										
10/2/13	39.4	49.0	3.26	17.2	0.688	< 0.2	118	0.396	9.78	
5/3/13	13.4	12.6	0.929	5.76	0.239	< 0.2	34.2	< 0.2	10.09	
	MW-4									
4/28/15	17.9	0.774	2.51	10.5	0.246	< 0.02	33.1	< 2.0	11.16	
10/2/13	26.1	53.1	3.76	17.4	0.426	< 0.04	128	< 0.4	9.88	
5/3/13	28.6	42.9	1.92	11.1	< 1.0	< 1.0	84.4	< 10.0	10.2	

Table 6. Sub-sla	ab, indoor air	, and screeni	ing concentratio	ns for the Ut	ah convenience	store.		
	Benzene (µg/m³)	Toluene (μg/m³)	Ethylbenzene (μg/m³)	Xylenes (µg/m³)	Naphthalene (μg/m³)	MTBE (µg/m³)	TPH-GRO (μg/m³)	TPH-DRO (μg/m³)
Results								
8-hour indoor air	55	13	2	12	< 0.53	< 0.73	2,200	
24-hour indoor air	210	14	4	25	< 2.7	< 3.6	6,400	
Sub-slab main store	333,000	< 20,000	< 10,000	< 10,000	< 2,000	< 10,000	8,700,000	
Sub-slab back room	690	< 4,000	< 2,000	< 2,000	< 400	< 2,000	420,000	
Screening Levels								
Commercial Indoor Air	0.5	7,154	1,482	148	4	4,395	307	307
Commercial Sub-slab	16.4	243,667	49,333	4,933	146	146,000	10,233	10,233

tification & Options	Puilding & Foundation	Vadaga Zana Chamicala Ecran	na Louala	Eugeneted Values		
iuncation & Options	building & Foundation	vaduse zone criemicais screer	ng Levels	Suggested values		
dirt floor		no	-			
Constant	✓ one value	Width		50.00	feet	-
Constant	 one value 	Length		50.00	feet	*
Constant	 one value 	CeilingHeight		9.000	ft	-
Constant	 one value 	FoundationDepthBelowGrade		0.	in	-
Uniform	- min	FoundationThickness		6.000	in	-
	max	FoundationThickness		8.000	ìn	-
Uniform	- min	CrackWidth		0.5000	mm	*
	max	CrackWidth		5,000	mm	+
Uniform	- min	AirExchangeRate		0.5000	1/hr	-
	max	AirExchangeRate		1.500	1/hr	-
ert air exchange rate r	anges: 🕞 Full 💮 H	ligh (Drafty) 💭 Moderate 💮 Lo	v (Tight)			

Figure 45. Building and foundation input parameters for convenience store simulation.

Previous Results Sting Input file na	amed:	GroundWat	dit Input erExampleI	View Schem VIW-3.pvi	natic Prepa	re to Run	Run PVIScr	een Results	Write Rep
entification & Options	Buildin	g & Foundation	Vadose Zone	Chemicals	Screening Levels	Suggested Va	alues		
Constant	ne value	DepthToSample				9.780	ft	-	
Constant	+ 0	ne value	DepthToW	ater		L. L.	9.780	ft	*
Constant	+ 0	ne value	DepthToHi	storicWaterTal	ble	Ī	6.048	m	*
Constant	- 0	ne value	DepthToBottom				20.00	ft	*
Uniform	* n	nin	MoistureContent			Ī	0.04900	dimensio	*
	п	ах	MoistureCo	ontent		í.	0.2127	dimensio,	*
Uniform	* n	nin	Porosity			Ē	0.2900	dimensio	-
	n	nax	Porosity			-	0.4840	dimensio	*
Uniform	* n	nin	FractionOr	ganicCarbon		-	7.5E-4	dimensio	+
	n	xsi	FractionOr	ganicCarbon		6	0.001250	dimensio	-
Uniform 👻 min			SoilTempe	rature		ſ	11.25	С	*
	1	nax	SoilTempe	rature		Ĩ	18.75	C	*

