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EXECUTIVE SUMMARY

‘Introduction

In support of a program’to review New Source Perform-
ance Standards (NSPS) for particulaﬁe and sulfur dioxide
(802) emissions from coal-fired steam generators, the'U?S.
Environmental Protection Agency (EPA) is“pfeﬁaring estimatés
of the coéts of air pollution control equipment. The prq;‘
gram includes estimating costs‘of the various control alter-
natives available to meet the present NSPS of 43 nanograms‘
‘particulate per joule of heat inpﬁt (0.1 1b/10° Btu)‘and<516
nanograms SOZ per joule of heat input (1.2 lb/lO6 Btu), with
comparative cost estimates of control.options to meet§a1tér4,~
native emission levels of 22 nanograms particuLéte pe:;jouie
heat input (0.05 lb/lO6 Btu), 13 nanograms particulatélper_
joule heat input (0.03 lb/lO6 Btu), 215 nanograms 802 per
joule heat input (0.5 lb/lO6 Btu), and 9b'perceht reduction
of potential SO, emissions. EPA has contracted with PEDCo
- Environmental, Inc. to deVelOp cost estimates for flue gas
desulfurization (FGD)'systems, physical coal cleaning facili-
ties, electrostatic precipitators (ESP), fabric filters,

venturi scrubbers, cbst differentials of boilers designed '
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for western subbituminous coals versus Eastern coals, and
costs of transporting coal from the west to eastern markets
for each of the alternative emission levels. Model steam-
electric generating plants of various sizes were used as a
basis for estimating these costs.

Emission Control Alternatives to Meet Revised NSPS

The revisions to the NSPS for particulate emissions

being considered in this study are 22 ng/J (0.05 1b/10° Btu)

and 13 ng/J (0.03 1b/10° Btu). Control devices available to
attain these emission levels are ESP's and fabric filters.
Wet venturi scrubbers may be utilized to attain the present

NSPS level of 43 ng/J (0.1 lb/lO6

Btu) particulate emission
and the alternative level of 22 ng/J (0.05 lb/lO6 Btu) par-
ticulate emission.

The alternative NSPS levels being considered for 802
emissions are 215 ng/J (0.5 lb/lo6 Btu) and 90 percent
control regardless of potential SO2 emissions. Control
techniques available to meet these alternative standards are
FGD, combination physical coal cleaning and FGD, and low

sulfur coal and FGD.

Control System Cost Components

The costs of a control system consist of the capital
costs of purchasing and installing the system and the annual

costs of ownership, operation and maintenance of the system.

|



-Capi£a1 costs are further categorized as direct énd indiréct
costé. Direct costs aré those for pu:chase of the items of\
equipmént and the %abbr‘ahd matériél required’to install'thei
équipment and interconnect it. Indirect costs are'thqse not
attributedvto épecificvequipment items such as freighg? ‘
‘ihterest;.takes, spare pgits,vengineering,,overhéad; éhake;
down, and contingencies.‘ Annual costs are categorized as
operation and maintenance costs and fixed costs. dperatioh; J;
and maintenance costs indiude those expenditures for raw

' materials, utilities, and maintenénce and supervising_labor.f
Fixed costs include depreciation, taxes, insurancé,'and
costs of borrowed capital. |

Cost Estimating Approéch

The control systém cosés were determined based on a
typical new coal—fifed plaﬁt model. Three sizgs were .
_selectedqur,analysisvof partigﬁiate controllsystem:costs
and five sizes fér analysis;ofﬁO2 control system costs. A
rmidwestllocation is assumed for the model plants. For
particulate control systems, three control levels weré
“examined: 43 ng/J (0.1 1b/10°® Btu), 22 ng/J (0.05 1b/10°
'Btu) and 13 ng/J (0.03 ;b/iO6 Btu). For S0, controi alter-
natives, three control levels were also analyzed: 516 ng/J
(1.2 lb/lo6 Btu), 90 percent removal of 502 regardless of

potential emission levels, and 215 ng/J (0.5 lb/lO6 Btu) .
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Table 1 presents a summary of the model plant char«
acteristics and assumptions used for the cost analysis of
particulate control options. Table 2 presents assumptions
and characteristics used in the 802 control 6pti0n anaiysis.

In the analysis several types of coal are considered
including three Eastern coals, two Western coals, and an
Fastern anthracite coal. Analyses of these coalé are giwven
in Table 3.

Parameters used for the particulate control systems
cost estimates are given in Table 4. Parameters used for
the FGD systems cost estimates are given in Table 5.

Computer programs developed by PEDCo werevﬁhen used to
calculate costs for each control alternative based on' the .
model plant parameters. The computer program uses mid¥lQ76
costs as a basis with an escalation rate of 7.5 percent per
year through project completion. Results of the cost esti-
mates are expressed in mid-1980 dollars.

Averaging Times
!

The average time period over which an emission regula-

tion must be met has a significant impact on the design and

applicability of various control techniques. Averaging
times will have the most impact on SO2 emission regulations.
Factors affecting averaging times include the sulfur vari-

ability in fuel, the reliability of the pollution control

xii
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system, variations in system load, and the efficiency and
flexibility of emission control equipment. If the 80,
control method is an FGD system, the system must be désigned‘
to cope with a higher average sulfur content in the fuel for
shorter averaging periods.

For purposes of evaluating the impacts of various
averaging times on the costs of compliance, a lime FGD
system was costed for plants of three sizes,‘three'types of
coal, and fér four averaging periods. Coals chosen for
analysis are listed in Table 6. Also presented in the table
are average sulfur contents for each size plant over the
various averaging times. For each size plant, a lime FGD
system was costed designed for 90 percent 802 removal on the
average sulfur content indicated in Table 6. Results of the
cost analysis are presented in'Tables 7; 8, 9, and 10.

As the results indicate, costs will increase as the
averaging time is shortened. The effect is also more sig-
nificant for smaller units due to the increased variabilitj
of sulfur as the guantity used during the avg:aging time
decreases. For instance, in the 3.5 percent sulfur case,
reducing the averaging time from 1 year to 3 hours increases
capital costs by 4.5 percent for the 500 MW case com-
pared to 4.0 percent for the 1000 MW case. Also as the coal

sulfur content decreases, the cost impacts of shorter

XX
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averaging times decrease. For the 0.8 percent sulfur éase
the differential capital costs between 1 year and 3 hqur
averaging times varies from 3.9 percent for the 500 MW case
to 1.7 percent for the 1000 MW case. Impacts on‘annual
operating costs are not significant since their costs
reflect the average annual sulfur content of the coal.

For this cost study, an averaging time of 3 hours was
used as a basis for determining FGD system costs.

Redundancy

In reviewing air pollutant limitations and their cost
implications, another consideration is the required opera-
tional availability of the control method. The major impli-
cation for this study is the availability required of an FGD
system meeting a 3-hour average emission limitation. The
availability of an FGD system is directly affected by the
redundancy built into the system via use of spare components.
For purposes of the cost analysis a single spare module was
assumed to be required for each boiler with a capacity above
25 MW. This will assure a high level of availability for
the system.

Particulate Emission Control Cost Estimates

To analyze the potential cost impact of revisions to
particulate emission regulations, three particulate control

systems were costed for various size plants at various
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regulation levels for two éoalé (specified in'Table 3‘aé
Eastern 3.48% S and Wéstern 0.8% S coals). Fabric filtérs
were costed fof a regulation level of 13.4 ng/J (0;033_
1b/106'Btu). Cold-side electrostatic précipitatorsrwere

costed for Eastern high sulfur coal to meet levels‘of:13‘

ng/J (0.03 1b/10% Btw), 22 ng/J (0.05 1b/10° Btu), and 43

ng/J (0.1 lb/lO6 Btu). Hbt—side electrostatic precipitators.
were costed on the Western low sulfur coal to meet these

same regulation levels. Venturi scrubbers were costed to

meet  the present regulation of 43 ng/J .and 22 ng/J level.

Results of these cost estimates are presented in Table 11.

As the results indicate, the costs of control devices

increase as the required emission reduction is increased.

Reducing the NSPS from 43 ng/J to 22 ng/J.wbuld increase
capital costs about 5 percent for a cold side ESP onva SQO
MW unit burning Eastern high sulfur coal. For a 500 MW unit
on Western low suifur‘coal, the capital costs forva hoffsidé.
ESP would increase about 30 percent. AThe annual'césts woﬁld
increase about 5vpércent for thé high sulfur cése and 30
percent for the low sulfur case. |

If the regulation were reduced to 13 ng/J, the capital

cost of an ESP for the low sulfur case would increase by 54

percent and by 19 percent for the high sulfur case. Annual

costs would increase by 53 percent for the low sulfur case
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and by 19 percent for the high sulfur case. At a regtlation

level of 22 ng/J, fabric filters appear to be more economi-

-cal for low sulfur coal application than hot side ESP's.'

For the 500 MW case, capital costs are 28 percent less for

the fabric filter and annual costs are 48 percent less.

sulfur Dioxide Control Cost Estimates

TQ ahalyze the potehtial economic impéct.of feVisions
to the NSPS for S0, emissions, various cont:ol systemS'WéTer
costed for each of 3 alternative.emissién levels. The first
level examined was the'present NS?S of Slé ng/J (1.2 1b/106.
Btu). For Eastern 3.5 percént sulfur coal,tthe cases -costed
included lime, limestone;,magnesium oxide, double alkali,
and Wellman Lord FGD systems for the 25, 100, 200, 500, and
1000 MW boilers, combined coal cleaning with lime FGD for a
500 MW boiler, and combined coal cleéning Qith 1iﬁes£one FGD
for a 500 MW boiler. Eor Eastern 7.0 percent suifur cpal,‘
éases costed were lime and 1iméstone FGD systems,fdr 25,
100, 200, 500, and 1000 MW boilers. A lime FGD system was
costed for é 500 MW bdiler for both anthracite'and liénité.

Incremental boiler costs were estimated for boilers designed

for Eastern low sulfur, Western subbituminous, and lignitic

- coals versus boilers designed for Eastern high sulfur coal.

Costs were also estimated for the transportation of Western

coal to the Eastern seaboard (i.e. Boston).

. XXix




The second 802 control level examined was a requirement
for 90 percent removal regardless of sulfur content of the
coal burned. For the Eastern 3.5 percent sulfur and 7.0
percent sulfur coals, options costed included lime, lime-
stone, magnesium oxide, double alkali, and Wellman Lord FGD
systems for the 25, 100, 200, 500hand 1000 Mw boilers;

Cases costed for Western subbituminous coal were lime and
limestone FGD for 25, 200, and 500 MW boilers. A lime FGD
system was also costed for anthracite and lignite for a 500
MW boiler.

The third 802 emission limitation examined was 215 ng/J
(0.5 1b/106 Btu) . Oétions evaluated included lime and
limestone FGD on Western subbituminous coal. Other optiohs
cevaluated included combined coal cleaning and limelFGD and
combined coal cleaning and limestone FGD on Eastern 7.0
percent sulfur coal.

The costs estimated for each of the thions are pre-
sented in Table 12.

The incremental cost of going from the 516 nanograms
per joule (1.2 lb/lO6 Btu) to the 90 percent control case
varied in capital cost from 10-12 percent for 3.5 perceﬁt
Eastern coal to less than one percent for 7.0 percent Eastern
coal. Annualized costs show approximately the‘same percentage ‘ -

increases. Assuming that power plants currently using

XXX
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Western low sulfur coal do notlhave‘tp use fiue gas desdi—
furization under ﬁhe present NSPS, the cost impact of a
revised NSPS amounts to the entire investmen£ and annualized
cost of control. | |
It should be noted that while the investment cost  of
the combination of FGD and coal cleaning is close to ﬁhat
of the 90 perdent FGD alone the"total annualized cosfs are
60 percent greater for both the base case and the 215 ng/J .

