United States Environmental Protection Agency Office of Air Quality Planning and Standards Research Triangle Park, NC 27711 EPA-454/R-00-037 September 2001

AIR

Sepa

Final Report - Volume I of I

AIT

Clean

Testing of a 4-Stroke Lean Burn Gas-fired Reciprocating Internal Combustion Engine to Determine the Effectiveness of an Oxidation Reduction Catalyst System for Reduction of Hazardous Air Pollutant Emissions

FINAL REPORT

TESTING OF A 4-STROKE LEAN BURN GAS-FIRED RECIPROCATING INTERNAL COMBUSTION ENGINE TO DETERMINE THE EFFECTIVENESS OF AN OXIDATION CATALYST SYSTEM FOR REDUCTION OF HAZARDOUS AIR POLLUTANT EMISSIONS

Prepared for:

Terry Harrison (MD-19) Work Assignment Manager SMTG, EMC, EMAD, OAQPS U.S. Environmental Protection Agency Research Triangle Park, NC 27711

September 2001

Submitted by:

PACIFIC ENVIRONMENTAL SERVICES, INC. 5001 S. Miami Blvd., Suite 300 Research Triangle Park, NC 27709-2077 (919) 941-0333 FAX (919) 941-0234 ·

•

DISCLAIMER

Pacific Environmental Services, Inc. (PES) prepared this document under EPA Contract No. 68-D-01-003, Work Assignment No. 1-04. PES reviewed this document in accordance with its internal quality assurance procedures and approved it for distribution. The contents of this document do not necessarily reflect the views and policies of the U.S. EPA. Mention of trade names does not constitute endorsement by the EPA or PES.

ii

TABLE OF CONTENTS

•

Ì

		Pag	<u>e</u>
1.0	INTR	RODUCTION 1-	-1
2.0	SUM	MARY OF RESULTS 2-	-1
	2.1 2.2	EMISSIONS TEST LOG	-3
	2.3 2.4	FTIRS AND CEM MEASUREMENTS2-DESTRUCTION OF HAP BY THE CATALYST2-	.3 -8
3.0	SOUI	RCE DESCRIPTION AND OPERATION 3-	-1
	3.1 3.2	ENGINE DESCRIPTION3-ENGINE OPERATION DURING TESTING3-	
4.0	SAM	PLING LOCATIONS 4-	-1
5.0	SAM	PLING AND ANALYSIS METHODS	-1
	5.1 5.2	DETERMINATION OF STACK GAS VOLUMETRIC FLOW RATE 5- DETERMINATION OF STACK GAS OXYGEN AND CARBON DIOXIDE	-
	5.3	CONTENT 5- DETERMINATION OF STACK GAS MOISTURE CONTENT 5-	-3
	5.4 5.5	DETERMINATION OF NITROGEN OXIDES	
	5.6 5.7	DETERMINATION OF TOTAL HYDROCARBONS	
	5.8	HYDROCARBONS	
	5.9	DETERMINATION OF VASLOUS ORGANIC HAI'S USING FIND	-

TABLE OF CONTENTS (Concluded)

Page

6.0	QUA AND	LITY ASSURANCE/QUALITY CONTROL PROCEDURES RESULTS
	6.2	FTIRS QA/QC PROCEDURES 6-1 CEMS QA/QC PROCEDURES 6-5
	6.3	DATA QUALITY ASSESSMENT 6-12

APPENDIX A SUBCONTRACTOR TEST REPORT - COLORADO STATE UNIVERSITY ENGINES AND ENERGY CONVERSION LABORATORY, "EMISSIONS TESTING OF CONTROL DEVICES FOR RECIPROCATING INTERNAL COMBUSTION ENGINES IN SUPPORT OF REGULATORY DEVELOPMENT BY THE U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA) PHASE 2: FOUR-STROKE, LEAN BURN, NATURAL GAS FIRED INTERNAL COMBUSTION ENGINES"

APPENDIX B EXAMPLE CALCULATIONS RELATED CORRESPONDENCE

LIST OF TABLES

.

1

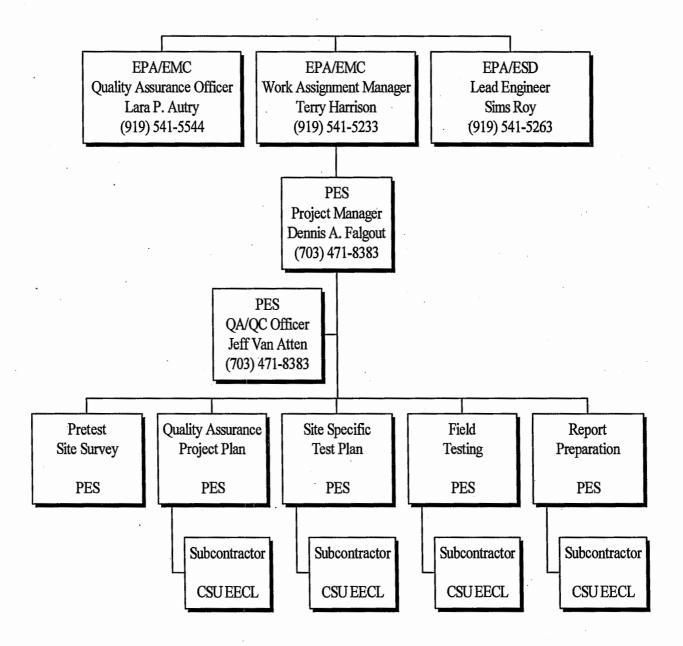
1

Í

Table 2.1 Table 2.2 Table 2.3 Table 2.4 Table 2.5	Emissions Test Log2-2Summary of Exhaust Gas Flow Rates2-4Emission Rates of Detected FTIRS and CEMS Compounds2-6Mass Flow Scenarios2-9Catalyst HAP Removal Efficiencies2-10
Table 3.1	Engine and Catalyst Specifications
Table 3.2	Summary of Nominal Engine Parameters
Table 3.3	Target Engine Operating Conditions During Testing
Table 3.4	Summary of Engine Parameters - Waukesha 3521GL
Table 3.5	Summary of Engine Parameters During Baseline Runs
Table 5.1	Summary of Sampling and Analysis Methods
Table 5.2	FTIRS Analyzer Specifications
Table 6.1	Detection Limits of FTIRS and CEMS Compounds
Table 6.2	Types and Frequencies of CEMS Analyzer Calibrations
Table 6.3	Summary of Fuel Factor Values
Table 6.4	Summary of CEMS Analytical Detection Limits
Table 6.5	Summary of Engine and Method Performance

LIST OF FIGURES

.


	<u>Pa</u>	age
Figure 1.1	Test Program Organization and Major Lines of Communication	1-3
Figure 4.1	Exhaust Piping Schematic	4-2
Figure 5.1	Schematic Diagram of EECL FTIRS/CEMS Sampling and Analysis System	5-4

.

The test program organization and major lines of communication for this project are presented in Figure 1.1. The balance of this report contains the following Sections:

Summary of Results
Source Description and Operation
Sampling Locations
Sampling and Analysis Methods
Quality Assurance/Quality Control Procedures and Results

Appendix A presents the 4SLB report issued by CSU EECL on April 28, 2000. Appendix B contains example calculations used by PES to calculate results, and background correspondence pertaining to the Waukesha test program.

,

2.0 SUMMARY OF RESULTS

This section provides summaries of the stack gas parameters and HAP emissions measured during the test program. Testing of the Waukesha 3521GL engine was conducted August 4 through August 6, 1999 at CSU's Engines and Energy Conversion Laboratory in Fort Collins, Colorado. The following sub-sections present the test times and durations, engine and stack gas parameters, and HAP concentrations and mass flow rates before and after the oxidation catalyst. The end of this section contains a discussion of the efficiencies at which the catalyst removed HAP.

CSU submitted a report documenting the results of the test program to PES. This report is reproduced in its entirety in Appendix A. PES discovered errors in the combustion products (F_d) factors calculated by CSU, which resulted in errors in the calculations of pollutant mass flow rates. PES requested that CSU correct the errors and re-submit the emissions calculations so that the final report could be completed. The corrected results submitted by CSU showed that only 9 of the sixteen runs used the correct F_d values. Slight errors still exist in CSU's calculated results for Runs 2, 4, 7, 8, 10, 11, and 12. In the tables that follow, the correct F_d values are used for each run. PES believes that the values expressed in these tables are correct representations of pollutant mass flow rates during the test program.

2.1 EMISSIONS TEST LOG

During the test period, the test team conducted thirty-four test runs using FTIRS and CEMS. These test runs consisted of sixteen 5-minute Quality Control (QC) runs, sixteen 33-minute sampling runs for collection of FTIRS and CEMS data, and two 5-minute baseline runs. Table 2.1 presents the emissions test log. The test log summarizes the date and time that each run was conducted. Additional discussions regarding the engine operating parameters may be found in Section 3.0 of this document.

In Table 2.1, the sampling runs are presented in the order that they were conducted. In the tables that follow Table 2.1, the sampling runs are presented in numerical order. During the test program, engine conditions were set by making small changes in engine operation from run to run rather than large changes. The purpose of this approach was to reduce both the times between test runs to change an engine condition and the time required for the engine to stabilize after each change. The effect on the test program was that the engine load conditions for which emissions data were sought were not conducted in the same

Final Report Waukesha 3521GL

TABLE 2.3

EMISSION RATES OF DETECTED FTIRS AND CEMS COMPOUNDS

Run ID		Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7	Run 8
Catalyst Inlet		97						*****	
Formaldehvde	mg/bhp-hr	308	346	327	282	394	308	354	318
Formaldenyde	mib/hr	501	394	311	384	641	501	403	433
Acatoldobydo	mg/bhp-hr	ND	ND	ND	ND	ND	ND	ND	ND
Acetaldehyde	mib/hr	ND	ND	ND	ND	ND	ND	ND	ND
Acrolein	mg/bhp-hr	ND	ND	ND	ND	ND	ND	ND	ND
Acidieiii	mlb/hr	ND	ND	ND	ND	ND ·	ND	ND	ND
Nitrogen Oxides (as NO ₂)	g/bhp-hr	0.824	0.588	0.554	0.742	0.588	1.43	1.05	0.453
Nillogen Oxides (as NO2)	lb/hr	1.34	0.669	0.527 *	1.01	0.955	2.33	1.20	0.617
Carbon Monoxide	g/bhp-hr	2.78	2.77	2.66	2.48	3.70	2.84	2.81	2.91
	lb/hr	4.52	3.15	2.53	3.37	6.01	4.62	3.20	3.95
Methane	g/bhp-hr	3.69	4.44	5.01	4.08	5.33	3.08	3.61	5.17
WELIANG	lb/hr	6.00	5.05	4.77	5.54	8.66	5.01	4.11	7.03
Non-methane Hydrocarbons	g/bhp-hr	1.19	1.34	1.53	0.98	1.64	0.89	1.15	1.35
non-methane nyulocalbons	lb/hr	1.94	1.52	1.45	1.33	2.67	1.45	1.30	1.83
Total Hydrocarbons	g/bhp-hr	4.57	5.71	6.42	5.19	7.01	3.89	4.57	6.51
Total Hydrocarbons	lb/hr	7.43	6.49	6.11	7.05	11.39	6.33	5.20	8.84
Catalyst Outlet								-	
Para aldalarda	mg/bhp-hr	99	87.7	60.1	83.1	133	74.6	69.7	110
Formaldehyde	mlb/hr	160	100	57.1	113	216	121	79.2	150
	mg/bhp-hr	ND	ND	ND	ND	ND	ND	ND	ND
Acetaldehyde	mlb/hr	ND	ND	ND	ND	ND	ND	ND	ND ·
•	mg/bhp-hr	ND	ND	ND	ND	ND	ND	ND	ND
Acrolein	mlb/hr	ND	ND	ND	ND	. ND	ND	ND	ND
	g/bhp-hr	0.876	0.637	0.622	0.780	0.637	1.48	1.10	0.489
Nitrogen Oxides (as NO ₂)	lb/hr	1.42	0.724	0.592	1.06	1.03	2.41	1.25	0.665
Orthon Manada	g/bhp-hr	0.185	0.126	0.101	0.127	0.266	0.167	0.115	0.163
Carbon Monoxide	lb/hr	0.301	0.143	0.097	0.172	0.433	0.271	0.131	0.221
Mathema	g/bhp-hr	3.22	4:04	4.20	3.71	4.75	2.72	3.20	3.46
Methane	ib/hr	5.23	4.59	4.00	5.04	7.72	4.42	3.64	4.70
	g/bhp-hr	0.95	1.10	1.22	0.849	1.37	0.692	0.862	1.25
Non-methane Hydrocarbons	lb/hr	1.54	1.25	1.16	1.15	2.22	1.13	0,98	1.70
Tatal the descent and	g/bhp-hr	4.79	5.83	6.51	5.19	7.02	3.84	4.59	6.74
Total Hydrocarbons	lb/hr	7.78	6.63	6.20	7.05	11.4	6.24	5.22	9.16

g/bhp-hr-grams per brake horsepower hour

mlb/bhp-hr - millipounds per brake horsepower hour

ND - Not Detected. Refer to Table 6.1 for run-by-run summary of detection limits.

mg/bhp-hr - milligrams per brake horsepower hour

lb/hr - pounds per hour

NOTES: The methane/NMHC analyzer at the catalyst outlet malfunctioned during Run No.8. Emission Rates for methane and NMHC were calculated using QC Run No.8 values. Different analyzer models were used to measure THC and the catalyst inlet and outlet locations. This may have led to small measurement errors due to variability in FD responses.

 F_d values for Runs 2,4,7,8,10,11, and 12 differ from F_d values reported by CSU. See text on page 2-1 for discussion.

Final Report Waukesha 3521GL

2-6

TABLE 2.3 (CONCLUDED)

EMISSION RATES OF DETECTED FTIRS AND CEMS COMPOUNDS

Run ID		Run 9	Run 10	Run 11	Run 12	Run 13	Run 14	Run 15	Run 16
Catalyst Inlet	1. (k)*	L.			•				<u></u>
Formaldehyde	mg/bhp-hr	307	297	294	306	356	301	326	319
romaldenyde	mlb/hr	498	483	478	497	579	489	531	519
Acetaldehyde	mg/bhp-hr	ND	ND	ND	ND	ND	ND	ND	ND
Acelaluenyue	mlb/hr	ND	ND	ND	ND	ND	NÐ .	ND	ND
Acrolein	mg/bhp-hr	ND	ŇD	ND	ND	ND	ND	ND	ND
, loioicin	mlb/hr	ND	ND	ND	ND	NÐ	ND	ND	ND
Nitrogen Oxides (as NO ₂)	g/bhp-hr	0.784	0.93	0.774	0.800	0,542	1.26	0.720	0.811
Millogen Oxides (ds NOg)	lb/hr	1.27	1.51	1.26	1.30	0.880	2.05	1,17	1.32
Carbon Monoxide	g/bhp-hr	2.76	2.68	2.67	2.68	3.16	2.88	2.91	2.85
Calibon Monoxide	lb/hr	4.48	4.36	4.34	4.36	5.14	4.69	4.73	4.64
Methane	g/bhp-hr	3.74	3.06	3.30	3.48	4.57	3.57	4.02	3.87
weulate	lb/hr	6.07	4.97	5.37	5.65	7.43	5,80	6.54	6.29
Non-methane Hydrocarbons	g/bhp-hr	1.17	0.96	1.08	0.99	1.52	1.05	1.33	1.22
inoli-methane ny diocaloons	lb/hr	1.91	1.56	. 1.76	1.61	2.47	1.70	2.16	1.99
Total Hydrocarbons	g/bhp-hr	4.62	4.19	4.52	4.40	5.55	4.46	4.92	4.84
Total Hydrocarbons	lb/hr	7.50	6.82	7.35	7.15	9.02	7.24	8.00	7.86
Catalyst Outlet									
m t t t t t t t	mg/bhp-hr	96	94.8	94.4	93.9	91.3	101	98.2	97.0
Formaldehyde	mlb/hr	155	154	154	153	148	164	160	158
A = - 4 - 1 - 1 - 1	mg/bhp-hr	ND	ND	ND	ND	ND	ND	ND	ND
Acetaldehyde	mlb/hr	ND	ND	ND	ND	ND	ND	ND	ND
A 1 - 1	mg/bhp-hr	ND	ND	ND	ND	ND	ND	ND	ND
Acrolein	mib/hr	ND	ND	ND	ND	ND	ND	ND	ND
	g/bhp-hr	0.862	0.96	0.832	0.845	0.561	1.34	0.775	0.873
Nitrogen Oxides (as NO ₂)	ib/hr	1.401	1,56	1.35	1,37	0.91	2.17	1.26	1.42
Oastaan Manavida	g/bhp-hr	0.181	0.179	0.179	0.179	0.214	0.187	0.197	0.191
Carbon Monoxide	lb/hr	0.294	0.291	0.291	0.291	0.348	0.304	0.320	0.311
	g/bhp-hr	3.30	2.99	3.18	3.26	3.91	3.14	3.58	3.45
Methane	lb/hr	5.36	4.86	5.17	5.30	6.35	5.11	5.83	5.61
Nen methone Undresothers	g/bhp-hr	0.92	0.85	1.00	0.836	0.942	0.863	0.951	0.961
Non-methane Hydrocarbons	lb/hr	1.50	1.38	1.62	1.36	1.53	1.40	1.55	1.56
T-t-1 I hadron onthoma	g/bhp-hr	4.76	4.37	4.64	4.71	5.51	4.60	5.19	4.96
Total Hydrocarbons	lb/hr	7.73	7.11	7.55	7.65	8.95	7.48	8.43	8.06

g/bhp-hr - grams per brake horsepower hour

lb/hr - pounds per hour

mib/bhp-hr - millipounds per brake horsepower hour

ND - Not Detected. Refer to Table 6.1 for run-by-run summary of detection limits.

mg/bhp-hr - milligrams per brake horsepower hour

NOTES: The methane/NMHC analyzer at the catalyst outlet malfunctioned during Run No.8. Emission Rates for methane and NMHC were calculated using QC Run No.8 values. Different analyzer models were used to measure THC and the catalyst inlet and outlet locations. This may have led to small measurement errors due to variability in FD responses.

 F_d values for Runs 2,4,7,8,10,11, and 12 differ from F_d values reported by CSU. See text on page 2-1 for discussion.

Final Report Waukesha 3521GL

2-7

Formaldehyde was detected at the upstream and downstream locations during every sampling run. Neither acetaldehyde nor acrolein were detected on any sampling run either before or after the catalyst. Run by run detection limits for the FTIRS compounds are presented in Table 6.1.

EECL personnel operated two CEMS sampling and analysis systems. Engine exhaust gas samples were extracted from locations before and after the catalyst, conditioned, and transported to the CEMS analyzer racks. Moisture was removed from the gas sample before introduction to the O_2 , CO_2 , CO, and NO_x analyzers. All of the CEMS target compounds were detected at the catalyst inlet and catalyst outlet.

The reported concentration of NMHC at the catalyst outlet for Run No. 8 was 284 ppmv as methane. The reported concentration at the catalyst inlet was 171 parts per million by volume (ppmv) as methane. CSU examine the NMHC data and invalidated the data for this run. At the direction of the WAM, the NMHC values obtained during the 5-minute QC run conducted just prior to Run No. 8 were substituted at both locations. The NMHC concentrations were 168 ppmv as methane and 155 ppmv as methane at the catalyst inlet and outlet locations, respectively. These values are presented in Appendix C of the CSU test report.

2.4 DESTRUCTION OF HAP BY THE CATALYST

There are five possible HAP mass flow rate combinations that can occur across the oxidation catalyst. Table 2.4 presents these combinations, and notes whether a destruction efficiency is reported. Out of the five possible combinations, there are two instances where the destruction efficiency of the target pollutant is reported. If the mass flow rate of a pollutant into the catalyst (Q_{in}) is greater than the mass flow rate exiting the catalyst (Q_{out}), %DE is calculated. If the pollutant is detected entering the catalyst, but is not detected exiting the catalyst, %DE is estimated using the measured mass flow rate at the inlet, and the mass flow rate corresponding to the analytical detection limit at the outlet.

The removal efficiency of HAP for various target compounds is presented in Table 2.5. Formaldehyde was detected on every run that was attempted. In every case, the mass flow rate of formaldehyde into the catalyst was greater than the mass flow rate of formaldehyde leaving the catalyst. Therefore sixteen formaldehyde removal efficiencies were reported. Neither acetaldehyde nor acrolein were detected on any run at either location. There are no removal efficiency data to present for either of these compounds.

The removal efficiency of NO_x is not presented for any run. In every case, the measured concentration of NO_x at the catalyst exit was greater than the measured concentration of NO_x at the catalyst inlet. The difference between the outlet and the inlet

TABLE 2.4

Scenario No.	Result	DE Reported?
1	$Q_{in} > 0; Q_{out} > 0; Q_{in} > Q_{out}$	YES
2	$Q_{in} > 0; Q_{out} = ND$	YES
3	Q _{in} < Q _{out}	NO
· 4	$Q_{in} = ND; Q_{out} > 0$	NO
5	$Q_{in} = ND; Q_{out} = ND$	NO

MASS FLOW SCENARIOS

values ranged from 5 parts per million by volume, dry basis (ppmvd) to 11 ppmvd, which is 1.0 to 2.2% of the measurement range (0 - 500 ppmvd) of the NO_x analyzers. The apparent increase in NO_x across the catalyst may be due to uncertainty inherent in using two analyzers, and not due to any increase in the mass flow rate of NO_x . Carbon monoxide was detected at the catalyst inlet and outlet on every run. The mass flow rate of carbon monoxide showed a marked decrease across the catalyst. Carbon monoxide destruction efficiencies are presented for every run.

Methane and NMHC were detected by each methane/NMHC analyzer at both locations for every run. There are sixteen removal efficiencies calculated. The difference in methane concentrations across the catalyst averaged approximately 160 ppm for all of the runs. This corresponds to about 3% of the methane analytical range of 0 - 5,000 ppmv. The small difference makes it difficult to determine if there was a reduction in methane across the catalyst, or if the differences are due to uncertainty inherent in using two analyzers. The difference between the NMHC concentrations measured at the catalyst inlet and the catalyst outlet averaged about 30 ppm for all of the runs. This difference is about 6% of the NMHC analytical range of 0 - 500 ppmv. The data indicates that some NMHC was probably removed by the catalyst.

There are no destruction efficiencies presented for total hydocarbons. In fifteen of sixteen cases, the mass flow rate of THC exiting the catalyst was greater than the mass flow rate of THC entering the catalyst. The difference in the concentration measurements at these locations approached 1% of the THC analytical range of 0 - 5,000 ppmv. Therefore, there was most likely no removal of THC across the catalyst. Since THC is made up mostly of methane, this seems to indicate that the difference in methane values was most likely due to inherent measurement errors.

TABLE 2.5

CATALYST HAP REMOVAL EFFICIENCIES

Run ID	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7	Run 8
Formaldehyde	68%	75%	82%	71%	66%	76%	80%	65%
Carbon Monoxide	93%	95%	96%	95%	93%	94%	96%	94%
Methane	13%	9%	16%	9%	11%	12%	12%	33%
Non-methane Hydrocarbons	20%	18%	20%	13%	17%	23%	25%	7%

Run ID	Run 9	Run 10	Run 11	Run 12	Run 13	Run 14	Run 15	Run 16
Formaldehyde	69%	68%	68%	69%	74%	66%	70%	70%
Carbon Monoxide	93%	93%	93%	93%	93%	94%	93%	93%
Methane	12%	2%	4%	6%	14%	12%	11%	11%
Non-methane Hydrocarbons	21%	12%	8%	16%	38%	18%	29%	21%

Final Report Waukesha 3521GL

3.0 SOURCE DESCRIPTION AND OPERATION

This section presents discussions of the candidate engine and the catalyst used for the test program. The sections that follow describe the engine and the operation of the engine during testing.

3.1 ENGINE DESCRIPTION

The Waukesha 3521GL is a 4-stroke stationary internal combustion engine. The engine has six inline cylinders; the total piston displacement is 3520 cubic inches. Each cylinder is 9.375 inches in diameter, and has an 8.5-inch stroke. The compression ratio is 10.5:1. Air is delivered to the engine via the EECL's pressurized air delivery system; air manifold pressures are controlled by the EECL process control system. Engine loading is controlled by a computer-controlled water brake dynamometer. Before the test program EECL installed an oxidation catalyst, manufactured by MiraTech Corporation, on the engine. EECL aged the catalyst under its normal operating condition (i.e., burned in the catalyst) before the test program. This procedure ensured that the catalyst's HAP destruction efficiency approximated the HAP destruction efficiency of mature catalysts installed on 4-stroke engines in industry. Table 3.1 presents specifications of the engine and the catalyst. Table 3.2 presents nominal engine operating parameters.

The 4-stroke cycle requires two revolutions of the engine crankshaft for each power stroke. During the intake stroke, the piston moves down the cylinder and an air/fuel mixture is injected into the piston chamber. On the compression stroke, the piston moves back up the chamber, and the mixture is compressed and ignited. The expanding gas generated upon combustion forces the piston back down the chamber. This stroke is the power stroke. The last stroke of the 4-stroke cycle is the exhaust stroke. The piston travels back up the chamber and the combustion products are vented through the exhaust manifold.

The 3521GL engine was outfitted with lean-burn technology, which controls NO_x emissions. The lean-burn system uses pre-combustion chambers to ignite a lean air/fuel mixture in the main combustion chambers. A rich mixture of air and fuel is drawn into the pre-combustion chamber and is ignited by a spark plug. The resulting flame is then directed into the main combustion chamber, which contains a lean mixture of air and fuel. The flame jet from the pre-combustion chamber ignites the air/fuel mixture in the main chamber.

TABLE 3.1

Engine Classification	Four-stroke, lean burn, natural-gas-fired
Manufacturer and Type	Waukesha 3521 GL
Number of Cylinders	6
Bore and Stroke	9.375" x 8.5"
Nominal Engine Speed	1200 RPM
Ignition System Classification	Spark Ignited Pre-combustion Chamber
Ignition System	Altronic
Pre-combustion Chamber Type	Standard OEM Product
Number of Pre-combustion Chambers	1 Per Cylinder
Catalyst Classification	Oxidation Type
Manufacturer	Miratech Corporation
Date of Manufacture:	May 1999
Model Number: Serial Number: Item Number:	None. Custom-designed unit None. Custom-designed unit CSU-RE-12160
Catalyst Material:	Platinum/Palladium on Stainless Steel Substrate. Manufactured in Finland by Kemira
Element Size: Effective Area:	12" x 16" x 3" 11" x 14 7/8"
Number of Elements	2

ENGINE AND CATALYST SPECIFICATIONS

TABLE 3.2

SUMMARY OF NOMINAL ENGINE PARAMETERS

Parameter	Nominal Value	Acceptable Deviation	Designation
Torque	3236 ft-lb	± 2% of value	Primary
Speed	1200 rpm	\pm 5% of value	Primary
Jacket Water Temp (Outlet)	180 °F	\pm 5% of value	Primary
Oil Temperature	185 °F	± 5% of value	Primary
Air Manifold Temperature	100 °F	± 5% of value	Primary
Air Manifold Pressure	5 inches Hg over ambient pressure (i.e., sea level)	± 5% of value	Primary
Exhaust Manifold Pressure	5 inches Hg less than Air Manifold Pressure	± 5% of value	Primary
Ignition Timing	10° BTDC	± 5% of value	Primary
Overall Air/Fuel Ratio	28/1	± 5% of value	Primary
Inlet Air Humidity-Absolute	0.015 lb H ₂ O/lb Air	± 10% of value	Primary
Fuel Flow	5460 scfh	± 5% of value	Primary
Oil Pressure Inlet	52 psig	$\pm 10\%$ of value	Secondary
Inlet Air Flow	1730 scfm	± 5% of value	Secondary
Average Exhaust Temp	700 °F	± 5% of value	Secondary

ft-lb - foot-pounds rpm - revolutions per minute °F - degrees Fahrenheit BTDC - Before Top Dead Center lb H₂O/ lb Air - pounds water vapor per pound of air scfh - standard cubic feet per hour psig - pounds per square inch, gauge scfm - standard cubic feet per minute

Ĩ

3-3

3.2 ENGINE OPERATION DURING TESTING

As stated in Section 2 of this document, three types of test runs were conducted during the test program: quality control runs, sampling runs for FTIRS and CEMS, and baseline runs. The operation of the engine during these various runs is discussed in the following pages and tables. The four-stroke engine test matrix described in the QAPP was based upon estimated operating parameters for a candidate engine to be installed and operated at the EECL. When the engine was received and first operated by EECL the actual operating parameters differed from the estimates. Table 3.3 presents the test matrix for the Waukesha engine based upon the actual engine parameters. During the test program, the six engine operating parameters expected to have the greatest impact on pollutant formation were varied from their baseline values. These parameters were: engine speed (measured in revolutions per minute or rpm), engine torque (measured in foot-pounds or ft-lb), air-to-fuel ratio (calculated as an equivalence factor), engine timing (the location of the piston, relative to top dead center, at the time of spark in the precombustion chamber, measured in degrees), air manifold temperature (measured in degrees Fahrenheit).

Table 3.4 presents engine parameters recorded during each test run and their percent deviation from the target values. Sixteen sampling runs were conducted on the engine during the two-day period. Except for air/fuel ratios, the actual parameters agreed with the target parameters to within 5%. Although the calculated air/fuel ratios were not within 5% of the target air/fuel ratios, testing was conducted while operating at rich air/fuel ratios (Runs 5 and 8) and at lean air/fuel ratios (Runs 6 and 7). The air/fuel ratio was varied to simulate the range of air/fuel ratios that typcial in field applications.

Before starting Run 7, the humidity control system failed. The humidity system could not be repaired quickly so the run was conducted without inlet air humidity control. Run 2 was also conducted without inlet air humidity control. The set point for the humidity ratio for all test points was 0.015 lb. water / lb. air. The actual humidity ratios for Runs 2 and 7 were 0.0126 and 0.0127 lb. water / lb. air respectively. The engine emissions for Runs 2 and 7 should be similar to engine emissions at the specified humidity ratio. The most dramatic effect will be on NO_x emissions as can be seen from the data and the graphs presented in Appendix S of the CSU test report. At a constant humidity ratio, it would be expected that formaldehyde emissions would either remain constant or increase slightly with similar changes in CO and THC emissions.

TABLE 3.3

Operating Conditions Tested:	Speed (rpm)	Torque (% of maximum)	Equivalence Ratio (¢)	Timing (° BTDC)	Intercooler Water Temperature (°F)	Jacket Water Temperature (°F)	
Condition 1	Н	Н	H N S		S	S	
Condition 2	Н	L	N	S	S	S	
Condition 3	L	L	Ν	S	S	S ·	
Condition 4	L	Н	N	S	S	S .	
Condition 5	Н	Н	L	S	S	S	
Condition 6	Н	· · H	Н	S	S	S	
Condition 7	· H	: L	Н	S	S	S	
Condition 8	L	Н	L	S	S	S S	
Condition 9	Н	н	N ·	S	L	S	
Condition 10	Н	Н	N	S	Н	S	
Condition 11	Н	н	N	S	S	L	
Condition 12	Н	H	N	S	S	Ĥ	
Condition 13	Н	Н	N	L	S .	S	
Condition 14	н	н	. N	Н	S S		
Condition 15	H	H	N	S [·]	S	S	
Condition 16	Н	Н	N	S	S ·	S	
	L = 1000 H = 1200	L = 70 H = 100	N = 0.61 L = 0.56 H = 0.62	N = 10 L = 6 H = 14	N = 130 L = 120 H = 140	N = 180 L = 170 H = 190	

TARGET ENGINE OPERATING CONDITIONS DURING TESTING

N = Normal Value L = Low Value H = High Value S = Set-point Value

TABLE 3.4

SUMMARY OF ENGINE PARAMETERS - WAUKESHA 3521 GL

Run ID		Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7	Run 8	Run 9	Run 10	Run 11	Run 12	Run 13	Run 14	Run 15	Run 16
	Actual	1197	1197	1002	1002	1197	1197	1197	1001	1197	1197	1197	1197	1197	1197	1197	1197
Engine Speed, rpm	Target	1200	1200	1000	1000	1200	1200	1200	1000	1200	1200	1200	1200	1200	1200	1200	1200
	% diff	-0.29%	-0.25%	0.16%	0.15%	-0.28%	-0.26%	-0.26%	0.15%	-0.28%	-0.26%	-0.26%	-0.26%	-0.26%	-0.29%	-0.26%	-0.26%
	Actual	3236	2263	2264	3234	3235	3234	2263	3234	3234	3237	3238	3236	3236	3235	3236	3235
Engine Torque ft-lb	Target	3236	2265	2265	3236	3236	3236	2265	3236	3236	3236	3236	3236	3236	3236	3236	3236
	% diff	0.0%	-0.1%	-0.1%	-0.1%	0.0%	0.0%	-0.1%	-0.1%	-0.1%	0.0%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%
	Actual	0.56	0.56	0.56	0.56	0.52	0.59	0.59	0.53	0.56	0.56	0.56	0.55	0.53	0.56	0.55	0.56
Equivalence Ratio, ϕ	Target	0.61	0.61	0.61	0.61	0.56	0.62	0.62	0.56	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.61
	% diff	-8.4%	-8.6%	-8.6%	-8.4%	-6.3%	-4.6%	-5.4%	-6.2%	-7.6%	-8.5%	-8.5%	-9.3%	-13.7%	-8.5%	-9.2%	-8.6%
	Actual	10	10	10	10	10	10	10	10	10	10	10	10	. 6	14	10	10
Ignition Timing, °BTDC	Target	10	10	10	10	10	10	10	10	10	10	10	10	6	14	10	10
	% diff	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Actual	132	128	130	129	130	128	129	129	119	141	129	130	128	132	128	130
Intercooler Water Temperature, °F	Target	130	130	130	130	130	130	130	130	120	140	130	130	130	130	130	130
•	% diff	0.3%	-0.4%	0.1%	-0.3%	0.1%	-0.3%	-0.2%	-0.2%	-0.1%	0.2%	-0.2%	0.0%	-0.3%	0.3%	-0.3%	0.0%
	Actual	179	179	179	179	179	180	179	179	179	180	170	190	183	179	179	180
Jacket Water Temperature, °F	Target	180	180	180	180	180	180	180	180	180	180	170	190	180	180	180	180
	% diff	-0.3%	-0.5%	-0.6%	-0.3%	-0.3%	0.2%	-0.5%	-0.7%	-0.6%	0.3%	0.0%	0.1%	1.7%	-0.5%	-0.7%	0.1%
Horsepower	bhp	737	516	432	617	737	737	516	617	737	738	738	738	737	737	737	737
Fuel Flow Rate	scfn	5378	4083	3205	4368	5523	5337	4040	4424	5389	5341	5353	5411	5683	5272	5452	5372
Lower Heating Value	Btu/cf	1024	1040	1040	1040	1040	1040	1040	1040	1024	1040	1040	1040	1040	1024	1040	1040
Heat Rate	MMBtu/hr	5.51	4:24	3.33	4.54	5.74	5.55	4.20	4.60	5.52	5.55	5.56	5.63	5.91	5.40	5.67	5.58
Dry Fuel Factor, F _d	dscf/MMBtu	8654	8645	8655	8645	8655	8655	8645	8645	8654	8645	8645	8645	8655	8654	8655	8655

rpm - revolutions per minute ft-lb - foot pounds °BTDC - degrees Before Top Dead Center

°F - degrees Fahrenheit bhp - brake horsepower scfn - standard cubic feet per hour Btu/cf - British Thermal Units per cubic foot of natural gas MMBtu/hr - million Btu per hour

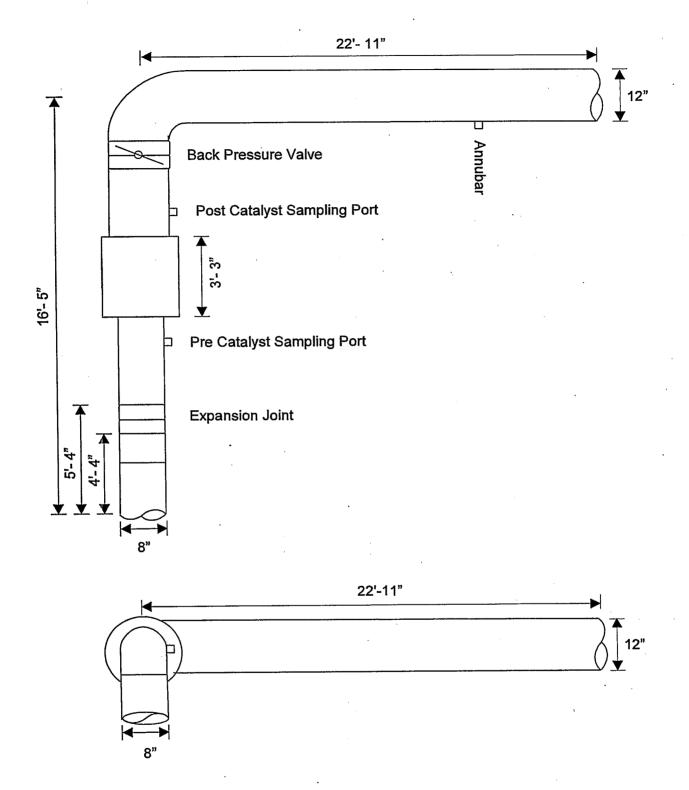
Final Report Waukesha 3521GL

3-6

Table 3.5 presents engine parameters measured during two baseline test runs. There were two testing periods. On August 4, testing was conducted over a six-hour period. The engine was shut down and testing resumed on August 5. The testing was completed over the next 26 hours of continuous engine operation. Test accuracy required that the overall engine operation did not change. The stability of the engine over this period was demonstrated by operating the engine at the baseline condition for one 5-minute period early in the 26-hour period and a second 5-minute period at the end of the testing. Changes to the baseline parameters would have indicated a change in the overall operating characteristics of the engine. It would not have been possible to distinguish between emission rate changes attributable to changes in the independent variables and emission rate changes attributable to random changes in the performance of the engine. Table 3.5 compares the values of 13 engine parameters measured during the baseline runs to the manufacturer's recommended settings that were presented in Table 3.2. Deviations are calculated in percent. Temperatures were converted to degrees Rankine, then the percent deviation was calculated.

TABLE 3.5

SUMMARY OF ENGINE PARAMETERS DURING BASELINE RUNS


Run ID	· · · · · · · · · · · · · · · · · · ·	Baseline 1	Baseline 2
Engine Speed, rpm	Actual	1197	1197
	Deviation	-0.26%	-0.26%
Engine Torque, ft-lb	Actual	3236	3238
	Deviation	-0.01%	0.07%
Air/Fuel Ratio, lb air / lb fuel	Actual	32.70	28.60
	Deviation	16.8%	2.1%
Ignition Timing, °BTDC	Actual	. 10.0	10.0
	Deviation	0.0%	0.0%
Jacket Water Temperature, °F	Actual	180	180
	Deviation	0.18%	-0.11%
Oil Temperature, °F	Actual	186	187
	Deviation	3.37%	3.78%
Air Manifold Pressure, in. Hg	Actual	· 5.01	5.00
	Deviation	0.2%	0.0%
Exhaust Manifold Pressure, in. Hg	Actual	5.06	4.91
	Deviation	1.20%	-1.80%
Inlet Air Humidity, Ib H₂O/lb air	Actual	0.01561	0.01585
	Deviation	4.07%	5.67%
Fuel Flow, scfn	Actual	5474	5358
	Deviation	0.3%	-1.9%
Oil Pressure, psig	Actual	52.19	52.03
	Deviation	0.4%	0.1%
Inlet Air Flow, scfh	Actual	1747	1712
	Deviation	1.0%	-1.0%
Exhaust Temperature, °F	Actual	699	705
	Deviation	-0.09%	0.66%

rpm - revolutions per minute ft-lb - foot-pounds lb air / lb fuel - pounds air per pound of fuel °BTDC - degrees Before Top Dead Center °F - degrees Fahrenheit in. Hg - inches of mercury
lb H2O / lb air - pounds water vapor per pound of air scfh - standard cubic feet per hour psig - pounds per square inch, gauge scfm - standard cubic feet per minute

Final Report Waukesha 3521GL

4.0 SAMPLING LOCATIONS

A schematic drawing of the exhaust gas piping on the Waukesha 3521GL engine is shown in Figure 4.1. The engine exhaust manifold was connected to the inlet of the catalyst with an 8-inch internal diameter (ID) pipe. The pipe extended vertically from the exhaust manifold, made a 90° bend, and was connected to the inlet of the catalyst. A 12-inch diameter pipe connected the outlet of the catalyst to a back pressure valve, and then to the exhaust header. EECL personnel used two sampling ports to extract samples for analysis by FTIRS and CEMS. One port was located before the catalyst and one port was located after the catalyst.

Figure 4.1 Exhaust Piping Schematic

Final Report Waukesha 3521GL

4-2

5.0 SAMPLING AND ANALYSIS METHODS

This section discusses the various sampling and analysis methods employed by PES and EECL to quantify the HAP emission rates upstream and downstream of the oxidation catalyst. PES selected the sampling and analysis procedures that would provide the information required during the planning stages of the project. The methods were selected to provide the required data in the most economical fashion, while providing the quality required by EPA's Emissions Standards Division (ESD).

Table 5.1 summarizes the parameters measured, the sampling methods, and measurement principle. The text that follows presents brief descriptions of the sampling and analysis procedures used.

PES and EECL used QA and calibration procedures described in 40 CFR 60, Appendix A (or other references as appropriate) as a guideline for instrument calibrations and drift checks. The instrumental methods as written in 40 CFR 60 Appendix A are designed by EPA to be portable, field test procedures. Because these instruments are maintained in a laboratory-type environment (the control room at EECL), fewer QA activities and calibrations are required to adequately show their continuing accuracy. The only significant change to the quality assurance activities was that fewer instrument calibrations were done to quantify instrument drift. Historical calibration data for the instruments shows their stable operation over extended, e.g., 24-hour, periods. Multipoint calibrations were conducted (including the sampling system bias checks) on these instruments once at the beginning of each engine test series.

5.1 DETERMINATION OF STACK GAS VOLUMETRIC FLOW RATE

PES used EPA Method 19 to calculate the volumetric flow rate of the exhaust gases for Runs 1 through 16. The mass flow rates of pollutants measured by FTIRS and CEMS were calculated using the Method 19 flow data. EPA Method 19, *Determination of Sulfur Dioxide Removal Efficiency and Particulate Matter, Sulfur Dioxide, and Nitrogen Oxides Emissions Rates*, uses a fuel factor to calculate the volume of combustion products generated upon combustion of specific fuel types. EECL personnel analyzed a sample of the natural gas fuel during each day of testing. The results of the compositional analysis were used to calculate the upper heating value and oxygen-based F-factor, F_d . The EECL Engine Control and Monitoring System recorded stack gas O_2 concentrations and the fuel consumption rate during testing. These data were used to calculate the exhaust gas flow rates by multiplying the fuel consumption by the fuel factor, and correcting for excess air. Exhaust gas flow rates were calculated upstream and downstream of the catalyst for each run.

TABLE 5.1

Parameter	Test Method	Measurement Principle		
Volumetric Flow	EPA Method 19	Stoichiometry		
Oxygen and Carbon Dioxide	EPA Method 3A	Paramagnetic and Non-dispersive Infrared Analyzers		
	GRI Protocol ¹	FTIR Analyzer		
Moisture	Carbon Balance ²	Stoichiometry		
Nitrogen Oxides	EPA Method 7E	Chemiluminescent Analyzer		
Carbon Monoxide	EPA Method 10	GFC/NDIR Analyzer		
Formaldehyde, Acetaldehyde, Acrolein	GRI Protocol	FTIR Analyzer		
Methane	EPA Method 25A (modified)	GC-FID Analyzer		
Non-methane hydrocarbons	EPA Method 25A (modified)	GC-FID Analyzer		
Total Hydrocarbons	EPA Method 25A	FID Analyzer		

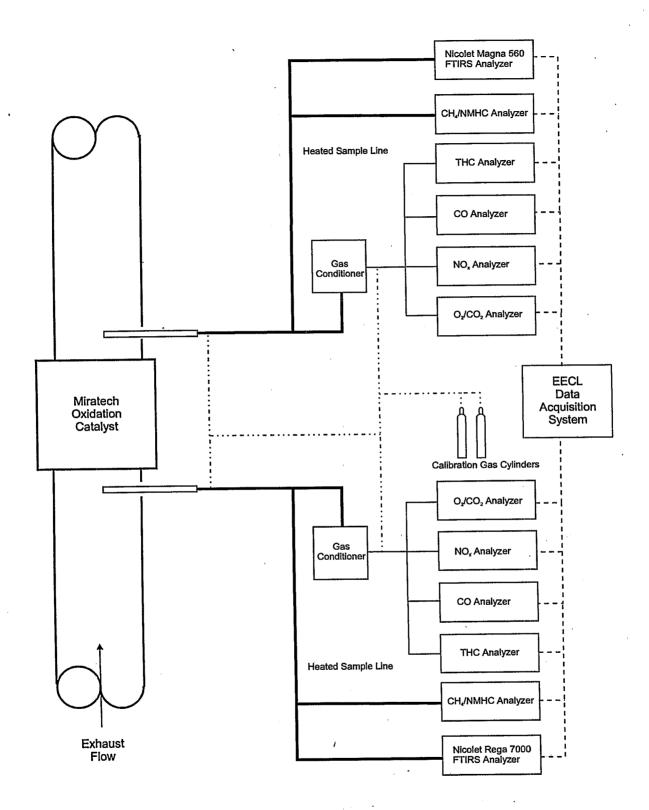
SUMMARY OF SAMPLING AND ANALYSIS METHODS.

¹ Measurement of Select Hazardous Air Pollutants, Criteria Pollutants, and Moisture Using Fourier Transform Infrared (FTIR) Spectroscopy. Presented as an Appendix to Fourier Transform Infrared (FTIR) Method Validation at a Natural Gas-Fired Internal Combustion Engine (GRI-95/0271), Gas Research Institute, December 1995.

² Derivation of General Equation for Obtaining Engine Exhaust Emissions on a Mass Basis Using the "Total Carbon" Method.

5.2 DETERMINATION OF STACK GAS OXYGEN AND CARBON DIOXIDE CONTENT

EECL used EPA Method 3A, Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources (Instrumental Analyzer Procedure), to measure oxygen and carbon dioxide content of the exhaust gas during testing. EECL's sample gas extraction and transport system extracted a gas sample from locations upstream and downstream of the catalyst. Each sample was conditioned to remove moisture and entrained particulate matter and directed to the CEMS.. Oxygen was measured using the paramagnetic detection principle. Carbon dioxide was measured using non-dispersive infrared (NDIR) analyzers. The oxygen and carbon dioxide monitors were calibrated with a pre-purified zero gas and three upscale gas standards corresponding to approximately 30, 55 and 85 percent of the instruments' analytical ranges. EECL used only EPA Protocol gas standards certified by the gas manufacturer. The calibration gases that were used and the calibration responses of the instruments are discussed in Section 6.0 of this document. A schematic diagram of the FTIRS/CEMS sampling and analysis system is presented in Figure 5.1.


5.3 DETERMINATION OF STACK GAS MOISTURE CONTENT

EECL used two methods to determine the moisture concentration in the exhaust gas upstream and downstream of the catalyst. Moisture content downstream of the catalyst was calculated using a carbon balance method. This method is summarized in the EECL test report, which may be found in Appendix A. During the testing, EECL personnel determined that the moisture concentrations downstream of the catalyst, as measured by the Nicolet Magna 560 FTIR analyzer, were about 6 percent higher than actual. Therefore the carbon balance method was used to calculate moisture content at this location.

EECL used methodology described in the document *Measurement of Select Hazardous Air Pollutants, Criteria Pollutants, and Moisture Using Fourier Transform Infrared (FTIR) Spectroscopy* to measure moisture concentrations upstream of the catalyst. This document, called the GRI Protocol in this report, is presented as Appendix B of a report published by the Gas Research Institute: Fourier Transform Infrared (FTIR) Method Validation at a Natural Gas-Fired Internal Combustion Engine. A sample of the gas was extracted from the exhaust, filtered and directed to a Nicolet Rega 7000 FTIR analyzer to measure the moisture concentration. The gas sample was transported to the analyzer via a heated Teflon[®] sample line. Further discussion of the FTIRS sampling and analysis method may be found in the report generated by the EECL.

5.4 DETERMINATION OF NITROGEN OXIDES

EPA Method 7E, Determination of Nitrogen Oxide Emissions from Stationary Sources (Instrumental Analyzer Procedure), determined nitrogen oxide content of the exhaust gases.

Final Report Waukesha 3521GL

These tests also provided the data needed to do the EPA Method 301 validation of the FTIRS for NO_x emissions from this source. Gas samples were extracted from locations upstream and downstream of the catalyst, conditioned to remove moisture, and the nitrogen oxide concentration determined by chemiluminescence analyzers. The NO_x monitors were calibrated with a pre-purified zero gas, and two upscale gas standards corresponding to approximately 55 and 85 percent of the instruments analytical ranges. EECL used EPA Protocol gas standards certified by the gas manufacturer. The calibration gases that were used and the calibration responses of the instruments are discussed in Section 6.0 of this document. A schematic diagram of the FTIRS/CEMS sampling and analysis system is presented in Figure 5.1.

5.5 DETERMINATION OF CARBON MONOXIDE

EPA Method 10, "Determination of Carbon Monoxide Emissions from Stationary Sources," measured CO concentration of the exhaust gas during the testing. These tests also provided the data needed to do the EPA Method 301 validation of the FTIRS sampling and analysis system for CO emissions from this source. Gas samples were extracted from the exhaust gas streams, conditioned to remove moisture, and the carbon monoxide concentration determined by instrumental analyzers. The measurement principle for carbon monoxide is GFC/NDIR. The CO monitor was calibrated using a pre-purified zero gas and three upscale gas standards corresponding to approximately 30, 55 and 85 percent of the instrument's analytical range. All gas standards used for calibrations were prepared according to EPA Protocol and certified by the gas manufacturer. The calibration gases that were used and the calibration responses of the instruments are discussed in Section 6.0 of this document. A schematic diagram of the FTIRS/CEMS sampling and analysis system is presented in Figure 5.1.

5.6 DETERMINATION OF TOTAL HYDROCARBONS

EPA Method 25A, Determination of Total Gaseous Organic Concentration Using a Flame Ionization Analyzer, determined the total hydrocarbon concentrations at the inlet and the outlet of the catalyst. At the catalyst inlet, EECL used a Thermo Environmental Instruments (TECO) Model 51 Total Hydrocarbon Analyzer. The analyzer consisted of a heated compartment to prevent condensation of organic compounds, and a Flame Ionization Detector (FID) to measure THC concentrations. At the catalyst outlet, EECL used a Rosemount Analytical NGA-2000 FID Hydrocarbon Analyzer. This analyzer also used an FID to measure the concentrations of THC in the gas stream. The FID detector consists of a burner in which a regulated flow of a sample gas passes through a flame sustained by regulated flows of a fuel gas and air. The hydrocarbon components of the sample stream ionize in the flame. The positive ions that are produced are collected by an electrode causing current to flow through a measuring circuit. The ionization current is proportional to the rate at which carbon atoms enter the burner, and is therefore a measure of the concentration of hydrocarbons in the sample.

5.7 DETERMINATION OF METHANE AND NON-METHANE HYDROCARBONS

A modification of EPA Method 25A determined the methane and non-methane concentrations at the inlet and the outlet of the catalyst. Gas samples extracted from each gas stream were transported to Questar Baseline 1030H Methane/Non-Methane Analyzers. These analyzers are single-purpose gas chromatographs that separate methane from the other organic compounds in the sample by passing the sample through a separation column. The methane elutes from the column first and is directed to the flame ionization detector. Then, the analyzer reverses the flow through the column and the remaining organic compounds are back flushed to the same detector. The analyzer sums the two fractions to yield the concentration of total organic compounds. Because this unit is a gas chromatograph, it cannot measure methane and nonmethane concentrations continuously. During testing, each analyzer determined concentrations once every five minutes. This frequency is sufficient for testing on RICE, because the operating conditions were maintained within close constraints. Each analyzer was calibrated before each week of testing using methane and propane calibration standards corresponding to approximately 30, 50, and 85 percent of the instrument span. The calibration gases that were used and the calibration responses of the instruments are discussed in Section 6.0 of this document. A schematic diagram of the CEMS/FTIRS sampling and analysis system is presented in Figure 5.1.

5.8 DETERMINATION OF GASEOUS ORGANIC HAPS USING FTIRS

EECL used two FTIRS systems that met the sampling and analysis requirements set forth in the GRI Protocol. Table 5.2 summarizes the specifications of each FTIRS analyzer. GRI validated extractive FTIRS systems successfully for an analysis of emissions from natural gasfired RICE. The extractive FTIRS continuously extracts a sample gas from the stack, transports the sample to the FTIRS system, and does spectral analysis of the sample gas. The computer system analyzes sample gas spectra for target analytes continuously and archives them for possible later re-analysis.

The sampling and measurement system consists of the following components:

- heated probe;
- heated filter;
- heat-traced Teflon[®] sample line;
- Teflon[®] coated, heated-head sample pump;
- · FTIRS spectrometer; and
- QA/QC apparatus.

TABLE 5.2

Parameter	Pre-catalyst	Post-catalyst			
Manufacturer and Type	Nicolet Rega 7000	Nicolet Magna 560			
Spectral Resolution	0.5 cm ⁻¹	0.5 cm ⁻¹			
Detector Type	MCT-A	MCT-A			
Cell Type	4.2 Meter - Fixed Path Length	2.0 Meter - Fixed Path Length			
Cell Temperature	185 °C	165 °C			
Cell Pressure	600 Torr	600 Torr			
Cell Window Material	Zinc Cellinide	KBr			

FTIRS ANALYZER SPECIFICATIONS

EECL validated each sample extraction and analysis system for formaldehyde, acetaldehyde, and acrolein before testing. The results of the FTIRS validation are discussed in Section 6. The basic sampling procedure consisted of EECL taking an initial interferogram of the stack gas with the FTIRS measurement and analysis system before each test to describe the sample matrix. This measured the concentrations of moisture and the target pollutants and allowed for adjustments to the cell pathlength and the spectral analysis regions if the concentrations differ from expectations. Sample conditioning was not necessary at the EECL test site.

After QA/QC procedures and initial adjustments were completed for a given test day, a gas sample was drawn continuously through the heated FTIRS cell while the system collected spectral data. The spectrometer collected one complete spectrum of the sample, as an interferogram, per second and averaged interferograms over 1-minute periods. The FTIRS computer converted these time-integrated interferogram into conventional wave number spectra, analyzed for the target compounds and archived the data. Sample collection was 33 minutes in duration, coinciding with the test runs.

5.9 DETERMINATION OF NATURAL GAS COMPOSITION

The composition of the fuel gas combusted in the engine was determined daily using a dedicated Daniels Industries gas chromatograph (GC). The GC was calibrated each day using a

known standard. From the results of the daily analyses, the specific gravity, mole fractions, and BTU content of the fuel were calculated. Fuel flow measurements were determined using an American Gas Association (AGA) specified orifice meter run equipped with high accuracy pressure and temperature transmitters. All fuel flow calculations were in accordance with AGA Report #3. Stoichiometric air to fuel ratio calculations were also made using the results of the fuel gas analysis. The results of fuel gas calibrations and analysis are presented in the EECL report, which is attached in Appendix A.

6.0 QUALITY ASSURANCE/QUALITY CONTROL PROCEDURES AND RESULTS

Summarized in this section are the specific QA/QC procedures that PES and EECL personnel employed during the performance of this source testing program. PES' quality assurance program was based upon the procedures and guidelines contained in the "Quality Assurance Handbook for Air Pollution Measurement Systems, Volume III, Stationary Source Specific Methods," EPA/600/R-94/038c, as well as in the test methods. These procedures ensure the collection, analysis, and reporting of reliable source test data.

6.1 FTIRS QA/QC PROCEDURES

EECL calibrated the FTIRS instruments before each engine test series and at the beginning and end of each test day. The calibration procedures employed were consistent with procedures found in the following documents:

Gas Research Institute Report Number GRI-95/0271 entitled, "Fourier Transform Infrared (FTIRS) Method Validation at a Natural Gas-Fired Internal Combustion Engine."

This report was prepared for the Gas Research Institute by Radian Corporation. Included as appendices are two additional documents, which also have relevance in the test program:

"Measurement of Select Hazardous Air Pollutants, Criteria Pollutants, and Moisture Using Fourier Transform Infrared (FTIRS) Spectroscopy" – Prepared by Radian Corporation for the Gas Research Institute.

"Protocol for Performing Extractive FTIRS Measurements to Characterize Various Gas Industry Sources for Air Toxics" – Prepared by Radian Corporation for the Gas Research Institute.

Final Report Waukesha 3521GL

6-1

6.1.1 FTIRS System Preparation

Both FTIRS sampling systems (before and after the catalyst) were subjected to an EPA Method 301 validation process for formaldehyde, acetaldehyde, and acrolein. The validation process quantified the precision and accuracy of each FTIRS analyzer for these compounds. Besides the validation program, EECL personnel performed the following calibration procedures before each engine test series.

- 1. Source Evaluation Initial source data were acquired to verify concentration ranges of target compounds and possible interferences. This was completed before and during the Method 301 validation process for formaldehyde, acetaldehyde, and acrolein, and during the test program for moisture.
- 2. Sample System Leak Check A leak check was done on the portions of the system between the sample filter and the pump outlet. A rotameter was connected to the discharge side of the sample pump. The indicated sample flow rate was recorded with the sample system operating at typical temperatures and pressures (the sample pump pulled a slight vacuum on the suction side). The inlet was closed off just downstream of the sample probe. The rotameter monitored the flow rate. If the leakage rate is found to be no greater than 500 ml/min or 4% of the average sampling rate (whichever is less) the system is considered to be acceptable for use. The leak checks conducted by EECL personnel indicated that the system was acceptable for use.
- 3. Analyzer Leak Check Both FTIRS analyzers were checked to ensure that they were operating at normal operating temperatures and pressures. The operating pressures were recorded. The automatic pressure control device was disabled and the inlet to the FTIRS was closed. The cell was evacuated to 20% or less of the normal operating pressure. After the cell was evacuated, it was isolated and the cell pressure was monitored with a dedicated pressure sensor. The leakage rate of the measurement cell is acceptable if it is less than 10 Torr per minute. All analyzer leak checks performed by EECL were within the acceptable range.
- 4. Cell Pathlength Determination The FTIRS cell pathlengths were to be determined using the procedure outlined in the Field Procedure Section the document entitled "Protocol for Performing Extractive FTIRS Measurements to Characterize Various Gas Industry Sources for Air Toxics." Because each FTIRS was a fixed pathlength unit (i.e., the pathlengths were not adjustable) measurements of the cell pathlengths were deemed unnecessary. The cell pathlengths specified by the manufacturer were used in the measurement algorithms.

6.1.2 FTIRS Daily Calibrations and QA Procedures

Before each day of testing, EECL personnel calibrated each FTIRS system following the procedures outlined below.

- 1. Instrument Stabilization Each of the following components were checked for proper operation to ensure the stability of the operation of the FTIRS instruments:
 - a) Instrument heaters and temperature controllers.
 - b) Pressure sensors and pressure controllers.
 - c) Sample system (pump, filters, flow meters, and water knockouts).
- 2. The FTIRS analyzers were purged with conditioned air for a minimum of 30 minutes before conducting background spectrum analysis. During periods when the instruments were in stand-by mode (i.e., between sampling runs or between test days), they were maintained at normal operating temperatures and purged with conditioned air.
- 3. Background Spectrum Procedures Each instrument was allowed to stabilize while being purged with Ultrahigh Purity (UHP) nitrogen for 10 minutes. The FTIRS spectra were monitored during this time, until CO and H₂O concentrations reached a steady state. The following procedures were then done:
 - a) The interferogram signal was checked using signal alignment software.
 - b) A single beam spectrum was collected and inspected for irregularities.
 - c) Using the single beam spectrum, the detector was checked for non-linearity and corrected if necessary.
 - d) The instrument alignment procedure was done.
 - e) A background spectrum consisting of 256 scans was collected.
- 4. Analyzer Diagnostics Analyzer diagnostics were done by analyzing a diagnostic standard. The standard was a 109 ppm CO EPA Protocol gas standard. EECL uses CO because it has distinct spectral features that are sensitive to variations in system operation and performance. The standard was introduced directly into each instrument, and instrument readings were allowed to stabilize for 5 minutes. The accuracy and precision of each instrument were calculated. The pass/fail criterion for accuracy and precision was 10% of the concentration of the standard

gas. A second diagnostic standard consisting of a blend of CO_2 , CO, CH_4 , and NO_x was analyzed using the same procedure. Each instrument met the precision and accuracy requirements. Analyzer diagnostic data are presented in the report generated by EECL.

5. Indicator Check & Sample Integrity Check - An indicator check was done by analyzing an indicator standard. A 10.66 ppm formaldehyde standard was introduced directly into each instrument. The instrument readings were allowed to stabilize and a 5-minute data set was collected. The indicator standard was then introduced into the sample system at the sample probe, just upstream of the filter. The instrument readings were allowed to stabilize and a 5-minute set of data was collected. The accuracy, precision, and recovery were calculated based on equations in the document entitled "Protocol for Performing Extractive FTIRS Measurements to Characterize Various Gas Industry Sources for Air Toxics", prepared by Radian Corporation for the Gas Research Institute. The pass/fail criterion for accuracy, precision, and recovery is $100 \pm 10\%$ of the known standard (recovery shall be $100 \pm 10\%$ of the instrument reading when the indicator gas is introduced directly into the instrument.) Each instrument met these criteria. Indicator check and sample integrity data sheets are included with the EECL report.

6.1.3 Background Assessment

During data acquisition procedures, the baseline absorbance was continually monitored. If at any time the baseline spectrum changed by more than 0.1 absorbance units, the instrument's interferometer was realigned and a new background spectrum collected.

6:1.4 Post Test Checks

Upon completion of the daily test program steps 4 and 5 of the pre-test calibration procedures were repeated. Both of the FTIRS analyzers met all of the acceptance criteria for the calibration and QA procedures. Post test calibration data sheets are included in the EECL report.

6.1.5 FTIRS Validation

Before the test program, both FTIRS sampling and analysis systems were validated for formaldehyde, acrolein, and acetaldehyde. The validation was conducted by personnel from ERG, using procedures outlined in EPA Method 301 "Field Validation of Pollutant Measurement Methods from Various Waste Media." The validation was conducted by spiking the sample gas with known concentrations of formaldehyde, acrolein, and acetaldehyde. The carrier gas was a mixture of acrolein and acetaldehyde and was introduced into the spiking system from a compressed gas cylinder. Formaldehyde was added to the

carrier gas by injecting a stock formalin solution onto a heated block at a fixed rate. The acrolein/acetaldehyde gas standard was used as a carrier gas for the vaporized formaldehyde. The three-component mixture was injected into each FTIRS sampling system at a point upstream of each system's filter. Further discussions of the validation procedures employed may be found in the report generated by EECL.

6.1.6 FTIRS Detection Limits

Table 6.1 presents the in-stack detection limits for formaldehyde, acetaldehyde, and acrolein as reported by CSU EECL. These detection limits have been used to calculate the run-by-run mass detection limits for each of the target pollutants.

6.2 CEMS QA/QC PROCEDURES

The following paragraphs describe the CEMS quality assurance procedures that EECL personnel used during the test program. The calibration and QC frequencies far exceeded those required for permanently-installed, compliance analyzers, but are less than those specified for compliance tests by EPA (40 CFR 60, Appendix A). EECL operates their CEMS in a way that is more similar to permanently-installed analyzers.

6.2.1 Analyzer Calibration Gases

EECL used EPA Protocol calibration gases. The calibration gases were manufactured by Scott Specialty Gases. For this program, EPA Protocol 1 calibration gases (RATA Class) were used. Formaldehyde and acetaldehyde/acrolein standards with concentration ranges between 5 - 20 ppm were obtained for FTIRS calibrations. These gases are not available as EPA Protocol Gases, so EECL specified the highest quality available. Scott supplied certification sheets, which may be found in the Appendices of EECL's test report.

6.2.2 <u>Response Time Tests</u>

Response time tests were done on each sample system before initiation of the engine test program. The response time tests were performed before the FTIRS validation process for each sampling system. The response time of the slowest responding analyzer (Questar Baseline Methane/Non-methane hydrocarbon GC) was determined. Response time tests conducted at the EECL indicated sampling system response times of 1:10 minutes. This is the time for the Rosemount Oxygen analyzer (the slowest responding continuous analyzer) to stabilize to response output of the analyzer. The Questar Baseline analyzers have a minimum cycle time of 4:50 minutes. The overall response time for these analyzers when their cycle is started 1:10 minutes after a sample source change is 5:50 minutes.

TABLE 6.1

DETECTION LIMITS OF FTIRS AND CEMS COMPOUNDS

Run ID		Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7	Run 8	Run 9	Run 10	Run 11	Run 12	Run 13	Run 14	Run 15	Run 16
	Catalyst Inlet																
Formaldehyde	mg/bhp-hr	4.32	4.72	4.65	3.88	5.42	4.06	4.65	4.48	4.21	4.04	4.08	4.12	4.82	4.18	4.42	4.32
	mlb/hr	7.02	5.37	4.42	5.27	8.81	6.59	5.29	6.09	6.85	6.57	6.64	6.70	7.83	6.80	7.19	7.03
Acetaldehyde	mg/bhp-hr	20.1	21.9	21.6	18.1	25.0	18.9	21.4	20.8	19.7	18.8	19.1	19.2	22.5	19.5	20.6	20.1
	mlb/hr	32.7	24.9	20.6	24.6	40.6	30.6	24.3	28.3	32.0	30.6	31.0	31.2	36.5	31.7	33.5	32.7
Acrolein	mg/bhp-hr	15.5	16.3	16.6	14.2	17.4	15.7	16.4	14.9	15.8	15.3	15.5	15.4	18.9	15.3	16.6	16.3
	mlb/hr	25.2	18.5	15.8	19.3	28.3	25.5	18.7	20.3	25.7	24.9	25.3	25.1	30.7	24.9	27.1	26.4
Nitrogen Oxides (as NO2)	g/bhp-hr lb/hr	0.001	0.001	0.001 0.001	0.001 0.001	0.001 0.001	0.001 0.001	0.001 0.001	0.001 0.001	0.001 0.001	0.001 0.001	0.001 0.001	0.001 0.001	0.001	0.001 0.001	0.001 0.001	0.001 0.001
Carbon Monoxide	g/bhp-hr	0.04	0.05	0.05	0.04	0.05	0.04	0.04	0.05	0.04	0.04	0.04	0.04	0.05	0.04	0.05	0.05
	lb/hr	0.07	0.05	0.04	0.06	0.08	0.07	0.05	0.06	0.07	0.07	0.07	0.07	0.08	0.07	0.08	0.07
Methane	g/bhp-hr lb/hr	0.1 0.2	0.2 0.2	0.2 0.1	0.1 0.2	0.2 0.3	0.1 0.2	0.1 0.2	0.1 0.2	0.1 0.2	0.1 0.2	0.1 0.2	0.1 0.2	0.2 0.3	0.1 0.2	0.2	0.1 0.2
Non-methane Hydocarbons	g/bhp-hr lb/hr	0.04 0.07	0.04 0.05	0.04 0.04	0.04 0.05	0.04 0.07	0.04 0.06	0.04 0.04	0.04 0.05	0.04 0.06	0.04 0.06	0.04	0.04 0.06	0.05 0.07	0.04 0.06	0.04 0.07	0.04 0.07
Total Hydrocarbons	g/bhp-hr lb/hr	0.0001	0.0001	0.0001 0.0001	0.0001 0.0001	0.0001 0.0002	0.0001	0.0001	0.0001 0.0001	0.0001	0.0001	0.0001 0.0002	0.0001	0.0001 0.0002	0.0001 0.0002	0.0001 0.0002	0.0001 0.0002
						Ca	talyst O	utlet	-								·
Formaldehyde	mg/bhp-hr	3.04	3.14	3.33	2.91	3.42	2.80	2.88	3.20	3.03	2.86	2.86	2.85	3.19	2.99	3.11	3.04
	mlb/hr	4.94	3.57	3.17	3.95	5.57	4.56	3.28	4.36	4.92	4.64	4.66	4.63	5.19	4.86	5.05	4.95
Acetaldehyde	mg/bhp-hr	12.6	12.9	13.7	12.0	14.2	11.6	11.9	13.2	12.5	11.8	11.8	11.8	13.2	12.3	12.8	12.6
	mlb/hr	20.4	14.7	13.1	16.3	23.0	18.8	13.5	18.0	20.3	19.2	19.3	19.1	21.4	20.0	20.8	20.4
Acrolein	mg/bhp-hr	59.7	52.4	54.0	49.0	56.1	51.0	50.6	50.7	52.1	50.8	50.0	50.2	56.4	52.3	54.3	53.4
	mlb/hr	97	59.6	51.4	66.6	91.1	82.8	57.6	68.9	84.6	82.6	81.4	81.6	91.7	85.0	88.3	86.8
Nitrogen Oxides (as NO2)	g/bhp-hr lb/hr	0.001 0.001	0.001 0.001	0.001 0.001	0.001 0.001	0.001 0.001	0.001 0.001	0.001 0.001	0.001 0.001	0.001 0.001	0.001 0.001	0.001 0.001	0.001	0.001 0.001	0.001 0.001	0.001 0.001	0.001 0.001
Carbon Monoxide	g/bhp-hr	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	lb/hr	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.02	0.01
Methane	g/bhp-hr	0.15	0.15	0.15	0.14	0.16	0.14	0.14	0.15	0.15	0.14	0.14	0.14	0.16	0.14	0.15	0.15
	lb/hr	0.24	0.17	0.14	0.19	0.26	0.22	0.16	0.20	0.24	0.23	0.23	0.23	0.25	0.23	0.24	0.24
Non-methane Hydocarbons	g/bhp-hr	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0,04	0.04
	lb/hr	0.07	0.05	0.04	0.05	0.07	0.06	0.04	0.05	0.06	0.06	0.06	0.06	0.07	0.06	0.07	0.07
Total Hydrocarbons	g/bhp-hr lb/hr	0.0001 0.0002	0.0001	0.0001 0.0001	0.0001 0.0001	0.0001	0.0001 0.0002	0.0001	0.0001 0.0001	0.0001 0.0002	0.0001	0.0001 0.0002	0.0001	0.0001	0.0001 0.0002	0.0001 0.0002	0.0001 0.0002

mg/bhp-hr - milligrams per brake horsepower hour mib/bhp-hr - millipounds per brake horsepower hour g/bhp-hr - grams per brake horsepower hour

1b/hr-pounds perhour

Final Report Waukesha 3521GL

6.2.3 Analyzer Calibrations

Zero and mid-level span calibration procedures were done on the CO, CO_2 , O_2 , NO_x , THC, and methane/non-methane analyzers before each test day. Zero and span drift checks were performed upon completion of each data point and upon completion of each test day. A zero and mid-level gas was introduced directly to the analyzers before testing for carbon monoxide, carbon dioxide, oxygen, total hydrocarbons, methane/non-methane, and oxides of nitrogen. The analyzers' output response was set to the appropriate levels. Each analyzer's stable response was recorded. From this data a linear fit was developed for each analyzer. The voltages for each analyzer were recorded and used in the following formula:

Y = MX + B

where:

B = Intercept
M = Slope
X = Analyzer or transducer voltage
Y = Engineering Units

After each test point and upon completion of a test day, calibrations were conducted by reintroducing the zero and span gases directly to the back of the analyzers. The analyzers' stabilized responses were recorded. No adjustments were made during testing or during the final calibration check. Initial calibration values and all calibration checks were recorded for each analyzer during the daily test program.

The before and after calibrations checks were used to determine zero and span drift for each test point for the CO, CO_2 , O_2 , NO_x , THC, and methane/non-methane, and analyzers. The zero and span drift checks for all test points and all test days were less than $\pm 2.0\%$ of the span value of each analyzer used during the daily test program. The calibration data sheets are presented in the test report generated by EECL. Table 6.2 presents the types and frequencies of the analyzer calibrations conducted by EECL.

TABLE 6.2

Calibration Type	Gas	Calibration Gas Concentration (units of % of span ⁽¹⁾)	Frequency	Calibrant Injection Point	Validation Criterion	
ACE (2)	O ₂ , CO ₂ , CO, NO _x	0 to 0.25, 40 to 60, 80 to 100	Before each	Directly into	<2% of analyzer span for each gas	
NOD	Methane/Non- Methane Hydrocarbons 80 to		engine test	the analyzer	<5% of respective cal. gas value	
ZSD ⁽³⁾	O ₂ , CO ₂ , CO, NO _x	0 to 0.25, 40 to 60 or 80 to 100 ⁽⁵⁾	Before and after each	Directly into	All errors <3% of span	
230 **	Methane/Non- Methane Hydrocarbons	25 to 35, 45 to 55	test run	the analyzer	All errors <3% of span	
SSB (*)	NO _x	0 to 0.25, 40 to 60 or 80 to 90 ⁽⁵⁾	Before and after each test day	Both directly into the analyzer and	Both errors	
555 (*	Methane/Non- Methane Hydrocarbons	0 to 0.25, 25 to 35, 45 to 55 or 80 to 90 ⁽⁵⁾	Before and after each test day	into the inlet of the sample line	<5% of analyzer span	

TYPES AND FREQUENCIES OF CEMS ANALYZER CALIBRATIONS

⁽¹⁾ - The span must be 1.5 to 2.5 the concentration expected for each pollutant

⁽²⁾ - Analyzer calibration error check

- ⁽³⁾ Zero and span drift check
- ⁽⁴⁾ Sampling system bias check
- ⁽⁵⁾ Whichever is closer to the exhaust gas concentration

6.2.4 Analyzer Linearity Check

Analyzer linearity checks were done before beginning the test program. The oxygen, carbon monoxide, total hydrocarbon, methane/non-methane, and oxides of nitrogen analyzers were "zeroed" using either zero grade nitrogen or hydrocarbon free air. The analyzers were allowed to stabilize and their output recorded. The analyzers were then "spanned" using the mid-level calibration gases. The analyzers were allowed to stabilize and their output recorded. From this data a linear fit was developed for each analyzer. The voltage for each analyzer was recorded and used in the following formula:

	Y	= MX + B
where:	В	= Intercept
	Μ	= Slope
	Х	= Analyzer or transducer voltage
:	Y	= Engineering Units

Using the linear fit, the linear response of the analyzer was calculated. Low-level and high-level calibration gases were individually introduced to the analyzers. For each calibration gas, the analyzers were allowed to stabilize and their outputs were recorded. Each analyzer's linearity was acceptable. The predicted values of a linear curve determined from the zero and mid-level calibration gas responses agreed with the actual responses of the low-level and high-level calibration gases within $\pm 2.0\%$ of the analyzer span value. The methane/non-methane analyzers' linearity was acceptable as the predicted valued agreed with the actual response of the low-level and high-level calibration gases within $\pm 2.0\%$ of the analyzer span value. The methane/non-methane analyzers' linearity was acceptable as the predicted valued agreed with the actual response of the low-level and high-level calibration gases within $\pm 5.0\%$ of the actual calibration gas value. This procedure was done for one range setting for each analyzer. The Linearity Check data sheets are presented the test report generated by EECL.