Figure 46. Vadose zone inputs for convenience store simulation.

xisting Input revious Results iting Input file	Select F	File View	Edit Input Vi	ew Schematic	Prepare to Run	Run PVIScheen	Results	Wobs Report	About	Exit	
ntification & Optio	ns Buildi	ng & Foundatio	n Vadose Zone	chemicals Screen	ing Levels Suggested	Values					
Add or Remov	ve Chemica	al	•	Add/Remove							
Constant	*	one value	benzene		v	VaterPhaseConcentration		39,40	mg/l	*	
Constant		one value	toluene		v	VaterPhaseConcentration		49.00	mg/l	-	
Constant	*	one value	ethylbenzene	i.	v	VaterPhaseConcentration		3.260	mg/l	-	
Constant	*	one value	xylenes		v	VaterPhaseConcentration		17.20	mg/l	*	
Constant	*	one value	naphthalene		v	VaterPhaseConcentration		0.6880	mg/l	-	
Constant	+	one value	MTBE		v	VaterPhaseConcentration		0.1000	mg/l	-	
Constant	+	one value	TPH-GRO		v	VaterPhaseConcentration		118.0	mg/l	*	
Constant	+	one value	TPH-DRO		v	VaterPhaseConcentration		0.9396	mg/l	+	

Figure 47. Chemical inputs for convenience store simulation.

Figure 49. Benzene results indicating high probability for petroleum vapor intrusion. As indicated on the graph (left) and the table (right), 69% of the simulations exceeded the site-specific screening level of 0.5 μ g/m³.

Figure 50. Gasoline range organics (TPH-GRO) results indicating high probability for petroleum vapor intrusion. As indicated on the graph (left) and the table (right), almost 69% of the simulations exceeded the site-specific screening level of $307 \mu g/m^3$.

Figure 51. Diesel range organics (TPH-DRO) results indicating a strong possibility of vapor intrusion. As indicated on the graph (left) and the table (right), 21% of the simulations exceeded the site-specific screening level of 307 μ g/m³.

5. Theoretical Background

Over ten years ago vapor intrusion and its evaluation through modeling approaches were identified as a potential problem at subsurface contamination sites (Obamascik, 2002). Application of simplified models using mostly generic default parameters has contributed to confusion over appropriate assessment strategies for these sites. One of the primary models in use, the Johnson-Ettinger model was presented as a heuristic screening model (Johnson and Ettinger, 1991). Essentially the model consists of two completely-mixed compartments, one representing the interior of a building and the other the soil below. This conceptualization reflects the potential for both features of the building and the subsurface to contribute to indoor air contamination. Although models may represent important processes, the ability to determine definitively that there are no vapor impacts to buildings ("screen for PVI") also depends on application-related factors. These factors include the degree to which the site conceptual model matches the structure of the screening model, the inherent limitations imposed by the model assumptions, the values chosen for input parameters, and the ability to calibrate the model to site conditions.

Analysis of the Johnson-Ettinger model (JEM) using a oneat-a-time sensitivity analysis showed a moderate level of uncertainty resulting from parameter uncertainty (Johnson 2005). With a bounding value analysis Tillman and Weaver (2006) showed that synergistic effects dominate uncertainty because parameters of the model do not act independently but interact. For JEM, the interactions are clear as the model can be formulated in dimensionless form using three dimensionless parameter groups. Tillman and Weaver (2006) showed that the uncertainties were one to two orders of magnitude higher when parameter interactions were considered, and constructed a generic ordering of parameter importance (Tillman and Weaver, 2007).

The Johnson and Ettinger model does not account for biodegradation and so inherently over-predicts indoor air concentrations for situations where biodegradation occurs. A primary and geographically-extensive example occurs at petroleum hydrocarbon release sites, where many studies have shown extensive aerobic biodegradation. In response to these problems, the BioVapor model (Devaull, 2007) was developed to include the effects of oxygen-limited biodegradation, native soil respiration, and multiple hydrocarbon species on vapor intrusion, all within a simplified modeling context. The model is based on the assumption of steady-state diffusive transport in a homogeneous vadose zone. Consequently, an analytical solution was obtained.