(0.5 lb/lO6 Btu) case.
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1.0 INTRODUCTION

In support of a program‘to review New Source Perform—
ance Standards (NSPS) for particulate and sulfur dlox1de |
(SO2) emissions from coal—flred steam generators, thé‘U.S.
Environmental Protection Agency (EPA) is prepering estimates
of the costs of air pollution control equipment. The pro-
gram 1ncludes cost estimates of the various control alterna—
tives available to meet the present NSPS of 43 ng particu-
late per joule of heat input (0.1 lb/lO6 Btu) and 516 ng SO,
per joule of heat input'(l.z 1b/106'Btu), with comparative
cost estimates to’meet elternative emission 1evels.of 22 ng
jparticulate per joule heet input (0.05 lb/l(l6 Btu), L3rng

particulate éer joule heat input (0.03 lb/lOG,Btu), 215‘ng
50, per joule heat input (0.5 lb/lO6 Btu), and 90 pereent
reduetiou of potential,SQ2 emissions. EPA has contracted
with PEDCo Environmental,'lnc. to develop cost estimates for
flue gas desulfurization (FGD) systems, physicai coal clean-
ing facilities, electrostatic precipitators (ESP), fabric
filters, venturi scrubbers, cost differentials of boilers

designed for western subbituminous coals, and transportatidn

of coal from the west to eastern markets for each of the




alternative emission levels. Model steam—-electric generating
plants of various sizes were used as a basis for estimating
these costs.

In Section 2 the various emission control alternatives
considered in the study are described. Section 3 présents
the cost estimates for the particulate emission control
devices. S02 emission control alternatives cost estimates
are presented in Section 4. 1In Section 5, the coﬁcept of
averaging time and its effect on emission control requiré—
ments is presented. Section 6 describes the combinatioﬁ of
physical coal cleaning and FGD as an SO» emission control

alternative.




2.0 EMISSION CONTROL ALTERNATIVES TO MEET

REVISED NSPS.

The revisioné to the NSPS for particulate eﬁiSsions
being considered in this Study aré 22 ng/J (0.05,lb/106 Btﬁ)
and 13 ng/J (0.03 lb/lO6 Btu) . . Control’devices available to
attain these emission levels are electrostatic precipitators‘
(ESP) and fabfic filters. Wet venturi scrubbers méy be
utilized to attain the present NSPS level of 43 ng/J (0.1
1b/106 Btu) and also the 22 ng/J (0.05 1b/106 Btu) particu-
late emission lével.

'The alternative NSPS‘being considered for 802 emissions
are 215 ng/j (0.5'lb/106 Btu) and 90 percent cont:ol,

Control techniques available to meet these alternétiVe' 
standards are FGD and combined physical coal cleaning and
FGD. To meet the present NSPS of 1.2 1b 802/106 Btu, low
sulfur coal alone may meet the standard. But ény-new
standard based on a pefcentége reduction precludes the use
of low sulfur coal without FGD.

2.1 PARTICULATE EMISSION CONTROL ALTERNATIVES

This study consider; 3 particulate contrél devices:
ESP's, fabric filters, and venturi scrubbers. The following
sections describe these control devices and their capa-

bilities.

2-1




2.1.1 Electrostatic Precipitators

Electrostatic precipitation is a physidal process for
the removal of suspended particulates from a gas stream.
The particles are charged electrically and separated'from
the gas streams by contact with collecting surfaces having
the opposite electrical charge. The agglomerated dust is
periodically removed from the collecting surface by vibrat-
ing or rapping the surface. This dust drops from the
electrical zone to hoppers for ultimate disposél. Com—~
mercially available precipitators include sections of
collecting plates, discharge electrodes, rapping devices,
dust hoppers, enveloping insulation and casing, and the
appropriate electrical energizing equipment. |

Current ESP units, both those treating flue gas from a
heat source and those collecting particulates emitted from
processes are greatly improved from those désigned as
recently as the middle 1960's. This can be attributed to
stringent regulations, more accurate techniques for per-

formance prediction, utilization of computers for calcula-

tions, superior construction materials, high quality auxiliary
components and the availability of a useful base of recent
ESP performance experience.

On utility coal-fired boiler applicatidns, ESP's can

achieve emission levels as low as 13 ng of particulate per

joule of heat input (0.03 1bs/106 Btu) .




2.1.2 PFabric Filters

Fabric‘filters may be used for the removal of sﬁsPendedv
particles from gas streams. The patticles are remoVea‘by
passage of the gas'étreém through woven cloth or fiberglass
which prevent particles from passing through. The aéglo-
merated dust is periodically removed from the fabric'by |
mechanically shaking the fabric or by blowiﬁg airvin a »
reverse directiOnvthrough the fabric. The dust is céllected
in hoppers at the bottom qfvihe filter for ultimate dis-
posal. The system cqnsiéts of bags, shaking deVic;slbr a
vreverse air system, dust hoppers, and enveloping casingAandkn
insulation. |

On utility coal-fired boiler applications, fabrié
filters can achieve emission levels of abéut 13 ng particu-

late per joule of heat input (0.03 lb/lO6 Btu).

2.1.3 Venturi Scrubbers

Venturivscrﬁbbers are effective in removal of suspended
particles from gas'stieams. The particlesvare removedlby
contact with atomized water droplets and.subséquent removal
of the water droplets and wetted particles. The collected
water and particulate matter must be treaied to prevént'
water pdllution. Generally the efficiency of é ventufi

scrubber increases with pressure drop.

The system consists of the scrubber,’pumps, an entrain-




ment separator and a fan to overcome the pressure drop.

On utility coal-fired boiler applications, venturi
scrubbers can achieve emission levels of about 43 ng/J'(O.l
1bs per million Btu) of particulate at moderate pressure
drops (10-20 inches Hzoj. At greater pressure drops (20-30
inches H20), venturi scrubbers can achieve emission levels
of 22 ng/3 (0.05 1b/10° Btu).

2.2 SULFUR DIOXIDE EMISSION CONTROL ALTERNATIVES

Several methods exist by which Soz.emissionS‘may be
reduced to levels required to comply with NSPS. In this
study the following control technologies were conéidered:
flue gas desulfurization (FGD) and coal cleaning in combina-
tion with FGD. The following sections describe these con-

trol technologies and their capabilities.

2.2.1 Flue Gas Desulfurization (FGD)

Several FGD processes have been developed for the
removal of sulfur dioxide from flue gases before the gases
are discharged to the atmosphere. Flue gases are brought
into contact with a chemical absorbent in a unit desc;ibed
as an absorber. Thé absorbent reacts chemically with SO, to
produce a slurry containing dissolved or solidified sulfur
compounds. FGD processes are classified as regenerable or
nonregenerable, based on whether the SO, is separéted from
the absorbent as a by-product or discarded along with the
absorbent as waste. VNonregenerable processes produce é

sludge that requires disposal in an environmentally sound
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‘manner. Regenerable processes 1nclude add1t10na1 steps to
process the sulfur 1nto 11qu1d 802 sulfurlc acid, or -
elemental sulfur.

Most FGD pProcesses in use in the United States are
nonregenerable, using‘iime or limestone for scrubbing. A
recirculating alkaline slurry of lime or limestone in water
is contactedeith SOZ in the gas stream. The slurry reacts
with the 802 to form various'sulfite and sulfate salts. The
salts are removed from the water by means of settlers,
clarifiers, or filters. The sludge produced is either
chemically stabilized and disposed of as an inert landfill
material or stored as an unstabilized sludce in a clay-
lined pond.

The regenerablekprocesses offer certain advantagesvover
the nonregenerable ones. ‘No solid waste is eccumulared, aud
resulting by-products may have a market value. Also, total
waste stream quantities are significantly reduced Among
the regenerable processes the most common are the sodlum
solutlon scrubbing (Wellman-ILord), magne31um oxide slurry
‘scrubblng (Mag-0x), and catalytic oxidation (Cat-0x) pro-
cesses. The Wellman-Lord proceSS'abSOrbs SO2 in a sodium
sulfite/bisulfite solution, which is.then heated in a
separate vessel to liberate a gas‘containing 802 in a high
cohcentration, which is further processed into commercial

grade SOZ' sulfuric acid, or elemental sulfur. In the Mag-y




Ox process, dilute magnesium oxide slurry is used as tﬁe
scrubbing absorbent. The spent slurry is regenerated, and
the 502 is converted into commercial-grade sulfuric acid.
The regenerated solids are recycled for reuse. In the Cat-
Ox process SO, is directly removed by converting it cat-
alytically into sulfuric acid. Regenerable processes
require the utilities to enter the chemical manufacturing“
business, and the utilities must then be staffed with people
who are able to compete with established chemical producers.

FGD systems can generally be designed to pro&ide SO2
removal efficiencies of 80 to 95 percent under most condi-
tions of practical operation.

2.2.2 Combined Physical Coal Cleaning and Flue Gas
Desulfurization

Physical coal cleaning entails the use of specially
designed equipment that separates coal froﬁ assodiated
minerals, clay, slate, and other impurities. These separa-
tions are based on differences in the physical propertieé of
coal and its impurities, such as density, surface charac-
teristics, and size and shape of the particles to some
extent. Sulfur occurs in coal in three forms: mineral
sulfur (pyrite), organicaily bound sulfur, and sulfate
sulfur. The pyritic form of sulfur is the only form remov-

able by coal washing techniques.

o
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- removed by coal washing. The pyrite content of coal accounts

, ‘As much as 80 percent of the pyritic sulfur can be

for 20 to 80,percent'of the.total sulfur cohtent, depending
on the particular coal analysis. |

The firSt'stép in coal preparation is size reduction.

"In a conventional coal preparation plant, incoming coal is

coarsely crushed to a top (largest) size of about 1-1/2

inches. Coarse grinding minimizes the quantity of fine

coal. The degree of size reduction depends on the type of

coal cleaning operation and the hardness of the coal.
Grinding liberates mineral impurities associatéd_with the
coal. The ground>coal is passed over screens for separation
into various size fractionms..

The coarse fractions of‘the ground coal (down to 1/4
inch).can be cleaned in jigs; heavy-media equipment, air
tables, and depending on‘the top size, Deistervtables;,
Although these coarée coal cleaning procesées operate on
different principles,'all are designed to remove mine;al‘
matter (ash) from coal. |

The fine coal circuit uses heavy-media cyclones,
Deister tables, and froth flotation equipment for cleaning.
Cyclones and tables are effective for sizes down to 100 mesh;

froth flotation systems are required for cleaning finer

particles.




The design of coal preparation circuitry must be based
on expert analysis of detailed coal washability data and on
practical experience with the various unit operations. The
key factor in satisfactory performance of a coal preparation
plant is the degree to which the coal samples used in the
washability test are representative of the total coél seam.

Physical coal cleaning alone is unlikely to produce
coal complying with NSPS. Further reduction in soé is
usually necessary to attain levels of 1.2 1b 802/106 Btu or
lower. This can be achieved by using an FGD system on the-

boiler using cleaned coal.
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3.0 PARTICULATE CONTRQL SYSTEM COSTS

The capital and.annualized costs of particulate:coﬁtrol
systems cen vary depending on several fectOrs. Factors of’
major cost 1mpact are b01ler size and capac1ty factor, type
of partlculate control system, ash content and heatlng valuev

of the coal; max1mum allowable particulate emission rate;

- boiler status (new or retrofit installation); and replace-

ment power requirements.