6.2.5 NO₂ Converter Check

EECL did NO₂ converter checks before the test program began. A calibration gas mixture of known concentration between 240 and 270 ppm nitrogen dioxide (NO₂) and 160 to 190 ppm nitric oxide (NO) with a balance of nitrogen was used. The calibration gas mixture was introduced to the oxides of nitrogen (NO_x) analyzer until a stable response was recorded. The converter was considered acceptable if the instrument response indicated a 90 percent or greater NO₂ to NO conversion. The NO₂ Converter Check data sheets are presented in the test report generated by EECL.

6.2.6 Sample Line Leak Check

The sample lines were leak-checked before the engine test program. The leak check procedure was performed for both pre-catalyst and post-catalyst sample trains. The procedure was to close the valve on the inlet to the sample filter found just downstream of the

exhaust stack probe. With the sample pump operating, a vacuum was pulled on the exhaust sample train. Once the maximum vacuum was reached, the valve on the pressure side of the pump was closed, thus sealing off the vacuum section of the sampling system. The pump was turned off and the pressure in the sample system was monitored. The leak test was acceptable as the vacuum gauge reading dropped by an amount less than 1 inch of mercury over a period of 1 minute. The Sample Line Leak Check data sheets are presented the test report generated by EECL.

6.2.7 Sample Line Integrity Check

A sample line integrity check was done before and upon completion of each test day. The analyzers' response was tested by first introducing a mid-level calibration gas directly to the NO_x analyzer. The analyzer was allowed to stabilize and the response recorded. The same mid-level calibration gas was then introduced to the analyzer through the sampling system. The calibration gas was introduced into the sample line at the stack, upstream of the inlet sample filter. The analyzer was allowed to stabilize and the response recorded. The analyzer response values were compared and the percent difference did not to exceed $\pm 5\%$ of the analyzer span value.

The sample line integrity check was to be done for both the NO_x and methane/nonmethane analyzers. Due to time constraints, EECL performed the integrity check for the NO_x analyzers only. The SSB procedure was performed for the methane/non-methane analyzers before and upon completion of the test program. The Sample Line Integrity Check data sheets are presented in the test report generated by EECL.

6.2.8 Carbon Balance Check

One of the methods used to calculate mass emissions was a carbon balance calculation developed by Southwest Research Institute specifically for the American Gas Association. The calculations consist of a theoretical O_2 calculation based upon measured exhaust stack constituents and fuel gas composition. The theoretical exhaust O_2 is then compared to the measured exhaust O_2 . The percent difference between the actual and theoretical O_2 measurements was within ± 5 % of the measured O_2 reading. The O_2 balance was performed for every 1-minute average and the 33-minute averaged valued for each test point.

6.2.9 Fuel Factor Quality Assurance Checks

Besides the CEMS calibration and QC checks, carbon dioxide and oxygen measurements were validated by calculating the fuel factor, F_0 , using the following equation:

 $F_{o} = \frac{20.9 - \%O_{2}}{\%CO_{2}}$

The values of F_o at the inlet and the outlet for each sampling run are presented in Table 6.3. From the fuel gas analysis, the calculated F_o was 1.69, 1.68, and 1.70 for August 4, 5, and 6 respectively. The F_o values were within 6% of the calculated F_o for all of the sampling runs conducted. Based upon the results, the integrity of the CEMS sample stream was not compromised due to leaks in the sampling system.

TABLE 6.3

Run Number	Inlet F _o	Outlet F.	Run Number	Inlet F _o	Outlet F _o
1	1.76	1.72	9	1.77	1.72
2	1.78	1.72	10	1.75	1.72
3	1.71	1.73	11	1.76	. 1.72
4	1.78	1.73	12	1.75	1.72
5	1.77	1.76	13	1.67	1.74
6	1.77	1.74	14	1.78	1.72
•7	1.76	1.74	15	1.77	1.74
8	1.77	1.74	16	1.78	1.75

SUMMARY OF FUEL FACTOR VALUES

6.2.10 CEMS Detection Limits

For each of the sample runs, the mass detection limits of the CEMS were presented previously in Table 6.1. For each run, the detection limit was calculated using analytical detection limit data supplied by EECL. Table 6.4 summarizes these values.

-- **TABLE 6.4**

SUMMARY OF CEMS ANALYTICAL DETECTION LIMITS

Parameter	Inlet Detection Limit	Outlet Detection Limit
Oxygen	0.01 % volume	0.01 % volume
Carbon Dioxide	0.25 % volume	0.1 % volume
Nitrogen Oxides	0.1 ppm	0.1 ppm
Carbon Monoxide	2 ppm	2 ppm
Methane	20 ppm	20 ppm
Non-methane Hydrocarbons	2 ppm	2 ppm
Total Hydrocarbons	0.04 ppm	0.04 ppm

6.3 DATA QUALITY ASSESSMENT

EPA used the Data Quality Objective (DQO) Process to plan the test program. The DQO Process consists of seven distinct steps.

- 1. State the problem.
- 2. Identify the decision.
- 3. Define inputs to the decision.
- 4. Define the study boundaries.
- 5. Develop the decision rule.
- 6. Specify tolerable limits on decision errors.
- 7. Optimize the design for obtaining data.

The DQO outputs for this test program were presented in the Quality Assurance Project Plan. The problem was defined in the QAPP and is restated below.

EPA believes that there is a need to conduct emission tests on a subset of engines of differing designs to evaluate the following issues:

- the effectiveness of after-combustion control systems on HAP emissions, and
- the effectiveness of combustion modifications (engine operating parameters) on HAP emissions.

EPA then developed a decision statement. The decision statement defined the process that would be used to answer the stated problem. The decision statement is restated below:

If EPA can identify a range of engine operating conditions for a defined set of engines with specified after-combustion treatment systems and a list of pollutants of interest, and EPA collects data to determine emissions of those pollutants for each engine operated at each engine operating condition, then EPA can make a determination of the control effectiveness of after-combustion and combustion modifications. In addition, EPA can obtain information on HAP emissions throughout the engine operating range.

PES and EECL conducted the test program on the Waukesha 3521GL, natural gasfired, 4-stroke, lean-burn, reciprocating internal combustion engine. The MiraTech oxidation catalyst was designed to provide the information required by the decision statement. Based upon the inputs, EPA will make decisions that will be used to regulate this engine subcategory. Inputs to the decision were defined, agreed to, and documented in the QAPP. These inputs consisted of agreement on a finite list of engines to test, the after-combustion control systems to test, the range of engine operating conditions, the catalyst conditioning process, the target list of pollutants, and the sampling and analysis methods, and sample durations.

During conduct of the test program, there were deviations from the QAPP. These deviations are discussed in Section 3.0 for deviations in engine operation, and Section 5.0 for deviations in Sampling and Analysis procedures.

Table 6.5 presents a summary of engine and sample method performance compared to the QAPP requirements. Outlier and data validation issues have been discussed in previous sections. Based upon the engine and method performance, the data quality is evaluated on a run-by-run basis for suitability in the assessment of pollutant emissions and destruction efficiency of HAP by the catalyst.

Six engine parameters were varied over the course of the test program. The parameters were changed so that emissions data and HAP destruction efficiency could be

Final Report Waukesha 3521GL

evaluated at a range of engine operating conditions. These conditions are expected to simulate the range of engine operating conditions in industry. Table 6.5 identifies the number of engine parameters that were within the tolerances prescribed in the QAPP. The target engine operating conditions were estimates based upon manufacturer's recommendations. There are differences between these recommendations and the nominal engine operating parameters of the Waukesha 3521GL engine located at the EECL. When testing was conducted some of the prescribed engine parameters could not be met. The fact that a pre-set engine parameter could not be met is considered to be minor. The testing was conducted over a range of engine operating conditions, and these operating conditions are documented.

The remainder of the table assesses data quality using a three-tiered system. A (\checkmark +) indicates that all method performance parameters defined in the QAPP and/or the sampling method were met. A (\checkmark) indicates that at least 90% of the method performance parameters were met. In the case of FTIRS and CEMS detection limits, there were no detection limits specified in the QAPP. The calculated detection limits are reasonable for this test program. A (\checkmark -) would indicate that fewer than 90% of the method performance parameters were met. There were no cases where less than 90% of the method performance parameters were met.

Final Report Waukesha 3521GL

6-14

TABLE 6.5

Run ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Engine Parameters Met 5/6 5/6 5/6 5/6 5/6 5/6 5/6 5/6 5/6 5/6 5/6 5/6 5/6 5/6 5/6 5/6 **Catalyst** Inlet FTIR QA Requirements 1 1 1 1 1 1 1 1 1 1 1 1 1 1 FTIR Detection Limits ^a 1 1 1 1 1 1 1 1 1 1 1 1 CEMS QA Requirements 1+ 1+ 1+ ∕+ 1+ **/**+ 1+ 1+ 1+ ∕+ **√**+ 1+ 7+ 1+ ∕+ 7+ CEMS Detection Limits ^a 1 1 1 1 1 1 1 1 1 1 1 1 Catalyst Outlet FTIR QA Requirements 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ FTIR Detection Limits ^a 1 1 1. 1 1 1 1 1 1 1 1 1 1 1 1+ 1+ 1+ 1+ 1+ **CEMS QA Requirements** 1+ 1+ 1+ <u>ر+</u> **/**+ 1+ ∕+ ∕+ ∕+ 1+ 1+ CEMS Detection Limits ^a 1 1 1 1 1 1 1 1 1 1 Assessment of Data Quality 1+ Catalyst Inlet Mass Flow 1+ 1+ ∕+ 1+ 1+ ∕+ 1+ 1+ ∕+ 1+ ∕+ ∕+ ∕+ ∕+ 1+ Catalyst Outlet Mass Flow 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 HAP Destruction Efficienc 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SUMMARY OF ENGINE AND METHOD PERFORMANCE

a Neither FTIRS nor CEMS detection limits were specified in the QAPP.

۰. •

.

APPENDIX A

SUBCONTRACTOR TEST REPORT COLORADO STATE UNIVERSITY ENGINES AND ENERGY CONVERSION LABORATORY

EMISSIONS TESTING OF CONTROL DEVICES FOR RECIPROCATING INTERNAL COMBUSTION ENGINES IN SUPPORT OF REGULATORY DEVELOPMENT BY THE U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA)

PHASE 2: FOUR-STROKE, LEAN BURN, NATURAL GAS FIRED INTERNAL COMBUSTION ENGINES .

•

.

• ,

EMISSIONS TESTING OF CONTROL DEVICES FOR RECIPROCATING INTERNAL COMBUSTION ENGINES IN SUPPORT OF REGULATORY DEVELOPMENT BY THE

U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA)

PHASE 2: FOUR-STROKE, LEAN BURN, NATURAL GAS FIRED INTERNAL COMBUSTION ENGINES

Prepared for:

PACIFIC ENVIRONMENTAL SERVICES

Submitted by:

Engines & Energy Conversion Laboratory Colorado State University Mechanical Engineering Department

April 28, 2000

Statement of Confidentiality

This report has been submitted for the sole and exclusive use of Pacific Environmental Services, and shall not be disclosed or provided to any other entity, corporation, or third part for purposes beyond the specific scope or intent of this document without the express written consent of Colorado State University.

COLORADO STATE UNIVERSITY

TABLE OF CONTENTS

1.0 INTRODUCTION

- 1.1 Overview
- 1.2 Background

2.0 TEST PROGRAM

- 2.1 Objective
- 2.2 Incentives
- 2.3 Work Plan

3.0 DEVIATIONS TO TEST PROGRAM

- 3.1 FTIR Validation
- 3.2 FTIR Post-catalyst Water Analysis
- 3.3 Baseline Engine Operating Conditions
- 3.4 Four-Stroke engine Test Matrix

4.0 TEST SAMPLING PROCEDURES

- 4.1 General Test Procedures
- 4.2 Test Specifics-Data Collection
- 4.3 Test Specifics-Engine Stability
- 4.4 Test Specifics-Data Collection Hardware
- 4.5 Test Specifics-Data Collection Process
- 4.6 Test Specifics-Emissions Analyzer General Test Procedures
- 4.7 Test Specifics-Emissions Analyzer Checks and Calibrations
- 4.8 Test Specifics-FTIR Calibration Procedures
- 4.9 Test Specifics- FTIR Validation Procedures
- 4.10 Test Specifics-General Calibration
- 4.11 Test Specifics-Test Bed General Description

Statement of Confidentiality

This report has been submitted for the sole and exclusive use of Pacific Environmental Services, and shall not be disclosed or provided to any other entity, corporation, or third part for purposes beyond the specific scope or intent of this document without the express written consent of Colorado State University.

COLORADO STATE UNIVERSITY

APPENDIX

- Appendix A Engine Test Data
- Appendix B Daily Baseline Data Points
- Appendix C Test Point QC Checks
- Appendix D Test Points
- Appendix E Reference Method Analyzers Calibrations
- Appendix F FTIR Calibration
- Appendix G FTIR Validation
- Appendix H Calibration Gas Certification Sheets
- Appendix I Baseline Methane/Non-Methane Analyzer
- Appendix J Pressure and Temperature Calibrations
- Appendix K Equipment Certification Sheets
- Appendix L Dynamometer Calibration
- Appendix M Dynamometer Calibration Procedure
- Appendix N Gas Analysis
- Appendix O Gas Analysis Calibrations
- Appendix P Gas Analysis Calculations Fuel Specific F Factor
- Appendix Q Stoichiometric Air/Fuel Calculations
- Appendix R Computing Air/Fuel Ratio from Exhaust Composition
- Appendix S "An Investigation on Inlet Air Humidity Effects on a Large-Bore, Two Stroke Natural Gas Fired Engine"
- Appendix T "Derivation of General Equation for Obtaining Engine Exhaust Emissions on a Mass Basis Using the "Total Carbon" Method"
- Appendix U Annubar Flow Calculations
- Appendix V Additional Calculations
- Appendix W Exhaust Piping Schematic
- Appendix X Catalyst Schematic

Statement of Confidentiality

This report has been submitted for the sole and exclusive use of Pacific Environmental Services, and shall not be disclosed or provided to any other entity, corporation, or third part for purposes beyond the specific scope or intent of this document without the express written consent of Colorado State University.

1.0 INTRODUCTION

1.1 **OVERVIEW**

Natural gas fueled and diesel fueled reciprocating engines represent a large portion of the horsepower in operation within the oil and gas industry and power generation markets. With stringent emissions regulations being required by federal, state, and local agencies, accurate data on current engine emission levels and development of new technologies to reduce and control emissions levels has become essential for federal agencies, engine manufacturers, and equipment operators. Criteria pollutants and Hazardous Air Pollutants (HAPS) issues are of major concern for operators of both two-stroke and four-stroke engines. Current Environmental Protection Agency (EPA) and natural gas industry funded test programs are directed toward evaluating emission levels from existing engines, determining formation mechanisms for the exhaust gas constituents of interest, and developing new technologies to reduce the emissions levels of these constituents.

The investigation of the application of commercially available techniques designed to address the HAPs emissions from reciprocating internal combustion engines (RICEs) will allow the EPA to quantify the effectiveness of current commercially available control devices. These devices have been identified as having the potential to reduce HAPs emissions from stationary RICE sources. Information gained through this program will assist the EPA in the regulatory development effort.

Accurate information on emission levels from operational facilities is difficult to obtain. Based upon a recommendation from the Internal Combustion Coordinating Rulemaking Committee (ICCR) to the EPA, a series of tests were conducted on industrial class engines at Colorado State University's Engines & Energy Conversion Laboratory. Testing was being conducted on both two-stroke and four-stroke natural gas engines and a four-stroke diesel engine. The test program for four-stroke, lean burn, natural gas fueled internal combustion engine was performed during Phase Two of this test program. The results of Phase Two testing are contained within this document.

1.2 BACKGROUND

The 1990 Amendments to the Clean Air Act include provisions that significantly impact the operation of stationary reciprocating internal combustion engines. Of the ten titles to these amendments, four have direct bearing. They are as follows:

Title I - Attainment of Air Quality Standards

Defines ambient air quality standards, defines non-attainment areas based, imposes emissions reductions to achieve attainment per specified timeline per reasonably available control technology (RACT).

1 - 1

Title III - Hazardous Air Pollutants

Defines 189 pollutants classified as hazardous air pollutants (HAPS), specifies thresholds in tons per year (TPY) for any one of these pollutants or a combination of these compounds, introduces maximum achievable control technology (MACT) for sources triggering thresholds.

Title V - Operating Permits

Imposes requirement to obtain federal operating permits for major sources, imposes requirement to provide annual certification of compliance, defines emissions fees based on actual emissions.

Title VII - Enforcement

Establish mechanisms to enhance and strengthen enforcement of CAA, establishes criminal penalties, gives authority to issue administrative orders (fines / penalties) without going to federal court for certain violations.

The EPA in conjunction with the RICE Work Group of the ICCR process determined that additional emissions data for HAPs exhaust gas constituents is required to support the regulatory development process. In a RICE Emissions Test Plan Document dated November 1997, a five component test plan to acquire additional HAPs emissions test data was set forth. The five components include the following:

Engines, Fuels, and Emissions Controls to be tested Matrix of Operating Conditions to be tested Pollutants to be Measured During Testing Test Methods to Quantify Emissions Prioritization

Eight HAPs pollutants are included in the test plan. These compounds are: formaldehyde, acetaldehyde, acrolein, the BTEX compounds (benzene, toluene, ethylbenzene, xylene) and 1-3 butadiene. Polyaromatic hydrocarbon (PAH) compounds were measured on the two-stroke lean burn gas engine, but were not measured during the test program for the four-stroke lean burn gas engine.

Insight gained through the test program will provide information on the engine operating conditions that affect the formation / reduction mechanisms of HAPs. The investigation of the application of commercially available techniques designed to address the HAPs emissions from RICEs will allow the EPA to quantify the effectiveness of current commercially available control devices. These devices have been identified as having the potential to reduce HAPs emissions from stationary RICE sources. Information gained through this program will assist the EPA in the regulatory development effort.

2.0 TEST PROGRAM

2.1 OBJECTIVE

The objective of this program is to evaluate commercially available catalyst technologies which have been identified as having the potential to control both formaldehyde and other Hazardous Air Pollutants (HAPS) as well as existing criteria pollutants from reciprocating internal combustion engines (RICE). The specific internal combustion engine class tested under the Phase Two test program was the four-stroke, lean burn, natural gas fueled internal combustion engines. The catalyst hardware was evaluated according to the 16-point test matrix developed by the EPA, and the Reciprocating Internal Combustion Engine (RICE) Work Group of the ICCR process. Investigation of catalyst performance during operation at various engine operating conditions provides insight into the effectiveness of catalysts at various conditions. The information gained through the test program will assist the EPA in regulatory development efforts for control of HAPs emissions and criteria pollutants from RICE sources.

2.2 INCENTIVES

Title III of the 1990 Clean Air Act Amendment requires the development of Maximum Achievable Control Technology (MACT) standards for major sources of Hazardous Air Pollutants (HAPs) emissions. A MACT major source is defined as one that emits greater than 10 tons per year of any single HAP or 25 tons per year for all HAPs. For most source categories (RICE included), the MACT standards will require existing major sources apply HAPs emissions control technologies that reduce emissions to a level achieved by the best performing existing sources. In some cases, depending upon the cost of the control technology and the amount and toxicity of the HAPs removed, more stringent standards may be set. The MACT standards for RICEs are scheduled to be promulgated by the year 2000.

Of the HAPs listed, the EPA in conjunction with the Internal Combustion Coordinating Rulemaking Committee (ICCR) have identified compounds which may be present in the exhaust of reciprocating internal combustion engines. Existing test data indicates that the only HAP present in the exhaust of RICEs at levels approaching 10 tons per year is formaldehyde. Commercially available aftertreatment technologies (catalysts) for the control of organic compound emissions are currently in operation on RICEs. These technologies have demonstrated performance for control of volatile organic compounds (VOCs) and products of incomplete combustion. However, there is limited information on the effectiveness of these technologies for reducing organic HAPs emissions. Determining the effectiveness and longevity of exhaust catalyst will aid the EPA in evaluating current technologies for control of HAPs emissions from RICE sources as well as provide information in support of regulatory development by the EPA for these sources.

2.3 WORK PLAN

Pacific Environmental Services (PES) serves as the prime contractor responsible for providing information to the EPA. CSU is a subcontractor to PES. Testing was conducted at the Colorado State University 's Engines and Energy Conversion Laboratory. The engine and catalyst type tested is described in Table 1.

TABLE 1

Engine Classification	Four-Stroke, Lean Burn, Natural Gas Fueled
Manufacturer and type	Waukesha 3521 GL
Number of Cylinders	6
Bore and Stroke	9.375" X 8.5"
Engine Speed	1200 RPM
Ignition System Classification	Spark Ignited Precombustion Chamber
Ignition System	Altronic
Precombustion Chamber Type	Standard OEM Product
Number of Precombustion Chambers	1 Per Cylinder
Catalyst Classification	Oxidation Type
Manufacturer	Miratech Corporation
Element Size	12"x16"x3"
Number of Elements	2
Substrate	Stainless steel,
	alternating corrugated & flat layers

ENGINE AND CATALYST TYPE

The test matrix as originally defined is presented in Table 2, with engine baseline conditions shown in Table 3. Deviations from the described test conditions are detailed in Section 3 of this report. Each test point consisted of collecting thirty-three minutes of data. The raw data was averaged into thirty-three one-minute data points. The data points were then averaged to provide the results for the single test point. The results are presented in tabular form in Appendix A of this report.

TABLE 2

ENGINE OPERATING CONDITIONS DURING TESTING WAUKESHA 3521 GL (4-STROKE LEAN BURN, NATURAL-GAS-FIRED) US EPA ICCR RICE HAP EMISSIONS TESTING

Operating Conditions to be Tested:	Speed (rpm)	Torque (% of baseline)	Air-to-Fuel Ratio	Timing	Intercooler Water Temp.	Jacket Water Temp.
Run 1	Н	Н	N	S	S	S
Run 2	Н	.L	N [.]	S	S	S
Run 3	L	L	N	S	S	S
Run 4	L	Н	N	S	S	. S
Run 5	Н	H	L	S	S	S
Run 6	Н	Н	Н	S	S	S
Run 7	Н	L	Н	S	S	S
Run 8	L	Н	L	S	S	S
Run 9	Н	H	N	S	L	S
Run 10	Н	Н	N	S	Н	S
Run 11	Н	·H	N	S	S	L
Run 12	Н	· H	N	S	S	н
Run 13	Н	Н	Ň	L	S	S
Run 14	Н	Н	N	Н	S	S
Run 15	Н	H	N	S	S	S
Run 16	Н	Н	N	S	S	S
	L = 1000 H = 1200	L = 70 H = 100	N = 0.61 (9.8 % O ₂) L = 0.56 (10.7 % O ₂) H = 0.62 (8.9 % O ₂)	S = 10 L = 6 H = 14	S = 130 L = 120 H = 140	S = 180 L = 170 H = 190

• Note: Air/fuel ratio calculations based on Appendix Q and Appendix R.

TABLE 3

Engine Operating Parameters	Nominal Value	Acceptable Range	Designation
Engine Torque	3383 ft-lb. to 3230 ft-lb.	\pm 2% of value	Primary
Engine Speed	1000 RPM	\pm 5% of value	Primary
Jacket Water Temperature Outlet	180°F	\pm 5% of value	Primary
Engine Oil Temperature Header	180°F	$\pm5\%$ of value	Primary
Air Manifold Temperature	85°F to 130°F	\pm 5% of value	Primary
Air Manifold Pressure	30.0" Hg above Atm.	\pm 5% of value	Primary
Exhaust Manifold Pressure	5.0" Hg below AMP	$\pm5\%$ of value	Primary
Ignition Timing	10°BTDC	\pm 5% of value	Primary
Overall Air:Fuel Ratio	28:1	\pm 5% of value	Primary
Inlet Air Humidity-Absolute	.0015 lb H ₂ O/lb Air	\pm 10% of value	Primary
Engine Fuel Flow SCFH	4460 to 4360 SCFH	\pm 5% of value	Primary
Engine Oil Pressure Inlet	45 lb.	\pm 10% of value	Secondary
Inlet Air Flow	1400-1500 SCFM	\pm 5% of value	Secondary
Average Engine Exhaust Temperature	660° F	$\pm5\%$ of value	Secondary

WAUKESHA 3521GL BASELINE CONDITIONS

Emissions Testing Of Control Devices for Reciprocating Internal Combustion Engines In Support of Regulatory Development By the U.S. EPA.

3.2 FTIR POST-CATALYST WATER ANALYSIS

Analysis method on the Nicolet Magna 560 FTIR analyzer gave water measurements that were excessively high for post-catalyst emissions measurements. The spectra for H₂O, provided by Nicolet, on the Magna 560 calculated water content to be approximately 6% higher than actual exhaust gas concentrations. Carbon balance calculations for each one-minute data point, at all test conditions, agreed with the H₂O readings from the Rega 7000 FTIR analyzer, pre-catalyst emissions measurement. The measurements agreed within $\pm 0.5\%$ to $\pm 1\%$ water content. The carbon balance calculations for the post-catalyst water content agreed with the pre-catalyst measurements within $\pm 0.5\%$ to $\pm 1\%$ water content at all test conditions. The carbon balance measurements are based upon the pre-catalyst and post-catalyst reference method analyzers. Since the pre-catalyst and post-catalyst measurements were made with separate analyzers, the variability in the H2O calculation could be caused by variability in emissions analyzers.

The changes in the water content were calculated by the carbon balance method and detected by the FTIR analyzer. Based on the agreement between the pre-catalyst FTIR measurements and the carbon balance calculation for water content at every test condition, and between the pre-catalyst and post-catalyst calculations, the water content from the post-catalyst FTIR measurements were used to convert the wet FTIR measurements to dry measurements. As both FTIR analyzers passed the validation process and passed all QC checks, the variation in water readings from the Nicolet Magna 560 analyzer has no impact on the results of the testing conducted during Phase Two of the overall test program.

3 - 3

BASELINE ENGINE OPERATING CONDITIONS

Baseline engine operating conditions as described in the Scope of Work are presented in Table 3 of this report. These conditions were estimates. After running the engines, these values were found to be inaccurate. Deviations from the Baseline engine operating conditions as presented are as follows:

TABLE 4

Engine Operating Parameters	Nominal Value	Acceptable Range	Designation
Engine Torque	3236 ft-lb.	± 2% of value	Primary
Engine Speed	1200 RPM	\pm 5% of value	Primary
Jacket Water Temperature Outlet	180°F	\pm 5% of value	Primary
Engine Oil Temperature Header	185°F	\pm 5% of value	Primary
Air Manifold Temperature	100°F	±5% of value	Primary
Air Manifold Pressure	5.0" Hg above Atm.	\pm 5% of value $$	Primary
Exhaust Manifold Pressure	5.0" Hg below AMP	± 5% of value	Primary
Ignition Timing	10°BTDC	\pm 5% of value	Primary
Overall Air:Fuel Ratio	28:1	$\pm5\%$ of value	Primary
Inlet Air Humidity-Absolute	.015 lb H ₂ O/lb Air	± 10% of value	Primary
Engine Fuel Flow SCFH	5460 SCFH	\pm 5% of value	Primary
Engine Oil Pressure Inlet	52 lb.	± 10% of value	Secondary
Inlet Air Flow	1730 SCFM	\pm 5% of value	Secondary
Average Engine Exhaust Temperature	700°F	\pm 5% of value	Secondary

WAUKESHA 3521GL BASELINE CONDITIONS

Humidity Ratio:

Baseline humidity ratio is 0.015-lb. $H_2O/lb.$ air. The baseline humidity ratio was stated as 0.0015-lb. $H_2O/lb.$ air . This is a misprint. Documentation should be corrected to show 0.015-lb. $H_2O/lb.$ air as baseline humidity ratio.

August 6, 1999 Baseline:

The air/fuel ratio appears to be wrong because it is calculated from the output of the precatalyst O_2 monitor. The monitor failed during this baseline. The air/fuel ratio is 28:1 when the O_2 is 9.8%. The catalyst outlet O_2 is 9.9%, so the air/fuel ratio is correct.

3.3

3.4 FOUR-STROKE ENGINE TEST MATRIX

The four-stroke engine sixteen point test matrix and associated engine operating conditions as described in the Scope of Work are presented in Table 2 of this report. During testing discrepancies between the CSU "Scope of Work" and the QAPP in relation to engine operating conditions were identified. The QAPP referenced engine operating data in relation to field engines originally proposed in the ICCR process and not the engines at Colorado State University. Deviations from the engine operating conditions described in the sixteen-point test matrix are referenced to the CSU "Scope of Work". Deviation from the described engine operating conditions are as follows:

Global Deviation in Engine Operating Conditions

Speed:

The baseline speed condition was changed to 1200 rpm as indicated. This value was used for the high speed points. The value used for the low speed points was 1000 rpm.

Air/Fuel Ratio:

The baseline air/fuel ratio condition is 28:1. This corresponds to an equivalence ratio of 0.57 and an oxygen concentration of 9.8% in the exhaust. This value was used for the normal points. The low condition corresponds to an equivalence ratio of 0.53 and an oxygen concentration of 10.7%. The high condition corresponds to an equivalence ratio of 0.62 and an oxygen concentration of 8.9%.

Test Point Specific Variances

Only deviations which were not previously described in the "Global Deviation" section will be described.

Test Point 3:

The air/fuel ratio on test point 3 appears to be wrong because it is calculated from the output of the pre-catalyst O_2 monitor. The monitor falied during this test point. The air/fuel ratio is 28:1 when the O_2 is 9.8%. The catalyst outlet O_2 is 9.81%, so the air/fuel ratio is correct.

Test Points 2 and 7:

The humidity system experienced a failure prior to initiation of the test point and it was determined to conduct the test points without inlet air humidity control. The set point for humidity ratio for all test points is 0.015 lbs. water / lbs. dry air. The actual humidity ratios for Test Point 2 and Test Point 7 were 0.0126 and 0.0127 lbs. water / lbs. dry air respectively.

Appendix S contains a paper entitled "An Investigation on Inlet Air Humidity Effects on a Large-Bore, Two-Stroke Natural Gas Fired Engine" presented at the 1998 Gas Machinery Conference. The paper presents work funded by the PRCI and GRI. The paper details the effects of variations in humidity on engine performance and emissions.

Results from investigation into the effects of humidity on engine emissions show the following (Appendix S: Figure 27 – Figure 30):

- With increasing humidity ratio, NO_x emissions decrease.
- With increasing humidity ratio formaldehyde production increases.
- With increasing humidity ratio, CO emissions decrease slightly while THC emissions remain fairly constant.
- With increasing humidity ratio exhaust temperatures increase slightly, approximately 5°F over the range of humidity ratios at the air manifold boost pressure for Test Points 2 and 7(Appendix S: Figure 9).

Over the range which the humidity ratio deviated from the test matrix for Test Points 2 and 7, the engine emissions should be similar to engine emissions at the specified humidity ratio. The most dramatic effect will be on NO_x emissions as can be seen from the data and the graphs presented in Appendix S. At reduced air manifold temperatures (with engine operating parameters remaining constant), reduction in NO_x emissions would be the most noticeable change. NO_x emissions would be reduced due to the lower inlet air temperature and increased inlet air density. At a constant humidity ratio, it would be expected that CH₂O emissions would either remain constant or increase slightly with similar changes in CO and THC emissions.

The data collected at Test Point 2 and Test Point 7 is indicative of engine field data under similar operating conditions. The variation in humidity ratio represents minimal impact on the overall emissions obtained for this data point. The most noticeable impact would be increased NO_x emissions due to changes in ambient conditions, which would result in elevated in-cylinder temperatures and reduce heat capacity of the inlet air charge.

3.4 OTHER DEVIATIONS

The Annubar mass flowmeter used for the exhaust flow measurement did not perform correctly during the test program. Analysis by the manufacturer showed the unit to be properly calibrated and the operation of the unit was confirmed in another location on our piping system. Although the flowmeter was installed well downstream from flow obstacles, the unit shows signs of operating in disturbed flow. The fuel flow measurement is the primary mass flow measurement on the system. The exhaust flow system was not required for the test program and was disconnected, showing a negative value on the data sheets.

4.0 TEST SAMPLING PROCEDURES Engines & Energy Conversion Laboratory Industrial Engine Test Facility Colorado State University

To aid industrial engine research, Colorado State University was commissioned to design and install a dedicated test facility for industrial class, reciprocating internal combustion engines. The Industrial Engine Test Facility was installed at the Engines & Energy Conversion Laboratory to provide a mechanism by which environmental and technological issues related to industrial class engines could be evaluated in an independent, economical and efficient manner. The facility would also provide a level of expertise and understanding not obtainable from fieldtesting.

4.1 GENERAL TEST PROCEDURES

As with any viable testing program, a procedure has been established which affords accurate and repeatable results. The test program developed for the Industrial Engine Test Facility located at the Colorado State University's Engines & Energy Conversion Laboratory is no exception to this rule. Testing criteria established for the test facility ensures that the data collected has a high degree of accuracy and can be repeated if warranted. However, since the Industrial Engine Test Facility was designed to allow for several different industrial engine types to be tested in a laboratory environment, testing procedures differ somewhat from field test procedures and are unique to this facility. The sampling procedure and calibration procedures are described under their respective sections of the TEST SPECIFICS portion of this report.

4.2 TEST SPECIFICS –DATA COLLECTION

The data collection process has been standardized to afford accurate and repeatable results throughout a test program. The high degree of accuracy, which can be obtained at the Industrial Engine Test Facility, is due to the sophisticated level of instrumentation utilized at the facility. However, without proper implementation no amount of instrumentation can assure accurate or repeatable results. Therefore a specific outline of the data collection process has been developed for the Industrial Engine Test Facility.

Data Point Definition

A typical data point consisted of engine operating data taken over a specified time period and averaged. During normal field operations, engine-operating parameters will fluctuate. Variations in facility process conditions can effect engine speed and load. Minimal control equipment or equipment which is not specialized to provide precision control required for engine research, can also generate unstable operation. Changes in environmental

4-1

conditions during the course of a test program will introduce additional unknowns into typical emissions field data. The Industrial Engine Test Facility was developed through an initiative to provide a facility which would provide accurate and repeatable data by reducing variations in engine operation. Under controlled conditions at the EECL, fluctuations of engine load, speed, environmental conditions, etc. have been minimized. This effort allows more accurate and repeatable engine data than possible with field research programs.

A standard data point collected at the EECL consists of engine operating data being gathered over either a three-minute or five-minute period and averaged. It has been determined, based on previous tests, that 3-5 minutes provides an acceptable time period required for an appropriate data set to be collected and an average for each parameter calculated.

The Large Bore Engine Testbed, which has been functional since 1993, was used as a reference for the other test beds at the EECL. A data point at the LBET consists of 101 engine-operating parameters, which are collected and averaged for each data point. The data point consists of 30 parameters which provide basic engine operating information, twenty parameters which are received from the emissions computer and the remaining 51 parameters are engine combustion parameters calculated with a combustion analysis system. For each data point an average value, minimum value, maximum value, and standard deviation are obtained for all engine operation and emissions parameters collected. The combustion analyses system was not used for this test due to the lack of sensor access ports on the Waukesha 3521 Engine.

For the work conducted under this test program, a test point consisted of a series of data points taken in succession and averaged. The data were gathered in 1-minute averages over a 33-minute test period. Using a data set consisting of thirty-three, one-minute data points would highlight any large fluctuations in load and other parameters that would have a significant effect on emissions data. No fluctuations in data occurred during any test points. This demonstrated that the engine was operating at a steady condition and the data recorded in the individual data points was repeatable.

Table 5 provides information on the nominal number of samples collected under each data point / test run scenario for the LBET.

TABLE 5

Measured	Number of Samples Collected			
Parameters	1 Minute	30 Minute		
	Data Point	Test Run		
Engine	30 60	900 - 1800		
Operation				
Emissions	30 - 60	900 - 1800		
CEMS	•	•		
Emissions	45 – 50	1350 - 1500		
FTIR				

SAMPLING SPECIFICATIONS

4.3 TEST SPECIFICS - ENGINE STABILITY

For data taken during testing to be reliable, the engine was operated in a state of equilibrium at each test point. The engine control system allowed for engine operation data to be monitored so that engine stability could be easily recognized. The stability of each specific engine's operation was not only determined on a test point by test point basis, but also on a daily basis. Since combustion parameters for each engine type will vary, engine-operating parameters were used to determine engine stability. Procedures used for determining acceptable engine stability are as follows:

Engine Stability: Engine Start Up Procedures

Prior to the beginning of data collection each day, the engine was "warmed up" and a thermal equilibrium state established. This was nominally determined when the engine coolant water systems and lubricating oil reached a steady state temperature. Once steady state operation was achieved, a daily "baseline" data point was gathered. The length of time required to obtain steady state operation was highly dependent upon the ambient temperature and the temperature of the engine when started. Due to the dependence on these factors, there was no pre-determined warm-up time.

Engine Stability: Daily Baseline Data Point

The Scope of Work for the project required that a specified number of test points be collected on the engine. The data collection process encompassed multiple days of testing. To ensure that the engine was operating in a similar manner on each test day, a set of engine "baseline" data was collected. An initial set of engine "baseline" data (one five-

minute data point) was collected prior to the first data point. On the ensuing test days, a "baseline" data point was collected to verify the data collection for that day. The primary engine operating parameters of the data point must compare to within a specified acceptable range of the values of the primary engine operating parameters on the original "baseline" data set for engine stability and to the baseline operating conditions specified in Table 4. If primary engine operating parameters did not compare to within the predetermined range, corrective measures were taken to isolate and correct the cause of the unacceptable values for the primary engine operating parameters. Both CSU and PES representatives initialized the daily "baseline" data set. All baseline data points were acceptable during the test program. The primary/secondary engine operating parameters, acceptable ranges, and their nominal values for a "baseline" data set are presented above in Table 4.

Engine Stability: Pre-Data Point Test Procedures

As with the daily engine "baseline" data point, the engine must maintain a stable mode of operation prior to and during a test run. Changing various operating parameters to achieve the desired test condition will cause the engine to operate in an unstable mode during the transition period from one condition to the next. The engine parameter which has the most effect on engine equilibrium is engine load. Fluctuations in load will result in erratic and inaccurate emissions data and for this reason load was closely monitored during testing. Changes in load will also affect the engine's thermal equilibrium and will require the longest time for the engine to return to a thermal equilibrium state.

Although the effects are not as significant as those of changing engine load, any changes in air manifold pressure, temperature, exhaust back-pressure, or ignition timing also affected the engine's equilibrium. As with load changes, the engine must be closely monitored for return to an equilibrium state after any changes are made. Typically, the engine will return to equilibrium, steady-state condition within 30-45 minutes. Prior to initiating a test run, a pre-test run data point was gathered. The data point was five-minutes in length. For each pre-test run data point, an average value, minimum value, maximum value, and standard deviation were obtained for all engine operation and emissions parameters collected. Primary engine operating parameters specified at a test condition must agree with the test condition value within +/-2% to +/-10% of the requested value dependent upon the engine parameter. The relative standard deviations of the primary operating variables were below 1.0% for engine operating parameters and below 3.0% for the engine emissions parameters. The primary engine operating parameters and below 3.0% for the engine emissions parameters.

4-4

If primary engine operating parameters did not agree with the requested test condition values within the predetermined range, corrective measures was taken to isolate and correct the cause of the unacceptable values for the primary engine operating parameters. All pre-test run data points were acceptable for the test program. Both CSU and PES representatives initialized each "pre-test run" data point.

Engine Stability: Test Run Stability

A test run consisted of a set of one-minute averaged data points taken consecutively over a 33-minute time period. For each data point, the average value for each primary engine operating parameter must compare to within the acceptable range of the specified target value at the test condition for engine stability and the data collection process to be valid for the specific test condition. If primary engine operating parameters did not compare to within the predetermined range, the data point was invalid, and corrective measures were taken to isolate and correct the cause of the unacceptable values for the primary engine operating parameters.

Engine stability was maintained throughout the data collection process for each test run. The relative standard deviation of the primary operating variables was below 1.0% for engine operating parameters and below 3.0% for the engine emissions parameters at each data point.

Both CSU and PES representatives initialized each data point of a test run. The tabular format of the primary engine operating parameters, designation, and the acceptance criteria is presented in Table 6:

4-5

COLORADO STATE UNIVERSITY

Į

TABLE 6

Engine Onerating Demonstrum	Accortable Dance	Stand Davidian	Designation
Engine Operating Parameters	Acceptable Range	Standard Deviation	Designation
Engine Torque	$\pm 2\%$ of value	≤ 1.0	Primary
Engine Speed	\pm 5% of value	≤ 1.0	Primary
Jacket Water Temperature Outlet	\pm 5% of value	≤ 1.0	Primary
Engine Oil Temperature Outlet	± 5% of value	≤ 1.0	Primary
Air Manifold Temperature	\pm 5% of value	≤ 1.0	Primary
Air Manifold Pressure	± 5% of value	≤ 1.0	Primary
Exhaust Manifold Pressure	±5% of value	≤ 1.0	Primary
Ignition Timing	\pm 5% of value	≤ 1.0	Primary
Overall Air/Fuel Ratio	± 5% of value	≤ 1.0	Primary
Inlet Air Humidity-Absolute	\pm 10% of value	≤ 1.0	Primary
Engine Fuel Flow SCFH / Gal./Hr.	\pm 5% of value	≤ 1.0	Primary
Engine Oil Pressure Inlet	± 5% of value	≤ 3.0	Secondary
Inlet Air Flow	\pm 5% of value	≤ 3.0	Secondary
Average Engine Exhaust Temperature	± 5% of value	≤ 3.0	Secondary
NO _x Emissions (PPM)	\pm 5% of value	≤ 3.0	Secondary
CO Emissions (PPM)	\pm 5% of value	≤ 3.0	Secondary
THC Emissions (PPM)	\pm 5% of value	≤ 3.0	Secondary
CO2 (%)	\pm 5% of value	≤ 3.0	Secondary
O2 (%)	\pm 5% of value	≤ 3.0	Secondary
Exhaust Air Flow	\pm 5% of value	≤ 3.0	Secondary

TEST POINT – ENGINE STABILITY

Emissions Testing Of Control Devices for Reciprocating Internal Combustion Engines In Support of Regulatory Development By the U.S. EPA.

4.4 TEST SPECIFICS – DATA COLLECTION HARDWARE

The design of the test facility provides a platform for accurate and versatile performance and emission research on industrial engines. Control and measurement systems installed on the Industrial Engine Test-Beds are as follows:

Waukesha 3521 GL: Two-Stroke Lean Burn

Engine Control and Monitoring:	Bristol Babcock Control and Monitoring System			
Emission Analysis Systems: Pre-catalyst Emissions	Rosemount NGA-2000 Five Gas Analyzer Rack for NO _x , CO, CO ₂ , O ₂ , & THC			
Emission Analysis System: Pre-catalyst Emissions	Nicolet Rega 7000 Fourier Transform Infrared (FTIR) Exhaust Gas Analyzer			
Emission Analysis Systems: Post-catalyst Emissions	Five Gas Analyzer Rack TECO NO _x , CO, & THC Servomex CO ₂ & O ₂			
Emission Analysis System: Post-catalyst Emissions	Nicolet Magna 560 Fourier Transform Infrared (FTIR) Exhaust Gas Analyzer			
Ignition Analysis System:	Altronic Diagnostic Module			

4.5 TEST SPECIFICS – DATA COLLECTION PROCESS

The data collection process consisted of acquiring information from the various control and monitoring systems. The engine control and monitoring system (ECMS) collected all engine operating and emissions parameters (criteria pollutants only). All engine operating parameters were direct measurements of the ECMS, while emissions parameters (criteria pollutants) were passed by communication link from a computer dedicated to emissions hardware control and monitoring. All emissions parameters measured with an FTIR were collected and stored on a computer dedicated to individual FTIR operation.

After engine stability had been confirmed, the data collection process for a test run condition commenced. The data collection process was performed as follows:

Data Collection Process:

- 1.) Verification of engine stability confirmed, accepted, and initialized by PES and CSU representatives.
- 2.) Proper file names are assigned to all data acquisition hardware.
- 3.) Commence acquisition of data point for specified test condition
- 4.) At completion of data point, electronic files are saved and hard copies are printed out.
- 5.) PES and CSU representatives initialize hard copies verifying acceptable data point.
- 6.) Move engine operation to next test condition.

4.6 TEST SPECIFICS - EMISSION ANALYZER GENERAL TEST PROCEDURES

Introduction

The following general test procedures and calibration checks guaranteed the integrity of our sampling system and the accuracy of our data. The testing was conducted in basic accordance with approved Environmental Protection Agency (EPA) test methods as described in the Code of Federal Regulations, Title 40, Part 60, Appendix A.

General Procedure

Exhaust oxygen and oxides of nitrogen concentrations from the engine were determined in basic compliance with EPA Method 20, "Determination of Nitrogen Oxides, Sulfur Dioxide, and Diluent Emissions From Stationary Gas Turbines"and EPA Method 7E, "Determination of Nitrogen Oxides Emissions From Stationary Sources (Instrumental Analyzer Procedure)". The sampling procedure for CO concentrations was based on EPA Method 10, "Determination of Carbon Monoxide Emissions from Stationary Sources." EPA Method 25A, "Determination of Total Gaseous Organic Concentration Using a Flame Ionization Analyzer" was the sample procedure used to determine THC emission concentrations. A modified EPA Method 18A was used for the sampling procedures for Methane/Non-Methane Analysis. The method for calculating mass emissions levels was based upon an EPA Method 19 "Determination of Sulfur Dioxide Removal Efficiency and Particulate Matter, Sulfur Dioxide, and Nitrogen Oxides Emission Rates" calculation. Mass emissions were also calculated using carbon balance calculations developed by Southwest Research Institute specifically for the American Gas Association. Calibration and test procedures are detailed under their respective sections of the TEST SPECIFICS portion of this report.

Sampling System

Dedicated analyzers were used to determine the NO_x , CO, THC, CO₂, and O₂ emissions level on a dry basis for both pre and post-catalyst emissions. Dedicated analyzers were used to determine the Methane/Non-Methane emissions on a wet basis for both pre- and post-catalyst emissions. FTIR analyzers were used to determine aldehyde emissions on a wet basis for both pre and post-catalyst emissions. Refer to Table 7 for the analyzers and the methods of analysis.

Exhaust gas entered the system through a 3/8" stainless steel multi-point probe. Sample points were located in accordance with procedures described in Method 1. Exhaust gas then passed through a heated 3-way sample valve and glass wool filter assembly. The sample was transported via a heat-traced Teflon sample lines and heated sample distribution manifold. Sample for the "dry" gas analyzers then passed through a 4-pass minimum contact condenser specifically designed to dry the sample. The "dry" sample then entered a stainless steel sample pump. The discharge of the pump passed through 3/8" Teflon tubing to a Balston Microfibre coalescing filter, moisture sensor, and then to the sample manifold. The sample manifold was maintained at a constant pressure by means of a pressure bypass regulator. A flow meter, placed in line at the exhaust of each analyzer, monitored exact sample flows. Heated sample flow for all "wet" measurement analyzers will be provided by means of a heated sample distribution manifold prior to sample gas entering the "dry" gas analyzer platform. Each heated analyzer had a dedicated sample pump and heat traced line from the main sample train to the analyzer.

4-9

COLORADO STATE UNIVERSITY

TABLE 7

CURRENT INSTRUMENTATION

Post-catalyst Emissions					
Manufacturer and Model	Parameters	Detection Principle	Range		
Rosemount NGA-2000 CLD Analyzer	NO or NO _x	Thermal reduction of NO_2 to NO. Chemiluminescent reaction NO with O_3 .	Variable to 10000 PPM		
Rosemount NGA-2000 NDIR Analyzer	CO	NDIR with Gas Filter Correlation	Variable to 2000 PPM		
Rosemount NGA-2000 NDIR Analyzer	CO ₂	NDIR	Variable to 20%		
Rosemount NGA-2000 FID Analyzer	THC	Flame Ionization	Variable to 10,000 PPM		
Rosemount NGA-2000 PMD Analyzer	O ₂	Paramagnetic	Variable to 100%		
Questar Baseline 1030H HeatedGC / FID	CH4 Non-CH4	Gas Chromatograph Flame Ionization	Variable to 5000 PPM		
Nicolet Magna 560	Multiple See Attached	FTIR analysis utilizing a medium range IR source.	Variable		
Pre-catalyst Emissions		-den nie wetr di≦rzej van eren – de der ¹⁹⁹ er daarde skiede presserverze. Sie e en de kene			
Manufacturer and Model	Parameters	Detection Principle	Range		
TECO Model 42H CLD Analyzer	NO or NO _x	Thermal reduction of NO_2 to NO. Chemiluminescent reaction NO with O_3 .	Variable to 5000 PPM		
TECO Model 48H NDIR Analyzer	CO	NDIR with Gas Filter Correlation	Variable to 20000 PPM		
Servomex NDIR Analyzer	CO ₂	NDIR	0-25%		
TECO Model 51 FID Analyzer	THC	Flame Ionization	Variable to 10000 PPM		
Servomex PMD Analyzer	O ₂	Paramagnetic	0-5% 0-25%		
Questar Baseline 1030H HeatedGC / FID	CH4 Non-CH4	Gas Chromatograph Flame Ionization	Variable to 50000 PPM		
Nicolet Rega-7000	Multiple See Attached	FTIR analysis utilizing a medium range IR source.	Variable		

.

Pacific Environmental Services

COLORADO STATE UNIVERSITY

TABLE 8

COMPONENTS MEASURED BY NICOLET FTIR

Component Formula

Component Name

H ₂ 0	Water
CO	Carbon Monoxide
CO ₂	Carbon Dioxide
NO	Nitric Oxide
NO ₂	Nitrogen Dioxide
N ₂ O	Nitrous Oxide
NH₃	Ammonia
NO _X	Oxides of Nitrogen
CH ₄	Methane
C_2H_2	Acetylene
C_2H_4	Ethylene
C_2H_6	Ethane
C ₃ H ₆	Propene
H ₂ CO	Formaldehyde
CH₃OH	Methanol
C ₃ H ₈	Propane
$I-C_4H_{10}$	Iso-Butylene
$N-C_4H_{10}$	Normal-Butane
CH₃CHO	Acetaldehyde
SO ₂	Sulfur Dioxide
THC	Total Hydrocarbons

4.7 TEST SPECIFICS - EMISSION ANALYZERS CHECKS AND CALIBRATIONS

The following instrument checks and calibrations guaranteed the integrity of our sampling system and the accuracy of our data.

Analyzer Calibration Gases

Standard calibration gases used at the facility are Scott Specialty Gases EPA Protocol Gas Standard calibration gases with a $\pm 1.0\%$ or $\pm 2.0\%$ accuracy. For this program, EPA Protocol 1 calibration gases (RATA Class) were used. Manufacturer supplied certification sheets were available during the testing procedure and copies of the current inventory of gases, which were used for calibration and integrity checks on the reference method and FTIR analyzers, are provided within this document.

EPA Protocol 1 gases (Rata Class) were used to calibrate the reference method analyzers and FTIR analyzers. Formaldehyde standards with a concentration range between 5 – 20 PPM were obtained. Acetylaldehyde/acrolein standards were also acquired. Any calibration standards which were not EPA Protocol 1 gases were the highest quality standard available.

Analyzer Specifications

Vendor instrument data concerning interference response and analyzer specifications are available if requested. Information supplied by the manufacturer on the factory specification sheets will be furnished if requested.

Response Time Tests (Prior to initiation of engine test program)

Response time tests were performed on each sample system. The response time tests were performed prior to the FTIR validation process for each sampling system. The response time of the slowest responding analyzer (Questar Baseline) was determined. Response time tests conducted at the EECL indicated sampling system response times of 1:10 minutes. This is the time for the Rosemount Oxygen Analyzer (slowest responding analyzer which continuously monitors) to stabilize to response output of the analyzer. The Questar Baseline Industries CH4/Non-CH4 analyzers have a minimum cycle time of 4:50 minutes. The overall response time for these analyzers when their cycle is started 1:10 minutes after a sample source change is 5:50 minutes. When the CH4/Non-CH4 analyzer cycle time was initiated at a sample source change, the overall response time is 9:00 minutes. The response time was tested to assure that the analyzers' response was for exhaust gas entering the sample system from each of the test point conditions.

Calibration (Daily)

Zero and mid-level span calibration procedures were performed on the reference method analyzer prior to each test day. Zero and span drift checks were performed upon completion of each data point and upon completion of each test day. This procedure is referenced as ZSD (zero and span drift check) in the CSU "Scope of Work". A zero and a mid-level gas was introduced individually directly to the back of the analyzers before testing for carbon monoxide, carbon dioxide, oxygen, total hydrocarbons, Methane/Non-Methane, and oxides of nitrogen. The analyzers' output response was set to the appropriate levels. Each analyzer's stable response was recorded. From this data a linear fit was developed for each analyzer. The voltage for each analyzer were recorded and used in the following formula:

Y = MX + BWhere: B = Intercept M = Slope X = Analyzer or transducer voltage

Y = Engineering Units

After each test point and upon completion of a test day, calibration checks were conducted by reintroducing the zero and span gases directly to the back of the analyzers. The analyzers' stabilized responses were recorded. No adjustments were made during testing or during the final calibration check. Initial calibration values and all calibration checks were recorded for each analyzer during the daily test program.

The before and after calibrations checks will be used to determine a zero and span drift for each test point for the CO, CO_2 , O_2 , THC, CH4/Non-CH4, and NO_X analyzers. The zero and span drift checks for each test point and each test day were less than $\pm 2.0\%$ of the span value (specific range setting) of each analyzer used during the daily test program. The calibration data sheets are presented in Appendix E of this document.

Linearity Check (Prior to initiation of engine test program)

Prior to initiation of the test program, analyzer linearity checks were performed. This procedure is referenced as ACE (analyzer calibration error check) in the CSU "Scope of Work". The oxygen, carbon monoxide, total hydrocarbon, methane/non-methane and oxides of nitrogen analyzers were "zeroed" using either zero grade nitrogen, or hydrocarbon free air. The analyzers were allowed stabilize and their output recorded. The analyzers were then "spanned" using the mid-level calibration gases. The analyzers were allowed to stabilize, and their output recorded. From this data a linear fit was developed for each analyzer. The voltages for each analyzer were recorded and used in the following formula:

4-13

Y = MX + B, where B =Intercept M =Slope X =Analyzer or transducer voltage Y =Engineering Units

Using the linear fit, the linear response of the analyzer was calculated. Low level and high-level calibration gases were individually introduced to the analyzers. For each calibration gas, the analyzers were allowed to stabilize and their outputs were recorded. Each analyzers' linearity was acceptable as the predicted values of a linear curve determined from the zero and mid-level calibration gas responses agreed with the actual responses of the low level and high level calibration gases within $\pm 2.0\%$ of the analyzer span value. The methane/non-methane analyzers' linearity was acceptable as the predicted values agreed with the actual response of the low level and high level and high level calibration gases within $\pm 5.0\%$ of the actual calibration gas value. This procedure was performed for one range setting for each analyzer. The Linearity Check data sheets are presented in Appendix E of this document.

NO₂ Converter Check (Prior to initiation of engine test program)

Prior to initiation of the test program, NO₂ converter checks were performed. A calibration gas mixture of known concentrations between 240 and 270 PPM nitrogen dioxide (NO₂) and 160 to 190 PPM nitric oxide (NO) with a balance of nitrogen was used. The calibration gas mixture was introduced to the oxides of nitrogen (NO_X) analyzer until a stable response was recorded. The converter is considered acceptable if the instrument response indicated a 90 percent or greater NO₂ to NO conversion. The NO₂ Converter Check data sheets are presented in Appendix E of this document.

Sample Line Leak Check (Prior to initiation of engine test program)

The sample lines were leak checked before the engine test program. The leak check procedure was performed for both pre-catalyst and post-catalyst sample trains. The procedure involved closing the valve on the inlet to the sample filter located just downstream of the exhaust stack probe. With the sample pump operating, a vacuum was pulled on the exhaust sample train. Once the maximum vacuum was reached, the valve on the pressure side of the pump was closed thus sealing off the vacuum section of the sampling system. The pump was turned off and the pressure in the sample system was monitored. The leak test was acceptable as the vacuum gauge reading dropped by an amount less than 1 inch of mercury over a period of 1 minute. The Sample Line Leak Check data sheets are presented in Appendix E of this document.

Sample Line Integrity Check (Daily)

A sample line integrity check was performed prior to and upon completion of each test day. This procedure is referenced as SSB (Sampling System Bias Check) in the CSU "Scope of Work". The analyzer's response was tested by first introducing the mid level calibration gas directly to the NO_X analyzer. The analyzer was allowed to stabilize and the response recorded. The same mid level calibration gas was then introduced to the analyzer through the sampling system. The calibration gas was introduced into the sample line at the stack, upstream of the inlet sample filter. The analyzer was allowed to stabilize and the response recorded. The analyzer response values were compared and the percent difference did not to exceed ±5 % of the analyzer span value (range setting).

The SSB procedure was to be performed for both the NO_x and methane/non-methane analyzers. It was determined to perform the integrity check for the NO_x analyzers only. The SSB procedure was performed for the methane/non-methane analyzers prior to and upon completion of the test program. The Sample Line Integrity Check data sheets are presented in Appendix E of this document.

Carbon Balance Check (Continuous)

One of the methods used to calculate mass emissions was a carbon balance calculation developed by Southwest Research Institute specifically for the American Gas Association. As part of a QC check, the calculations involve performing a theoretical O_2 calculation based upon measured exhaust stack constituents and fuel gas composition. The theoretical exhaust O_2 is then compared to the measured exhaust O_2 . The percent difference between the actual and theoretical O_2 measurements was within ± 5 % of the measured O_2 reading. The O_2 balance was performed for every one-minute average and the thirty-three minute averaged value for each test point. The averaged value for each test point is included in the test point data in Appendix A.

Fuel Gas Analysis & Fuel Flow Measurements

Natural Gas Fuel Gas:

Engine fuel gas was analyzed on a real time basis with a dedicated Daniels Industries GC. The GC was calibrated on a daily basis against a known standard. A daily gas analysis was acquired for each test day. This analysis gave the actual specific gravity, mole fractions of specific hydrocarbons and BTU content so that fuel flow and mass emissions could be accurately calculated. Fuel flow measurements were made using an AGA specified orifice meter run equipped with dedicated high accuracy pressure and temperature transmitters. All fuel flow calculations were in accordance with AGA

4-15

Report #3. Additionally, stoichiometric air to fuel ratio calculations were made using the fuel gas analysis. From this information, the equivalence ratios for each day of testing were determined. All fuel gas calibrations and analysis are presented in Appendix O and Appendix N, respectively. Stoichiometric air to fuel ratio calculations are presented in Appendix Q. Calculations for fuel flow, stoichiometric air-to-fuel ratio calculations, and fuel specific F Factor are presented in Appendix V, Appendix Q, and Appendix P, respectively.

A blind sample provided by PES was analyzed. The results are included in Appendix N of this report.

4.8 TEST SPECIFICS: FTIR CALIBRATION PROCEDURES

Calibration was performed on the FTIR instrument prior to each phase of the test program and at the beginning and end of each test day. The calibration procedures described within this document are consistent with procedures found in the following documents:

"Measurement of Select Hazardous Air Pollutants, Criteria Pollutants, and Moisture Using Fourier Transform Infrared (FTIR) Spectroscopy" – Prepared by Radian International for the Gas Research Institute.

"Protocol for Performing Extractive FTIR Measurements to Characterize Various Gas Industry Sources for Air Toxics" – Prepared by Radian International for the Gas Research Institute.

Both documents are contained with the Gas Research Institute Report Number GRI-95/0271 entitled, "Fourier Transform Infrared (FTIR) Method Validation at a Natural Gas-Fired Internal Combustion Engine" – Prepared by Radian International for the Gas Research Institute.

Instrument Description

Dedicated FTIR analyzers and sampling conditioning systems were used to measure pre-catalyst and post-catalyst exhaust emissions. A description of each unit is presented in Table 9:

TABLE 9

FTIR EQUIPMENT DESCRIPTION

Pre-catalyst Analyzer	
Manufacturer and Type	Nicolet Rega 7000
Spectral Resolution	0.5cm ⁻¹
Detector Type	MCT-A
Cell Type	4.2 Meter – Fixed Path Length
Cell Temperature	185°C
Cell Pressure	600 Torr
Cell Window Material	Zinc Cellinide
Post-catalyst Analyzer	
Manufacturer and Type	Nicolet Magna 560
Spectral Resolution	0.5cm ⁻¹
Detector Type	MCT-A
Cell Type	2.0 Meter – Fixed Path Length
Cell Temperature	165°C
Cell Pressure	600 Torr
Cell Window Material	KBr

Each unit and the associated test method have been designed for measurement of raw exhaust gases from internal combustion engines. Dedicated temperature controllers maintained cell temperature and associated sample lines at the appropriate the design temperature. Pressure was controlled by means of an MKS pressure controller for each system. Sample flow to each analyzer was between 8 - 15 liters/minute. The units utilized a high-energy mid-range IR source and are equipped with modulating, potassium bromide beamsplitters with MCT-A liquid nitrogen cooled detectors. The cells have been equipped with specific optical windows to prevent signal degradation from damaged optics due to moisture and corrosive gases present in the exhaust stream.

Pre Engine Test Calibration

Prior to initiation of an engine specific test program, the FTIR sampling systems, both pre and post-catalyst sample trains underwent an EPA Method 301 validation process. The validation process was to verify the sample and analytical system performance in relation to precision and accuracy of data collected. Additional calibration procedures prior to testing of the engine were as follows:

- Source Evaluation Acquired initial source data to verify concentration ranges of target compounds and possible interferants. This was accomplished prior to and during the Method 301 validation process
- 2.) Sample System Leak Check –Sample system leak checks were performed. The leak check procedure encompassed the sample train from the sample filter to the pump outlet. A dedicated rotameter was installed on the discharge side of the sample pump. With the sample system operating at typical temperatures and pressures (sample pump will pull a slight vacuum on the suction side), the sample flow rate from the rotameter was recorded. The inlet to the sample filter located just downstream of the sample probe was closed and the flow rate through the rotameter was monitored. The flow rate through the rotameter was monitored. The flow rate through the rotameter was less than 4% of the standard sampling rate or 500ml/min, whichever is less. Sample system leak check data sheets are provided in Appendix F of this document.
- 3.) Analyzer Leak Check With the FTIR analyzers operating at normal operating temperatures and pressures, the operating pressures were recorded. The automatic pressure controllers were then disabled, and the inlet valves to the FTIR analyzers were then closed. The measurement cells were then evacuated to 20% or less of their normal operating pressure. After the measurement cells were evacuated, each measurement cell was then isolated and the cell pressure monitored with a dedicated pressure sensor. The leak rate of each measurement cell was less than 10 Torr per minute for a one-minute period. The analyzer leak rate was determined to be acceptable. Analyzer leak check data sheets are provided in Appendix F of this document.
- 4.) Cell Pathlength Determination The cell pathlength was to be determined using the measurement procedures as outlined in the Field Procedure Section of the document entitled "Protocol For Performing Extractive FTIR Measurements To Characterize Various Gas Industry Sources For Air Toxics", prepared by Radian International for the Gas Research Institute. Because the units are fixed pathlength (non-adjustable) measurement cells which are stationary units dedicated to a specific task, the pathlength determination process was determined not to be necessary. The units are "as specified" from the manufacturer, and have passed all validation and calibration procedures at this fixed pathlength.

Daily Calibration Procedures - Pre Test

The following daily calibration procedures were performed prior to the initiation of each day's testing.

- Instrument Stabilization To ensure the FTIR instruments were operating in a stable manner, verification of the operation of the following components at the beginning of each day was performed:
 - a.) All instrument heated devices and temperature controller were at operating temperature and performing properly.
 - b.) Pressure sensor and pressure controllers were at operating conditions and performing properly.
 - c.) Sample systems (pumps, filters, flow meters, and water knockouts) were functioning properly.
- 2.) Instruments were operated on a conditioned air source for a minimum of 30 minutes prior to conducting background spectrum procedures. When the instruments were in standby mode, between test days, the analyzers and all components were kept at normal operating temperatures. The analyzers operated on conditioned air at all times when not involved with data acquisition.
- 3.) Background spectrum procedures After purging with a conditioned air source for a minimum of 30 minutes, the instruments were allowed to stabilize by flowing an ultra high purity N₂ gas through the measurement cell for a minimum of ten minutes. During the stabilization process, the FTIR spectra were monitored until the concentrations of CO and H₂O were reduced and normal steady state background levels had been achieved. The following procedures were then performed:
 - a.) Check for proper interferogram signal using alignment software
 - b.) Collect a single beam spectrum and inspect for irregularities
 - c.) Check the single beam spectrum for detector non-linearity and correct if necessary
 - d.) Perform an instrument alignment procedure
 - e.) Collect a background spectrum The background spectrum was comprised 256 scans, which was equal to or greater than the number of scans used for sample analysis.
- 4.) Analyzer Diagnostics Perform an analyzer diagnostic procedure by analyzing a diagnostic standard. The standard was a EPA Protocol 1 CO gas standard at concentration levels indicative of the emissions source, 109 ppm. A CO standard was recommended due to the distinct spectral features, which are sensitive to variations in system operation and performance. The standard was introduced directly into the instrument. The instrument readings were allowed to stabilize and a

five-minute set of data was acquired. The calculated accuracy and precision based on equations from the document entitled "Protocol for Performing Extractive FTIR Measurements To Characterize Various Gas Industry Sources for Air Toxics", prepared by Radian International for the Gas Research Institute, was acceptable. The pass/fail criteria for accuracy and precision was \pm 10% of the known standard for the instrument to be acceptable. Each instrument meets this criteria for all daily calibrations. Analyzer diagnostic data sheets are provided in Appendix F of this document.

- 5.) Additional Analyzer Diagnostic An additional diagnostic check was performed to ensure system operation and performance. A second diagnostic standard comprised of a multi-gas composition was analyzed by the same procedure. The gas consisted of CO₂, CO, CH₄, and NO_x in concentrations similar to exhaust gas composition. The same pass/fail criteria was used to evaluate each analyzer's performance when analyzing the multi-gas standard. Each instrument meets this criteria for all daily calibrations. Analyzer diagnostic data sheets are provided in Appendix F of this document.
- 6.) Indicator Check & Sample Integrity Check An indicator check procedure was performed on each analyzer by analyzing a certified indicator standard. The standard was either a NIST traceable, EPA Protocol 1 gas standard, or highest grade standard available of a surrogate/analyte gas concentration at levels indicative of the emissions source. A formaldehyde standard (concentration of 10.66 ppm) was used due to the fact that formaldehyde represents a sampling challenge because of its solubility in water. The standard was introduced directly into the instrument. The instrument readings were allowed to stabilize and a five-minute set of data was acquired. Next, the indicator standard was introduced into the sample system at the sample filter located just downstream of the sample probe. The instrument readings were allowed to stabilize and a five-minute set of data was acquired. The calculated accuracy and precision based on equations from the document entitled "Protocol For Performing Extractive FTIR Measurements To Characterize Various Gas Industry Sources For Air Toxics", prepared by Radian International for the Gas Research Institute. The pass/fail criteria for accuracy, precision, and recovery was ± 10% of the known standard (recovery was \pm 10% of the instrument reading with the indicator gas introduced directly into the instrument.) for the instrument to be acceptable. Each instrument meets this criteria for all daily calibrations. Indicator check and sample integrity check data sheets are provided in Appendix F of this document.

4-20

Daily Calibration Procedures – Background assessment

The baseline absorbance was continually monitored during data acquisition procedures. If it was determined by PES, ERG, and CSU personnel that the baseline had changed by more than 0.1 absorbance units, the instrument interferometer was realigned and a background spectrum collected.

Daily Calibration Procedures – Post Test

Upon completion of the daily test program steps 4-6 of the pre test calibration procedures were repeated. Both analyzers meet all acceptance criteria for calibration procedures. All post test calibration data sheets are presented in Appendix F of this document.

4.9 TEST SPECIFIC – FTIR VALIDATION PROCEDURES

To ensure the accuracy of data collected during testing, the test program required procedures to evaluate instrument performance. Prior to collecting test data, a validation procedure was performed on each FTIR sample train, both pre-catalyst and post-catalyst, for the natural gas fueled engine classification. The specific sample trains are as follows:

- 1.) Pre-catalyst emissions sample trains from the exhaust of natural gas fueled engines. This comprises the two-stroke lean burn engine class and four-stroke lean burn engine.
- 2.) Post-catalyst emissions sample trains from the exhaust of natural gas fueled engines. This comprises the two-stroke lean burn engine and four-stroke lean burn engine.

Each sample train was validated for the following target compounds:

- 1.) Formaldehyde
- 2.) Acetaldehyde
- 3.) Acrolein

Instrument Description

Refer to FTIR calibration procedures for FTIR instrument description.

Procedures

Eastern Research Group, ERG, performed the validation for the target aldehyde compounds. The validation procedure was conducted in basic accordance with procedures outlined in Method 301-"Field Validation of Pollutant Measurement Methods from Various Waste Media". Validation procedures for aldehydes utilized an analyte spiking technique as specified in Method 301. The procedures for the validation process are as follows:

Analyte Spiking:

The process was carried out by means of dynamic analyte spiking of the sample gas. The sample stream of the exhaust gas was spiked with the specific analyte after the sample probe, and before the sample filter. Spike levels for the specific aldehydes were determined and the spike gas concentrations were generated for the specific aldehydes using the following methods:

Formaldehyde:

Formaldehyde spike gas was generated by volatilization of a formalin solution prepared from a stock formalin solution of 37% formaldehyde by weight. The solution was injected into a heated vaporization block. The vaporized formalin solution was mixed with a acetylaldehyde/acrolein carrier gas and carried into the sample exhaust stream. Carrier gas flow rate was measured by a mass flow meter equipped with readout

Acetlyaldehyde/Acrolein:

Acetlyaldehyde and acrolein spike samples were generated from a certified gas standard (Scott Specialty Gases, $\pm 2\%$ analytical accuracy) which contained both analyte species and a sulfur hexaflouride (SF6) tracer gas. Carrier gas flow rate was measured by a mass flow meter equipped with readout.

Analyte specific spike gas was introduced to the FTIR sample train upstream of the sample system filter. The spike gas was introduced at a known flow rate. The spike gas flow was controlled by a three-way solenoid valve, which directed gas either into the sample stream or diverted the spike gas to the atmosphere. This allowed for uninterrupted flow of the analyte spike gas source during the validation procedures.

The formaldehyde and acetylaldehyde/acrolein validation runs were conducted simultaneously. The validation test runs consisted of 24 test runs, 12 spiked and 12 unspiked runs, which were paired and grouped further into six groups of 2 spiked/unspiked pairs to simulate the "quad train" approach used for Method 301

statistical calculations. Samples were one minute in duration. Measurement procedures for acquiring the spiked/unspiked pairs are as follows:

- 1.) Verify stable engine operation
- 2.) Begin measurement of the unspiked native exhaust stack gas.
- 3.) Upon completion of acquiring the unspiked sample, initiate spike gas flow into sample stream.
- 4.) Let system equilibrate.
- 5.) Begin measurement of the spiked exhaust gas sample.
- 6.) Upon completion of acquiring the spiked sample, divert spike gas flow to atmosphere.
- 7.) Let system equilibrate.
- 8.) Repeat items 2 through 7.

This procedure was performed twelve times to acquire the appropriate number of spiked/unspiked pairs. To ensure stable engine operation during the validation procedure, engine operating data was collected during the spiking process.

4.10 TEST SPECIFIC - GENERAL CALIBRATION

To ensure the accuracy of data collected during testing, the test procedure required that all instrumentation be routinely calibrated. Calibrations and/or calibration checks were performed within one week before initiation of testing, and upon completion of the entire test program to ensure that no "drift" has occurred. The devices calibrated included the dynamometer 5000-lb. load cell and amplifier, all thermocouples, pressure transducers, and all pressure transmitters.

Dynamometer Load Cell and Amplifier (Daily)

The 5000 pound load cell and amplifier was calibrated prior to the engine test section. The calibration procedure is outlined in a document contained in Appendix M of this document. Calibration of the load cell and amplifier were then be verified by applying the full range of load without any adjustments to the offset or gain of the instrumentation. Calibration checks were performed on a daily basis prior to starting the engine to identify and correct any drift in the load cell or amplifier. These checks used the same procedure as the calibration verification. If the daily calibration check showed an indicated load that exceeded $\pm 1.0\%$ of the torque applied by the standard weights, the full calibration procedure was performed. The dynamometer was within acceptable limits during the test program. Dynamometer calibration data sheets are provided in Appendix L of this document.