5.1 Oil Phase Weathering

If the oil is uniformly leached due to flowing water and volatilization to the vadose zone, then the mass conservation equation for each constituent *i* becomes

$$\frac{dM_i}{dt} = -\iint i K_w(S_w) C_{iw} dy dz - A D_{eff} J_{s,i}$$

where *i* is the absolute value of the hydraulic gradient, $K_w(S_w)$ is the effective conductivity at water saturation, $S_{w'}D_{eff}$ is the effective diffusion coefficient for the vadose zone, and $J_{s,i}$ is the flux of chemical leaving the source through the gaseous phase. If the source is a rectangular block of width, Y, then the mass balance that accounts for the variation of flow with water saturation is

$$\frac{dM_i}{dt} = -Y \int i K_w(S_w) C_{iw} dz - A D_{eff} J_{s,i}$$

Solution of this equation provides a boundary condition based on emplacement of a fuel phase and consistent changes in composition due to weathering. When coupled with transport in the soil gas as calculated by BioVapor, the changes are assumed to occur slowly enough so that the transients in the vadose zone are negligible. In the simplest application of the model, leaching is assumed to occur up to a specified time, and the composition of the oil phase is then used as input to PVIScreen.

5.2 BioVapor Equations

Using the Johnson-Ettinger equations as the basis for representing transport from the subsurface into a building, the BioVapor equations extend the modeling approach to include an analytical solution of steady-state diffusion-driven transport in the vadose zone (DeVaull, 2007 and API, 2010). Multiple constituents of gasoline diffuse from a soil gas or ground water source. Oxygen is supplied at the foundation bottom either limited by atmospheric concentration or the foundation flux. It is then transported downward by diffusion and it is available to react with the upward-diffusing petroleum hydrocarbons. The sum of the oxygen demands determines the extent of oxygen penetration into the vadose zone, and the concentration of intruding chemicals for the oxygen concentration limited solution, according to:

$$c_{f,o} - c_{t,o} = \sum \frac{1}{\phi_i} \frac{D_{eff,i}}{D_{eff,o}} (c_{f,i} - c_{t,i}) - \frac{\rho_b \Lambda_{base,o}}{D_{eff,o}} \frac{L_a^2}{2} + \frac{L_a}{D_{eff,o}} \sum \frac{1}{\phi_i} J_{t,i}$$

where $c_{f,0} - c_{t,0}$ is the difference in oxygen concentration between the foundation and the transition point between the aerobic and anaerobic zones, ϕ_i is the stoichiometric utilization factor for complete mineralization, $D_{eff,i}$ and $D_{eff,o}$, are the effective diffusion coefficients for the chemical, and oxygen, $c_{f,i} - c_{t,i}$ is the difference in chemical concentration between the foundation and the transition point, ρ_b , is the bulk density, $\Lambda_{base,0}$ the baseline soil respiration rate, L_a , the aerobic zone depth, and $J_{t,i}$ the chemical flux at the transition point. The oxygen flux equation is

$$J_{f,O} - J_{t,O} = \sum \frac{1}{\phi_i} \left(J_{f,i} - J_{t,i} \right) + \rho_b L_a \Lambda_{base,O}$$

where the change in oxygen flux between the foundation and the transition between aerobic and anaerobic is denoted $J_{f,0} - J_{t,0}$, and is determined from the utilization factor, ϕ_i the change flux of each chemical constituent, $i(J_{f,i} - J_{t,i})$ and the baseline soil respiration. The latter is calculated from the bulk density, ρ_b , the aerobic zone depth, and the soil baseline oxygen utilization rate, $\Lambda_{base,0}$. The model is solved for the aerobic zone depth by bisection iteration, using either an oxygen concentration or an oxygen-flux limitation. See API 2010 for the complete model details.