To present unencumbered cost estlmates and 111ustrate‘
the impact of 51te and process factors on total capital and
annualized costs of»particulate control systems, a model
plant approach was used. The following sections defice thev‘
model plants, the cost methodology, and present the fesuits

of the cost estimates.

‘3.1 COST ELEMENTS

The capital cost of a particulate control systemris‘
composed of direct and indirect costs incurred up to the
successful commissioning datevof the facility. Direct costs
include the cost of various equipment items and the labor

and material required for installing the equipment items and

interconnecting the system. Indirect costs are costs that




are necessary for the overall facility but cannot be attri-
buted to a specific equipment item. Indirect costs include
such items as freight, spares, interest, taxes, etc.

Operating costs of a facility include labor, raw mate-
rials, and utilities required to operate the system on a
day-to-day basis; These costs include such itéms as elec-
tricity, water, operating labor, etc.

A brief description of the capital and annual operaﬁing
cost components and the procedure used to obtain their
values is presented in this section.

3.1.1 Capital Costs

A discussion of capital costs for particulate control
systems follows under the headings "Direct Costs" and "In-
direct Costs."

Direct Costs

The "bought-out" cost of the equipment and the cbst of
installing it are considered direct costs.‘ Installation
costs also include the interconnection of the system, which
involves piping, electrical, and other work for commis-
sioning the system. Installation of the equiément includes
foundations, supporting structures, enclosures, piping,
ducting, control panels, instrumentafion, insulation, paiht—
ing and other similar items. Cosﬁs for iﬁterconnection of

the various particulate control equipment involve site
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development constructlon of access roads and walkways, and
the establishment of rail, barge, oxr truck fac111t1es. ‘The
cost of administrative faCIIltleS is also con31dered as a.
part of the direct costs. «7

Various procedures for estimating the direot costs are
available, each using a different route to obtain an in-
stalled cost of a facility. In this study, the installa-
tion-factor technique is used to estimate total directl
costs. |

The bought—oﬁt cost of each equipment item is ﬁulti—
plied by an individual installation factor to obtain the
installed cost. This installed cost also includes the
proportional cost of interconnecting the equipment into the
system,  The installation factors are based on the com-
plexity of the equipment and the cost of the materialjaod
labor required. - The installed costs ofrall the equipmeht
are sdded together to obtain the total direct‘cost of‘the
facility. |

Direct capital costs for an electrostatic precipitator
include the purchase and installation of the ESP, the duot—
ing connecting the ESP to the unit, and the ash handllng
and disposal system. The ESP includes tﬁe housing, dis-
charge electrodes, collectlng plates, distribution plates,
rappers, transformer-~rectifiers 1nsu1ators, bracing, sup-

ports, hoppers, and foundations.




The direct capital costs of a venturi scrubber include
the purchase and installation of equipment including the
scrubber, pumps, circulation tanks, tie-in ducting, founda-
tions and support, and an ash disposal systém.

The direct capital cost for a fébric filﬁer:includés
the purchase and installation of the fabric filter, ducting
connecting the fabric filter to the unit, and the ash
handling system. The fabric filter includes the housing,
bag supports, bags, shakers or reverse air system, insuia-

tion, bracing, supports, hoppers, and foundations.

Indirect Costs

The indirect costs of particulate control systems
include the following:

Interest accrued during construction on borrowed
capital.

Engineering costs: includes administrative, process,
project,; and general; design and related functions for
specifications; bid analysis; special studies; cost ‘
analysis; accounting; reports; purchasing; procurement;
travel expenses; living expenses; expediting; inspec-—
tion; safety; communications; modeling; pilot plant
studies; royalty payments during construction; training
of plant personnel; field engineering; safety engineer-
ing; and consultant services.

Field overhead: includes the cost of securing permits,
and right-of-way sections, and the cost of insurance '
for the equipment and personnel on site.

Freight: includes delivery costs on process and related
equipment shipped f.o.b. point of origin.

Off~gite expenditures: includes those for powerhouse

modifications; interruption to power generation; and




service facilities added to the existing plant facil-
ities. . v

Taxes: includes sales, franchise, property, and excise .
taxes. ‘ ' :

Spare parts: (stocked to permit maximum process avail-
ability): includes pumps, valves, controls, special
piping and fittings, instruments, and similar items.

Shakedown: includes the costs associated with the
system start-up. -

Contractor's fee and expenses: includes costs for field
labor payroll; supervision field office; administrative
personnel; construction offices; temporary roadways;
railroad trackage; maintenance and welding shops;

- parking lot; communications; temporary piping and
electrical and sanitary facilities: rental equipment;
unloading and storage of materials; travel expenses;
permits; licenses; taxes; insurance; overhead; legal
liabilities; field-testing of equipment; start-up;
labor relations. : '

Contingency costs: includes those resulting;from mal-"
functions, equipment design alterations, and similar
unforeseen sources. o

Land cost: includes only the cost of the land required

for sludge disposal. The cost of land for installing

equipment items is accounted for in the installation

factors. 7 :

All the indirect cost compohents, except the land cost,
are estimated by multiplying the direct costs by a indirect
cost factor; the land cost is based on land rate and the

disposal area required.

3.1.2 Annual Operating Costs

Generally calculated on an annual baSis, the operating

costs of a particulate control system are comprised of:




Utilities: includes water for slurries; and electricity
for pumps, fans, valves, charging electrodes, rappers,
compressed air systems, lighting, and controls.

Operating labor: includes supervision and the skilled
and unskilled labor required to operate, monitor and
control the system. ‘ "

Maintenance and repairs: consists of both manpower and
materials to keep the units operating efficiently. The
function of maintenance is both preventive and correc-
tive, to keep outages to a minimum.

Overhead: represents a business expense that is not
charged directly to a particular part of a process but
is allocated to it. Overhead costs include administra-
tive, safety, engineering, legal, and medical services;
payroll; employee benefits; recreation; and public
relations.

3.1.3 Annual Revenue Requirements

The capital investment of a pollution control system is

generally translated into annual fixed charges. These
charges, along with the annual operating costs, represent
the total revenue requirement of a particulate control
system.
The annual fixed charges are classified under four cost
components: depreciation, taxes, insurance, and capital
costs. The component costs are summed to obtain the‘total
fixed changes.
Depreciation: The value of the depreciation component .
is obtained by using a straight-line depreciation over '
the life period of the pollution control system. A 20-
yvear life is assumed for depreciation purposes. The .

annual cost is calculated by dividing the total capital
investment by the assumed years of life.




Y

Taxes: The value of the tax'component is calculated by
‘multiplying the total capital cost by the input tax ‘
rate. The tax rate can vary for different plants.

Insurance: The value of the insurance component is
obtained by multiplying the total capital cost by the
insurance rate for the pollution control system. A
constant insurance rate of 0.3 percent is assumed.

Capital charges: The value of capital charges repre-
sent the 1interest paid per year for the usage of
capital. The value of this component depends on the
applicable rate of interest for the borrowed capital.
The value is obtained by multiplying the total capital
cost by the input interest rate.

The total annual fixed charges are obtained by adding
the values of the above four components. The total annual
:revenue required can then be obtained by adding the annual
operéting costs to the total annual fixed charges.

3.2 COST ESTIMATING APPROACH

A model piant approach was used in estimating the costs
of particulate control on newtcoai-fired boilers. T&piéél
plants were defined with characteristics intended to be
represéntative of the electric utility industry. ' Charac—
‘teristics of the model plants are presented in'Table 3-1.
Analyses of the coals used in the calculation of costs are

given in Table 3-2.
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Table 3-2. COAL ANALYSES USED IN CALCULATING

PARTICULATE CONTROL COSTS

' ‘ v% Sulfur, | Ash, % 3 Heating value, -
Coal type by wt. | by wt. | 10 joules/kg (Btu/1b)
Eastern bituminous 3.5 14 5,737 (12,000)
Western subbituminous 0.8 8 4,781 (10,000)

The model plants were selected to incorpcrate four
varying cost factors: plant size (capacity), particulate
. control system type, coal analysis, and degree_cf pérticu—
late control reqﬁired. Boiler sizes»of 25, 100,'200, 500,
and 1000 MW were selected to cover the range of new coal-
fired utilityvboilers.

These regulation levels were chosen for the analysis‘in -
order to determine the economic impact of tightening the =
NSPS.fcr particulate'emissions from utility coal—fired‘

6 Btu), 22

‘boilers. Levels examined were 43 ng/J (0.1 1b/10
ng/J (0.05 1b/10% Btu), and 13 ng/J (0.03 1b/10% Btu).
Three types of control devices were costed according to the
capabilities of the control device;

Electrostatic precipitators were costed to meet all
three regulation levels. Design parameters used for the

ESP's are presented in Table 3-3. These parameters were

specified by EPA based on typical design for the particular

coal types.
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-. Fabric filters were costed only to meet the 13 ng/J
vregulation level. Design parameters for the fabricifilters
“are also presented in ?able 3-3. These are basedvon'defa

obtained from fabric filter vendors. Venturi scrubbers were .
costed to meet the 43 ng/J level and the 22 ng/J level wiﬁh
the costs reflective of venturis used conjunction with a
flue gas desulfurization system. Design pafamete;s for the
venturi scrubbers are presented in Table 3-3. vThese‘are
based on data from vendors and designs used at utility
plants. The two coal types presented in Table 3-2 were used
in eachicase.‘ | |

3.3 MODEL PLANT‘COSTS

A summary of the results of the cost analysis for par-
ticulate control is presented in Table 3-4. The costs erer‘
in August 1980 dollars and iﬁclude escalation through ﬁro-
ject completion.‘ The escalation rate used was 7.5 percent
per year. .

The results indicate that for a particular control
deviee, costs increase as the emission limit is lowered. At
the 43 ng/J limit, ESP's are more economical on high sulfur

coal than venturirscrubbers, while ventutis are more eco-
nomical on low sulfur coal applications.

If the emission limitation were 22 ng/J, the capital

costs of a cold-side ESP on high sulfur coal would increase

about 5 percent for a 500 MW unit, while the capital costs
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of a hot-side ESP on Western low sulfur coal would increaSe 
about 30 percent. Annual costs would be similarly affeeted,
 with increases of 5 percent and 30 percent for the cold-side S
. and hot-side applications respectively.
lfrthe regulation level were reduced from 43 ng/J to 13
ng/J, the capital cost of a hot-side ESP on low sulfur coal
. would increase by 54 percent for the 500 MW case while the
. cost of a cold~side ESP on high sulfur coal would increase
by 19 percent. Annual costs would be increased by 53 per-
cent for the low sulfur case and by 19 percent forrthe‘high | %
sulfur case. For this case, the most economical option on
low sulfur coal is a fabrlc filter. Compared to a hot-side.
ESP, a fabric filter on a 500 MW boiler burning Western low
sulfur coal costs 28 percent less with respect to cap1ta1
costs, and 48 percent less with respect to annual costs.

Samples of detailed cost breakdowns are included in

Appendix A.