Thermocouples (Within one week prior to initiation of each engine test program)

K-type insertion thermocouples are used throughout the Large Bore Engine Testbed with compensation performed through the engine control and data acquisition hardware. The thermocouples were calibrated using a Ronan X88 portable calibrator calibrated within $\pm 1.0^{\circ}$ F of N.I.S.T. standard by an independent laboratory. The thermocouple signal was zeroed and the gain adjusted at full span until the value displayed by the NetCon 5000 matched the setting of the Ronan X88 within $\pm 2.0^{\circ}$ F. Once the zero and gain have been set a minimum of two mid-point temperatures were checked to verify the calibration. Thermocouple calibration data sheets are provided in Appendix J of this report.

Pressure Transducers (Within one week prior to initiation of each engine test program)

A 3-way valve has been installed to allow pressure transducer calibration without removing the sensor from the system. The Model 320 Beta calibrator used for transducers calibration provides an accuracy of 0.05% of reading or 0.02% of full span and is calibrated to N.I.S.T. standards by an independent laboratory. The transducer was zeroed and the gain adjusted at full span until the value displayed by the NetCon 5000 was within ± 1.0 psig of the pressure supplied by the pressure calibration standard. A minimum of two midpoints was checked to verify calibration. Pressure transducer calibration data sheets are provided in Appendix J of this report.

Pressure Transmitters (Within one week prior to initiation of each engine test program)

Pressures, which were critical to control, and emissions calculations were measured using Rosemount® 3051C transmitters. The calibration was performed at the transmitter and no adjustments are made to the current loop. A known pressure was supplied to the sensing port of the transmitter using the Model 320 Beta calibrator. The transmitter was zeroed and then spanned at the full range value of the system. Once spanned, the value displayed by the NetCon 5000 within $\pm 0.5\%$ of the full range value. A minimum of two mid-span points was checked to verify calibration. Pressure transmitter calibration data sheets are provided in Appendix J of this report.

4.11 TEST SPECIFICS - TEST BED GENERAL DESCRIPTION

Colorado State University's Engines & Energy Conversion Laboratory

The continued operation of stationary reciprocating internal combustion engines is faced with tremendous challenges in meeting ever tightening restrictions on air borne pollutants. The regulatory environment continues to evolve toward lower allowable limits for criteria pollutants, including new limitations on hazardous air pollutants (HAPs), even as current statutes are being

COLORADO STATE UNIVERSITY

implemented. Although ominous the task of meeting compliance, difficulties involved in complying with tightening emissions regulations have advanced the knowledge and understanding of engine emissions and performance. The mechanism, which has elevated the understanding of exhaust emissions, is research and development. To aid in this effort the Engines & Energy Conversion Laboratory was established at Colorado State University. The engines located at the Engines & Energy Conversion Laboratory (EECL) located at Colorado State University, and are representative of the types used by the oil and gas industries as well as power generation markets. The CSU facility currently comprises the only independent largebore industrial engine test facility in North America. Engines that are located at the facility are as follows:

- Cooper –Bessemer GMV-4-TF, Two-Stroke Lean Burn Natural Gas Fired Engine
- Waukesha 3521GL, Four-Stroke Lean Burn Natural Gas Fired Engine
- White Superior 6G825, Four Stroke, Rich Burn Natural Gas Fired Engine
- Caterpillar 3508, Four Stroke, Lean Burn Diesel Fueled Engine

The natural gas pipeline industry has supported the installation of three four-stroke engines in the same manner as the original engine installation. The program sponsor for the installation of the engines is the Gas Research Institute (GRI). The additional engines have been installed at the facility to assist research efforts in addressing needs, both emissions and performance related, on multiple engine types. The high-speed, four-cycle, industrial engines (approximately 1000-1800 rpm) represent a large portion of the current horsepower in operation within the oil and gas industry and power generation markets.

.

APPENDIX A

ENGINE TEST DATA

Colorado State University August 4-6, 1999 EPA RICE Testing

Waukesha

Engine Class: Natural Gas Fueled, Spark Ignited, Four-Stroke, Lean Burn Engine

Waukesha				
ENGINE OPERATING PARAMETERS	Run 1	Run 2	Run 3	Run 4
Ignition Type	PCC	PCC	PCC	PCC
Dynamometer Torque (ft-lb)	3236	2263	2264	3234
Brake Horsepower (bhp)	737	516	432	617
BSFC (btu/bhp-hr)	7411	8166	7658	7308
Engine Speed (rpm)	1197	1197	1002	1002
Timing (Degrees BTDC)	10.00	10.00	10,00	10.00
A/F (Wet)	28.7	28.8	28.2	28.9
Pressures				
Air Manifold (in. Hg)	5.02	5.00	5.00	5.00
Fuel Manifold (psig)	4.12	6.60	6.88	6.21
Fuel Supply (psig)	46.73	47.17	47.45	47.16
Intercooler Air Differential (in. HO)	9.26	5.85	4.7 9 [°]	6.59
Post Intercooler Air Manifold (in. Hg)	69.21	66,06	54.27	66.48
Intercooler Water Differential (in. HO)	157.45	157.45	157.45	157.45
Intercooler Supply (psi)	3.12	2.72	2.83	2.72
Pre-Turbo Exhaust (in. Hg)	36.51	28.80	21,26	30.55
Post- Turbo Exhaust (in. Hg)	4.82	4.99	4.98	5.16
Turbo Oil (in. Hg)	46.91	47.35	45.32	44.90
Catalyst Differential (in. H_2O)	9.1	5.6	3.9	6.0
Temperatures (°F) and Flows (GPM)				
Air Supply Temperature	99.5	99.9	99.7	99.3
Fuel Manifold Temperature	85.6	87.9	84.7	86.1
Exhaust Stack Temperature	704.5	676.4	640.4	656.9
Exhaust Header Temperature	704.5	676.4	640.4	656.9
Jacket Water Inlet Temperature	173.1	175.3	176.4	175.4
Jacket Water Outlet Temperature	179.4	179.0	178.8	179.5
Lube Oil Inlet Temperature	81.1	81.5	82.7	76.9
Lube Oil Outlet Temperature	86.7	86.6	86.9	81.6
Lube Oil Flow	129.2	129.2	129.3	128.3
Engine Oil In Temperature	164.6	163.3	162.8	162.4
Engine Oil Out Temperature	185.7	183.2	180.0	181.1
Intercooler Air In Temperature	296.9	280.9	232.3	282.3
Intercooler Air Out Temperature	142.2	137.1	135.2	138.5
Intercooler Water In Temperature	131.6	127.6	130.3	128.5
Intercooler Water Out Temperature	142.9	137.1	135.7	138.7
Intercooler Water Flow	62.6	55.5	58.5	55.5
Pre-Turbo ExhaustTemperature	961.0	926.7	860.6	905.0
Post-Turbo Exhaust Temperature	797.9	750.4	725.6	725.8
Pre-Catalyst Temperature	734.5	705.5	677.0	685.2
Post-Catalyst Temperature	739.56	709.99	679.03	688.42

August 4-6, 1999 EPA RICE Testing

Waukesha

Engine Class: Natural Gas Fueled, Spark Ignited, Four-Stroke, Lean Burn Engine

Waukesha					
ENGINE OPERATING PARAMETERS	i.	Run 1	Run 2	Run 3	Run 4
Ignition Type	•	PCC	PCC	PCC	PCC
Fuel Measurements					
Static Fuel (psia)	,	46.5	46.6	46.9	46.6
Fuel Differential (in. HO)		14.4	8.4	5.1	9.6
Orifice Temperature (°F)		85.6	87.9	84.7	86.1
Fuel Flow (sefh)		5418	4114	3229	4401
Fuel Consumption (BSFC)		7411	8166	7658	7 308
Lower Heating Value-Dry (Btu)	,	1008	1024	1024	1024
Fuel Tube I.D. (in.)		3.068	3.068	3.068	3.068
Fuel Orifice O.D. (in.)		0.5	0.5	0.5	0.5
Annubar Flow Rates	,				
Inlet Air Flow (scfm)	-	1713.6	1291.8	1020.5	1377.1
Bxhaust Flow (scfin)		2013.1	1545.7	1192.6	1660.1
Ambient Conditions					
Barometric Pressure (psia)		12.08	12.07	12.07	12.07
Dry Buib Temperature (°F)		64.0	65.0	69.0	62.1
Relative Humidity (%)		80.0	74.6	63.9	78,0
Absolute Humidity (1b/1b)	,	0.012	0.012	0.012	0.011
Absolute Humidity (gr/lb)		86.668	83.651	82.295	78.961
Air Manifold Conditions					
Boost Pressure (in. Hg)		5.02	5.00	5.00	5.00
Dry Buib Temperature (°F)		99.5	99.9	99.7	99.3
Relative Humidity (%)		37.8	30.4	37.3	36.1
Relative Humidity (%) - Corrected*		51.2	41.7	50.9	48.7
Absolute Humidity (1b/1b)		0.016	.0.013	0.015	0.015
Absolute Humidity (gr/lb)		108.712	88.188	108.105	103.280

*Air manifold relative humidity corrected to the reference ambient

conditions of 90°F, 14.696 psi.

Cylinder Exhaust Temperatures (Degrees °F)			1 10 10 10 10 10	
Cylinder 1	976.9	960.5	884.2	908.3
Cylinder 2	977.8	953.2	880.5	910.3
Cylinder 3	980.4	954.7	877.5	913.0
Cylinder 4	954.3	931.2	861.6	893.0
Cylinder 5	945.3	913.2	850.8	886.8
Cylinder 6	929.7	914.2	843.4	873.4
Engine Average	960.73	937.84	843.41	873.35

Colorado State University August 4-6, 1999 EPA RICE Testing Waukesha

Engine Class: Natural Gas Fueled, Spark Ignited, Four-Stroke, Lean Burn Engine

.

Waukesha				
MEASURED EMISSIONS	Run 1	Run 2	Run 3	Run 4
Ignition Type	PCC	PCC	PCC	PCC
Air Manifold Pressure ("Hg)	5.02	5.00	5.00	5.00
Brake Horsepower (bhp)	737	516	432	617
Emissions Measured (Dry)				
NO _x (ppm): Pre-Catalyst	112.26	76.27	72.83	107.78
NO _x (ppm): Post-Catalyst	119.34	82.48	81.66	113.18
CO (ppm): Pre-Catalyst	620.26	590.96	573.32	590.78
CO (ppm): Post-Catalyst	41.32	26.75	21.89	30.19
THC (ppm): Pre-Catalyst	1785.06	2129.30	2424.42	2166.33
THC (ppm): Post-Catalyst	1869.94	2172.32	2458.76	2165.00
O ₂ %: Pre-Catalyst	9.80	9.82	9.81	9.80
O2 %: Post-Catalyst	9.80	9.83	9.81	9.80
CO ₂ %: Pre-Catalyst	6.29	6.23	6.37	6.24
CO ₂ %: Post-Catalyst	6.46	6.42	6.40	6.41
Emissions Measured (Wet)				
Methane (ppm): Pre-Catalyst	1266.40	1462.36	1661.04	1498.39
Methane (ppm): Post-Catalyst	1100.08	1326.13	1391.50	1358.65
Non-Methane (ppm): Pre-Catalyst	148.47	160.09	183.77	130.64
Non-Methane (ppm): Post-Catalyst	117.90	131.14	147.28	113.19
Carbon Balance Calculations				
Exhaust H ₂ O% (Pre-Catalyst)	12.25	11.73	12.30	12.02
Exhaust H2O% (Post-Catalyst)	12.42	11.92	12.25	12.19
O ₂ %	10.11	10.20	9.98	10.22
O ₂ Balance	-1.44	-1.84	-0.89	-1.91
Exhaust Flow (lb/hr)	8262.0	6369.3	4897.3	6822.5
Air Flow (lb/hr)	7984.0	6155.8	4729.8	6594.1
Air/Fuel Ratio	28.7	28.8	28.2	28.9
F-Factor Emissions Calculations				
NO _x (g/bhp-hr): Pre-Catalyst	0.815	0.610	0.546	0.771
NO _x (lb/hr): Pre-Catalyst	1.325	0.694	0.520	1.047
NO _x (g/bhp-hr): Post-Catalyst	0.866	0.660	0.612	0.809
NO _x (lb/hr): Post-Catalyst	1.408	0.751	0.582	1.100
THC (g/bhp-hr): Pre-Catalyst	4.589	6.035	6.436	5.485
THC (lb/hr): Pre-Catalyst	7.460	6.863	6.124	7.456
THC (g/bhp-hr): Post-Catalyst	4.808	6.157	6.527	5.481
THC (lb/hr): Post-Catalyst	7.814	7.001	6.211	7.451
CO (g/bhp-hr): Pre-Catalyst	2.784	2.925	2.657	2.611
CO (lb/hr): Pre-Catalyst	4.526	3.325	2.529	3.550
CO (g/bhp-hr): Post-Catalyst	0.185	0.132	0.101	0.133
CO (lb/hr): Post-Catalyst	0.301	0.151	0.097	0.181
Methane (g/bhp-hr): Pre-Catalyst	3.752	4.745	5.074	4.361
Methane (lb/hr): Pre-Catalyst	6.099	5.395	4.828	5.929
Methane (g/bhp-hr): Post-Catalyst	3.260	4.303	4.250	3.955
Methane (lb/hr): Post-Catalyst	5.298	4.892	4.045	5.376
Non-Methane (g/bhp-hr): Pre-Catalyst	1.209	1.428	1.543	1.045
Non-Methane (lb/hr): Pre-Catalyst	1.966	1.623	1.468	1.421
Non-Methane (g/bhp-hr): Post-Catalyst	0.960	1.170	1.237	0.906
Non-Methane (lb/hr): Post-Catalyst Formaldehyde (g/bhp-hr): Pre-Catalyst	1.561 0.312	1.330 0.369	1.177 0.329	1.231 0.301
Formaldenyde (g/onp-nr): Pre-Catalyst Formaldenyde (lb/hr): Pre-Catalyst	0.312	0.369	0.329	0.301
Formaldehyde (g/bhp-hr): Post-Catalyst	0.100	0.093	0.061	0.409
Formaldehyde (lb/hr): Post-Catalyst	0.160	0.106	0.058	0.120
Acetaldehyde (g/bhp-hr): Pre-Catalyst	-0.028	-0.037	-0.047	-0.031
Acetaldehyde (lb/hr): Pre-Catalyst	-0.046	-0.042	-0.044	-0.042
Acetaldehyde (g/bhp-hr): Post-Catalyst	0.000	0.000	0.000	0,000
Acetaldehyde (lb/hr): Post-Catalyst	0.000	0.000	0.000	0.000
Acrolein (g/bhp-hr): Pre-Catalyst	0.004	-0.003	-0.004	0.000
Acrolein (g/bhp-hr): Pre-Catalyst	0.006	-0.003	-0.004	0.001
Acrolein (g/bhp-hr): Post-Catalyst	0.000	0.000	0.000	0.000
Acrolein (lb/hr): Post-Catalyst	0.0	0.0	0.0	0.0

١

-August 4-6, 1999– EPA RICE Testing

Waukesha

Engine Class: Natural Gas Fueled, Spark Ignited, Four-Stroke, Lean Burn Engine

Waukesha	'				
MEASURED EMISSIONS		Run 1	Run 2	Run 3	Run 4
Ignition Type		PCC	PCC	PCC	PCC
Air Manifold Pressure ("Hg)		5.02	5.00	5.00	5.00
Brake Horsepower (bhp)	:	737	516	432	617
FTIR Measured Emissions (ppm, Wet)		100015	10/201	120022	120200
Water-H ₂ O	,	132315	126394	130933	130209
Carbon Monoxide-CO (ppm): Pre-Catalyst	-	532.071 24.137	512.242 11.351	496.451 6.267	511.649 14.166
Carbon Monoxide-CO (ppm): Post-Catalyst		56847	55598	56370	55618
Carbon Dioxide-CO ₂ (ppm): Pre-Catalyst		54430	54281	53813	53975
Carbon Dioxide-CO ₂ (ppm): Post-Catalyst Nitric Oxide-NO (ppm): Pre-Catalyst		34450	15.089	16.156	37,505
Nitric Oxide-NO (ppm): Pre-Catalyst Nitric Oxide-NO (ppm): Post-Catalyst		90. 77 1	60.962	60.266	85.112
Nitrogen Dioxide-NO (ppm): Pre-Catalyst		52.508	43.941	41.465	47.879
		0.000	0.000	0.000	0.000
Nitrogen Dioxide-NQ (ppm): Post-Catalyst					0.000
Nitrous Oxide-N ₂ O (ppm): Pre-Catalyst		0.491	0.492	0.458	
Nitrous Oxide-N ₂ O (ppm): Post-Catalyst		0.000	0.000	0.000	0.000
Ammonia-NH, (ppm): Pre-Catalyst		0.000	0.000	0.000	0.000
Ammonia-NH, (ppm): Post-Catalyst		0.000	0.000	0.000	0.000
Oxides of Nitrogen-NO _x (ppm): Pre-Catalyst		87.271	59.029	57.621	85,385
Oxides of Nitrogen-NO _x (ppm): Post-Catalyst		90.771	60.962	58.790	85.112
Methane-CH ₄ (ppm): Pre-Catalyst		1390.505	1694.023	1883.877	1730.944
Methane-CH, (ppm): Post-Catalyst		1394.899	1654.721	1810.803	1668.765
Acetylene-GH ₂ (ppm): Pre-Catalyst		0.004	0.103	0.363	0.000
Acctylene-GH2 (ppm): Post-Catalyst		0.000	0.000	0.000	0.000
Ethylene-CH4 (ppm): Pre-Catalyst		59.778	61.237	59.081	48.021
Ethylenc-CH, (ppm): Post-Catalyst		22.421	15.968	9.756	12.296
Ethane-C1H6 (ppm): Pre-Catalyst		154.137	173.349	208.761	155.649
Ethane-C2H6 (ppm): Post-Catalyst		208.203	229.031	279.990	203.376
Cyclopropene-CiHs (ppm): Pre-Catalyst		1.527	2.425	1.858	1.289
Cyclopropene-CH6 (ppm): Post-Catalyst		0.000	0.000	0.000	0.000
Formaldehyde-H2CO (ppm): Pre-Catalyst		56.310	60.753	57.630	55.249
Formaldehyde-H2CO (ppm): Post-Catalyst		17.970	15.326	10.604	16.225
Methanol-CH3OH (ppm): Pre-Catalyst		1.729	1.843	1.871	1.435
Methanol-CH_OH (ppm): Post-Catalyst		0.000	0.000	0.000	0.000
Propane-C1He (ppin): Pre-Catalyst		32.908	37.072	43.230	33.995
Propane-C ₁ H ₈ (ppm): Post-Catalyst		27.758	30.019	35.193	27.606
Sulfur Dioxide-SO ₂ (ppm): Pre-Catalyst	1	1.678	2.895 ·	2.303	3.175
Sulfur Dioxide-SO ₂ (ppm): Post-Catalyst		1.893	1.191	0.000	1.298
Total Hydrocarbons-THC (ppm): Pre-Catalyst		1897.534	2256.388	2526.730	2222.342
Total Hydrocarbons-THC (ppm): Post-Catalyst		2076.828	2401.490	2675.504	2355.141
Acetaklehyde-CHCHO (ppm): Pre-Catalyst		-3.441	-4.132	-5.545	-3.892
Acetaldchyde-CHCHO (ppm): Post-Catalyst		0.000	0.000	0.000	0.000
Acrolein CH_=CHCHO (ppm): Pre-Catalyst		0.382	-0.232	-0.345	0.041
Acrolein CH ₂ =CHCHO (ppm): Post-Catalyst		0.000	0.000	0.000	0.000
1-3 Butadiene (ppm); Pre-Catalyst		0.818	1.246	1.480	1.302
1-3 Butadiene (ppm): Post-Catalyst		0.000	0.000	0.000	0.000
Isobutylene (ppm): Pre-Catalyst		0.001	0.000	0.000	0.000
Isobutylene (ppm): Post-Catalyst		0.000	0.000	0.000	0.000
Calculated Catalyst Efficiency					
Carbon Monoxide-CO (%)		95.46%	97.78%	98.74%	97.23%
Formaldehyde-H.CO (%)		68.09%	74.77 %	81.60%	70.63%

Ì

Colorado State University August 4-6, 1999

EPA RICE Testing

Waukesha

Engine Class: Natural Gas Fueled, Spark Ignited, Four-Stroke, Lean Burn Engine

es)

Waukesha				
ENGINE OPERATING PARAMETERS	Run 5	Run 6	Run 7	Run 8
Ignition Type	PCC	PCC	PCC	PCC
Dynamometer Torque (ft-lb)	3235	3234	2263	3234
Brake Horsepower (bhp)	737	737	516	617
BSFC (btu/bhp-hr)	7728	7468	8078	7400
Engine Speed (rpm)	1197	1197	1197	1001
Timing (Degrees BTDC)	10.00	10.00	10.00	10.00
A/F (Wet)	30.3	27.4	27.3	30.4
Pressures				
Air Manifold (in. Hg)	5.00	5.00	5.00	5.00
Fuel Manifold (psig)	0.68	8.53	7.68	2.68
Fuel Supply (psig)	46.79	46.87	47.14	47.26
Intercooler Air Differential (in. HO)	10.73	8.39	5.38	7.54
Post Intercooler Air Manifold (in. Hg)	67.88	69.41	65,46	66.62
Intercooler Water Differential (in. HO)	157.45	157,45	157.45	157.45
Intercooler Supply (psi)	2.76	2.76	2.72	2.67
Pre-Turbo Exhaust (in. Hg)	40.48	34.24	27.29	32.04
Post-Turbo Exhaust (in. Hg)	5.55	4,47	4.94	4.95
Turbo Oil (in. Hg)	47.11	46.91	47.33	44.99
Catalyst Differential (in. H ₂ O)	10.1	8.5	5.1	6.6
Temperatures (°F) and Flows (GPM)		-		
Air Supply Temperature	99.7	99.6	99.9	99.5
Fuel Manifold Temperature	87.5	88.1	88.1	84.1
Exhaust Stack Temperature	684.7	722.5	694.4	640.8
Exhaust Header Temperature	684.7	722.5	694.4	640.8
Jacket Water Inlet Temperature	173.8	174.8	175.3	175.2
Jacket Water Outlet Temperature	179.5	180.3	179.2	178.8
Lube Oil Inlet Temperature	85.2	84.2	82.1	78.7
Lube Oil Outlet Temperature	90.8	89.8	87.7	83.3
Lube Oil Flow	129.9	129.7	129.3	128.6
Engine Oil In Temperature	164.0	164.8	163.8	162.0
Engine Oil Out Temperature	185.1	186.1	183.7	180.8
Intercooler Air In Temperature	303,0	297.4	278.7	284.6
Intercooler Air Out Temperature	145.5	139.5	138.4	138.7
Intercooler Water In Temperature	130.4	128.2	129.0	128.7
Intercooler Water Out Temperature	144.2	140.3	138.2	139.6
Intercooler Water Flow	56.2	56.3	55.7	54.8
Pre-Turbo ExhaustTemperature	936.7	987.7	950.3 ,	880.6
Post-Turbo Exhaust Temperature	748.3	805.6	776.5	702.3
Pre-Catalyst Temperature	711.2	758.9	728.4	662.8
Post-Catalyst Temperature	717.84	760.19	731.12	668.52

-August 4-6, 1999-EPA RICE Testing

Waukesha

Engine Class: Natural Gas Fueled, Spark Ignited, Four-Stroke, Lean Burn Engine

Î

Waukesha				
ENGINE OPERATING PARAMETERS	Run 5	Run 6	Run 7	Run 8
Ignition Type	PCC	PCC	PCC	PCC
Fuel Measurements				
Static Fuel (psia)	46.4	46.4	46.6	46.6
Fuel Differential (in. HO)	15.4	14.4	8.2	9.8
Orifice Temperature (°F)	87.5	88.1	88.1	84.1
Fuel Flow (sefh)	5564	5377	4070	4457
Fuel Consumption (BSFC)	77 28	7468	8078	7400
Lower Heating Value-Dry (Btu)	1024	1024	1024	1024
Fuel Tube ID. (in.)	3.068	3.068	3.068	3.068
Fuel Orifice O.D. (in.)	0.5	0.5	0.5	0.5
Annubar Flow Rates				
Inlet Air Flow (scfin)	1853.1	1611.8	1212.4	1474.3
Exhaust Flow (scfin)	2194.2	1940.0	1456.4	1760.3
Amblent Conditions				
Barometric Pressure (psia)	12.07	12.07	12.07	12.07
Dry Bulb Temperature (°F)	67.0	65.5	65.0	63.4
Relative Humidity (%)	71.5	74.0	74.0	77.5
Absolute Humidity (lb/lb)	0.012	0.012	0.012	0.012
Absolute Humidity (gr/lb)	86.000	84.516	83.016	82.332
Air Manifold Conditions				
Boost Pressure (in. Hg)	5.00	5.00	5.00	5.00
Dry Bulb Temperature (°F)	99.7	99.6	99.9	99.5
Relative Humidity (%)	36.5	37.6	31.0	37.0
Relative Humidity (%) - Corrected*	49.8	51.2	42.5	50.1
Absolute Humidity (1b/1b)	0.015	0.016	0.013	0.015
Absolute Humidity (gr/lb)	105.581	108.575	89.816	106.295

*Air manifold relative humidity corrected to the reference ambient

conditions of 90°F, 14.696 psi.

Conditions of 70 1, 14.090 psi.		1		
Cylinder Exhaust Temperatures (Degrees °F)	A.I.A.I.A.I.A.I.A.I.A.I.A.I.A.I.A.I.A.I			
Cylinder 1	969.8	1001.8	987.3	886.5
Cylinder 2	970.7	1003.3	979.4	887.8
Cylinder 3	967.5	1006.8	980.4	888.8
Cylinder 4	931.6	979.0	956.1	868.0
Cylinder 5	911.7	970.2	937.3	860.0
Cylinder 6	901.3	957.3	941.6	846.2
Engine Average	901.30	957.31	941.55	846.18

August 4-6, 1999-

EPA RICE Testing Waukesha

Engine Class: Natural Gas Fueled, Spark Ignited, Four-Stroke, Lean Burn Engine

Waukesha				
MEASURED EMISSIONS	Run 5	Run 6	Run 7	Run 8
Ignition Type	PCC	PCC	PCC	PCC
Air Manifold Pressure ("Hg)	5.00	5.00	5.00	5.00
Brake Horsepower (bhp)	737	737	516	617
Emissions Measured (Dry)				
NO _x (ppm): Pre-Catalyst	71.73	205.31	145.99	60.93
NO _x (ppm): Post-Catalyst	78.16	214.12	154.06	65.73
CO (ppm): Pre-Catalyst	740.59	669.76	639.84	641.35
CO (ppm): Post-Catalyst	53.69	39.54	26.35	35.85
THC (ppm): Pre-Catalyst	2456.71	1604.71	1821.07	2513.17
THC (ppm): Post-Catalyst	2479.44	1593.88	1843.11	2602.35
O ₂ %: Pre-Catalyst	10.51	9.10	9.20	10.50
O ₂ %: Post-Catalyst	10.44	9.01	9.09	10.50
CO_2 %: Pre-Catalyst	5.86	6,65	6.65	5.86
CO_2 %: Post-Catalyst	5.96	6.83	6.79	5.99
Emissions Measured (Wet)	5.90	0.05	0.79	5.59
Methane (ppm): Pre-Catalyst	1652.46	1109.58	1260.52	1766.78
Methane (ppm): Pre-Catalyst Methane (ppm): Post-Catalyst	1483.13	983.53	11200.52	1178.97
Non-Methane (ppm): Pre-Catalyst	1485.15	116.99	1124.02	171.12
Non-Methane (ppm): Post-Catalyst	154.94	91.09	145.57	171.12
Carbon Balance Calculations	1.57.77	71.07	110,17	1/1.14
Exhaust H ₂ O% (Pre-Catalyst)	11.56	12.71	12.35	11.55
Exhaust H ₂ O% (Post-Catalyst)	11.60	12.86	12.46	11.66
	10.79	9.52	9.52	
0 ₂ %			1	10.80
O ₂ Balance	-1.43	-1.88	-1.48	-1,56
Exhaust Flow (lb/hr)	9044.4	7938.8	5978.4	7255.7
Air Flow (lb/hr)	8755.6	7659.7	5767.1	7024.3
Air/Fuel Ratio	30.3	27.4	27.3	30.4
F-Factor Emissions Calculations			1.004	0.471
NO _x (g/bhp-hr): Pre-Catalyst	0.579	1.411	1.094	0.471
NO _x (lb/hr): Pre-Catalyst	0.941	2.293	1.245	0.640
NO _x (g/bhp-hr): Post-Catalyst	0.631	1.472	1.155	0.508
NO _x (lb/hr): Post-Catalyst	1.026	2.391	1.313	0.690
THC (g/bhp-hr): Pre-Catalyst	7.026	3.906	4.835	6.877
THC (lb/hr): Pre-Catalyst	11.418	6.347	5.498	9.350
THC (g/bhp-hr): Post-Catalyst	7.091	3.879	4.894	7.121
THC (lb/hr): Post-Catalyst	11.524	6.304	5.565	9.681
CO (g/bhp-hr): Pre-Catalyst	3.698	2.846	2.966	3.064
CO (lb/hr): Pre-Catalyst	6.010	4.625	3.373	4.166
CO (g/bhp-hr): Post-Catalyst	0.268	0.168	0.122	0.171
CO (lb/hr): Post-Catalyst	0.436	0.273	0.139	0.233
Methane (g/bhp-hr): Pre-Catalyst	5.398	3.132	3.862	5.523
Methane (lb/hr): Pre-Catalyst	8.772	5.090	4.392	7.508
Methane (g/bhp-hr): Post-Catalyst	4.845	2.776	3.447	3.685
Methane (lb/hr): Post-Catalyst Non-Methane (g/bhp-hr): Pre-Catalyst	7.873 1.666	4.512 0.908	3.919 1.224	5.010 1.470
Non-Methane (lb/hr): Pre-Catalyst	2.707	1.475	1.392	1.470
	1.391	0.707	0.928	1.999
Non-Methane (g/bhp-hr): Post-Catalyst Non-Methane (lb/hr): Post-Catalyst	2.261	1.149	1.055	1.470
Formaldehyde (g/bhp-hr): Pre-Catalyst	0.398	0.312	0.378	0.339
Formaldehyde (lb/hr): Pre-Catalyst	0.647	0.512	0.429	0.359
Formaldehyde (g/bhp-hr): Post-Catalyst	0.135	0.076	0.075	0.401
Formaldehyde (lb/hr): Post-Catalyst	0.135	0.123	0.085	0.159
Acetaldehyde (g/bhp-hr): Pre-Catalyst	-0.041	-0.019	-0.022	-0.043
Acetaldehyde (lb/hr): Pre-Catalyst	-0.066	-0.031	-0.022	-0.059
Acetaldehyde (g/bhp-hr): Post-Catalyst	0.000	0.000	0.000	0.000
Acetaldehyde (lb/hr): Post-Catalyst	0.000	0.000	0.000	0.000
Acrolein (g/bhp-hr): Pre-Catalyst	-0.005	0.000	-0.002	-0.001
Acrolein (g/bhp-hr): Pre-Catalyst	-0.008	0.000	-0.002	-0.001
Acrolein (g/bhp-hr): Post-Catalyst	0.000	0.000	0.000	0.001
Acrolein (lb/hr): Post-Catalyst	0.0	0.0	0.0	0.0

—August 4-6, 1999 —

EPA RICE Testing

Waukesha

Engine Class: Natural Gas Fueled, Spark Ignited, Four-Stroke, Lean Burn Engine

1.

Waukesha					
MEASURED EMISSIONS		Run 5	Run 6	Run 7	Run 8
Ignition Type	÷	PCC	PCC	PCC	PCC
Air Manifold Pressure ("Hg)		5.00	5.00	5.00	5.00
Brake Horsepower (bhp)		737	737	516	617
FTIR Measured Emissions (ppm, Wet)					
Water-H ₂ O		124497	137775	133514	124578
Carbon Monoxide-CO (ppm): Pre-Catalyst		643.758	576.025	551,260	556.962
Carbon Monoxide-CO (ppm): Post-Catalyst		35.850	21.516	9.785	20.259
Catbon Dioxide-CO ₂ (ppm): Pre-Catalyst		52179	59100	59090	52100
Carbon Dioxide-CO ₂ (ppm): Post-Catalyst		51028	56904	57007	51095
Nitric Oxide-NO (ppm): Pre-Catalyst		13.288	98.067	55.238	9.314
Nitric Oxide-NO (ppm): Post-Catalyst		58.462	168.311	117.940	47.021
Nitrogen Dioxide-NQ (ppm): Pre-Catalyst		43.621	67.850	60.557	38.290
Nitrogen Dioxide-NO ₂ (ppm): Post-Catalyst		0.000	0.000	0.000	0.000
Nitrous Oxide-N2O (ppm): Pre-Catalyst		0.509	0.515	0.502	0.494
Nitrous Oxide-NO (ppm): Post-Catalyst		0.000	0.000	0.000	0.000
Ammonia-NH, (ppm): Pre-Catalyst	;	0.000	0.000	0.000	0.000
Ammonia-NH, (ppm): Post-Catalyst		0.000	0.000	0.000	0.000
Oxides of Nitrogen-NO _x (ppm): Pre-Catalyst		56.908	165.917	115.794	47.602
Oxides of Nitrogen-NOx (ppm): Post-Catalyst		58.462	168.311	117.940	47.021
Methane-CH, (ppm): Pre-Catalyst		1929.117	1234.992	1440.179	2072.326
Methane-CH4 (ppm): Post-Catalyst	· 1	1876.674	1219.923	1413.275	1996.249
Acetylene-GH2 (ppm): Pre-Catalyst		0.227	0.060	0.057	0.168
Acetylenc-CH ₂ (ppm): Post-Catalyst		0.000	0.000	0.000	0.000
Ethylenc-CrH4 (ppm): Pre-Catalyst	-	69.755	54.317	62.895	55.663
Ethylenc-CH4 (ppm): Post-Catalyst		28.756	17.404	13.992	16.438
Ethane-CiHe (ppm): Pre-Catalyst		196.055	119.758	143.511	190.740
Bihane-CH (ppm): Post-Catalyst		262.745	156.034	187.358	253.424
Cyclopropene-CHc (ppm): Pre-Catalyst		3.092	1.784	2.643	1.787
Cyclopropenc-CH ₆ (ppm): Post-Catalyst		0.000	0.000	0.000	0.000
Formaldchyde-H ₂ CO (ppm): Pre-Catalyst		65.158	59.073	65.850	57.971
Formaldchyde-H ₂ CO (ppm): Post-Catalyst		22.068	14.380	13.054	19.994
Methanol-CH ₁ OH (ppm): Pre-Catalyst		1.913	1.363	1.783	1.700
Methanol-CH ₁ OH (ppm): Post-Catalyst		0.000	0.000	0.000	0.000
Propane-C1H ₄ (ppm): Pre-Catalyst		41.596	27.709	32.285	39.094
Propane-CjH4 (ppm): Post-Catalyst		35.072	20.718	24.423	32.943
Sulfur Dioxide-SO ₂ (ppm): Pre-Catalyst		3.045	3.322	3.230	2.813
Sulfur Dioxide-SO ₂ (ppm): Pre-Catalyst Sulfur Dioxide-SO ₂ (ppm): Post-Catalyst		1.406	1.985	3.610	3.019
Total Hydrocarbons-THC (ppm): Pre-Catalyst		2565.305	1.985	1936.690	2660.617
Total Hydrocarbons-THC (ppm): Pre-Catalyst Total Hydrocarbons-THC (ppm): Post-Catalyst		2303.303	1752.803	2032.664	2839.269
Acctaldchyde-CHCHO (ppm): Pre-Catalyst		-4.549	-2.422	-2.578	-5.042
Acetaldehyde-CHCHO (ppm): Post-Catalyst		0.000	0.000	0.000	0.000
Acrolein CH2=CHCHO (ppm): Pre-Catalyst		-0.445	0.000	-0.227	-0.068
Actolein CH2=CHCHO (ppm): Post-Catalyst Actolein CH2=CHCHO (ppm): Post-Catalyst		-0.445	0.017	0.000	
1-3 Butadiene (ppm): Pre-Catalyst	ť.	1.108	1.552	1.422	0.000
1-3 Butadiene (ppm): Pre-Catalyst 1-3 Butadiene (ppm): Post-Catalyst		0.000	0.000	0.000	1.102 0.000
Isobutylene (ppm): Pre-Catalyst		0.000	0.000	0.000	0.000
Isobutylene (ppm): Post-Catalyst		0.000	0.000	0.013	0.001
Calculated Catalyst Efficiency	i	0.000	0.000	0.000	0.000
Carbon Monoxide-CO (%)		94.43%	96.26%	98.23%	96.36%
Formaldchyde-HzCO (%)		66.13%	75.66%	80.18%	65.51%

-August 4-6, 1999---EPA RICE Testing

Waukesha

Engine Class: Natural Gas Fueled, Spark Ignited, Four-Stroke, Lean Burn Engine

¥

Waukesha				
ENGINE OPERATING PARAMETERS	Run 9	Run 10	Run 11	Run 12
Ignition Type	PCC	PCC	PCC	PCC
Dynamometer Torque (ft-1b)	3234	3237	3238	3236
Brake Horsepower (bhp)	737	738	738	738
BSFC (btu/bhp-hr)	7431	7467	7482	7568
Engine Speed (rpm)	1197	1197	1197	1197
Timing (Degrees BTDC)	10.00	10.00	10.00	10.00
A/F (Wet)	28.4	28.6	28.8	28.8
Pressures				
Air Manifold (in. Hg)	5.02	5.00	5.00	5.00
Fuel Manifold (psig)	5.24	4.84	4.87	5.30
Fuel Supply (psig)	47.09	46.43 .	46.32	46.61
Intercooler Air Differential (in. HO)	8.99	9.40	9.39	9.45
Post Intercooler Air Manifold (in. Hg)	69.30	68.82	68.70	68.84
Intercooler Water Differential (in. HO)	157.45	157.45	157.45	157.45
Intercooler Supply (psi)	3.23	2.64	2.66	2.65
Pre-Turbo Exhaust (in. Hg)	36.23	36.50	36.90	36.99
Post- Turbo Exhaust (in. Hg)	4,76	4.89	4.93	4,98
Turbo Oil (in. Hg)	47.02	46.76	47.08	46.67
Catalyst Differential (in. H2O)	9.0	9.0	9.0	9.2
Temperatures (°F) and Flows (GPM)				
Air Supply Temperature	99.5	99.5	99.4	99.5
Fuel Manifold Temperature	83.5	92.9	91.7	90.1
Exhaust Stack Temperature	704.0	705.0	701.2	704.5
Exhaust Header Temperature	704.0	705.0	701.2	704.5
Jacket Water Inlet Temperature	172.8	173.9	163.7	184.1
Jacket Water Outlet Temperature	179.0	180.5	170.1	190.2
Lube Oil Inlet Temperature	82.8	96.2	92.4	91.7
Lube Oil Outlet Temperature	88.2	101.7	98.2	97.5
Lube Oil Flow	129.4	131.7	131.2	131.0
Engine Oil In Temperature	164.1	166.1	164.4	166.6
Engine Oil Out Temperature	185.4	187.1	184.8	188.1
Intercooler Air In Temperature	298.2	298.9	299,3	299.6
Intercooler Air Out Temperature	131.6	152.4	142.2	142.9
Intercooler Water In Temperature	119.4	141.1	129.0	130.1
Intercooler Water Out Temperature	131.2	153.6	142.0	143.1
Intercooler Water Flow	64.8	54.1	54.5	54.8
Pre-Turbo ExhaustTemperature	962.7	964.2	958.2	963.4
Post-Turbo Exhaust Temperature	798.6	780.4	774.9	779.0
Pre-Catalyst Temperature	735.0	736.6	731.3	736.0
Post-Catalyst Temperature	739.63	740.58	735.71	739.63

-August 4-6, 1999

EPA RICE Testing Waukesha

Engine Class: Natural Gas Fueled, Spark Ignited, Four-Stroke, Lean Burn Engine

Waukesha				
ENGINE OPERATING PARAMETERS	Run 9	Run 10	Run 11	Run 12
Ignition Type	PCC	PCC	PCC	PCC
Fuel Measurements				
Static Fuel (psia)	46.5	46.3	46.3	46.3
Fuel Differential (in. HO)	14.4	14.6	14.7	14.9
Orifice Temperature (°F)	83.5	92.9	91. 7	90.1
Fuel Flow (sefh)	5430	5381	5393	5452
Fuel Consumption (BSFC)	7431	7467	7482	7568
Lower Heating Value-Dry (Btu)	1008	1024	1024	1024
Fuel Tube I.D. (ia.)	3.068	3.068	3.068	3.068
Fuel Orifice O.D. (in.)	0.5	0.5	0.5	0.5
Annubar Flow Rates				
Inlet Air Flow (scfm)	1702.7	1699.3	1717.9	1720.3
Exhaust Flow (scfin)	1998.2	2009.7	2032.6	2049.5
Ambient Conditions				
Barometric Pressure (psia)	12.08	12.07	12.07	12.07
Dry Bulb Temperature (°F)	64.0	78.1	74.9	72.9
Relative Humidity (%)	72.8	43.9	55.3	52,3
Absolute Humidity (lb/lb)	0.011	0.011	0.012	0.011
Absolute Humidity (gr/lb)	78.731	76.637	87.117	76.915
Air Manifold Conditions				
Boost Pressure (in. Hg)	5.02	5.00	5.00	5.00
Dry Bulb Temperature (°F)	99.5	99.5	99.4	99.5
Relative Humidity (%)	37.1	34.9	37.8	34.1
Relative Humidity (%) - Corrected*	50.3	47.2	51.0	46.2
Absolute Humidity (lb/lb)	0.015	0.014	0.015	0.014
Absolute Humidity (gr/lb)	106.773	100.000	108.266	97.839

ľ

*Air manifold relative humidity corrected to the reference ambient

conditions of 90°F, 14.696 psi.

Cylinder Exhaust Temperatures (Degrees °F)					
Cylinder 1	L	978.9	980.1	972.8	9 7 6.9
Cylinder 2		978.4	980.6	975.0	978.8
Cylinder 3		980.6	983.0	977.1	981.5
Cylinder 4		955.4	957.0	951.8	954.9
Cylinder 5		946.4	947.7	942.1	945.9
Cylinder 6		932.3	932.7	928.1	933.0
Engine Average		932.33	932.66	928.06	933.05

-August 4-6, 1999---

EPA RICE Testing

Waukesha

Engine Class: Natural Gas Fueled, Spark Ignited, Four-Stroke, Lean Burn Engine

Waukesha				
MEASURED EMISSIONS	Run 9	Run 10	Run 11	Run 12
Ignition Type	PCC	PCC	PCC	PCC
Air Manifold Pressure ('Hg)	5.02	5.00	5.00	5.00
Brake Horsepower (bhp)	737	738	738	738
Emissions Measured (Dry)				
NO _x (ppm): Pre-Catalyst	107.35	131.74	109.71	111.22
NO _x (ppm): Post-Catalyst	117.91	137.06	118.10	117.87
CO (ppm): Pre-Catalyst	619.70	625.61	620.51	612.71
CO (ppm): Post-Catalyst	40.61	41.97	41.72	41.10
THC (ppm): Pre-Catalyst	1816.38	1713.37	1840.30	1756.44
THC (ppm): Post-Catalyst	1870.48	1797.47	1893.63	1888.97
O ₂ %: Pre-Catalyst	9.69	9.80	9.81	9.90
O ₂ %: Post-Catalyst	9.70	9.73	9.79	9.85
CO ₂ %: Pre-Catalyst	6.35	6.35	6.29	6.29
CO ₂ %: Post-Catalyst	6.51	6.50	6.47	6.41
Emissions Measured (Wet)				
Methane (ppm): Pre-Catalyst	1288.95	1097.60	1179.57	1221.95
Methane (ppm): Post-Catalyst	1135.12	1078.57	1136.88	1149.71
Non-Methane (ppm): Pre-Catalyst	147.15	125.42	140.37	126.93
Non-Methane (ppm): Post-Catalyst	115.47	111.49	129.50	107.32
Carbon Balance Calculations				
Exhaust H ₂ O% (Pre-Catalyst)	12.31	12.12	12.19	12.00
Exhaust H ₂ O% (Post-Catalyst)	12.46	12.25	12.36	12.08
O ₂ %	10.00	10.03	10.13	10.13
O ₂ Balance	-1.42	-1.09	-1.51	-1.09
Exhaust Flow (lb/hr)	8194.8	8261.2	8345.4	8431.3
Air Flow (lb/hr)	7916.3	7982.0	8065.5	8148.3
Air/Fuel Ratio	28.4	28.6	28.8	28.8
F-Factor Emissions Calculations				
NO _x (g/bhp-hr): Pre-Catalyst	0.774	0.962	0.803	0.831
NO _x (ib/hr): Pre-Catalyst	1.257	1.565	1.307	1.351
NO _x (g/bhp-hr): Post-Catalyst	0.850	1.001	0.865	0.881
NO _x (1b/hr): Post-Catalyst	1.380	1.628	1.407	1.432
THC (g/bhp-hr): Pre-Catalyst	4.636	4,433	4,773	4.647
THC (1b/hr): Pre-Catalyst	7.531	7.209	7.765	7.555
THC (g/bhp-hr): Post-Catalyst	4.774	4.650	4.912	4.997
THC (ib/hr): Post-Catalyst	7.755	7.563	7.990	8.126
CO (g/bhp-hr): Pre-Catalyst	2.762	2.826	2.810	2.830
CO (lb/hr): Pre-Catalyst	4.486	4.596	4.571	4.602
CO (g/bhp-hr): Post-Catalyst	0.181	0.190	0.189	0.190
CO (lb/hr): Post-Catalyst	0.294	0.308	0.307	0.309
Methane (g/bhp-hr): Pre-Catalyst	3.799	3.265	3,524	3.712
Methane (lb/hr): Pre-Catalyst	6.171	5.311	5.734	6.036
Methane (g/bhp-hr): Post-Catalyst	3.346	3.209	3.397	3,493
Methane (lb/hr): Post-Catalyst	5.435	5.219	5.526	5.679
Non-Methane (g/bhp-hr): Pre-Catalyst	1.192	1.026	1.153	1.060
Non-Methane (Ib/hr): Pre-Catalyst	1.937	1.668	1.875	1.723
Non-Methane (g/bhp-hr): Post-Catalyst	0.935	0.912	1.064	0.896
Non-Methane (lb/hr): Post-Catalyst Formaldehyde (g/bhp-hr): Pre-Catalyst	1.520 0.311	1.483 0.317	1.730 0.313	1.457 0.326
Formaldehyde (lb/hr): Pre-Catalyst	0.505	0.515	0.510	0.520
Formaldehyde (g/bhp-hr): Post-Catalyst	0.097	0.101	0.101	0.100
Formaldehyde (lb/hr): Post-Catalyst	0.157	0.165	0.164	0.100
Acetaldehyde (g/bhp-hr): Pre-Catalyst	-0.028	-0.026	-0.028	-0.025
Acetaldehyde (lb/hr): Pre-Catalyst	-0.046	-0.042	-0.046	-0.023
Acetaldehyde (g/bhp-hr): Post-Catalyst	0.000	0.000	0.000	0.000
Acetaldehyde (ib/hr): Post-Catalyst	0.000	0.000	0.000	0.000
Acrolein (g/bhp-hr): Pre-Catalyst	0.005	0.000	0.001	0.000
Acrolein (g/bhp-hr): Pre-Catalyst	0.008	0.000	0.001	0.000
Acrolein (g/bhp-hr): Post-Catalyst	0.000	0.000	0.000	0.000
Acrolein (lb/hr): Post-Catalyst	0.0	0.0	0.0	0.0

-August 4-6, 1999-

EPA RICE Testing Waukesha

Engine Class: Natural Gas Fueled, Spark Ignited, Four-Stroke, Lean Burn Engine

Waukesha					
MEASURED EMISSIONS	·	Run 9	Run 10	Run 11	Run 12
gnition Type		PCC	PCC	PCC	PCC
Air Manifold Pressure ("Hg)		5.02	5.00	5.00	5.00
Brake Horsepower (bhp)		737	738	738	738
TIR Measured Emissions (ppm, Wet)		101010	100044		10000
Water-H ₂ O		134019	130366	131944	129202
Jarbon Monoxide-CO (ppm): Pre-Catalyst		530.509	537:803	528.723	527.869
Jarbon Monoxide-CO (ppm): Post-Catalyst		23.367	23.859	24.585	24.505
Carbon Dioxide-CO ₂ (ppm): Pre-Catalyst		57297	56827	56658	56219
Arbon Dioxide-CO ₂ (ppm): Post-Catalyst		54245	54480	54056	54190
Nitric Oxide-NO (ppm): Pre-Catalyst		33.413	45.902	33.405	35.260
Nitric Oxide-NO (ppm): Post-Catalyst		89.705	104.997	89.422	90.195
Nitrogen Dioxide-NO ₂ (ppm): Pre-Catalyst		52.027	57.475	52.693	53.089
Vitrogen Dioxide-NO ₂ (ppm): Post-Catalyst		0.000	0.000	0.000	0.000
litrous Oxide-N4O (ppm): Pre-Catalyst		0.495	0.509	0.503	0.503
Nitrous Oxide-N4O (ppm): Post-Catalyst	.	0.000	0.000	0.000	0.000
mmonia-NH ₃ (ppm): Pre-Catalyst		0.000	0.000	0.000	0.000
mmonia-NH, (ppm): Post-Catalyst		0.000	0.000	0.000	0.000
xides of Nitrogen-NO _x (ppm): Pre-Catalyst		85.442	103.377	86.098	88.348
xides of Nitrogen-NO _x (ppm): Post-Catalyst		89.705	104.997	89.422	90.195
fethane-CH, (ppm): Pre-Catalyst	· .	1394.005	1358.367	1388.548	1468.834
fethane-CH, (ppm): Post-Catalyst		1395.953	1336.043	1386.366	1443.901
cetylene-CH2 (ppm): Pre-Catalyst	:	0.118	0.013	0.020	0.045
Acetylene-GH2 (ppm): Post-Catalyst		0.000	0.000	0.000	0.000
inylene-CH4 (ppm): Pre-Catalyst	÷ •	59.641	57,785	60.385	53.638
ithylenc-QH ₄ (ppm): Post-Catalyst		22.283	21.432	23.316	19.932
Sthanc-C.H. (ppn): Pre-Catalyst		152.604	147.073	158.956	139.273
Sthanc-C.H. (ppn): Post-Catalyst		206,363	194.821	214.203	183.162
Lyclopropene-GH ₆ (ppm): Pre-Catalyst		1.475	1.918	2.336	1.843
Cyclopropene-GH ₆ (ppm): Post-Catalyst		0.000	0.000	0.000	0.000
ormaldehyde-H ₂ CO (ppm): Pre-Catalyst		56.331	56.859	56.037	57.272
formaldehyde-H ₂ CO (ppm): Post-Catalyst		17.506	18.225	17.980	17.645
Acthanol-CH ₂ OH (ppm): Pre-Catalyst		1.625	1,361	1.493	1.437
Acthanol-CH3OH (ppm): Pist-Catalyst Acthanol-CH3OH (ppm): Post-Catalyst		0.000	0.000		
				0.000	0.000
Propane-C ₃ H ₈ (ppm): Pre-Catalyst	· ·	33.021	32.340	35.187	30.892
Propane-C ₃ H ₈ (ppm): Post-Catalyst		27.580	25.948	28.777	24.933
sulfur Dioxide-SO ₂ (ppm): Pre-Catalyst		1.520	3.300	3.759	3.002
ulfur Dioxide-SO2 (ppm): Post-Catalyst		2.053	2.958	2.779	1.917
Cotal Hydrocarbons-THC (ppm): Pre-Catalyst	• .	1898.284	1849.784	1917.097	1933.020
Cotal Hydrocarbons-THC (ppm): Post-Catalyst		2073.779	1978.605	2083.221	2071.755
Acetaldehyde-CH,CHO (ppm): Pre-Catalyst	.	-3.461	-3.145	-3.467	-3.044
Acetaldchyde-CH,CHO (ppm): Post-Catalyst		0.000	0.000	0.000	0,000
Acrolcin CH ₂ =CHCHO (ppm): Pre-Catalyst		0.477	-0.014	0.073	-0.011
Acrolcin CH ₂ =CHCHO (ppm): Post-Catalyst		0.000	0.000	0.000	0.000
-3 Butadiene (ppm): Pre-Catalyst	÷	0.762	1.486	1.588	1,367
L-3 Butadienc (ppm): Post-Catalyst		0.000	0.000	0.000	0.000
sobutylene (ppm): Pre-Catalyst		0.050	0.000	0.000	0.000
Isobutylene (ppm): Post-Catalyst Calculated Catalyst Efficiency		0.000	0.000	0.000	0.000
Lacutated Catalyst Efficiency Carbon Monoxide-CO (%)		95.60%	95.56%	95.35%	95.36%
Romaldchyde-H ₂ CO (%)	:	68.92%	67.95%	6 7 .91%	69.19%

Colorado State University August 4-6, 1999

EPA RICE Testing

Waukesha

Engine Class: Natural Gas Fueled, Spark Ignited, Four-Stroke, Lean Burn Engine

Waukesha				
ENGINE OPERATING PARAMETERS	Run 13	Run 14	Run 15	Run 16
Ignition Type	PCC	PCC	PCC	PCC
Dynamometer Torque (ft-lb)	3236	3235	3236	3235
Brake Horsepower (bhp)	737	737	737	737
BSFC (btu/bhp-hr)	7951	7268	7627	7516
Engine Speed (rpm)	1197	1197	1197	1197
Timing (Degrees BTDC)	6.00	14.00	10 (Cyl 6 - 6)	10 (Cyl 6 - 14)
A/F (Wet)	28.9	28.9	29.1	29.0
Pressures				
Air Manifold (in. Hg)	5.00	5.02	5.00	5.00
Fuel Manifold (psig)	4.31	4.09	4.13	4.17
Fuel Supply (psig)	46.70	46.84	46.78	46.82
Intercooler Air Differential (in. HO)	10.09	9.06	9.61	9.42
Post Intercooler Air Manifold (in. Hg)	69.35	68.84	68.85	68.73
Intercooler Water Differential (in. HO)	157.45	157.45	157.45	157.45
Intercooler Supply (psi)	2.84	3.11	2.84	2.84
Pre-Turbo Exhaust (in. Hg)	39.47	35.62	37.64	36.85
Post- Turbo Exhaust (in, Hg)	5,52	4.59	5.08	4.91
Turbo Oil (in. Hg)	47.16	46.87	47.06	46.94
Catalyst Differential (in. H ₂ O)	10.2	8.7	9.4	9.1
Temperatures (*F) and Flows (GPM)				
Air Supply Temperature	99.6	99.7	99.6	99.7
Fuel Manifold Temperature	86.4	86.3	86.0	87.1
Exhaust Stack Temperature	733.6	685.1	706.8	698.1
Exhaust Header Temperature	733.6	685.1	706.8	698.1
Jacket Water Inlet Temperature	176.5	173.4	172.8	174.1
Jacket Water Outlet Temperature	183.0	179.1	178.7	180.2
Lube Oil Inlet Temperature	. 88.1	80.7	87.5	87.5
Lube Oil Outlet Temperature	93.6	86.3	92.9	92.9
Lube Oil Flow	130.4	129,1	130.3	130.3
Engine Oil In Temperature	164.5	164.7	164.3	164.8
Engine Oil Out Temperature	185.5	186.4	185.4	186.0
Intercooler Air In Temperature	. 304.1	295.2	300,4	298.9
Intercooler Air Out Temperature	142.2	141.7	140.8	142.3
Intercooler Water In Temperature	128.4	131.6	128.1	130.2
Intercooler Water Out Temperature	141.7	142.7	140.8	142.8
Intercooler Water Flow	58.0	62.5	57.9	57.9
Pre-Turbo ExhaustTemperature	1000.4	936.3	967.2	954.3
Post-Turbo Exhaust Temperature	807.8	809.5	780.3	771.2
Pre-Catalyst Temperature	767.1	722.2	737.8	730.3
Post-Catalyst Temperature	771.28	718.36	741.89	732.86

Colorado State University

August 4-6, 1999 EPA RICE Testing Waukesha

Engine Class: Natural Gas Fueled, Spark Ignited, Four-Stroke, Lean Burn Engine

Waukesha				
ENGINE OPERATING PARAMETERS	Run 13	Run 14	Run 15	Run 16
Ignition Type	PCC	PCC	PCC	PCC
Fuel Measurements				
Static Fuel (psia)	46.4	46.4	46.5	46.5
Fuel Differential (in. HO)	16.3	13.9	15.0	14.6
Orifice Temperature (°F)	86.4	86.3	86.0	87.1
Fuel Flow (sofh)	5726	5312	5493	5413
Fuel Consumption (BSFC)	7951	7268	7627	7516
Lower Heating Value-Dry (Btu)	1024	1008	1024	1024
Fuel Tube ID. (in.)	3,068	3.068	3.068	3,068
Fuel Orifice O.D. (in.)	0.5	0.5	0.5	0.5
Annubar Flow Rates				
Inict Air Flow (sofin)	1808.1	1686.5	1744.4	1715.5
Exhaust Flow (scfm)	2158.2	1983.5	2086.4	2054.5
Ambient Conditions				
Barometric Pressure (psia)	12.07	12.08	12.07	12.07
Dry Bulb Temperature (°F)	69.0	62.0	69.0	69.0
Relative Humidity (%)	66.1	80.0 ·	68.7	68.0
Absolute Humidity (lb/lb)	0.012	0.012	0.013	0.013
Absolute Humidity (gr/lb)	85.160	80.679	88,593	87.676
Air Manifold Conditions				
Boost Pressure (in. Hg)	5.00	5.02	5.00	5.00
Dry Bulb Temperature (*F)	99.6	99.7	99.6	99.7
Relative Humidity (%)	36.1	36.2	37.2	37.3
Relative Humidity (%) - Corrected*	49.1	49.3	50.5	50.8
Absolute Humidity (1b/1b)	0.015	0.015	0.015	0.015
Absolute Humidity (gr/lb)	104.064	104.432	107.224	107.785

2

į

*Air manifold relative humidity corrected to the reference ambient

conditions of 90°F, 14.696 psi.

		Γ		
Cylinder Exhaust Temperatures (Degrees °F)				
Cylinder 1	1012.9	953.6	976.0	975.8
Cylinder 2	1015.7	953.5	977.3	976.7
Cylinder 3	1013.8	956.2	977.1	976.8
Cylinder 4	988.2	928.7	951.4	951.0
Cylinder 5	978.6	921.7	942.3	941.7
Cylinder 6	963,3	910.4	947.7	918.8
Engine Average	963.33	910.37	947.69	918.84

Colorado State University

-August 4-6, 1999-

EPA RICE Testing

Waukesha

Engine Class: Natural Gas Fueled, Spark Ignited, Four-Stroke, Lean Burn Engine

Waukesha				
MEASURED EMISSIONS	Run 13	Run 14	Run 15	Run 16
Ignition Type	PCC	PCC	PCC	PCC
Air Manifold Pressure ("Hg)	5.00	5.02	5.00	5.00
Brake Horsepower (bhp)	737	737	737	737
Emissions Measured (Dry)				
NO _x (ppm): Pre-Catalyst	64.65	174.30	94.19	108.39
NO _x (ppm): Post-Catalyst	70.85	183.80	102.07	117.02
CO (ppm): Pre-Catalyst	619.92	655.62	625.17	627.01
CO (ppm): Post-Catalyst	44.53	42.27	42.56	42.14
THC (ppm): Pre-Catalyst	1904.33	1 77 3.43	1851.82	1859.21
THC (ppm): Post-Catalyst	2002.80	181 7 .69	1964.55	1911.39
O ₂ %: Pre-Catalyst	10.44	9.81	9.90	9.82
O ₂ %: Post-Catalyst	9.81	9.89	9.82	9.80
CO ₂ %: Pre-Catalyst	6.27	6.24	6.22	6.23
CO ₂ %: Post-Catalyst	6.38	6.41	6.35	6.36
Emissions Measured (Wet)				
Methane (ppm): Pre-Catalyst	1377.56	· 1249.40	1331.48	1306.95
Methane (ppm): Post-Catalyst	1248.62	1088.91	1193.13	1166.45
Non-Methane (ppm): Pre-Catalyst	167.00	133.26	160.15	150.09
Non-Methane (ppm): Post-Catalyst	109.40	108.78	115.08	118.19
Carbon Balance Calculations				
Exhaust H20% (Pre-Catalyst)	12.08	12.11	12.08	12.10
Exhaust H ₂ O% (Post-Catalyst)	12.16	12.26	12.17	12.21
O ₂ %	10.14	10.19	10.23	10.23
O ₂ Balance	1.02	-1.69	-1.55	-1.84
Exhaust Flow (lb/hr)	8877.8	8145.9	8572.4	8439.8
Air Flow (lb/hr)	8580.7	7873.4	8287.3	8158.9
Air/Fuel Ratio	28.9	28.9	29.1	29.0
F-Factor Emissions Calculations				
NO _x (g/bhp-hr): Pre-Catalyst	0.534	1.243	0.709	0.799
NO _x (lb/hr): Pre-Catalyst	0.867	2.019	1.153	1.298
NO _x (g/bhp-hr): Post-Catalyst	0.585	1.310	0.769	0.862
NO_x (lb/hr): Post-Catalyst	0.951	2.129	1.249	1.402
THC (g/bhp-hr): Pre-Catalyst	5.567	4.478	4.938	4.852
THC (b/hr): Pre-Catalyst	9.049	7.275	8.027	7.887
THC (g/bhp-hr): Post-Catalyst	5.855	4.590	5.239	4.988
THC (lb/hr): Post-Catalyst	9.517	7.457	8.516	8.108
CO (g/bhp-hr): Pre-Catalyst	3.164	2.890	2.911	2.857
CO (lb/hr): Pre-Catalyst	5.143	4.696	4.732	4.644
CO (g/bhp-hr): Post-Catalyst	0.227	0.186	0.198	0.192
CO (lb/hr): Post-Catalyst	0.369	0.303	0.322	0.312
Methane (g/bhp-hr): Pre-Catalyst	4.628	3.632	4.084	3.923
Methane (lb/hr): Pre-Catalyst	7.523	5.901	6.639	6.378
Methane (g/bhp-hr): Post-Catalyst	4.195	3.165	3.660	3.502
Methane (lb/hr): Post-Catalyst	6.819	5.143	5.949	5.692
Non-Methane (g/bhp-hr): Pre-Catalyst	1.542	1.065	1.350	1.239
Non-Methane (lb/hr): Pre-Catalyst	2.507	1.730	2.195	2.013
Non-Methane (g/bhp-hr): Post-Catalyst	1.010	0.869	0.970	0.975
Non-Methane (lb/hr): Post-Catalyst	1.642	1.412	1.577	1.585
Formaldehyde (g/bhp-hr): Pre-Catalyst	0.360	0.305	0.330	0.323
Formaldehyde (lb/hr): Pre-Catalyst	0.585	0.496	0.537	0.525
Formaldehyde (g/bhp-hr): Post-Catalyst	0.098	0.101	0.100	0.098
Formaldehyde (lb/hr): Post-Catalyst Acetaldehyde (g/bhp-hr): Pre-Catalyst	0.159 -0.032	0.165	0.163	0.160
Acetaldehyde (lb/hr): Pre-Catalyst	-0.032 -0.051	-0.023 -0.038	-0.031 -0.050	-0.029 -0.046
Acetaidehyde (g/bhp-hr): Post-Catalyst	0.000	-0.038	0.000	-0.046
Acetaidehyde (lb/hr): Post-Catalyst	0.000	0.000	0.000	0.000
Acrolein (g/bhp-hr): Pre-Catalyst	-0.006	0.000	-0.002	-0.001
Acrolein (g/bhp-hr): Pre-Catalyst	-0.000	0.004	-0.002	-0.001
Acrolein (g/bhp-hr): Post-Catalyst	0.000	0.000	0.000	0.002
Acrolein (lb/hr): Post-Catalyst	0.0	0.00	0.000	0.000

Colorado State University August 4-6, 1999

EPA RICE Testing

Waukesha

Engine Class: Natural Gas Fueled, Spark Ignited, Four-Stroke, Lean Burn Engine

Waukesha					D 44
MEASURED EMISSIONS		Run 13	Run 14	Run 15	Run 16
Ignition Type		PCC	PCC	PCC	PCC
Air Manifold Pressure ("Hg)		5.00	5.02	5.00	5.00
Brake Horsepower (bhp) FTIR Measured Emissions (ppm, Wet)		737	737	737	737
Water-H2O		129906	131421	130651	130722
water-fi2O Carbon Monoxide-CO (ppm): Pre-Catalyst		129906 534.173	559.274	541.852	130722 542.232
Carbon Monoxide-CO (ppm): Pie-Catalyst		26.730	25.335	25.017	542.252 24.738
Carbon Dioxide-CO ₂ (ppm): Post-Catalyst		56005	56713	55288	24.758 55403
Carbon Dioxide-CO ₂ (ppm): Pre-Catalyst		53676	55011	535288	53613
Nitric Oxide-NO (ppm): Pre-Catalyst		10.020	77.413	26.790	34.488
Nitric Oxide-NO (ppm): Post-Catalyst		52.452	145.274	79.062	90.150
Nilrogen Dioxide-NO (ppm): Post-Catalyst	1	39.757	63.298	49.092	52.342
Nitrogen Dioxide-NO ₂ (ppm): Post-Catalyst		0.000	0.000	0.000	0.000
Nitrous Oxide-NO (ppm): Pre-Catalyst		0.434	0.509	0.491	0.488
Nitrous Oxide-N4O (ppm): Post-Catalyst		0.000	0.000	0.000	0.000
Ammonia-NH, (ppm): Pre-Catalyst	1	0.000	0.000	0.000	0.000
Ammonia-NH ₆ (ppm): Post-Catalyst		0.000	0.000	0.079	0.000
Oxides of Nitrogen-NO _x (ppm): Pre-Catalyst		49.776	140.711	75.883	86.830
Oxides of Nitrogen-NO _x (ppm): Post-Catalyst		52.452	145.274	79.062	90.150
Methane-CH ₄ (ppm): Pre-Catalyst		1544.510	1364.436	1509.454	1472.120
Methane-CH, (ppm): Post-Catalyst		1507.699	1383.045	1473.176	1438.888
Acetylene-GH2 (ppm): Pre-Catalyst		0.334	0.072	0.160	0.019
Acetylene-GH2 (ppm): Post-Catalyst	-	0.000	0.000	0.000	0.000
Ethylenc-CH4 (ppm): Pre-Catalyst		61.241	55.428	58.184	57.332
Ethylenc-CH4 (ppm): Post-Catalyst		23.415	20.298	22.225	21.371
Ethane-C1H6 (ppm): Pre-Catalyst		156.029	143.372	154.733	150.909
Bthane-CH6 (ppm): Post-Catalyst		205.047	192.068	204.154	198.930
Cyclopropenc-CH6 (ppm): Pre-Catalyst	1	2.595	0.902	2.172	2.130
Cyclopropenc-CH6 (ppm): Post-Catalyst		0.000	0.000	0.000	0.000
Formaldehyde-H ₂ CO (ppm): Pre-Catalyst		57.257	56.075	57.525	57.511
Formaldehyde-H2CO (ppm): Post-Catalyst		15.537	18.637	17.413	17.471
Methanol-CH,OH (ppm): Pre-Catalyst		1.889	1.624	1.552	1.490
Methanol-CH ₁ OH (ppm): Post-Catalyst		0.000	0.000	0.000	0.000
Propane-CiH _e (ppm): Pre-Catalyst		33.611	31.930	33.585	33.564
Propane-C ₃ H _s (ppm): Post-Catalyst		27.122	26.962	27.070	27.397
Sulfur Dioxide-SO ₂ (ppm): Pre-Catalyst		2.838	1.813	2.959	2.923
Sulfur Dioxide-SO ₂ (ppm): Post-Catalyst		0.000	2.550	1.432	2.136
Total Hydrocarbons-THC (ppm): Pre-Catalyst		2065.695	1838.207	2020.185	1973.490
Total Hydrocarbons-THC (ppm): Post-Catalyst		2197.216	2027.018	2154.498	2105.708
Acctaldehyde-CHCHO (ppm): Pre-Catalyst		-3.421	-2.911	-3.641	-3.468
Acctaldchydc-CEJCHO (ppm): Post-Catalyst	-	0.000	0.000	0.000	
Accolein CH ₂ =CHCHO (ppm): Post-Catalyst Accolein CH ₂ =CHCHO (ppm): Pre-Catalyst		-0.502	0.000	-0.155	0.000
					-0.113
Acrolein CH4=CHCHO (ppm): Post-Catalyst 1-3 Butadiene (ppm): Pre-Catalyst		0.000	0.000	0.000	0.000
1-3 Butadiene (ppm): Pre-Catalyst 1-3 Butadiene (ppm): Post-Catalyst		1.294 0.000	0.766 0.000	1.262 0.000	1.312
I-5 Butadiene (ppm): Post-Catalyst Isobutylene (ppm): Pre-Catalyst		0.000	0.000	0.000	0.000
Isobutylene (ppm): Pic-Catalyst Isobutylene (ppm): Post-Catalyst		0.000	0.000	0.000	0.000
Calculated Catalyst Efficiency	- <u></u>	0.000	0.000	0.000	0.000
Carbon Monoxide-CO (%)		95.00%	95.47%	95.38%	95.44%
Formaldchyde-H ₂ CO (%)		72.86%	66.76%	69.73%	69.62%

APPENDIX B

BASELINE

Test Description: Baseline 8-5 - 736BHP 1200RPM 10BTDC

·

Data Point Number: Baseline		Date:	08/05/99	Time:	15:11:38	
			Duration	5.00		
Description	Average	Min	Max	STDV	Variance	
AMBIENT AIR TEMPERATURE (F)	73.00	73.00	73.00	0.00	0.00	
AMBIENT AIR PRESSURE (psia)	12.07	12.07	12.07	0.00	0.00	
AMBIENT HUMIDITY (%)	61.51	60.00	62.00	0.86	1.40	
AIR MANIFOLD PRESSURE ("Hg)	5.01	4.76	5.19	0.09	1.80	
AIR MANIFOLD RELATIVE HUMIDITY (%)	37.85	36.00	39.00	1.06	2.81	
AIR MANIFOLD HUMIDITY RATIO (Iby/Iba)	0.01561	0.01422	0.01669			
AIR SUPPLY TEMPERATURE (F)	99.63	98.00	101.00	0.60	0.60	
INTAKE AIR FLOW (scfm)	1747.25	1734.02	1758.27	5.28	0.30	
EXHAUST FLOW (scfm)	-124.87	-124.87	-124.87	0.00	0.00	
EXHAUST STACK TEMPERATURE (F)	699.38	698.99	699.79	0.22	0.03	
CYLINDER 1 EXHAUST TEMPERATURE (F)	975.36	973.60	976.97	0.71	0.07	
CYLINDER 2 EXHAUST TEMPERATURE (F)	974.40	972.61	975.98	0.74	0.08	
CYLINDER 3 EXHAUST TEMPERATURE (F)	974.36	972.61	975.98	0.69	0.07	
CYLINDER 4 EXHAUST TEMPERATURE (F)	949.03	947.41	950.98	0.78	0.08	
CYLINDER 5 EXHAUST TEMPERATURE (F)	939.66	938.08	941.06	0.51	0.05	
CYLINDER 6 EXHAUST TEMPERATURE (F)	928.50	927.17	929.95	0.63	0.07	
CYLINDER EXHAUST AVERAGE TEMP (F)	956.92	955.94	957.93	0.52	0.05	
EXHAUST HEADER TEMPERATURE (F)	699.38	698.99	699.79	0.22	0.03	
PRE TURBO EXHAUST PRESSURE ("Hg)	37.63	37.41	37.92	0.13	0.36	
PRE TURBO EXHAUST TEMPERATURE (F)	957.21	955.94	958,52	0.64	0.07	
POST TURBO EXHAUST PRESSURE ("Hg)	5.06	5.01	5.12	0.02	0.43	
POST TURBO EXHAUST TEMPERATURE (F)	772.01	771.02	773.00	0.52	0.07	
TURBO OIL PRESSURE ("Hg)	47.10	46.16	47.77	0.31	0.66	
ENGINE SPEED (rpm)	1196.86	1191.73	1200.00	1.48	0.12	
ENGINE HORSEPOWER (bhp)	737.44	735.01	739.70	1.09	0.15	
ENGINE OIL PRESSURE (psig)	52.19	51.64	52.93	0.32	0.61	
ENGINE OIL TEMPERATURE IN (F)	165.17	164.86	165.45	0.16	0.10	
ENGINE OIL TEMPERATURE OUT (F)	186.07	185.89	186.49	0.14	0.07	
SPECIFIC GRAVITY	0.69	0.69	0.69	0.00	0.00	
FUEL TEMPERATURE (F)	91.36	91.05	91.64	0.15	0.16	
FUEL PRESSURE ("H2O above amp)	4.07	3.44	4.66	0.21	5.15	
FUEL SUPPLY PRESSURE (psig)	46.83	46.75	46.90	0.04	0.08	
ORIFICE DIFFERENTIAL PRESSURE ("H2O)	15.19	14.65	15.86	0.31	2.06	
ORIFICE STATIC PRESSURE (psig)	46.41	46.35	46.48	0.03	0.07	
ORIFICE TEMPERATURE (F)	88.18	88.04	88.30	0.05	0.05	
FUEL FLOW (SCFH)	5474.35					
CALCULATED FUEL CONSUMPTION (BSFC)	7717.47					
FUEL HEATING VALUE (Btu)	1039.60	1039.60	1039.60	0.00	0.00	
AIR FUEL RATIO	28.30	28.30	28.30	0.00	0.00	
INTERCOOLER AIR DIFFERENTIAL PRESSURE ("H2O)	9.72	9.43	9.87	0.09	0.90	
INTERCOOLER AIR TEMP IN (F)	299.90	299.19	300.38	0.28	0.09	
INTERCOOLER AIR TEMP OUT (F)	143.43	142.64	143.83	0.35	0.24	
POST INTERCOOLER AIR MANIFOLD PRESSURE ("Hg)	68.79	68.49	68.99	0.09	0.14	
INTERCOOLER WATER DIFFERENTIAL PRESSURE ("H2O)		157.45	157.45	0.00	0.00	
INTERCOOLER WATER FLOW (GPM)	57.90	57.20	58.49	0.28	0.49	
INTERCOOLER WATER TEMP IN (F)	131.13	129.74	131.72	0.57	0.43	
INTERCOOLER WATER TEMP OUT (F)	143.56	142.44	144.02	0.43	0.30	
INTERCOOLER SUPPLY PRESSURE (psi)	2.81	2.77	2.87	0.02	0.62	
PRE CATALYST TEMPERATURE (F)	730.58	729.75	731.34	0.40	0.05	
POST CATALYST TEMPERATURE (F)	734.79	734.11	735.70	0.35	0.05	
CATALYST DIFFERENTIAL PRESSURE ("H2O)	9.50	9.43	9.62	0.04	0.00	
B.S. CO (g/bhp-hr): Pre-Catalyst	4.16	4.05	4.26	0.04	0.41 1.06	
B.S. CO (g/bhp-hr): Post-Catalyst	0.29	0.28	0.30	0.00	1.48	
B.S. NO (g/bhp-hr): Pre-Catalyst	0.29	0.20	0.00	0.00	0.00	