References

American Petroleum Institute, 2010, User's Manual, BioVapor: A 1-D Vapor Intrusion Model with Oxygen-Limited Aerobic Biodegradation, American Petroleum Institute.

Brakensiek, D. L., Engleman, R.L., and Rawls, W.J., 1981, Variation within texture classes of soil water parameters, Transactions of the American Society of Agricultural Engineers, 335-339.

Collins, W.D., 1925, Temperature of Water Available for Industrial Use in the United States, United States Geological Survey, Water Supply Paper 520-F.

Davis, R., 2015, Petroleum Vapor Intrusion Assessment: Multiple Lines of Evidence Lead to Mitigation at Utah Gasoline Fueling Station, U.S. Environmental Protection Agency, https://cluin.org/products/newsltrs/tnandt/view_new. cfm?issue=0815.cfm#3 2/6.

DeVaull, G.E., 2007, Indoor Vapor Intrusion with Oxygen-Limited Biodegradation for a Subsurface Gasoline Source, Environmental Science and Technology, 41, 3241-3248.

Gustafson, J.B., Tell, J.G., Orem, D., 1997, Selection of Representative TPH Fractions Based on Fate and Transport Considerations, Volume 3 of Total Petroleum Hydrocarbons Criteria Working Group Series, Amherst Scientific Publishers, 102 pp.

Hers, I., and Truesdale, R.T., 2013, Evaluation Of Empirical Data To Support Soil Vapor Intrusion Screening Criteria For Petroleum Hydrocarbon Compounds, United States Environmental Protection Agency, EPA 510-R-13-001.

Johnson P.C., Ettinger, R.A., 1991, Heuristic Model for Prediction the Intrusion Rate of Contaminant Vapors Into Buildings, Environmental Science and Technology, 25, 1445-1452.

Johnson, P.C., 2005, Identification of application-specific critical inputs for the 1991 Johnson and Ettinger Vapor intrusion algorithm, Ground Water Monitoring and Remediation, 25(10, 63-78.

Lyman, W.J., Reehl, W.F., Rosenblat, D. H., 1982, Handbook of Chemical Property Estimation Methods, American Chemical Society.

McCarthy, K.A. and Johnson, R.L., 1993, Transport of volatile organic compounds across the capillary fringe, Water Resources Research, 29(6) 1675-1683.

Obamascik, M., 2002, EPA home-toxins test "crude and limited"; Widely used computer model often wrong, Denver Post, January 7, 2001, A-1.

Potter, T.L., Simmons, K.E., 1998, Volume 2 of Total Petroleum Hydrocarbons Criteria Working Group Series, Amherst Scientific Publishers, 102 pp.

Tillman, Fred D and James W. Weaver, 2007, Parameter Sets for Upper and Lower Bounds on Soil-to-Indoor-Air Contaminant Attenuation Predicted by the Johnson and Ettinger Vapor Intrusion Model, Atmospheric Environment, DOI 10.1016/j.atmosenv.2007.05.033, 41(27), pp 5797-5806.

Tillman, Fred D and James W. Weaver, 2006, Uncertainty from Synergistic Effects of Multiple Parameters in the Johnson and Ettinger (1991) Vapor Intrusion Model, Atmospheric Environment, 40(22) 4098-4112.

US EPA, 2003, User's Guide for Evaluating Subsurface Vapor Intrusion into Buildings. EPA Contract Number: 68-W-02-033, https://www.epa.gov/risk/users-guide-evaluating-subsurface-vapor-intrusion-buildings.

US EPA, 2007, Control of Hazardous Air Pollutants from Mobile Sources: Final Rule to Reduce Mobile Source Air Toxics, United States Environmental Protection Agency, Office of Transportation and Air Quality, Washington, DC, EPA 420/F-07/017.

US EPA, 2008, Fuel Trends Report: Gasoline 1995-2005, United States Environmental Protection Agency, Office of Transportation and Air Quality, Washington, DC, EPA 420/R-08/002.