- 3.4 ENERGY PENALTIES

The energy penalty must be considered when ealculating,
the costs of emission control systems. Electrical power
. consumption by the emission control process reduces the net
amount of power generated and additional Btu's are required
to produce a net kilowatt-hour of electricity.
The additional power-generating capacity required to

compensate for the power used by the emission control system




evaluated is listed as a capacity penalty. This penalty is
discussed in Subsection 3.4.1. Subsection 3.4.2 discusses
the energy penalty which represents the increased number of
Btu's required to produce a net kilowatt-hour of electricityi
These penalties are expressed both as a perceﬁtéée and as

an additional operating cost in mills/kWh.

3.4.1 Emission Control Capacity Penalties

Particulate emission control methods cause losses in
net generation by a power plant that sometimes require the
addition of generation capacity. Factors that affect the
cost of diverting a portion of a utility's electric genera-
ting capacity to supply the energy requirements of environ-
mental control equipment or to replace iost capacity are
listed below:

A. Percentage of unit capacity needed to supply the

electrical energy requirements of environmental

control equipment.

B. Percentage of the total system capacity to be
equipped with environmental control equipment.

C. System capacity in MW.
D. Annual load growth of the gystem.

E. Size of reserve capacity in the year that the
environmental control equipment is added.

F. Reserve capacity requirement:

1. Unit reliability by type of unit
2. Unit reliability by size of unit

3. Shape of load curve

4. Mix of generating capacity

5. Maintenance and overhaul
3-14
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Capability of interconnections.
Potential for interchange purchases and sales:

1. Short-term firm.
2. Economy transactions

Availability of unit participation..

Cost per kW of added generating capacity:

1l.- For each type of capacity (i.e., nuclear,
fossil steam, gas turbine)

2. Economics of scale

3. Price escalation

Cost and availability of fuels.
Load chatacteristics:

1. Load factor ‘ :
2. Relative magnitude of monthly peak loads

Mix of generating plant capacity,vpresent and
future.

Financing cost parameters, including cost of
capital, depreciation, tax rates, and insurance.

The costs presented in Section 3.3 do not include the

costs of replacement capacity but do include the costs of

purchased power which reflects the recovery of capital costs

of generating units supplying the power. Values of the

capacity losses due to the control options evaluated are

presented in Table 3-5 expressed as a percentage of the

plants gross generating capacity.

3.4.2 Emission Control Energy Penalty

The energy penalties associated with particulate emis-

sion control devices vary depending upon the control method
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used. Energy is consumed by fans, motors, pumps, and in the
case of an ESP, the electrical energization of the collecting
surfaces. The energy penalty associated with particﬁlate
;icontrolrmethods‘is identical to the‘capacity penalty since
no externai enérgy is required for reheat. Table 3-5
presents these penalties as a percentage of the plants grosé
rgenerating capacity. Table 3-6 presents the energy penalty
as an annualized charge in mills/kwh.
3.5 CoOsT COMPARISON
" The costs developed by PEDCo in this study were based
on information obtéihed from vendors of ESP's and from
utilities having ESP's installed on coal-fired boilers. 1In
a report entitled "Electrostatic Precipitator Costs for.
Large Coal-fired Steam Generators" the Inaustrial Gas
Cleaning Insﬁitﬁte (IGCI) has publiéhed costs for ESP's on
coal-fired boilers. The IGCI costs will be compared with
those obtained inrthislstudy‘for purposes of clarifying any
differences in the cost estimating procedure. |
Tablé 3-7 presents a detailed breakdown of costs
developed by PEDCo and by IGCI for a cold-side ESP on a 500
MW boiler burning high sulfur (3.5%) coal. The ESP's are
designed to meet a 13 ng/J (0.03 1b/10° Btu) regulation
level. The IGCI costs are interpolated from costs for a 200

MW unit and a 700 MW unit or a straight-1line basis.
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Table 3-7. COMPARATIVE CAPITAL COSTS FOR A COLD-SIDE ESP

ON A 500 MW BOILER

Cost Item " PEDCO IGCI* |
ESP $ 4,669,285 $ 8,247,863 i
Ash Handling $ 1,755,274 $ .'153,530 ;
Ducting $ 1,234,321 | E
Direct Total $ 7,658,880 $ 8,401,393
Indirect Costs $ 2,584,872 $ 659,070
Contingency $ 2,048,751 $ 190,804
Turnkey Cost  $12,292,503 $ 9,251,267

* Totals interpolated on straight line basis from IGCI ‘ ;
figures for 200 and 700 MW boilers. ' B




As seen in the table, the main difference between the
cost estimates is in the indirect charges and the contin-
gency. These charges are calculated as a fixed percentage
of direct capital costs based on assumptions made by the
organization making the estimate. PEDCo's cost estimating
procedure is designed to predict costs in the + 20 percent
accuracy range based on non-site-specific information. For
this type oﬁ estimate, indirect costs are calculated as
33.75 percent of the direct costs and the contingency is
calculated as 20 percent of the sum of direct and indirect
costs. IGCI uses about 8 percent of direct costs for in-
direct costs and about 2 percent of direct and indirect
costs for a contingency. These values appear tq be very low
for non-site-specific estimates.

The difference in the ESP costs as shown is about 10
percent which could be accounted for by the interpolation
used to obtain the IGCI costs. A straight-line interpola-
tion would produce higher costs than actual since coéts do
vary exponentially with size. It should also be noted that
IGCI does not break out their cost estimates the same as
PEDCo, so the most meaningful number for comparison is the

total direct costs.




4.0 502 EMISSION CONTROL SYSTEM COSTS

The capital and annﬁalized costs of sulfur dioxide
control systems can vary depending on severalbfactors.
Factors of major cost 1mpact are boiler size and capac1ty
factor; type of SO2 control system; sulfur content and
heating value of the coal; maximum allowable 502 em1531on
rate; boiler status (new or retrofit 1nstallat10n), replace-
ment power requirements and byproduct disposal requireménts.

To present unencumbered cost estimates and illustrate
the impact of site and process factors on total capital and
annualized costs of 803 control systems, a model plant
approach was used. The following sectioﬁs define the model
plants, the cost methodology, and present the results of the
cost estimates.

4.1 COST ELEMENTS

The capital cost of a SO2 control system is composed of
direct and indirect costs incurred up to the successful
comm1551on1ng date of the facility. Direct costs include
the cost of various equipment items and the labor and mate-

rial required for installing the equipment items and inter-

connecting the system. Indirect costs are costs that are -




necessary for the overall facility but cannot be attri-
buted to a specific equipment item. Indirect costs include
such items as freight, spares, interest, taxes, etc.

Operating costs of a facility include labor, raw mate-
rials, and utilities required to operate the system on a
day-to-day basis. These costs include such items as elec-
tricity, water, operating labor, etc.

A brief description of the capital and;annual operating
cost components and the procedure used to obtain their
values is presented in this section..

4.1.1 Capital Costs

A discussion of capital costs for S0, control systems
follows under the headings "Direct Costs" and "Indirect
Costs."

Direct Costs

The "bought-out" cost of the equipment and the cost of
installing it are considered direct costs. ‘Installation
costs also include the interconnection of the system, which
involves piping, electrical, and other work for commis-
sioning the system. Installafion of the equipment includes
foundations, supporting structures, enclosures, piping,
ducting, control panels, instrumentation, insulation, paint-
ing and other similar items. Costs for intérconnection of

the various SO, control equipment involve site development,




construction of access roads and walkways, and the estab-
1iShment of rail, barge, or truck facilities. The cost of
administrative facilities is also considered as a part of
the direct costs.

Various procedures for estimating the direct costs are
available, each using a different route to obtain an in-
stalled cost of a facility. 1In this study, the installa-
tion—faétor technique is used to estimate total direct
costs.

The bought-out cost of each equipment item is multi-
plied by an individual installation factor to obtain the
installéd cost. This installed cost also includes the
proportional cost of interconnecting the equipment into the
system. The installation factors are based on the com-
plexity of the equipment and fhe cost of the material and
labor required. The installed costs of all the equipment
are added together to obtain the total direct cost of the
facility.

Direct capital costs for an FGD system include the
purchase and installation of equipment including absorbers,
fans and motors, reheaters, soot blowers, pumps, tanks,
agitators, raw material preparation and storage equipment,
byproduct dewatering equipment, sludge disposal or byproduct

recovery facilities, foundations, and support. The com~




ponents vary depending on the type of absorbent used in the
system.

Direct capital costs for a physical coal cleahing
facility include the purchase and installation of equipment
including crushers, conveyors, tanks, vessels,lcyclones,
screens, centrifuges, sieves, classifiers, bins, filters,
and a thermal dryer.

Indirect Costs

The indirect costs of 802 control systems include the
following:

« Interest accrued during construction on borrowed
capital.

Engineering costs: includes administrative, process,
project, and general; design and related functions for
specifications; bid analysis; special studies; cost
analysis; accounting; reports; purchasing; procurement;
travel expenses; living expenses; expediting; inspec-
tion; safety; communications; modeling; pilot plant
studies; royalty payments during construction; training
of plant personnel; field engineering; safety engineer-
ing; and consultant services.

Field overhead: includes the cost of securing permits,
and right-of-way sections, and the cost of insurance
for the equipment and personnel on site.

Freight: includes delivery costs on process and related
equipment shipped f.o.b. point of origin.

Off-site expenditures: includes those for powerhouse »
modifications; interruption to power generation; and
service facilities added to the existing plant facil-
ities. , .

Taxes: includes sales, franchise, property, and excise
taxes.




en P <

Spare parts: (stocked to permit high process avail~-
ability): includes pumps, valves, controls, special. . ‘
piping and fittings, instruments, and similar items. :

Shakedown: includes the costs associated with the
system start-up. o '

Contractor's fee and expenses: includes costs for field
labor payroll;

Supervision field office; administrative
personnel; construction offices; temporary roadways; .
railroad trackage; maintenance and welding shops; ‘ |
parking lot; communications; temporary piping and ' :
electrical and sanitary facilities; rental equipment; :
- unloading and storage of materials; travel expenses; f
permits; licenses; taxes; insurance; overhead; legal
liabilities; field-testing of equipment; start-up;
labor relations.

Contingency costs: includes those resulting from mal- -
functions, equipment design alterations, and similar i
unforeseen sources. : v Co

Land cost: includes only the cost of the land required | -
for sludge disposal. The cost of land for installing

equipment items is accounted for in the installation , B 3
factors. .

All the indirect cost componenté, except therland cost;
are estimated by multiplying the direct costs by a indirect
cost factor; the land cost is based on land rate and the
disposal area required.

4.1.2 Annual Operating Costs

Generally calculated on an annual basgis, the operating

costs of an 502 control system are comprised of:

Utilities: includes water for slurries, cooling, and
brocess use; electricity for pumps, fans, valves,

lighting, and controls; and fuel or steam for reheat if
: required. ‘




Operating labor: includes supervision and the skilled
and unskilled labor required to operate, monitor and
control the system. »

Maintenance and repairs: consists of both manpower and

materials to keep the units operating efficiently. The
function of maintenance is both preventive and correc-

tive, to keep outages to a minimum.

Overhead: represents a business expense that is not
charged directly to a particular part of a process but
is allocated to it. Overhead costs include administra-
tive, safety, engineering, legal, and medical services;
payroll; employee benefits; recreation; and public
relations.

4.1.3 Annual Revenue Requirements

The capital investment of a pollution control system is

generally translated into annual fixed charges. These
charges, along with the annual operating costs, represent
the total revenue requirement of an SO2 control systém.