Test Description: Baseline 8-5 - 736BHP 1200RPM 10BTDC

Data Point Number: Baseline		Date:	08/05/99	Time:	15:11:38
			Duratio	n (minutes):	5.00
Description	Average	Min	Max	STDV	Variance
B.S. NOx (corrected - g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (corrected - g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (g/bhp-hr): Pre-Catalyst	1.01	0.98	1.09	0.03	2.71
B.S. NOx (g/bhp-hr): Post-Catalyst	1.11	1.09	1.18	0.02	1.45
B.S. THC (g/bhp-hr): Pre-Catalyst	9.34	8.95	9.57	0.12	1.25
B.S. THC (g/bhp-hr): Post-Catalyst	9.37	9.16	9.60	0.10	1.04
B.S. Methane (g/bhp-hr): Pre-Catalyst	4.27	4.20	4.37	0.04	0.91
B.S. Methane (g/bhp-hr): Post-Catalyst	3.48	3.37	3.66	0.08	2.34
B.S. Non-Methane (g/bhp-hr): Pre-Catalyst	0.19	0.18	0.21	0.01	7.36
B.S. Non-Methane (g/bhp-hr): Post-Catalyst	0.15	0.13	0.16	0.01	5.58
O2 (ppm): Pre-Catalyst	9.90	9.90	9.90	0.00	0.00
O2 (ppm): Post-Catalyst	9.90	9.90	9.90	0.00	0.00
CO (ppm): Pre-Catalyst	621.17	614.40	624.70	3.34	0.54
CO (ppm): Post-Catalyst	43.25	42.80	43.70	0.20	0.47
CO2 (ppm): Pre-Catalyst	6.29	6.29	6.29	0.00	0.00
CO2 (ppm): Post-Catalyst	6.30	6.28	6.32	0.01	0.16
NO (ppm): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NO (ppm): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
NOx (ppm). Post-Oatalyst NOx (ppm - Corrected): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NOx (ppm - Corrected): Post-Catalyst	54.21	53.40	57.40	0.60	1.10
NOx (ppm): Pre-Catalyst	92.24	90.90	97.90	2.27	2.47
NOx (ppm): Post-Catalyst	100.56	99.20	106.50	1.08	1.07
THC (ppm): Pre-Catalyst	2024.33	1969.00	2047.00	17.80	0.88
THC (ppm): Post-Catalyst	2017.11	1987.90	2034.30	9.44	0.47
Methane (ppm): Pre-Catalyst	1400.68	1399.90	1403.10	1.38	0.10
Methane (ppm): Post-Catalyst	1135.08	1120.50	1171.70	23.18	2.04
Non-Methane (ppm): Pre-Catalyst	123.40	117.00	137.80	9.52	7.71
Non-Methane (ppm): Post-Catalyst	96.72	87.90	99.60	4.97	5.14
DYNO WATER IN TEMPERATURE (F)	82.87	82.71	82.91	0.08	0.09
DYNO WATER OUT TEMPERATURE (F)	129.28	129.14	130.14	0.21	0.16
JACKET WATER IN TEMPERATURE (F)	174.86	174.58	174.98	0.13	0.07
JACKET WATER OUT TEMPERATURE (F)	180.32	179.00	182.00	0.54	0.30
JACKET WATER FLOW (GPM)	0.00	0.00	0.00	0.00	0.00
LUBE OIL COOLING WATER IN TEMPERATURE (F)	89.86	89.86	89.86	0.00	0.00
LUBE OIL COOLING WATER OUT TEMPERATURE (F)	95.65	95.41	95.81	0.14	0.15
LUBE OIL FLOW (GPM)	130.72	129.86	131.63	0.28	0.22
CO F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
CO F-Factor: Post-Catalyst	0.31	0.30	0.32	0.00	1.03
NO F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NO F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
NOx F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NOx F-Factor: Post-Catalyst	1.19	1.16	1.25	0.02	1.35
THC F-Factor: Pre-Catalyst	. 0.00	0.00	0.00	0.00	0.00
THC F-Factor: Post-Catalyst	9.83	9.60	10.07	0.10	1.00
Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
ENGINE TORQUE	3235.75	3233.08	3238.45	1.82	0.06

Test Description: Baseline - 735BHP 1200RPM 10BTDC

Data Point Number: Baseline 8/6		Date:	08/06/99	Time:	14:16:35	
Description			Duration	n (minutes):	5.00	
	Average	Min	Max	STDV	Variance	
AMBIENT AIR TEMPERATURE (F)	77.00	77.00	77.00	0.00	0.00	
AMBIENT AIR PRESSURE (psia)	12.07	12.07	12.07	0.00	0.00	
AMBIENT HUMIDITY (%)	54.62	54.00	56.00	0.93	1.70	
AIR MANIFOLD PRESSURE ("Hg)	5.00	4.87	5.16	0.06	1.18	
AIR MANIFOLD RELATIVE HUMIDITY (%)	38.37	38.00	39.00	0.48	1.26	
AIR MANIFOLD HUMIDITY RATIO (Ibw/Iba)	0.01585	0.01497	0.01670			
AIR MANIFOLD TEMPERATURE (F)	99.66	98.00	101.00	0.75	0.75	
INTAKE AIR FLOW (scfm)	1712.03	1700.19	1724.44	5.23	0.31	
EXHAUST FLOW (scfm)	-124.87	-124.87	-124.87	0.00	0.00	
EXHAUST STACK TEMPERATURE (F)	704.59	704.15	704.95	0.19	0.03	
CYLINDER 1 EXHAUST TEMPERATURE (F)	976.17	974.59	977.57	0.65	0.07	
CYLINDER 2 EXHAUST TEMPERATURE (F)	977.77	975.19	978.76	0.91 [·]	0.09	
CYLINDER 3 EXHAUST TEMPERATURE (F)	980.03	978.36	981.54	0.73	0.07	
CYLINDER 4 EXHAUST TEMPERATURE (F)	954.39	952.77	956.14	0.79	0.08	
CYLINDER 5 EXHAUST TEMPERATURE (F)	945.56	944.24	947.21	0.76	0.08	
CYLINDER 6 EXHAUST TEMPERATURE (F)	932.59	931.54	934.12	0.65	0.07	
CYLINDER EXHAUST AVERAGE TEMP (F)	961.08	959.71	962.46	0.59	0.06	
EXHAUST HEADER TEMPERATURE (F)	704.59	704.15	704.95	0.19	0.03	
PRE TURBO EXHAUST PRESSURE ("Hg)	36.76	36.54	36.95	0.11	0.31	
PRE TURBO EXHAUST TEMPERATURE (F)	962.40	961.50	963.88	0.60	0.06	
POST TURBO EXHAUST PRESSURE ("Hg)	4.91	4.87	5.01	0.03	0.56	
POST TURBO EXHAUST TEMPERATURE (F)	778.87	777.96	779.55	0.41	0.05	
TURBO OIL PRESSURE ("Hg)	46.84	46.00	47.45	0.28	0.59	
ENGINE SPEED (rpm)	1196.86	1193.61	1201.13	1.47	0.12	
ENGINE HORSEPOWER (bhp)	737.95	735.76	740.17	0.87	0.12	
ENGINE OIL PRESSURE (psig)	52.03	51.40	52.77	0.33	0.63	
ENGINE OIL TEMPERATURE IN (F)	165.90	165.65	166.05	0.13	0.08	
ENGINE OIL TEMPERATURE OUT (F)	186.81	186.49	187.08	0.14	0.08	
SPECIFIC GRAVITY	0.66	0.66	0.66	0.00	0.00	
FUEL TEMPERATURE (F)	96.38	96.21	96.41	0.07	0.07	
FUEL PRESSURE ("H2O above amp)	4.90	4.08	5.37	0.25	5.09	
FUEL SUPPLY PRESSURE (psig)	46.23	46.11	46.32	0.05	0.10	
ORIFICE DIFFERENTIAL PRESSURE ("H2O)	14.59	14.06	15.28	0.29	1.98	
ORIFICE STATIC PRESSURE (psig)	46.23	46.13	46.31	0.04	.0.08	
ORIFICE TEMPERATURE (F)	92.95	92.79	93.15	0.09	0.09	
FUEL FLOW (SCFH)	5462.78		ι.			
CALCULATED FUEL CONSUMPTION (BSFC)	7302.69					
FUEL HEATING VALUE (Btu)	986.50	986.50	986.50	0.00	0.00	
AIR FUEL RATIO	28.60	28.60	28.60	0.00	0.00	
INTERCOOLER AIR DIFFERENTIAL PRESSURE ("H2O)	9.34	9.17	9.51	0.09	0.92	
INTERCOOLER AIR TEMP IN (F)	299.16	298.59	299.58	0.30	0.10	
INTERCOOLER AIR TEMP OUT (F)	142.43	139.46	144.62	1.67	1.17	
POST INTERCOOLER AIR MANIFOLD PRESSURE ("Hg)	68.77	68.66	. 68.91	0.08	0.11	
INTERCOOLER WATER DIFFERENTIAL PRESSURE ("H2O)	157.45	157.45	157.45	0.00	0.00	
INTERCOOLER WATER FLOW (GPM)	54.43	53.65	54.94	0.23	0.42	
INTERCOOLER WATER TEMP IN (F)	129.31	125.77	132.32	2.29	1.77	
INTERCOOLER WATER TEMP OUT (F)	142.41	138.87	145.02	2.07	1.45	
INTERCOOLER SUPPLY PRESSURE (psi)	2.66	2.62	2.71	0.02	0.66	
PRE CATALYST TEMPERATURE (F)	735.04	734.31	736.10	0.47	0.06	
POST CATALYST TEMPERATURE (F)	739.40	738.88	739.87	0.30	0.04	
CATALYST DIFFERENTIAL PRESSURE ("H2O)	8.97	8.89	9.11	0.05	0.55	
B.S. CO (g/bhp-hr): Pre-Catalyst	2.39	2.35	2.45	0.03	1.06	

<u>.</u>..

Test Description: Baseline - 735BHP 1200RPM 10BTDC

Data Point Number: Baseline 8/6		Date:	08/06/99	Time:	14:16:35
			Duratio	n (minutes):	5.00
Description	Average	Min	Max	STDV	Variance
B.S. CO (g/bhp-hr): Post-Catalyst	0.15	0.15	0.15	0.00	0.00
B.S. NO (g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NO (g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (corrected - g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (corrected - g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (g/bhp-hr): Pre-Catalyst	0.71	0.69	0.73	0.01	1.26
B.S. NOx (g/bhp-hr): Post-Catalyst	0.74	0.72	0.77	0.01	1.59
B.S. THC (g/bhp-hr): Pre-Catalyst	4.54	4.44	4.64	0.05	1.12
B.S. THC (g/bhp-hr): Post-Catalyst	4.54	4.43	4.64	0.05	1.06
B.S. Methane (g/bhp-hr): Pre-Catalyst	1.97	1.93	2.01	0.02	1.05
B.S. Methane (g/bhp-hr): Post-Catalyst	2.03	1.99	2.07	0.02	1.05
B.S. Non-Methane (g/bhp-hr): Pre-Catalyst	0.07	0.07	0.08	0.00	6.00
B.S. Non-Methane (g/bhp-hr): Post-Catalyst	0.07	0.07	0.07	0.00	0.00
O2 (ppm): Pre-Catalyst	9.80	9.80	9.80	0.00	0.00
O2 (ppm): Post-Catalyst	9.78	9.70	9.80	0.04	0.37
CO (ppm): Pre-Catalyst	621.84	618.90	624.30	1.51	0.24
CO (ppm); Post-Catalyst	41.09	40.80	41.60	0.19	0.47
CO2 (ppm): Pre-Catalyst	6.32	6.26	6.32	0.02	0.25
CO2 (ppm): Post-Catalyst	6.51	6.50	6.52	0.02	0.11
NO (ppm): Pre-Catalyst	0.00	0.00	0.02	0.00	0.00
NO (ppm): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
NOx (ppm - Corrected): Pre-Catalyst	60.21	59.10	61.10	0.41	0.68
NOx (ppm - Corrected): Post-Catalyst	64.29	62.80	65.50	0.70	1.09
NOx (ppm): Pre-Catalyst	113.06	111.10	114.20	0.82	0.72
NOx (ppm): Post-Catalyst	120.94	118.10	123.20	1.41	1.16
THC (ppm): Pre-Catalyst	1812.50	1797.90	1823.70	5.61	0.31
THC (ppm): Post-Catalyst	1850.66	1837.30	1864.20	6.06	0.33
Methane (ppm): Pre-Catalyst	1033.00	1033.00	1033.00	0.00	0.00
Methane (ppm): Post-Catalyst	1089.46	1086.40	1089.50	0.36	0.03
Non-Methane (ppm): Pre-Catalyst	131.61	130.00	136.40	2.79	2.12
Non-Methane (ppm): Post-Catalyst	126.96	123.10	130.50	3.55	2.80
DYNO WATER IN TEMPERATURE (F)	82.68	82.52	82.91	0.10	0.12
DYNO WATER OUT TEMPERATURE (F)	129.12	128.95	129.14	0.07	0.05
JACKET WATER IN TEMPERATURE (F)	173.09	172.20	173.99	0.46	0.26
JACKET WATER OUT TEMPERATURE (F)	179.80	178.00	182.00	0.72	0.40
JACKET WATER FLOW (GPM)	0.00	0.00	0.00	0.00	0.00
LUBE OIL COOLING WATER IN TEMPERATURE (F)	94.53	94,22	94.82	0.30	0.32
LUBE OIL COOLING WATER OUT TEMPERATURE (F)	100.07	99.78	100.57	0.23	0.23
LUBE OIL FLOW (GPM)	131.45	130.99	131.95	0.23	0.17
CO F-Factor: Pre-Catalyst	4.19	4.11	4.31	0.04	1.04
CO F-Factor: Post-Catalyst	0.28	0.27	0.28	0.00	1.11
NO F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NO F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
NOx F-Factor: Pre-Catalyst	1.25	1.22	1.29	0.02	1.20
NOx F-Factor: Post-Catalyst	1.34	1.29	1.38	0.02	1.45
THC F-Factor: Pre-Catalyst	7.81	7.63	8.03	0.09	1.14
THC F-Factor: Post-Catalyst	7.96	7.78	8.16	0.09	1.10
Melhane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Pre-Catalyst	0.00	. 0.00	0.00	0.00	0.00
Non-Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
ENGINE TORQUE	3238.33	3235.77	3241.14	0.72	0.02

APPENDIX C

.

QC CHECK

Test Description: Run 1 QC - 736BHP 1200RPM 10BTDC

Description AMBIENT AIR TEMPERATURE (F) AMBIENT AIR PRESSURE (psia)	Average		Duration	n (minutes):	5.00	
AMBIENT AIR TEMPERATURE (F)	Average			· · /	5.00	
		Min	Max	STDV	Variance	
MBIENT AIR PRESSURE (nsia)	64.00	64.00	64.00	0.00	0.00	
	12.08	12.08	12.08	0.00	0.00	
AMBIENT HUMIDITY (%)	79.89	78.00	80.00	0.45	0.56	
AIR MANIFOLD PRESSURE ("Hg)	5.02	4.81	5.18	0.07	1.36	
AIR MANIFOLD RELATIVE HUMIDITY (%)	37.24	37.00	38.00	0.43	1.15	
AIR MANIFOLD HUMIDITY RATIO (Ibw/iba)	0.01531	0.01459	0.01624			
AIR MANIFOLD TEMPERATURE (F)	99.57	98.00	101.00	0.72	0.73	
NTAKE AIR FLOW (sofm)	1717.45	1706.39	1729.51	4.19	0.24	
EXHAUST FLOW (sofm)	-124.87	-124.87	-124.87	0.00	0.00	
EXHAUST STACK TEMPERATURE (F)	702.81	702.37	703.36	0.22	0.03	
CYLINDER 1 EXHAUST TEMPERATURE (F)	975.44	973.80	976.97	0.22	0.03	
	975.93	974.20	977.77	0.65	0.07	
	979.08	977.57	980.74	0.73	0.07	
CYLINDER 4 EXHAUST TEMPERATURE (F)	953.81	952.37	954.75	0.47	0.05	
CYLINDER 5 EXHAUST TEMPERATURE (F)	943.58	942.05	944.63	0.52	0.06	
CYLINDER 6 EXHAUST TEMPERATURE (F)	928.98	927.57	930.15	0.59	0.06	
CYLINDER EXHAUST AVERAGE TEMP (F)	959.46	958.52	960.44	0.44	0.05	
EXHAUST HEADER TEMPERATURE (F)	702.81	702.37	703.36	0.22	0.03	
PRE TURBO EXHAUST PRESSURE ("Hg)	36.64	36.36	36.89	0.13	0.37	
PRE TURBO EXHAUST TEMPERATURE (F)	959.42	958.72	960.51	0.46	0.05	
POST TURBO EXHAUST PRESSURE ("Hg)	4.84	4.77	4.92	0.03	0.53	
POST TURBO EXHAUST TEMPERATURE (F)	796.54	795.42	797.80	0.54	0.07	
TURBO OIL PRESSURE ("Hg)	46.95	46.08	47.61	0.29	0.62	
ENGINE SPEED (rpm)	1196.56	1192.86	1201.13	1.59	0.13	
ENGINE HORSEPOWER (bhp)	737.22	734.31	740.63	1.34	0.18	
ENGINE OIL PRESSURE (psig)	52.15	51.48	52.85	0.32	0.61	
ENGINE OIL TEMPERATURE IN (F)	164.50	164.26	164.66	0.16	0.10	
ENGINE OIL TEMPERATURE OUT (F)	185.64	185.49	185.89	0.10	0.05	
SPECIFIC GRAVITY	0.68	0.68	0.68	0.00	0.00	
FUEL TEMPERATURE (F)	90.20	90.06	90.45	0.10	0.11	
FUEL PRESSURE ("H2O above amp)	4.06	3.64	4.74	0.21	5.19	
FUEL SUPPLY PRESSURE (psig)	46.79	46.64	46.90	0.05	0.11	
ORIFICE DIFFERENTIAL PRESSURE ("H2O)	14.45	13.70	15.35	0.32	2.22	
ORIFICE STATIC PRESSURE (psig)	46.47	46.35	46.56	0.04	0.09	
ORIFICE TEMPERATURE (F)	85.15	85.04	85.26	0.05	0.05	
FUEL FLOW (SCFH)	5388.45					
CALCULATED FUEL CONSUMPTION (BSFC)	7483.85					
FUEL HEATING VALUE (Błu)	1023.90	1023.90	1023.90	0.00	0.00	
AIR FUEL RATIO	29.00	29.00	29.00	0.00	0.00	
INTERCOOLER AIR DIFFERENTIAL PRESSURE ("H2O)	9.29	9.12	9.50	0.08	0.84	
INTERCOOLER AIR TEMP IN (F)	297.38	297.00	297.80	0.25	0.08	
INTERCOOLER AIR TEMP OUT (F)	140.54	139.26	141.45	0.57	0.40	
POST INTERCOOLER AIR MANIFOLD PRESSURE ("Hg)	69.19	68.99	69.33	0.07	0.11	
INTERCOOLER WATER DIFFERENTIAL PRESSURE ("H2O)	157.45	157.45	157.45	0.00	0.00	
INTERCOOLER WATER FLOW (GPM)	62.69	61.55	63.32	0.38	0.61	
INTERCOOLER WATER TEMP IN (F)	129.41	128.35	130.73	0.68	0.53	
INTERCOOLER WATER TEMP OUT (F)	141.17	140.06	142.24	0.59	0.42	
INTERCOOLER SUPPLY PRESSURE (psi)	3.11	3.08	3.15	0.02	0,50	
PRE CATALYST TEMPERATURE (F)	732.96	732.53	733.72	0.30	0.04	
POST CATALYST TEMPERATURE (F)	738.09	732.33	738.68	0.30	0.04	
CATALYST TEMPERATORE (F)	9.13	9.04	9.22	0.02	0.52	
	9.13 2.42	2.36	9.22 2.48	0.03	1.25	
B.S. CO (g/bhp-hr): Pre-Catalyst		2.36 0.15	2.46 0.16	0.03	3.12	
B.S. CO (g/bhp-hr): Post-Catalyst B.S. NO (g/bhp-hr): Pre-Catalyst	0.15 0.00	0.15	0.16	0.00	0.00	

Test Description: Run 1 QC - 736BHP 1200RPM 10BTDC

Data Point Number: Run 1 QC		Date:	08/04/99	Time:	17:47:52
ι.			Duration (minutes):		5.00
Description	Average	Min	Max	STDV	Variance
B.S. NO (g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (corrected - g/bhp-hr): Pre-Catalyst	0.00	0.00	0:00	0.00	0.00
B.S. NOx (corrected - g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (g/bhp-hr): Pre-Catalyst	0.68	0.66	0.71	0.01	1.64
B.S. NOx (g/bhp-hr): Post-Catalyst	0.71	0.68	0.73	0.01	1.64
B.S. THC (g/bhp-hr): Pre-Catalyst	4.78	4.69	4.91	0.06	1.20
B.S. THC (g/bhp-hr): Post-Catalyst	4.88	4.75	5.00	0.06	1.25
B.S. Methane (g/bhp-hr): Pre-Catalyst	2.29	2.24	2.35	0.03	1.15
B.S. Methane (g/bhp-hr): Post-Catalyst	2.02	1.97	2.07	0.02	1.17
B.S. Non-Methane (g/bhp-hr): Pre-Catalyst	0.11	0.10	0.12	0.01	6.69
B.S. Non-Methane (g/bhp-hr): Post-Catalyst	0.09	0.09	0.09	0.00	0.00
O2 (ppm): Pre-Catalyst	9.80	9.70	9.80	0.01	0.10
O2 (ppm): Post-Catalyst	9.80	9.80	9.80	0.00	0.00
CO (ppm): Pre-Catalyst	624.76	618.30	628.60	3.09	0.50
CO (ppm): Post-Catalyst	42.07	41.60	42.50	0.19	0.45
CO2 (ppm): Pre-Catalyst	6.24	6.24	6.24	0.00	0.00
CO2 (ppm): Post-Catalyst	6.45	6.44	6.46	0.01	0.09
NO (ppm): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NO (ppm): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
NOx (ppm - Corrected): Pre-Catalyst	57.51	56.20	58.10	0.57	0.99
NOx (ppm - Corrected): Post-Catalyst	61.56	59.80	62.50	0.64	1.04
NOx (ppm): Pre-Catalyst	108.21	105.90	109.40	1.09	1.00
NOx (ppm): Post-Catalyst	115.23	111.80	116.90	1.22	1.06
THC (ppm): Pre-Catalyst	1823.25	1810.70	1835.10	5.92	0.32
THC (ppm): Post-Catalyst	1903.79	1890.40	1917.20	6.81	0.36
Methane (ppm): Pre-Catalyst	1266.40	1266.40	1266.40	0.00	0.00
Methane (ppm): Post-Catalyst	1141.90	1141.90	1141.90	0.00	0.00
Non-Methane (ppm): Pre-Catalyst	139.11	135.50	153.60	7.18	5.16
Non-Methane (ppm): Post-Catalyst	122.03	117.60	122.40	1.10	0.90
DYNO WATER IN TEMPERATURE (F)	80.53	80.33	80.73	0.10	0.12
DYNO WATER OUT TEMPERATURE (F)	127.18	126.96	127.56	0.17	0.13
JACKET WATER IN TEMPERATURE (F)	172.98	172.80	173.19	0.08	0.05
JACKET WATER OUT TEMPERATURE (F)	178.95	177.00	180.00	0.66	0.37
JACKET WATER FLOW (GPM)	0.00	0.00	0.00	0.00	0.00
LUBE OIL COOLING WATER IN TEMPERATURE (F)	81.13	81.13	81.13	0.00	0.00
LUBE OIL COOLING WATER OUT TEMPERATURE (F)	86.88	86.68	87.08	0.10	0.11
LUBE OIL FLOW (GPM)	129.22	128.73	129.70	0.23	0.18
CO F-Factor: Pre-Catalyst	4.30	4.19	4.42	0.05	1.27
CO F-Factor: Post-Catalyst	0.29	0.28	0.30	0.00	1.24
NO F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NO F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
NOX F-Factor: Pre-Catalyst	1.22	1.18	1.26	0.02	1.53
NOX F-Factor: Post-Catalyst	1.31	1.15	1.35	0.02	1.54
THC F-Factor: Pre-Catalyst	8.37	8.19	8.59	0.10	1.22
THC F-Factor: Post-Catalyst	8.78	8.56	9.00	0.11	1.23
Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Melhane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
•	3235.54	3233.08	3238.45	1.99	0.06
ENGINE TORQUE	0200,04	JZJJ,UO	0200,40	1.30	0.00

Test Description: Run 2 QC - 515BHP 1200RPM 10BTDC

ĺ

Data Point Number: Run 2 QC		Date:	08/06/99	Time:	03:15:1:	
			Duration (minutes		: 5.00	
Description	Average	Min	Max	STDV	Varianc	
AMBIENT AIR TEMPERATURE (F)	65.00	65.00	65.00	0.00	0.00	
AMBIENT AIR PRESSURE (psia)	12.07	12.07	12.07	0.00	0.00	
AMBIENT HUMIDITY (%)	74.00	74.00	74.00	0.00	0.00	
AIR MANIFOLD PRESSURE ("Hg)	· 5.00	4.88	5.14	0.06	1.15	
AIR MANIFOLD RELATIVE HUMIDITY (%)	30.00	30.00	30.00	0.00	0.00	
AIR MANIFOLD HUMIDITY RATIO (Ib _W /Ib _A)	0.01265	0.01212	0.01317			
AIR MANIFOLD TEMPERATURE (F)	100.52	99.00	102.00	0.63	0.63	
NTAKE AIR FLOW (scfm)	1289.69	1280.64	1298.12	3.96	0.31	
EXHAUST FLOW (scfm)	-124.87	-124.87	-124.87	0.00	0.00	
EXHAUST STACK TEMPERATURE (F)	677.27	676.97	677.56	0.17	0.03	
CYLINDER 1 EXHAUST TEMPERATURE (F)	960.69	959.51	962.69	0.63	0.07	
CYLINDER 2 EXHAUST TEMPERATURE (F)	954.07	953.16	. 955.15	0.46	0.05	
CYLINDER 3 EXHAUST TEMPERATURE (F)	954.62	953.76	955.54	0.38	0.04	
CYLINDER 4 EXHAUST TEMPERATURE (F)	931.81	930.74	933.12	0.58	0.06	
CYLINDER 5 EXHAUST TEMPERATURE (F)	913.66	912.49	914.87	0.48	0.05	
CYLINDER 6 EXHAUST TEMPERATURE (F)	914.50	913.48	915.27	0.41	0.05	
CYLINDER EXHAUST AVERAGE TEMP (F)	938.22	937.69	939.04	0.27	0.03	
EXHAUST HEADER TEMPERATURE (F)	677.27	676.97	677.56	0.17	0.03	
PRE TURBO EXHAUST PRESSURE ("Hg)	28.77	28.56	29.20	0.12	0.43	
PRE TURBO EXHAUST TEMPERATURE (F)	926.84	925.98	927.57	0.31	0.03	
POST TURBO EXHAUST PRESSURE ("Hg)	4.98	4.91	5.09	0.04	0.72	
POST TURBO EXHAUST TEMPERATURE (F)	750.13	749.79	750.78	0.24	0.03	
TURBO OIL PRESSURE ("Hg)	47.40	46.72	48.09	0.26	0.56	
ENGINE SPEED (rpm)	1196.91	1193.61	1201.13	1,72	0.14	
ENGINE HORSEPOWER (bhp)	515.86	514.46	517.83	0.81	0.16	
ENGINE OIL PRESSURE (psig)	52.61	51.80	53.41	0.36	0.69	
ENGINE OIL TEMPERATURE IN (F)	163.43	163.27	163.67	0.10	0.06	
ENGINE OIL TEMPERATURE OUT (F)	183.26	183.11	183.51	0.10	0.06	
SPECIFIC GRAVITY	0.69	0.69	0.69	0.00	0.00	
FUEL TEMPERATURE (F)	91.94	91.84	92.04	0.10	0.11	
FUEL PRESSURE ("H2O above amp)	6.56	6.14	6.89	0.17	2.58	
FUEL SUPPLY PRESSURE (psig)	47.13	47.09	47.20	0.03	0.06	
ORIFICE DIFFERENTIAL PRESSURE ("H2O)	8.41	8.09	8.81	0.15	1.80	
DRIFICE STATIC PRESSURE (psig)	46.63	46.59	46.67	0.01	0.03	
DRIFICE TEMPERATURE (F)	88.13	88.05	88.20	0.03	0.03	
FUEL FLOW (SCFH)	4080.93					
CALCULATED FUEL CONSUMPTION (BSFC)	8224.22					
FUEL HEATING VALUE (Btu)	1039.60	1039.60	1039.60	0.00	0.00	
AIR FUEL RATIO	28.89	28.89	28.89	0.00	0.00	
NTERCOOLER AIR DIFFERENTIAL PRESSURE ("H2O)	5.84	5.71	6.04	0.07	1.23	
INTERCOOLER AIR TEMP IN (F)	281.50	281.13	281.92	0.17	0.06	
INTERCOOLER AIR TEMP OUT (F)	137.19	136.88	137.48	0.16	0.12	
POST INTERCOOLER AIR MANIFOLD PRESSURE ("Hg)	66.04	65.91	66.16	0.06	0.09	
NTERCOOLER WATER DIFFERENTIAL PRESSURE ("H2O)	157.45	157.45	157.45	0.00	0.00	
NTERCOOLER WATER FLOW (GPM)	55.74	55.10	56.39	0.29	0.53	
NTERCOOLER WATER TEMP IN (F)	127.71	127.56	127.95	0.14	0.11	
INTERCOOLER WATER TEMP OUT (F)	137.13	136.88	137.48	0.15	0.11	
NTERCOOLER SUPPLY PRESSURE (psi)	2.73	2.69	2.76	0.02	0.59	
PRE CATALYST TEMPERATURE (F)	706.42	706.14	706.93	0.19	0.03	
POST CATALYST TEMPERATURE (F)	710.77	710.50	711.10	0.14	0.02	
CATALYST DIFFERENTIAL PRESSURE ("H2O)	5.57	5.48	5.67	0.05	0.82	
B.S. CO (g/bhp-hr): Pre-Catalyst	2.47	2.41	2.53	0.02	0.96	

Test Description: Run 2 QC - 515BHP 1200RPM 10BTDC

Data Point Number: Run 2 QC		Date:		Time:	03:15:15
			Duratio	n (minutes):	5.00
Description	Average	Min	Max	STDV	Variance
B.S. CO (g/bhp-hr): Post-Catalyst	0.11	0.10	0.11	0.00	4.50
B.S. NO (g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NO (g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (corrected - g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (corrected - g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (g/bhp-hr): Pre-Catalyst	0.53	0.52	0.54	0.01	1.05
B.S. NOx (g/bhp-hr): Post-Catalyst	0.56	0.55	0.57	0.01	1.11
B.S. THC (g/bhp-hr): Pre-Catalyst	6.05	5.92	6.21	0.06	0.94
B.S. THC (g/bhp-hr): Post-Catalyst	6.08	5.96 ·	6.22	0.05	0.88
B.S. Methane (g/bhp-hr): Pre-Catalyst	2.83	2.76	2.90	0.03	0.97
B.S. Methane (g/bhp-hr): Post-Catalyst	2.44	2.40	2.55	0.03	1.19
B.S. Non-Methane (g/bhp-hr): Pre-Catalyst	0.15	0.14	0.16	0.00	4.47
B.S. Non-Methane (g/bhp-hr): Post-Catalyst	0.12	0.12	0.12	0.00	0.00
O2 (ppm): Pre-Catalyst	9.80	9.80	9.80	0.00	0.00
O2 (ppm): Post-Catalyst	9.80	9.80	9.80	0.00	0.00
CO (ppm): Pre-Catalyst	591:66	590.10	594.30	0.88	0.00
CO (ppm): Post-Catalyst	26.89	26.50	27.20	0.15	0.55
CO2 (ppm): Pre-Catalyst	6.25	6.23	6.29	0.03	0.43
CO2 (ppm): Post-Catalyst	6.43	6.42	6.44	0.00	0.06
NO (ppm): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NO (ppm): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
NOx (ppm - Corrected): Pre-Catalyst	41.32	41.10	41.70	0.14	0.34
NOx (ppm - Corrected): Post-Catalyst	44.65	43.90	45.40	0.28	0.64
NOx (ppm): Pre-Catalyst	77.38	76.90	78.00	0.29	0.38
NOx (ppm): Post-Catalyst	83.45	82.10	84.80	0.50	0.60
THC (ppm): Pre-Catalyst	2102.67	2095.70	2110.30	4.32	0.21
THC (ppm): Post-Catalyst	2159.16	2146.50	2173.30	5.65	0.26
Methane (ppm): Pre-Catalyst	1487.30	1487.30	1487.30	0.00	0.00
Methane (ppm): Post-Catalyst	1314.76	1312.00	1361.10	11.06	0.84
Non-Methane (ppm): Pre-Catalyst	157.37	153.10	162.50	4.66	2.96
Non-Methane (ppm): Post-Catalyst	130.71	128.40	133.20	2.39	1.83
DYNO WATER IN TEMPERATURE (F)	74.57	74.38	74.78	0.07	0.10
DYNO WATER OUT TEMPERATURE (F)	108.92	108.71	109.10	0.13	0.12
JACKET WATER IN TEMPERATURE (F)	174.83	174.58	174.98	0.10	0.06
JACKET WATER OUT TEMPERATURE (F)	178.82	178.00	180.00	0.62	0.35
JACKET WATER FLOW (GPM)	0.00	0.00	0.00	0.00	0.00
LUBE OIL COOLING WATER IN TEMPERATURE (F)	82.12	82.12	82.12	0.00	0.00
LUBE OIL COOLING WATER OUT TEMPERATURE (F)	87.31	87.08	87.48	0.10	0.12
LUBE OIL FLOW (GPM)	129.30	128.73	129.86	0.25	0.19
CO F-Factor: Pre-Catalyst	3.14	3.08	3.20	0.03	0.86
CO F-Factor: Post-Catalyst	0.14	0.14	0.15	0.00	0.93
NO F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NO F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
NOx F-Factor: Pre-Catalyst	0.67	0.66	0.69	0.01	0.91
NOx F-Factor: Post-Catalyst	0.73	0.71	0.74	0.01	0.98
THC F-Factor: Pre-Catalyst	7.55	7.42	7.73	0.07	0.88
THC F-Factor: Post-Catalyst	7.76	7.62	7.93	0.07	0.89
Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
- · · · ·				x	
Non-Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00

Test Description: Run 3 QC - 730BHP 1000RPM 10BTDC

Data Point Number: Run 3 QC		Date:	08/05/99	Time:	13:02:03 5.00	
			Duration	n (minutes):		
Description	Average	Min	Max	STDV	Varianc	
AMBIENT AIR TEMPERATURE (F)	69.00	69.00	69.00	0.00	0.00	
MBIENT AIR PRESSURE (psia)	12.07	12.07	12.07	0.00	0.00	
MBIENT HUMIDITY (%)	65.14	64.00	66.00	0.99	1.53	
AIR MANIFOLD PRESSURE ("Hg)	5.00	4.85	5.13	0.06	1.20	
AIR MANIFOLD RELATIVE HUMIDITY (%)	33.56	33.00	34.00	0.50	1.49	
AIR MANIFOLD HUMIDITY RATIO (Ibw/iba)	0.01375	0.01297	0.01453			
AIR MANIFOLD TEMPERATURE (F)	99.51	98.00	101.00	0.58	0.58	
NTAKE AIR FLOW (sofm)	1018.09	1008.84	1028.57	3.78	0.37	
EXHAUST FLOW (sofm)	-124.87	-124.87	-124.87	0.00	0.00	
EXHAUST STACK TEMPERATURE (F)	640.03	639.87	640.26	0.10	0.02	
CYLINDER 1 EXHAUST TEMPERATURE (F)	884.40	883.32	885.70	0.53	0.06	
CYLINDER 2 EXHAUST TEMPERATURE (F)	880.85	879.95	881,73	0.60	0.07	
CYLINDER 3 EXHAUST TEMPERATURE (F)	877.49	876.18	878.96	0.59	0.07	
CYLINDER 4 EXHAUST TEMPERATURE (F)	861.77	860.70	862.88	0.62	0.07	
CYLINDER 5 EXHAUST TEMPERATURE (F)	850.94	849.59	852.37	0.59	0.07	
CYLINDER 6 EXHAUST TEMPERATURE (F)	842.86	842.05	843.84	0.35	0.04	
CYLINDER EXHAUST AVERAGE TEMP (F)	866.40	865.60	867.22	0.38	0.04	
	640.03	639.87	640.26	0.10	0.02	
	21.18	21.03	21.40	0.09	0.45	
			861.30	0.50	0.06	
	860.44	859.31		0.03	0.63	
	4.96	4.89	5.07			
POST TURBO EXHAUST TEMPERATURE (F)	725.44	724.79	726.18	0.40	0.06	
	45.50	44.71	46.16	. 0.25	0.55	
ENGINE SPEED (rpm)	1001.56	998.50	1006.39	1.37	0.14	
ENGINE HORSEPOWER (bhp)	431.66	430.67	433.61	0.60	0.14	
ENGINE OIL PRESSURE (psig)	50.63	49.87	51.15	0.26	0.51	
ENGINE OIL TEMPERATURE IN (F)	162.73	162.48	163.07	0.14	0.09	
ENGINE OIL TEMPERATURE OUT (F)	179.94	179.74	180.14	0.15	0.08	
SPECIFIC GRAVITY	0.69	0.69	0.69	0.00	0.00	
FUEL TEMPERATURE (F)	89.52	89.46	89.66	0.09	0.10	
FUEL PRESSURE ("H2O above amp)	6.91	6.49	7.30	0.17	2.53	
FUEL SUPPLY PRESSURE (psig)	47.49	47.42	47.54	0.02	0.04	
ORIFICE DIFFERENTIAL PRESSURE ("H2O)	5.11	4.84	5.38	0.10	2.00	
ORIFICE STATIC PRESSURE (psig)	46.85	46.81	46.87	0.01	0.03	
ORIFICE TEMPERATURE (F)	84.43	84.29	84.55	0.05	0.05	
FUEL FLOW (SCFH)	3199.22					
CALCULATED FUEL CONSUMPTION (BSFC)	7704,96		e .			
FUEL HEATING VALUE (Btu)	1039.60	1039.60	1039.60	0.00	0.00	
AIR FUEL RATIO	32.29	32.29	32.29	0.00	0.00	
INTERCOOLER AIR DIFFERENTIAL PRESSURE ("H2O)	4.79	4.67	4.95	0.06	1.15	
INTERCOOLER AIR TEMP IN (F)	231.83	231.53	232.12	0.15	0.07	
INTERCOOLER AIR TEMP OUT (F)	136.97	136.68	137.28	0.18	0.13	
POST INTERCOOLER AIR MANIFOLD PRESSURE ("Hg)	54.19	53.91	54.41	0.10	0.18	
INTERCOOLER WATER DIFFERENTIAL PRESSURE ("H2O)	157.45	157.45	157.45	0.00	0.00	
INTERCOOLER WATER FLOW (GPM)	61.75	61.06 [·]	62.67	0.35	0.56	
INTERCOOLER WATER TEMP IN (F)	132.69	132.12	133.11	0.28	. 0.21	
INTERCOOLER WATER TEMP OUT (F)	137.56	137.08	138.07	0.28	0.21	
INTERCOOLER SUPPLY PRESSURE (psi)	3.02	2.97	3.08	0.02	0.73	
PRE CATALYST TEMPERATURE (F)	677.40	676.77	677.76	0.25	0.04	
POST CATALYST TEMPERATURE (F)	679,06	678.56	679.55	0.22	0.03	
CATALYST DIFFERENTIAL PRESSURE ("H2O)	3.87	3.80	3.95	0.03	0.74	
B.S. CO (g/bhp-hr): Pre-Catalyst	2.21	2.16	2.26	0.02	0,98	
B.S. CO (g/bhp-hr): Post-Catalyst	0.08	0.08	0.08	0.00	0.00	
B.S. NO (g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00	

,

Test Description: Run 3 QC - 730BHP 1000RPM 10BTDC

Data Point Number: Run 3 QC		Date:	08/05/99	Time:	13:02:03
			Duratio	n (minutes):	5.00
Description	Average	Min	Max	STDV	Variance
B.S. NO (g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (corrected - g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (corrected - g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (g/bhp-hr): Pre-Catalyst	0.49	0.47	0.50	0.01	1.46
B.S. NOx (g/bhp-hr): Post-Catalyst	0.54	0.53	0.56	0.01	1.30
B.S. THC (g/bhp-hr): Pre-Catalyst	6.40	6.27	6.53	0.06	0.87
B.S. THC (g/bhp-hr): Post-Catalyst	6.44	6,30	6.58	0.06	0.97
B.S. Methane (g/bhp-hr): Pre-Catalyst	2.90	2.84	2.96	0.03	0.92
B.S. Methane (g/bhp-hr): Post-Catalyst	2.42	2.37	2.47	0.02	0.89
B.S. Non-Melhane (g/bhp-hr): Pre-Catalyst	0.16	0.16	0.17	0.00	2.61
B.S. Non-Methane (g/bhp-hr): Post-Catalyst	0.13	0.12	0.13	0.00	1.24
O2 (ppm): Pre-Catalyst	100.00	100.00	100.00	0.00	0.00
O2 (ppm): Post-Catalyst	9.80	9.80	9.80	0.00	0.00
CO (ppm): Pre-Catalyst	571.20	568.20	573.40	1.33	0.23
CO (ppm): Post-Catalyst	21.96	21.80	22.30	0.11	0.50
CO2 (ppm): Pre-Catalyst	6.35	6.35	6.41	0.01	0.19
CO2 (ppm): Post-Catalyst	6.40	6.38	6.42	0.01	0.12
NO (ppm): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NO (ppm): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
NOx (ppm - Corrected): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NOx (ppm - Corrected): Post-Catalyst	46.12	45.20	47.00	0.42	0.91
NOx (ppm): Pre-Catalyst	77.13	75.50	78.50	0.71	0.92
NOx (ppm): Post-Catalyst	86.30	84.60	88.00	0.80	0.93
THC (ppm): Pre-Catalyst	2402.23	2394.00	2413.50	5.08	0.21
THC (ppm): Post-Catalyst	2417.82	2407.50	2436.80	6.88	0.28
Methane (ppm): Pre-Catalyst	1648.55	1648.30 .	1651.50	0.87	0.05
Melhane (ppm): Post-Catalyst	1373.41	1373.30	1376.70	0.61	0.04
Non-Methane (ppm); Pre-Catalyst	183.68	181.60	190.70	3.73	2.03
Non-Methane (ppm): Post-Catalyst	147.63	146.10	148.50	1.14	0.77
DYNO WATER IN TEMPERATURE (F)	72.97	72.79	73.19	0.11	0.16
DYNO WATER OUT TEMPERATURE (F)	101.72	101.56	101.76	0.08	0.08
JACKET WATER IN TEMPERATURE (F)	177.01	176.76	177.36	0.13	0.08
JACKET WATER OUT TEMPERATURE (F)	179.52	178.00	181.00	0.62	0.35
JACKET WATER FLOW (GPM)	0.00	0.00	0.00	0.00	0.00
LUBE OIL COOLING WATER IN TEMPERATURE (F)	82.64	82.12	82.71	0.19	0.23
LUBE OIL COOLING WATER OUT TEMPERATURE (F)	86.79	86.48	87.08	0.11	0.13
LUBE OIL FLOW (GPM)	129,38	128.73	129.86	0.25	0.19
CO F-Factor: Pre-Catalyst	0.00	0.00	0.00	.0.00	0.00
CO F-Factor: Post-Catalyst	0.09	0.09	0.09	0.00	1.07
NO F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NO F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
NOx F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NOx F-Factor: Post-Catalyst	0.59	0.57	0.61	0.01	1.27
THC F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
THC F-Factor: Post-Catalyst	6.84	6.69	6.99	0.06	0.94
Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Melhane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
ENGINE TORQUE	2263,43	2261.01	2266.38	0.97	0.04

Test Description: Run 5 QC - 736BHP 1200RPM 10BTDC

Data Point Number: Run 5 QC		Date:	08/05/99	Time:	21:01:5	
			Duratio	n (minutes):	5.00	
Description	Average	Min	Max	STDV	Varianc	
MBIENT AIR TEMPERATURE (F)	67.00	67,00	67.00	0.00	0.00	
MBIENT AIR PRESSURE (psia)	12.07	12.07	12.07	0.00	0.00	
MBIENT HUMIDITY (%)	72.00	72.00	72.00	0.00	0.00	
IR MANIFOLD PRESSURE ("Hg)	5.00	4.84	5.14	0.06	1.17	
IR MANIFOLD RELATIVE HUMIDITY (%)	36.67	33.00	39.00	2.18	5.96	
IR MANIFOLD HUMIDITY RATIO (Ibw/Iba)	0.01515	0.01297	0.01671	2.1.0	0.00	
IR MANIFOLD TEMPERATURE (F)	99.70	98.00	101.00	0,70	0.70	
ITAKE AIR FLOW (scfm)	1846.13	1824.25	1860.90	6.52	0.35	
XHAUST FLOW (scfm)	-124.87	-124.87	-124.87	0.00	0.00	
XHAUST STACK TEMPERATURE (F)	686.27	685.90	686.89	0.18	0.03	
YLINDER 1 EXHAUST TEMPERATURE (F)	969.49	966.66	972.01	1.34	0.14	
YLINDER 2 EXHAUST TEMPERATURE (F)	969.81	966.85	972.21	1.23	0.13	
YLINDER 3 EXHAUST TEMPERATURE (F)	966.57	963.28	968.84	1.17	0.10	
YLINDER 4 EXHAUST TEMPERATURE (F)	932.58	930.15	934.31	0.86	0.09	
YLINDER 5 EXHAUST TEMPERATURE (F)	915.22	913.08	918.24	1.22	0.09	
	904.53	902.77	906.34	0.91	0.10	
	943.05	941.69	944.17	0.56	0.06	
	686.27	685,90	686.89	0.18	0.03	
RE TURBO EXHAUST PRESSURE ("Hg)	40.27	39.76	40.58	0.17	0.43	
RE TURBO EXHAUST TEMPERATURE (F)	938.34	936.89	939.47	0.50	0.05	
OST TURBO EXHAUST PRESSURE ("Hg)	5.51	5.42	5.57	0.03	0.60	
OST TURBO EXHAUST TEMPERATURE (F)	750.23	749.39	751.38	0.43	0.06	
URBO OIL PRESSURE ("Hg)	47.11	46.40	47.77	0.29	0.62	
NGINE SPEED (rpm)	1196.70	1190.60	1202.63	2.35	0.20	
NGINE HORSEPOWER (bhp)	737.09	733.85	741.10	1.42	0.19	
NGINE OIL PRESSURE (psig)	52.22	51.64	52.93	0.32	0.61	
NGINE OIL TEMPERATURE IN (F)	164.07	163.67	164.46	0.16	0.10	
	185.13	184.70	185.49	0.17	0.09	
PECIFIC GRAVITY	0.69	0.69	0.69	0.00	0.00	
UEL TEMPERATURE (F)	91.47	91.25	91.64	0.12	0.13	
UEL PRESSURE ("H2O above amp)	0.70	-0.08	1.26	0.23	32.28	
UEL SUPPLY PRESSURE (psig)	46.81	46.75	46.88	0.04	0.08	
RIFICE DIFFERENTIAL PRESSURE ("H2O)	15.28	14.49	16.01	0.35	2.27	
RIFICE STATIC PRESSURE (psig)	46.44	46.36	46.55	0.04	0.08	
RIFICE TEMPERATURE (F)	86.51	86.43	86.58	0.03	0.03	
UEL FLOW (SCFH)	5499.76					
ALCULATED FUEL CONSUMPTION (BSFC)	7756.92					
UEL HEATING VALUE (Btu)	1039.60	1039.60	1039.60	0.00	0.00	
IR FUEL RATIO	30.20	30.20	30.20	0.00	0.00	
ITERCOOLER AIR DIFFERENTIAL PRESSURE ("H2O)	10.63	10.44	10.82	0.10	0.94	
NTERCOOLER AIR TEMP IN (F)	302.87	301.96	303.75	0.44	0.15	
NTERCOOLER AIR TEMP OUT (F)	145.79	145.61	146.21	0.16	0.11	
OST INTERCOOLER AIR MANIFOLD PRESSURE ("Hg)	67.95	67.74	68.16	0.08	0.12	
VTERCOOLER WATER DIFFERENTIAL PRESSURE ("H2O)	157.45	157.45	157.45	0.00	0.00	
ITERCOOLER WATER FLOW (GPM)	57.67	56.23	58.65	0.59	1.03	
NTERCOOLER WATER TEMP IN (F)	131.67	131.13	132.12	0.22	0.17	
ITERCOOLER WATER TEMP OUT (F)	144.94	144.42	145.61	0.25	0.17	
NTERCOOLER SUPPLY PRESSURE (psi)	2.83	2.75	2.90	0.03	1.10	
RE CATALYST TEMPERATURE (F)	712.47	711.89	714.27	0.48	0.07	
OST CATALYST TEMPERATURE (F)	719.47	719.03	720.22	0.28	0.04	
CATALYST DIFFERENTIAL PRESSURE ("H2O)	10.09	9.95	10.23	0.05	0.51	
B.S. CO (g/bhp-hr): Pre-Catalyst	3.01	2.89	3.11	0.05	1.51	
3.S. CO (g/bhp-hr): Post-Catalyst	0.21	0.20	0.22	0.00	1.92	
3.5. NO (g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00	

Test Description: Run 5 QC - 736BHP 1200RPM 10BTDC

Data Point Number: Run 5 QC		Date:	08/05/99	Time:	21:01:58
•			Duratio	n (minutes):	5.00
Description	Average	Min	Max	STDV	Variance
B.S. NO (g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (corrected - g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (corrected - g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOX (confected - grapping) i ost-oatalyst B.S. NOX (g/bhp-hr): Pre-Catalyst	0.48	0.00	0.50	0.00	1.76
B.S. NOX (g/bhp-hr): Post-Catalyst	0.52	0.40	0.54	0.01	1.98
B.S. THC (g/bhp-hr): Pre-Catalyst	6.81	6.48	7.05	0.13	1.90
	6.85		7.05	0.13	2.09
B.S. THC (g/bhp-hr): Post-Catalyst		6.49 3.04	3,19	0.14	2.09 1.14
B.S. Methane (g/bhp-hr): Pre-Catalyst	3.10 2.67	3.04			
B.S. Methane (g/bhp-hr): Post-Catalyst	2.67	2.60	2.79	0.05	1.88
B.S. Non-Methane (g/bhp-hr): Pre-Catalyst	0.17	0.17	0.18	0.00	2.71
B.S. Non-Methane (g/bhp-hr): Post-Catalyst	0.14	0.14	0.15	0.00	1.50
O2 (ppm): Pre-Catalyst	10.49	10.40	10.50	0.03	0.28
O2 (ppm): Post-Catalyst	10.40	10.40	10.40	0.00	0.00
CO (ppm): Pre-Catalyst	725.83	706.70	733.90	7.01	0.97
CO (ppm); Post-Catalyst	52.17	50.40	53.20	0.67	1.29
CO2 (ppm): Pre-Catalyst	5.88	5.86	5.92	0.03	0.50
CO2 (ppm): Post-Catalyst	5.99	5.97	6.01	0.01	0.15
NO (ppm): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NO (ppm): Post-Catalyst	0.00	0.00 ·	0.00	0.00	0.00
NOx (ppm - Corrected): Pre-Catalyst	40.26	39.30	41.20	0.52	1.28
NOx (ppm - Corrected): Post-Catalyst	43.81	42.40	45.80	0.85	1.94
NOx (ppm): Pre-Calalyst	70.89	69,50	72.50	0.89	1.26
NOx (ppm): Post-Catalyst	77.47	75.10	80.90	1.42	1.83
THC (ppm): Pre-Catalyst	2381.05	2300.30	2428.10	36.52	1.53
THC (ppm): Post-Catalyst	2410.39	2329.40	2470.90	41.47	1.72
Methane (ppm): Pre-Catalyst	1640.81	1640.50	1643.60	0.93	0.06
Methane (ppm): Post-Catalyst	1423.58	1404.10	1453.30	22.59	1.59
Non-Methane (ppm): Pre-Catalyst	184.58	182.00	192.60	4.42	2.40
Non-Methane (ppm): Post-Catalyst	151.97	151.60	154.20	0.85	0.56
DYNO WATER IN TEMPERATURE (F)	81.25	80.93	81.52	0.12	0.14
DYNO WATER OUT TEMPERATURE (F)	127.12	126.76	127.75	0.18	0.14
JACKET WATER IN TEMPERATURE (F)	172.89	172.60	173.19	0.12	0.07
JACKET WATER OUT TEMPERATURE (F)	178.66	178.00	180.00	0.58	0.32
JACKET WATER FLOW (GPM)	0.00	0.00	0.00	0.00	0.00
LUBE OIL COOLING WATER IN TEMPERATURE (F)	85.69	85.69	85.69	0.00	0.00
LUBE OIL COOLING WATER OUT TEMPERATURE (F)	91.47	91.25	91.64	0.13	0.14
LUBE OIL FLOW (GPM)	129.93	129.54	130.34	0.21	0.16
CO F-Factor: Pre-Catalyst	5.53 ,	5.28	5.69	0.08	1.49
CO F-Factor: Post-Catalyst	0.39	0.38	0.41	0.01	1.66
NO F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NO F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
NOx F-Factor: Pre-Catalyst	0.89	0.86	0.93	0.01	1.54
NOx F-Factor: Post-Catalyst	0.96	0.93	1.01	0.02	1.96
THC F-Factor: Pre-Catalyst	12.28	11.64	12.73	0.24	1.96
THC F-Factor: Post-Catalyst	12.38	11.75	12.86	0.26	2.08
Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
HOIT-MELIAILE I -I AVIVI. PUSI-VALAIYSI	0.00	3230.40	3238.45	1.75	0.05

Test Description: Run 7 QC - 515BHP 1200RPM 10BTDC

Data Point Number: Run 7 QC		Date:	08/06/99	Time:	01:57:03
			Duratio	n (minutes):	5.00
Description	Average	Min	Max	STDV	Varianc
AMBIENT AIR TEMPERATURE (F)	65.00	65.00	65.00	0.00	0.00
AMBIENT AIR PRESSURE (psia)	12.07	12.07	12.07	0.00	0.00
AMBIENT HUMIDITY (%)	74.00	74.00	74.00	0.00	0.00
AIR MANIFOLD PRESSURE ("Hg)	5.00	4.86	5.11	0.05	0.97
AIR MANIFOLD RELATIVE HUMIDITY (%)	31.09	31.00	32.00	0.28	0.91
AIR MANIFOLD HUMIDITY RATIO (Ibw/Iba)	0.01276	0.01216	0.01366		
AIR MANIFOLD TEMPERATURE (F)	99.61	98.00	101.00	0.77	0.78
INTAKE AIR FLOW (scfm)	1212.51	1203.95	1223.12	4.22	0.35
EXHAUST FLOW (scfm)	-124.87	-124.87	-124.87	0.00	0.00
EXHAUST STACK TEMPERATURE (F)	695.08	694.63	695.62	0.27	0.04
CYLINDER 1 EXHAUST TEMPERATURE (F)	987.22	985.90	989.08	0.58	0.06
CYLINDER 2 EXHAUST TEMPERATURE (F)	978.98	977.77	980.74	0.53	0.05
CYLINDER 3 EXHAUST TEMPERATURE (F)	980.61	979.35	981.54	0.53	0.05
CYLINDER 4 EXHAUST TEMPERATURE (F)	955.47	954.35	956.93	0.49	0.05
CYLINDER 5 EXHAUST TEMPERATURE (F)	937.39	936.10	938.68	0.57	0.06
CYLINDER 6 EXHAUST TEMPERATURE (F)	940.58	939.27	942.25	0.70	0.07
CYLINDER EXHAUST AVERAGE TEMP (F)	963.37	962.65	964.11	0.35	0.04
EXHAUST HEADER TEMPERATURE (F)	695.08	694.63	695.62	0.27	0.04
PRE TURBO EXHAUST PRESSURE ("Hg)	27.23	26.95	27.87	0.17	0.64
PRE TURBO EXHAUST TEMPERATURE (F)	950.24	949.00	950.98	0.36	0.04
POST TURBO EXHAUST PRESSURE ("Hg)	4.93	4.85	5.10	0.05	0.97
POST TURBO EXHAUST TEMPERATURE (F)	776.57	776.18	777.17	0.30	0.04
TURBO OIL PRESSURE ("Hg)	47.27	46.56	47.93	0.28	0.59
ENGINE SPEED (rpm)	1196.91	1194.36	1204.51	[·] 1.99	0.17
ENGINE HORSEPOWER (bhp)	515.67	514.18	517.87	0.90	0.18
ENGINE OIL PRESSURE (psig)	52.47	51.88	53.33	0.34	0.65
ENGINE OIL TEMPERATURE IN (F)	163.82	163.47	164.06	0.13	0.08
ENGINE OIL TEMPERATURE OUT (F)	183.82	183.51	184.10	0.15	0.08
SPECIFIC GRAVITY	0.69	0.69	0.69	0.00	0.00
FUEL TEMPERATURE (F)	91.62	91.44	91.84	0.10	0.11
FUEL PRESSURE ("H2O above amp)	7.66	7.23	8.08	0.16	2.08
FUEL SUPPLY PRESSURE (psig)	47.19	47.12	47.26	0.03	0.07
ORIFICE DIFFERENTIAL PRESSURE ("H2O)	8.21	7.88	8.53	0.14	1.73
ORIFICE STATIC PRESSURE (psig)	46.64	46.62	46.68	0.01	0.03
ORIFICE TEMPERATURE (F)	87. <u>9</u> 1	87.83	88.00	0.03	0.03
FUEL FLOW (SCFH)	4032.46		1		
CALCULATED FUEL CONSUMPTION (BSFC)	8129.51	,			
FUEL HEATING VALUE (Btu)	1039.60	1039.60	1039.60	0.00	0.00
AIR FUEL RATIO	27.20	27.20	27.20	0.00	0.00
INTERCOOLER AIR DIFFERENTIAL PRESSURE ("H2O)	5.37	5.21	5.68	0.11	2.07
INTERCOOLER AIR TEMP IN (F)	278.23	277.76	278.75	0.18	0.06
INTERCOOLER AIR TEMP OUT (F)	137.57	136.88	138.07	0.38	0.27
POST INTERCOOLER AIR MANIFOLD PRESSURE ("Hg)	65.44	65.16	65.83	0.16	0.24
INTERCOOLER WATER DIFFERENTIAL PRESSURE ("H2O)	157.45	157.45	157.45	0.00	0.00
INTERCOOLER WATER FLOW (GPM)	55.71	55.10	56.23	0.23	0.41
INTERCOOLER WATER TEMP IN (F)	128.44	127.95	128.95	0.37	0.29
INTERCOOLER WATER TEMP OUT (F)	137.23	136.68	137.87	0.41	0.30
INTERCOOLER SUPPLY PRESSURE (psi)	2.72	2.68	2.76	0.02	0.60
PRE CATALYST TEMPERATURE (F)	728.54	727.96	729.75	0.26	0.04
POST CATALYST TEMPERATURE (F)	731.73	731.34	732,33	0.29	0.04
CATALYST DIFFERENTIAL PRESSURE ("H2O)	5.13	5.07	5.28	0.04	0.84
B.S. CO (g/bhp-hr): Pre-Catalyst	2.51	2.46	2.56	0.02	0.98

Date: 08/06/99

Time: 01:57:03

Test Description: Run 7 QC - 515BHP 1200RPM 10BTDC

Data Point Number: Run 7 QC

Data Point Number: Run 7 QC		Date:		Time:	01:57:0
				Duration (minutes):	
Description	Average	Min	Max	STDV	Varianc
B.S. CO (g/bhp-hr): Post-Catalyst	0.10	0.09	0.10	0.00	1.80
B.S. NO (g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NO (g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
3.S. NOx (corrected - g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
3.S. NOx (corrected - g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (g/bhp-hr): Pre-Catalyst	0.94	0.91	0.97	0.01	1.37
3.S. NOx (g/bhp-hr): Post-Catalyst	0.98	0.95	1.01	0.01	1.38
3.S. THC (g/bhp-hr): Pre-Catalyst	4.92	4.82	5.03	0.04	0.91
3.S. THC (g/bhp-hr): Post-Catalyst	4.90	4.78	5.03	0.05	1.01
3.S. Methane (g/bhp-hr): Pre-Catalyst	2.22	2.17	2.27	0.02	0.97
3.S. Methane (g/bhp-hr): Post-Catalyst	1.97	1.93	2.02	0.02	0.99
B.S. Non-Methane (g/bhp-hr): Pre-Catalyst	0.14	0.13	0.14	0.00	2.90
B.S. Non-Methane (g/bhp-hr): Post-Catalyst	0.09	0.09	0.09	0.00	0.00
D2 (ppm): Pre-Catalyst	9.20	9.10	9.20	0.02	0.20
D2 (ppm): Post-Catalyst	9.08	9.00	9.10	0.04	0.42
CO (ppm): Pre-Catalyst	641.53	638.70	643.80	1.39	0.22
CO (ppm): Post-Catalyst	26.38	26.00	26.60	0.11	0.42
CO2 (ppm): Pre-Catalyst	6.65	6.65	6.65	0.00	0.00
CO2 (ppm): Post-Catalyst	6.80	6.78	6.81	0.01	0.09
VO (ppm): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
VO (ppm): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
NOx (ppm - Corrected): Pre-Catalyst	74.05	72.80	74.70	0.57	0.76
NOx (ppm - Corrected): Post-Catalyst	77.47	75.80	78.90	0.79	1.02
NOx (ppm): Pre-Catalyst	146.87	144.70	148.20	1.08	0.74
IOx (ppm): Post-Catalyst	154.86	151.50	157.80	1.68	1.08
(HC (ppm): Pre-Catalyst	1828.38	1820.50	1836.30	3.64	0.20
THC (ppm): Post-Catalyst	1841.06	1829.40	1853.80	6.21	0.34
Methane (ppm): Pre-Catalyst	1247.31	1245.10	1248.10	1.33	0.11
Methane (ppm): Post-Catalyst	1124.70	1124.70	1124.70	0.00	0.00
Non-Methane (ppm): Pre-Catalyst	155.88	147.40	158.00	4.24	2.72
Von-Methane (ppm): Post-Catalyst	103.15	102.90	103.20	0.11	0.10
DYNO WATER IN TEMPERATURE (F)	74.66	74.58	74.78	0.10	0.13
DYNO WATER OUT TEMPERATURE (F)	108.84	108.51	109.30	0.15	0.14
IACKET WATER IN TEMPERATURE (F)	175.24	174.98	175.37	0.11	0.06
JACKET WATER OUT TEMPERATURE (F)	179.21	177.00	181.00	0.71	0.39
JACKET WATER FLOW (GPM)	0.00	0.00	0.00	0.00	0.00
LUBE OIL COOLING WATER IN TEMPERATURE (F)	82.12	82.12	82.12	0.00	0.00
LUBE OIL COOLING WATER OUT TEMPERATURE (F)	87.60	87.48	87.87	0.11	0.13
LUBE OIL FLOW (GPM)	129.42	128.73	130.02	0.20	0.15
CO F-Factor: Pre-Catalyst	3.18	3.12	3.25	0.03	1.05
CO F-Factor: Post-Catalyst	0.13	0.13	0.13	0.00	1.13
NO F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NO F-Factor: Post-Catalyst	• 0.00	0.00	0.00	0.00	0.00
NOx F-Factor: Pre-Catalyst	1.20	1.16	1.23	0.02	1.28
NOx F-Factor: Post-Catalyst	1.25	1.21	1.30	0.02	1.34
THC F-Factor: Pre-Catalyst	6.14	6.01	6.28	0.06	0.94
THC F-Factor: Post-Catalyst	6.14	5.99	6.30	0.06	1.05
Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
ENGINE TORQUE	2263.34	2261.01	2266.38	1.19	0.05

Test Description: Run 8 QC - 616BHP 1000RPM 10BTDC

Ì

Data Point Number: Run 8 QC		Date:	08/06/99	Time:	07:14:36
			Duration (minutes):		5.00
Description	Average	Min	Max	STDV	Variance
AMBIENT AIR TEMPERATURE (F)	63.00	63.00	63.00	0.00	0.00
AMBIENT AIR PRESSURE (psia)	12.07	12.07	12.07	0.00	0.00
AMBIENT HUMIDITY (%)	80.00	80.00	80.00	0.00	0.00
AIR MANIFOLD PRESSURE ("Hg)	5.00	4.87	5.15	0.07	1.37
AIR MANIFOLD RELATIVE HUMIDITY (%)	36.00	36.00	36.00	0.00	0.00
AIR MANIFOLD HUMIDITY RATIO (Ibw/Iba)	0.01479	0.01417	0.01539		
	99.54	98.00	101.00	0.68	0.68
INTAKE AIR FLOW (scfm)	1471.45	1461.65	1483.08	5.17	0.35
EXHAUST FLOW (sofm)	-124.87	-124.87	-124.87	0.00	0.00
EXHAUST STACK TEMPERATURE (F)	641.99	641.45	642.44	0.28	0.04
CYLINDER 1 EXHAUST TEMPERATURE (F)	886.82	885.31	888.48	0.62	0.07
CYLINDER 2 EXHAUST TEMPERATURE (F)	888.22	886.69	889.67	0.52	0.06
CYLINDER 3 EXHAUST TEMPERATURE (F)	889.32	888.28	890.27	0.46	0.05
CYLINDER 4 EXHAUST TEMPERATURE (F)	867.14	865.66	868.44	0.48	0.06
CYLINDER 5 EXHAUST TEMPERATURE (F)	860.33	859.51	861.69	0.52	0.06
CYLINDER 6 EXHAUST TEMPERATURE (F)	847.59	846.81	848.20	0.33	0.04
CYLINDER EXHAUST AVERAGE TEMP (F)	873.23	872.64	873.90	0.32	0.04
EXHAUST HEADER TEMPERATURE (F)	641.99	641.45	642.44	0.32	0.04
PRE TURBO EXHAUST PRESSURE ("Hg)	31.96	31.67	32.20	0.20	0.30
PRE TURBO EXHAUST TEMPERATURE (F)	881.03	880.35	881.73	0.35	0.04
POST TURBO EXHAUST PRESSURE ("Hg)	4.92	4.88	4.98	0.02	0.49
POST TURBO EXHAUST TEMPERATURE (F)	702.44	701.57	703.36	0.37	0.05
TURBO OIL PRESSURE ("Hg)	45.01	44.47	45.52	0.20	0.45
ENGINE SPEED (rpm)	1001.52	996.99	1006.02	1.56	0.16
ENGINE SPEED ((p)() ENGINE HORSEPOWER (bhp)	616.71	990.99 614.67	619.06	0.92	0.15
ENGINE OIL PRESSURE (psig)	50.21	49.62	. 50.75	0.32	0.52
ENGINE OIL FRESSORE (psig) ENGINE OIL TEMPERATURE IN (F)	162.04	49.02 161.68	162.28	0.20	0.10
ENGINE OIL TEMPERATURE OUT (F)	180.78	180.53	180.93	0.13	0.07
SPECIFIC GRAVITY	0.69	0.69	0.69	0.00	0.00
FUEL TEMPERATURE (F)	89.83	89.66	. 90.06	0.09	0.10
FUEL PRESSURE ("H2O above amp)	2.69	2.31	3.26	0.19	6.99
FUEL SUPPLY PRESSURE (psig)	47.23	47.20	47.29	0.03	0.06
ORIFICE DIFFERENTIAL PRESSURE ("H2O)	9.76	9.54	10.11	0.09	0.95
ORIFICE STATIC PRESSURE (psig)	46.62	46.57	46.65	0.03	0.04
ORIFICE TEMPERATURE (F)	84.00	83.87	84.11	0.06	0.06
FUEL FLOW (SCFH)	4413.10	00.07	07.11	0.00	0.00
CALCULATED FUEL CONSUMPTION (BSFC)	7439.28				
FUEL HEATING VALUE (Btu)	1039.60	1039.60	1039.60	0.00	، 0.00
AIR FUEL RATIO	30.50	30.50	30.50	0.00	0.00
INTERCOOLER AIR DIFFERENTIAL PRESSURE ("H2O)	7.49	7.21	7.69	0.10	1.37
INTERCOOLER AIR TEMP IN (F)	285.06	284.70	285.50	0.23	0.08
INTERCOOLER AIR TEMP OUT (F)	137.98	137.68	138.47	0.18	0.13
POST INTERCOOLER AIR MANIFOLD PRESSURE ("Hg)	66.60	66.49	66.74	0.06	0.09
INTERCOOLER WATER DIFFERENTIAL PRESSURE ("H2O)	157.45	157.45	157.45	0.00	0.00
INTERCOOLER WATER FLOW (GPM)	54.83	54.14	55.42	0.27	0.49
INTERCOOLER WATER TEMP IN (F)	128.09	127.75	128.55	0.18	0.14
INTERCOOLER WATER TEMP OUT (F)	138.90	138.67	139.26	0.16	0.12
INTERCOOLER SUPPLY PRESSURE (psi)	2.68	2.65	2.73	0.02	0.57
PRE CATALYST TEMPERATURE (F)	663.47	663.08	663.87	0.25	0.04
POST CATALYST TEMPERATURE (F)	669.30	668.83	669.83	0.27	0.04
CATALYST DIFFERENTIAL PRESSURE ("H2O)	6.63	6.53	6.70	0.04	0.60
B.S. CO (g/bhp-hr): Pre-Catalyst	3.06	3.02	· 3.12	0.04	0.61
D.O. OO (grunp-ni). Fie-Oalaiysi	0.00	0.02	0.12	0.02	0.01

Î

Î

ļ

Test Description: Run 8 QC - 616BHP 1000RPM 10BTDC

Data Point Number: Run 8 QC		Date:	08/06/99	Time:	07:14:36
				n (minutes):	5.00
Description	Average	Min	Max	STDV	Variance
B.S. CO (g/bhp-hr): Post-Catalyst	0.16	0.16	0.16	0.00	0.00
B.S. NO (g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NO (g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (corrected - g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (corrected - g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (g/bhp-hr): Pre-Catalyst	0.49	0.48	0.50	0.00	0.74
B.S. NOx (g/bhp-hr): Post-Catalyst	0.52	0.51	0.53	0.01	1.31
B.S. THC (g/bhp-hr): Pre-Catalyst	8.16	8.01	8.34	0.06	0.74
B.S. THC (g/bhp-hr): Post-Catalyst	8.32	8.21	8.47	0.05	0.63
B.S. Methane (g/bhp-hr): Pre-Catalyst	3.74	3.68	3.80	0.02	0.63
B.S. Methane (g/bhp-hr): Post-Catalyst	3.41	3.31	3.46	0.03	0.84
B.S. Non-Methane (g/bhp-hr): Pre-Catalyst	0.18	0.18	0.19	0.00	2.55
B.S. Non-Methane (g/bhp-hr): Post-Catalyst	0.17	0.16	0.17	0.00	3.00
O2 (ppm): Pre-Catalyst	10.50	10.50	10.50	0.00	0.00
O2 (ppm): Post-Catalyst	10.50	10.50	10.50	0.00	0.00
CO (ppm): Pre-Catalyst	640.04	638.70	641.90	0.70	·0.11
CO (ppm): Post-Catalyst	35.15	34.80	35.50	0.14	0.40
CO2 (ppm): Pre-Catalyst	5.86	5.86	5.92	0.01	0.12
CO2 (ppm): Post-Catalyst	6.01	6.00	6.02	0.01	0.10
NO (ppm): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NO (ppm): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
NOx (ppm - Corrected): Pre-Catalyst	35.71	35.50	35.80	0.14	0.38
NOx (ppm - Corrected): Post-Catalyst	38.38	37.80	39.20	0.33	0.85
NOx (ppm): Pre-Catalyst	62.85	62.50	63.00	0.22	0.35
NOx (ppm): Post-Catalyst	67.41	66.30	68.80	0.59	0.87
THC (ppm): Pre-Catalyst	2477.49	2462.20	2492.70	7.48	0.30
THC (ppm): Post-Catalyst	2566.37	2549.00	2590.40	9.37	0.37
Methane (ppm): Pre-Catalyst	1715.61	1713.30	1716.50	1.44	0.08
Methane (ppm): Post-Catalyst	1591.25	1548.50	1597.60	12.04	0.76
Non-Methane (ppm): Pre-Catalyst	167.54	165.50	171.80	2.91	1.74
Non-Methane (ppm): Post-Catalyst	154.98	153.90	156.40	1.18	0.76
DYNO WATER IN TEMPERATURE (F)	76.47	76.37	76.56	0.10	0.13
DYNO WATER OUT TEMPERATURE (F)	116.26	116.05	116.64	0.14	0.12
JACKET WATER IN TEMPERATURE (F)	174.95	174.78	175.18	0.08	0.05
JACKET WATER OUT TEMPERATURE (F)	178.77	177.00	180.00	0.65	0.37
JACKET WATER FLOW (GPM)	0.00	0.00	0.00	0.00	0.00
LUBE OIL COOLING WATER IN TEMPERATURE (F)	77.95	77.95	77.95	0.00	0.00
LUBE OIL COOLING WATER OUT TEMPERATURE (F)	82.45	82.32	82.52	0.10	0.12
LUBE OIL FLOW (GPM)	128.49	128.09	128.89	0.19	0.15
CO F-Factor: Pre-Catalyst	3.91	3.86	3.99	0.02	0.58
CO F-Factor: Post-Catalyst	0.22	0.21	0.22	0.00	0.66
NO F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NO F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
NOx F-Factor: Pre-Catalyst	0.63	0.62	0.65	0.00	0.70
NOx F-Factor: Post-Catalyst	0.68	0.66	0.69	0.01	1.08
THC F-Factor: Pre-Catalyst	10.27	10.08	10.49	0.07	0.70
THC F-Factor: Post-Catalyst	10.66	10.52	10.86	0.07	0.61
Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
ENGINE TORQUE	3233.88	3230.40	3238.45	1.63	0.05