U.S. EPA, 2012, Petroleum Hydrocarbons And Chlorinated Hydrocarbons Differ In Their Potential For Vapor Intrusion, U.S. Environmental Protection Agency, Washington, DC., March.

U.S. EPA, 2015, OSWER Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor Sources to Indoor Air, U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, OSWER Publication 9200.2-154, https://www.epa.gov/sites/production/files/2015-09/documents/oswer-vapor-intrusion-technical-guide-final.pdf

Utah Department of Environmental Quality, 2010, Guidelines for Utah's Corrective Action Process for Leaking Underground Storage Tanks Sites, Third Edition Final Draft.

van Genuchten, M.T., 1980, A Closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Science Society of America Journal, 44, 892-898.

Weaver, J.W., L. R. Exum, and L.M. Prieto, 2010, Gasoline Composition Regulations Affecting LUST Sites, United States Environmental Protection Agency, Washington, DC, 20460, EPA 600/R-10/001.

Weaver, J.W., L. Jordan, and D.B. Hall, 2005, Predicted Ground Water, Soil and Soil Gas Impacts from US Gasolines, 2004 First Analysis of the Autumnal Data, U.S. Environmental Protection Agency, Washington, DC, EPA 600/R-05/032.

Wilson, J.T., Cho, J.S., Wilson, B.H., Vardy, J.A., 2000, Natural Attenuation of MTBE in the Surface under Methanogenic Conditions, United States Environmental Protection Agency, Washington, DC, EPA/600/R-00/006.

Appendix A Running PVIScreen in Command Line and Batch Mode

A.1 Batch Mode

In command line mode, PVIScreen can be used to run multiple sets of input files. The names for these files are listed in a control file named:

00InputSetsToRun.csv

Each complete PVIScreen input file is listed on a separate line of this file. Double clicking on the PVIScreen executable jar file – PVIScreenBatchLibrary.jar (Figure A1) causes each input file to be run in turn.

Figure A1. Executable jar file (PVIScreenBatchRun.jar) used to execute the batch version of PVIScreen.

Appendix B Microsoft Excel Comma Separated Value (.csv) Format

File types are selected from the MicroSoft Excel "Save As" menu (Figure B1). Then the Comma Separated Value (.CSV) format is chosen from the selections (Figure B2).

Figure B1. Microsoft Excel output ("Save As") dialog box showing choice of **Other Formats** to write a comma separated value (*.csv) file.

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	✓ Gearch templates	2
Organize 👻 New folder	8= *	0
E Desktop	▲ Name ↑	Dat
Downloads	SampleFuelt ensProblem 2016-Jul-5-8h-47m	7/5
Recent Places	SampleFuell ensProblem 2016-Jun-1-8h-9m-3	6/1
1 libraries	SampleFuelLensProblem 2016-Jun-1-8h-10m	6/1
Documents	SampleFuelLensProblem 2016-Jun-1-8h-15m	6/1
J Music	SampleFuelLensProblem 2016-Jun-1-8h-28m	6/1
E Pictures	SampleFuelt ensProblem 2016-Jun-1-8h-28m	6/1
Videos Videos	SampleFuelLensProblem 2016-Jun-1-8h-31m	6/1
The Council of	SampleFuelLensProblem 2016-Jun-2-11h-16	6/2
B OS (C:)	SampleFuelLensProblem 2016-Jun-2-11h-57	6/2
DVD RW Drive (D:) Audio CD	* 4 Main 1	-
File name: SampleFinite South - 2016-May-3	31-16h-52m-13.0s.PVIScreen.Results.csv	-
Save as the: CSV (Comma delimited) (*.csv)		-
		-
Authors.	Tags: Add a tag	
Hide Folders	Tools - Save Cancel	

Figure B2. Microsoft Excel output dialog showing "CSV" file type selected for PVIScreen input file.

Appendix C Unit Conversions in PVIScreen

A special subset of the Control group is the unit conversion factors. The allowable unit conversions are summarized in the file 01PVIScreenUnitConversion.csv. Most PVIScreen users will never have to view or change this file. Editing the unit conversion file is needed only to add a new set of units.