The annual fixed charges are classified under four cost
components: depreciation, taxes, insurance, and capital
costs. The component costs are as follows:

Depreciation. The value of the depreciation component

is obtained by using a straight-line depreciation over

the life period of the pollution control system. A 20-

year life is assumed for depreciation purposes. The

annual cost is calculated by dividing the total capital
investment by the assumed years of life, ‘

Taxes: The value of the tax component is calculated by .,
multiplying the total capital cost by the input tax
rate. The tax rate varies for different plants.

Insurance: The value of the insurance component is
obtained by multiplying the total capital cost by the
insurance rate for the pollution control system. A~
constant insurance rate of 0.3 percent is assumed.




Capital charges: The value of capital charges repre- . f
sent the interest paid per year for the usage of . e
capital. The value of this component depends on the o
applicable rate of interest for the borrowed capital. , ' i
The value is obtained by multiplying the total capltal v : ;
. cost by the input 1nterest rate. ‘ - f

The total annual fixed changes are obtéined by adding

the values of the above four compbnents. Thé‘ total annual ' :
revenue required can. then be obtained by adding the annual :
voperating costs to the total annual fixed charges.
4.2 COST ESTIMATING APPROACH | o - o
A model plant approach was used in esﬁimating the costé ’ §
of 502 control on new coal-fired boilers."Typical planfs
were defined with‘characteriStics intended to be representa-
tive of the electric utility‘industry. Characteristics of
the model plants ére presented in Table 4-1. Analyses ofw
the coals used ih the calculation of costs are given:ih
Table 4-2.
The model plants were selected to incorporate four

varying cost factors: plant size (capacity), SO., control

2
system type, coal analysis, and degree of 802 éontrol ré—
quired. Boiler sizes of 25, 100, 200, 500, and 1000 MW were'
selected to cover the range of new coal-fired utility
boilers.

Three regulation levels were examined in the analysis

in order to determine the economic effects of more stringent

4-7
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' NSPS for SO2 emissions for coal-fired utility boilers.
Levels examined were 516 ng/J (1.2 1b/10% Btu), 215 ng/J

(0.5 lb/lo6 Btu), and 90 percent reduction of SO emissions

2
regardless of the level of thé uncontrolled emissions.
Control technologies evaluated varied by control iével and
by coal type. Téble 4-3 presehts a summary of the cases
costed in this analysis.

Other important considerétions in control system costs
are redundancy in the control system and the averaging time
over which a particular emission level must be attained.

Fbr purposes of this study, FGD systems on units larger than

25 MW were assumed to require a single spare module includ-

ing pumps, tanks, and associated equipment. . The cost impli-

cations of requiring a spare moduleﬂare presented in Ap-
pendix B.

The averaging time over which an FGD system must meét
the required s0, limitation was assumed as 3 hours for this
cost study. Section 5 of this report discusses the implica-
tions of averaging time.

The design parameters used for FGD systems in the
analysis are presented in. Table 4-4. The parameters were
developed based on review of existing FGD installations and 
by contacts with the manufactﬁrers of the various FGD sys-

tems.
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4.3 MODEL PLANT COSTS

A summary of the results of the cost analysis arev
presented in Table 4-5. These costs are in Augus£ 1980
‘ aollérs and include escalation through project ébmpletion,
The esCaiation rate used was 7,5 percent per year.

The incremental cost of reducing the S0, emission
standard from 516 ng/J (1.2 1bs/106 Btu) to 90 percent con-
trol va?ies with the sulfur content of the coal. For higher
sulfur contents the impact is much less than for lower Sul—
fur contents. For instance, the capital costs of a lime FGD
rsystem on a 500 MW bqiler increases by only $0.83/kw for‘the
7 percent sulfur coal case, by $14.53/kW for the 3.5 percent
sulfur case, and by $119.42/kW for the 0.8 percent sulfur
case (assuming no FGD is required to meet the 516 hg/J
level). Annual costs are similarly affected‘with costs
increased by 0.19'mills/kWh for the 7.0 percént éulfur case;
by 0.96 mills/kWh.for the 3.5 percent sulfur case, andAby
7.69 mills/kWh for the 0.8 percent sulfur case. Thé resﬁlts
also indicate the single plant application of combined coal
cleaning and FGD is not economical. The only application
where such a combination is feasible is when the use of FGD
alone cannot produce compliance.

Comparing the 90 percent cbntrol case with the 215 né/J

(0.5 lb/lO6 Btu) case the capital costs of a 1ime FGD for a




2 2
”» it T len - !.:»l..L
wnsm
. @0 022 005
“o_ °t sLzt 002
] %] % * 00"rL 14
{1ves W)
$°0 ‘wntm
sttt | st 09°€C 005
se't ]l g6t sLey 00
i vy 0021t s2
{rwea 20t}
970 ‘wasm
' Y] s (o0t | tee}-2e]l 09t jarsfossl fxed sh'y | o062 UL 0t oot | 2r's | osst 005
S'E ‘el
B 0 oo s
23| B0 wo | ot
00| o8 xt 82
V'O "8sSIses
e lwmsiumlus o] mss liner{wasius|uso] m/s [imer fwnssislur o] mug Lol fwsilis|Re 0] WUS | 1n0) wa/sitim N 0] A finoy lem/siie [we o | m/s L vdabe
[ i Y] N it inién [aill] (1G] [odY] {njdey [iE] (N30 3143 ndn | e i
@4 woisw) o iid E L) [ TR} Sujuragd (1) w0)3nsdswes) 3300 231108 |NIImRIdN] )i g Cedhy (0]
oIV ) wej1vwjqe)
| s | %t &3 [0% w5
0
00§
m NPy
W0 §2°9 457y  £57951 £0°0L 92°S 18°y | 65°LEL 0001
252U oW 60°S | #6°SSL I ¥STIL Q2°9 62°5 | ¥E95L 00%
€9l oL {09 117252 | 60°51 98 ir'9 | 9 L2 002
92 22 60°3( | 4178 | 8572K £5°6L 19°1 26°L F15°062 1]}
€552 €5°CL | 0021 vo'REC | 19°02 431} 8511} 80°1X 414
; 0°¢ ‘wnIn
el 9y SHN S“u: 058 Tag ] ut 09°611 1 92°g £2°s €5°c Joo'tee 0w 9y 82°C | 2078t * N we €0 000
'8 'S 92°C | oL’Lrt § 52701 sty 6003t 1ay0t 92°9 8Ly |91°951 | 9C°6 oL's 89€ a,m.NL Mﬁ.n ﬂ" [ 31 M"MN” Sm_
17 $574 on.- _a.s— 63872 8L | U'Ss ﬂ.-a_ £9°Ct s 'S ot | mi €08 8Ly | 920202 §S9°1L 169 8y el 002
sétzl | o971y fse19 | 22ioR2 6978 69:11 1 00-L | 0r°262 [yev0z| 4472t 097L [997°BIC [ €LY 20t [ 1o ULSBZyLCISLy 06 | 6675 | BLOEE ool
€692 62yl [wecan | v2ouc| 65722 16728 j 92701 | 00°90C j28°62 SEOL ety jat6or | €OTIZY  Citit (066 |sees jo0t02) 05001 | 0576 ] 91°82 111
$°C ‘wnin
w0 Jusisstiiwin e 0] avs | inor fuausitelws o] aws junosfunisiin | s o] mwg [mon Junnstiis i e 0] Avs |oner fensitming o} mis Hiemthom
L)) 11160 [aid]) e Ll {rdn paryy [N)60) [ad ! L1603 | *Apoeeed Jajjeg
Q1 PV L @3 §10A(e A 4nog 023 *0-bry 034 W] @ m) anping g tadly (99)
ngR:/eqrT 2°1 1 8sed
SHIATIYNMILTY TOULNOD “0S 40 SIS0D °g-F oTqel

4-1¢€



g 62y |e6e 15151 {0e6 €2 f6yL Jsyot 33 [ 21 £6°¢C il 0’6 12°2 160°¢ | sv'9t 00%
~—WM" 89 £0°S | 6271221266 9z'z 199°L fovdl o2} €9°¢ 56"y 66061 266 92°2 199°¢ toviLl ot 002
o« 2172 | 92’01 ov'EoLBLTOL 92 28 |09°6L €2°iZ] oyl e8°6 A8 | 8O 9v°2 |&'8 | 09'6L 113
0°L ‘wase]
8s°¢ (784 ] 6L'2 | $6°6LL (89 12’y 99°2 | S0l 005
501 6L°9 |SL7€E | €6°69L 1X'6 99°S 05°€ | 89791 002
FIST 99°6 {9r's | uminll 90°6 80'8 | 8992 114
9°0 ‘winsa
A enebow
0o S miss | oavaes | umssiim| wyo| muss Jiwop fumassitiein s 0 /g | 1W0L [umi/Stum NS G MY/ |0 /st Ny 0| mv/s E3}]
et fwuwwwﬁ e _-u.._.“wu ot ::““x"u. ,: *0 10 4de) vo-”w 1e33de) paxi g {934de) [add ¥ |nyde) pIxY3 nydey .»u.uauu 43100
- 094 woisae|] Gujuea|d 1v0) 094 =] bujuea(d (#0) 093 wojisae)] 094 41 anjins 3 ‘8dAY (9]
U0} 30U§qW0) U1 PUIQWO)

(n3g 901/9T 6°0) £/Bu GgTz :€ °o5®D

Bl sy | | u 005 U
N8 i
! . <
: : W] w @2 s 005
. IR
58 | os feoe jozeet fore | oy ez | s 005
ogrit | 8L faty |citeL jevor| w9 st | e0°sol 002
69°61 | SL°0L {968 | 91692 J19'wi| oo 5@ | 25022 ?
, : 0 ‘wnsn
. - . o st | v fos fuastfaen! e (s Jweiieser | ez ooy | sous fevor| s s |zt 0001
BB | s O et L et | v s oees|geei | zze (ses |ies0z) iz | ovr [st's |esiem fecni]| az'e ss | st 005
os'cl | €88 |9y |cecoze |Seiot| 96 L jEvaz el eSOl {9079 | E6TWSZiggear | OLOL [SE'9 [ OLesz JLSLL ute ey | 60'BIZ 002
@0z | weet fe6c9 |epeoee |gaiez g SN J2ET6 QL UDORSE ) gi-sz| 06t 926 | EOTBSE|oc-gz ) €1yt (E2'® | OoeSe HESL| s9thL (86-L | 257162 001
toes | ooeor 592t |ev-aty | seccz| 676U {82t | 26'wE | wsrve | wzoBL [Ov'S | 95ttew | yevsz | 051 |90°2t | esteer | S5°M2| eetal |ostu | e s2
. 0°¢ ‘wnsn
) ) U gvve | ve's f6oty ferveet ) s | oggts |987E leetowiigete | ees  [19ce [ sotver {oe8 | eoy [se | istsu 0001
wo | oS WIS |sen| wes @y Jecest] sl oees sy loswisvor | os fsow |stost |aee | osss loere | v 00
ot czvg |evy |aovs0z | Ozwa] 1978 [6S'S | iS'Sle SE'WLG zpe (€975 jU2UEEZ{o2wl | 66’8 {1275 [B0°SeZ | LWBLE Se'C  fu'S | EzweL 002
el Sy |esare |osoe| aeveee |vetere | 0zz|  siwl {SL'@ filcvse |09t | stz (s69 | c9voir {6e9Lf wcou 19 | eaese 001
0€°82 185t [6v-2t | 9s-ger | BE°NZ 6y°El [68°0L | 09°LEE | SS°U€| 9gzy [66°CL [OV'BEW | oz°22 | sz2i {9v°OL [ 09°z0f | €912 65TIL [v0°0L | 96°682 §2
. G'C 'udysey
te3oy |umissiiml ws o s | imos Jwmssiue| wyof s ] eon fwnsstni weo| wus | tror fumisiim{ we of mus | o junsieiis o] mss 23 emebou
PaX}4 1n40e) paxy4 1#34de) PNy 193469, Cpaxi3 nsn paxy3 1nidn | *A3joeded Jajjog
094 P40T-uvu( 13N 91 1LVAL¥ 2ianog 004 ¥0-6ew ‘ 03 035wy 3 =1 anji8s 3 4200y (10D

Tvaouax ¢0g %Q°06 sz 9S5ED

SAATIIYNYILTIY TOJLNOD N..Om J0 SISOD * (penurluod) G-y SIqeL




500 MW boiler burning 0.8 percent sulfur coal decrease by
$13.98/kW for the 215 ng/J case‘and annual costs decrease by
0.83 mills/kWh; |

Appendix C presents sample detailed breakdowns of costs
for the options evaluated.