Test Description: Run 9 QC - 736BHP 1200RPM 10BTDC

Ĵ

Data Point Number: Run 9 QC		Date:	08/04/99	Time:	15:21:47
			Duratio	n (minutes):	5.00
Description	Average	Min	Max	STDV	Variance
AMBIENT AIR TEMPERATURE (F)	66.00	66.00	66.00	0.00	0.00
AMBIENT AIR PRESSURE (psia)	12.08	12.08	12.08	0.00	0.00
AMBIENT HUMIDITY (%)	68.00	68.00	68.00	0.00	0.00
AIR MANIFOLD PRESSURE ("Hg)	5.02	4.79	5.19	0.06	1.24
AIR MANIFOLD RELATIVE HUMIDITY (%)	36.37	36.00	37.00	0.48	1.33
	0.01494	0.01420	0.01580		۰.
AIR MANIFOLD TEMPERATURE (F)	99.57	98.00	101.00	0.67	0.67
INTAKE AIR FLOW (scfm)	1702.27	1691.17	1718.23	5.45	0.32
EXHAUST FLOW (scfm)	-124.87	-124.87	-124.87	0.00	0.00
EXHAUST STACK TEMPERATURE (F)	702.70	702.56	702.96	0.13	0.02
CYLINDER 1 EXHAUST TEMPERATURE (F)	977.27	975.59	978.76	0.74	0.08
CYLINDER 2 EXHAUST TEMPERATURE (F)	977.46	976.38	978.36	0.44	0.05
CYLINDER 3 EXHAUST TEMPERATURE (F)	979.97	978.96	980.74	0.40	0.04
CYLINDER 4 EXHAUST TEMPERATURE (F)	955.13	953.76	956.54	0.54	0.06
CYLINDER 5 EXHAUST TEMPERATURE (F)	945.78	944.24	946.81	0.51	0.05
CYLINDER 6 EXHAUST TEMPERATURE (F)	932.08	930.94	932.93	0.37	0.04
CYLINDER EXHAUST AVERAGE TEMP (F)	961.29	960.24	961.86	0.31	0.03
EXHAUST HEADER TEMPERATURE (F)	702.71	702.56	702.96	0.13	0.02
PRE TURBO EXHAUST PRESSURE ("Hg)	36.29	36.00	36.58	0.11	0.30
PRE TURBO EXHAUST TEMPERATURE (F)	962.28	961.50	963.08	0.33	0.03
POST TURBO EXHAUST PRESSURE ("Hg)	4.76	4.72	4.84	0.03	0.55
POST TURBO EXHAUST TEMPERATURE (F)	798.12	797.21	799.00	0.41	0.05
TURBO OIL PRESSURE ("Hg)	46.96	46.24	47.61	0.27	0.57
ENGINE SPEED (rpm)	1196.58	1193.61	1202.26	1.64	0.14
ENGINE HORSEPOWER (bhp)	736.91	734.77	739.24	1.04	0.14
ENGINE OIL PRESSURE (psig)	52.13	51.40	52.85	0.33	0.63
ENGINE OIL TEMPERATURE IN (F)	164.42	164.06	164.66	0.13	0.03
ENGINE OIL TEMPERATURE OUT (F)	185.61	185.30	185.89	0.13	0.08
SPECIFIC GRAVITY	0.68	0.68	0.68	0.00	0.00
FUEL TEMPERATURE (F)	258.17	101.76	639.67	167.30	64.80
FUEL PRESSURE ("H2O above amp)	5.23	4.53	6.04	0.29	5.57
FUEL SUPPLY PRESSURE (psig)	47.01	4.55	47.14	0.25	0.11
		-		0.31	
ORIFICE DIFFERENTIAL PRESSURE ("H2O)	14.46	13.84	15.29 46.59		2.12 0.09
	46.49	46.36		0.04	
	83.83	83.61	84.00	0.10	0.10
FUEL FLOW (SCFH)	5397.59	e _		the second	
CALCULATED FUEL CONSUMPTION (BSFC)	7496.02	1000 10	4000 40	0.00	0.00
FUEL HEATING VALUE (Btu)	1023.40	1023.40	1023.40	0.00	0.00
	28.60	28,60	28.60	0.00	0.00
INTERCOOLER AIR DIFFERENTIAL PRESSURE ("H2O)	9.03	8.81	9.28	0.10	1.05
INTERCOOLER AIR TEMP IN (F)	297.00	296.21	297.40	0.24	0.08
	131.60	130.93	132.12	0.28	0.21
POST INTERCOOLER AIR MANIFOLD PRESSURE ("Hg)	69.31	69.16	69.49	0:07	0.10
INTERCOOLER WATER DIFFERENTIAL PRESSURE ("H2O)		157.45	157.45	0.00	0.00
	64.67	63.80	65.25	0.29	0.45
INTERCOOLER WATER TEMP IN (F)	119.55	119.02	120.02	0.32	0.26
INTERCOOLER WATER TEMP OUT (F)	131.24	130.53	131.92	0.30	0.23
INTERCOOLER SUPPLY PRESSURE (psi)	3.24	3.20	3.27	0.02	0.46
PRE CATALYST TEMPERATURE (F)	741.76	734.51	759.31	6.84	0.92
POST CATALYST TEMPERATURE (F)	739.18	738.88	739.47	0.17	0.02
CATALYST DIFFERENTIAL PRESSURE ("H2O)	9.02	8.92	9.15	0.04	0.50
B.S. CO (g/bhp-hr): Pre-Catalyst	2.36	2.31	2.44	0.03	1.24
B.S. CO (g/bhp-hr): Post-Catalyst	0.15	0.14	0.15	0.00	3.03
B.S. NO (g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00

Test Description: Run 9 QC - 736BHP 1200RPM 10BTDC

Data Point Number: Run 9 QC		Date:	08/04/99	Time:	15:21:47
	,		Duratio	n (minutes):	5.00
Description	Average	Min	Max	STDV	Variance
B.S. NO (g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (corrected - g/bhp-hr): Pre-Cataiyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (corrected - g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (g/bhp-hr): Pre-Catalyst	0.66	0.65	0.68	0.01	1.34
B.S. NOx (g/bhp-hr): Post-Catalyst	0.72	0.70	0.74	0.01	1.43
B.S. THC (g/bhp-hr): Pre-Catalyst	4.86	4.75	5.00	0.06	1.23
B.S. THC (g/bhp-hr): Post-Catalyst	4.79	4.68	4.93	0.06	1.24
B.S. Methane (g/bhp-hr): Pre-Catalyst	2.25	2.20	2.32	0.03	. 1.19
B.S. Methane (g/bhp-hr): Post-Catalyst	9.96	9.73	10.24	0.12	.1.19
B.S. Non-Methane (g/bhp-hr): Pre-Catalyst	0.11	0.11	0.11	0.00	0.00
B.S. Non-Methane (g/bhp-hr): Post-Catalyst	0.43	0.42	0.45	0.01	1.36
O2 (ppm): Pre-Catalyst	9.71	9.70	9.80	0.02	0.23
O2 (ppm): Post-Catalyst	9.70	9.70	9.70	0.00	0.00
CO (ppm): Pre-Catalyst	620.81	618.10	624.50	2.32	0.37
CO (ppm): Post-Catalyst	40.15	39.60	40.90	0.28	0.69
CO2 (ppm): Pre-Catalyst	6.36	6.30	6.36	0.01	0.19
CO2 (ppm): Post-Catalyst	6.50	6.49	6.51	0.01	0.09
NO (ppm): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NO (ppm): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
NOx (ppm - Corrected): Pre-Catalyst	56.29	55.70	56.80	0.25	0.44
NOx (ppm - Corrected): Post-Catalyst	62.01	61.00	63.20	0.46	0.75
NOx (ppm): Pre-Catalyst	106.40	105.40	107.30	0.45	0.42
NOx (ppm): Post-Catalyst	117.11	115.20	119.40	0.90	0.77
THC (ppm): Pre-Catalyst	1883.94	1874.10	1892.30	5.92	0,31
THC (ppm): Post-Catalyst	1880.05	1868.40	1892.80	5.93	0.32
Methane (ppm): Pre-Catalyst	1266.40	1266.40	1266.40	0.00	0.02
Methane (ppm): Post-Catalyst	0.00	0.00	0.00	0.00	0,00
Non-Methane (ppm): Pre-Catalyst	142.71	141.20	144.40	1.43	1.00
Non-Melhane (ppm): Post-Catalyst	556.50	556.50	556.50	0.00	0.00
DYNO WATER IN TEMPERATURE (F)	80.49	80.14	80.73	0.12	0.15
DYNO WATER OUT TEMPERATURE (F)	126.40	125.97	126.76	0.12	0.14
JACKET WATER IN TEMPERATURE (F)	172.49	172.20	172.80	0.12	0.07
JACKET WATER OUT TEMPERATURE (F)	178.64	177.00	180.00	0.65	0.36
JACKET WATER FLOW (GPM)	0.00	0.00	0.00	0.00	0.00
LUBE OIL COOLING WATER IN TEMPERATURE (F)	83.51	83.51	83.51	0.00	0.00
LUBE OIL COOLING WATER OUT TEMPERATURE (F)	89.06	88.87	89.26	0.10	0.11
LUBE OIL FLOW (GPM)	129.64	129.05	130.18	0.23	0.18
CO F-Factor: Pre-Catalyst	4.26	4.16	4.40	0.05	1.25
CO F-Factor: Post-Catalyst	0.28	0.27	0.29	0.00	1.35
NO F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NO F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
NOx F-Factor: Pre-Catalyst	1.20	1.17	1.24	0.02	1.26
NOX F-Factor: Post-Catalyst	1.32	1.28	1.37	0.02	1.40
THC F-Factor: Pre-Catalyst	8.61	8.41	8.88	0.11	1.40
THC F-Factor: Post-Catalyst	8.61	8.40	·8.86	0.11	1.24
Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
ENGINE TORQUE	3234.95	3233.08	3238.45	2.15	0.07
	4647,VV	2200.00	~~~~	2.10	0.01

Test Description: Run 10 QC - 735BHP 1200RPM 10BTDC

Data Point Number: Run 10 QC	:	Date:	08/06/99	Time:	11:19:11
			Duratio	n (minutes):	5.00
Description	Average	Min	Max	STDV	Varianc
MBIENT AIR TEMPERATURE (F)	77.00	77.00	77.00	0.00	0.00
MBIENT AIR PRESSURE (psia)	12.07	12.07	12.07	0.00	0.00
MBIENT HUMIDITY (%)	46.05	44.00	48.00	1.03	2.24
IR MANIFOLD PRESSURE ("Hg)	5.00	4.88	5.19	0.07	1.31
IR MANIFOLD RELATIVE HUMIDITY (%)	35.36	34.00	36.00	0.70	1.97
IR MANIFOLD HUMIDITY RATIO (Ibw/Iba)	0.01453	0.01336	0.01537		
IR MANIFOLD TEMPERATURE (F)	99.56	98.00	101.00	0.73	0.73
NTAKE AIR FLOW (scfm)	1702.85	1688.91	1717.67	6.81	0.40
XHAUST FLOW (scfm)	-124.87	-124.87	-124.87	0.00	0.00
XHAUST STACK TEMPERATURE (F)	704.30	703.56	705.14	0.45	0.06
CYLINDER 1 EXHAUST TEMPERATURE (F)	978.34	975.98	980.15	0.93	0.09
YLINDER 2 EXHAUST TEMPERATURE (F)	980.11	976.97	981.93	0.87	0.09
YLINDER 3 EXHAUST TEMPERATURE (F)	982.39	980.15	984.12	0.89	0.09
YLINDER 4 EXHAUST TEMPERATURE (F)	956.16	954.16	958.12	0.96	0.00
YLINDER 5 EXHAUST TEMPERATURE (F)	956.16 947.51	934.18 945.23	936.12	0.98	0.10
	947.51 932.44	945.23 930.94	949.79 933.72	0.98	0.10
				0.80	0.08
	962.81	960.51	964.31 705 44		
	704.30	703.56	705.14	0.45	0.06
	36.59	36.33	36.90	0.11	0.31
RE TURBO EXHAUST TEMPERATURE (F)	963.39	961.30	964.87	0.82	0.09
OST TURBO EXHAUST PRESSURE ("Hg)	4.91	4.86	4.99	0.02	0.48
OST TURBO EXHAUST TEMPERATURE (F)	779.70	777.96	781.34	0.77	0.10
URBO OIL PRESSURE ("Hg)	46.84	46.08	47.37	0.29	0.61
NGINE SPEED (rpm)	1196.90	1193.61	1200.75	1.41	0.12
NGINE HORSEPOWER (bhp)	737.75	735.70	740.40	1.04	0.14
NGINE OIL PRESSURE (psig)	52.04	51.32	52.77	0.35	0.68
INGINE OIL TEMPERATURE IN (F)	165.68	165.26	165.85	0.17	0.10
NGINE OIL TEMPERATURE OUT (F)	186.80	186.49	187.08	0.15	0.08
SPECIFIC GRAVITY	0.66	0.66	0.66	0.00	0.00
UEL TEMPERATURE (F)	94.85	94.62	95.02	0.14	0.15
UEL PRESSURE ("H2O above amp)	4.83	3.96	5.34 /	0.24	5.05
UEL SUPPLY PRESSURE (psig)	46.49	46.39	46.56	0.04	0.08,
DRIFICE DIFFERENTIAL PRESSURE ("H2O)	14.67	14.13	15.30	0.26	1.79
ORIFICE STATIC PRESSURE (psig)	46.29	46.19	46.37	0.03	0.07
DRIFICE TEMPERATURE (F)	92.38	92.30	92.44	0.03	0.03
UEL FLOW (SCFH)	5483.54			•	
CALCULATED FUEL CONSUMPTION (BSFC)	7332.42				
UEL HEATING VALUE (Btu)	986.50	986.50	986.50	0.00	0.00
AIR FUEL RATIO	28.70	28.70	28.70	0.00	0.00
NTERCOOLER AIR DIFFERENTIAL PRESSURE ("H2O)	9.41	9.22	9.57	0.09	0.93
NTERCOOLER AIR TEMP IN (F)	298.87	298.39	299.38	0.22	0.07
NTERCOOLER AIR TEMP OUT (F)	151.40	149.58	152.76	1.02	0.68
OST INTERCOOLER AIR MANIFOLD PRESSURE ("Hg)	68.80	68.66	68.99	0.07	0.11
NTERCOOLER WATER DIFFERENTIAL PRESSURE ("H2O)	157.45	157.45	157.45	0.00	0.00
NTERCOOLER WATER FLOW (GPM)	54.32	53.65	55.26	0.34	0.63
NTERCOOLER WATER TEMP IN (F)	140.22	137.87	141.64	1.13	0.80
NTERCOOLER WATER TEMP OUT (F)	152.61	150.57	154.14	1.10	0.72
NTERCOOLER SUPPLY PRESSURE (psi)	2.64	2.60	2.67	0.01	0.56
PRE CATALYST TEMPERATURE (F)	735.84	734.51	737.29	0.75	0.10
POST CATALYST TEMPERATURE (F)	739.77	738.68	741.06	0.62	0.08
CATALYST DIFFERENTIAL PRESSURE ("H2O)	9.03	8.94	9.13	0.04	0.49
3.S. CO (g/bhp-hr): Pre-Catalyst	2.39	2.35	2.45	0.02	0.99

Date: 08/06/99

Time:

11:19:11

Test Description: Run 10 QC - 735BHP 1200RPM 10BTDC

Data Point Number: Run 10 QC

Data Point Number: Run 10 QC	Da		08/06/99	I ime:	11:19:11
	•		Duration (minutes)		5.00
Description	Average	Min	Max	STDV	Variance
B.S. CO (g/bhp-hr): Post-Catalyst	0.15	0.15	0.16	0.00	2.57
B.S. NO (g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NO (g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (corrected - g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (corrected - g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (g/bhp-hr): Pre-Catalyst	0.80	0.77	0.82	0.01	1.62
B.S. NOx (g/bhp-hr): Post-Catalyst	0.83	0.80	0.85	0.01	1.52
B.S. THC (g/bhp-hr): Pre-Catalyst	4.35	4.27	4.48	0.05	1.16
B.S. THC (g/bhp-hr): Post-Catalyst	4.48	4.39	4.57	0.04	1.00
B.S. Methane (g/bhp-hr): Pre-Catalyst	2.19	2.15	2.24	0.02	. 0.94
B.S. Methane (g/bhp-hr): Post-Catalyst	2.06	1.99	2.15	0.05	2.43
B.S. Non-Methane (g/bhp-hr): Pre-Catalyst	0.07	0.07	0.07	0.00	0.00
B.S. Non-Methane (g/bhp-hr); Post-Catalyst	0.06	0.06	0.07	0.00	3.71
O2 (ppm): Pre-Catalyst	9.80	9.80	9.80	0.00	0.00
O2 (ppm): Post-Catalyst	9.76	9.70	9.80	0.05	0.49
CO (ppm): Pre-Catalyst	621.62	618.30	624.70	1.85	0.30
CO (ppm): Post-Catalyst	41.65	41.30	41.90	0.12	0.29
CO2 (ppm): Pre-Catalyst	6.34	6.29	6.35	0.02	0.37
CO2 (ppm): Post-Catalyst	6.49	6.46	6.50	0.01	0.18
NO (ppm): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NO (ppm): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
NOx (ppm - Corrected): Pre-Catalyst	67.36	65.80	68.70	0.83	1.23
NOx (ppm - Corrected): Post-Catalyst	70.97	68.50	72.70	0.77	1.08
NOx (ppm): Pre-Catalyst	126.38	123.10	129.20	1.80	1.43
NOx (ppm): Post-Catalyst	133.46	128.60	136.90	1.63	1.22
THC (ppm): Pre-Catalyst	1736.40	1723.10	1758.40	7.81	0.45
THC (ppm): Post-Catalyst	1812.15	1800.10	1826.90	5.87	0.32
Melhane (ppm): Pre-Catalyst	1148.60	1148.60	1148.60	0.00	0.00
Melhane (ppm): Post-Catalyst	1098.14	1078.60	1124.70	22.86	2.08
Non-Methane (ppm): Pre-Catalyst	122.50	122.50	122.50	0.00	0.00
Non-Methane (ppm): Post-Catalyst	114.79	114.40	121.70	1.62	1.41
DYNO WATER IN TEMPERATURE (F)	82.41	82.12	82.52	0.12	0.14
DYNO WATER OUT TEMPERATURE (F)	128.87	128.55	129.14	0.17	0.13
JACKET WATER IN TEMPERATURE (F)	172.37	171.80	172.99	0.34	0.20
JACKET WATER OUT TEMPERATURE (F)	178.79	178.00	180.00	0.64	0.36
JACKET WATER FLOW (GPM)	0.00	0.00	0.00	0.00	0.00
LUBE OIL COOLING WATER IN TEMPERATURE (F)	95.41	95.41	95.41	0.00	0.00
LUBE OIL COOLING WATER OUT TEMPERATURE (F)	100.81	100.57	101.17	0.14	0.13
LUBE OIL FLOW (GPM)	131.59	131.15	132.12	0.21	0.16
CO F-Factor: Pre-Catalyst	4.20	4.13	4.28	0.04	0.94
CO F-Factor: Post-Catalyst	0.28	0.28	0.29	0.00	1.03
NO F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NO F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
NOx F-Factor: Pre-Catalyst	1.40	1.35	1.44	0.02	1.48
NOx F-Factor: Post-Catalyst	1.48	1.43	1.52	0.02	1.42
THC F-Factor: Pre-Catalyst	7.51	7.36	7.69	0.09	1.16
THC F-Factor: Post-Catalyst	7.82	7.68	7.99	0.08	1.03
Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
•	3236.99	3233.08	3241.14	1.83	0.06
ENGINE TORQUE	0200.00	0200.00	V671.(7		0.00

Test Description: Run 11 QC - 735BHP 1200RPM 10BTDC

Data Point Number: Run 11 QC			Date:	08/06/99	Time:	01:57:03
				Duratio	n (minutes):	5.00
Description	•	Average	Min	Max	STDV	Variance
AMBIENT AIR TEMPERATURE (F)	:	73.00	73.00	73.00	0.00	0.00
AMBIENT AIR PRESSURE (psia)		12.07	12.07	12.07	0.00	0.00
AMBIENT HUMIDITY (%)		61.42	60.00	64.00	1.28	2.08
AIR MANIFOLD PRESSURE ("Hg)		5.00	4.89	5.16	0.05	1.06
AIR MANIFOLD RELATIVE HUMIDITY (%)		39.54	38.00	41.00	0.71	1.80
AIR MANIFOLD HUMIDITY RATIO (Ib_W/Ib_A)		0.01627	0.10496	0.01758	• .	
AIR MANIFOLD TEMPERATURE (F)	1.179 A	99.51	98.00	101.00	0.74	0.74
INTAKE AIR FLOW (scfm)		1718.97	1709.21	1728.95	4.69	0.27
EXHAUST FLOW (scfm)		-124.87	-124.87	-124.87	0.00	0.00
EXHAUST STACK TEMPERATURE (F)		700.67	700.38	701.57	0.33	0.05
CYLINDER 1 EXHAUST TEMPERATURE (F)		973.05	971.02	975.78	1.16	0.12
CYLINDER 2 EXHAUST TEMPERATURE (F)		974.49	973.60	975.98	0.57	0.06
CYLINDER 3 EXHAUST TEMPERATURE (F)		977.03	975.98	977.97	0.50	0.05
CYLINDER 4 EXHAUST TEMPERATURE (F)	а	951.74	950.78	952.97	0.54	0.06
CYLINDER 5 EXHAUST TEMPERATURE (F)		941.58	940.27	943.04	0.64	0.07
CYLINDER 6 EXHAUST TEMPERATURE (F)		927,93	926.38	929.35	0.65	0.07
CYLINDER EXHAUST AVERAGE TEMP (F)		957.64	956.87	958.95	0.46	0.05
EXHAUST HEADER TEMPERATURE (F)		700.67	700.38	701.57	0.33	0.05
PRE TURBO EXHAUST PRESSURE ("Hg)		36.76	36.41	37.10	0.13	0.37
PRE TURBO EXHAUST TEMPERATURE (F)		958.72	957.93	960.11	0.51	0.05
POST TURBO EXHAUST PRESSURE ("Hg)		4.80	4.72	5.10	0.08	1.68
POST TURBO EXHAUST TEMPERATURE (F)		774.82	773.99	776.18	0.59	0.08
TURBO OIL PRESSURE ("Hg)		47.13	46.16	47.69	0.27	0.58
ENGINE SPEED (rpm)		1196.85	1193.61	1200.00	1.36	0.11
ENGINE HORSEPOWER (bhp)		737.86	736.23	739.94	0.86	0.12
ENGINE OIL PRESSURE (psig)		52.34	51.56	53.09	0.36	0.70
ENGINE OIL TEMPERATURE IN (F)	·	164.00	163.87	164.26	0.13	0.08
ENGINE OIL TEMPERATURE OUT (F)	•	184.54	184.30	184.90	0.11	0.07
SPECIFIC GRAVITY		0.68	0.68	0.68	0.68	0.68
FUEL TEMPERATURE (F)		95.70	95.41	95.81	0.11	0.12
FUEL PRESSURE ("H2O above amp)		4.84	4.09	5.35	0.23	4.82
FUEL SUPPLY PRESSURE (psig)		46.34	46.22	46.45	0.06	0.13
ORIFICE DIFFERENTIAL PRESSURE ("H2O)		14.66	14.05	15.44	0.33	2.24
ORIFICE STATIC PRESSURE (psig)		46.24	46.13	46.35	0.05	0.10
ORIFICE TEMPERATURE (F)		91.84	91.61	92.11	0.13	0.13
FUEL FLOW (SCFH)		5376.45				
CALCULATED FUEL CONSUMPTION (BSFC)		7188.22				
FUEL HEATING VALUE (Btu)		986.50	986.50	986.50	0.00	0.00
AIR FUEL RATIO		28.60	28.60	28.60	0.00	0.00
INTERCOOLER AIR DIFFERENTIAL PRESSURE ("H2	20)	9.39	9.13	9.57	0.10	1.08
INTERCOOLER AIR TEMP IN (F)	-1.	298.88	298.39	299.58	0.26	0.09
INTERCOOLER AIR TEMP OUT (F)		142.19	141.64	143.03	0.33	0.23
POST INTERCOOLER AIR MANIFOLD PRESSURE ("	Hg)	68.80	68.99	68.99	0.08	0.12
INTERCOOLER WATER DIFFERENTIAL PRESSURE		157.45	157.45	157.45	0.00	0.00
INTERCOOLER WATER FLOW (GPM)		54.63	54.14	55.10	0.24	0.44
INTERCOOLER WATER TEMP IN (F)		128.78	128.35	129.14	0.19	0.14
INTERCOOLER WATER TEMP OUT (F)		142.02	141.45	143.03	0.37	0.26
INTERCOOLER SUPPLY PRESSURE (psi)		2.66	2.62	2.71	0.02	0.58
PRE CATALYST TEMPERATURE (F)		731.36	730.94	732.13	0.29	0.04
POST CATALYST TEMPERATURE (F)		735.66	735.11	736.30	0.26	0.03
CATALYST DIFFERENTIAL PRESSURE ("H2O)		9.04	8.96	9.17	0.05	0.58
B.S. CO (g/bhp-hr): Pre-Catalyst		2.41	2.35	2.48	0.03	1.20

Ĭ

Test Description: Run 11 QC - 735BHP 1200RPM 10BTDC

Data Point Number: Run 11 QC		Date:	08/06/99	Time:	01:57:03
	а ж		Duratio	n (minutes):	5.00
Description	Average	Min	Max	STDV	Variance
B.S. CO (g/bhp-hr): Post-Catalyst	0.15	0.15	0.16	0.00	2.67
B.S. NO (g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NO (g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (corrected - g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (corrected - g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	. 0.00	0.00
B.S. NOx (g/bhp-hr): Pre-Catalyst	0.67	0.66	0.69	0.01	1.26
B.S. NOx (g/bhp-hr): Post-Catalyst	0.71	0.69	0.72	0.01	1.27
B.S. THC (g/bhp-hr): Pre-Catalyst	4.68	4.57	4.82	0.06	1.22
B.S. THC (g/bhp-hr): Post-Catalyst	4.72	4.60	4.86	0.05	1.11
B.S. Methane (g/bhp-hr): Pre-Catalyst	2.31	2.25	2.37	0.03	1.15
B.S. Methane (g/bhp-hr): Post-Catalyst	2.14	2.08	2.19	0.02	1.05
B.S. Non-Methane (g/bhp-hr): Pre-Catalyst	0.09	0.08	0.09	0.00	4.93
B.S. Non-Methane (g/bhp-hr): Post-Catalyst	0.08	0.07	0.08	0.00	2.65
O2 (ppm): Pre-Catalyst	9.80	9.80	9.80	0.00	0.00
O2 (ppm): Post-Catalyst	9.80	9.80	9.80	0.00	0.00
CO (ppm): Pre-Catalyst	624.11	622.10	626.30	1.41	0.23
CO (ppm): Post-Catalyst	41.68	41.30	42.60	0.21	0.50
CO2 (ppm): Pre-Catalyst	6.31	6.26	6.32	0.02	0.39
CO2 (ppm): Post-Catalyst	6.47	6.46	6.49	0.01	0.10
NO (ppm): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NO (ppm): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
NOx (ppm - Corrected): Pre-Catalyst	57.10	56.40	57.80	0.30	0.53
NOx (ppm - Corrected): Post-Catalyst	60.82	59.60	61.90	0.51	0.83
NOx (ppm): Pre-Catalyst	106.97	106.00	· 108.00	0.42	0.39
NOx (ppm): Post-Catalyst	114.26	112.00	116.20	0.90	0.79
THC (ppm): Pre-Catalyst	1861.45	1850.70	1871.60	4.24	0.24
THC (ppm): Post-Catalyst	1906.80	1895.90	1917.90	6.29	0.33
Methane (ppm): Pre-Catalyst	1206.30	. 1206,60	1206.30	0.00	0.00
Methane (ppm): Post-Catalyst	1136.00	1136.00	1136.00	0.00	0.00
Non-Methane (ppm): Pre-Catalyst	150.82	136.40	155.50	8.24	5.47
Non-Methane (ppm): Post-Catalyst	141.49	120.60	142.80	4.62	3.27
DYNO WATER IN TEMPERATURE (F)	81.95	81.72	82.32	0.12	0.14
DYNO WATER OUT TEMPERATURE (F)	128.69	128.35	129.14	0.16	0.12
JACKET WATER IN TEMPERATURE (F)	163.67	162.48	164.46	0.53	0.32
JACKET WATER OUT TEMPERATURE (F)	170.58	168.00	172.00	0.87	0.51
JACKET WATER FLOW (GPM)	0.00	0.00	0.00	0.00	0.00
LUBE OIL COOLING WATER IN TEMPERATURE (F)	91.25	91.25	91.25	0.00	0.00
LUBE OIL COOLING WATER OUT TEMPERATURE (F)	96.66	96.41	96.80	0.10	0.11
LUBE OIL FLOW (GPM)	130.93	130.34	131.47	0.27	0.21
CO F-Factor: Pre-Catalyst	4.23	4.11	4.33	0.05	1.15
CO F-Factor: Post-Catalyst	0.28	0.27	0.29	0.00	1.16
NO F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NO F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
NOx F-Factor: Pre-Catalyst	1.19	1.16	1.22	0.01	1.19
NOx F-Factor: Post-Catalyst	1.27	1.23	1.29	0.02	1.26
THC F-Factor: Pre-Catalyst	8.07	7.86	8.25	0.09	1.16
THC F-Factor: Post-Catalyst	8.24	8.05	8.48	0.09	1.10
Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
ENGINE TORQUE	3238.04	3235.77	3241.14	1.11	0.03
	· · · · · · · · · · · · · · · · · · ·				

Date: 08/06/99

Time:

09:02:06

Test Description: Run 12 QC - 735BHP 1200RPM 10BTDC

Data Point Number: Run 12 QC

Data Point Number: Run 12 QC			Date:	Duration (minutes):		5.00	
			•				
Description	4	Average	Min	Max	STDV	Variance	
AMBIENT AIR TEMPERATURE (F)		69.00	69.00	69.00	0.00	0.00	
MBIENT AIR PRESSURE (psia)		12.07	12.07	12.07	0.00	0.00	
MBIENT HUMIDITY (%)		62.00	62.00	62.00	0.00	0.00	
IR MANIFOLD PRESSURE ("Hg)		5.00	4.87	5.13	0.06	1.15	
IR MANIFOLD RELATIVE HUMIDITY (%)		35.24	35.00	36.00	0.43	1.21	
IR MANIFOLD HUMIDITY RATIO (Ibw/Iba)		0.01442	0.01376	0.01540			
IR MANIFOLD TEMPERATURE (F)		99.42	98.00	101.00	0.66	0.66	
NTAKE AIR FLOW (scfm)		1718.39	1707.52	1731.20	5.24	0.30	
XHAUST FLOW (scfm)		-124.87	-124.87	-124.87	0.00	0.00	
EXHAUST STACK TEMPERATURE (F)		703.58	702.56	704.35	0.52	0.07	
YLINDER 1 EXHAUST TEMPERATURE (F)		978.04	976.78	978.96	0.55	0.06	
CYLINDER 2 EXHAUST TEMPERATURE (F)		979.22	978.36	980.15	0.47	0.05	
CYLINDER 3 EXHAUST TEMPERATURE (F)		980.99	979.35	982.53	0.79	0.08	
CYLINDER 4 EXHAUST TEMPERATURE (F)		956.36	955.54	957.73	0.47	0.05	
CYLINDER 5 EXHAUST TEMPERATURE (F)		946.47	944.63	947.81	0.76	0.08	
CYLINDER 6 EXHAUST TEMPERATURE (F)		932.80	930.74	934.51	1.00	0.11	
CYLINDER EXHAUST AVERAGE TEMP (F)		962.30	961.30	963.18	0.53	0.06	
EXHAUST HEADER TEMPERATURE (F)	•	703.58	702.56	704.35	0.52	0.07	
PRE TURBO EXHAUST PRESSURE ("Hg)		36.95	36.72	37.20	0.11	0.29	
PRE TURBO EXHAUST TEMPERATURE (F)		963.40	961.89	964.67	0.68	0.07	
POST TURBO EXHAUST PRESSURE ("Hg)		4.97	4.91	5.04	0.03	0.58	
POST TURBO EXHAUST TEMPERATURE (F)		779.18	777.96	780.15	0.60	0.08	
URBO OIL PRESSURE ("Hg)	·.	46.77	46.00	47.45	0.31	0.67	
NGINE SPEED (rpm)		1196.98	1194.36	1200.38	1.33	0.07	
		737.45	735.93	738.94	0.74	0.10	
		51.95		52.60	0.34	0.66	
ENGINE OIL PRESSURE (psig) ENGINE OIL TEMPERATURE IN (F)		165.89	51.32 165.65	166.25	, 0.34 , 0.11	0.00	
		187.46		187.68	0.14	0.08	
		2.55	187.28 2.55	2.55	0.00	0.00	
		2.55 91.76	2.55 91.44	2.55 91.84	0.00	0.00	
		5.31		5.76	0.12	3.94	
FUEL PRESSURE ("H2O above amp)			4.86			0.10	
		46.78	46.67	46.90	0.05 0.31	2.08	
DRIFICE DIFFERENTIAL PRESSURE ("H2O)		. 14.83	14.24	15.79 46.46	0.04	2.08	
		46.38	46.27	46.46			
	,	88.43	88.35	88.53	0.03	0.03	
FUEL FLOW (SCFH)		12573.12			,	• •	
		0.00	0.00	0.00	0.00	. 0.00	
FUEL HEATING VALUE (Btu)		0.00	0.00	0.00	0.00	0.00 0.00	
		28.20	28.20	28.20	0.00	1.05	
NTERCOOLER AIR DIFFERENTIAL PRESSURE ("H2	20)	9.40	9.17	9.62	0.10		
		299.19	298.59	299.58	0.23	0,08	
	n (,)	141.01	140.65	141.45	0.22	0.16	
POST INTERCOOLER AIR MANIFOLD PRESSURE ("	-	68.89	68.74	69.08	0.07	0.10	
	("H2O)	157.45	157.45	157.45	0.00	0.00	
NTERCOOLER WATER FLOW (GPM)		54.85	54.14	55.59	0.32	0.59	
		127.81	127.16	128.15	0.34	0.27	
NTERCOOLER WATER TEMP OUT (F)		140.90	140.45	141.25	0.26	0.18	
		2.66	2.62	2.69	0.01	0.54	
PRE CATALYST TEMPERATURE (F)		735.35	734.51	736.10	0.59	0.08	
POST CATALYST TEMPERATURE (F)-		739.10	738.08	739.87	0.58	0.08	
		0.40	0.07	0.00	0.05	0.55	
CATALYST DIFFERENTIAL PRESSURE ("H2O) B.S. CO (g/bhp-hr): Pre-Catalyst		9.18 6.75	9.07 6.58	9.28 6.95	0.08	1.15	

Test Description: Run 13 QC - 736BHP 1200RPM 6BTDC

Data Point Number: Run 13 QC		Date:	08/05/99	Time:	16:37:20
			Duratio	n (minutes):	5.00
Description	Average	Min	Max	STDV	Variance
B.S. NO (g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (corrected - g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (corrected - g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (g/bhp-hr): Pré-Catalyst	0.74	0.71	0.77	0.02	2.41
B.S. NOX (g/bhp-hr): Post-Catalyst	0.81	0.76	0.84	0.02	2.56
B.S. THC (g/bhp-hr): Pre-Catalyst	9.12	8.87	9.56	0.17	1.82
B.S. THC (g/bhp-hr): Post-Catalyst	9.52	9.28	9.96	0.17	1.74
B.S. Methane (g/bhp-hr): Pre-Catalyst	4.49	9.20 4.41	4,58	0.04	0.91
	3.85	3.78	3.93	0.04	0.91
B.S. Methane (g/bhp-hr): Post-Catalyst	0.27	0.27	0.28	0.04	1.30
B.S. Non-Methane (g/bhp-hr): Pre-Catalyst					1.66
B.S. Non-Methane (g/bhp-hr): Post-Catalyst	0.18	0.18	0.19	0.00	
O2 (ppm): Pre-Catalyst	9.87	9.80	9.90	0.05	0.47
O2 (ppm): Post-Catalyst	9.80	9.80	9.80	0.00	0.00
CO (ppm): Pre-Catalyst	618.31	611.20	631.60	7.75	1.25
CO (ppm): Post-Catalyst	44.05	43.30	45.40	0.57	1.28
CO2 (ppm): Pre-Catalyst	6.23	6.23	6.29	0.01	0.20
CO2 (ppm): Post-Catalyst	6.37	6.36	6.40	0.01	0.12
NO (ppm): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NO (ppm): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
NOx (ppm - Corrected): Pre-Catalyst	34.46	33.20	35.20	0.84	2.42
NOx (ppm - Corrected): Post-Catalyst	37.97	35.80	39.30	0.95	2.50
NOx (ppm): Pre-Catalyst	64.26	62.10	65.60	1.44	2.24
NOx (ppm): Post-Catalyst	70.97	67.10	73.40	1.72	2.42
THC (ppm): Pre-Catalyst	1880.03	1849.70	1939,80	29.33	1.56
THC (ppm): Post-Catalyst	1991.58	1961.10	2056.20	28.08	1.41
Methane (ppm): Pre-Catalyst	1400.68	1399.90	1403.10	1.38	0.10
Methane (ppm): Post-Catalyst	1218.85	1216.80	1219.90	1.47	0.12
Non-Methane (ppm): Pre-Catalyst	167.84	167.30	170.70	1.25	0.74
Non-Melhane (ppm): Post-Catalyst	114.84	114.40	118.80	1.32	1.15
DYNO WATER IN TEMPERATURE (F)	82.01	81.72	82.32	0.12	0.15
DYNO WATER OUT TEMPERATURE (F)	128.04	127.75	128.55	0.16	0.13
JACKET WATER IN TEMPERATURE (F)	177.09	176.76	177.36	0.15	0.08
JACKET WATER OUT TEMPERATURE (F)	183.67	182.00	185.00	0.63	0.34
JACKET WATER FLOW (GPM)	0.00	0.00	0.00	0.00	0.00
LUBE OIL COOLING WATER IN TEMPERATURE (F)	88.67	88.67	88.67	0.00	0.00
LUBE OIL COOLING WATER OUT TEMPERATURE (F)	93.93	93.63	94.02	0.10	0.11
LUBE OIL FLOW (GPM)	130.44	129.22	131.15	0.29	0,22
CO F-Factor: Pre-Catalyst	4.60	4.48	4.77	0.07	1.43
CO F-Factor: Post-Catalyst	0.33	0.32	0.34	0.01	1.62
•	0.00	0.02	0.00	0.00	0.00
NO F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NO F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	2.52
NOx F-Factor: Pre-Catalyst			0.82	0.02	2.52
NOx F-Factor: Post-Catalyst	0.87	0.82			1.70
THC F-Factor: Pre-Catalyst	9.47	9.22	9.90	0.16	1.70
THC F-Factor: Post-Catalyst	10.02	9.76	10.48	0.18	
Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
ENGINE TORQUE	3235.41	3233.08	3238.45	2.07	0.06

Test Description: Run 14 QC - 736BHP 1200RPM 14BTDC

.

A.

Data Point Number: Run 14 QC		Date:	08/04/99	Time:	20:20:36	
			Duration (minutes)			
Description	Average	Min	Max	STDV	Variance	
AMBIENT AIR TEMPERATURE (F)	62.00	62.00	62.00	0.00	0.00	
AMBIENT AIR PRESSURE (psia)	12.08	12.08	12.08	0.00	0.00	
AMBIENT HUMIDITY (%)	80.00	80.00	80.00	0.00	0.00	
AIR MANIFOLD PRESSURE ("Hg)	5.02	4.85	5.19	0.07	1.42	
AIR MANIFOLD RELATIVE HUMIDITY (%)	37.07	36.00	38.00	0.58	1.56	
AIR MANIFOLD HUMIDITY RATIO (Ibw/Iba)	0.01519	0.01373	0.01674			
AIR MANIFOLD TEMPERATURE (F)	99.49	97.00	102.00	0.78	0.79	
INTAKE AIR FLOW (scfm)	1675.73	1665.79	1684.40	3.88	0.23	
EXHAUST FLOW (scfm)	-124.87	-124.87	-124.87	0.00	0.00	
EXHAUST STACK TEMPERATURE (F)	687.87	687.29	688.87	0.40	0.06	
CYLINDER 1 EXHAUST TEMPERATURE (F)	953.74	951.97	955.15	0.56	0.06	
CYLINDER 2 EXHAUST TEMPERATURE (F)	954.57	953.76	955.15	0.38	0.04	
CYLINDER 3 EXHAUST TEMPERATURE (F)	957.32	955.94	958.72	0.49	0.05	
CYLINDER 4 EXHAUST TEMPERATURE (F)	930.87	929.75	932.13	0.44	0.05	
CYLINDER 5 EXHAUST TEMPERATURE (F)	922.99	922.01	923.60	0.27	0.03	
CYLINDER 6 EXHAUST TEMPERATURE (F)	910.55	909.51	912.09	0.49	0.05	
CYLINDER EXHAUST AVERAGE TEMP (F)	938.34	937.82	938.88	0.25	0.03	
EXHAUST HEADER TEMPERATURE (F)	687.87	687.29	688.87	0.40	0.06	
PRE TURBO EXHAUST PRESSURE ("Hg)	35.29	35.03	35.61	0.11	0.32	
PRE TURBO EXHAUST TEMPERATURE (F)	936.66	935.90	937.09	0.28	0.03	
POST TURBO EXHAUST PRESSURE ("Hg)	4.54	4.48	4.61	0.20	0.60	
POST TURBO EXHAUST TEMPERATURE (F)	883.18	771.81	1202.97	131.90	14.94	
TURBO OIL PRESSURE ("Hg)	46.88	45.92	47.61	0.28	0.60	
ENGINE SPEED (rpm)	1196.59	45.92	1200.75	0.28 1.46	0.00	
ENGINE HORSEPOWER (bhp)	736.95	735.24	739.47	0.99	0.12	
ENGINE OIL PRESSURE (psig)	52.07	51.32	52.85	0.34	0.13	
ENGINE OIL TEMPERATURE IN (F)	164.50	164.26	164.66	0.12	0.07	
ENGINE OIL TEMPERATURE OUT (F)	186.09	185.69	186.29	0.12	0.08	
SPECIFIC GRAVITY	0.68	0.68	0.68	0.00	0.00	
FUEL TEMPERATURE (F)	89.86	89.66	90.06	0.08	0.09	
FUEL PRESSURE ("H2O above amp)	4.10	3.54	4.67	0.24	5.80	
FUEL SUPPLY PRESSURE (psig)	46.86	46.77	47.03	0.06	0.13	
ORIFICE DIFFERENTIAL PRESSURE ("H2O)	13.63	12.95	14.60	0.32	2.36	
ORIFICE STATIC PRESSURE (psig)	46.46	46.36	46.58	0.05	0.11	
ORIFICE TEMPERATURE (F)	85.47	40.00 85.31	40.00 85.64	0.03	0.08	
FUEL FLOW (SCFH)	5231.32	00.01	00.04	0.00	0.00	
CALCULATED FUEL CONSUMPTION (BSFC)	7268.23					
FUEL HEATING VALUE (Btu)	1023.90	1023.90	1023.90	0.00	0.00	
AIR FUEL RATIO	29.00	29.00	29.00	0.00	0.00	
INTERCOOLER AIR DIFFERENTIAL PRESSURE ("H2O)	8.92	8.76	9.15	0.09	0.99	
INTERCOOLER AIR TEMP IN (F)	294.61	294.03	295.22	0.29	0.10	
INTERCOOLER AIR TEMP OUT (F)	141.40	141.05	141.64	0.23	0.12	
POST INTERCOOLER AIR MANIFOLD PRESSURE ("Hg)	68.85	68.74	68.99	0.08	0.12	
INTERCOOLER WATER DIFFERENTIAL PRESSURE ("H2O)	157.45	157.45	157.45	0.00	0.00	
INTERCOOLER WATER DIFFERENTIAL PRESSORE (120)	62.59	61.87	63.32	0.36	0.58	
INTERCOOLER WATER FLOW (GPM)	02.59 131.47	130.93	131.92	0.36	0.20	
INTERCOOLER WATER TEMP IN (F)	142.50	142.04	142.83	0.20	0.14	
INTERCOOLER SUPPLY PRESSURE (psi)	3.12	3.08	3.17	0.20	0.62	
PRE CATALYST TEMPERATURE (F)	714.61		715.26	0.02	0.02	
POST CATALYST TEMPERATURE (F)	714.61	714.07 720.22		0.27	0.04	
		720.22	721.22	0.22	0.03	
CATALYST DIFFERENTIAL PRESSURE ("H2O)	8.65	8.53	8.79 2.57		1.36	
B.S. CO (g/bhp-hr): Pre-Catalyst	2.50	2.41	2.57	0.03		
					1.19 0.00	
B.S. CO (g/bhp-hr): Pre-Catalyst B.S. CO (g/bhp-hr): Post-Catalyst B.S. NO (g/bhp-hr): Pre-Catalyst	0.15 0.00	0.15 0.00	0.16	0.00		

Test Description: Run 14 QC - 736BHP 1200RPM 14BTDC

Data Point Number: Run 14 QC		Date:	08/04/99	Time:	20:20:36	
			Duration (minutes):		5.00	
Description	Average	Min	Max	STDV	Variance	
B.S. NO (g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00	,
B.S. NOx (corrected - g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00	
B.S. NOx (corrected - g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00	
B.S. NOx (g/bhp-hr): Pre-Catalyst	1.17	1.13	1.21	0.02	1.45	
B.S. NOx (g/bhp-hr): Post-Catalyst	1.21	1.17	1.27	0.02	1.44	
B.S. THC (g/bhp-hr): Pre-Catalyst	4.38	4.25	4.53	0.05	1.25	
B.S. THC (g/bhp-hr): Post-Catalyst	4.41	4.29	4.54	0.05	1.13	
B.S. Methane (g/bhp-hr): Pre-Catalyst	2.08	2.02	2.15	0.03	1.23	
B.S. Methane (g/bhp-hr): Post-Catalyst	1.80	1.75	1.85	0.02	1.12	
B.S. Non-Methane (g/bhp-hr): Pre-Catalyst	0.11	0.10	0.11	0.00	4.49	
B.S. Non-Methane (g/bhp-hr): Post-Catalyst	0.08	0.08	0.09	0.00	5.82	
O2 (ppm): Pre-Catalyst	9.80	9.70	9.80	0.02	0.22	
O2 (ppm): Post-Catalyst	9.80	9.80	9.80	0.00	0.00	
CO (ppm): Pre-Catalyst	668.76	664.50	673.80	3.17	0.47	
CO (ppm): Post-Catalyst	42.56	42.10	43.00	0.24	0.57	
CO2 (ppm): Pre-Catalyst	6.27	6.24	6.30	0.03	0.48	
CO2 (ppm): Post-Catalyst	6.46	6.45	6.47	0.01	0.08	
NO (ppm): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00	
NO (ppm): Post-Catalyst	0.00	0.00	0.00	0.00	0.00	
NOx (ppm - Corrected): Pre-Catalyst	101.70	100.50	103.20	0.72	0.71	
NOx (ppm - Corrected): Post-Catalyst	107.27	105.20	110.00	1.05	0.98	
NOx (ppm): Pre-Catalyst	191.35	189.70	194.20	1.00	0.66	
NOx (ppm): Post-Catalyst	201.14	197.20	206.20	1.96	. 0.98	
THC (ppm): Pre-Catalyst	1725.50	1718.20	1734.00	4.05	0.23	
THC (ppm): Post-Catalyst	1723.30	1761.10	1783.00	4.30	0.23	
Methane (ppm): Pre-Catalyst	1189.00	1189.00	1189.00	0.00	0.00	
Methane (ppm): Post-Catalyst	1049.90	1049.90	1049.90	0.00	0.00	
Non-Methane (ppm): Pre-Catalyst	141.94	132.30	147.60	7.18	5.06	
Non-Methane (ppm): Post-Catalyst	113.08	108.80	119.80	5.37	4.75	
DYNO WATER IN TEMPERATURE (F)	80.49	80.33	80.73	0.09	0.11	
DYNO WATER OUT TEMPERATURE (F)	127.01	126.76	127.56	0.00	0.13	
JACKET WATER IN TEMPERATURE (F)	174.12	173.99	174.38	0.10	0.06	
JACKET WATER OUT TEMPERATURE (F)	179.68	178.00	181.00	0.63	0.35	
JACKET WATER FLOW (GPM)	0.00	0.00	0.00	0.00	0.00	
LUBE OIL COOLING WATER IN TEMPERATURE (F)	80.53	80.53	80.53	0.00	0.00	
LUBE OIL COOLING WATER OUT TEMPERATURE (F)	86.16	85.89	86.29	0.11	0.13	
LUBE OIL FLOW (GPM)	129.08	128.57	129.54	0.21	0.16	
CO F-Factor: Pre-Catalyst	4.47	4.33	4.58	0.05	1.22	
CO F-Factor: Post-Catalyst	0.29	0.28	0.29	0.00	1.30	
NO F-Factor: Pre-Catalyst	0.29	0.00	0.29	0.00	0.00	
NO F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00	
NOX F-Factor: Pre-Catalyst	2.10	2.03	2.16	0.03	1.31	
-	2.10	2.05	2.32	0.03	1.44	
NOx F-Factor: Post-Catalyst THC F-Factor: Pre-Catalyst	7.68	7.51	2.32 7.92	0.09	1.19	
•	7.92	7.71	8.16	0.09	1.15	
THC F-Factor: Post-Catalyst Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00	
-	0.00	0.00	0.00	0.00	0.00	
Melhane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00	
Non-Melhane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00	
Non-Methane F-Factor: Post-Catalyst	3235,26	3230.40	3238.45	2.07	0.06	
ENGINE TORQUE	5255,20	5250.40	0200.40	2.01	0.00	

Test Description: Run 15 QC - 736BHP 1200RPM 10BTDC (cylinder 6-6BTDC)

Data Point Number: Run 15 QC		Date:	08/05/99	Time:	18:05:37
			Duration	n (minutes):	5.00
Description	Average	Min	Max	STDV	Variance
AMBIENT AIR TEMPERATURE (F)	69.00	69.00	69.00	0.00	0.00
AMBIENT AIR PRESSURE (psia)	12.07	12.07	12.07	0.00	0.00
AMBIENT HUMIDITY (%)	66.00	66.00	66.00	0.00	0.00
AIR MANIFOLD PRESSURE ("Hg)	5.00	4.79	5.26	0.11	2.14
AIR MANIFOLD RELATIVE HUMIDITY (%)	37.47	34.00	39.00	1.58	4.22
AIR MANIFOLD HUMIDITY RATIO (Ibw/Iba)	0.01537	0.01340	0.01664		
AIR MANIFOLD TEMPERATURE (F)	99.45	98.00	101.00	0.68	0.68
INTAKE AIR FLOW (scfm)	1743.96	1734.59	1761.09	5.84	0.33
EXHAUST FLOW (scfm)	-124.87	-124.87	-124.87	0.00	0.00
EXHAUST STACK TEMPERATURE (F)	707.30	706.73	708.32	0.38	0.05
CYLINDER 1 EXHAUST TEMPERATURE (F)	976.55	974.39	980.35	1.24	0.13
CYLINDER 2 EXHAUST TEMPERATURE (F)	977.30	975.78	980.55	0.83	0.08
CYLINDER 3 EXHAUST TEMPERATURE (F)	976.89	975.78	978.56	0.47	0.05
CYLINDER 4 EXHAUST TEMPERATURE (F)	953.44	949.79	964.28	4.28	0.45
CYLINDER 5 EXHAUST TEMPERATURE (F)	942.75	940.86	945.23	0.96	0.10
CYLINDER 6 EXHAUST TEMPERATURE (F)	948.76	947.21	950.39	0.60	0.06
CYLINDER EXHAUST AVERAGE TEMP (F)	962.61	961.20	965.83	1.08	0.11
EXHAUST HEADER TEMPERATURE (F)	707.30	706.73	708,32	0.38	0.05
PRE TURBO EXHAUST PRESSURE ("Hg)	37.62	37.33	38.12	0.17	0.45
PRE TURBO EXHAUST TEMPERATURE (F)	967.97	966.26	971.82	1.35	0.14
POST TURBO EXHAUST PRESSURE ("Hg)	5.07	5.01	5.20	0.03	0.62
POST TURBO EXHAUST TEMPERATURE (F)	781.17	780.15	783.92	0.84	0.11
TURBO OIL PRESSURE ("Hg)	47.03	46.40	47.61	0.27	0.57
ENGINE SPEED (rpm)	1196.85	1192.11	1201.13	1.82	0.15
ENGINE HORSEPOWER (bhp)	737.30	734.54	739.79	1.25	0.17
ENGINE OIL PRESSURE (psig)	52.24	51.56	52.93	0.33	0.64
ENGINE OIL TEMPERATURE IN (F)	164.71	164.46	164.86	0.13	0.08
ENGINE OIL TEMPERATURE OUT (F)	185.77	185.49	186.09	0.13	0.07
SPECIFIC GRAVITY	0.69	0.69	0.69	0.00	0.00
FUEL TEMPERATURE (F)	91.32	91.25	91.64	0.11	0.12
FUEL PRESSURE ("H2O above amp)	4.10	3.39	4.70	0.27	6.68
FUEL SUPPLY PRESSURE (psig)	46,77	46.67	46.82	0.04	0.08
ORIFICE DIFFERENTIAL PRESSURE ("H2O)	14.98	14.38	15.75	0.32	2.14
ORIFICE STATIC PRESSURE (psig)	46.46	46.35	46.53	0.04	0.08
ORIFICE TEMPERATURE (F)	86.45	86.33	86.59	0.06	0.06
FUEL FLOW (SCFH)	5446.45				
CALCULATED FUEL CONSUMPTION (BSFC)	7679.51				
FUEL HEATING VALUE (Btu)	1039.60	1039.60	1039.60	0.00	0.00
AIR FUEL RATIO	28.89	28.89	28.89	0.00	0.00
INTERCOOLER AIR DIFFERENTIAL PRESSURE ("H2O)	9.60	9.45	9.76	0.08	0.80
INTERCOOLER AIR TEMP IN (F)	300.18	299.19	300.77	0.36	0.12
INTERCOOLER AIR TEMP OUT (F)	140.65	140.25	141.25	0.34	0.24
POST INTERCOOLER AIR MANIFOLD PRESSURE ("Hg)	68.88	68.66	69.24	0.12	0.18
INTERCOOLER WATER DIFFERENTIAL PRESSURE ("H2O)	157.45	157.45	157.45	0.00	0.00
INTERCOOLER WATER FLOW (GPM)	57.96	57.20	58.65	0.33	0.57
INTERCOOLER WATER TEMP IN (F)	127.96	127.56	128.75	0.37	0.29
INTERCOOLER WATER TEMP OUT (F)	140.56	140.25	141.25	0.36	0.26
INTERCOOLER SUPPLY PRESSURE (psi)	2.84	2.80	2.88	0.02	0.58
PRE CATALYST TEMPERATURE (F)	738.20	737.49	740.26	0.78	0.11
POST CATALYST TEMPERATURE (F)	742.39	741.45	744.23	0.73	0.10
CATALYST DIFFERENTIAL PRESSURE ("H2O)	9.46	9.34	9.62	0.05	0.58
B.S. CO (g/bhp-hr): Pre-Catalyst	4.23	4.14	4.33	0.04	1.01
B.S. CO (g/bhp-hr): Post-Catalyst	0.28	0.28	0.29	0.00	0.93
B.S. NO (g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
	,				

Test Description: Run 15 QC - 736BHP 1200RPM 10BTDC (cylinder 6-6BTDC)

Data Point Number: Run 15 QC		Date:	08/05/99	Time:	18:05:37
			Duration (minutes):		5.00
Description	Average	Min	Max	STDV	Variance
B.S. NO (g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	. 0.00
B.S. NOx (corrected - g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (corrected - g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (g/bhp-hr): Pre-Catalyst	1.06	1.01	1.12	0.03	2.40
B.S. NOx (g/bhp-hr): Post-Catalyst	1.13	1.08	1.20	0.03	2.79
B.S. THC (g/bhp-hr); Pre-Catalyst	8.61	8.42	8.86	0.11	1.26
B.S. THC (g/bhp-hr): Post-Catalyst	9.04	8.79	9,35	0.12	1.28
B.S. Methane (g/bhp-hr): Pre-Catalyst	4.29	4.02	4.41	0.06	1.32
B.S. Methane (g/bhp-hr): Post-Catalyst	3.70	3.63	3.79	0.04	1.04
B.S. Non-Methane (g/bhp-hr): Pre-Catalyst	0.26	0.25	0.28	0.01	4.79
B.S. Non-Methane (g/bhp-hr): Post-Catalyst	0.17	0.16	0.18	0.01	3.36
O2 (ppm): Pre-Catalyst	9.90	9.90	9.90	0.00	0.00
O2 (ppm): Post-Catalyst	9.82	9.80	9.90	0.04	0.39
CO (ppm): Pre-Catatyst	625.82	622.50	629.60	1.57	0.25
CO (ppm): Post-Catalyst	42.62	42.10	43.30	0.25	0.58
CO2 (ppm): Pre-Catalyst	6.23	6.23	6.29	0.01	0.11
CO2 (ppm): Post-Catalyst	6.35	6.33	6,36	0.01	0.13
NO (ppm): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NO (ppm): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
NOx (ppm - Corrected): Pre-Catalyst	51.95	49.90	54.00	1.22	2.36
NOx (ppm - Corrected): Post-Catalyst	55.50	52.70	58.50	1.52	2.75
NOx (ppm): Pre-Catalyst	96.20	92.90	100.00	2.21	2.29
NOx (ppm): Post-Catalyst	103.74	98.40	109.10	2.75	2.65
THC (ppm): Pre-Catalyst	1852.76	1830.20	1881.40	11.63	0.63
THC (ppm): Post-Catalyst	1965.93	1936.70	1992.80	13.14	0.67
Methane (ppm): Pre-Catalyst	1398.33	1319.20	1403.10	13.15	0.94
Methane (ppm): Post-Catalyst	1218.96	1216.80	1219.90	1.43	0.12
Non-Methane (ppm): Pre-Catalyst	170.82	163.50	178.20	7.30	4.27
Non-Methane (ppm): Post-Catalyst	112.97	109.90	116.60	3.21	2.84
DYNO WATER IN TEMPERATURE (F)	81.69	81.52	81.92	0.09	0.11
DYNO WATER OUT TEMPERATURE (F)	127.68	127.36	127.95	0.13	0.10
JACKET WATER IN TEMPERATURE (F)	173.84	173.59	174.18	0.15	0.08
JACKET WATER OUT TEMPERATURE (F)	179.46	178.00	181.00	0.65	0.36
JACKET WATER FLOW (GPM)	0.00	0.00	0.00	0.00	0.00
LUBE OIL COOLING WATER IN TEMPERATURE (F)	88.07	88.07	88.07	0.00	0.00
LUBE OIL COOLING WATER OUT TEMPERATURE (F)	93.62	93.43	93.83	0.13	0.14
LUBE OIL FLOW (GPM)	130.39	129.86	130.99	0.23	0.18
CO F-Factor: Pre-Catalyst	4.49	4.40	4.60	0.05	1.04
CO F-Factor: Post-Catalyst	0.30	0.30	0.31	0.00	1.08
NO F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NO F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
NOx F-Factor: Pre-Catalyst	1.13	1.08	1.19	0.03	2.43
NOx F-Factor: Post-Catalyst	1.21	1.15	1.28	0.03	2.70
THC F-Factor: Pre-Catalyst	9.00	8.80	9.27	0.11	1.23
THC F-Factor: Post-Catalyst	9.46	9.21	9.77	0.12	1.26
Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Melhane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Melhane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
ENGINE TORQUE	3235.54	3233.08	3238.45	2.23	0.07

Test Description: Run 16 QC - 736BHP 1200RPM 10BTDC (Cyinder 6-14BDC)

Date: 08/05/99

Data Point Number: Run 16 QC	·	Date:	08/05/99	Time:	19:35:49
			Duratio	n (minutes):	5.00
Description	Average	Min	Max	STDV	Variance
AMBIENT AIR TEMPERATURE (F)	69.00	69.00	69.00	0.00	0.00
AMBIENT AIR PRESSURE (psia)	12.07	12.07	12.07	0.00	0.00
AMBIENT HUMIDITY (%)	68.00	68.00	68.00	0.00	0.00
AIR MANIFOLD PRESSURE ("Hg)	5.00	4.73	5.26	0.10	2.08
AIR MANIFOLD RELATIVE HUMIDITY (%)	37.97	37.00	38.00	0.18	0.47
AIR MANIFOLD HUMIDITY RATIO (Ib _W /Ib _A)	0.01568	0.01464	0.01671	0.10	0.47
AIR MANIFOLD TEMPERATURE (F)	99.67	.98.00	102.00	0.79	0.79
INTAKE AIR FLOW (sofm)	1713.30	1701.32	1724.44	5.44	0.32
EXHAUST FLOW (sofm)	-124.87	-124.87	-124.87	0.00	0.02
EXHAUST STACK TEMPERATURE (F)	697.78	697.41	698.20	0.00	1
					0.02
CYLINDER 1 EXHAUST TEMPERATURE (F)	974.88 977.67	973.60 076 58	975.78 078 76	0.44	0.05
CYLINDER 2 EXHAUST TEMPERATURE (F)		976.58	978.76	0.44	0.04
CYLINDER 3 EXHAUST TEMPERATURE (F)	977.02	975.98	978.16	0.46	0.05
CYLINDER 4 EXHAUST TEMPERATURE (F)	951.39	949.99	952.57	0.56	0.06
CYLINDER 5 EXHAUST TEMPERATURE (F)	942.28	940.66	943.44	0.51	0.05
CYLINDER 6 EXHAUST TEMPERATURE (F)	917.85	916.46	919.43	0.71	0.08
CYLINDER EXHAUST AVERAGE TEMP (F)	956.84	955.88	957.36	0.28	0.03
EXHAUST HEADER TEMPERATURE (F)	697.78	697.41	698.20	0.17	0.02
PRE TURBO EXHAUST PRESSURE ("Hg)	36.82	36.58	37.15	0.12	0.31
PRE TURBO EXHAUST TEMPERATURE (F)	953.87	952.97	954.35	0.31	0.03 .
POST TURBO EXHAUST PRESSURE ("Hg)	4.90	4.85	4.97	0.02	0.50
POST TURBO EXHAUST TEMPERATURE (F)	771.02	770.42	771.61	0.26	0.03
TURBO OIL PRESSURE ("Hg)	46.98	46.24	47.61	0,28 .	0.59
ENGINE SPEED (rpm)	1196.91	1192.48	1201.50	1.67	0.14
ENGINE HORSEPOWER (bhp)	737.41	735,01	740.17	1.04	0.14
ENGINE OIL PRESSURE (psig)	52.16	51.40	52.85	0.36	0.68
ENGINE OIL TEMPERATURE IN (F)	164.99	164.86	165.26	0.11	0.07
ENGINE OIL TEMPERATURE OUT (F)	186.15	185.89	186.49	0.14	0.07
SPECIFIC GRAVITY	0.69	0.69	0.69	0.00	0.00
FUEL TEMPERATURE (F)	91.24	91.05	91.64	0.09	0.09
FUEL PRESSURE ("H2O above amp)	4.20	3.63	4.62	0.25	5.86
FUEL SUPPLY PRESSURE (psig)	46.82	46.71	46.90	0.04	0.09
ORIFICE DIFFERENTIAL PRESSURE ("H2O)	14.58	13.89	15.29	0.33	2.30
ORIFICE STATIC PRESSURE (psig)	46.47	46.37	46.58	0.04	0.08
ORIFICE TEMPERATURE (F)	86.21	86.03	86.35	0.08	0.08
FUEL FLOW (SCFH)	5376.16				
CALCULATED FUEL CONSUMPTION (BSFC)	7579.29				
FUEL HEATING VALUE (Btu)	1039.60	1039.60	1039.60	0.00	0.00
AIR FUEL RATIO	28.89	28.89	28.89	0.00	0.00
INTERCOOLER AIR DIFFERENTIAL PRESSURE ("H2O)	9.43	9.26	9.58	0.08	0.83
INTERCOOLER AIR TEMP IN (F)	299.49	298.99	300.18	0.31	0.10
INTERCOOLER AIR TEMP OUT (F)	143.54	142.83	144.02	0.33	0,23
POST INTERCOOLER AIR MANIFOLD PRESSURE ("Hg)	68.73	68.49	68.99	0.11	0.16
INTERCOOLER WATER DIFFERENTIAL PRESSURE ("H2O)	157.45	157.45	157.45	0.00	0.00
INTERCOOLER WATER FLOW (GPM)	57.83	57.20	58.49	0.31	0.53
INTERCOOLER WATER TEMP IN (F)	131.91	131.33	132.52	0.33	0.25
INTERCOOLER WATER TEMP OUT (F)	144.27	143.63	144.82	0.34	0.24
INTERCOOLER SUPPLY PRESSURE (psi)	2.84	2.82	2.88	0.01	0.47
PRE CATALYST TEMPERATURE (F)	728.21	727.57	728.76	0.28	0.04
POST CATALYST TEMPERATURE (F)	732.58	732.13	732.92	0.22	0.03
CATALYST DIFFERENTIAL PRESSURE ("H2O)	9.12	· 9.02	9.26	0.05	0.56
B.S. CO (g/bhp-hr): Pre-Catalyst	2.42	9.02 2.37	9.20 2.48	0.03	1.24
B.S. CO (g/bhp-hr): Pre-Catalyst B.S. CO (g/bhp-hr): Post-Catalyst	2.42 0.16	0.15	0.16	0.03	2,39
	0.00	0.15	0.00	0.00	0.00
B.S. NO (g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00

Test Description: Run 16 QC - 736BHP 1200RPM 10BTDC (Cyinder 6-14BDC)

Dates Alexande 16 00

Data Point Number: Run 16 QC		Date:	08/05/99	Time:	19:35:49
			Duratio	n (minutes):	5.00
Description	Average	Min	Max	STDV	Variance
B.S. NO (g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (corrected - g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (corrected - g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (g/bhp-hr): Pre-Catalyst	0.70	0.68	0.71	0.01	1.16
B.S. NOx (g/bhp-hr): Post-Catalyst	0.74	0.72	0.76	0.01	1.32
B.S. THC (g/bhp-hr): Pre-Catalyst	4.94	4.83	5.05	0.05	1.09
B.S. THC (g/bhp-hr): Post-Catalyst	5.00	4.86	5.12	0.05	1.10
B.S. Melhane (g/bhp-hr): Pre-Catalyst	2.22	2.08	2.28	0.04	1.81
B.S. Methane (g/bhp-hr): Post-Catalyst	2.03	1.94	2.09	0.04	1.78
B.S. Non-Methane (g/bhp-hr): Pre-Catalyst	0.15	0.13	0.17	0.01	9.07
B.S. Non-Methane (g/bhp-hr): Post-Catalyst	0.12	0.10	0.17	0.03	23.92
O2 (ppm): Pre-Catalyst	9.80	9.80	9.80	0.00	0.00
O2 (ppm): Post-Catalyst	9.80	9.80	9.80	0.00	0.00
CO (ppm): Pre-Catalyst	624,69	619.30	629.60	3.06	0.49
CO (ppm): Post-Catalyst	42.13	41.70	42.50	0.17	0.39
CO2 (ppm): Pre-Catalyst	6.23	6.23	6.29	0.01	0.16
CO2 (ppm): Post-Catalyst	6.37	6.36	6.38	0.00	0.07
NO (ppm): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NO (ppm): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
NOx (ppm - Corrected): Pre-Catalyst	58.72	58.20	59.00	0.22	0.38
NOx (ppm - Corrected): Post-Catalyst	63.33	62.30	64.30	0.49	0.77
NOx (ppm): Pre-Catalyst	109.89	108.90	110.50	0.44	0.40
NOx (ppm): Post-Catalyst	118.75	116.90	120.60	0.88	0.74
THC (ppm): Pre-Catalyst	1846.83	1835.10	1860.70	5.94	0.32
THC (ppm): Post-Catalyst	·1897.99	1883.00	1917.20	7.66	0.40
Methane (ppm): Pre-Catalyst	1255.20	1189.90	1260.40	18.37	1.46
Methane (ppm): Post-Catalyst	1164.83	1124.70	1173.80	15.75	1.35
Non-Melhane (ppm): Pre-Catalyst	170.94	156.70	187.80	15.48	9.06
Non-Methane (ppm): Post-Catalyst	144.17	116.60	186.70	34.17	23.70
DYNO WATER IN TEMPERATURE (F)	81.58	81.52	81.72	0.09	0.11
DYNO WATER OUT TEMPERATURE (F)	127.65	127.36	128.15	0.16	0.12
JACKET WATER IN TEMPERATURE (F)	174.17	173.79	174.38	0.15	0.09
JACKET WATER OUT TEMPERATURE (F)	180.11	179.00	182.00	0.65	0.36
JACKET WATER FLOW (GPM)	0.00	0.00	0.00	0.00	0.00
LUBE OIL COOLING WATER IN TEMPERATURE (F)	87.13	86.88	87.48	0.29	0.34
LUBE OIL COOLING WATER OUT TEMPERATURE (F)	92.66	92.44	92.83	0.11	0.12
LUBE OIL FLOW (GPM)	130.25	129.86	130.67	0.21	0.16
CO F-Factor: Pre-Catalyst	4.37	4.27	4.48	0.05	1.17
CO F-Factor: Post-Catalyst	0.29	0.29	0.30	0.00	1.13
NO F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NO F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
NOx F-Factor: Pre-Catalyst	1.26	1.23	1.29	0.01	1.13
NOx F-Factor: Post-Catalyst	1.36	1.33	1.40	0.02	1.37
THC F-Factor: Pre-Catalyst	8.76	8.58	8.96	0.10	1.10
THC F-Factor: Post-Catalyst	8.98	8.74	9.19	0.10	1.09
Melhane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
ENGINE TORQUE	3235.48	3233.08	3238.45	2.08	0.06