The unit conversion system is based on the idea that there is an internal set of units that are used in the model. For the PVIScreen the unit set is:

quantity	unit
time	second
length	cm
mass	kilogram
concentration	mg/L

Any of the optional units (Table C1) can be used for an input data set, the specified unit conversions to the model's internal unit set are made when the input data are read. Unit choices can be made for outputs.

Although not necessary for running the model, the following describes the operation of the unit conversion system:

When a parameter is read by the model, the name of the unit is included in the input group. The unit appears in input immediately after the numeric value. The unit name and type is used to identify the appropriate unit conversion factors. As many as five variants on the name are allowed. For example, the area in square meters can be designated by sm, squaremeter, square meters, squaremeters, or m2. The case is unimportant so SM, Square Meter, etc. are also accepted.

When the unit is identified as belonging to a type (say area), the unit conversion to the model unit is performed. The file indicates which units are the model units mostly for convenience as all input values undergo unit conversions. A model unit always has the unit conversion factor of 1.0. The unit conversion factors for an optional unit give conversion to the model unit. For example, to convert square feet to square meters a unit conversion of 0.3048 m per ft is applied twice. In the unit conversion file, the unit conversion factors are supplied as up to four values. This is done for clarity. To get square meters from square feet multiply the value in square feet by 0.3048 twice.

If the specified unit does not appear in the list of units from 01PVIScreenUnitConversion.csv, additional unit conversions can be added to the 01PVIScreenUnitConversion.csv file as needed.

Table C1. Excerpt of file showing default set of unit conversion factors in file 01PVIScreenUnitConversion.csv.										
Control	heading	type	status	ucf0	ucf1	ucf2	ucf3	name0	name1	name2
Control	unit	length	model	1	1	1	1	cm	centimeter	centimeters
Control	unit	length	optional	100	1	1	1	m	meter	meters
Control	unit	length	optional	12	2.54	1	1	ft	foot	feet
Control	unit	length	optional	2.54	1	1	1	in	inch	inches

Appendix D Post-Processed Output File

After completing stochastic (Monte Carlo) simulation runs, the main result file is read back into the model and the results post-processed. The purpose of the post-processing is to generate statistical characterization of the results, including simple statistics and histograms.

D.1 File Identification

The post-processed output file begins by listing the input and output files upon which it is based. Example output files are provided with the executable PVIScreen file.

D.2 Reprinting Output Results

All of the results from the main output file are read and reprinted (not shown here).

D.3 Simple Statistical Results

A set of simple statistical calculations is performed on the output. These include:

- Minimum
- Average
- Maximum
- Range
- Variance
- Standard Deviation
- 5th, 95th Percentiles
- First, third Quartiles
- Median
- Inter-quartile range
- Median + ½ inter-quartile range

As for the main output file results, two tables show major parts of the statistical results.

D.4 Histograms

Histograms are used to determine the distribution of the results. In the histogram, the results, say for peak concentration, are placed in binned intervals of the total output range. From these the most likely – and other – bins can be determined. For each bin, the histogram gives the:

- Interval mid-point
- Count (number of results within the bin)
- Frequency (fraction of results in this bin relative to the total)
- Cumulative frequency

The histogram ends with a sum of points, which should equal the number of Monte Carlo runs, and the sum of the frequencies, which should equal 1.0.

Appendix E Entry of Deterministic and Stochastic (Monte Carlo) Data

PVIScreen has the capability of running either a deterministic or a stochastic (Monte Carlo) model. Many of the input parameters may be specified as being variable ("stochastic"), but to do so the input probability distribution must be specified. To simplify the input of data, the input for constant ("deterministic") and variable parameters follow the same pattern.

For other than constant and uniformly distributed parameters, the inputs must be specified using the command line version of PVIScreen, because the Graphical User Interface only allows for constant and uniformly distributed parameters.