The costs do not include 80, monitors that would be
required for the revised NSPS. Based on EPA estimates such
monitors would have a capital cost of about $40,000 and an |
annualized cost of about $12,000. The impacts of these
costs are insignificant with the capital cosﬁ correspondihg
to $1.60/kW on a 25 MW boiler down to $0.04/kW on a 1000 Mw
boiler, and the annual costs corresponding to 0.08 mills/kWh
on a 25 MW boiler down to 0.002 mills/kWh on a 1000 MW
boiler.

4.4 ENERGY PENALTIES

Two types of energy penalties must be considered when
emission control systems costs are calculated. Electrical
power consumption by the emission control process reduces
the net amount of power generated; and the control system's
flue gas reheat and process heat requiiements, depending
upon plant design and oéerating characteristics, may reduce
the plants net power proauction.

The additional power-generating capacity required to

compensate for the power used by the emission control system




évaluated is listed as a capacity pénalty. This penalty is
-‘diSCussed in Subsection 4.4.1. Subsection 4.4.2 discﬁsses
:the energy penalty which represents thé inCreésed numbér of ,bf
Btu's required to produée a het kilowatt-hour of eléCtricity.
Thesévpenalties are expressed both as a percentagé énd»a57

‘an additional operating cost in mills/kWh.

4.4.1 Emission System Capacity Penalties

Flue gas desulfurization systems cause losses in net
generation by a power plant that sometimes require the
addition of generation capacity. Faétofé that affect the
cost of diverting a portion of a utility's electric genera-
ting capacity to supply the energy requirements of,en#iron-
mental control equipment or to replace 1ost capacity are
listed below: | _ |

A, ?ercentage of unit capacity needed to supply the

electrical energy requirements of environmental

control equipment.

B. Percentage of the totalvsystemlcapacity to be.
equipped with environmental control equipment.

C. Systém capacity in MWwW.
D. Annual load growth of the system.'

E. Size of reserve capacity in the year that the
environmental control equipment is added.

F. Reserve capacity requirement:

1. Unit reliability by type of unit
2. Unit reliability by size of unit
3. Shape of load curve

4. Mix of generating capacity

5. Maintenance and overhaul

4~-19




N'

Capability of interconnections.
Potential for interchange purchases and sales:

1. Short-term firm
2. Economy transactions

Availability of unit participation.

Cost per kW of added generating capacity:

1. For each type of capacity (i.e., nuclear,
fossil steam, gas turbine)

2. Economics of scale

3. Price escalation

Cost and availability of fuels.

Load characteristics:

1. Load factor
2. Relative magnitude of monthly peak loads

Mix of generating plant capacity,:present and
future.

Financing cost parameters, including cost of
capital, depreciation, tax rates, and insurance.

The costs presented in Section 4.3 do not include the

costs of replacement capacity but do include the costsg of

purchased power which reflects the recovery of capital

costs of generating units supplying the power. Values of

the capacity losses due to the control optidns evaluated are

presented in Table 4-6 expressed as a percentage of the

plants gross generating capacity.

4.4.2 Emission System Energy Penalties

The energy penalties associated with flue gas desul-

furization systems can very widely with the process and
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vendor. In a sulfur dioxide scrubbing system, the scrubbing
recurculation pumps and booster fans are the primary energy
consumers. Different processes also requiré varying degrees
of energy for scrubbing liquor makeup, scrubbing 1iqu6r re—‘
generation, and sludge disposal. Additional penélties are
caused by use of fuel or steam to reheat flue gases and
steam to provide process steam in some of the regenerative
systems. For this study, energy cdnsumpfion by £he eleé—
trical equipment, reheat system, and process‘heat is esti-
mated for each of the cases evaluated.‘ Table 4-6 also pre-
sents the energy penalty for each case as a percentage of
gross electrical generation. Table 4-7 presents the energy
penalty as an annualized charge in mills/kWh;
4.5 SLUDGE DISPOSAL ALTERNATIVES |

Several methods are now used for disposai of scrubber
sludge. The most common are ponding of untreaked sludge and
landfilling of treated and untreated sludge. An alternative
to disposing of scrubber sludge is commercial utilization.
This technique is practiced extensively in Japan, where
scrubber sludges are oxidized to form the long fiber gypsum
necessary for wallboard production. Although such tech-
niques could be applicable in the United States if the
economic incentives were adequate, at best they would

account for only a minor fraction of sludge requiring dis-

posal.
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Ponding

Sludge disposal in a pond without providing environ-
mental protection (such as chemical fixation or impervious
liners) against seepage to water supplies cbnstitutes a
potential water quality hazard. The degree of hazard depends
upon such site specific characteristics as topogtaphy,
weather, soil characteristics, and proximity of‘ground and
surface waters to the disposal site. In addition, there
exist a significant number of other disposal variables
(e.g., chemical constituents of the sludge énd the condition
of sludge disposal) that may impact the potential hazard
posed by such a sludge pond.

Pond linings have been finding greater favor in recent

years. Lining is an effective method to prevent groundwater

contamination. On many areas, clay, concrete, wood‘Qr metal
have been used as liners. Synthetic materials are finding
increased use. These synthetic materials iﬁclu@g polyvinyl
chloride, rubber, synthetic rubber, polyethylene, propylene,
and nylon. Since economics is a major factor,‘clay and
synthetics will be the primary materials used for sludge
liners. To be useful, liners must have long-life, endure

temperature variations, and remain flexible. Several manu-

facturers offer acceptable liner materials.

«




Landfilling

' The second method for disposal of scrubber sludges is
use of either a dewatered or a stabilized ("fixed") sludge
for landfill. Sludges can be dewatered by vacuum filtration‘
or centrifugation to form a solid material that can be uséd
for landfill. Since these dewatered sludges can reabsorb
moisture and regain their original water content if un-
treated, chemical and physigal stabilization or fixatibn
processes are increasingly being used.

Chemical fixation of scrubber sludge is currently
offered by several commercial groups 1nclud1ng Dravo Corpora-
tion, I.U.C.S., Inc., Chicago Fly Ash, and The Chemfix
Corporation. These commercial systems use fly ash, lime,
silicates, and polyvalent metal ions (uéuallyvabout 5 pgr—u
cent of the amount of sludge on a dry weight basis) to form |
a 1ow-grade concrete. Thé product is a stable, inert mate-
rial that will not release toxic metal-ioné or soluble
species. It has sufficient strenéth to support buildings
and wili support vegetation.

The following factors affect the capital and annualized
operating costs of sludge disposal:

1. =Capital Cost

a. Pond location

b. Lining requirement
c. Leachate monitoring




d. Overall size
e. Dewatering method

2. Annualized Operating Cost ‘ ‘ , -
a. Fixation chemicals
b. Utilities ‘ ‘ .
c. = Trucking ‘ ’ ‘

The split between capital and annual costs is not clearcut.
For example, several firms will operate sludge disposal
systems on a per ton basis. The utility will not be re-
quired to invest capital in the‘system. However, these
contracts normally have "take or pay" clausés to protect the
sludge disposal firm's capital investment. 1In essence, turn
key disposal merely shifts the fixed charges of sludge
disposal to direct operating expenses. In addition, pumping
sludge instead of trucking sludge increases capital but
reduces annual costs. Sluice lines and pumps are part of
the capital costs borne by utility, while tfucks to haul
sludge are normally borne by trucking contractors. Another
area which affects capital and annualized operating costs is
dewatering. Horsepower requirements are reduced if pqnding
is used to dewater sludge instead of vacuum filtration or

centrifugation. Capital costs increase however, since the

-

pond must be larger and more complicated.
In this study, it was assumed that all sludge-gen-—
erating FGD processes would dispose of the sludge in an on-

site pond, lined with clay with the sludge stabilized by

addition of fly ash and lime.




Table 4-8 identifies the annualized cost impact of
variods alternative subset conditions for sludge dipSoSal
'fér a new 500 MW plant burning high sulfur coal. |
4.6 COST COMPARISONS FOR FGD SYSTEMS

The FGD system costs developed by PEDCo in this study
were based on system parameters used at existing and planned
installations and from control system manufacfurers. The
items of equipment required for each size and type of system
were specified and vendor quotes obtained for these items.
The quotes were obtained in mid-1976 and éscalated using a
7.5 percent factor to future years.
| .In a report entitled "Detailed Costs Estimates for
Advanced Effluent Desulfurization Processes" (EPA-600/2-75-
006, Jan. 1975)'costs for various FGD systems developed by
the Tennessee Valley Authority (TVA) are presented. The
costs presented in the document for a lime FGD system are
compared to the estimateé developed in this study.

The TVA costs reflect August 1974 prices and are esca-
lated at 7.5 percent per year to 1980 to provide a common
year for comparison. Table 4-9 presents a breakdown of the
costs for a lime system on;aAlOOO MW boiler burning 3.5 per~-
cent sulfur coal and designed for 90 percent'SO2 removal.

As seen in the Table, the mainlareas of difference are

the costs for the absorbers, reheaters, fans, and the indi-




Table 4-8. IMPACT OF VARIOUS SUBSET SLUDGE DISPOSAL

OPTIONS ON THE ANNUALIZED COST OF SLUDGE DISPOSALZ?

Mills/kWh $/Dry Ton $/Wet Ton

Base Case 1.15 18.73 11.25
Synthetic Lining 0.37 6.03 3.62
Prgprietary fixa- 0.15 2.44 1.46
ation

Trucking - 5 miles 1.023 16.67 f 10.00
Trucking -10 miles 2.046 33.33l 20.00
Trucking -15 miles 3.069 50.00 30.00
Pumping - 5 miles 0.224 3.65 2.19
Pumping =10 miles 0.336 5.47 | 3.28
Pumping -15 miles 0.448 7.30 4.38
a

The various costs shown are additive to the "Base Case"
cost which is a clay lined pond with fixation by addition
of fly ash and lime.
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Table 4-9. COMPARISON OF COSTS FOR A LIME. FGD SYSTEM ON A
1000 MW NEW, COAL-FIRED GENERATING UNIT, 3.5% S COAL,

AND 90% SO, REMOVAL

Capital Investment TVA ($ million)l PEDCo ($ million)
Cost item | 1974 1980 1980
Lime receiving & storage $ 1.228 $ 1.895 $ 1.684

" Feed prebaration .586 0.904 1.140
~Particulate & SO, scrubbers (4) 10.638 16.417
S0, absorbers (8) (1 redun.) . 45.444
Stack gas reheat .955 1.474 6.212
Fans - 1.161  1.792 3.604
Calcium solids disposal 5.018 7.744 g 4.626
Vacuum filters, fixation 2.046

chemical storage o

Utilities, service facilities, 5.021 7.749 5.489

construction facilities &
field expense, & contractor

fee
Raw material inventory .433
Engineering design & supervision 1.712 2,642 6.142
Contingency 1.926 2.972 18.296
Start up | 2.260  3.488 3.296
Interest during construction(8%)  2.260 3.488 6.476(9%)
Field overhead - 6.476
Freight .768
Offéite,expenses 1.943
Taxes .921
Spares ‘ ‘ - .307
Land cost .219
Total capital investment $32.765 $50.565 $115.485

1 Detailed Cost Estimates for Advanced Effluent Desulfuriza-
tion Processes, prepared for Control System Laboratory,
Office of Research and Development, U.S. Environmental Pro-
tection Agency, under Interagency Agreement EPA IAG-134 (4),
Part A, by G.C. McGlamery, et al., Tennessee Valley Authority,
pp. 244, 245. January 1975.
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Table 4-9 (continued).