APPENDIX D

TEST POINTS

Test Description: Run 1 - 736BHP 1200RPM 10BTDC

Data Point Number: Run 1		Date:	08/04/99	Time:	18:12:0
			Duratio	n (minutes):	33.00
Description	Average	Min	Max	STDV	Varianc
AMBIENT AIR TEMPERATURE (F)	64.00	64.00	64.00	0.00	0.00
MBIENT AIR PRESSURE (psia)	12.08	12.08	12.08	0.00	0.00
MBIENT HUMIDITY (%)	80.00	80.00	80.00	0.00	0.00
AIR MANIFOLD PRESSURE ("Hg)	5.02	4.75	5.29	0.09	1.83
NR MANIFOLD RELATIVE HUMIDITY (%)	37.81	37.00	39.00	0.64	1.70
VIR MANIFOLD HUMIDITY RATIO (Ibwilba)	0.01553	0.01462	0.01662	0.04	1.70
NR SUPPLY TEMPERATURE (F)	99.54	98.00	101.00	0.72	0.72
VTAKE AIR FLOW (scfm)	1713.65	1696.80	1731.20	5.99	0.72
XHAUST FLOW (scfm)	-124.87	-124.87	-124.87	0.00	0.00
XHAUST STACK TEMPERATURE (F)	704.49	703.76	705.14	0.32	
CYLINDER 1 EXHAUST TEMPERATURE (F)	976.91	975.39			0.05
SYLINDER 2 EXHAUST TEMPERATURE (F)	977.79		978.76	0.70	0.07
SYLINDER 3 EXHAUST TEMPERATURE (F)		976.38	979.95	0.59	0.06
SYLINDER 4 EXHAUST TEMPERATURE (F)	980.38	978.96	981.54	0.50	0.05
	954.29	952.77	956.54	0.68	0.07
YLINDER 5 EXHAUST TEMPERATURE (F)	945.26	943.64	947.01	0.65	0.07
	929.75	927.77	931.93	0.97	0.10
YLINDER EXHAUST AVERAGE TEMP (F)	960.73	959.55	961.99	0.44	0.05
XHAUST HEADER TEMPERATURE (F)	704.49	703.76	705.14	0.32	0.05
RE TURBO EXHAUST PRESSURE ("Hg)	36.51	36.18	36.99	0.14	0.38
RE TURBO EXHAUST TEMPERATURE (F)	960.98	959.51	962.69	0.63	0.07
OST TURBO EXHAUST PRESSURE ("Hg)	4.82	4.76	4.91	0.03	0.57
OST TURBO EXHAUST TEMPERATURE (F)	797.89	796.61	799.79	0.66	0.08
URBO OIL PRESSURE ("Hg)	46.91	46.00	47.61	0.28	0.60
NGINE SPEED (rpm)	1196.57	1192.11	1201.50	1.57	0.13
NGINE HORSEPOWER (bhp)	737.29	734.46	740.17	1.08	0.15
NGINE OIL PRESSURE (psig)	52.13	51.32	52.93	0.35	0.67
NGINE OIL TEMPERATURE IN (F)	164.56	164.06	164.86	0.14	0.08
NGINE OIL TEMPERATURE OUT (F)	185.74	185.49	186.09	0.12	0.07
PECIFIC GRAVITY	0.68	0.68	0.68	0.00 ·	0.00
UEL TEMPERATURE (F)	90.61	90.25	91.05	0.17	0.19
UEL PRESSURE ("H2O above amp)	4.12	3.42	4.83	0.25	5.95
UEL SUPPLY PRESSURE (psig)	46.73	46.60	. 46.88	0.05	0.11
RIFICE DIFFERENTIAL PRESSURE ("H2O)	14.41	13.74	15.16	0.30	2.10
RIFICE STATIC PRESSURE (psig)	46.46	46.36	46.57	0.04	0.09
RIFICE TEMPERATURE (F)	85.59	85.44	85.75	0.06	0.06
UEL FLOW (SCFH)	5377.60		00.70	0.00	0.00
ALCULATED FUEL CONSUMPTION (BSFC)	7468.11				
UEL HEATING VALUE (Btu)	1023.90	1023.90	1023.90	0.00	0.00
IR FUEL RATIO	29.00	29.00	29.00	0.00	0.00
NTERCOOLER AIR DIFFERENTIAL PRESSURE ("H2O)	9.26	9.00	9.51	0.00	
VTERCOOLER AIR TEMP IN (F)	296.95	296.01	298.39		1.07
VTERCOOLER AIR TEMP OUT (F)	142.24	141.45		0.43	0.15
POST INTERCOOLER AIR MANIFOLD PRESSURE ("Hg)	69.21		143.83	0.63	0.44
VTERCOOLER WATER DIFFERENTIAL PRESSURE ("H2O)		68.91	69.41	0.10	0.14
VIERCOOLER WATER FLOW (GPM)	157.45	157.45	157.45	0.00	0.00
NTERCOOLER WATER FLOW (GPM)	62.63	61.71	63.96	0.36	0.57
	131.58	130.93	132.91	0.53	0.40
	142.94	142.24	144.42	0.52	0.37
NTERCOOLER SUPPLY PRESSURE (psi)	3.12	3.05	3.18	0.02	0.57
	734.51	733.72	735.50	0.42	0.06
OST CATALYST TEMPERATURE (F)	739.56	738.68	740.46	0.42	0.06
ATALYST DIFFERENTIAL PRESSURE ("H2O)	9.12	8.98	9.28	0.05	0.58
S. CO (g/bhp-hr): Pre-Catalyst	2.38	2.31	2.48	0.03	1.25
S. CO (g/bhp-hr): Post-Catalyst	0.15	0.14	0.16	0.00	2.35
3.S. NO (g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
3.S. NO (g/bhp-hr): Post-Cataiyst	0.00	0.00	0.00	0.00	0.00

Date: 08/04/99

Test Description: Run 1 - 736BHP 1200RPM 10BTDC

Data Point Number: Run 1

Data Point Number: Rull 1		Date:	00/04/99	rime:	10:12:00
	Duration (minutes):				33.00
Description	Average	Min	Max	STDV	Variance
3.S. NOx (corrected - g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
S. NOx (corrected - g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
S. NOx (g/bhp-hr): Pre-Catalyst	0.70	0.68	0.73	0.01	1.45
.S. NOx (g/bhp-hr): Post-Catalyst	0.73	0.71	0.76	0.01	1.55
.S. THC (g/bhp-hr): Pre-Catalyst	4.65	4.50	4.82	0.06	1.28
S. THC (g/bhp-hr): Post-Catalyst	4.78	4.64	4.94 .	0.06	1.21
b.S. Methane (g/bhp-hr): Pre-Catalyst	2.27	2.21	2.35	0.03	1.17
S. Methane (g/bhp-hr): Post-Catalyst	1.94	1.88	2.06	0.03	1.73
b.S. Non-Methane (g/bhp-hr): Pre-Catalyst	0.11	0.10	0.12	0.01	4.86
S. Non-Methane (g/bhp-hr): Post-Catalyst	0.09	0.08	0.09	0.00	4.23
02 (ppm): Pre-Catalyst	9.80	9.70	9.80	0.00	0.05
02 (ppm): Post-Catalyst	9.80	· 9.80	9.80	0.00	0.00
C (ppm): Pre-Catalyst	620.26	616.10	626.40	2.27	0.37
:O (ppm): Post-Catalyst	41.32	39.80	42.50	0.68	1.64
CO (ppm): Pre-Catalyst	6.29	6.24	6.30	0.03	0.40
CO2 (ppm): Post-Catalyst	6.46	6.44	6.47	0.00	0.40
IO (ppm): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
IO (ppm): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
IO (ppm - Corrected): Pre-Catalyst	59.68	58.70	60.80	0.53	0.89
	63.61	61.80	65.30	0.33	1.09
Ox (ppm - Corrected): Post-Catalyst				1.01	0.90
IOx (ppm): Pre-Catalyst	112.26	110.40	114.40		
IOx (ppm): Post-Catalyst	119.34	115.90	122.50	1.34	1.12
HC (ppm): Pre-Catalyst	1785.07	1766.90	1810.70	8.22	0.46
HC (ppm): Post-Catalyst	1869.95	1848.90	1897.70	8.49	0.45
fethane (ppm): Pre-Catalyst	1266.40	1266.40	1266.40	0.00	0.00
leihane (ppm): Post-Catalyst	1100.07	1095.90	1141.90	13.23	1.20
Ion-Methane (ppm): Pre-Catalyst	148.47	135.50	156.50	5.07	3.41
Ion-Methane (ppm): Post-Catalyst	117.90	111.00	122.40	3.73	3.17
YNO WATER IN TEMPERATURE (F)	80.61	80.33	80.93	0.11	0.14
YNO WATER OUT TEMPERATURE (F)	127.10	126.76	127.56	0.16	0.12
ACKET WATER IN TEMPERATURE (F)	173.09	172.80	173.59	0.14	0.08
ACKET WATER OUT TEMPERATURE (F)	179.39	178.00	181.00	0.61	0.34
ACKET WATER FLOW (GPM)	0.00	0.00	0.00	0.00	0.00
UBE OIL COOLING WATER IN TEMPERATURE (F)	81.13	81.13	81.72	0.04	0.05
UBE OIL COOLING WATER OUT TEMPERATURE (F)	86.69	86.29	87.08	0.18	0.20
UBE OIL FLOW (GPM)	129.19	128.57	129.70	0.21	0.16
CO F-Factor: Pre-Catalyst	4.26	4.15	4.41	0.05	1.19
CO F-Factor: Post-Catalyst	0.28	0.27	0.30	0.01	2.08
O F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
IO F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
IOx F-Factor: Pre-Catalyst	1.27	1.22	1.32	0.02	1.37
NOx F-Factor: Post-Catalyst	1.35	1.30	1.42	0.02	1.49
HC F-Factor: Pre-Catalyst	8.17	7.94	8.50	0.10	1.23
THC F-Factor: Post-Catalyst	8.58	8.31	8.87	0.11	1.24
Aethane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Aethane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
ion-Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Melhane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
ENGINE TORQUE	3236.04	3233.08	3238.45	2.11	0.07

Time: 18:12:00

Test Description: Run 2 - 515BHP 1200RPM 10BTDC

Data Point Number: Run 2		Date:	Date: 08/06/99 Time:		
		•	Duratio	n (minutes):	33.00
Description	Average	Min	Max	STDV	Varianc
AMBIENT AIR TEMPERATURE (F)	65.00	65.00	65.00	0.00	.0.00
MBIENT AIR PRESSURE (psia)	12.07	12.07	12.07	0.00	0.00
MBIENT HUMIDITY (%)	74.56	74.00	76.00	0.90	1.21
IR MANIFOLD PRESSURE ("Hg)	5.00	4.87	5.15	0.05	0.98
AIR MANIFOLD RELATIVE HUMIDITY (%)	30.43	30.00	31.00	0.50	1.63
NR MANIFOLD HUMIDITY RATIO (Iby/Ib _A)	0.01260	0.01176	0.01362	,	
AIR SUPPLY TEMPERATURE (F)	99.91	98.00	102.00	0.77	0.77
NTAKE AIR FLOW (scfm)	1291.79	1275.56	1304.32	4.47	0.35
EXHAUST FLOW (scfm)	-124.87	-124.87	-124.87	0.00	0.00
XHAUST STACK TEMPERATURE (F)	676.41	675.98	676.77	0.15	0.02
CYLINDER 1 EXHAUST TEMPERATURE (F)	960.47	957.93	962.89	1.00	0.10
CYLINDER 2 EXHAUST TEMPERATURE (F)	953.25	951.78	954.95	0.63	0.07
CYLINDER 3 EXHAUST TEMPERATURE (F)	954.72	952.77	956.74	0.85	0.09
CYLINDER 4 EXHAUST TEMPERATURE (F)	931.17	929.35	935.11	0.96	0.10
CYLINDER 5 EXHAUST TEMPERATURE (F)	913.20	911.30	915.27	0.81	0.09
YLINDER 6 EXHAUST TEMPERATURE (F)	913.20 914.19	912.49	915.86	0.70	0.03
CYLINDER EXHAUST AVERAGE TEMP (F)	937.84	936.56	939.41	0.61	0.08
XHAUST HEADER TEMPERATURE (F)	937.04 676.41	930.50 675.98	939.41 676.77	0.01	0.07
	28.80	28.47	29.16	0.14	0.48
	926.74	925.39	928.96	0.54	0.06
POST TURBO EXHAUST PRESSURE ("Hg)	4.99	4.89	5.15	0.05	0.94
	750.38	⁶ 749.39	751.77	0.51	0.07
TURBO OIL PRESSURE ("Hg)	47.36	46.56	48.09	0.29	0.60
ENGINE SPEED (rpm)	1197.04	1193.99	1201.50	1.69	0.14
ENGINE HORSEPOWER (bhp)	515.76	514.14	518.19	0.75	0.15
ENGINE OIL PRESSURE (psig)	52.60	51.96	53.33	0.35	0.67
	163.32	162.68	163.67	0.20	0.12
ENGINE OIL TEMPERATURE OUT (F)	183.18	182.72	183.51	0.15	0.08
	0.69	0.69	0.69	0.00	0.00
FUEL TEMPERATURE (F)	91.70	91.05	92.04	0.29	0.32
FUEL PRESSURE ("H2O above amp)	6.60	6.15	7.12	0.17	2.59
FUEL SUPPLY PRESSURE (psig)	47.17	47.09	47.27	0.05	0.10
ORIFICE DIFFERENTIAL PRESSURE ("H2O)	8.42	8.04	8.81	0.15	1.81
ORIFICE STATIC PRESSURE (psig)	46.64	46.60	46.68	0.02	0.03
ORIFICE TEMPERATURE (F)	87.86	87.47	88.14	0.18	0.18
FUEL FLOW (SCFH)	4083.22				
CALCULATED FUEL CONSUMPTION (BSFC)	8230.47				
FUEL HEATING VALUE (Btu)	1039.60	1039.60	1039.60	0.00	0.00
AIR FUEL RATIO	28.89	28.89	28.89	0.00	0.00
INTERCOOLER AIR DIFFERENTIAL PRESSURE ("H2O)	5.86	5.60	6.12	0.08	1.31
INTERCOOLER AIR TEMP IN (F)	280.87	280.14	281.53	0.28	0.10
INTERCOOLER AIR TEMP OUT (F)	137.14	136.09	138.87	0.77	0.56
POST INTERCOOLER AIR MANIFOLD PRESSURE ("Hg)	66.06	65.91	66.24	0.06	0.09
INTERCOOLER WATER DIFFERENTIAL PRESSURE ("H2O)	157.45	157.45	157.45	0.00	0.00
INTERCOOLER WATER FLOW (GPM)	55.49	54.46	56.39	0.29	0.53
INTERCOOLER WATER TEMP IN (F)	127.55	126.56	128.95	0.86	0.68
INTERCOOLER WATER TEMP OUT (F)	137.09	136.09	138.87	0.85	0.62
INTERCOOLER SUPPLY PRESSURE (psi)	2.72	2.66	2.78	0.02	0.61
PRE CATALYST TEMPERATURE (F)	705.51	704.75	706.33	0.29	0.04
POST CATALYST TEMPERATURE (F)	709.99	709.51	710.90	0.20	0.03
CATALYST DIFFERENTIAL PRESSURE ("H2O)	5.57	5.48	5.74	0.05	0.88
B.S. CO (g/bhp-hr): Pre-Catalyst	2.48	2.40	2.55	0.02	1.00
B.S. CO (g/bhp-hr): Post-Catalyst	0.11	0.10	0.11	0.00	4.46
B.S. NO (g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NO (g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00

the second second

a a la companya

Test Description: Run 2 - 515BHP 1200RPM 10BTDC

Data Point Number: Run 2		Date:	08/06/99	Time:	03:28:00
			Duration	n (minutes):	33.00
Description	Average	Min	Max	STDV	Variance
B.S. NOx (corrected - g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (corrected - g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (g/bhp-hr): Pre-Catalyst	0.52	0.50	0.55	0.01	2.09
B.S. NOx (g/bhp-hr): Post-Catalyst	0.55	0.53	0.59	0.01	2.10
B.S. THC (g/bhp-hr): Pre-Catalyst	6.15	5.93	6.32	0.06	· 0.98
B.S. THC (g/bhp-hr): Post-Catalyst	6.14	5.93	6.34	0.08	1.24
B.S. Methane (g/bhp-hr): Pre-Catalyst	2.79	2.61	2.91	0.08	2.87
B.S. Methane (g/bhp-hr): Post-Catalyst	2.48	2.39	2.61	0.05	1.90
B.S. Non-Methane (g/bhp-hr): Pre-Catalyst	0.15	0.14	0.18	0.01	7.14
B.S. Non-Methane (g/bhp-hr): Post-Catalyst	0.12	0.11	0.13	0.00	3.00
O2 (ppm): Pre-Catalyst	9.82	9.80	9.90	0.04	0.41
O2 (ppm): Post-Catalyst	9.83	9.80	9.90	0.05	0.46
CO (ppm): Pre-Catalyst	590.96	588.10	593.30	1.05	0.18
CO (ppm): Post-Catalyst	26.75	25.50	27.40	0.49	1.84
CO2 (ppm): Pre-Catalyst	6.23	6.23	6.29	0.02	0.24
CO2 (ppm): Post-Catalyst	6.42	6.40	6.45	0.01	0.17
NO (ppm): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NO (ppm): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
NOx (ppm - Corrected): Pre-Catalyst	40.78	39.50	42.70	0.73	1.80
NOx (ppm - Corrected): Post-Catalyst	44.14	42.60	46.70	0.86	1.95
NOx (ppm): Pre-Catalyst	76.28	74.00	80.00	1.48	1.95
NOx (ppm): Post-Catalyst	82.49	74.00 79.50	87.50	1.40	2.09
THC (ppm): Pre-Catalyst	2129.31	2100.60	2150.50	10.36	0.49
	2129.31	2100.00	2195.30	12.81	0.49
THC (ppm): Post-Catalyst Methane (ppm): Pre-Catalyst	1462.42	2129.40 1404.50	2195.30 1487.30	37.82	2.59
Methane (ppm): Post-Catalyst	1326.09	1312.00	1361.10	21.45	1.62
	160.11	147.00	181.20	11.48	7.17
Non-Methane (ppm): Pre-Catalyst Non-Methane (ppm): Post-Catalyst	131.12	126.10	135.70	2.72	2.08
DYNO WATER IN TEMPERATURE (F)	74.50	74.38	74.78	0.10	0.13
DYNO WATER OUT TEMPERATURE (F)	108.75	108.31	109.30	0.18	0.16
JACKET WATER IN TEMPERATURE (F)	175.33	174.38	175.97	0.49	0.10
JACKET WATER OUT TEMPERATURE (F)	179.05	177.00	181.00	0.43	0.45
JACKET WATER FLOW (GPM)	0.00	0.00	0.00	0.00	0.00
LUBE OIL COOLING WATER IN TEMPERATURE (F)	81.48	80.93	82.12	0.28	0.35
LUBE OIL COOLING WATER OUT TEMPERATURE (F)	86.56	85.89	87.08	0.20	0.35
LUBE OIL COOLING WATER OUT TEMPERATORE (1)	129.15	127.93	129.86	0.23	0.18
CO F-Factor: Pre-Catalyst	3.14	3.05	3.22	0.03	1.03
CO F-Factor: Post-Catalyst	0.14	0.13	0.15	0.00	2.34
NO F-Factor: Pre-Catalyst	0.00	0.13	0.15	0.00	0.00
	0.00	0.00	0.00	0.00	0.00
NO F-Factor: Post-Catalyst NOx F-Factor: Pre-Catalyst	0.67	0.64	0.00	0.00	0.00 1.85
NOX F-Factor: Pre-Catalyst NOX F-Factor: Post-Catalyst	0.72	0.69	0.71	0.01	1.05
THC F-Factor: Pre-Catalyst	7.67	7.42	7.87	0.01	1.97
THC F-Factor: Pre-Catalyst	7.83	7.42 7.57	8.07	0.08	1.01
-	0.00	0.00	0.00	0.10	0.00
Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Methane F-Factor: Post-Catalyst					
Non-Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
ENGINE TORQUE	2263.13	2261.01	2266.38	1.31	0.06

Test Description: Run 3 - 736BHP 1200RPM 10BTDC

Data Point Number: Run 3		Date:		13:23:23		
		•	Duratio	n (minutes):		
Description	Average	Min	Max	STDV	Variance	
MBIENT AIR TEMPERATURE (F)	69.00	69.00	69.00	0.00	0.00	
MBIENT AIR PRESSURE (psia)	12.07	12.07	12.07	0.00	0.00	
MBIENT HUMIDITY (%)	63.91	62.00	66.00	0.68	1.06	
IR MANIFOLD PRESSURE ("Hg)	5.00	4.83	5.12	0.05	0.95	
IR MANIFOLD RELATIVE HUMIDITY (%)	37.32	31.00	44.00	4.09	10.97	
IR MANIFOLD HUMIDITY RATIO (Ib _W ib _A)	0.01544	0.01218	0.01894			
IR SUPPLY TEMPERATURE (F)	99.74	98.00	101.00	0.68	0.68	
NTAKE AIR FLOW (scfm)	1020.45	1008.84	1031.96	3.99	0.39	
XHAUST FLOW (scfm)	-124.87	-124.87	-124.87	0.00	0.00	
XHAUST STACK TEMPERATURE (F)	640.38	639.27	641.45	0.59	0.00	
YLINDER 1 EXHAUST TEMPERATURE (F)	884.23	881.93	886.50			
YLINDER 2 EXHAUST TEMPERATURE (F)				1.05	0.12	
	880.51	878.56	882.53	1.09	0.12	
	877.49	875.19	879.75	1.05	0.12	
	861.64	859.51	864.27	1.07	0.12	
YLINDER 5 EXHAUST TEMPERATURE (F)	850.83	848.40	852.96	1.04	0.12	
YLINDER 6 EXHAUST TEMPERATURE (F)	843.41	841.46	845.42	0.90	0.11	
YLINDER EXHAUST AVERAGE TEMP (F)	866.35	864.90	868.14	0.95	0.11	
XHAUST HEADER TEMPERATURE (F)	640.38	639.27	641.45	0.59	0.09	
RE TURBO EXHAUST PRESSURE ("Hg)	21.26	20.86	21.67	0.13	0.59	
RE TURBO EXHAUST TEMPERATURE (F)	860.64	858.32	862.88	1.10	0.13	
OST TURBO EXHAUST PRESSURE ("Hg)	4.98	4.85	5.11	0.04	0.78	
OST TURBO EXHAUST TEMPERATURE (F)	725.65	723.60	727.37	0.92	0.13	
URBO OIL PRESSURE ("Hg)	45.32	44.47	45.92	0.28	0.61	
NGINE SPEED (rpm)	1001.59	997.37	1007.14	1.48	0.15	
NGINE HORSEPOWER (bhp)	431.67	430.04	433.64	0.70	0.16	
NGINE OIL PRESSURE (psig)	50.49	49.54	51.24	0.29	0.57	
NGINE OIL TEMPERATURE IN (F)	162.76	162.48	163.27	0.16	0.10	
NGINE OIL TEMPERATURE OUT (F)	180.01	179.54	180.53	0.17	0.09	
PECIFIC GRAVITY	0.69	0.69	0.69	0.00	0.00	
UEL TEMPERATURE (F)	90.05	89.66	90.45	0.17	0.19	
UEL PRESSURE ("H2O above amp)	6.88	6.39	7.44	0.19	2.79	
UEL SUPPLY PRESSURE (psig)	47.45	47.39	47.50	0.03	0.05	
PRIFICE DIFFERENTIAL PRESSURE ("H2O)	5.13	4.90	5.42	0.00	2.09	
PRIFICE STATIC PRESSURE (psig)	46.85	46.82	46.89	0.01		
RIFICE TEMPERATURE (F)	40.05 84.74	40.02 84.55			0.03	
UEL FLOW (SCFH)	3204.69	04.00	84.97	0.13	0.13	
CALCULATED FUEL CONSUMPTION (BSFC)					•	
UEL HEATING VALUE (Btu)	7718.01	4000.00	4000.00		0.00	
	1039.60	1039.60	1039.60	0.00	0.00	
	28.20	28.20	28.20	0.00	0.00	
NTERCOOLER AIR DIFFERENTIAL PRESSURE ("H2O)	4.79	4.64	4.98	0.06	1.20	
	232.33	231.53	232.92	0.31	0.14	
NTERCOOLER AIR TEMP OUT (F)	135.22	134.30	136.09	0.39	0.28	
POST INTERCOOLER AIR MANIFOLD PRESSURE ("Hg)	54.27	53.91	54.49	0.12	0.22	
NTERCOOLER WATER DIFFERENTIAL PRESSURE ("H2O)	157.45	157.45	157.45	0.00	0.00	
NTERCOOLER WATER FLOW (GPM)	58.55	56.55	59.77	0.58	0.99	
NTERCOOLER WATER TEMP IN (F)	130.31	128.95	131.72	0.59	0.45	
NTERCOOLER WATER TEMP OUT (F)	135.70	134.70	136.68	0.38	0.28	
NTERCOOLER SUPPLY PRESSURE (psi)	2.83	2.72	2.90	0.03	1.03	
RE CATALYST TEMPERATURE (F)	677.04	675.78	677.96	0.49	0.07	
POST CATALYST TEMPERATURE (F)	679.03	677.76	680.34	0.67	0.10	
ATALYST DIFFERENTIAL PRESSURE ("H2O)	3.88	3.78	3.97	0.03	0.81	
B.S. CO (g/bhp-hr): Pre-Catalyst	2.21	2.14	2.28	0.02	1.12	
B.S. CO (g/bhp-hr): Post-Catalyst	0.08	0.07	0.08	0.02	0.63	
			0.00	0.00	. 0.03	
B.S. NO (g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00	

Test Description: Run 3 - 736BHP 1200RPM 10BTDC

Description Average Min Max STDV Varian B.S. Nox (somediel -ghp-hr): Pre-Catalyst 0.00 <td< th=""><th>Data Point Number: Run 3</th><th>a la langa ng lang ng n</th><th>Date:</th><th>Time:</th><th>13:23:23</th></td<>	Data Point Number: Run 3	a la langa ng lang ng n	Date:	Time:	13:23:23	
B.S. NOX (corrected - g/bhp-hr): Pest-Catalyst 0.00 0				Duration	n (minutes):	33.00
B.S. NOX (corrected - gbhp-hr): Post-Catalyst 0.00 0.00 0.00 0.00 0.00 B.S. NOX (gbhp-hr): Post-Catalyst 0.52 0.47 0.65 0.02 4.48 B.S. NOX (gbhp-hr): Post-Catalyst 0.52 0.47 0.65 0.02 4.43 B.S. THG (gbhp-hr): Post-Catalyst 6.44 6.20 6.71 0.08 1.32 B.S. Multing (bph-hr): Post-Catalyst 2.91 2.82 3.13 0.06 1.65 B.S. Non-Melhane (g/bhp-hr): Post-Catalyst 0.16 0.15 0.17 0.01 3.61 D.S. Non-Melhane (g/bhp-hr): Post-Catalyst 0.16 0.15 0.17 0.01 3.61 D.C.G (pm): Pro-Catalyst 9.81 9.80 9.90 0.02 0.23 D.C (pm): Post-Catalyst 573.2 662.0 673.30 2.76 0.44 CO (pm): Pro-Catalyst 573.2 662.0 773.30 2.76 0.44 CO (pm): Pro-Catalyst 573.2 674.3 0.02 0.23 0.23 0.23 0.24 0.25	Description	Average	Min	Max	STDV	Variance
B.S. NOx (g/bhp-hr): Pre-Catalyst 0.46 0.42 0.50 0.02 4.48 B.S. NOX (g/bhp-hr): Pre-Catalyst 0.52 0.47 0.56 0.02 4.28 B.S. THC (g/bhp-hr): Pre-Catalyst 6.44 6.29 6.61 0.09 1.39 B.S. Mellanen (g/bhp-hr): Pre-Catalyst 2.45 2.35 2.68 0.05 1.91 B.S. Non-Melnane (g/bhp-hr): Pre-Catalyst 0.16 0.15 0.17 0.01 3.69 B.S. Non-Melnane (g/bhp-hr): Pre-Catalyst 0.16 0.15 0.17 0.01 3.69 O.Z (pm): Pre-Catalyst 9.81 9.80 9.90 0.02 0.23 OZ (pm): Pre-Catalyst 9.81 9.80 9.90 0.02 0.23 OZ (pm): Pre-Catalyst 6.37 6.43 0.02 0.23 0.02 0.03 0.46 OZ (pm): Pre-Catalyst 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	B.S. NOx (corrected - g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOX (php-hr): Post-Catalyst 0.52 0.47 0.56 0.02 4.32 B.S. THC (ghph-hr): Post-Catalyst 6.64 6.20 6.71 0.08 1.32 B.S. THC (ghph-hr): Post-Catalyst 2.91 2.82 3.13 0.06 1.95 B.S. Meihane (ghph-hr): Post-Catalyst 2.45 2.35 2.58 0.01 3.65 B.S. Non-Meihane (ghph-hr): Post-Catalyst 0.13 0.12 0.13 0.00 3.51 C0 (pm): Post-Catalyst 0.13 0.12 0.13 0.00 3.51 C0 (pm): Post-Catalyst 0.13 0.12 0.13 0.00 0.22 0.22 C0 (pm): Post-Catalyst 9.81 9.80 9.90 0.02 0.23 C0 (pm): Post-Catalyst 573.32 566.20 577.30 2.76 0.48 C0 (pm): Post-Catalyst 6.37 6.43 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	B.S. NOx (corrected - g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. THC (pthp-hr): Pre-Catalyst 6.44 6.20 6.71 0.08 1.32 B.S. Hick (pthp-hr): Pre-Catalyst 2.91 2.82 3.13 0.06 1.95 B.S. Meltane (pthp-hr): Pre-Catalyst 2.45 2.35 2.58 0.05 1.91 B.S. Non-Meltane (pthp-hr): Pre-Catalyst 0.16 0.15 0.17 0.00 3.69 B.S. Non-Meltane (pthp-hr): Pre-Catalyst 0.13 0.12 0.13 0.00 3.67 D.Z (ptm): Pre-Catalyst 9.81 9.80 9.90 0.02 0.22 C0 (ptm): Pre-Catalyst 573.32 569.20 579.30 2.76 0.48 C02 (ptm): Pre-Catalyst 2.189 2.08.0 2.280 0.43 1.99 C02 (ptm): Pre-Catalyst 2.189 2.080 2.280 0.43 1.99 C02 (ptm): Pre-Catalyst 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	B.S. NOx (g/bhp-hr): Pre-Catalyst	0.46	0.42	0.50	0.02	4.48
B.S. THC (ghtp-hr): Pre-Catalyst 6.44 6.20 6.71 0.08 1.32 B.S. THC (ghtp-hr): Pre-Catalyst 6.55 6.29 6.81 0.09 1.33 B.S. Multane (ghtp-hr): Pre-Catalyst 2.45 2.35 2.58 0.05 1.91 B.S. Non-Meltane (ghtp-hr): Pre-Catalyst 0.16 0.15 0.17 0.00 3.57 B.S. Non-Meltane (ghtp-hr): Pre-Catalyst 0.16 0.15 0.17 0.00 3.57 C.G. (pm): Pre-Catalyst 9.81 9.80 9.90 0.02 0.23 CO (pm): Pre-Catalyst 573.32 569.20 579.30 2.76 0.48 CO2 (pm): Pre-Catalyst 6.37 6.35 6.41 0.03 0.45 CO2 (pm): Pre-Catalyst 0.00 0.00 0.00 0.00 0.00 0.00 NO (pm): Pre-Catalyst 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00		0.52	0.47	0.56	0.02	4.32
B.S. THC (php-hr): Post-Catalyst 6.55 6.29 6.81 0.09 1.39 B.S. Methane (g/bp-hr): Post-Catalyst 2.91 2.82 3.13 0.06 1.91 B.S. Methane (g/bp-hr): Post-Catalyst 2.45 2.35 2.58 0.051 1.91 B.S. Non-Methane (g/bp-hr): Post-Catalyst 0.16 0.17 0.01 3.69 D2 (ppm): Post-Catalyst 9.81 9.80 9.80 0.02 0.23 C0 (ppm): Post-Catalyst 573.32 569.20 579.30 2.76 0.43 C0 (ppm): Post-Catalyst 6.37 6.43 0.02 0.23 0.02 0.03 0.04 0.00 <t< td=""><td></td><td>6.44</td><td>6.20</td><td></td><td>0.08</td><td>1.32</td></t<>		6.44	6.20		0.08	1.32
B.S. Melhane (globp-hr): Pre-Catalyst 2.91 2.82 3.13 0.06 1.95 B.S. Melhane (globp-hr): Pre-Catalyst 0.16 0.15 0.17 0.01 3.69 B.S. Non-Melhane (globp-hr): Pre-Catalyst 0.13 0.12 0.13 0.00 3.51 O2 (ppm): Pre-Catalyst 9.81 9.80 9.90 0.02 0.23 C0 (ppm): Pre-Catalyst 9.81 9.80 9.90 0.02 0.23 C0 (ppm): Pre-Catalyst 1.37 6.35 6.41 0.03 0.44 C02 (ppm): Pre-Catalyst 6.37 6.45 0.02 0.22 C02 (ppm): Pre-Catalyst 0.00 0.00 0.00 0.00 0.00 C02 (ppm): Pre-Catalyst 0.00 <td></td> <td>6.55</td> <td>6.29</td> <td>6.81</td> <td>0.09</td> <td>1.39</td>		6.55	6.29	6.81	0.09	1.39
B.S. Mathane (globp-hr): Post-Catalyst 2.45 2.36 2.68 0.05 1.91 B.S. Non-Methane (globp-hr): Pre-Catalyst 0.16 0.15 0.17 0.01 3.69 D.S. Non-Methane (globp-hr): Pre-Catalyst 0.13 0.12 0.13 0.00 0.23 O2 (ppm): Pre-Catalyst 9.81 9.80 9.90 0.02 0.23 O2 (ppm): Pre-Catalyst 9.81 9.80 9.90 0.02 0.23 C0 (ppm): Pre-Catalyst 1.81 8.80 9.90 0.02 0.23 C02 (ppm): Pre-Catalyst 1.83 6.37 6.35 6.41 0.03 0.45 C02 (ppm): Pre-Catalyst 0.00						
B.S. Non-Methane (g/bhp-hr): Pre-Catalyst 0.16 0.15 0.17 0.01 3.69 B.S. Non-Methane (g/bhp-hr): Post-Catalyst 0.13 0.12 0.13 0.00 3.51 O2 (ppm): Pre-Catalyst 9.81 9.80 9.90 0.02 0.23 CO (ppm): Pre-Catalyst 573.32 569.20 579.30 2.76 0.48 CO (ppm): Pre-Catalyst 6.37 6.35 6.41 0.03 0.43 CO (ppm): Pre-Catalyst 6.37 6.35 6.41 0.03 0.00 CO (ppm): Pre-Catalyst 0.00						
B.S. Non-Methane (g/bhp-hr): Post-Catalyst 0.13 0.12 0.13 0.00 3.51 O2 (ppm): Pre-Catalyst 9.81 9.80 9.90 0.02 0.23 O2 (ppm): Pre-Catalyst 9.81 9.80 9.90 0.02 0.23 CO (ppm): Pre-Catalyst 573.22 566.20 573.00 2.76 0.48 CO (ppm): Pre-Catalyst 6.37 6.35 6.41 0.03 0.45 CO (ppm): Pre-Catalyst 6.00 6.00 0.00						
O2 (ppm): Pre-Catalyst 9.81 9.80 9.90 0.02 0.23 O2 (ppm): Pre-Catalyst 573.32 569.20 579.30 2.76 0.48 C0 (ppm): Pre-Catalyst 27.89 0.83 0.80 0.02 0.23 C0 (ppm): Pre-Catalyst 6.37 6.35 6.41 0.03 0.45 C02 (ppm): Pre-Catalyst 6.00 0.00 0.00 0.00 0.00 0.00 N0 (ppm): Pre-Catalyst 0.00 0.00 0.00 0.00 0.00 0.00 0.00 N0 (ppm): Pre-Catalyst 0.00						•
O2 (ppm): Post-Catalyst 9.81 9.80 9.90 0.02 0.23 CO (ppm): Pre-Catalyst 573.32 569.20 579.30 2.76 0.48 CO (ppm): Pre-Catalyst 21.89 20.80 22.50 0.43 1.99 CO2 (ppm): Pre-Catalyst 6.37 6.35 6.41 0.03 0.45 CO2 (ppm): Pre-Catalyst 0.00 0.00 0.00 0.00 0.00 NO (ppm): Pre-Catalyst 0.00 0.00 0.00 0.00 0.00 NOx (ppm: Corrected): Pre-Catalyst 0.00 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
CO (ppm): Pre-Catalyst 573.32 569.20 579.30 2.76 0.48 CO (ppm): Pre-Catalyst 21.89 20.80 22.50 0.43 1.99 CO2 (ppm): Pre-Catalyst 6.37 6.35 6.41 0.03 0.02 0.28 NO (ppm): Pre-Catalyst 0.00 0.00 0.00 0.00 0.00 0.00 NO (ppm): Pre-Catalyst 0.00 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
CO (ppm): Post-Catalyst 21.39 20.80 22.50 0.43 1.99 CO2 (ppm): Pre-Catalyst 6.37 6.35 6.41 0.03 0.45 CO2 (ppm): Pre-Catalyst 6.00 0.00 0.00 0.00 0.00 NO (ppm): Post-Catalyst 0.00 0.00 0.00 0.00 0.00 NO (ppm): Post-Catalyst 0.00 0.00 0.00 0.00 0.00 NOx (ppm - Corrected): Post-Catalyst 43.58 40.20 46.80 1.82 4.17 NOx (ppm): Pre-Catalyst 72.83 68.00 77.60 2.90 3.98 THC (ppm): Pre-Catalyst 2424.37 2383.10 2473.20 23.04 0.95 THC (ppm): Pre-Catalyst 199.15.9 1373.30 1472.90 25.43 1.78 Methane (ppm): Pre-Catalyst 199.15.9 1373.30 1472.90 25.43 1.78 Methane (ppm): Pre-Catalyst 169.11 1648.30 1732.20 26.88 1.79 Methane (ppm): Pre-Catalyst 169.15 178.77						
CO2 (ppm): Pre-Catalyst 6.37 6.35 6.41 0.03 0.45 CO2 (ppm): Post-Catalyst 0.00 0.00 0.00 0.00 0.00 NO (ppm): Pre-Catalyst 0.00 0.00 0.00 0.00 0.00 NO (ppm): Pre-Catalyst 0.00 0.00 0.00 0.00 0.00 NOx (ppm - Corrected): Pre-Catalyst 0.00 0.00 0.00 0.00 0.00 NOx (ppm): Pre-Catalyst 72.83 66.00 77.60 2.90 3.89 NOx (ppm): Pre-Catalyst 2424.37 2383.10 2473.20 2.04 0.55 THC (ppm): Pre-Catalyst 2458.73 2412.40 2517.20 26.90 1.09 Melhane (ppm): Post-Catalyst 1361.51 178.73 132.00 1.83 Non-Melhane (ppm): Pre-Catalyst 1383.76 1787.70 135.50 5.49 2.99 Moh-Meltane (ppm): Pre-Catalyst 147.29 141.60 151.00 4.01 2.72 DYNO WATER IN TEMPERATURE (F) 73.27 72.79 73.79 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
CO2 (ppm): Post-Catalyst 6.40 6.37 6.43 0.02 0.28 NO (ppm): Post-Catalyst 0.00 0.00 0.00 0.00 0.00 0.00 NO (ppm): Post-Catalyst 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NOx (ppm - Corrected): Pre-Catalyst 0.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.45</td>						0.45
NO (ppm): Pre-Catalyst 0.00 0.00 0.00 0.00 NO (ppm): Post-Catalyst 0.00 0.00 0.00 0.00 NOx (ppm - Corrected): Pre-Catalyst 0.00 0.00 0.00 0.00 NOx (ppm): Post-Catalyst 43.58 40.20 46.80 1.82 4.17 NOx (ppm): Pre-Catalyst 72.83 66.00 77.60 2.90 3.98 NOX (ppm): Pre-Catalyst 76.10 87.50 3.20 3.94 THC (ppm): Post-Catalyst 2424.37 2383.10 2473.20 23.04 0.95 THC (ppm): Post-Catalyst 1661.01 1648.30 1732.20 29.68 1.79 Methane (ppm): Post-Catalyst 1391.59 1373.30 1427.90 25.43 1.83 Non-Methane (ppm): Post-Catalyst 183.76 178.70 129.69 1.09 Morthalena (ppm): Post-Catalyst 1391.59 1373.30 1427.90 25.43 1.83 Non-Methane (ppm): Post-Catalyst 139.75 178.70 138.00 4.01 2.72						
NO (ppm): Post-Catalyst 0.00 0.00 0.00 0.00 NOx (ppm - Corrected): Pre-Catalyst 0.00 0.00 0.00 0.00 NOx (ppm): Pre-Catalyst 43.58 40.20 46.80 1.82 4.17 NOx (ppm): Pre-Catalyst 72.83 68.00 77.60 2.90 3.98 NOx (ppm): Pre-Catalyst 2424.37 2338.10 2473.20 23.04 0.95 THC (ppm): Pre-Catalyst 2458.73 2412.40 2517.20 26.90 1.09 Methane (ppm): Pre-Catalyst 1661.01 1648.30 1732.20 29.68 1.77 Methane (ppm): Pre-Catalyst 1391.59 1373.30 1427.90 25.43 1.83 Non-Methane (ppm): Pre-Catalyst 183.78 178.70 145.00 4.01 2.72 DYNO WATER NTEMPERATURE (F) 73.27 72.79 73.79 0.18 0.24 DYNO WATER NTEMPERATURE (F) 176.45 175.97 176.96 0.19 0.11 JACKET WATER NTEMPERATURE (F) 176.45 175.97 176.9						
Nox (ppm - Corrected): Pre-Catalyst 0.00 0.00 0.00 0.00 0.00 NOx (ppm - Corrected): Post-Catalyst 43.58 40.20 46.80 1.82 4.17 NOx (ppm): Pre-Catalyst 72.83 68.00 77.60 2.90 3.88 NOx (ppm): Post-Catalyst 2424.37 2383.10 2473.20 23.04 0.95 THC (ppm): Pre-Catalyst 2458.73 2412.40 2517.20 26.90 1.09 Methane (ppm): Pre-Catalyst 1661.01 1646.30 1732.20 29.88 1.79 Methane (ppm): Pre-Catalyst 183.78 176.70 193.50 5.49 2.99 Non-Methane (ppm): Pre-Catalyst 183.78 176.70 193.50 5.49 2.99 Non-Methane (ppm): Pre-Catalyst 183.78 176.70 193.50 5.49 2.99 Nor-Methane (ppm): Pre-Catalyst 101.87 101.65 102.16 0.12 0.12 DYNO WATER IN TEMPERATURE (F) 178.45 175.97 176.98 0.19 0.11 JACKET WATER IN TEMPERA						
NOx (ppm - Corrected): Post-Catalyst 43.58 40.20 46.80 1.82 4.17 NOx (ppm): Pre-Catalyst 72.83 68.00 77.60 2.90 3.98 NOx (ppm): Post-Catalyst 81.67 76.10 87.50 3.20 3.91 THC (ppm): Pre-Catalyst 2424.37 2383.10 2473.20 23.04 0.95 THC (ppm): Pre-Catalyst 1661.01 1648.30 1732.20 29.68 1.76 Mathane (ppm): Post-Catalyst 1391.59 1373.30 1427.90 25.43 1.83 Non-Methane (ppm): Post-Catalyst 183.78 178.70 193.50 5.49 2.96 Non-Methane (ppm): Post-Catalyst 183.78 178.70 193.50 5.49 2.99 Non-Methane (ppm): Post-Catalyst 101.87 101.56 102.16 0.12 0.12 DYNO WATER NUT EMPERATURE (F) 73.27 72.79 73.79 0.18 0.02 JACKET WATER OUT TEMPERATURE (F) 176.45 175.09 176.96 0.19 0.11 JACKET WATER OUT TEMPERATU			,			
NOx (ppm): Pre-Catalyst 72.83 68.00 77.60 2.90 3.98 NOx (ppm): Post-Catalyst 81.67 76.10 87.50 3.20 3.94 THC (ppm): Pre-Catalyst 2424.37 2383.10 2473.20 23.04 0.95 THC (ppm): Pre-Catalyst 2458.73 2412.40 2517.20 29.08 1.09 Methane (ppm): Pre-Catalyst 1661.01 1648.30 1732.20 29.68 1.79 Methane (ppm): Pre-Catalyst 1391.59 1373.30 1427.90 25.43 1.83 Non-Methane (ppm): Pre-Catalyst 183.78 178.70 193.50 5.49 2.99 DYNO WATER IN TEMPERATURE (F) 73.27 72.79 73.79 0.18 0.24 DYNO WATER OUT TEMPERATURE (F) 176.45 175.97 176.96 0.19 0.11 JACKET WATER IN TEMPERATURE (F) 178.83 178.00 181.00 0.67 0.38 JACKET WATER FLOW (GPM) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0						
NOx (ppm): Post-Catalyst 81.67 76.10 87.50 3.20 3.91 THC (ppm): Pre-Catalyst 2424.37 2383.10 2473.20 23.04 0.95 THC (ppm): Post-Catalyst 2458.73 2412.40 2517.20 26.90 1.09 Methane (ppm): Pre-Catalyst 1661.01 1648.30 1732.20 29.68 1.79 Methane (ppm): Pre-Catalyst 183.78 178.70 193.50 5.49 2.99 Nor-Methane (ppm): Post-Catalyst 183.78 178.70 193.50 5.49 2.99 Nor-Methane (ppm): Post-Catalyst 183.78 178.70 193.50 5.49 2.99 Nor-Methane (ppm): Post-Catalyst 147.29 141.60 151.00 4.01 2.72 DYNO WATER IN TEMPERATURE (F) 73.27 72.79 73.79 0.18 0.24 DYNO WATER OUT TEMPERATURE (F) 176.45 176.96 0.19 0.11 JACKET WATER OUT TEMPERATURE (F) 178.83 176.00 181.00 0.67 0.38 JACKET WATER FLOW (GPM) 0.00<						
THC (ppm): Pre-Catalyst 2424.37 2383.10 2473.20 23.04 0.955 THC (ppm): Post-Catalyst 2458.73 2412.40 2517.20 26.90 1.09 Methane (ppm): Pre-Catalyst 1661.01 1648.30 1732.20 29.68 1.79 Methane (ppm): Post-Catalyst 1391.59 1373.30 1427.90 25.43 1.83 Non-Methane (ppm): Post-Catalyst 183.78 178.70 193.50 5.49 2.99 Non-Methane (ppm): Post-Catalyst 147.29 141.60 151.00 4.01 2.72 DYNO WATER IN TEMPERATURE (F) 73.27 72.79 73.79 0.18 0.24 DYNO WATER NUT TEMPERATURE (F) 101.87 101.56 102.16 0.12 0.12 JACKET WATER ROUT TEMPERATURE (F) 178.83 178.00 181.00 0.67 0.38 JACKET WATER FLOW (GPM) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0						
THC (pm): Post-Catalyst 2458.73 2412.40 2517.20 26.90 1.09 Methane (ppm): Pre-Catalyst 1661.01 1648.30 1732.20 29.68 1.79 Methane (ppm): Post-Catalyst 1391.59 1373.30 1427.90 25.43 1.83 Non-Methane (ppm): Post-Catalyst 183.78 176.70 193.50 5.49 2.99 Non-Methane (ppm): Post-Catalyst 147.29 141.60 151.00 4.01 2.72 DYNO WATER IN TEMPERATURE (F) 73.27 72.79 73.79 0.18 0.24 DYNO WATER OUT TEMPERATURE (F) 101.87 101.56 102.16 0.12 0.12 JACKET WATER OUT TEMPERATURE (F) 176.45 175.97 176.96 0.19 0.11 JACKET WATER OUT TEMPERATURE (F) 178.83 178.00 10.00 0.00						
Methane (ppm): Pre-Catalyst 1661.01 1648.30 1732.20 29.68 1.79 Methane (ppm): Post-Catalyst 1391.59 1373.30 1427.90 25.43 1.83 Non-Methane (ppm): Post-Catalyst 183.78 176.70 193.50 5.49 2.99 Non-Methane (ppm): Post-Catalyst 147.29 141.60 151.00 4.01 2.72 DYNO WATER IN TEMPERATURE (F) 73.27 72.79 73.79 0.18 0.24 DYNO WATER OUT TEMPERATURE (F) 101.87 101.56 102.16 0.12 0.12 JACKET WATER OUT TEMPERATURE (F) 176.45 175.97 176.96 0.19 0.11 JACKET WATER OUT TEMPERATURE (F) 178.83 178.00 181.00 0.67 0.38 JACKET WATER OUT TEMPERATURE (F) 82.71 82.71 82.71 0.00 0.00 0.00 LUBE OIL COOLING WATER OUT TEMPERATURE (F) 86.93 86.68 87.28 0.15 0.18 LUBE OIL COOLING WATER OUT TEMPERATURE (F) 89.33 86.68 87.28 0.15 0.18<						•
Methane (ppm): Post-Catalyst 1391.59 1373.30 1427.90 25.43 1.83 Non-Methane (ppm): Pre-Catalyst 183.78 178.70 193.50 5.49 2.99 Non-Methane (ppm): Post-Catalyst 147.29 141.60 151.00 4.01 2.72 DYNO WATER IN TEMPERATURE (F) 73.27 72.79 73.79 0.18 0.24 DYNO WATER OUT TEMPERATURE (F) 101.87 101.56 102.16 0.12 0.12 JACKET WATER OUT TEMPERATURE (F) 176.45 175.97 176.96 0.19 0.11 JACKET WATER FLOW (GPM) 0.00 0.00 0.00 0.00 0.00 LUBE OIL COOLING WATER IN TEMPERATURE (F) 82.71 82.71 82.71 0.00 0.00 LUBE OIL COOLING WATER OUT TEMPERATURE (F) 86.93 86.68 87.28 0.15 0.18 LUBE OIL FLOW (GPM) 129.34 128.57 130.02 0.24 0.19 CO F-Factor: Pre-Catalyst 0.00 0.00 0.00 0.00 0.00 0.00 NO						
Non-Methane (ppm): Pre-Catalyst 183.78 178.70 193.50 5.49 2.99 Non-Methane (ppm): Post-Catalyst 147.29 141.60 151.00 4.01 2.72 DYNO WATER IN TEMPERATURE (F) 73.27 72.79 73.79 0.18 0.24 DYNO WATER OUT TEMPERATURE (F) 101.87 101.56 102.16 0.12 0.12 JACKET WATER OUT TEMPERATURE (F) 176.45 175.97 176.96 0.19 0.11 JACKET WATER ROUT TEMPERATURE (F) 178.83 178.00 181.00 0.67 0.38 JACKET WATER FLOW (GPM) 0.00 0.00 0.00 0.00 0.00 LUBE OIL COOLING WATER OUT TEMPERATURE (F) 82.71 82.71 82.71 0.00 0.00 LUBE OIL COOLING WATER OUT TEMPERATURE (F) 86.93 86.68 87.28 0.15 0.18 LUBE OIL FLOW (GPM) 129.34 128.57 130.02 0.24 0.19 CO F-Factor: Pre-Catalyst 0.00 0.00 0.00 0.00 0.00 0.00 0.00						
Non-Methane (ppm): Post-Catalyst 147.29 141.60 151.00 4.01 2.72 DYNO WATER IN TEMPERATURE (F) 73.27 72.79 73.79 0.18 0.24 DYNO WATER OUT TEMPERATURE (F) 101.87 101.56 102.16 0.12 0.12 JACKET WATER IN TEMPERATURE (F) 176.45 175.97 176.96 0.19 0.11 JACKET WATER OUT TEMPERATURE (F) 176.45 175.97 176.96 0.19 0.11 JACKET WATER NOUT TEMPERATURE (F) 176.45 175.97 176.96 0.19 0.11 JACKET WATER ROW (GPM) 0.00 0						
DYNO WATER IN TEMPERATURE (F) 73.27 72.79 73.79 0.18 0.24 DYNO WATER OUT TEMPERATURE (F) 101.87 101.56 102.16 0.12 0.12 JACKET WATER IN TEMPERATURE (F) 176.45 175.97 176.96 0.19 0.11 JACKET WATER OUT TEMPERATURE (F) 176.45 175.97 176.96 0.19 0.11 JACKET WATER OUT TEMPERATURE (F) 176.83 178.00 181.00 0.67 0.38 JACKET WATER FLOW (GPM) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 LUBE OIL COOLING WATER IN TEMPERATURE (F) 82.71 82.71 82.71 0.00						
DYNO WATER OUT TEMPERATURE (F) 101.87 101.56 102.16 0.12 0.12 JACKET WATER IN TEMPERATURE (F) 176.45 175.97 176.96 0.19 0.11 JACKET WATER OUT TEMPERATURE (F) 178.83 178.00 181.00 0.67 0.38 JACKET WATER FLOW (GPM) 0.00 0.00 0.00 0.00 0.00 0.00 LUBE OIL COOLING WATER IN TEMPERATURE (F) 82.71 82.71 82.71 0.00 0.00 0.00 LUBE OIL COOLING WATER OUT TEMPERATURE (F) 86.93 86.68 87.28 0.15 0.18 LUBE OIL FLOW (GPM) 129.34 128.57 130.02 0.24 0.19 CO F-Factor: Pre-Catalyst 0.00 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>0.24</td></td<>						0.24
JACKET WATER IN TEMPERATURE (F) 176.45 175.97 176.96 0.19 0.11 JACKET WATER OUT TEMPERATURE (F) 176.83 178.00 181.00 0.67 0.38 JACKET WATER FLOW (GPM) 0.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.12</td>						0.12
JACKET WATER OUT TEMPERATURE (F)178.83178.00181.000.670.38JACKET WATER FLOW (GPM)0.000.000.000.000.000.00LUBE OIL COOLING WATER IN TEMPERATURE (F)82.7182.7182.710.000.00LUBE OIL COOLING WATER OUT TEMPERATURE (F)86.9386.6887.280.150.48LUBE OIL FLOW (GPM)129.34128.57130.020.240.19CO F-Factor: Pre-Catalyst0.000.000.000.000.00CO F-Factor: Pre-Catalyst0.090.090.100.000.00NO F-Factor: Pre-Catalyst0.000.000.000.000.00NO F-Factor: Pre-Catalyst0.000.000.000.000.00NO F-Factor: Post-Catalyst0.000.000.000.000.00NO F-Factor: Post-Catalyst0.000.000.000.000.00NO F-Factor: Pre-Catalyst0.000.000.000.000.00NO F-Factor: Post-Catalyst0.000.000.000.000.00NO F-Factor: Pre-Catalyst0.000.000.000.000.00NO F-Factor: Post-Catalyst0.000.000.000.000.00NO F-Factor: Pre-Catalyst0.000.000.000.000.00NO F-Factor: Pre-Catalyst0.000.000.000.000.00NO F-Factor: Pre-Catalyst0.000.000.000.000.00 <tr <tr="">NO F-Factor: Pr</tr>						0.11
JACKET WATER FLOW (GPM)0.000.000.000.000.00LUBE OIL COOLING WATER IN TEMPERATURE (F)82.7182.7182.710.000.00LUBE OIL COOLING WATER OUT TEMPERATURE (F)86.9386.6887.280.150.18LUBE OIL FLOW (GPM)129.34128.57130.020.240.19CO F-Factor: Pre-Catalyst0.000.000.000.000.00CO F-Factor: Pre-Catalyst0.090.090.100.002.18NO F-Factor: Pre-Catalyst0.000.000.000.000.00NO F-Factor: Post-Catalyst0.000.000.000.000.00NO F-Factor: Post-Catalyst0.000.000.000.000.00NO F-Factor: Post-Catalyst0.000.000.000.000.00NO F-Factor: Post-Catalyst0.000.000.000.000.00NO F-Factor: Post-Catalyst0.000.000.000.000.00NO F-Factor: Pre-Catalyst0.000.000.000.000.00NO F-Factor: Pre-Catalyst0.000.000.000.000.00NO F-Factor: Pre-Catalyst0.000.000.000.000.00NO F-Factor: Pre-Catalyst0.000.000.000.000.00NO F-Factor: Pre-Catalyst0.000.000.000.000.00Methane F-Factor: Pre-Catalyst0.000.000.000.000.00No Hethane F-Factor: Pre-Catalyst<		*				0.38
LUBE OIL COOLING WATER IN TEMPERATURE (F)82.7182.7182.7182.710.000.00LUBE OIL COOLING WATER OUT TEMPERATURE (F)86.9386.6887.280.150.18LUBE OIL FLOW (GPM)129.34128.57130.020.240.19CO F-Factor: Pre-Catalyst0.000.000.000.000.00CO F-Factor: Post-Catalyst0.090.090.100.002.18NO F-Factor: Pre-Catalyst0.000.000.000.000.00NO F-Factor: Pre-Catalyst0.000.000.000.000.00NO F-Factor: Pre-Catalyst0.000.000.000.000.00NO F-Factor: Pre-Catalyst0.000.000.000.000.00NO F-Factor: Pre-Catalyst0.000.000.000.000.00NO F-Factor: Pre-Catalyst0.000.000.000.000.00NOX F-Factor: Pre-Catalyst0.000.000.000.000.00 <tr <tr="">Nothane F-Factor:</tr>						0.00
LUBE OIL COOLING WATER OUT TEMPERATURE (F)86.9386.6887.280.150.18LUBE OIL FLOW (GPM)129.34128.57130.020.240.19CO F-Factor: Pre-Catalyst0.000.000.000.000.00CO F-Factor: Pre-Catalyst0.090.090.100.002.18NO F-Factor: Pre-Catalyst0.000.000.000.000.00NO F-Factor: Pre-Catalyst0.000.000.000.000.00Methane F-Factor: Pre-Catalyst0.000.000.000.000.00Methane F-Factor: Pre-Catalyst0.000.000.000.000.00Non-Methane F-Factor: Pre-Catalyst0.000.000.000.000.00		82.71				0.00
LUBE OIL FLOW (GPM)129.34128.57130.020.240.19CO F-Factor: Pre-Catalyst0.000.000.000.000.00CO F-Factor: Post-Catalyst0.090.090.100.002.18NO F-Factor: Pre-Catalyst0.000.000.000.000.000.00NO F-Factor: Pre-Catalyst0.000.000.000.000.000.00NO F-Factor: Pre-Catalyst0.000.000.000.000.000.00NOX F-Factor: Pre-Catalyst0.000.000.000.000.000.00NOX F-Factor: Pre-Catalyst0.560.520.610.024.21THC F-Factor: Pre-Catalyst0.000.000.000.000.00THC F-Factor: Pre-Catalyst0.000.000.000.000.00Methane F-Factor: Pre-Catalyst0.000.000.000.000.00Methane F-Factor: Pre-Catalyst0.000.000.000.000.00Non-Methane F-Factor: Pre-Catalyst0.000.000.000.000.00						0.18
CO F-Factor: Pre-Catalyst 0.00 0.00 0.00 0.00 0.00 CO F-Factor: Post-Catalyst 0.09 0.09 0.10 0.00 2.18 NO F-Factor: Pre-Catalyst 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NO F-Factor: Pre-Catalyst 0.00						0.19
CO F-Factor: Post-Catalyst 0.09 0.09 0.10 0.00 2.18 NO F-Factor: Pre-Catalyst 0.00 0.00 0.00 0.00 0.00 0.00 NO F-Factor: Post-Catalyst 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NO F-Factor: Post-Catalyst 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NOx F-Factor: Pre-Catalyst 0.00						0.00
NO F-Factor: Pre-Catalyst 0.00	-					2.18
NO F-Factor: Post-Catalyst 0.00 <th< td=""><td>-</td><td></td><td></td><td></td><td></td><td>0.00</td></th<>	-					0.00
NOx F-Factor: Pre-Catalyst 0.00 0.00 0.00 0.00 0.00 NOx F-Factor: Post-Catalyst 0.56 0.52 0.61 0.02 4.21 THC F-Factor: Pre-Catalyst 0.00 0.00 0.00 0.00 0.00 THC F-Factor: Pre-Catalyst 0.00 0.00 0.00 0.00 0.00 THC F-Factor: Post-Catalyst 6.95 6.67 7.23 0.10 1.43 Methane F-Factor: Pre-Catalyst 0.00 0.00 0.00 0.00 0.00 Methane F-Factor: Pre-Catalyst 0.00 0.00 0.00 0.00 0.00 0.00 Non-Methane F-Factor: Pre-Catalyst 0.00 0.00 0.00 0.00 0.00 0.00	•					
NOx F-Factor: Post-Catalyst 0.56 0.52 0.61 0.02 4.21 THC F-Factor: Pre-Catalyst 0.00 0	-					
THC F-Factor: Pre-Catalyst 0.00 0.00 0.00 0.00 0.00 THC F-Factor: Post-Catalyst 6.95 6.67 7.23 0.10 1.43 Methane F-Factor: Pre-Catalyst 0.00 0.00 0.00 0.00 0.00 Methane F-Factor: Post-Catalyst 0.00 0.00 0.00 0.00 0.00 Methane F-Factor: Post-Catalyst 0.00 0.00 0.00 0.00 0.00 Non-Methane F-Factor: Pre-Catalyst 0.00 0.00 0.00 0.00 0.00	•					
THC F-Factor: Post-Catalyst 6.95 6.67 7.23 0.10 1.43 Methane F-Factor: Pre-Catalyst 0.00 0.00 0.00 0.00 0.00 Methane F-Factor: Post-Catalyst 0.00 0.00 0.00 0.00 0.00 Non-Methane F-Factor: Pre-Catalyst 0.00 0.00 0.00 0.00 0.00	•					0.00
Methane F-Factor: Pre-Catalyst 0.00 0.00 0.00 0.00 Methane F-Factor: Post-Catalyst 0.00 0.00 0.00 0.00 0.00 Non-Methane F-Factor: Pre-Catalyst 0.00 0.00 0.00 0.00 0.00	-					1.43
Methane F-Factor: Post-Catalyst 0.00	•					0.00
Non-Methane F-Factor: Pre-Catalyst 0.00 0.00 0.00 0.00 0.00	•					0.00
•	•					0.00
INOIL-INIBILIARIE F-FACTOF: POST-CATAINST 0.00 0.00 0.00 0.00 0.00 0.00	Non-Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
	-					0.00

Test Description: Run 4 - 617BHP 1000RPM 10BTDC

Data Point Number: Run 4		Date: 08/06/99 Tim			05:36:0	
			Duratio	n (minutes):	33.00	
Description	Average	Min	Max	STDV	Variand	
MBIENT AIR TEMPERATURE (F)	62.09	61.00	63.00	1.00	1.61	
MBIENT AIR PRESSURE (psia)	12.07	12.07	12.07	0.00	0.00	
MBIENT HUMIDITY (%)	78.00	78.00	78.00	0.00	0.00	
IR MANIFOLD PRESSURE ("Hg)	5.00	4.83	5.16	0.06	1.25	
IR MANIFOLD RELATIVE HUMIDITY (%)	36.14	35.00	37.00	0.44	1.22	
IR MANIFOLD HUMIDITY RATIO (Ib _W ib _A)	0.01475	0.01336	0.01582			
IR SUPPLY TEMPERATURE (F)	99.33	97.00	101.00	0.71	0.72	
NTAKE AIR FLOW (scfm)	1377.07	1364.10	1391.73	4.44	0.32	
XHAUST FLOW (scfm)	-124.87	-124.87	-124.87	0.00	0.00	
XHAUST STACK TEMPERATURE (F)	656.93	656.53	657.72	0.20	0.03	
YLINDER 1 EXHAUST TEMPERATURE (F)	908.34	906.34	917.05	1.20	0.13	
YLINDER 2 EXHAUST TEMPERATURE (F)	910.31	907.93	916.06	1.09	0.12	
YLINDER 3 EXHAUST TEMPERATURE (F)	912.96	911.30	915.66	0.64	0.07	
YLINDER 4 EXHAUST TEMPERATURE (F)	893.00	890.86	896.22	0.92	0.10	
YLINDER 5 EXHAUST TEMPERATURE (F)	886.83	885.31	890.46	0.68	0.08	
YLINDER 6 EXHAUST TEMPERATURE (F)	873.36	871.42	876.18	0.73	0.08	
YLINDER EXHAUST AVERAGE TEMP (F)	897.46	896.32	900.05	0.55	0.06	
XHAUST HEADER TEMPERATURE (F)	656.93	656.53	657.72	0.20	0.03	
RE TURBO EXHAUST PRESSURE ("Hg)	30.55	30.29	30.90	0.11	0.37	
RE TURBO EXHAUST TEMPERATURE (F)	905.05	903.76	907.33	0.57	0.06	
OST TURBO EXHAUST PRESSURE ("Hg)	5.16	5.09	5.26	0.03	0.53	
OST TURBO EXHAUST TEMPERATURE (F)	725.77	724.59	727.37	0.44	0.06	
URBO OIL PRESSURE ("Hg)	44.90	44.07	45.52	0.25	0.55	
NGINE SPEED (rpm)	1001.52	997.74	1006.77	1.41	0.14	
NGINE HORSEPOWER (bhp)	616.64	614.20	620.27	1.01	0.16	
	50.11	49.38	50.83	0.26	0.51	
	162.39	161.88	162.68	0.16	0.10	
	181.10	180.73	181.53	0.14	0.08	
	0.69	0.69	0.69	0.00	0.00	
	90.11	89.86	90.45	0.14	0.16	
UEL PRESSURE ("H2O above amp)	6.21	5.69	6.65	0.17	2.70	
	47.16	47.07	47.27	0.04	0.08	
RIFICE DIFFERENTIAL PRESSURE ("H2O)	9.61	9.32	10.01	0.11	1.15	
	46.57	46.52	46.61	0.02	0.04	
	86.15	85.97	86.31	0.07	0.07	
	4368.50					
	7364.88	4000.00	4000.00			
UEL HEATING VALUE (Btu)	1039.60	1039.60	1039.60	0.00	0.00	
IR FUEL RATIO	29.00	29.00	29.00	•	0.00	
ITERCOOLER AIR DIFFERENTIAL PRESSURE ("H2O)	6.59	6.35	6.98	0.10	1.49	
VTERCOOLER AIR TEMP IN (F)	282.31	281.33	283.31	0.37	0.13	
OST INTERCOOLER AIR MANIFOLD PRESSURE ("Hg)	138.55 66.48	137.08 66.33	139.66	0.59	0.43	
VTERCOOLER WATER DIFFERENTIAL PRESSURE ("Hg)	157.45		66.66 157 45	0.06	0.09	
VIERCOOLER WATER FLOW (GPM)	55.48	157.45 54.78	157.45	0.00	0.00	
JTERCOOLER WATER TEMP IN (F)			56.23	0.24	0.43	
JTERCOOLER WATER TEMP OUT (F)	128.54 138.69	127.16 137.28	129.14 139.86	0.48	0.37 0.45	
ITERCOOLER SUPPLY PRESSURE (psi)	2.72	2.67	139.86 2.77	0.62	0.45	
RE CATALYST TEMPERATURE (F)	685.22	2.67 684.11	2.77 686.29	0.02 0.36	0.59	
OST CATALYST TEMPERATURE (F)	688.42	687.68	689.07	0.36	0.05	
CATALYST DIFFERENTIAL PRESSURE ("H2O)	6.04	5.95	6.17	0.24	0.04 0.62	
B.S. CO (g/bhp-hr): Pre-Catalyst	2.65	2.58	2.70	0.04	0.62	
B.S. CO (g/bhp-hr): Post-Catalyst	2.05 0.13	0.12	0.13	0.02	2.42	
3.S. NO (g/bhp-hr): Pre-Catalyst	0.00	0.12	0.13	0.00	2.42 0.00	
3.S. NO (g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00	

Date: 08/06/99

Time: 05:36:00

- Ver 6 -

Test Description: Run 4 - 617BHP 1000RPM 10BTDC

Data Point Number: Run 4

Data Point Number: Run 4		Date:	00/00/99	rme:	05:50:00
			Duratio	n (minutes):	.33.00
Description	Average	Min	Max	STDV	Variance
B.S. NOx (corrected - g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (corrected - g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (g/bhp-hr): Pre-Catalyst	0.79	0.76	0.82	0.01	1.70
B.S. NOx (g/bhp-hr): Post-Catalyst	0.81	0.76	0.86	0.02	1.91
B.S. THC (g/bhp-hr): Pre-Catalyst	6.69	6.53	6.86	0.06	0.91
B.S. THC (g/bhp-hr): Post-Catalyst	6.56	6.40	6.71	0.05	0.81
B.S. Methane (g/bhp-hr): Pre-Catalyst	3.06	2.98	3.24	0.06	1.95
B.S. Methane (g/bhp-hr): Post-Catalyst	2.72	2.66	2.77	0.02	0.62
B.S. Non-Methane (g/bhp-hr): Pre-Catalyst	0.13	0.12	0.15	0.01	5.74
3.S. Non-Methane (g/bhp-hr): Post-Catalyst	0.11	0.10	0.12	0.00	2.35
D2 (ppm): Pre-Catalyst	9.80	9.80	9.80	0.00	0.00
D2 (ppm): Post-Catalyst	9.80	9.80	9.80	0:00	0.00
CO (ppm): Pre-Catalyst	590.78	587.40	596.20	2.02	0.34
CO (ppm): Post-Catalyst	30.19	29.00	30.70	0.45	1.48
CO2 (ppm): Pre-Catalyst	6.24	6.23	6.29	0.02	0.28
CO2 (ppm): Post-Catalyst	6.41	6.39	6.43	0.01	0.13
VO (ppm): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
VO (ppm): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
	57.58	55.80	59.00	0.89	1.54
NOx (ppm - Corrected): Pre-Catalyst	60.43	56.70	62.70	1.08	1.79
NOX (ppm - Corrected): Post-Catalyst	107.78	104.40	110.50	1.69	1.73
NOX (ppm): Pre-Catalyst		104.40	117.40	2.09	1.84
NOX (ppm): Post-Catalyst	113.17	2144.40	2193.10	2.09 11.80	0.54
THC (ppm): Pre-Catalyst	2166.34			9.63	0.54
FHC (ppm): Post-Catalyst	2165.01	2144.00	2192.80		1.76
dethane (ppm): Pre-Catalyst	1498.36	1484.20	1560.80	26.37 1.16	0.09
Aethane (ppm): Post-Catalyst	1358.65	1358.10	1361.10		-
Non-Methane (ppm): Pre-Catalyst	130.64	125.50	144.30	7.06	5.40 2.43
Non-Methane (ppm): Post-Catalyst	113.20	107.30	116.90	2.75	
DYNO WATER IN TEMPERATURE (F)	76.15	75.97	76.37	0.12	0.16
DYNO WATER OUT TEMPERATURE (F)	116.09	115.85	116.45	0.12	0.10
ACKET WATER IN TEMPERATURE (F)	175.42	174.98	175.77	0.14	0.08
ACKET WATER OUT TEMPERATURE (F)	179.48	178.00	181.00	0.62	0.35
ACKET WATER FLOW (GPM)	0.00	0.00	0.00	0.00	0.00
UBE OIL COOLING WATER IN TEMPERATURE (F)	76.87	76.76	77.36	0.23	0.29
UBE OIL COOLING WATER OUT TEMPERATURE (F)	81.65	81.33	82.12	0.16	0.20
UBE OIL FLOW (GPM)	128.27	127.60	129.22	0.23	0.18
CO F-Factor: Pre-Catalyst	3.36	3.30	3.42	0.02	0.64
CO F-Factor: Post-Catalyst	0.17	0.16	0.18	0.00	1.56
NO F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NO F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
NOx F-Factor: Pre-Catalyst	1.01	0.97	1.04	0.02	1.63
NOx F-Factor: Post-Catalyst	1.06	0.98	1.11	0.02	1.90
THC F-Factor: Pre-Catalyst	8.35	8.14	8.56	0.07	0.86
THC F-Factor: Post-Catalyst	8.34	8.13	8.53	0.07	0.80
Nethane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Methane F-Factor: Post-Catalyst	0.00	0.00	0,00	0.00	0.00
Non-Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
ENGINE TORQUE	3233.74	3230.40	3238.45	1.73	0.05

Test Description: Run 5 - 736BHP 1200RPM 10BTDC

Data Point Number: Run 5	-	Date:	08/05/99	Time:	21:17:2
	5		Duratior	n (minutes):	33.00
Description	Average	Min	Max	STDV	Varianc
MBIENT AIR TEMPERATURE (F)	67.00	67.00	67.00	0.00	0.00
MBIENT AIR PRESSURE (psia)	12.07	12.07	12.07	0.00	0.00
MBIENT HUMIDITY (%)	71.48	70.00	72.00	0.88	1.23
NR MANIFOLD PRESSURE ("Hg)	5.00	4.84	5.12	0.04	0.87
AIR MANIFOLD RELATIVE HUMIDITY (%)	36.54	33.00	39.00	2.28	6.25
AIR MANIFOLD HUMIDITY RATIO (Ibv/Iba)	0.01508	0.01297	0.01725		
AIR SUPPLY TEMPERATURE (F)	99.69	98.00	102.00	0.73	0.73
NTAKE AIR FLOW (scfm)	1853.11	1832.14	1878.38	9.42	0.51
EXHAUST FLOW (scfm)	-124.87	-124.87	-124.87	0.00	0.00
EXHAUST STACK TEMPERATURE (F)	684.74	682.33	686.69	1.43	0.21
CYLINDER 1 EXHAUST TEMPERATURE (F)	969.77	964.87	974.79	2.06	0.21
CYLINDER 2 EXHAUST TEMPERATURE (F)	970.74	966.85	975.39	1.88	0.19
CYLINDER 3 EXHAUST TEMPERATURE (F)	967.54	964.87	970.43	1.27	0.13
CYLINDER 4 EXHAUST TEMPERATURE (F)	931.55	925.98	934.51	1.58	0.17
CYLINDER 5 EXHAUST TEMPERATURE (F)	911.69	904.55	917.45	4.32	0.47
CYLINDER 6 EXHAUST TEMPERATURE (F)	901.28	894.83	906.73	3.53	0.39
CYLINDER EXHAUST AVERAGE TEMP (F)	942.10	938.75	944.50	1.18	0.12
EXHAUST HEADER TEMPERATURE (F)	684.74	682.33	686.69	1.44	0.21
PRE TURBO EXHAUST PRESSURE ("Hg)	40.48	39.92	41.00	0.28	0.68
PRE TURBO EXHAUST TEMPERATURE (F)	936.68	932.33	940.27	2.34	0.25
POST TURBO EXHAUST PRESSURE ("Hg)	5.55	5.43	5.66	0.05	0.91
POST TURBO EXHAUST TEMPERATURE (F)	748.26	744.23	752.17	2.57	0.34
TURBO OIL PRESSURE ("Hg)	47.11	46.24	47.77	0.29	0.61
ENGINE SPEED (rpm)	1196.68	1189.85	1204.89	2.19	0.18
ENGINE HORSEPOWER (bhp)	737.14	732.92	741.72	1.40	0.19
ENGINE OIL PRESSURE (psig)	52.23	51.56	53.01	0.34	0.65
ENGINE OIL TEMPERATURE IN (F)	163.96	163.67	164.46	0.15	0.09
ENGINE OIL TEMPERATURE OUT (F)	185.06	184.50	185.49	0.21	0.00
SPECIFIC GRAVITY	0.69	0.69	0.69	0.00	0.00
FUEL TEMPERATURE (F)	91.21	90.85	91.64	0.16	0.00
FUEL PRESSURE ("H2O above amp)	0.68	-0.09	1.44	0.26	38.70
FUEL SUPPLY PRESSURE (psig)	46.79	-0.03 46.67	46.92	0.04	0.09
ORIFICE DIFFERENTIAL PRESSURE ("H2O)	40.79 15.44	14.57	16.27	0.35	2.29
ORIFICE STATIC PRESSURE (psig)	46.40	46.30	46.51	0.04	0.09
ORIFICE TEMPERATURE (F)	40.40 87.53	86.80	88.25	0.37	0.03
FUEL FLOW (SCFH)	5522.29	00.00	00.20	0.07	0.57
CALCULATED FUEL CONSUMPTION (BSFC)	7788.17				
FUEL HEATING VALUE (Btu)	1039.60	1039.60	1039.60	0.00	0.00
AIR FUEL RATIO	30.39	30.20	30.70	0.24	0.80
INTERCOOLER AIR DIFFERENTIAL PRESSURE ("H2O)	10.73	10.34	11.01	0.11	1.04
INTERCOOLER AIR TEMP IN (F)	303.01	302.16	303.95	0.36	0.12
INTERCOOLER AIR TEMP OUT (F)	145.46	142.64	147.40	1.42	0.98
POST INTERCOOLER AIR MANIFOLD PRESSURE ("Hg)	67.88	67.66	68.16	0.11	0.00
INTERCOOLER WATER DIFFERENTIAL PRESSURE ("H2O)	157.45	157.45	157.45	0.00	0.00
INTERCOOLER WATER DIFFERENTIAL PRESSURE (120) INTERCOOLER WATER FLOW (GPM)	56.24	55.59	57.04	0.00	0.50
INTERCOOLER WATER FLOW (GPM)	56.24 130.34	126.76	133.11	2.06	1.58
INTERCOOLER WATER TEMP IN (F)	130.34	120.76	146.60	1.83	1.50
INTERCOOLER SUPPLY PRESSURE (psi)	2.76	2.70	2.81	0.02	0.62
u ,		707.13			0.62
PRE CATALYST TEMPERATURE (F)	711.15 717.83		715.66	2.02	
POST CATALYST TEMPERATURE (F)	717.83	715.07	720.03	1.63	0.23
CATALYST DIFFERENTIAL PRESSURE ("H2O)	10.15	9.95 2.85	10.33 3.37	0.08 0.13	0.80 4.23
D.C. CO (alpha ha) Des Ostaliust		7 85	5.3/	0.13	4.23
B.S. CO (g/bhp-hr): Pre-Catalyst	3.09				
B.S. CO (g/bhp-hr): Pre-Catalyst B.S. CO (g/bhp-hr): Post-Catalyst B.S. NO (g/bhp-hr): Pre-Catalyst	3.09 0.22 0.00	0.20 0.00	0.24	0.01	4.51 0.00