E.1 For Deterministic Models

Each input parameter has only one value. A parameter is entered with a key word to indicate the parameter group (here "building"), followed by the specific parameter ("width"). Next a key word indicates that the parameter has only one value. The key word is "constant". The value and unit are entered followed by the second key word which indicates the cumulative frequency is 1.0. The frequency value is not used in deterministic models, but is included for compatibility with stochastic models. An example of this input is:

Building, Width, Constant, value, unit symbol, 1.0, comment

E.2 For Stochastic (Monte Carlo) Models

Each stochastic model parameter is described by a cumulative probability distribution. These are entered by a series of values. These are essentially empirical distributions. If the use of a parametric distribution is needed, these can be entered as described below. The following describes how constant and varying values are entered in stochastic models.

E.2.1 Constant Parameter Values in Stochastic Models

Although every parameter in PVIScreen can be treated as variable, typically stochastic models will have some fixed parameters. In that case, the parameter is designated as "constant." The entry of these values is given in the previous section.

A constant or deterministic parameter has a single value. The probability of this value is 1.0, so a single entry is made for the value with the frequency set at 1.0 (Figure E1). To use a constant value for hydraulic conductivity of 15 ft/d, the line of input for this parameter would be:

GroundWater, Hydraulic Conductivity, constant, 15, ft/d, 1.0

Alternatively, the deterministic parameter can be entered as if it is stochastic. Why would you want to do this? If you are testing the effect of parameter variability, you might want to begin with a parameter following a uniform distribution but later assign a constant value. To avoid inserting and deleting lines from the input file, two input lines are specified:

GroundWater, Hydraulic Conductivity, stochastic, 15, ft/d, 0.0

GroundWater, Hydraulic Conductivity, stochastic, 15, ft/d, 1.0

These lines are interpreted as specifying an input probability distribution with a uniform distribution with no values less than 15 (first line) and no values higher than 15 (second line). Effectively, the parameter is set at 15 ft/d (Figure E2) for all simulations. The impact on efficiency of running the model is negligible.

Figure E1. Cumulative frequency for a constant or deterministic parameter. Here the value is 15 ft/d which is used for every simulation.

Figure E2. Alternate specification of constant parameter by specifying a uniform probability distribution with no values less than 15 ft/d and no values higher than 15 ft/d. Effectively the value is set at a constant 15 ft/d.

E.2.2 Variable Parameters in Stochastic Models

For parameters considered to be stochastic, cumulative probability distributions are entered as input. These are values paired with a cumulative frequency. The cumulative probability distribution begins with the probability that **no** value is less than and ends with the value that **all** values are less than.

In the example (Table E1), no value of the parameter is less than 10.0 hence its cumulative probability is 0.0. Similarly, no value is greater than 20.0 and its cumulative probability is 1.0. The intermediate values represent cumulative probabilities between the extremes.

Table E1. Cumulative prob	pability curve example.
Parameter Values	Cumulative Probability
10.0	0.0
10.5	0.00135
12.0	0.0228
13.5	0.1587
15.0	0.5
16.5	0.8413
18.0	0.9772
19.5	0.99865
20.0	1.0

E.3 Uniformly Distributed Parameter Values

If a parameter distribution is uniform (i.e., all values are equally probable between a minimum and maximum value), two entry values are entered for a uniform distribution. The minimum value is assigned a frequency of "0.0" and the maximum value is assigned a value of "1.0."

To specify a uniform distribution with, say, a minimum value of 10 ft/d and maximum value of 20 ft/d (Figure E3) two input lines are used:

GroundWater, Hydraulic Conductivity, stochastic, 10, ft/d, 0.0

GroundWater, Hydraulic Conductivity, stochastic, 20, ft/d, 1.0

The first line gives the minimum parameter value (10 ft/d) and cumulative probability of 0.0. This value indicates that there are no hydraulic conductivity values less than 10 ft/d. The second line gives the maximum parameter value of 20 ft/d and cumulative probability of 1.0, indicating that there are no hydraulic conductivity values greater than 20 ft/d.