Annual Operating Costs

TVA ($ million) PEDCo ($ million) .
Raw Materials 1974 1980 1980 -
Lime $3.2185 $4.9671 $ 6.223
Fixation chemicals 1.020
Utilities ‘
Steam 0.5684 0.8772 ©1.020
Process water 0.0374 0.0577 .063
Electricity 1.2895 1.9901 3,704
‘Operating labor & 0.2381  0.3675 | 0.453
supervision
Maintenance
Labor & material 1.4978 2.3116 5.024
Supplies L - 0.754
Analyses 0.0595 0.0918
Overhead ‘ | ‘
Plant 0.7381  1.1391 3.116
Administrative 0.0238  0.0367 ~0.091
Sludge Handling
Average capital costs 4.8820 7.5344 ' 16.418
Depreciation ‘ 1.993
Taxes j ‘ 7.780
Insurance 3 0.419
Total Operating Costs $12.5531 $19.373 $49.098  *




' rect charges and contingency. The reasons for the differ-
entials are as follows:

1. TVA uses only 4 scrubbing trains to handle 1000 MW
(250 MW per train). PEDCo uses 8 scrubbing trains
(1 redundant module) to handle 1000 MW at 143 MW
per train. The largest operational modules at the
present time carry the equivalent of 150 to 160 MW
of gas flow.

2. The TVA document specifies the year that base
costs were obtained for absorbers, fans, and re-
heaters as 1971. These costs were then escalated
to reflect 1974 costs. PEDCo base costs were
obtained in 1976 and should therefore be more
accurate.

3. TVA costs reflect minimum in-process storage with
only pumps being spared. PEDCo costs include a
spare scrubbing module with associated equipment,

- Spare pumps, and excess inprocess storage capacity
to obtain optimum operation. v

4, TVA costs reflect disposal of untreated sludge in
an on-site clay-lined pond. PEDCo's costs reflect
the disposal of stabilized sludge in a clay-lined .
pond.

5. TVA costs reflect the use of venturi absorbers
while PEDCo costs are for a Turbulent Contact
Absorber (TCA).

6. TVA costs reflect an annual capacity factor of 80
percent for the boiler while PEDCo uses a 65
percent capacity factor. Over the 20 year life of
an FGD, the 65 percent capacity factor would be
more realistic.

7. TVA uses a contingency of 9 percent of direct
. costs while PEDCo uses 20 percent of direct and
indirect costs. For the level of accuracy of the
PEDCo estimates (+ 20%), a 20 percent contingency
adheres to standard estimating criteria.

The nature of other variations in the cost estimates

can not be determined based on available information. It




should be noted that TVA is in the process of revising theii
cost estimates and preliminary results are much higher‘than:
in the 1975 document. Results were presenﬁed”in a paper |
entitled "Economic Evalﬁation Techniqués;‘Resﬁlts, and | ‘ )  .
Computer Modeling for Flue Gas Desulfurization," presented .

at the FGD Symposium sponsored by EPA‘in November, 1977.

Comparative results for a limestone FGD on‘3.5 percent

6

sulfur coal meeting a 1.2 lb SO05/10° Btu regulation for a

500 MW plant are presented in Table 4-10.




Table 4-10. COMPARISON OF COSTS FOR A LIMESTONE
. | FGD SYSTEM ON A 500 MW NEW, COAL—FIRED GENERATING UNIT,

3.5% S COAL, AND 1.2 LBS/MILLION BTU ALLOWABLE EMISSIONS

Capital Investment TVA ($ million) PEDCo ($ million)
Cost item | 1979 1980
Limestone receiving & storage $ 1.76 $ 1.22
Feed preparation | 1.74 1.88
802 scrubbers (4) 8.92 - 19.84
Stack gas reheat : 1.28 3.10
Fans & ductwork ‘ 4.32 3.33
Calcium solids disposal 6.81 9.04
. Utilities, service facilities, 6.20 3.21

construction facilities &
field expense, & contractor

fee ‘ , , ‘ :
Raw material inventory '0.15
Engineering design & supervision 1.21 3.08
Contingency 6.45 o 10.68
Start up 3.35 1.93
Interest during construction 4.65 3.84
Field overhead 3.84
Freight - 0.39
Offsite expenses 1.15
Taxes , ‘ 0.46
Spares ‘ 0.15
Land cost : 1.03 0.14

Total'capital investment $47.71 $67.43




Table 4-10 (continued).

Annual Operating Costs
TVA ($ million) PEDCo ($ million)

Raw Materials ' 1979 3 , 1980
Limestone $1.11 ‘ $ 1.08
Fixation chemicals 0.67

Utilities
Steam 0.98 ‘ 0.52
Process water 0.03 ‘ 0.03
Electricity 1.64 | - 1.90

Labor |
Operating labor & - 0.33 0.34

Supervision

Maintenance
Labor & material 1.82 -  2.93
Supplies ' - 0.a4

Overhead
Plant 1.11 1.86
Administrative ‘ 0.03 ‘ o 0.07

Sludge Handling 0.67

Average Capital Costs 7.00 | 9.47

Depreciation 4.49

Taxes 1.15

Insurance ' 0.24

Total Operating Costs $14.11 | $25.86
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5.0 IMPACT OF EMISSION AVERAGING TIMES

ON THE COSTS OF FGD

The specific time period over which emission test
resulté are averaged to determine compliance has a signifi-
cant impact on the selection and design of the control
process. This is especially true in the case of 50, emis-
sion limitations. Coal is inherently variable when looking
at the sulfur content. The sulfur occurs in veins as pyrites
‘thus producing a nonhomogeneous condition When sulfur con-
tent is considered. This variability in sulfur content is
very significant when 1ooking at shorter averaging times
over which a regulation must be met. The effect of shorter
averaging times is an increase in the maximum sulfur content
for which an FGD systém must be designed. |

Table 5-1 presents the sulfur variability in various
coals over different averaging times for various size boilers.
As can be seen the maximum sulfur conteﬁt varies more for
the smaller unit due to the smaller total amount of coal
based over the averaging period. These values reflect a
normal distribution of values as obtained by the sampling of

unit trains. The relative standard deviations (RDS) are

presented in Table 5-2.
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Table 5-2. RELATIVE STANDARD DEVIATION OF

SULFUR CONTENT IN COAL

Boiler size _ ~> : : E

Averaging Time 25 MW 500" MW 1000 MW ;
3 hr 0.237 © 0.194 |  0.190 |

24 hr 0.205 0.163 0.155 k
30 day 1 o.110 0.069 0.065 |
1 year 0.031 0.020 0.019 - E
long term 0 ' 0 : o |

The values in Table 5-1 wefe obtained by assuﬁing a
normal distribution of the values for the 7.0 and 3.5 per-
cent sulfur coals and a log normal distribution for the 0.8
percent sulfur coal for a 95 percent confidence level.

For purposes of evaluating the cost iméacts of various
averaging times, a lime FGD system was costed for each of
the maximum sulfur contents in Table 5-1. The FGD was
designed for 90 percent 802 removal using design parameters
as presented in Tables 4-1 and 4-4.

The results of this cost analysis are presented in
Tables 5~3 through 5-6.

The results indicate‘that costs will increase as the
averaging time is shortened. The effect is also more sig-

nificant for smaller units due to the increased variability

of sulfur as the quantity used during the averaging time
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decreases. ‘For instance, reducing the a&éraéing‘time fofaé

3.5 percent sulfur case from 1 year to 3 hours incfeaSes
capital costs by 4.5 percent for the 500 MW case com-

pared to 4.0 percent for the 1000 MW case. Aléo as the coal
sulfur content decreases, the cost impacts of shorter gveraging
times increase. For the 0.8 percent sulfur caée the differen-
tial capital costs between the 1 year and 3 hour averaging
times varies from 3.9 percent for the 500 MW case to 1 7 for
the 1000 MW case. Impacts on annual operatlng costs are not
significant as annual operating costs reflect thé annual

average coal sulfur content.

-




6.0 SINGLE PLANT APPLICATIONS OF COMBINED

" PHYSICAL COAL CLEANING AND FLUE GAS DESULFURIZATION

Coal cleaniﬁg has the potential of being an economic
method of reducing sulfur in coal_by significant amounts.
However the maximum removal obtainable with most coals with
physical cleaning is around 40 percent. To meet stringent
302 emission levels on high sulfur coal would require addi-
tional SOZ removal by an FGD system. In this analysis
several cases were examined in order to evaluate any possi-
ble economic benefits obtainable by the use of coal cleaning
in combination with FGD versus FGD alone. A single plant
scenario was examined in which a single boiler is servéd by
a coal cleaning plant and a lime or. 11mestone FGD system is
installed to meet the regulatlon level. In the first case,
a 500 MW unit burning 3.5 percent sulfur coal and requlred
to meet the 1.2 1b 802/10 Btu regulation was con51dered.
Considered in the second case were boilers of 25, 200, and
500 MW burning 7.0 percent sulfur coal and required to meet
a 215 ng/J (0.5 lb/lO6 Btu) regulation level. Table 6-1
presents the washability data for the two coals. _The washa-

bility data were selected from "Sulfur Reduction Potential
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of U.S. Coals: A Revised Report of Investigations (EPA- _
600/2-76-091) ," pages 71 and 164 as examples to use in the
study cases. |

Case 1 involvés 40 percent removal of:sulfur‘by coal
washing of a 3.5 percent sulfur coal. Conventional coal
pfeparation can be appliedvtOAmany U.s. coals to achieve a
40 percentlreduction in sulfur. 1In this situation, thé
model coal selected was an Illinois coal with a raw coal
sﬁlfur content of 3.48 percent. USBM washability‘daté
indicate that cleahing at 1.8 specific gravity (s.g.)'WOuld,"
reduce the sulfur content by about 50 percent with a Btu
yield ofv93.4 percent; the data also indicate a 45 percent
reduction in sulfur at 1.9 s.g. with a 96.3 percent Btu
yield. Assuming that the higher cleaning gravity can be
used, and that a grass roots cleaning plant is buil;, the
capital costs of cleaning should be in the range of $i0,000
to $30,000/#on per hour of raw coal processed. For a state
of the art cleaning plant, operating 4000 hours/year and
processing approximately 1,600,000 tons per year of raw
coal, the capital investment is estimated to be appro#i~
mately $3,500,000 to $8,300,000. Since the size of this
cleaning plant is small, the cost is estimated on the high
" side of the range at $7,750,000 ($15}5/kw). Operating costs

are estimated to be 2.85 to 4.30 mills/kwh. Additional coal




required, due to Btu losses in the refuse, are estimated to
be about 100,000 tons annually. At an assuhed cost'of
$l.20/106 Btu, the additional costs for coal would be
$2,800,000 (0.98 mills/kWh). |

Case 2 was evaluated in exactly the sa@e hénﬁef as Casé
1 using washability data for the 7.0 percenﬁ'sulfur cdai. |
Costs do not differ appreciably from those bbtgined for Case
1. ' | |

For the 1.2 1b 502/106 Btu regulation Easé, combined
coal cleaning and lime or limestone FGD are mofe expensive
than either lime or limestone FGD alone. Capital costs are
about 1.5 percent higher, while annual costs are’abdut 36
pexrcent higher.