Date: 08/05/99

Time:

21:17:27

Test Description: Run 5 - 736BHP 1200RPM 10BTDC

Data Point Number: Run 5

Duration (minutes): 33.00 STDV Variance Average Min Max Description 0.00 0.00 0.00 0.00 0.00 B.S. NOx (corrected - g/bhp-hr): Pre-Catalyst 0.00 0.00 0.00 0.00 0.00 B.S. NOx (corrected - g/bhp-hr): Post-Catalyst 0.52 0.01 2.70 0.49 0.46 B.S. NOx (g/bhp-hr): Pre-Catalyst 0.02 2.87 0.58 0.53 0.49 B.S. NOx (g/bhp-hr): Post-Catalyst 0.35 7.07 6.46 7.73 4.91 B.S. THC (g/bhp-hr): Pre-Catalyst 7.10 6.50 7.78 0.33 4.64 B.S. THC (g/bhp-hr): Post-Catalyst 0.17 5.40 2.88 3.54 B.S. Methane (g/bhp-hr): Pre-Catalyst 3.14 3.02 0.09 3.15 2.80 2.67 B.S. Methane (g/bhp-hr): Post-Catalyst 0.01 5.44 0.21 0.18 0.16 B.S. Non-Methane (g/bhp-hr): Pre-Catalyst 0.14 0.16 0.01 4.35 0.15 B.S. Non-Methane (g/bhp-hr): Post-Catalyst 0.03 0.33 10.51 10.40 10.60 O2 (ppm): Pre-Catalyst 10.40 10.50 0.05 0.47 10.44 O2 (ppm): Post-Catalyst 740.59 699.80 780.80 26.47 3.57 CO (ppm): Pre-Catalyst 53.70 50.70 57.00 1.90 3.54 CO (ppm): Post-Catalyst 5.80 5.92 0.03 0.59 5.86 CO2 (ppm): Pre-Catalyst 6.01 0.03 0.43 5.96 5.91 CO2 (ppm): Post-Catalyst 0.00 0.00 0.00 0.00 0.00 NO (ppm): Pre-Catalyst 0.00 0.00 0.00 0.00 0.00 NO (ppm): Post-Catalyst 0.92 2.24 40.88 39.20 43.50 NOx (ppm - Corrected): Pre-Catalyst 1.16 2.62 44.36 41.90 48.30 NOx (ppm - Corrected): Post-Catalyst 68.50 76.10 1.51 2.11 71.73 NOx (ppm): Pre-Catalyst 2.50 1.95 NOx (ppm): Post-Catalyst 78.16 73.10 84.80 2291.80 2642.50 106.33 4.33 2456.84 THC (ppm): Pre-Catalyst 97.61 3.94 2479.61 2307.50 2661.20 THC (ppm): Post-Catalyst 4.91 1800.00 81.15 1652.63 1557.80 Methane (ppm): Pre-Catalyst 35.74 2.41 1483.29 1450.20 1548.50 Methane (ppm): Post-Catalyst 210.40 9.20 4.96 185.58 175.10 Non-Methane (ppm): Pre-Catalyst 4.33 2.79 154.96 149.10 165.70 Non-Methane (ppm): Post-Catalyst 0.18 81.04 80.73 81.52 0.14 DYNO WATER IN TEMPERATURE (F) 126.87 126.56 127.36 0.12 0.10 DYNO WATER OUT TEMPERATURE (F) 174.78 0.37 0.21 173.81 172.99 JACKET WATER IN TEMPERATURE (F) 0.36 **JACKET WATER OUT TEMPERATURE (F)** 179.47 178.00 181.00 0.65 0.00 0.00 0.00 0.00 0.00 JACKET WATER FLOW (GPM) 0.25 85.10 85.69 0.21 LUBE OIL COOLING WATER IN TEMPERATURE (F) 85.19 0.19 91.25 0.17 LUBE OIL COOLING WATER OUT TEMPERATURE (F) 90.75 90.45 129.90 129.05 130.83 0.27 0.21 LUBE OIL FLOW (GPM) 0.25 4.44 5.68 5.25 6.19 CO F-Factor: Pre-Catalyst 0.02 4.46 CO F-Factor: Post-Catalyst 0.41 0.38 0.45 0.00 0.00 0.00 0.00 0.00 NO F-Factor: Pre-Catalyst 0.00 0.00 0.00 0.00 0.00 NO F-Factor: Post-Catalyst 2.49 0.90 0.86 0.97 0.02 NOx F-Factor: Pre-Catalyst 0.98 0.91 1.08 0.03 2.85 NOx F-Factor: Post-Catalyst 0.65 5.12 12.78 11.60 14.04 **THC F-Factor: Pre-Catalyst** 12.84 11.74 14.06 0.62 4.81 **THC F-Factor: Post-Catalyst** 0.00 0.00 0.00 0.00 0.00 Methane F-Factor: Pre-Catalyst 0.00 0.00 0.00 0.00 0.00 Methane F-Factor: Post-Catalyst Non-Methane F-Factor: Pre-Catalyst 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Non-Methane F-Factor: Post-Catalyst 0.06 3234.95 3233.08 3238.45 1.96 **ENGINE TORQUE**

Test Description: Run 6 - 736BHP 1200RPM 10BTDC

Data Point Number: Run 6		Date:	08/05/99 Time:		22:52:00	
			Duration (minutes):		33.00	
Description	Average	Min	Max	STDV	Varianc	
AMBIENT AIR TEMPERATURE (F)	65.50	65.00	67.00	0.87	1.33	
AMBIENT AIR PRESSURE (psia)	12.07	12.07	12.07	0.00	0.00	
AMBIENT HUMIDITY (%)	74.00	74.00	74.00	0.00	0.00	
AIR MANIFOLD PRESSURE ("Hg)	5.00	4.82	5.18	0.07	1.44	
AIR MANIFOLD RELATIVE HUMIDITY (%)	37.62	33.00	40.00	2.08	5.53	
AIR MANIFOLD HUMIDITY RATIO (Ibv/IbA)	0.01551	0.01298	0.01713			
AIR SUPPLY TEMPERATURE (F)	99.62	98.00	101.00	0.70	0.70	
NTAKE AIR FLOW (scfm)	1611.80	1596.43	1626.88	5.04	0.31	
EXHAUST FLOW (scfm)	-124.87	-124.87	-124.87	0.00	0.00	
EXHAUST STACK TEMPERATURE (F)	722.55	721.41	723.99	0.77	0.11	
CYLINDER 1 EXHAUST TEMPERATURE (F)	1001.80	999.39	1003.96	0.80	0.08	
CYLINDER 2 EXHAUST TEMPERATURE (F)	1003.35	1001.58	1005.74	0.79	0.08	
CYLINDER 3 EXHAUST TEMPERATURE (F)	1006.78	1004.95	1008.52	0.76	0.08	
CYLINDER 4 EXHAUST TEMPERATURE (F)	979.03	977.17	980.74	0.61	0.06	
CYLINDER 5 EXHAUST TEMPERATURE (F)	970.16	968.05	972.01	0.82	0.08	
CYLINDER 6 EXHAUST TEMPERATURE (F)	957.32	954.95	960.11	1.02	0.11	
CYLINDER EXHAUST AVERAGE TEMP (F)	986.40	985.01	987.69	0.64	0.06	
EXHAUST HEADER TEMPERATURE (F)	722.55	721.41	723.99	0.77	0.11	
•••	34.24	33.95	34.66	0.13	0.39	
	987.75	985.51	989.47	0.98	0.33	
	967.75 4.47	4.40	4.59	0.98	0.68	
	4.47 805.61	4.40 803.76	4.5 5 807.13	0.85	0.00	
	46.91	46.08	47.45	0.85	0.10	
			1201.13	0.20 1.57	0.56	
	1196.88	1193.61 733.93	740.17	1.05	0.13	
	737.15 52.15	51.48	52.93	0.34	0.14	
ENGINE OIL PRESSURE (psig)		164.46	52.95 165.26	0.34 0.15	0.00	
ENGINE OIL TEMPERATURE IN (F)	164.84 186.06	185.69	186.49	0.15	0.09	
	0.69	0.69	0.69	0.00	0.09	
	0.69 91.42	91.05	91.84	0.14	0.00	
		91.05 7.97	91.04	0.14	2.48	
FUEL PRESSURE ("H2O above amp)	8.53 46.97		9.08 46.99	0.21	0.10	
	46.87	46.75				
DRIFICE DIFFERENTIAL PRESSURE ("H2O)	14.44	13.68	15.29	0.30	2.10	
	46.41	46.29	46.51	0.04	0.09	
	88.11	87.90	88.23	0.06	0.06	
	5336.84					
	7526.58	4000.00	4020 60	0.00	0.00	
FUEL HEATING VALUE (Btu)	1039.60	1039.60	1039.60	0.00	0.00	
	27.65	27.20	27.70	0.15	0.55	
NTERCOOLER AIR DIFFERENTIAL PRESSURE ("H2O)	8.39	8.02	8.68	0.09	1.13	
NTERCOOLER AIR TEMP IN (F)	297.35	296.61	298.39	0.35	0.12	
	139.51	138.87	140.06	0.27	0.19	
	69.41	69.24	69.58	0.07	0.11	
NTERCOOLER WATER DIFFERENTIAL PRESSURE ("H2O)		157.45	157.45	0.00	0.00	
	56.33	55.59	56.87	0.25	0.45	
NTERCOOLER WATER TEMP IN (F)	128.16	127.36	128.95	0.32	0.25	
NTERCOOLER WATER TEMP OUT (F)	140.32	139.66	141.05	0.27	0.19	
NTERCOOLER SUPPLY PRESSURE (psi)	2.76	2.70	2.81	0.02	0.62	
PRE CATALYST TEMPERATURE (F)	758.86	755.94	773.40	2.51	0.33	
POST CATALYST TEMPERATURE (F)	760.19	758.92	761.49	0.73	0.10	
CATALYST DIFFERENTIAL PRESSURE ("H2O)	8.50	8.38	8.68	0.05	0.60	
B.S. CO (g/bhp-hr): Pre-Catalyst	2.43	2.36	2.50	0.03	1.18	
B.S. CO (g/bhp-hr): Post-Catalyst	0.14	0.13	0.14	0.00	2.68	
B.S. NO (g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00	
B.S. NO (g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00	

Test Description: Run 6 - 736BHP 1200RPM 10BTDC

Data Point Number: Run 6	аналама жала жала 2 калара — чалунар ула Далар жа	Date:	08/05/99	Time:	22:52:00
			Duratior	n (minutes):	33.00
Description	Average	Min	Max	STDV	Variance
B.S. NOx (corrected - g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (corrected - g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (g/bhp-hr): Pre-Catalyst	1.22	1.17	1.31	0.03	2.21
B.S. NOx (g/bhp-hr): Post-Catalyst	1.25	1.19	1.35	0.03	2.46
B.S. THC (g/bhp-hr): Pre-Catalyst	4.01	3.87	4.15	0.05	1.36
B.S. THC (g/bhp-hr): Post-Catalyst	3.92	3.80	4.06	0.05	1.30
B.S. Methane (g/bhp-hr): Pre-Catalyst	1.83	1.76	1.99	0.05	2.83
B.S. Methane (g/bhp-hr): Post-Catalyst	1.60	1.55	1.65	0.02	1.15
B.S. Non-Methane (g/bhp-hr): Pre-Catalyst	0.09	0.09	0.11	0.01	6.25
B.S. Non-Methane (g/bhp-hr): Post-Catalyst	0.07	0.07	0.08	0.00	2.71
	9.10	9.00	9.20	0.03	0.34
O2 (ppm): Pre-Catalyst	9.01	9.00	9.10	0.03	0.38
O2 (ppm): Post-Catalyst	669.78	663.70	677.00	2.41	0.36
CO (ppm): Pre-Catalyst	39.54	39.10	40.10	0.15	0.38
CO (ppm): Post-Catalyst	39.54 6.65	6.59	40.10 6.71	0.15	0.30
CO2 (ppm): Pre-Catalyst		6.80	6.86	0.01	0.14
CO2 (ppm): Post-Catalyst	6.83		0.00	0.00	0.20
NO (ppm): Pre-Catalyst	0.00	0.00			
NO (ppm): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
NOx (ppm - Corrected): Pre-Catalyst	103.01	99.90	108.70	1.98	1.93
NOx (ppm - Corrected): Post-Catalyst	106.81	103.10	113.50	2.32	2.17
NOx (ppm): Pre-Catalyst	205.32	199.10	215.60	3.88	1.89
NOx (ppm): Post-Catalyst	214.15	206.90	227.30	4.47	2.09
THC (ppm): Pre-Catalyst	1604.71	1576.90	1625.60	12.59	0.78
THC (ppm): Post-Catalyst	1593.83	1565.90	1614.70	11.87	0.74
Methane (ppm): Pre-Catalyst	1109.55	1094.90	1180.70	28.79	2.59
Methane (ppm): Post-Catalyst	983.53	983.40	986.50	0.63	0.06
Non-Methane (ppm): Pre-Catalyst	117.02	109.10	130.30	5.51	4.71
Non-Methane (ppm): Post-Catalyst	91.10	86.30	95.90	2.49	2.73
DYNO WATER IN TEMPERATURE (F)	80.73	80.53	81.13	0.13	0.16
DYNO WATER OUT TEMPERATURE (F)	126.61	126.17	127.16	0.13	0.10
JACKET WATER IN TEMPERATURE (F)	174.81	174.38	175.18	0.16	0.09
JACKET WATER OUT TEMPERATURE (F)	180.27	178.00	182.00	0.68	0.38
JACKET WATER FLOW (GPM)	0.00	0.00	0.00	0.00	0.00
LUBE OIL COOLING WATER IN TEMPERATURE (F)	84.25	83.90	84.50	0.29	0.35
LUBE OIL COOLING WATER OUT TEMPERATURE (F)	89.82	89.46	90.06	0.17	0.19
LUBE OIL FLOW (GPM)	129.68	129.05	130.18	0.22	0.17
CO F-Factor: Pre-Catalyst	4.37	4.26	4.50	0.05	1.16
CO F-Factor: Post-Catalyst	0.26	0.25	0.27	0.00	1.23
NO F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NO F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
NOx F-Factor: Pre-Catalyst	2.20	2.11	2.36	0.05	2.20
NOx F-Factor: Post-Catalyst	2.28	2.18	2.46	0.06	2.41
THC F-Factor: Pre-Catalyst	7.10	6.87	7.34	0.09	1.33
THC F-Factor: Post-Catalyst	7.01	6.79	7.26	0.09	1.29
Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
ENGINE TORQUE	3234.42	3230.40	3238.45	1.77	0.05

Test Description: Run 7 - 515BHP 1200RPM 10BTDC

Data Point Number: Run 7		Date:	-08/06/99	02:10:00 33.00	
			Duration (minutes):		
Description	Average	Min	Max	STDV	Varianc
MBIENT AIR TEMPERATURE (F)	65.00	65.00	65.00	0.00	0.00
MBIENT AIR PRESSURE (psia)	12.07	12.07	12.07	0.00	0.00
MBIENT HUMIDITY (%)	74.00	74.00	74.00	0.00	0.00
IR MANIFOLD PRESSURE ("Hg)	5.00	4.83	5.11	0.04	0.87
IR MANIFOLD RELATIVE HUMIDITY (%)	31.00	31.00	31.00	0.00	0.00
IR MANIFOLD HUMIDITY RATIO (iby/iba)	0.01283	0.01218	0.01364	0.00	0.00
IR SUPPLY TEMPERATURE (F)	99.89	98.00	102.00	0.74	0.74
ITAKE AIR FLOW (scfm)	1212.41	1200.56	1225.94	4.01	0.33
XHAUST FLOW (scfm)	-124.87	-124.87	-124.87	0.00	0.00
XHAUST STACK TEMPERATURE (F)	694.41	693.83	695.03	0.28	0.00
YLINDER 1 EXHAUST TEMPERATURE (F)	987.26	984.91	988.88	0.20	0.07
	979.36	976.97	980.88 981.14	0.72	0.07
YLINDER 2 EXHAUST TEMPERATURE (F)	*				
YLINDER 3 EXHAUST TEMPERATURE (F)	980.42	978.36	982.53	0.71	0.07
	956.07	953.76	957.73	0.79	0.08
YLINDER 5 EXHAUST TEMPERATURE (F)	937.32	935.31	939.08	0.79	0.08
YLINDER 6 EXHAUST TEMPERATURE (F)	941.55	938.68	944.24	1.16	0.12
YLINDER EXHAUST AVERAGE TEMP (F)	963.67	961.80	964.94	0.68	0.07
XHAUST HEADER TEMPERATURE (F)	694.41	693.83	695.03	0.28	0.04
RE TURBO EXHAUST PRESSURE ("Hg)	27.29	26.90	27.82	0.18	0.66
RE TURBO EXHAUST TEMPERATURE (F)	950.34	948.40	952.17	0.79	0.08
OST TURBO EXHAUST PRESSURE ("Hg)	4.94	4.82	5.09	0.05	1.05
OST TURBO EXHAUST TEMPERATURE (F)	776.46	774.79	777.96	0.68	0.09
URBO OIL PRESSURE ("Hg)	47.33	46.56	48.01	0.27	0.57
NGINE SPEED (rpm)	1196.90	1193.23	1202.63	1.84	0.15
NGINE HORSEPOWER (bhp)	515.81	513.85	518.48	0.89	0.17
NGINE OIL PRESSURE (psig)	52.52	51.88	53.41	0.35	0.66
NGINE OIL TEMPERATURE IN (F)	163.78	163.47	164.06	0.13	0.08
NGINE OIL TEMPERATURE OUT (F)	183.74	183.31	184.10	0.14	0.08
PECIFIC GRAVITY	0.69	0.69	0.69	0.00	0.00
UEL TEMPERATURE (F)	91.77	91.44	92.04	0.11	0.12
UEL PRESSURE ("H2O above amp)	7.68	7.15	8.17	0.16	2.11
UEL SUPPLY PRESSURE (psig)	47.14	47.09	47.22	0.03	0.06
DRIFICE DIFFERENTIAL PRESSURE ("H2O)	8.24	7.87	8.76	0.14	1.75
DRIFICE STATIC PRESSURE (psig)	46.65	46.61	46.69	0.01	0.03
ORIFICE TEMPERATURE (F)	88.12	87.99	88.23	0.04	0.04
FUEL FLOW (SCFH)	4039.63				
CALCULATED FUEL CONSUMPTION (BSFC)	8141.74	1			
FUEL HEATING VALUE (Btu)	1039.60	1039.60	1039.60	0.00	0.00
AIR FUEL RATIO	27.70	27.70	27.70	0.00	0.00
NTERCOOLER AIR DIFFERENTIAL PRESSURE ("H2O)	5.38	5.17	5.86	0.11	2.03
NTERCOOLER AIR TEMP IN (F)	278.70	278.15	279.15	0.24	0.09
NTERCOOLER AIR TEMP OUT (F)	138.40	136.68	139.06	0.66	0.48
POST INTERCOOLER AIR MANIFOLD PRESSURE ("Hg)	65.46	65.16	65.91	0.13	0.40
NTERCOOLER WATER DIFFERENTIAL PRESSURE ("Hg)	157.45	157.45	157.45	0.00	0.20
NTERCOOLER WATER FLOW (GPM)	55.67	54.62	56.39	0.30	0.53
INTERCOOLER WATER TEMP IN (F)	129.00	127.36	130.14	0.50	0.55
INTERCOOLER WATER TEMP IN (F)	138.24	136.09	130.14	0.57	0.44
INTERCOOLER WATER TEMP OUT (F)	2.72	2.66		0.70	0.50
			2.77		
	728.39	727.17	740.26	1.19	0.16
	731.12	730.34	732.13	0.35	0.05
CATALYST DIFFERENTIAL PRESSURE ("H2O)	5.13	5.03	5.26	0.05	0.92
B.S. CO (g/bhp-hr): Pre-Catalyst	2.50	2.44	2.58	0.03	1.00
	N 10	0.09	0.10	0.00	1.65
B.S. CO (g/bhp-hr): Post-Catalyst B.S. NO (g/bhp-hr): Pre-Catalyst	0.10 0.00	0.00	0.00	0.00	0.00

. .

-

.

Test Description: Run 7 - 515BHP 1200RPM 10BTDC

 Data Point Number: Run 7
 Date: 08/06/99
 Time: 02:10:00

Data Point Number: Kull (Date:		00/00/99 Inne:		02.10.00	
			Duration	n (minutes):	33.00	
Description	Average	Min	Max	STDV	Variance	
S.S. NOx (corrected - g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00	
S. NOx (corrected - g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00	
.S. NOx (g/bhp-hr): Pre-Catalyst	0.93	0.89	0.97	0.01	1.50	
.S. NOx (g/bhp-hr): Post-Catalyst	0.98	0.93	1.01	0.01	1.52	
.S. THC (g/bhp-hr): Pre-Catalyst	4.90	4.78	5.07	0.05	1.02	
.S. THC (g/bhp-hr): Post-Catalyst	4.91	4.79	5.08	0.05	1.03	
.S. Methane (g/bhp-hr): Pre-Catalyst	2.24	2.17	2.41	0.06	2.62	
.S. Methane (g/bhp-hr): Post-Catalyst	1.98	1.93	2.06	0.02	0.97	
.S. Non-Methane (g/bhp-hr): Pre-Catalyst	0.13	0.12	0.14	0.01	5.44	
.S. Non-Melhane (g/bhp-hr): Post-Catalyst	0.09	0.08	0.11	0.01	6.17	
2 (ppm): Pre-Catalyst	9.20	9.10	9.20	0.01	0.09	
2 (ppm): Post-Catalyst	9.09	9.00	9.10	0.03	0.33	
O (ppm): Pre-Catalyst	639.84	636.70	643.80	1.72	0.27	
O (ppm): Post-Catalyst	26.35	25.90	26.70	0.16	0.61	
O2 (ppm): Pre-Catalyst	6.65	6.65	6.65	0.00	0.00	
O2 (ppm): Post-Catalyst	6.79	6.78	6.80	0.01	0.08	
O (ppm): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00	
IO (ppm): Post-Catalyst	0.00	0.00	0.00	0.00	0.00	
IOx (ppm - Corrected): Pre-Catalyst	73.62	71.70	75.20	0.78	1.06	
IOx (ppm - Corrected): Post-Catalyst	77.10	74.60	79.40	0.86	1.11	
Ox (ppm): Pre-Catalyst	145.99	142.20	149.10	1.54	1.06	
Ox (ppm): Post-Catalyst	154.07	148.80	158.70	1.77	1.15	
HC (ppm): Pre-Catalyst	1821.08	1809.50	1835.10	5.75	0.32	
HC (ppm): Post-Catalyst	1843.10	1826.90	1861.10	5.69	0.31	
lethane (ppm): Pre-Catalyst	1260.48	1245.10	1327.80	29.85	2.37	
lethane (ppm): Post-Catalyst	1124.82	1124.70	1170.70	2.31	0.21	
Ion-Methane (ppm): Pre-Catalyst	145.36	133.40	158.00	7.85	5.40	
Ion-Methane (ppm): Post-Catalyst	110.19	100.60	119.10	6.29	5.71	
YNO WATER IN TEMPERATURE (F)	74.68	74.38	74.98	0.11	0.14	
YNO WATER OUT TEMPERATURE (F)	108.90	108.51	109.30	0.13	0.12	
ACKET WATER IN TEMPERATURE (F)	175.33	174.58	175.97	0.34	0.19	
ACKET WATER OUT TEMPERATURE (F)	179.19	178.00	181.00	0.89	0.50	
ACKET WATER FLOW (GPM)	0.00	0.00	0.00	0.00	0.00	
UBE OIL COOLING WATER IN TEMPERATURE (F)	82.12	82.12	82.12	0.00	0.00	
UBE OIL COOLING WATER OUT TEMPERATURE (F)	87.73	87.48	88.07	0.12	0.14	
UBE OIL FLOW (GPM)	129.34	128.09	130.18	0.24	0.19	
CO F-Factor: Pre-Catalyst	3.17	3.10	3.28	0.03	1.01	
CO F-Factor: Post-Catalyst	0.13	0.13	. 0.13	0.00	1.15	
NO F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00	
VO F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00	
IOx F-Factor: Pre-Catalyst	1.19	1.14	1.23	0.02	1.44	
IOX F-Factor: Post-Catalyst	1.25	1.19	1.29	0.02	1.46	
HC F-Factor: Pre-Catalyst	6.12	5.99	6.28	0.06	0.97	
HC F-Factor: Post-Catalyst	6.15	6.00	6.37	0.06	1.00	
Aethane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00	
Aethane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00	
Non-Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00	
Jan Maihana E Easter Deat Ostalijat	0.00	0.00	0.00	0.00	0.00	
ENGINE TORQUE	2263.30	2261.01	2266.38	1.28	0.00	

Test Description: Run 8 - 616BHP 1000RPM 10BTDC

Data Point Number: Run 8		Date:	08/06/99	07:27:0	
			Duratio	n (minutes):	33.00
Description	Average	Min	Max	STDV	Varianc
AMBIENT AIR TEMPERATURE (F)	63.44	63.00	65.00	0.83	1.30
AMBIENT AIR PRESSURE (psia)	12.07	12.07	12.07	0.00	0.00
AMBIENT HUMIDITY (%)	77.53	76.00	78.00	0.85	1.09
AIR MANIFOLD PRESSURE ("Hg)	5.00	4.80	5.20	0.07	1.48
AIR MANIFOLD RELATIVE HUMIDITY (%)	37.03	36.00	38.00	0.44	1.19
AIR MANIFOLD HUMIDITY RATIO (Ibv/iba)	0.01519	0.01377	0.01624		1.10
AIR SUPPLY TEMPERATURE (F)	99.46	97.00	101.00	0.71	0.71
INTAKE AIR FLOW (scim)	1474.32	1457.14	1488.16	4.69	0.32
EXHAUST FLOW (scfm)	-124.87	-124.87	-124.87	0.00	0.02
EXHAUST STACK TEMPERATURE (F)	640.83	640.46	641.25	0.00	
CYLINDER 1 EXHAUST TEMPERATURE (F)	886.55	884.91	888.08		0.02
CYLINDER 2 EXHAUST TEMPERATURE (F)				0.57	0.06
CYLINDER 3 EXHAUST TEMPERATURE (F)	887.83	886.30	889.08	0.58	0.07
	888.83	887.49	890.27	0.50	0.06
	868.00	865.66	870.03	0.80	0.09
	859.99	858.32	861.30	0.61	0.07
CYLINDER 6 EXHAUST TEMPERATURE (F)	846.18	844.63	847.81	0.54	0.06
	872.89	871.88	874.00	0.38	0.04
	640.83	640.46	641.25	0.14	0.02
PRE TURBO EXHAUST PRESSURE ("Hg)	32.03	31.69	32.34	0.10	0.32
PRE TURBO EXHAUST TEMPERATURE (F)	880.63	879.55	881.73	0.42	0.05
POST TURBO EXHAUST PRESSURE ("Hg)	4.95	4.88	5.02	0.02	0.50
POST TURBO EXHAUST TEMPERATURE (F)	702.31	701.18	703.76	0.41	0.06
TURBO OIL PRESSURE ("Hg)	44.99	44.23	45.60	0.23	0.50
ENGINE SPEED (rpm)	1001.48	996.62	1006.02	1.60	0.16
ENGINE HORSEPOWER (bhp)	616.69	614.20	619.16	1.01	0.16
ENGINE OIL PRESSURE (psig)	50.17	49.46	50.83	0.26	0.52
ENGINE OIL TEMPERATURE IN (F)	161.98	161.49	162.28	0.18	0.11
ENGINE OIL TEMPERATURE OUT (F)	180.78	180.33	181.13	0.15	[~] 0.08
SPECIFIC GRAVITY	0.69	0.69	0.69	0.00	0.00
FUEL TEMPERATURE (F)	89.91	89.66	90.25	0.13	0.14
FUEL PRESSURE ("H2O above amp)	2.68	2.01	3.21	0.19	7.25
FUEL SUPPLY PRESSURE (psig)	47.26	47.20	47.33	0.03	0.06
ORIFICE DIFFERENTIAL PRESSURE ("H2O)	9.81	9.57	10.08	0.10	1.01
ORIFICE STATIC PRESSURE (psig)	46.61	46.57	46.68	0.02	0.04
ORIFICE TEMPERATURE (F)	84.05	83.84	84.33	0.13	0.13
FUEL FLOW (SCFH)	4424.18				•
CALCULATED FUEL CONSUMPTION (BSFC)	7458.20				
FUEL HEATING VALUE (Btu)	1039.60	1039.60	1039.60	0.00	0.00
AIR FUEL RATIO	30,50	30.50	30.50	0.00	0.00
INTERCOOLER AIR DIFFERENTIAL PRESSURE ("H2O)	7.54	7.26	7.80	0.09	1.21
INTERCOOLER AIR TEMP IN (F)	284.60	283.71	285.50	0.09	0.10
INTERCOOLER AIR TEMP OUT (F)	138.68	137.87	139.46	0.25	0.10
POST INTERCOOLER AIR MANIFOLD PRESSURE ("Hg)	66.62	, 66.41	66.83	0.30	
INTERCOOLER WATER DIFFERENTIAL PRESSURE ("H2O)	157.45	157.45	157.45	0.07	0.10
NTERCOOLER WATER FLOW (GPM)	54.84	54.14			0.00
NTERCOOLER WATER TEMP IN (F)	128.74		55.42	0.25	0.45
NTERCOOLER WATER TEMP IN (F)		127.95	129.14	0.27	0.21
NTERCOOLER SUPPLY PRESSURE (psi)	139.61	138.87	140.25	0.38	0.27
PRE CATALYST TEMPERATURE (F)	2.67	2.61	2.70	0.02	0.56
()	662.83	661.89	663.48	0.26	0.04
	668.52	667.84	669.23	0.20	0.03
CATALYST DIFFERENTIAL PRESSURE ("H2O)	6.65	6.51	6.75	0.04	0.57
B.S. CO (g/bhp-hr): Pre-Catalyst	2.58	2.52	2.65	0.02	0.85
B.S. CO (g/bhp-hr): Post-Catalyst	0.14	0.13	0.14	0.00	0.78
B.S. NO (g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NO (g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00

Test Description: Run 8 - 616BHP 1000RPM 10BTDC

Data Point Number: Run 8	s davana prese i cito Pareete Andro	Date:		Time:	07:27:01
			Duratio	n (minutes):	33.00
Description	Average	Min	Max	STDV	Variance
B.S. NOx (corrected - g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (corrected - g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (g/bhp-hr): Pre-Catalyst	0.40	0.39	0.41	0.00	0.84
B.S. NOx (g/bhp-hr): Post-Catalyst	0.42	0.41	0.44	0.01	1.23
B.S. THC (g/bhp-hr): Pre-Catalyst	6.96	6.81	7.19	0.06	0.93
B.S. THC (g/bhp-hr): Post-Catalyst	7.11	6.96	7.34	0.07	0.97
B.S. Methane (g/bhp-hr): Pre-Catalyst	3.23	3.08	3.36	0.08	2.41
B.S. Methane (g/bhp-hr): Post-Catalyst	4.05	0.08	10.35	3.04	75.12
B.S. Non-Methane (g/bhp-hr): Pre-Catalyst	0.16	0.14	0.16	0.01	4.16
B.S. Non-Methane (g/bhp-hr): Post-Catalyst	0.16	0.14	0.16	0.01	4.16
O2 (ppm): Pre-Catalyst	10.50	10.50	10.50	0.00	0.00
O2 (ppm): Post-Catalyst	10.50	10.50	10.50	0.00	0.00
CO (ppm): Pre-Catalyst	641.35	635.50	648.80	3.61	0.56
CO (ppm): Post-Catalyst	35.85	35.30	36.40	0.20	0.56
CO2 (ppm): Pre-Catalyst	5.86	5.80	5.86	0.01	0.14
CO2 (ppm): Post-Catalyst	5.99	5.97	6.01	0.01	0.13
NO (ppm): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NO (ppm): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
NOx (ppm - Corrected): Pre-Catalyst	34.72	34.30	35.20	0.17	0.48
NOx (ppm - Corrected): Post-Catalyst	37.50	36.70	38.40	0.30	0.40
NOx (ppm): Pre-Catalyst	60.93	60.00	61.60	0.30	0.49
NOX (ppm): Post-Catalyst	65.73	64.20	67.30	0.55	0.49
THC (ppm): Pre-Catalyst	2513.13	2485.40	2564.50	16.30	0.65
THC (ppm): Post-Catalyst	2602.29	2566.00	2656.30	17.00	0.65
Methane (ppm): Pre-Catalyst	1766.67	1713.30	1800.00	41.46	2.35
Methane (ppm): Post-Catalyst	1452.07	46.80	1643.60	402.82	2.35
Non-Methane (ppm): Pre-Catalyst	171.13	40.00 159.40	177.90	402.02 6.85	4.00
Non-Methane (ppm): Post-Catalyst	171.13	159.40	177.90	6.85	4.00
DYNO WATER IN TEMPERATURE (F)	76.62	76.17	77.16	0.19	4.00 0.24
DYNO WATER OUT TEMPERATURE (F)	116.64	116.05	117.24		0.24
	175.23	174.78	175.97	0.20	
				0.27	0.16
JACKET WATER OUT TEMPERATURE (F)	178.81	178.00	181.00	0.72	0.40
	0.00	0.00	0.00	0.00	0.00
	78.70	77.95	79.14	0.47	0.60
	83.26	82.52	84.10	0.44	0.53
LUBE OIL FLOW (GPM)	128.62	128.09	129.38	0.23	0.18
CO F-Factor: Pre-Catalyst	3.95	3.85	4.04	0.04	0.99
CO F-Factor: Post-Catalyst	0.22	0.22	0.23	0.00	0.82
NO F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NO F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
NOx F-Factor: Pre-Catalyst	0.62	0.60	0.63	0.00	0.73
NOx F-Factor: Post-Catalyst	0.66	0.64	0.68	0.01	0.92
THC F-Factor: Pre-Catalyst	10.48	10.21	10.79	0.11	1.04
THC F-Factor: Post-Catalyst	10.85	10.62	11.19	0.11	0.97
Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
ENGINE TORQUE	3233.97	3230.40	3238.45	1.75	0.05

.

Test Description: Run 9 - 736BHP 1200RPM 10BTDC

Data Point Number: Run 9		Date:	08/04/99	15:52:00		
			Duration (minutes):			
Description	Average	Min	Max	STDV	Variance	
AMBIENT AIR TEMPERATURE (F)	64.00	64.00	64.00	0.00	0.00	
AMBIENT AIR PRESSURE (psia)	12.08	12.08	12.08	0.00	0.00	
AMBIENT HUMIDITY (%)	72.81	70.00	76.00	1.36	1.86	
AIR MANIFOLD PRESSURE ("Hg)	5.02	4.77	5.27	0.09	1.73	
AIR MANIFOLD RELATIVE HUMIDITY (%)	37.15	36.00	39.00	0.69	1.86	
AIR MANIFOLD HUMIDITY RATIO (Ib _W Ib _A)	0.01525	, 0.01377	0.01663			
AIR SUPPLY TEMPERATURE (F)	99.54	97.00	101.00	0.67	0.67	
INTAKE AIR FLOW (scfm)	1702.68	1687.78	1718.23	5.56	0.33	
EXHAUST FLOW (scfm)	-124.87	-124.87	-124.87	0.00	0.00	
EXHAUST STACK TEMPERATURE (F)	703.97	703.16	704.95	0.49	0.07	
CYLINDER 1 EXHAUST TEMPERATURE (F)	978.90	977.17	980.74	0.66	0.07	
CYLINDER 2 EXHAUST TEMPERATURE (F)	978.45	976.97	979.75	0.58	0.06	
CYLINDER 3 EXHAUST TEMPERATURE (F)	980.61	978.76	982.13	0.62	0.06	
CYLINDER 4 EXHAUST TEMPERATURE (F)	955.43	953.96	957.53	0.64	0.07	
CYLINDER 5 EXHAUST TEMPERATURE (F)	946.35	944.63	947.81	0.64	0.07	
CYLINDER 6 EXHAUST TEMPERATURE (F)	932.34	930.15	933.92	0.77	0.08	
CYLINDER EXHAUST AVERAGE TEMP (F)	962.01	960.77	962.95	0.40	0.04	
EXHAUST HEADER TEMPERATURE (F)	703.97	703.16	704.95	0.49	0.07	
PRE TURBO EXHAUST PRESSURE ("Hg)	36.23	35.92	36.66	0.14	0.38	
PRE TURBO EXHAUST TEMPERATURE (F)	962.68	961.10	964.08	0.59	0.06	
.,	902.00 4.76	4.68	4.84	0.03	0.62	
POST TURBO EXHAUST PRESSURE ("Hg)					0.02	
	798.64	797.21	800.38	0.58		
TURBO OIL PRESSURE ("Hg)	47.02	46.16	47.69	0.28	0.59	
ENGINE SPEED (rpm)	1196.63	1192.48	1202.26	1.61	0.13	
ENGINE HORSEPOWER (bhp)	736.85	734.08	739.94	1.04	0.14	
ENGINE OIL PRESSURE (psig)	52.17	51.48	52.93	0.35	0.66	
	164.14	163.67	164.66	0.16	0.10	
ENGINE OIL TEMPERATURE OUT (F)	185.43	184.90	185.69	0.16	0.09	
SPECIFIC GRAVITY	0.68	0.68	0.68	0.00	0.00	
FUEL TEMPERATURE (F)	385.38	88.47	2649.02	581.05	150.77	
FUEL PRESSURE ("H2O above amp)	5.25	4.57	5.82	0.22	4.23	
FUEL SUPPLY PRESSURE (psig)	47.09	46.95	47.27	0.07	0.14	
ORIFICE DIFFERENTIAL PRESSURE ("H2O)	14.40	13.70	15.25	0.31	2.15	
ORIFICE STATIC PRESSURE (psig)	46.52	46.41	46.63	0.05	0.10	
ORIFICE TEMPERATURE (F)	83.52	83.18	83.73	0.13	0.13	
FUEL FLOW (SCFH)	5389.02					
CALCULATED FUEL CONSUMPTION (BSFC)	7484.76					
FUEL HEATING VALUE (Btu)	1023.40	1023.40	1023.40	0.00	0.00	
AIR FUEL RATIO	28.60	28.60	28.60	0.00	0.00	
INTERCOOLER AIR DIFFERENTIAL PRESSURE ("H2O)	8.99	8.64	9.28	0.09	1.02	
INTERCOOLER AIR TEMP IN (F)	298.18	296.61	301.57	0.79	0.27	
INTERCOOLER AIR TEMP OUT (F)	131.60	130.93	132.12	0.25	0.19	
POST INTERCOOLER AIR MANIFOLD PRESSURE ("Hg)	69.30	68.99	69.58	0.09	0.13	
INTERCOOLER WATER DIFFERENTIAL PRESSURE ("H2O)	157.45	157.45	157.45	0.00	0.00	
INTERCOOLER WATER FLOW (GPM)	64.83	63.80	65.74	0.33	0.50	
INTERCOOLER WATER TEMP IN (F)	119.39	118.63	120.02	0.24	0.20	
INTERCOOLER WATER TEMP OUT (F)	131.21	130.53	131.72	0.23	0.17	
INTERCOOLER SUPPLY PRESSURE (psi)	3.23	3.18	3.29	0.02	0.55	
PRE CATALYST TEMPERATURE (F)	735.01	733.91	738.08	0.61	0.08	
POST CATALYST TEMPERATURE (F)	739.63	738.88	740.46	0.41	0.06	
CATALYST DIFFERENTIAL PRESSURE ("H2O)	9.01	8.85	9.17	0.05	0.59	
B.S. CO (g/bhp-hr): Pre-Catalyst	2.36	2.29	2.42	0.03	1.15	
B.S. CO (g/bhp-hr): Post-Catalyst	0.15	0.14	0.15	0.00	2.68	
B.S. NO (g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00	
B.S. NO (g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00	

4

.....

Test Description: Run 9 - 736BHP 1200RPM 10BTDC

Data Point Number: Run 9		Date:	15:52:00			
			Duratio	n (minutes):	33.00	
Description	Average	Min	Max	STDV	Variance	
B.S. NOx (corrected - g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00	
B.S. NOx (corrected - g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00	
B.S. NOx (g/bhp-hr): Pre-Catalyst	0.67	0.64	0.70	0.01	1.49	
B.S. NOx (g/bhp-hr): Post-Catalyst	0.72	0.69	0.77	0.01	1.67	
B.S. THC (g/bhp-hr): Pre-Catalyst	4.68	4.52	4.86	0.06	1.36	
B.S. THC (g/bhp-hr): Post-Catalyst	4.75	4.59	4.93	0.06	1.29	
B.S. Methane (g/bhp-hr): Pre-Catalyst	2.29	2.19	2.46	0.07	2.99	
B.S. Methane (g/bhp-hr): Post-Catalyst	1.99	1.87	5.11	0.34	17.30	
B.S. Non-Methane (g/bhp-hr): Pre-Catalyst	0.11	0.10	0.13	0.01	5.06	
B.S. Non-Methane (g/bhp-hr): Post-Catalyst	0.09	0.08	0.09	0.00	5.86	
O2 (ppm): Pre-Catalyst	9.69	9.60	9.80	0.03	0.35	
O2 (ppm): Post-Catalyst	9.70	9.70	9.70	0.00	0.00	
CO (ppm): Pre-Catalyst	619.70	615.10	625.40	2.35	0.38	
CO (ppm): Post-Catalyst	40.61	39.50	42.00	0.60	1.47	
CO2 (ppm): Pre-Catalyst	6.35	6.30	6.36	0.02	0.27	
CO2 (ppm): Post-Catalyst	6.52	6.49	6.54	0.01	0.18	
NO (ppm): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00	
NO (ppm): Post-Catalyst	0.00	0.00	0.00	0.00	0.00	
NOx (ppm - Corrected): Pre-Catalyst	56.72	55.40	57.80	0.59	1.03	
NOx (ppm - Corrected): Post-Catalyst	62.29	60.40	64.30	0.77	1.23	
NOx (ppm): Pre-Catalyst	107.35	104.80	109.40	1.12	1.23	
NOx (ppm): Post-Catalyst	117.91	114.20	121.80	1.52	1.04	
THC (ppm): Pre-Catalyst	1816.34	1791.30	1842.40	12.21	0.67	
THO (ppm): Post-Catalyst	1870.44	1841.60	1892.80	10.03	0.54	
Methane (ppm): Pre-Catalyst	1288.90	1266.40	1340.80	34.21	0.54 2.65	
Methane (ppm): Post-Catalyst	1135.13	1095.90	2882.10	194.79	17.16	
	147.16	138.30	159.40	7.71		
Non-Methane (ppm): Pre-Catalyst		138.30	122.40	3.49	5.24	
Non-Methane (ppm): Post-Catalyst DYNO WATER IN TEMPERATURE (F)	115.48 80.63	80.33	80.93	0.10	3.03 0.13	
DYNO WATER OUT TEMPERATURE (F)				0.16	0.13	
	126.77	126.37	127.36			
	172.77	171.80	173.39	0.38	0.22	
JACKET WATER OUT TEMPERATURE (F)	178.99	178.00	181.00	0.73	0.41	
	0.00	0.00	0.00	0.00	0.00	
LUBE OIL COOLING WATER IN TEMPERATURE (F) LUBE OIL COOLING WATER OUT TEMPERATURE (F)	82.77	82.32 87.67	82.91 88.67	0.25 0.20	0.31	
	88.15				0.23	
LUBE OIL FLOW (GPM)	129.44	128.73	130.02	0.22	0.17	
CO F-Factor: Pre-Catalyst	4.24	4.13	4.37	0.05	1.14	
CO F-Factor: Post-Catalyst	0.28	0.27	0.29	0.01	1.91	
NO F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00	
NO F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00	
NOx F-Factor: Pre-Catalyst	1.21	1.17	1.26	0.02	1.44	
NOx F-Factor: Post-Catalyst	1.33	1.27	1.41	0.02	1.61	
THC F-Factor: Pre-Catalyst	8.29	7.99	8.56	0.11	1.37	
THC F-Factor: Post-Catalyst	8.53	8.26	8.82	0.11	1.26	
Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00	
Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00	
Non-Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00	
Non-Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00	
ENGINE TORQUE	3234.36	3230.40	3238.45	1.80	0.06	

Test Description: Run 10 - 735BHP 1200RPM 10BTDC

Data Point Number: Run 10	and a second	Date:		Time:	11:36:00
			Duratio	n (minutes):	33.00
Description	Average	Min	Max	STDV	Variance
AMBIENT AIR TEMPERATURE (F)	78.13	77.00	79.00	0.99	1.27
AMBIENT AIR PRESSURE (psia)	12.07	12.07	12.07	0.00	0.00
AMBIENT HUMIDITY (%)	43.86	40.00	48.00	1.32	3.00
AIR MANIFOLD PRESSURE ("Hg)	5.00	4.75	5.28	0.08	1.58
AIR MANIFOLD RELATIVE HUMIDITY (%)	34.88	33.00	36.00	0.60	1.71
AIR MANIFOLD HUMIDITY RATIO (Ibv/Iba)	0.01429	0.01301	0.01532		
AIR SUPPLY TEMPERATURE (F)	99.47	98.00	101.00	0.65	0.66
INTAKE AIR FLOW (scfm)	1699.32	1687.22	1716.54	5.60	0.33
EXHAUST FLOW (scfm)	-124.87	-124.87	-124.87	0.00	0.00
EXHAUST STACK TEMPERATURE (F)	705.03	704.35	705.94	0.34	0.05
CYLINDER 1 EXHAUST TEMPERATURE (F)	980.13	977.77	982.73	0.69	0.07
CYLINDER 2 EXHAUST TEMPERATURE (F)	980.60	977.77	982.73	0.80	0.08
CYLINDER 3 EXHAUST TEMPERATURE (F)	983.02	981.14	984.71	0.65	0.07
CYLINDER 4 EXHAUST TEMPERATURE (F)	956.99	954.75	959.12	0.66	0.07
CYLINDER 5 EXHAUST TEMPERATURE (F)	947.73	945.82	949.79	0.62	0.07
CYLINDER 6 EXHAUST TEMPERATURE (F)	932.66	930.54	934.71	0.84	0.09
CYLINDER EXHAUST AVERAGE TEMP (F)	963.52	961.96	965.07	0.49	0.05
EXHAUST HEADER TEMPERATURE (F)	705.03	704.35	705.94	0.34	0.05
PRE TURBO EXHAUST PRESSURE ("Hg)	36.50	36.23	36.92	0.13	0.35
PRE TURBO EXHAUST TEMPERATURE (F)	964.16	962.49	965.47	0.59	0.06
POST TURBO EXHAUST PRESSURE ("Hg)	4.89	4.81	4.97	0.03	0.53
POST TURBO EXHAUST TEMPERATURE (F)	780.38	778.56	781.73	0.52	0.07
TURBO OIL PRESSURE ("Hg)	46.76	46.00	47.45	0.29	0.61
ENGINE SPEED (rpm)	1196.91	1192.48	1201.13	1.48	0.12
ENGINE HORSEPOWER (bhp)	737.77	734.69	740.17	1.03	0.14
ENGINE OIL PRESSURE (psig)	51.97	51.15	52.77	0.35	0.68
ENGINE OIL TEMPERATURE IN (F)	166.10	165.85	166.45	0.13	0.08
ENGINE OIL TEMPERATURE OUT (F)	187.14	186.68	187.68	0.20	0.10
SPECIFIC GRAVITY	0.66	0.66	0.66	0.00	0.00
FUEL TEMPERATURE (F)	95.30	94.82	95.81	0.18	0.19
FUEL PRESSURE ("H2O above amp)	4.84	4.25	5.56	0.24	4.89
FUEL SUPPLY PRESSURE (psig)	46.43	46.30	46.56	0.04	0.09
ORIFICE DIFFERENTIAL PRESSURE ("H2O)	14.62	14.05	15.52	0.28	1.92
ORIFICE STATIC PRESSURE (psig)	46.27	46.16	46.38	0.04	0.08
ORIFICE TEMPERATURE (F)	92.88	92.53	93.19	0.17	0.17
FUEL FLOW (SCFH)	5471.06				
CALCULATED FUEL CONSUMPTION (BSFC)	7315.59				
FUEL HEATING VALUE (Btu)	986.50	986.50	986.50	0.00	0.00
AIR FUEL RATIO	28.70	28.70	28.70	0.00	0.00
INTERCOOLER AIR DIFFERENTIAL PRESSURE ("H2O)	9.40	9.14	9.71	0.10	1.05
INTERCOOLER AIR TEMP IN (F)	298.86	298.00	299.98	0.32	0.11
INTERCOOLER AIR TEMP OUT (F)	152.42	151.37	154.94	0.82	0.54
POST INTERCOOLER AIR MANIFOLD PRESSURE ("Hg)	68.82	68.58	69.08	0.09	0.13
INTERCOOLER WATER DIFFERENTIAL PRESSURE ("H2	0) 157.45	157.45	157.45	0.00	0.00
INTERCOOLER WATER FLOW (GPM)	54.13	53.33	54.94	0.26	0.49
INTERCOOLER WATER TEMP IN (F)	141.09	140.25	143.83	0.80	0.57
INTERCOOLER WATER TEMP OUT (F)	153.56	152.56	156.13	0.81	0.53
INTERCOOLER SUPPLY PRESSURE (psi)	2.64	2.60	2.69	0.01	0.56
PRE CATALYST TEMPERATURE (F)	736.58	735.11	737.68	0.44	0.06
POST CATALYST TEMPERATURE (F)	740.58	739.67	741.65	0.39	0.05
CATALYST DIFFERENTIAL PRESSURE ("H2O)	8.99	8.87	9.15	0.05	0.55
B.S. CO (g/bhp-hr): Pre-Catalyst	2.40	2.35	2.48	0.02	1.02
B.S. CO (g/bhp-hr): Post-Catalyst	0.15	0.15	0.16	0.00	2.99
B.S. NO (g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NO (g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
-					

Test Description: Run 10 - 735BHP 1200RPM 10BTDC

Data Point Number: Run 10	an a	Date:	08/06/99	Time:	11:36:00
			Duratio	n (minutes):	33.00
Description	Average	Min	Max	STDV	Variance
B.S. NOx (corrected - g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (corrected - g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (g/bhp-hr): Pre-Catalyst	0.83	0.79	0.88	0.02	1.95
B.S. NOx (g/bhp-hr): Post-Catalyst	0.85	0.81	0.90	0.02	1.96
B.S. THC (g/bhp-hr): Pre-Catalyst	4.29	4,15	4.44	0.05	1.23
B.S. THC (g/bhp-hr): Post-Catalyst	4.43	4.29	4.60	0.05	1.21
B.S. Methane (g/bhp-hr): Pre-Catalyst	2.09	1.98	2.23	0.08	3.85
B.S. Methane (g/bhp-hr): Post-Catalyst	2.02	1.98	2.08	0.02	0.97
B.S. Non-Methane (g/bhp-hr): Pre-Catalyst	0.07	0.06	0.08	0.01	9.40
B.S. Non-Methane (g/bhp-hr): Post-Catalyst	0.06	0.06	0.07	0.00	1.49
O2 (ppm): Pre-Catalyst	9.80	9.80	9.80	0.00	0.00
O2 (ppm): Post-Catalyst	9.73	9.70	9.80	0.04	0.45
CO (ppm): Pre-Catalyst	625.62	620.50	629.60	1.90	0.30
CO (ppm): Post-Catalyst	41.97	41.40	42.50	0.19	0.46
CO2 (ppm): Pre-Catalyst	6.35	6.29	6.35	0.01	0.08
CO2 (ppm): Post-Catalyst	6.50	6.47	6.52	0.01	0.13
NO (ppm): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NO (ppm): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
NOx (ppm - Corrected): Pre-Catalyst	70.06	67.90	73.50	1.14	1.62
NOx (ppm - Corrected): Post-Catalyst	72.77	70.00	76.70	1.18	1.62
NOx (ppm): Pre-Catalyst	131.74	127.70	138.20	2.19	1.66
NOx (ppm): Post-Catalyst	137.05	131.80	144.60	2.33	1.70
THC (ppm): Pre-Catalyst	1713.36	1679.20	1743.80	12.94	0.76
THC (ppm): Post-Catalyst	1797.47	1766.00	1831.80	11.84	0.66
Methane (ppm): Pre-Catalyst	1097.70	1062.00	1148.60	41.02	3.74
Methane (ppm): Post-Catalyst	1078.57	1075.50	1078.60	0.28	0.03
Non-Methane (ppm): Pre-Catalyst	125.44	116.20	144.30	9.57	7.63
Non-Methane (ppm): Post-Catalyst	111.49	104.80	116.90	3.99	3.58
DYNO WATER IN TEMPERATURE (F)	83.02	82.71	83.51	0.19	0.23
DYNO WATER OUT TEMPERATURE (F)	129.15	128.95	129.34	0.04	0.03
JACKET WATER IN TEMPERATURE (F)	173.86	173.39	174.18	0.17	0.10
JACKET WATER OUT TEMPERATURE (F)	180.46	179.00	182.00	0.61	0.34
JACKET WATER FLOW (GPM)	0.00	0.00	0.00	0.00	0.00
LUBE OIL COOLING WATER IN TEMPERATURE (F)	96.16	95.41	97.20	0.41	0.43
LUBE OIL COOLING WATER OUT TEMPERATURE (F)	101.70	100.97	102.56	0.39	0.39
LUBE OIL FLOW (GPM)	131.66	130.99	132.60	0.27	0.20
CO F-Factor: Pre-Catalyst	4.21	4.12	4.34	0.04	1.00
CO F-Factor: Post-Catalyst	0.28	0.28	0.29	0.00	1.07
NO F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NO F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
NOX F-Factor: Pre-Catalyst	1.46	1.40	1.55	0.03	1.86
NOx F-Factor: Post-Catalyst	1.52	1.44	1.61	0.03	1.86
THC F-Factor: Pre-Catalyst	7.39	7.14	7.69	0.09	1.28
THC F-Factor: Post-Catalyst	7.74	7.50	8.05	0.10	1.23
Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0,00
Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
ENGINE TORQUE	3237.32	3233.08	3241.14	1.78	0.05
	0201.02	0200.00	V271.17	1.10	0.00

.....

Test Description: Run 11 - 735BHP 1200RPM 10BTDC

.

Data Point Number: Run 11		Date:	08/06/99	Time:	13:16:59
			Duration	n (minutes):	33.00
Description	Average	Min	Max	STDV	Variance
AMBIENT AIR TEMPERATURE (F)	74.91	73.00	75.00	0.41	0.54
AMBIENT AIR PRESSURE (psia)	12.07	12.07	12.07	0.00	0.00
AMBIENT HUMIDITY (%)	55.34	50.00	58.00	1.86	3.37
AIR MANIFOLD PRESSURE ("Hg)	5.00	4.73	5.23	0.08	1.68
AIR MANIFOLD RELATIVE HUMIDITY (%)	37.78	35.00	40.00	1.23	3.26
AIR MANIFOLD HUMIDITY RATIO (Ib _W Ib _A)	0.01547	0.01341	0.01710		0.20
AIR SUPPLY TEMPERATURE (F)	99.39	97.00	101.00	0.72	0.72
NTAKE AIR FLOW (scfm)	1717.89	1700.75	1737.97	7.36	0.43
EXHAUST FLOW (scfm)	-124.87	-124.87	-124.87	0.00	0.00
EXHAUST STACK TEMPERATURE (F)	701.16	699.99	702.56	0.76	0.11
CYLINDER 1 EXHAUST TEMPERATURE (F)	972.80	970.62	975.19	1.03	0.11
CYLINDER 2 EXHAUST TEMPERATURE (F)	975.01	972.81	977.57	0.99	0.10
CYLINDER 3 EXHAUST TEMPERATURE (F)	977.14	974.99	979.95	1.14	0.12
CYLINDER 4 EXHAUST TEMPERATURE (F)	951.79	949.20	953.56	0.88	0.09
CYLINDER 5 EXHAUST TEMPERATURE (F)	942.05	939.27	944.24	1.06	0.11
CYLINDER 6 EXHAUST TEMPERATURE (F)	928.06	925.78	931.14	1.13	0.12
CYLINDER EXHAUST AVERAGE TEMP (F)	957.81	956.27	959.61	0.92	0.10
EXHAUST HEADER TEMPERATURE (F)	701.16	699.99	702.56	0.76	0.11
PRE TURBO EXHAUST PRESSURE ("Hg)	36.90	36.44	37.49	0.18	0.49
PRE TURBO EXHAUST TEMPERATURE (F)	958.20	956.34	960.70	1.20	0.13
POST TURBO EXHAUST PRESSURE ("Hg)	4.93	4.83	5.04	0.03	0.67
POST TURBO EXHAUST TEMPERATURE (F)	774.92	773.20	777.17	1.04	0.13
TURBO OIL PRESSURE ("Hg)	47.08	46.32	47.77	0.29	0.61
ENGINE SPEED (rpm)	1196.85	1192.86	1201.13	1.51	0.13
ENGINE HORSEPOWER (bhp)	737.92	735.70	- 740.71	0.97	0.13
ENGINE OIL PRESSURE (psig)	52.30	51.64	53.01	0.34	0.65
ENGINE OIL TEMPERATURE IN (F)	164.39	163.87	164.66	0.21	0.13
ENGINE OIL TEMPERATURE OUT (F)	184.78	184.30	185.49	0.18	0.10
SPECIFIC GRAVITY	0.66	0.66	0.66	0.00	0.00
FUEL TEMPERATURE (F)	95.62	95.21	96.01	0.17	0.18
FUEL PRESSURE ("H2O above amp)	4.87	4.04	5.50	0.24	4.92
FUEL SUPPLY PRESSURE (psig)	46.32	46.20	46.47	0.05	0.11
ORIFICE DIFFERENTIAL PRESSURE ("H2O)	14.66	13.90	15.39	0.30	2.08
ORIFICE STATIC PRESSURE (psig)	46.25	46.14	46.36	0.04	0.08
ORIFICE TEMPERATURE (F)	91.74	91.51	92.09	0.14	0.14
FUEL FLOW (SCFH)	5483.29			,	
CALCULATED FUEL CONSUMPTION (BSFC)	7330.47				
FUEL HEATING VALUE (Btu)	986.50	986.50	986.50	0.00	0.00
AIR FUEL RATIO	28.60	28.60	28.60	0.00	0.00
INTERCOOLER AIR DIFFERENTIAL PRESSURE ("H2O)	9.40	9.10	9.70	0.11	1.13
INTERCOOLER AIR TEMP IN (F)	299.29	298.19	300.38	0.43	0.14
INTERCOOLER AIR TEMP OUT (F)	142.17	140.06	145.41	1.50	1.06
POST INTERCOOLER AIR MANIFOLD PRESSURE ("Hg)	68.70	68.41	68.99	0.09	0.13
INTERCOOLER WATER DIFFERENTIAL PRESSURE ("H2O)	157.45	157.45	157.45	0.00	0.00
INTERCOOLER WATER FLOW (GPM)	54.53	53.65	55.42	0.29	0.52
INTERCOOLER WATER TEMP IN (F)	129.01	126.17	133.11	1.98	1.54
INTERCOOLER WATER TEMP OUT (F)	142.05	139.26	145.81	1.82	1.28
INTERCOOLER SUPPLY PRESSURE (psi)	2.66	2.60	2.71	0.02	0.58
PRE CATALYST TEMPERATURE (F)	731.32	729.95	732.92	0.81	0.11
POST CATALYST TEMPERATURE (F)	735.71	734.31	737.68	0.95	0.13
CATALYST DIFFERENTIAL PRESSURE ("H2O)	9.01	8.83	9.19	0.06	0.66
B.S. CO (g/bhp-hr): Pre-Catalyst	2.40	2.33	2.47	0.03	1.14
B.S. CO (g/bhp-hr): Post-Catalyst	0.15	0.15	0.16	0.00	3.04
B.S. NO (g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NO (g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00

-

.

. . .

Test Description: Run 11 - 735BHP 1200RPM 10BTDC

Data Point Number: Run 11	· ••• •• •• •	. <u>.</u> . . .	• •		•••
---------------------------	---------------	--	-----	--	-----

Data Point Number: Run 11		Date:	08/06/99	8/06/99 Time:	
			Duration (minutes):		33.00
Description	Average	Min	Max	STDV	Variance
B.S. NOx (corrected - g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (corrected - g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (g/bhp-hr): Pre-Catalyst	0.69	0.65	0.75	0.02	3.42
B.S. NOx (g/bhp-hr): Post-Catalyst	0.73	0.68	0.81	0.03	3.58
B.S. THC (g/bhp-hr): Pre-Catalyst	4.65	4.45	4.84	0.08	1.66
B.S. THC (g/bhp-hr): Post-Catalyst	4.69	4.49	4.89	0.08	1.75
B.S. Methane (g/bhp-hr): Pre-Catalyst	2.27	2.08	2.38	0.08	3.69
B.S. Methane (g/bhp-hr): Post-Catalyst	2.14	1.99	2.28	0.06	2.58
B.S. Non-Methane (g/bhp-hr): Pre-Catalyst	0.08	0.07	0.09	0.01	6.63
B.S. Non-Methane (g/bhp-hr): Post-Catalyst	0.07	0.07	0.08	0.00	5.48
O2 (ppm): Pre-Catalyst	9.81	9.80	9.90	0.02	0.24
O2 (ppm): Post-Catalyst	9.79	9.70	9.80	0.03	0.29
CO (ppm): Pre-Catalyst	620.51	616.00	627.30	2.34	0.38
CO (ppm): Post-Catalyst	41.71	40.90	42.30	0.26	0.63
CO2 (ppm): Pre-Catalyst	6.29	40.90 6.26	6.32	0.03	0.03
	6.47	6.44	6.50	0.02	0.26
CO2 (ppm): Post-Catalyst	0.00	0.00	0.00	0.02	0.20
NO (ppm): Pre-Catalyst			0.00	0.00	0.00
NO (ppm): Post-Catalyst	0.00	0.00			
NOx (ppm - Corrected): Pre-Catalyst	58.62	55.10	63.00	2.01	3.43
NOx (ppm - Corrected): Post-Catalyst	62.94	58.80	68.80	2.20	3.49
NOx (ppm): Pre-Catalyst	109.71	102.90	118.40	3.99	3.64
NOx (ppm): Post-Catalyst	118.10	109.80	129.50	4.36	3.69
THC (ppm): Pre-Catalyst	1840.30	1801.60	1871.60	15.55	0.85
THC (ppm): Post-Catalyst	1893.61	1839.80	1937.40	20.70	1.09
Methane (ppm): Pre-Catalyst	1179.63	1118.00	1209.50	40.58	3.44
Methane (ppm): Post-Catalyst	1136.87	1089.50	1185.70	24.71	2.17
Non-Methane (ppm): Pre-Catalyst	140.34	127.10	149.30	6.99	4.98
Non-Methane (ppm): Post-Catalyst	129.50	123.10	137.60	5.26	4.06
DYNO WATER IN TEMPERATURE (F)	82.35	81.92	82.71	0.19	0.23
DYNO WATER OUT TEMPERATURE (F)	128.81	128.15	129.14	0.18	0.14
JACKET WATER IN TEMPERATURE (F)	163.69	163.27	164.06	0.17	0.10
JACKET WATER OUT TEMPERATURE (F)	170.06	168.00	172.00	0.71	0.42
JACKET WATER FLOW (GPM)	0.00	0.00	0.00	0.00	0.00
LUBE OIL COOLING WATER IN TEMPERATURE (F)	92.41	91.84	93.03	0.50	0.54
LUBE OIL COOLING WATER OUT TEMPERATURE (F)	98.17	97.20	98.79	0.39	0.40
LUBE OIL FLOW (GPM)	131.16	130.50	131.63	0.22	0.17
CO F-Factor: Pre-Catalyst	4.21	4.09	4.32	0.05	1.07
CO F-Factor: Post-Catalyst	0.28	0.27	0.29	0.00	1.37
NO F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NO F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
NOx F-Factor: Pre-Catalyst	1.22	1.14	1.32	0.04	3.44
NOx F-Factor: Post-Catalyst	1.31	1.21	1.45	0.05	3.50
THC F-Factor: Pre-Catalyst	7.98	7.65	8.30	0.13	1.57
THC F-Factor: Post-Catalyst	8.20	7.85	8.56	0.14	1.76
Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
ENGINE TORQUE	3238.02	3233.08	3241.14	1.28	0.00

Test Description: Run 12 - 735BHP 1200RPM 10BTDC

Data Point Number: Run 12

.