Figure E3. Uniform cumulative probability distribution with a range from 10 ft/d to 20 ft/d.

Options for entering triangular distributions where the minimum, maximum and most likely value are specified, and truncated normal distributions are given in the appendix.

E.4 Triangular Distribution

A triangular distribution is specified from a minimum, maximum, and most likely value of a parameter. The triangular cumulative probability distribution is determined from:

$$f(x) = \begin{cases} 0; \ x < a \\ \frac{(x-a)^2}{(b-a)(c-a)}; \ a < x < c \\ 1 - \frac{(b-x)^2}{(b-a)(b-c)}; \ c < x < b \\ 1; \ x > b \end{cases}$$

where f(x) is the cumulative probability, a is the minimum, b is the maximum and c is the most likely value. For a parameter with minimum of 10, maximum of 20 and most likely value of 13, the cumulative probability curve is approximated by 11 points (Figure E4 and Table E2). The figure illustrates the cumulative probability curve determined from 41 points (using an increment of 0.25 ft/d) and its approximation by 11 points (squares). A spreadsheet illustrating these calculations is available from the author (weaver.jim@epa.gov).

Figure E4. Triangular distribution (line) and its approximation by 11 points (squares).

Table E2. Approximate triangular distribution with minimum of 10, maximum of 20 and most likely value of 13.		
Hydraulic Conductivity (ft/d)	Cumulative Probability	
10	0	
11	0.033333	
12	0.133333	
13	0.3	
14	0.485714	
15	0.642857	
16	0.771429	
17	0.871429	
18	0.942857	
19	0.985714	
20	1	

E.5 Truncated Normally Distributed Parameter Values

Parameters with a truncated normal distribution can also be entered by specifying the cumulative distribution (Figure E5). A specific set of nine cumulative frequencies are needed to specify the distribution (Table E3). The distribution is truncated because the normal distribution ranges from negative to positive infinity. For practical calculation purposes, range is truncated at a minimum and maximum value. For this example the input lines are

GroundWater, Hydraulic Conductivity, stochastic, 10.0, ft/d, 0.0 GroundWater, Hydraulic Conductivity, stochastic, 10.5, ft/d, 0.00135 GroundWater, Hydraulic Conductivity, stochastic, 12.0, ft/d, 0.0228 GroundWater, Hydraulic Conductivity, stochastic, 13.5, ft/d, 0.1587 GroundWater, Hydraulic Conductivity, stochastic, 15.0, ft/d, 0.5 GroundWater, Hydraulic Conductivity, stochastic, 16.5, ft/d, 0.8413 GroundWater, Hydraulic Conductivity, stochastic, 18.0, ft/d, 0.9772 GroundWater, Hydraulic Conductivity, stochastic, 19.5, ft/d, 0.99865 GroundWater, Hydraulic Conductivity, stochastic, 20.0, ft/d, 1.0

The truncated normal distribution is contained between 10.0 ft/d and 20.0 ft/d. Note that for the distribution to approximate the normal distribution, the mean value less three standard deviations (10.5) must be above the minimum (10.0), and the mean value plus three standard deviations (19.5) must be below the maximum value (20.0).

Table E3. Cumulative normal distribution frequencies, symbolic values and example.		
Normal distribution cumulative frequency	Symbolic values mean (μ) and standard deviation (σ)	Example with mean of 15, standard deviation of 1.5
0.0	minimum	10.0
0.00135	μ - 3σ	10.5
0.0228	μ - 2σ	12.0
0.1587	μ-σ	13.5
0.5	μ	15.0
0.8413	μ+σ	16.5
0.9772	μ + 2σ	18.0
0.99865	μ + 3σ	19.5
1.0	maximum	20.0

Figure E5. Truncated cumulative normal distribution with mean of 15 ft/d and standard deviation of 1.5 ft/d. The distribution is defined by seven points (Table E3).

Office of Research and Development (8101R) 1200 Pennsylvania Ave. NW Washington, DC 20460 epa.gov/research

EPA/600/R-16/175 August 2016