It appears that the only possible benefit from the use
of combined éoal cleaning and FGD is in cases Wheré‘FGD

alone cannot attain the level of control required.




APPENDIX A
DETAILED COST BREAKDOWNS

FOR PARTICULATE CONTROL DEVICES



The following sheets present detailed breakdowns for
the cost estimates for ESP's, fabric filters, and venturi “
scrubbers. It should be noted however thaﬁjthe fixég ¢ost51 
shown in the breakdowns were not used in the cost estimates. .
Fixed costs in the estimates reflect 15.75 percent of the o

total capital investment.




| 0009041 thou.ozo& J<wommuo 390n1s - wiolans

-*00090nt

1502 zonk<x<aumm ONOd
‘0 1503 onvn
$1S09 GNOd 390n71S ﬁﬂ
<
.oanneom (Q3T1IVASNI) S1S09 huuzwn - wio018nS
.ooawgn . INITONYH LSNQ
*000450T 9NILINN
*000€ELY ds3

$S1S02 12734140

INIWLSIANI v)ldyd

WYY¥I0Hd £S0D dS3 LL6T *L AON

r/79N 22 MW nog




1282

*000S0THT

°0002L9

*0006522

*0005062
*000402
*00099
*00020%
*000402
*00059
*000099
*000T29
*000129

M) Y3d INIWLISIANI VLIdVI

AN3WISIANT Wildvd W10l

334 ¥0LIVHINOD

AINIONTLINOID

S1S0J 1JI3¥IGNI - vioiens

1802

1502

1509

1502

1803

1503

S$1S0J ONOd 390N7S ONY

S1S02 ONOd 390N1S aQNY

{QINGD)

123410

1J3u1a

133y10

4123v10

13310

133410

13310

123410

30

30

40

30

40

40

40

E4S

%1

%$c°1

L 1

%52°1

%01

%0T

%07

INIHISIANT IvLiIdvd

NROQINVHS YOd4 3IINVMOIIV

S3yvds

SIAIXVL

311sdio

1HOIINd

IMIHIANIONT

Qy3HY3IA0 €314

NOILINHLSNOD INIYNG LSIHIINI

£S1S02 1I3NIONI



*0002HEY

*o
‘0006

‘0006LE .

‘00026

‘000419

*0009

‘00068

‘00042

‘o00g9t

$41S0) TvNNNY

"3TW~NOL/00D s

FINYNILINIVW ONV NOTLVMIdO - wingens

M4/ IW=NOL Nn*g

HOBYT INILYHIHO 40 %02

uuz<Zth~<z ONY HOAY INTLVHIdO 40 %06

SIVINILVW ONY ¥OAYY 40 %51

CANIWISIANI TWATdvD Tviol 40 %Geh

HOHVT 123Y10 dJo %5t

HHNYW/00's s

9W/02°0 s

HMM/8TIw00 G2

34vy

1502 9NILVH3I40
HWYH90¥d 1S0I dS3

r/79N 22 My

AVO/YHNVW 0°27

HH/9W* T2

mMy°gget

ALLINVAR

605

17vS0dSIT 1SN0
10¥AYd
SULAY

*OVIHNIAQ

S317ddns

TINILYW ONV MO9Y7

$IINUNILINTIVY

NOISIAMIdNS

[Tl

Yoy 103 !
A 110 o

M08V

¥y3Lvm
A1121I¥195313

iS3181140

Li6T *L AON



T STIINGS T

*000346¢

‘0006292

°0006923

*00049%

00024

*00064

*o0050L

MY N3 150" ONILVMIJO & e L

1809 WNNNY Wi04 o S

m»umu 03X14°= vio1eNs
A ‘ n 1503 Wildvd

svy

3INVUNSNT

. AN3WIIVIAI WIEILNT

. NOT1YIJ34d3Q

$150) 7x14

101ME2) 150D 9NILvHIdO




CAPITAL INVESTMENT FOR FABRIC FILTERS

Regulation 13.4 ng/J
Coal 0.8% S
Size 500 MW

Direct Costs

Fabric Filter 10,890,628

Ash handling ‘ | 2,095,152
Ducting 651,738
Sub-total, Direct Costs | / 13,637,518

Indirect Costs

@ 33.75% | | 4,602,662
Contingency 20% of Direct & Indirect 3,648,036'
Grand Total 21,889,216
S/KW 43.78




ANNUAL OPERATING COSTS - FABRIC FILTERS

Utilities
Electricity
Water

Operating labor
maintenance and bags

Overhead and administration

Fixed Cost @ 15.58%0f total
capital costs

Total Annual Costs

225,216
16,617
616,455

122,713
4,979,569
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APPENDIX B
COST IMPLICATIONS OF ADDING SPARE

MODULES TO FLUE GAS DESULFURIZATION SYSTEMS




COST IMPLICATIONS OF ADDING SPARE

MODULES TO FLUE GAS DESULFURIZATION SYSTEMS

In reviewing air pollutant emission limitations, an
important consideration is the time period over which a cer-.
tain limitation must be attained. This directly affects thé
required operational availability of pollutaﬁt éontrol sys—:
tems. One system of major concern is flué gas desulfuriza—‘
tion (FGD). The basic apprdach to increasing the avéil—
ability of FGD systems is to install a spare scrubbing
module, but this will have a definite cost impact oh the
systen.

The purpose of installing a spare mddule is‘to increase
the availability of the FGD system. The percent avail-
ability is a ratio of scrubber operating time‘divided by
boiler operating time. The availability for small boilers
with one original module and one spare module is 99%,
assuming an availability of 90% for each module. As boiler
size increases to a point where it is necessary to haVe two’i
or more original ﬁodules, availability decreases. This is

explained by the fact that there is only one spare module

that can operate while two or more original modules are out




of operation. Table 1 presents the effect on availability
of adding a spare module to various size FGD systems based
on assumed availabilities of 0.90 for a single module and

100 percent availability of a boiler.

Table 1. PERCENT AVAILABILITY

Availability

MW Limestone Wellman-Lord
25 0.99 - 0.99
50 0.99 0.99
100 0.99 , 0.99
200 - 0.97 . 0.97
. 350 _ 0.95 0.95
500 . , - 0.92 ' 0.92
750 0.89 0.89
1000 : 0.82 0.82

In order to determine the additional cost ihcurred by
adding a spare module to a new lime or Wellman-Lord FGD
system, PEDCo's cost estimating procedure was utilized.

First, capital and annual costs were‘estimated for both
FGD syétems applied to seven predetermined boiler sizes.
Input for all the boilers was kept the same except for size-~
related factors such as ACFM and fuel consumption. The
costs are based on burning a typical high sulfur coal (10%
ash, 3.5% S, and 11,000 Btu/lb). In each case, the allow-
able 802 emission level is 1.2 lb/lO6 Btu. All input data
and assumptions are listed in Table 2.

- Costs were then estimated for each size boiler for each

type FGD system with one spare scrubbing module. All other




Table 2. DATA AND ASSUMPTIONS

Rate data

Escalation factor ~ 1.335%2
Electricity, mills/kWh - 20.00
Water, dollars/1000 gal - 0.20
Labor, dollars/man-hr - 10.00
Capital charge, percent - 9.00
Land, dollars/acre - 2000.00

Boiler data
Life, years - 35

buct factor - .17 6
Allowable SO2, 1b/10° Btu - 1.2

a

August 1980.

FGD chemipal cost, dollars/ton

Lime -~ 40.00

Soda ash - 65.00
Salt cake -~ 30.00
Sulfur acid - 20.00

Fuel analysis

Ash content of coal, % - il.o
Coal sulfur content, % - 3.5
Coal heating value, 1b/10® Btu

11,000




factors were kept constant. It was assumed that the spare
module is of the same size as the required.modules (i.e.,
for a 50 MW boiler with one FGD module the spare is sized to
handle 50 MW; for a 500 MW boiler with four FGD modules,
corresponding to 125 MW each, the spare is sized to handle
125 MW). Costs obtained for the system with a spare module
were then compared to the base case cdéts.

Table 3 presents the percent increase in capital cost
that can be expected when a spare module is installed.
Figures 1 through 4 graphically illustrate capital cost
trends with and without spare modules. Generally speaking,
the percent increase for a small boiler is high compared to
a larger one. This is because a small boiler only needs one
module to operate properly. By adding another module, the
capital cost will almost double, whereas a larger boiler
with more than one module to begin with would not experience
such a drastic increase. Table 4 presents the percent
increase in annual costs that results from installation of a
spare module; Figures 5 and 6 iliustrate the added operat-
ing expénse‘per kWh when a spare module is incorporated into
a Wellman—Lord process or a lime scrubbing FGD. Operating
costs per kWh is calculated by dividing the total annual
cost by kWh's of electricity generated per year. ‘The annual

cost itself is the sum of fixed charges which are a certain




Table 3. CAPITAL COST EFFECTS OF ADDING A REDUNDANT

ABSORBER TO A LIME AND WELLMAN-LORD FGD SYSTEM

Boiler capacity,

Lime,

Wellman-TLord,

MW percent increase percent increase
25 56.3 50.6
50 60.9 55.7
100 65.3 61.8
200 36.4 37.8
350 25.7 24.6
500 19.6 20.4
750 l6.1 15.8
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Table 4. ANNUAL COST EFFECTS OF ADDING A REDUNDANT MODULE

. TO LIME AND WELIMAN-LORD FGD SYSTEMS

Boiler capacity, Lime, Wellman-kord,

MW . % increase %2 increase
25 ’ 40.0 S 42.3

50 53.7 47.1

100 . 55.5 52.5

200 32.7 35.0

350 23.7 23.0

500 18.0 20.1

750 ‘ 14.3 . 12.5
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percentage of total capital cost, plus operatigﬁ and main-
tenance cost. For the Wellman-Lord process aqother factor‘
considered in the operating cost per kWh is‘the by product
credit since substances are produced. Comparihg effécts of
spare modules on capital cost vérsus effects on aﬁhual |
costs, it can be seen that there is less of an impact on

annual costs.
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APPENDIX C

DETAILED COST BREAKDOWNS FOR

FGD SYSTEMS




The following sheets present example breakdowns of
costs for the FGD systems evaluated in thlS study.‘ Samples
included are a lime FGD on a 500 MW boiler burnlng 3. 5
percent sulfur coal and having 90 percent eff1c1ency, a 11ﬁe7
FGD on a 500 MW boiler burning low sulfur (O 8%) coal and .
having 90 percent efficiency, and a magne51um ox1de FGD on a

500 MW boiler burning 3.5 percent sulfur coal and‘having 90 

percent efficiency.
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