Data Point Number: Run 12		Date:	08/06/99	Time:	09:36:1
			Duration	n (minutes):	33.00
Description	Average	Min	Max	STDV	Varianc
MBIENT AIR TEMPERATURE (F)	72.93	71.00	73.00	0.36	0.50
MBIENT AIR PRESSURE (psia)	12.07	12.07	12.07	0.00	0.00
MBIENT HUMIDITY (%)	52.32	48.00	56.00	2.12	4.06
AIR MANIFOLD PRESSURE ("Hg)	5.00	4.76	5.27	0.08	1.56
AIR MANIFOLD RELATIVE HUMIDITY (%)	34.12	33.00	35.00	0.69	2.03
IR MANIFOLD HUMIDITY RATIO (Ibyiba)	0.01398	0.01301	0.01536		
NIR SUPPLY TEMPERATURE (F)	99.49	98.00	102.00	0.70	0.71
NTAKE AIR FLOW (scfm)	1720.32	1704.14	1737.41	6.30	0.37
EXHAUST FLOW (scfm)	-124.87	-124.87	-124.87	0.00	0.00
EXHAUST STACK TEMPERATURE (F)	704.45	703.56	705.54	0.54	0.08
CYLINDER 1 EXHAUST TEMPERATURE (F)	976.92	974.39	979.35	0.83	0.08
CYLINDER 2 EXHAUST TEMPERATURE (F)	978.81	977.37	980.74	0.64	0.07
CYLINDER 3 EXHAUST TEMPERATURE (F)	981.55	979.75	983.72	0.76	0.08
CYLINDER 4 EXHAUST TEMPERATURE (F)	954.93	952.57	957.93	0.93	0.10
CYLINDER 5 EXHAUST TEMPERATURE (F)	945.90	943.44	948.20	0.96	0.10
CYLINDER 6 EXHAUST TEMPERATURE (F)	933.05	930.74	934.71	0.84	0.09
CYLINDER EXHAUST AVERAGE TEMP (F)	961.86	960.17	963.61	0.64	0.07
EXHAUST HEADER TEMPERATURE (F)	704.45	703.56	705.54	0.54	0.08
PRE TURBO EXHAUST PRESSURE ("Hg)	36.99	36.63	37.38	0.15	0.40
PRE TURBO EXHAUST TEMPERATURE (F)	963.38	961.30	965.27	0.74	0.08
POST TURBO EXHAUST PRESSURE ("Hg)	4.98	4.90	5.05	0.03	0.58
POST TURBO EXHAUST TEMPERATURE (F)	779.01	776.97	780.74	0.77	0.10
TURBO OIL PRESSURE ("Hg)	46.67	45.84	47.29	0.30	0.64
ENGINE SPEED (rpm)	1196.91	1193.61	1201.13	1.40	0.12
ENGINE HORSEPOWER (bhp)	737.53	735.01	740.17	0.99	0.13
ENGINE OIL PRESSURE (psig)	51.88	51.07	52.60	0.35	0.67
ENGINE OIL TEMPERATURE IN (F)	166.62	166.05	166.84	0.14	0.08
ENGINE OIL TEMPERATURE OUT (F)	188.06	187.68	188.47	0.14	0.07
SPECIFIC GRAVITY	0.66	0.66	0.66	0.00	0.00
FUEL TEMPERATURE (F)	93.38	92.83	94.02	0.27	0.29
FUEL PRESSURE ("H2O above amp)	5.30	4.63	6.07	0.23	4.38
FUEL SUPPLY PRESSURE (psig)	46.61	46.47	46.75	0.06	0.12
ORIFICE DIFFERENTIAL PRESSURE ("H2O)	14.92	14.07	15.66	0.29	1.95
ORIFICE STATIC PRESSURE (psig)	46.32	46.22	46.45	0.04	0.08
ORIFICE TEMPERATURE (F)	90.05	89.23	90.80	0.44	0.44
FUEL FLOW (SCFH)	5542.79			••••	
CALCULATED FUEL CONSUMPTION (BSFC)	7413.90				
FUEL HEATING VALUE (Btu)	986.50	986.50	986.50	0.00	0.00
AIR FUEL RATIO	28.70	28.70	28.70	0.00	0.00
INTERCOOLER AIR DIFFERENTIAL PRESSURE ("H2O)	9.45	9.17	9.74	0.10	1.02
INTERCOOLER AIR TEMP IN (F)	299.63	298.79	300.57	0.35	0.12
INTERCOOLER AIR TEMP OUT (F)	142.86	142.24	143.63	0.29	0.20
POST INTERCOOLER AIR MANIFOLD PRESSURE ("Hg)	68.84	68.66	69.08	0.08	0.12
INTERCOOLER WATER DIFFERENTIAL PRESSURE ("H2O)	157.45	157.45	157.45	0.00	0.00
INTERCOOLER WATER FLOW (GPM)	54.76	53.97	58.00	0.30	0.55
INTERCOOLER WATER TEMP IN (F)	130.09	128.95	131.13	0.62	0.48
INTERCOOLER WATER TEMP OUT (F)	143.14	142.44	143.83	0.37	0.26
INTERCOOLER SUPPLY PRESSURE (psi)	2.65	2.60	2.70	0.02	0.58
PRE CATALYST TEMPERATURE (F)	736.01	734.51	737.49	0.65	0.09
POST CATALYST TEMPERATURE (F)	739.63	738.28	741.06	0.60	0.08
CATALYST DIFFERENTIAL PRESSURE ("H2O)	9.18	9.07	9.34	0.05	0.55
B.S. CO (g/bhp-hr): Pre-Catalyst	2.40	2.35	2.46	0.03	1.04
B.S. CO (g/bhp-hr): Post-Catalyst	0.15	0.15	0.16	0.00	3.22
B.S. NO (g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NO (g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00

Test Description: Run 12 - 735BHP 1200RPM 10BTDC

Data Point Number: Run 12	1	Date:	08/06/99	Time:	09:36:11
				n (minutes):	33.00
Description	Average	Min	Max	STDV	Variance
B.S. NOx (corrected - g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (corrected - g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
	0.71	0.68	0.74	0.00	1.86
B.S. NOx (g/bhp-hr): Pre-Catalyst	0.71	0.08	0.74	0.01	1.86
B.S. NOx (g/bhp-hr): Post-Catalyst					
B.S. THC (g/bhp-hr): Pre-Catalyst	4.49	4.33	4.66	0.06	1.43
B.S. THC (g/bhp-hr): Post-Catalyst	4.77	4.60	4.96	0.07	1.52
B.S. Methane (g/bhp-hr): Pre-Catalyst	2.37	2.32	2.43	0.02	1.00
B.S. Methane (g/bhp-hr): Post-Catalyst	2.21	2.11	2.31	0.06	2.51
B.S. Non-Methane (g/bhp-hr): Pre-Catalyst	0.07	0.06	0.08	0.01	6.79
B.S. Non-Methane (g/bhp-hr): Post-Catalyst	0.06	0.05	0.06	0.00	3.14
O2 (ppm): Pre-Catalyst	9.90	9.80	9.90	0.01	0.08
O2 (ppm): Post-Catalyst	9.85	9.80	9.90	0.05	0.51
CO (ppm): Pre-Catalyst	612.71	608.30	616.60	1.74	0.28
CO (ppm): Post-Calalyst	41.10	40.60	41.70	0.18	0.44
CO2 (ppm): Pre-Catalyst	6.29	6.29	6.35	0.01	0.16
CO2 (ppm): Post-Catalyst	6.41	6.38	6.45	0.02	0.25
NO (ppm): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NO (ppm): Post-Catalyst	0.00	.0.00	0.00	0.00	0.00
NOx (ppm - Corrected): Pre-Catalyst	59.85	57.70	61.50	0.91	1.52
NOx (ppm - Corrected): Post-Catalyst	63.16	60.70	65.50	1.04	1.64
NOx (ppm): Pre-Catalyst	111.21	107.30	114.40	1.83	1.65
NOx (ppm): Post-Catalyst	117.87	113.00	122.50	2.10	1.78
THC (ppm): Pre-Catalyst	1756.44	1723.10	1786.40	16.18	0.92
THC (ppm): Post-Catalyst	1889.00	1853.80	1927.00	15.94	0.84
Methane (ppm): Pre-Catalyst	1221.95	1219.20	1222.40	1.12	0.09
Methane (ppm): Post-Catalyst	1149.75	1124.70	1173.80	23.04	2.00
Non-Methane (ppm): Pre-Catalyst	126.92	116.50	134.90	7.01	5.52
Non-Methane (ppm): Post-Catalyst	107.32	100.60	112.10	3.53	3.29
DYNO WATER IN TEMPERATURE (F)	82.59	81.52	83.31	0.55	0.67
DYNO WATER OUT TEMPERATURE (F)	128.85	127.75	129.14	0.43	0.33
JACKET WATER IN TEMPERATURE (F)	184.06	183.31	184.70	0.38	0.21
JACKET WATER OUT TEMPERATURE (F)	190.19	188.00	192.00	0.73	0.38
JACKET WATER FLOW (GPM)	0.00	0.00	0.00	0.00	0.00
LUBE OIL COOLING WATER IN TEMPERATURE (F)	91.71	90.45	92.44	0.56	0.61
LUBE OIL COOLING WATER OUT TEMPERATURE (F)	97.46	96.21	98.39	0.61	0.62
LUBE OIL FLOW (GPM)	130.98	130.18	134.05	0.34	0.26
CO F-Factor: Pre-Catalyst	4.23	4.14	4.36	0.05	1.08
CO F-Factor: Post-Catalyst	0.28	0.28	4.30 0.29	0.00	1.16
-	0.28	0.20	0.29	0.00	0.00
NO F-Factor: Pre-Catalyst					
NO F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
NOx F-Factor: Pre-Catalyst	1.26	1.20	1.31	0.02	1.67
NOx F-Factor: Post-Catalyst	1.33	1.26	1.41	0.02	1.82
THC F-Factor: Pre-Catalyst	7.76	7.48	8.09	0.12	1.58
THC F-Factor: Post-Catalyst	8.31	8.02	8.64	0.12	1.50
Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Melhane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
ENGINE TORQUE	3236.42	3233.08	3238.45	2.07	0.06

Test Description: Run 13 - 736BHP 1200RPM 6BTDC

Data Point Number: Run 13		Date:	08/05/99 Time: 16:57			
			Duration (minutes):		33.00	
Description	Average	Min	Max	STDV	Varianc	
AMBIENT AIR TEMPERATURE (F)	69.00	69.00	69.00	0.00	0.00	
AMBIENT AIR PRESSURE (psia)	12.07	12.07	. 12.07	0.00	0.00	
AMBIENT HUMIDITY (%)	66.08	64.00	68.00	1.23	1.86	
AIR MANIFOLD PRESSURE ("Hg)	5.00	4.66	5.34	0.11	2.15	
AIR MANIFOLD RELATIVE HUMIDITY (%)	36.12	35.00	37.00	0.51	1.41	
AIR MANIFOLD HUMIDITY RATIO (Ib _v ≬ib _a)	0.01487	0.01386	0.01573			
AIR SUPPLY TEMPERATURE (F)	99.59	98.00	101.00	0.68	0.69	
NTAKE AIR FLOW (scfm)	1808.04	1779.70	1854.70	14.74	0.82	
EXHAUST FLOW (scfm)	-124.87	-124.87	-124.87	0.00	0.00	
EXHAUST STACK TEMPERATURE (F)	733.60	732.53	735.50	0.50	0.07	
CYLINDER 1 EXHAUST TEMPERATURE (F)	1012.87	1010.31	1015.07	0.82	0.08	
CYLINDER 2 EXHAUST TEMPERATURE (F)	1015.66	1014.08	1018.24	0.72	0.07	
CYLINDER 3 EXHAUST TEMPERATURE (F)	1013.77	1011.90	1015.67	0.61	0.06	
CYLINDER 4 EXHAUST TEMPERATURE (F)	988.19	984.12	991.06	1.11	0.11	
CYLINDER 5 EXHAUST TEMPERATURE (F)	978.56	974.59	980.94	1.31	0.13	
CYLINDER 6 EXHAUST TEMPERATURE (F)	963.33	960.31	966.66	1.32	0.14	
CYLINDER EXHAUST AVERAGE TEMP (F)	995.40	993.48	997.05	0.54	0.05	
EXHAUST HEADER TEMPERATURE (F)	733.60	732.53	735.50	0.50	0.07	
PRE TURBO EXHAUST PRESSURE ("Hg)	39.47	38.81	40.59	0.39	0.98	
PRE TURBO EXHAUST TEMPERATURE (F)	1000.42	998.60	1002.97	0.71	0.07	
POST TURBO EXHAUST PRESSURE ("Hg)	5.52	5.40	5.76	0.07	1.34	
POST TURBO EXHAUST TEMPERATURE (F)	807.78	804.75	811.10	1.04	0.13	
URBO OIL PRESSURE ("Hg)	47.16	46.16	47.85	0.27	0.57	
NGINE SPEED (rpm)	1196.92	1190.23	1203.38	1.95	0.16	
NGINE HORSEPOWER (bhp)	737.30	734.08	740.63	1.18	0.16	
NGINE OIL PRESSURE (psig)	52.35	51.48	53.09	0.33	0.64	
NGINE OIL TEMPERATURE IN (F)	164.50	164.06	164.86	0.12	0.08	
NGINE OIL TEMPERATURE OUT (F)	185.53	185.10	185.89	0.15	0.08	
PECIFIC GRAVITY	0.69	0.69	0.69	0.00	0.00	
UEL TEMPERATURE (F)	91.21	90.85	91.64	0.18	0.20	
UEL PRESSURE ("H2O above amp)	4.31	3.34	5.08	0.25	5.87	
UEL SUPPLY PRESSURE (psig)	46.70	46.56	46.82	0.05	0.11	
DRIFICE DIFFERENTIAL PRESSURE ("H2O)	16.32	15.50	17.39	0.39	2.40	
ORIFICE STATIC PRESSURE (psig)	46.40	46.29	46.48	0.04	0.08	
RIFICE TEMPERATURE (F)	86.36	86.11	86.71	0.12	0.12	
UEL FLOW (SCFH)	5682.94					
ALCULATED FUEL CONSUMPTION (BSFC)	8013.03					
UEL HEATING VALUE (Btu)	1039.60	1039.60	1039.60	0.00	0.00	
IR FUEL RATIO	28.96	28.39	29.39	0.21	0.74	
NTERCOOLER AIR DIFFERENTIAL PRESSURE ("H2O)	10.09	9.68	10.63	0.15	1.50	
NTERCOOLER AIR TEMP IN (F)	304.14	302.36	305.73	0.68	0.22	
NTERCOOLER AIR TEMP OUT (F)	142.22	141.25	143.43	0.43	0.30	
POST INTERCOOLER AIR MANIFOLD PRESSURE ("Hg)	69.35	68.91	69.83	0.14	0.20	
VTERCOOLER WATER DIFFERENTIAL PRESSURE ("H2O)	157.45	157.45	157.45	0.00	0.00	
NTERCOOLER WATER FLOW (GPM)	58.01	57.04	59.13	0.29	0.50	
NTERCOOLER WATER TEMP IN (F)	128.43	127.75	128.95	0.29	0.23	
NTERCOOLER WATER TEMP OUT (F)	141.66	140.65	142.44	0.31	0.23	
VIERCOOLER SUPPLY PRESSURE (psi)	2.84	2.80	2.89	0.02	0.22	
RE CATALYST TEMPERATURE (F)	767.12	765.86	769.43	0.54	0.00	
OST CATALYST TEMPERATURE (F)	771.28	770.22	709.43	0.54	0.07	
ATALYST DIFFERENTIAL PRESSURE ("H2O)	10.22	9.95	10.59	0.50	1.15	
.S. CO (g/bhp-hr): Pre-Catalyst	4.34	9.95 4.07	4.81	0.12	1.15 3.49	
S. CO (g/bhp-hr): Post-Catalyst	4.34 0.30	4.07 0.28	4.81 0.34	0.15	3.49 4.02	
S. NO (g/bhp-hr): Pre-Catalyst	0.00	0.28	0.00	0.01	4.02 0.00	
S. NO (g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00	

)

Test Description: Run 13 - 736BHP 1200RPM 6BTDC

Data Point Number: Run 13	na <mark>Banda da mananan bananan</mark> sara a - a Vananan	Date:		Time:	16:57:00
			Duratio	n (minutes):	33.00
Description	Average	Min	Max	STDV	Variance
B.S. NOx (corrected - g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (corrected - g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (g/bhp-hr): Pre-Catalyst	0.74	0.69	0.80	0.02	2.43
B.S. NOx (g/bhp-hr): Post-Catalyst	0.80	0.75	0.86	0.02	2.47
B.S. THC (g/bhp-hr): Pre-Catalyst	9.18	8.23	10.33	0.36	3.95
B.S. THC (g/bhp-hr): Post-Catalyst	9.55	8.58	10.71	0.37	3.84
B.S. Methane (g/bhp-hr): Pre-Catalyst	4.39	4.09	5.44	0.33	7.49
B.S. Methane (g/bhp-hr): Post-Catalyst	3.93	3.73	4.74	0.23	5.77
B.S. Non-Methane (g/bhp-hr): Pre-Catalyst	0.27	0.22	0.30	0.02	6.88
B.S. Non-Methane (g/bhp-hr): Post-Catalyst	0.17	0.16	0.18	0.01	4.15
O2 (ppm): Pre-Catalyst	10.44	9.80	10.50	0.17	1.64
O2 (ppm): Post-Catalyst	9.81	9.60	9.90	0.05	0.47
CO (ppm): Pre-Catalyst	619.89	600.20	657.60	14.27	2.30
CO (ppm): Post-Catalyst	44.53	41.90	47.90	1.25	2.30
CO2 (ppm): Pre-Catalyst	6.27	6.16	6.35	0.04	0.61
CO2 (ppm): Post-Catalyst	6.38	6.31	6.50	0.04	0.45
NO (ppm): Pre-Catalyst	0.00	0.00	0.00	0.00	0.40
NO (ppm): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
NOx (ppm - Corrected): Pre-Catalyst	36.57	33.80	37.80	1.10	3.00
NOx (ppm - Corrected): Post-Catalyst	37.83	35.00	41.20	1.05	
NOx (ppm): Pre-Catalyst	64.65	60.00	70.50		2.78
				2.03	3.14
NOx (ppm): Post-Catalyst	70.86 1904.26	64.90	78.30	2.26	3,20
THC (ppm): Pre-Catalyst	*	1766.90	2053.10	52.85	2.78
THC (ppm): Post-Catalyst	2002.69	1863.50	2163.60	53.99	2.70
Methane (ppm): Pre-Catalyst	1377.63	1319.20	1651.50	99.99	7.26
Methane (ppm): Post-Catalyst	1248.54	1216.80	1453.30	68.76	5.51
Non-Methane (ppm): Pre-Catalyst	167.00	145.40	182.00	10.43	6.24
Non-Melhane (ppm): Post-Catalyst	109.40	103.50	112.40	2.95	2.70
	81.73	81.52	81.92	0.13	0.16
DYNO WATER OUT TEMPERATURE (F)	127.77	127.36	128.35	0.16	0.12
	176.53	176.17	176.76	0.13	0.08
JACKET WATER OUT TEMPERATURE (F)	183.05	181.00	185.00	0.73	0.40
JACKET WATER FLOW (GPM)	0.00	0,00	0.00	0.00	0.00
LUBE OIL COOLING WATER IN TEMPERATURE (F)	88.07	88.07	88.07	0.00	0.00
LUBE OIL COOLING WATER OUT TEMPERATURE (F)	93.62	93.23	94.02	0.15	0.16
LUBE OIL FLOW (GPM)	130.42	129.70	136.31	0.37	0.29
CO F-Factor: Pre-Catalyst	4.86	4.35	5.35	0.17	3.53
CO F-Factor: Post-Catalyst	0.33	0.30	0.37	0.01	4.05
NO F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NO F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
NOx F-Factor: Pre-Catalyst	0.83	0.78	0.87	0.02	2.53
NOx F-Factor: Post-Catalyst	0.86	0.81	0.92	0.02	2.34
THC F-Factor: Pre-Catalyst	10.12	8.65	11.29	0.40	3.98
THC F-Factor: Post-Catalyst	10.04	9.03	11.30	0.40	3.96
Melhane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
ENGINE TORQUE	3235.52	3230.40	3238.45	2.10	0.06

Test Description: Run 15 - 736BHP 1200RPM 10BTDC (cylinder 6-6BTDC)

Data Point Number: Run 15

Date: 08/05/99

Time: 18:15:00

Description	Average	Min	Duratior Max	n (minutes): STDV	33.00 Veriene
	Average	Min	Max	STDV	Variana
					Varianc
MBIENT AIR TEMPERATURE (F)	69.00	69.00	69.00	0.00	0.00
MBIENT AIR PRESSURE (psia)	12.07	12.07	12.07	0.00	0.00
MBIENT HUMIDITY (%)	68.70	66.00	70.00	1.00	1.45
JR MANIFOLD PRESSURE ("Hg)	5.00	4.75	5.34	0.10	2.09
IR MANIFOLD RELATIVE HUMIDITY (%)	37.18	34.00	39.00	1.07	2.88
IR MANIFOLD HUMIDITY RATIO (Ib _v /Ib _a)	0.01532	0.01342	0.01712	•	
IR SUPPLY TEMPERATURE (F)	99.61	98.00	102.00	0.77	0.77
NTAKE AIR FLOW (scfm)	1744.40	1726.69	1762.78	5.90	0.34
XHAUST FLOW (sofm)	-124.87	-124.87	-124.87	0.00	0.00
XHAUST STACK TEMPERATURE (F)	706.79	705.94	708.32	0.52	0.07
YLINDER 1 EXHAUST TEMPERATURE (F)	975.99	973.40	985.90	1.86	0.19
YLINDER 2 EXHAUST TEMPERATURE (F)	977.31	974.99	987.49	1.48	0.15
YLINDER 2 EXHAUST TEMPERATURE (F)	977.14	974.59	984.91	1.44	0.15
YLINDER 4 EXHAUST TEMPERATURE (F)	951.37	974.39 948.80	960.11	1.62	0.13
	942.30	940.00 940.47	945.82	1.02	0.11
			940.02 951.18	1.02	0.14
	947.70	945.23			
	961.98 706 70	960.37 705.04	966.06	1.02	0.11
XHAUST HEADER TEMPERATURE (F)	706.79	705.94	708.32	0.52	0.07
RE TURBO EXHAUST PRESSURE ("Hg)	37.63	37.26	38.13	0.15	0.40
RE TURBO EXHAUST TEMPERATURE (F)	967.21	965.27	971.62	1.18	0.12
OST TURBO EXHAUST PRESSURE ("Hg)	5.08	5.00	5.16	0.03	0.56
OST TURBO EXHAUST TEMPERATURE (F)	780.29	778.56	783.12	0.92	0.12
URBO OIL PRESSURE ("Hg)	47.07	46.24	47.77	0.27	0.58
NGINE SPEED (rpm)	1196.86	1192.86	1202.26	1.63	0.14
NGINE HORSEPOWER (bhp)	737.39	734.54	740.02	1.02	0.14
NGINE OIL PRESSURE (psig)	52.27	51.40	53.01	0.34	0.65
INGINE OIL TEMPERATURE IN (F)	164.34	163.87	164.86	0.20	0.12
NGINE OIL TEMPERATURE OUT (F)	185.42	184.90	185.89	0.18	0.10
PECIFIC GRAVITY	0.69	0.69	0.69	0.00	0.00
UEL TEMPERATURE (F)	91.15	90.85	91.44	0.12	0.13
UEL PRESSURE ("H2O above amp)	4.13	3.42	4.82	0.25	6.04
UEL SUPPLY PRESSURE (psig)	46.78	46.65	46.86	0.04	0.08
RIFICE DIFFERENTIAL PRESSURE ("H2O)	15.00	14.42	15.70	0.30	2.03
RIFICE STATIC PRESSURE (psig)	46.46	46.37	46.53	0.04	0.08
RIFICE TEMPERATURE (F)	86.01	85.64	86.51	0.25	0.25
UEL FLOW (SCFH)	5452.40				
ALCULATED FUEL CONSUMPTION (BSFC)	7687.02				
UEL HEATING VALUE (Btu)	1039.60	1039.60	1039.60	0.00	0.00
IR FUEL RATIO	29.26	28.89	29.39	0.22	0.75
VTERCOOLER AIR DIFFERENTIAL PRESSURE ("H2O)	9.61	9.31	9.86	0.09	0.98
NTERCOOLER AIR TEMP IN (F)	300.36	299.19	301.77	0.49	0.16
NTERCOOLER AIR TEMP OUT (F)	140.85	139.46	143.03	1.00	0.71
OST INTERCOOLER AIR MANIFOLD PRESSURE ("Hg)	68.85	68.58	69.16	0.11	0.17
VTERCOOLER WATER DIFFERENTIAL PRESSURE ("H2O)	157.45	157.45	157.45	0.00	0.00
VTERCOOLER WATER FLOW (GPM)	57.93	57.04	58.81	0.29	0.50
NTERCOOLER WATER TEMP IN (F)	128.07	126.56	130.93	1.09	0.85
VTERCOOLER WATER TEMP OUT (F)	140.85	139.06	143.43	1.21	0.86
VTERCOOLER SUPPLY PRESSURE (psi)	2.84	2.77	2.89	0.02	0.62
RE CATALYST TEMPERATURE (F)	737.76	736.30	740.46	0.82	0.02
	737.76 741.89	730.30	740.48 744.23	0.82	0.10
OST CATALYST TEMPERATURE (F)		9.30	9.60		
ATALYST DIFFERENTIAL PRESSURE ("H2O)	9.45			0.05	0.52
S. CO (g/bhp-hr): Pre-Catalyst	4.23	4.12	4.38	0.05 0.00	1.14
			43 1913	0.00	1.52
.S. CO (g/bhp-hr): Post-Catalyst .S. NO (g/bhp-hr): Pre-Catalyst	0.28 0.00	0.27 0.00	0.29 0.00	0.00	0.00

Time: 18:15:00

Test Description: Run 15 - 736BHP 1200RPM 10BTDC (cylinder 6-6BTDC)

Data Point Number: Run 15 Date: 08/05/99

Data Point Number: Run 15		Date:	00/00/99	nme:	10:10:00
			Duration	n (minutes):	33.00
Description	Average	Min	Max	STDV	Variance
B.S. NOx (corrected - g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (corrected - g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (g/bhp-hr): Pre-Catalyst	1.04	0.99	1.09	0.02	1.58
B.S. NOx (g/bhp-hr): Post-Catalyst	1.12	1.03	1.18	0.02	1.99
B.S. THC (g/bhp-hr): Pre-Catalyst	8.63	8.34	8.89	0.10	1.21
B.S. THC (g/bhp-hr): Post-Catalyst	9.04	, 8.76	9.37	0.11	1.24 [·]
B.S. Methane (g/bhp-hr): Pre-Catalyst	4.10	3.97	4.41	0.10	2.40
B.S. Methane (g/bhp-hr): Post-Catalyst	3.63	3.49	· 3.81	0.08	2.21
B.S. Non-Methane (g/bhp-hr): Pre-Catalyst	0.25	0.23	0.27	0.01	4.19
B.S. Non-Methane (g/bhp-hr): Post-Catalyst	0.17	0.16	0.19	0.01	3.99
O2 (ppm): Pre-Catalyst	9.90	9.90	9.90	0.00	0.00
O2 (ppm): Post-Catalyst	9.82	9.80	9.90	0.04	0.43
CO (ppm): Pre-Catalyst	625.17	618.30	629.60	2.47	0.40
CO (ppm): Post-Catalyst	42.56	41.80	43.20	0.28	0.66
CO2 (ppm): Pre-Catalyst	6.22	6.16	6.29	0.02	0.31
CO2 (ppm): Post-Catalyst	6.35	6.33	6.37	0.01	0.14
NO (ppm): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NO (ppm): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
NOx (ppm - Corrected): Pre-Catalyst	50.78	48.80	52.60	0.57	1.13
NOx (ppm - Corrected): Post-Catalyst	54.65	50.30	57.10	0.93	1.71
NOx (ppm): Pre-Catalyst	94.19	90.90	97.40	1.05	1.12
NOx (ppm): Post-Catalyst	102.08	94.10	106.50	1.72	1.69
THC (ppm): Pre-Catalyst	1851.76	1820.50	1874.10	10.87	0.59
THC (ppm): Post-Catalyst	1964.48	1929.40	1992.80	12.14	0.62
Methane (ppm): Pre-Catalyst	1331.44	1319.20	1403.10	29.06	2.18
Methane (ppm): Post-Catalyst	1193.07	1170.70	1219.90	24.00	2.01
Non-Methane (ppm): Pre-Catalyst	160.16	152.60	170.70	6.08	3.79
Non-Methane (ppm): Post-Catalyst	115.06	105.70	118.80	3.97	3.45
DYNO WATER IN TEMPERATURE (F)	81.58	81.33	81.72	0.11	0.13
DYNO WATER OUT TEMPERATURE (F)	127.55	126.96	128.15	0.18	0.14
JACKET WATER IN TEMPERATURE (F)	172.83	172.20	173.79	0.30	0.17
JACKET WATER OUT TEMPERATURE (F)	178.71	177.00	181.00	0.69	0.39
JACKET WATER FLOW (GPM)	0.00	0.00	0.00	0.00	0.00
LUBE OIL COOLING WATER IN TEMPERATURE (F)	87.47	86.88	88.07	0.29	0.33
LUBE OIL COOLING WATER OUT TEMPERATURE (F)	92.95	92.44	93.63	0.23	0.25
LUBE OIL FLOW (GPM)	130.32	129.70	131.47	0.22	0.17
CO F-Factor: Pre-Catalyst	4.48	4.35	4.62	0.05	1.13
CO F-Factor: Post-Catalyst	0.30	0.29	0.31	0.00	1.20
NO F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NO F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
NOx F-Factor: Pre-Catalyst	1.11	1.06	1.16	0.02	1.55
NOx F-Factor: Post-Catalyst	1.19	1.10	1.26	0.02	2.03
THC F-Factor: Pre-Catalyst	9.00	8.74	9.30	0.11	1.19
THC F-Factor: Post-Catalyst	9.47	9.18	9.82	0.11	1.18
Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
ENGINE TORQUE	3235.59	3233.08	3238.45	2.00	0.06

Test Description: Run 16 - 736BHP 1200RPM 10BTDC (cyinder 6-14 BTDC)

Data Point Number: Run 16

Date: 08/05/99

Time: 19:52:00

			Duration	n (minutes):	33.00
Description	Average	Min	Max	STDV	Variance
AMBIENT AIR TEMPERATURE (F)	69.00	69.00	69.00	0.00	0.00
AMBIENT AIR PRESSURE (psia)	12.07	12.07	12.07	0.00	0.00
AMBIENT HUMIDITY (%)	68.00	68.00	68.00	0.00	0.00
AIR MANIFOLD PRESSURE ("Hg)	5.00	4.71	5.29	0.09	1.81
AIR MANIFOLD RELATIVE HUMIDITY (%)	37.26	33.00	40.00	1.84	4.94
AIR MANIFOLD HUMIDITY RATIO (Ibylba)	0.01539	0.01303	0.01760		
AIR SUPPLY TEMPERATURE (F)	99.70	98.00	102.00	0.73	0.73
INTAKE AIR FLOW (scfm)	1715.48	1700.19	1738.53	6.02	0.35
EXHAUST FLOW (scfm)	-124.87	-124.87	-124.87	0.00	0.00
EXHAUST STACK TEMPERATURE (F)	698.05	697.41	698.80	0.33	0.05
CYLINDER 1 EXHAUST TEMPERATURE (F)	975.79	973.80	978.16	0.78	0.08
CYLINDER 2 EXHAUST TEMPERATURE (F)	976.66	974.39	979.55	1.04	0.11
CYLINDER 3 EXHAUST TEMPERATURE (F)	976.78	974.59	979.35	0.68	0.07
CYLINDER 4 EXHAUST TEMPERATURE (F)	951.05	949.00	952.77	0.64	0.07
CYLINDER 5 EXHAUST TEMPERATURE (F)	941.73	939.47	943.44	0.89	0.09
CYLINDER 6 EXHAUST TEMPERATURE (F)	918.83	917.25	920.23	0.57	0.06
CYLINDER EXHAUST AVERAGE TEMP (F)	956.81	955.18	920.23 958.19	0.56	0.06
EXHAUST HEADER TEMPERATURE (F)	698.05	697.41	698.80	0.38	0.05
PRE TURBO EXHAUST PRESSURE ("Hg)	36.85	36.40	37.26	0.33 0.13	0.05
	954.33	952.57	955.54	0.59	0.06
POST TURBO EXHAUST PRESSURE ("Hg)	4.91	4.84	5.01	0.03	0.55
POST TURBO EXHAUST TEMPERATURE (F)	771.21	769.63	772.41	0.53	0.07
TURBO OIL PRESSURE ("Hg)	46.94	46.16	• 47.53	0.28	0.60
ENGINE SPEED (rpm)	1196.92	1193.23	1201.50	1.47	0.12
ENGINE HORSEPOWER (bhp)	737.33	734.08	740.25	1.09	0.15
ENGINE OIL PRESSURE (psig)	52.12	51.40	52.93	0.34	0.65
ENGINE OIL TEMPERATURE IN (F)	164.84	164.46	165.26	0.16	0.09
ENGINE OIL TEMPERATURE OUT (F)	185.95	185.49	186.68	0.20	0.11
SPECIFIC GRAVITY	0.69	0.69	0.69	0.00	0.00
FUEL TEMPERATURE (F)	91.42	91.05	91.84	0.15	0.16
FUEL PRESSURE ("H2O above amp)	4.17	3.54	4.77	0.24	5.67
FUEL SUPPLY PRESSURE (psig)	46.82	46.69	46.95	0.05	0.10
ORIFICE DIFFERENTIAL PRESSURE ("H2O)	14.59	13.84	15.44	0.34	2.35
ORIFICE STATIC PRESSURE (psig)	46.46	46.36	46.57	0.04	0.10
ORIFICE TEMPERATURE (F)	87.15	86.69	87.47	0.22	0.22
FUEL FLOW (SCFH)	5372.64			6	
CALCULATED FUEL CONSUMPTION (BSFC)	7575.15				
FUEL HEATING VALUE (Btu)	1039.60	1039.60	1039.60	0.00	0.00
AIR FUEL RATIO	29.28	28.89	29.39	0.21	0.71
INTERCOOLER AIR DIFFERENTIAL PRESSURE ("H2O)	9.42	9.13	9.66	0.10	1.04
INTERCOOLER AIR TEMP IN (F)	298.87	298.00	299.78	0.34	0.11
INTERCOOLER AIR TEMP OUT (F)	142.34	141.64	143.03	0.39	0.27
POST INTERCOOLER AIR MANIFOLD PRESSURE ("Hg)	68.73	68.49	68.99	0.10	0.14
INTERCOOLER WATER DIFFERENTIAL PRESSURE ("H2O)		157.45	157.45	0.00	0.00
INTERCOOLER WATER FLOW (GPM)	57.91	56.87	59.13	0.29	0.51
INTERCOOLER WATER TEMP IN (F)	130.21	128.95	131.33	0.72	0.55
INTERCOOLER WATER TEMP OUT (F)	142.85	142.24	143.83	0.42	0.29
INTERCOOLER SUPPLY PRESSURE (psi)	2.84	2.79	2.90	0.42	0.59
PRE CATALYST TEMPERATURE (F)	730.28	728.36	2.90 741.26	2.20	0.39
POST CATALYST TEMPERATURE (F)	732.86	720.30	733.91	2.20 0.40	
CATALYST DIFFERENTIAL PRESSURE ("H2O)	· 9.14	9.00			0.05
			9.30	0.05	0.58
B.S. CO (g/bhp-hr): Pre-Catalyst B.S. CO (g/bhp-hr): Post-Catalyst	2.43	2.36	2.51	0.03	1.26
B.S. CO (g/onp-nr): Post-Catalyst B.S. NO (g/bhp-hr): Pre-Catalyst	0.16	0.15	0.16	0.00	2.50
	0.00	0.00	0.00	0.00	0.00
B.S. NO (g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00

Time: 19:52:00

Į

Test Description: Run 16 - 736BHP 1200RPM 10BTDC (cyinder 6-14 BTDC)

Data Point Number: Run 16 Date: 08/05/99

		-			
			Duration	n (minutes):	33.00
Description	Average	Min	Max	STDV	Variance
B.S. NOx (corrected - g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (corrected - g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (g/bhp-hr): Pre-Catalyst	0.69	0.65	0.74	0.02	2.54
B.S. NOx (g/bhp-hr): Post-Catalyst	0.73	0.69	0.79	0.02	2.79
B.S. THC (g/bhp-hr): Pre-Catalyst	4.97	4.76	5.16	0.08	1.55
B.S. THC (g/bhp-hr): Post-Catalyst	5.04	4.85	5.25	0.08	1.51
B.S. Methane (g/bhp-hr): Pre-Catalyst	2.31	2.15	2.41	0.07	2.90
B.S. Methane (g/bhp-hr): Post-Catalyst	2.03	1.91	2.10	0.04	1.73
B.S. Non-Melhane (g/bhp-hr): Pre-Catalyst	. 0.13	0.12	0.15	0.01	8.84
B.S. Non-Methane (g/bhp-hr): Post-Catalyst	0.10	0.09	0.11	0.00	4.58
O2 (ppm): Pre-Catalyst	9.82	9.80	9.90	0.04	0.44
O2 (ppm): Post-Catalyst	9.80	9.80	9.90	0.01	0.05
CO (ppm): Pre-Catalyst	627.01	621.50	631.60	2.14	0.34
CO (ppm): Post-Catalyst	42.14	41.60	42.60	0.18	0.42
CO2 (ppm): Pre-Catalyst	6.23	6.16	6.23	0.01	0.13
CO2 (ppm): Post-Catalyst	6.36	6.34	6.38	0.01	0.13
NO (ppm); Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NO (ppm): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
NOx (ppm - Corrected): Pre-Catalyst	58.00	55.50	61.20	1.33	2.29
NOx (ppm - Corrected): Post-Catalyst	62.50	59.20	66.60	1.59	2.55
NOx (ppm): Pre-Catalyst	108.40	103.90	113.90	2.43	2,25
NOx (ppm): Post-Catalyst	117.03	110.80	124.50	2.93	2.50
THC (ppm): Pre-Catalyst	1859.18	1820.50	1896.00	16.93	0.91
THC (ppm): Post-Catalyst	1911.35	1866.00	1948.90	17.05	0.89
Methane (ppm): Pre-Catalyst	1307.00	1245.10	1327.80	35.20	2.69
Methane (ppm): Post-Catalyst	1166.46	1124.70	1173.80	13.62	1.17
Non-Methane (ppm): Pre-Catalyst	150.12	136.80	168.30	12.30	8.19
Non-Methane (ppm): Post-Catalyst	118.21	112.10	123.90	3.84	3.25
DYNO WATER IN TEMPERATURE (F)	81.64	81.52	81.72	0.10	0.12
DYNO WATER OUT TEMPERATURE (F)	127.59	127.16	128.15	0.17	0.13
JACKET WATER IN TEMPERATURE (F)	174.13	173.59	174.58	0.17	0.10
JACKET WATER OUT TEMPERATURE (F)	180.21	178.00	182.00	0.71	0.39
JACKET WATER FLOW (GPM)	0.00	0.00	0.00	0.00	0.00
LUBE OIL COOLING WATER IN TEMPERATURE (F)	87.48	87.48	87.48	0.00	0.00
LUBE OIL COOLING WATER OUT TEMPERATURE (F)	92.91	92.64	93.23	0.13	0.14
LUBE OIL FLOW (GPM)	130.29	129.38	130.99	0.24	0.18
CO F-Factor: Pre-Catalyst	4.39	4.26	4.55	0.05	1.24
CO F-Factor: Post-Catalyst	0.29	0.29	0.31	0.00	1.27
NO F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NO F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
NOx F-Factor: Pre-Catalyst	1.25	1.18	1.35	0.03	2.52
NOx F-Factor: Post-Catalyst	1.35	1.26	1.46	0.04	2.71
THC F-Factor: Pre-Catalyst	8.83	8.45	9.22	0.14	1.56
THC F-Factor: Post-Catalyst	9.06	8.71	9.43	0.14	1.54
Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
ENGINE TORQUE	3235.47	3230.40	3238.45	2.10	0.06
	0200.41	0200,40	JZJ0,4J	2.10	0.00

Test Program: EPA RICE Testing:

Description: Reference Method Analyzers Daily Calibrations

Engine Class: Natural Gas Fueled, Spark Ignited, Four-Stroke, Lean Burn Engine

Test Points: Calibrations between Runs 5 & 6 and 15 & 16

Engine Type: Waukesha

Date: August 5, 1999

QC_Aug.,5_1999_22:09:47	Description	: Post Run 5 - Spa				
Gas	Slope	Intercept Cal G	Zero_Avg	Span_Avg	Range point of A	Sector v
Pre_CO	100.54	-0.047	450 O	4.481	1000 3450 499	0 0499
Pre_CO2	25.005	-0.061 熱認能	0.002	0.366	25 9.101	0.244
Pre_O2	24.627	0.004	刻之 0	0.467	25 25 4 1 1 9	0.04
Pre_Methane	1255.399	-1263.228	800 1.006	2.44	5000 1800	0
Pre_Non_Methane	140.071	-158.141	181 1.129	2.38	500 175 183	11634
Pre_NOx	49.955	-0.74	304 0.005	6,141	500 308.054	0.4100
Pre_THC	498.544	-0.019	750 0	5.656	5000 2819 533	139066
Post_CO	40.411	-0.002			200	0 2 2 2
Post_CO2	2	-0.001 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)		2.561	10 24 22	0.36
Post_O2	4.993	0		2.396	25 11,061	
Post_Methane	1257.239		800 0.998		5000 1701 934	0,36192
Post_Non_Methane	130.454		181 1.043		500 3179 407	27-0.3166
Post_NOx	9 9.559	0.023	305] 0		500 305 94	0.166
Post_THC	998.645	-0.078	760 0	2.746	5000 2742,601	22-0.14790
QC_Aug.,5_1999_19:31:03		: Post Run 15 - Sp			The state of the second second	
Gas .	Slope	intercept Cal G			Range poin of	N. ETON
Pre_CO	100.54		450 O	4.479	1000 28450 289	+210.0299
Pre_CO2	25.005		04 0.002	0,365	25 2 067	0104
Pre_CO2 Pre_O2	25.005 24.627		04 0.002 12 0	0,365 0,486	25 8.067 25 11.969	-0.124
	24.627 1255.399	0.004	12 0 800 1.006	0.486 2.501	25 5 067 25 11.969 5000 1876.028	0.124 1.5205
Pre_O2	24.627	0.004 5-1263.228 -1263.228 -158.141 -158.141	12 0 800 1.008 101 1.129	0.486	25 3611,969	-0.124
Pre_Q2 Pre_Methane	24.627 1255.399	0.004 -1263.228 -158.141 -0.74	12 0 600 1.006 161 1.129 306 0.005	0.486 2.501	25 513,969 5000 1876,028	-0.124 1.2054 -0.0054 -0.0054
Pre_O2 Pre_Methane Pre_Non_Methane	24.627 1255.399 140.071	0.004 5-1263.228 -1263.228 -158.141 -158.141	12 0 600 1.006 161 1.129 306 0.005	0.486 2.501 2.421	25 11,969 5000 1878,028 500 1878,028	0.124 1.52056 0.0034
Pre_O2 Pre_Methane Pre_Non_Methane Pre_NOx	24.627 1255.399 140.071 49.955	0.004 -1263.228 -158.141 -0.74 -0.019	12 0 600 1.006 161 1.129 306 0.005	0.486 2.501 2.421 6.141	25 13.969 5000 1876.028 500 160.983 500 506.021	-0.124 1.2054 -0.0054 -0.0054
Pre_O2 Pre_Methane Pre_Non_Methane Pre_NOX Pre_THC	24.627 1255.399 140.071 49.955 498.544	0.004 -1263.228 -158.141 -0.74 -0.019 -0.002	12 0 600 1.008 101 1.129 304 0.005 2508 0	0.486 2.501 2.421 6.141 5.518	25 11 969 5000 1076 028 500 1076 028 500 1076 021 500 12750 12 200 244 486	0,126 1,52056 0,0034 0,4042 0,01624
Pre_O2 Pre_Methane Pre_Non_Methane Pre_NOX Pre_THC Post_CO	24.627 1255.399 140.071 49.955 498.544 40.411	0.004 -1263.228 -158.141 -0.74 -0.019 2 -0.002	12 0 800 1.006 101 1.129 302 0.005 203 0 800 0.014	0.486 2.501 2.421 6.141 5.518 1.1	25 13 509 5000 1076 028 500 1076 028 500 206 021 5000 2750 812	0,124 1,52056 0,0034 0,4042 0,01624
Pre_O2 Pre_Methane Pre_Non_Methane Pre_NOX Pre_THC Post_CO Post_CO2	24.627 1255.399 140.071 49.955 498.544 40.411 2	0.004 -1263.228 -158.141 -0.74 -0.019 -0.002 -0.001	12 0 500 1.006 101 1.129 302 0.005 2502 0 358 0.014 365 0	0.486 2.501 2.421 6.141 5.518 1.1 2.558	25 11969 5000 1678 020 500 160 362 500 206 021 5000 27750 812 200 41768 10 55115	0.124 (152056 0.00054 0.4042 0.01624 0.01624 0.01624 0.01624 0.01624 0.01624
Pre_O2 Pre_Methane Pre_Non_Methane Pre_NOX Pre_THC Post_CO Post_CO2 Post_O2	24.627 1255.399 140.071 49.955 498.544 40.411 2 4.993	0.004 -1263.228 -158.141 -0.74 -0.019 -0.002 -0.001	12 0 500 1.008 101 1.129 302 0.005 2305 0 550 0.014 165 0 365 0.998	0,486 2,501 2,421 6,141 5,518 1,1 2,558 2,395	25 11369 5000 1876 025 500 180 832 500 205 021 5000 22750 812 200 42750 812 200 42750 812 200 513 8515 25 113 861	0.124 (52054 0.0054 0.4042 (0.01624) 0.333 0.335 0.435
Pre_O2 Pre_Methane Pre_Non_Methane Pre_NOX Pre_THC Post_CO2 Post_CO2 Post_O2 Post_Methane	24.627 1255.399 140.071 49.955 498.544 40.411 2 4.993 1257.239	0.004 -1263.228 -158.141 -0.74 -0.019 -0.002 -0.001 0 -1254.745	12 0 800 1.008 901 1.129 304 0.005 250 0 800 0.014 156 0 42 0 600 0.998 161 1.043	0,486 2,501 2,421 6,141 5,518 1,1 2,558 2,395 2,426	25 -11369 5000 1078 020 500 160362 500 206 021 5000 2750612 200 44 486 10 5 415 25 11961 5000 749 843	0.124 (22054 0.0054 0.4042 2.001624 2.001624 2.00162 2.00162 2.00162 2.00166 0.00154
Pro_O2 Pro_Methane Pro_Non_Methane Pro_NOX Pro_THC Post_CO Post_CO2 Post_O2 Post_Methane Post_Non_Methane	24.627 1255.399 140.071 49.955 498.544 40.411 2 4.993 1257.239 130.454	0.004 -1263.228 -158.141 -0.74 -0.019 -0.002 -0.001 0 -1254.745 -136.043	12 0 800 1.008 901 1.129 304 0.005 250 0 800 0.014 156 0 42 0 600 0.998 161 1.043	0.486 2.501 2.421 6.141 5.518 1.1 2.558 2.395 2.426 2.412	25 11969 5000 1876 025 500 180 802 500 2756 81 200 2756 81 200 44 488 10 5 415 25 11 981 5000 774 83 500 774 83	0.124 (52036 0.0054 0.4042 0.01624 0.01624 0.01624 0.01624 0.01624 0.0154 0.0154

QC_Aug.,5_1999_22:01:55	Description	: Post Ru	n 5 - Zero Ch	eck			
Gas	Slope	intercept	Cal Gas	Zero_Avg	Span_Avg	Range promior 4	
Pre_CO	100.54	-0.047		0	0	1000 1000 200	
Pra_CO2	25.005	-0.061		0.002		25 25 0.047	0.168
Pre_O2	24.627	0.004	的短润的	0	0.002	25 0.06	0.24
Pro_Methane	1255.399	-1263.225	開始を見かり	1.006		5000 80,167	1, 50334
Pre_Non_Methane	140.071	-158.141	新新新新的	1.129	1.168	500 5.423	1.0846
Pre_NOx	49.955	-0.74		0.005		500 0.112	0.0224
Pre_THC	498.544	-0.019		0	0	5000	
Post_CO	40.411	-0.002		0.014	0.024	200 201948	550.74
Post_CO2	2	-0.001	1 HEREIN OF	0	o	10	
Post_O2	4.993	C	地名特征日	. 0	0	25	
Post_Methene	1257.239	-1254.745		0.998		5000 205	0.0041
Post_Non_Methane	130.454	-136.043		1.043	1.046	500 0 445	0.0862
Post_NOx	99.559	0.023		0	0	500 State 10	
Post_THC	998.645	-0.078		0	0	5000	
QC_Aug.5_1999_19:17:06	Description		n 15 - Zero C				
Gas	Slope		Cu Gas	Zero_Avg	Span_Avg	Range ppm or W	
Pre_CO	100.54		Define the	0	· 0	1000	
Pre_CO2	25.005	-0.061		0.002		25 3 -0.053	0.212
Pre_O2	24.627	0.004		0	0.002	25 25 0,08	0.24
Pro_Meihane	1255.399	+1263.228		1.008	1.006	5000 0.204	0,00408
Pre_Non_Methane	140.071	-158.141		1.129	1.073	500 7.87	21.1.574
Pre_NOx	49.955	-0.74		0.005	0.017	500 0.095	20.0192
Pre_THC	498.544	-0.019		0	0	5000	
Post_CO	40.411	-0.002	HAR BURN	0.014	0.023	200 医裂冠 5.93节	
Post_CO2	2.	-0.001	A State of	0	0	10	
Post_O2	4.993	. 0		0	0	25	
Post_Methane.	1257.239	-1254,745	Participation of	0.998	0.998	5000 0.051	Ne.0.00102
Post_Non_Methane	130.454	-136.043	國沿船的	1.043	1.075	500 4 185	0.837
Post_NOx	99.559	0.023	6.50	0	. 0	500	
Post_THC	998.645	-0.078	REAL ROL	0	σ	5000	0

Test Program: EPA RICE Testing:

Description: Reference Method Analyzers Daily Calibrations

Date: August 6, 1999

QC_Aug.,6_1899_08:45:18	Description	: Post Test Run 8 - Spa	n Check			
Gas	Slope	Intercept Cal Gas		Snan Ava	Range por or	* EITOP
	100.54	-0.047	2010_0	4.477	1000 450 094	0.0094
Pre_CO	25.005	-0.061	0.002	0.366	25	0.24
Pre_CO2		0.004	0.002	0.486	25 - 11,969	-0 124
Pre_O2	24.627	0.004			5000	
Pre_Methane		-1406.015 1800	1.07	2.44	2.21 2.25 2.25 2.25 2.25 2.25 2.25 2.25	40 6334
Pre_Non_Methane	123.888	-129.274 4 4 4 101	1.043	2.479	200 55 14 .033	
Pre_NOx	49.955	-0.74 504	0.005		500 310,699	1,3398
Pre_THC	498.544	-0.019	0	5,499	5000 2741 273	2-0.17454
		THE CONTRACTOR			**************************************	STACKS STATE
Post_CO	40.411	-0.002	0.014	1.095	200	0.2145
Post_CO2	2	-0.001 5 18	0		10 5,161 25 1,1998	0.011
Post_02	4.993	0	0	2,403		. 0.008
Post_Methane		-1254.745	0,998	2.415	5000 6 1701.882	-0.36236
Post_Non_Methane	130.454	-136.043	1.043	2.455	500 154,167 500 301,34	0.6374
Post_NOx	99.559	0.023	0		500 30134	0.732
Post_THC	998.645	-0.078	0	2.742	5000 2738 129	0.23742
QC_Aug.,6_1999_06:34:17	Description	: Post Test Run 4 - Spa	an Check			
Gas	Slope	Intercept a Car	Zero Ava	Span Avg	Range ppn of	N % Error
Pre_CO	100.54	-0.047	ō	4.477	1000 138450,094	0.0094
Pre_CO2	25,005	-0.061 25 78.04	0.002	0.366	25 25 1 28 9 1	0.24
Pre_O2	24.627	0.004	0	0,486	25 11.969	0.124
Pre_Methane		-1406.015	1.07	2.44	5000	
Pre_Non_Methane	123.888	-129.274 181	1.043	2.479	500 12177.833	0.8334
Pre_NOx	49.955	-0.74	0.005		500 307.51	0.702
	498.544	-0.019 2750	0.003	5.499	5000 2741 273	0 17454
Pre_THC	430.344	-0.019 25.22	0	3.499	2000 2241 41 41 41	
Post_CO	40.411	-0.002	0.014	1.095	200 2014 229	5490214S
	2	-0.001 5 16	0.014	2.581	10 5.161	50.011
Post_CO2			ŏ		25 11.998	
Post_O2	4.993			2.403	25 11.998	6.00.008
Post_Methane	1257.239	-1254.745	0.998	2.415	5000 1781 882	13-0 36236
Post_Non_Methane	130.454	-136.043 5 181	1.043	2.455	500 306 226	0.6374
Post_NOx	99.559	0.023	0	3.076		0.2456
Post_THC	998.645	-0.078 2750	0	2.742	5000 2138,129	0.237.42
QC_Aug.,6_1899_03:05:01		: Post Test Run 7 - Spi				BALL (M / - 5 4/ P 3/34
Gas	Slope	Intercept Cal Gasa			Range ppm or %	The Entor
Pre_CO	100.54	-0.047	0		1000 449,722	0.0276
Pre_CO2	25.005	-0.061 22 9.04	0.002	0.366	25 9.099 25 11,969	0,238
Pre_O2	24.627	0.004 22 2212	0	0.486	25 11,969	543-0,124
Pre_Methane	1255.399	-1263.228 2321800	1.006	2.44	5000 1800 500 181	141343110
Pre_Non_Methane	123,888	-129.274 233 161	1.043	2.504	500 255 181	0
Pre_NOx	49,955	-0.74	0.005	6,185	500 3308.207	11:0.8414
Pre_THC	498.544	-0.019	. 0	5,487	5000 5,2735,631	0,28738
-			-			mangaza Panaka Stra
Post CO	40,411	-0.002	0.014	1.102	200 53744 522 10 55185 25 55 11 990 5000 51761 662 500 51 165 731	1750238U
Post CO2	2	-0.001 2:52 5.16	0.014	2.583	10 315 185	0.05
Post_02	4.993	0	ŏ	2,403	25 511 00A	0.008
Post_Methane		-1254.745	0.998	2.415	5000 91761 442	10.000
Post_Non_Methans	130,454	-136.043	1.043	2.474	500 31188 7317	1111 145
Post NOx	99,559	0.023 0 2 305	1.043	3.073	500 371305.9773	
Post_NOX Post_THC	998.645		0	2.745	5000 2741,219	1411144444
POSLINC	330.040	-0.078 2750	0	2,140	2000 12 41 2 134 141	2-9,17562

Engine Class: Natural Gas Fueled, Spark Ignited, Four-Stroke, Lean Burn Engine

Engine Type: Waukesha

Test Points: Post Test Runs 8 and 4

GC_Aug.,6_1999_06:19:16	Description	: Post Test Run				
Gas	Stope	Intercept	Gas Zero_Avg	Span_Avg	Rau	32 A. J
Pre_CO	100.54	-0.047	5 O 0	0	and the second se	<i>我当</i> 时的建设中,
Pra_CO2	25.005	-0.061	0.002		275 BURGENER	0.152
Pre_O2	24.627	0.004	0 0		and Brilling and	0.24
Pre_Methane	1313.917	-1406.015	0 1.07		THE OWNER WATER OF THE OWNER OWNER OF THE OWNER	医胆栓 酸药
Pro_Non_Methane	123.888	-129.274 编译	0 1.043		dates the second second	2/ 0.6082.
Pre_NOx	49,955	-0.74 8:33	0.005	0.027	These Bullet and and	Participan 1724
Pre_THC	498,544	-0.019 💽 📖	0	0	Petrone Designed in the local	新加速的运行
					Statement Statement of State	
Fost_CO	40.411	-0.002 (20)	感謝 0.014	0.007	200 265	
Post_CO2	2	-0.001 Seat	(1) O	0	10 10 20 20	
Post_02	4.993	0	至 0 0	-	25	
Post_Methane	1257.239	-1254.745 南部	0.998		5000 3465	60.00922
Post_Non_Melhane	130.454	-136.043 经贷款	1.043	1.028	500 3351212	FE-0.3825
Post_NOx	99,559	0.023	0 0	0	500	の法律法律の
Post_THC	998.645	-0.078 经管理	620 O	0	5000	和国家记忆的
QC_Aug.,6_1999_02:53016		: Post Test Run			-	
Gas .	Slope	Intercept Cal	Gas: Zero_Avg	Span_Avg	Ray Beauting and	
Pre_CO	100.54	-0.047		0	STREET, STREET, ST. FL. W.	
Pre_CO2	25.005	-0.061	0.002		ATT	
Pro_02	24.627	0.004			\$75. (A. 27) 14. (B. (PW))	
Pre_Methane	1255.399	-1263.228	0 1.006		Internal Prof. D. A. B. Andrew	
Pre_Non_Methane	0	-0.74	1.043		GUINE AND THE REAL OF	
Pre_NOx	49.955	-0.019	0.005	0.027	mane	
Pre_THC	498,544	-0.019 505155		, ,	inclusion in the other state	CONTRACTOR OF
Post_CO	40,411	-0.002	建筑的 0.014	0.024	200 525 0.972	SETTO AN
Post_CO2	2	-0.001		0	10 285 3 60	
Post_02	4.993	0	Sed o	ŏ	25	
Post Methane		-1254.745	0.998	0.999	5000 50717	0.01434
Post_Non_Melhane	130,454	-136.043	1.043		500 1151 5.099	10110
Post_NOx	99,559	0.023	0 0	0	500 30 3 3 3 10	
Post_THC	998.645	-0.078	30 0	0	5000	

:		·				-	-		
	-	Date: Au	igust 4, 19	99					Test Points: Calibrati
QC_Aug.,4_1999_23:22:47	Description				-				
Gas	Slope	Intercept	Cal_Gas		Span_Avg	Range	ppm_or_%	% Error	
Pre_CO	100.54	-0.047	450	0 O	4.456	1000	448.13	-0.187	
Pre_CO2	24.834	-0.061	9.04	0.002	0.376	25	9.282	0.968	
Pre_O2	24.627	0.004	12	0	0.495	25 5000	12.2 2754.077	0.08154	
Pre_Methane	1268.052	-1273.329	2750 278	1.004	3.176 3.266	5000	285.559	1.5118	
Pre_Non_Methane	130.478	-140.889 SSS2-0.74					205.555	-0,399	
Pre_THC	498.544	-0.019	2760	0		5000	2795.036	0.90072	
He_INC	-50.54+	-0.010	2,00	•	0.000	0000			
Post_CO	40.411	-0.002	43.8	0	1.097	200	44.338	0.269	
Post_CO2	2:	-0.001	5.16	0	2.574	10	5.148	-0.12	
Post_O2	4.993	0	12	0	_,,_,	25	11.989	-0.044	
Post_Methane		-1254.532	2760	0.998	3.182	5000	2744.118	-0.11764	
Post_Non_Methane	129.16	-136.903	278	1.05	3.187	500	274.698	-0.6604	
Post NOX	99.559	L.H.U.023			3,067	5000 5000		-0.00244	
Post_THC	998.645	-0.078	2760	0	2.754	5000	2749.878	-0.00244	
QC_Aug.,4_1999_23:19:00	Description	, Dally Call	htation - So	an Check					QC_Aug.,4_1999_23:08:15
Gas	Siope	Intercent	Caloria	Zero Ava	Span Avo	Range	ppneore %	警察 生 行の指導	Gas
Pre_CO	100.54	-0.047	A50	0	4,458	1000	1.448.131	0.167	Pre_CO
Pre CO2	24.834	-0.061	9.04	0.002	0.376	25	9.282	839.0	Pre_CO2
Pre_O2	24.627	0.004	12	0-	0.495	25	2 12 2	0.8	Pro_O2
Pre_Methane		-1273.329	2760	1.004	3.176	5000	2754 077	0.06154	Pre_Methane
Pre_Non_Methane	130,478	-140.889	278	1.08	3.268	500	285 559	15118	Pre_Non_Methane
Pre_NOx	49.955	-0.74	304	0.015	6.09	500	22 S03,461	0 1078	Pre_NOx
Pre_THC	498.544	-0.019	F2_32750	0.	5.606	5000	2795.036	2 30.00012	Pre_THC
D. 1 00	10 144	d 000 5		o	4 007	200	44.336	0 269	Post CO
Post_CO	40.411	-0.002		0	1.097 2.574	200		0.12	Post_CO2
Post_CO2	2: 4.993.	-0.001	()	0	2.574	25	5146	0.044	Post O2
Post_02 Post_Methane	1256.513	-1254.532	2750	0.998	3.182	5000	2744 118	0 11764	Post_Methane
Post_Non_Methane	129.16	-138.903	278	1.06	3.187	500		0.6604	Post_Non_Methane
Post NOX	99,559	0.023	175-140-1	0		500		0.1264	Post_NOx
Post_THC	998.645	-0.078	2750	ŏ	2.754		2749.878	-0,00244	Post_THC
								Even bell dear and particular and particular	. –
QC_Aug.,4_1999_17:19:53	Description	: Post Run	- Span Che	ick					QC_Aug.,4_1999_16:58:38
Gas	Slope		Cal Gas			Range	ppm or H	X Error	Gas
Pre_CO	100.54	-0.047	450	0	4.454	1000	447.733		Pro_CO
Pre_CO2	24.834	-0.061	P 6 9.04	0.002	0.366	25	9.039	0.004	Pro_CO2
Pre_O2	24.627	0.004	2725-5- 1 7	0	0.488	25	12.029	03116	Pre_O2
Pre_Methane	1268.052	-1273.329	2759	1.004	3.176 3.237	5000 500	2753 458	0.7034	Pre_Methane Pre_Non_Methane
Pre_Non_Methane	130.478 49.955	-140,669	275	0.015	6.157	500	306 808	0.6618	Pre_NOx
Pre_NOx Pre_THC	498.544	-0.019	2750	0.015	5.46		2722.012	-0 55976	Pre_THC
ricno	700.074	-0.0151	and the second	U U	0.40	2000		BARA TUBERA PATA	
Post_CO	40.411	-0.002		0	1.105	200	44.658	0.1295	Post_CO
Post_CO2	2	-0.001	5.16	ŏ	2.563	10	6.164	0.04	Post_CO2
Post_O2	4.993	0	12 2750	0 [°]	2.403	25	2.11.999	R 12650.004	Post_O2
Post_Methane	1256.513	-1254.532		0.998	3.182	5000		-0,41764	Post_Methane
Post_Non_Methane	129.16	-136.903	112.278	1.06	3.222		279.215	0.243	Post_Non_Methane
Post_NOx	99.559	0.023	205 305	0	3.061	500	304.777	0.0446	Post_NOx
Post_THC	998,645	-0.078	2750	0	2.751	5000	2747.602	0.04799	Post_THC

Description: Daily Calibration - Zero Check 15 Slope Intercept Cal Gas Zerd_Avg Span_Avg Range 1000 100.54 -0.047 C ō 24.834 24.627 0.002 0.002 25 -0.061 25 0.004 0 0 1.065 1268.052 273.329 1.004 5000 1.085 500 130.478 -140.889 1.08 0.015 0.015 500 -0.74 49.955 5000 498.544 -0.019 0 0 40.411 -0.002 0 0.011 200 -0.001 10 O 2 0 0.001 0.998 25 4.993 0 5000 500 500 1256,513 -1254.532 0.998 1.664 1.06 1.079 129.16 -136.903 67 99.559 0.023 0 0 998.645 -0.078 ā 0 5000 Description: Post Run - Zero Check 38 Cat Gas Zero_Avg Span_Avg Slope 100.54 Intercept Range 1000 -0.047 0.002 24.834 24.627 -0.061 0.002 25 0.004 0 0 25 1268.052 -1273.329 1.004 1.065 5000 130.478 -140.889 1.08 0.015 1.131 500 0.015 500 49.955 -0.74 5000 σ 0 498.544 -0.019 40.411 -0.002 σ 0.015 200 -0.001 10 σ 0 2 25 5000 500 500 ō 4.993 1256.513 σ 0 00.0 0.998 1.06 0.998 -1254.532

1.057

0

0

5000

σ

σ

Engine Type: Waukesha

129.18

99.559

998.645

-136.903

0.023

-0.078

Engine Class: Natural Gas Fueled, Spark Ignited, Four-Stroke, Lean Burn Engine

ations between Runs 9 and 1

Colorado State University: Engines & Energy Conversion Laboratory

Test Program: EPA RICE Testing:

Description: Reference Method Analyzers Daily Calibrations

Test Program: EPA RICE Testing:

Description: Reference Method Analyzers Daily Calibrations

Date: August 3, 1999

Engine Class: Natural Gas Fueled, Spark Ignited, Four-Stroke, Lean Burn Engine

Engine Type: Waukesha

Test Points: Daily Calibrations

QC_Aug.,3_1999_09:52:58	Description	: NOx Sam	ple Blas		. •			
Gas	Slope	Intercept	Cal_Gas	Zero_Avg	Span_Avg	Range	ppm_or_%	% Error
Pre_CO	99.314	-0.047	450	D	4.532	1000	450	0
Pre_CO2	24.669	-0.059	9.04	0.002	0.369	25	9.04	0
Pre_O2	24.567	0.004	12	0	0,488	25	12	0
Pro_Methane	1298.888	-1370.902	2750	1.055	3.173	5000	2750	0
Pre Non Methane	127.878	-132.505	278	1.036	3.21	500	278	0
Pre NOR SALES	2140768	0251	10 1004	0.005	8.057	14-500	301294	0.54121
Pre_THC	499.226	-0.02	2750	D	5.509	5000	2750	0
Post_CO	40.216	-0.002	43.8	Ð	1.089	200	43.8	. 0
Post_CO2	2.021	-0.061	5.16	0.03	2.583	10	5.16	0
Post_O2	. 5	-0.014	12	0.003	2.403	25	12	0
Post_Methane	1246.612	-1242.007	2750	0.996	3.202	5000	2750	_ 0
Post_Non_Methane	130.068	-140.089	278	1.077	3.214	500	278	0
POL NOR LEVEL	100244	3 8 0 023	24785305	IV. SALES	3.006	1.134 500	306,895	0.578i
Post_THC	998.896	-0.078	2750	D	2.753	5000	2750	.0

CAL_Aug.,30_1999_09:46:45	Description					PLAN AND APPROXIMITE	
Gas	Siope	intercept	CACGER	Zero_Avg	Span_Avg	Range printing	
Pre_CO	99.314	-0.047	1450	0	4.532	1000	
Pra_CO2	24.669	-0.059	8.04	0.002	0.369	25 0 0 0 0	
Pre_O2	24.567	0.004	1	0	0.488	25 5 3 3 3	
Pre_Methane	1298.888	-1370.902	252750	1.055	3.173	5000	
Pre_Non_Methane	127.878	-132.505	215	1.038	3.21	500 278	
Pre_NOx	49.788	-0.251	204	0.005	6.111	500	
Pre_THC	499,226	-0.02	5.01750	0	5.509	5000 57.50	0.
Post_CO	40.216	-0.002		0	1.089	Provide Statistics and Advanced Statistics and Stat	
Post_CO2	2.021	-0.061	6 6.18	0.03	2.583	THE POST OF MAN	
Post_O2	5	-0.014		0.003	2.403	AND PLATER MAKE	
Post Methane	1246.612	-1242.007	7150	0.996	3.202	LANDER THE R. LONG	
Post_Non_Methane	130.068	-140.089	278	1.077	3.214	Same and Alan Street	
Post_NOx	99.448	0.023	142 Killion	0	3.067	BARRY BARRY BARRY	
Post_THC	998.896	-0.078	7750	0	2.753	Barran Barran Barran	C.

Engine Type: Waukesha

Test Points: NOx Sample Bias and Converter

Test Program: ÉPA RICE Testing:

Engine Class: Natural Gas Fueled, Spark Ignited, Four-Stroke, Lean Burn Engine

Description: Reference Method Analyzers Dally Calibrations

Date: August 2, 1999

QC_Aug.,2_1999_20:00:02	Description	: NOx Sam	pie Blas					
Gas	Slope	Intercept	Cal_Gas	Zero_Avg	Span_Avg	Range	ppm_or_%	% Errot
Pre_CO	101.032	-0.047	167	0	1.465	1000	148.002	-0,8998
Pre_CO2	25.041	-0.056	5.16	0.002	0.212	25	5.265	0.42
Pre_O2	24.811	0.004	4.38	. 0	0.176	25	4.365	-0.06
Pre Methane	1286.474	-1360.626	2750	1.058	1.795	5000	949.059	-36.01882
Pre Non Methane	129,786	-140.506	278	1.083	1.769	500	69.086	-37.7828
Pre Not State	5131549.0545	2840248	304	SALCO.005	Birth B 1498	600	305.067	0/2154
Pre_THC	498.787	-0.019	901	0	1.784	5000	889.999	-0.22002
Post_CO	40.181	-0.002	16.8	0	0.411	200	16:507	-0.1465
Post_CO2	1.998	-0.001	1.99	0	0.957	10	1,911	-0.79
Post_O2	5.004	-0.024	4.38	0,005	0.879	25	4.374	-0.024
Post Methane	0	0	2750	1.008	0	5000	0	-55
Post Non Methane	Ō	. 0	278	1.034	0	500	. 0	-55.6
PORINGESTICS	225100.518	0.023	222AR 305	该是主要这些b	2 998	¥ 8500	298 352	213296
Post_THC	989.328	-0.077	901	0	0.906	5000	896.516	-0.08968

QC_Aug.,2_1999_19:50:36			vetter Chec		man have	Banas	nom of K	% Error
Gas	Slope	Intercept	Cal_Gas	Zero_Avg	Span_Avg	Range	ppm_or_%	
Pre_CO	101.032	-0.047	157	0	1.465	1000	148.002	-0.8998
Pre CO2	25.041	-0.056	5.16	0.002	0.212	25	5.265	0.42
Pre_O2	24.811	0.004	4.38	. 0	0.176	25	4,365	-0.06
Pro_Methane	1286.474	-1360.626	901	1.058	1.795	5000	949.059	0.96118
Pre Non_Methane	129.786	-140.506	91.1	1.083	1.769	500	89.086	-0.4028
PA NOT SI ALL CAR		218		234 0.005	38.89	500	2.2.4	0.0952
Pro_THC	498.787	-0.019	901	0	1.784	5000	889.999	-0.22002
Post CO	40,181	-0.002	16.8	, 0	0.411	200	16.507	-0.1465
Post_COZ	1.998	-0.001	1.99	0	0.957	10	1.911	-0,79
Post_02	5.004	-0.024	4.38	0.005	0.879	25	4.374	-0.024
Post Methane	0	0	2750	1.008	0	5000	0	-55
Post Non Melhane	õ	ŏ	278	1.034	0	500	0	-55.6
Baillowskieweiter	STEEL OF ALL	SECTION OF	38 8 4 4 0 Y	RANK & O	4 279	2-18 bb	125.826	2.9740
Post_THC	989.328	-0.077	901	0	0.906	5000	896.516	-0.08968

Test Program: EPA RICE Testing:

Description: Reference Method Analyzers Daily Calibrations

Date: August 2, 1999

QC_Aug.,2_1999_17:14:39	Description	: Calibrati	on				Burnets to say hered
Gas	Slope	Intercept	Cal One	Zero_Avg		Range poin of M	
Pre_CO	101.032	-0.047	12 93 2450	0	4.454	1000	
Pre_CO2	25.041	-0.058		0.002	0,363	25 8 8 9 9 9	
Pre_O2	43.627	0.007		0	0.483	25 6 2 4 2 1 11	
Pre_Methane	1286.474	-1360.628	2750	1.058	3.195	5000 2750	0
Pre_Non_Methane	129.786	-140.506		1.083		500 278	ELECTION DETERMINIST AND
Pre_NOx	49.654	-0.248	日本 104	0.005		500 5304	
Pre_THC	498.787	-0.019	2750	0	5,513	5000 2750	
Post_CO	39.978	-0.002	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0	2.727	200 200 200	新新新教 制
Post_CO2	1.998	-0.001	1633346	0	2.583	10 344 516	
Post Q2	5.004	-0.024	自然意志12	0.005	2,403	25 12 12	
Post Methana	0	c	2750	1.008	0	5000 0	-55
Post_Non_Methane	0	c	278	1.034	. 0	500 0	-55.6
Post_NOx	99.519	0.023	305	0		500 305	
Post_THC	324.14	-0.025	5 2901	0	2.78	5000 901	ALC: NO.

Engine Class: Natural Gas Fueled, Spark Ignited, Four-Stroke, Lean Burn Engine

Engine Type: Waukesha

Test Points: Daily Calibrations

SAMPLE SYSTEM RESPONSE TIME

STATION Colorado State

DATE 8-2-99

	··· ··· ··· ··· ··· ··· ··· ··· ··· ··
Pre-Catalyst Sample System	
TIME OF DAY	20:05:00
DURATION	1 ! 10 MIN.
ANALYSER TYPE	SERVOMER O2 PMT
INITIAL READING	12%
FINAL READING	20.870
Post-Catalyst Sample System	
TIME OF DAY	<u>20:09:00</u>
DURATION	110 MIN.
ANALYSER TYPE	NG-A-2000 0, PMT
INITIAL READING	175
FINAL READING	20.85

SAMPLE	LINE
LEAK CH	ECK

.

STATION Colorado State

DATE 8-2-99

PRE-Catalyst Leak Check	
TIME OF DAY	<u>):2):00 PM</u>
DURATION	MIN.
INITIAL VACUUM	21,5 in.Hg
FINAL VACUUM	21.5 in. Hg
POST-Catalyst Leak Check	
TIME OF DAY	<u>7:30:00 PM</u>
DURATION	I MIN.
INITIAL VACUUM	うつ in. Hg
FINAL VACUUM	22 in. Hg

APPENDIX F

.

FTIR CALIBRATIONS

Test Program: EPA RICE Testing

Description: FTIR Daily Calibrations - Nicolet Rega 7000

Date: August 4, 1999 through August 6, 1999

Engine Class: Natural Gas Fueled, Spark Ignited, Four-Stroke, Lean Burn Engine

Engine Type: Waukesha

Test Points: Pre Catalyst

4-Aug-99		COLO			CO2			NO		l	CH4			H2CO	· · · · · · · · · · · · · · · · · · ·	}	NOX	
	Measured (PPM)	Actual (PPM)	Percent Error	Measured (PPM)	Actual (PPM)	" Percent Error	Measured (PPM)	Actual (PPM)	Percent Error	Measured (PPM)	Actual (PPM)	Percent Error	Measured (PPM)	Actual (PPM)	Percent Error	Measured (PPM)	Actual (PPM)	Percent Error
Pre Test H2CO H2CO Integrity H2CO Recovery CO	292.321	303	-3.52								(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		10.262 10.351 10.351	10.33 10.33 10.262	-0.66 0.20 0.87	(* 1 107)	(1 1 11)	
Multi Gas Post Test H2CO H2CO Recovery	191.858	190	0.98	65041.15	68000	4:35	249.507	260	-4:04	1278.384	1300	list ≈1.66	10.306 10.05455	10.33 10.33	-0.23 -2.67 -2.44	251.414	263	441
H2CO Integrity CO Multi Gas	291.509 190.976	303 190		65031.53	68000	-4.37	249.098	260	-4.19	1274.849	1300		10.05455	10.306	-2:44	251.044	263	4.55

5-Aug-99				CO2			NO			CH4			H2CO			NOX		
	Measured	Actual	Percent															
Pre Test	(PPM)	(PPM)	Error															
H2CO			1										10.408	10.33	0.76			
H2CO Integrity										-			10.147	10.33	-1.77			
H2CO Recovery													10.147	10.408	-2,51			
co	295.577	303	-2.45			,											•	
Multi Gas	192.6118	190	1.37	64879.65	68000	-4.59	250,9864	260	-3.47	1293,981	1300	-0.46				252.9173	263	-3.83

6-Aug-99		COLO			CO2			NO			CH4			H2CO			NOX	
	Measured	Actual	Percent	Measured	Actual	Percent												
	(PPM)	(PPM)	Error	(PPM)	(PPM)	Error												
Pre Test																		
H2CO								-					10.277	10.33				
H2CO Integrity													10.356	10.33	- 0.25			•
H2CO Recovery				•									10.356	10.277	0.25		-	
co	292.558	303	345 A		-											1		
Multi Gas	190.934	190	0,49	65732.69	68000		248.284	260	4.51	1273.48	1300	-2.04				250.274	263	-4 84
Post Test																		
H2CO													10.277	10.66	-3.59	,		
H2CO Integrity													9.965	10.33	-3.53			
H2CO Recovery													9.965	10.277	-3.53 -3.04			
co	290.146	303	4 24												A CONTRACTOR OF A CONTRACTOR OFTA CONT		-	
Multi Gas	189.77	190	-0.12	65755.8	68000	-3.30	247.916	260	-4:65	1267.999	1300	-2.46				250.03	263	-4 93

Test Program: EPA RICE Testing

Description: FTIR Daily Calibrations - Nicolet Magna 560

Date: August 4, 1999 through August 6, 1999

Engine Class: Natural Gas Fueled, Spark Ignited, Four-Stroke, Lean Burn Engine

Engine Type: Waukesha

Test Points: Post Catalyst

4-Aug-99		COLO			CO2			NO		1	CH4			H2CO			NOX	
	Measured	Actual	Percent	Measured	Actual	Percent	Measured	 Actual 	Percent	Measured	Actual	Percent	Measured	Actual	Percent	Measured	Actual	Percent
	(PPM)	(PPM)	Error	(PPM)	(PPM)	Error	(PPM)	(PPM)	Error	(PPM)	(PPM)	Error	(PPM)	(PPM)	Error	(PPM)	(PPM)	Error
Pre Test																		
H2CO													10.682	10.66	0.210			
H2CO Integrity													10.686	10.66	AH0 2417			
H2CO Recovery													10.686	10.682	0.04			
co	46	43.8	5.02															
Multi Gas	187.282	190	43.71	63606.63	68000	646	250.328	260		1291.738	1300	0.64				252.824	263	3.87-4
Post Test			LAND BURGLAND, ADD DIE			Citration and a second second second second			de sentinenden sentinen frankrike								-	
H2CO													10.682	10.66	0.21			
H2CO Integrity		-						•					10.804	10.66	1 35			
H2CO Recovery									-			-	10.804	10.682	1.14	· · · · · · · · · · · · · · · · · · ·		
co	46.324	43.8	5.76												Adventue of Approximation			
Multi Gas	188.45	190	-0.82	65919.63	68000	-3.06	252.434	260	-2,91	1309.72	1300	0.75				255.006	263	3.04

5-Aug-99		COLO			CO2			NO			CH4			H2CO			NOX	
	Measured	Actual		Measured	Actual	Percent												
	(PPM)	(PPM)	Error	(PPM)	(PPM)	Error	(PPM)	(PPM)	Error	(PPM)	(PPM)	Error	(PPM)	(PPM)	Error	(PPM)	(PPM)	Error
Pre Test													1					
H2CO													10.602	10.66	-0.54			
H2CO Integrity	-												10.466	10.66	-1.82			
H2CO Recovery													10.466	10.602	-1.28			
co	46.084	43.8	5.21															
Multi Gas	186.998	190	-1.58	64019.27	68000	-5.85	250.716	260	-3.57	1279.418	1300	-1.58				252.9	263	-3.84

6-Aug-99		COLO			CO2			NO			CH4			H2CO			NOX	
	Measured	Actual	Percent	Measured	Actual	Percent	Measured	Actual	Percent	Measured	Actual	Percent	Measured	Actual	Percent	Measured	Actual	Percent
	(PPM)	(PPM)	Error	(PPM)	(PPM)	Error	(PPM)	(PPM)	Error	(PPM)	(PPM)	Error	(PPM)	(PPM)	Error	(PPM)	(PPM)	Error
Pre Test																		
H2CO													10.73	10.66	0,66			
H2CO Integrity													10.64	10.66	-0.19			
H2CO Recovery													10.64	10.73	-0.84			
co	45.894	43.8	-4,78													- 1		
Multi Gas	187.022	190	-1.57	64474.5	68000	-5.18	250.346	260	-3.71 .	1279.378	1300	si 59 🕐				252.774	263	
Post Test					-													
H2CO													10.71	10.66	0.47			
H2CO Integrity													10.594	10.66	-0.62			
H2CO Recovery													10.594	10.71	-0.62 -1.08			
со	45.732	43.8	4.41									·						
Multi Gas	185.73	190	- 2.25	64132.74	68000	4. 5,69	248.166	260	-4.55	1280.9	1300	-1,47				250.652	263	-4.70

. .

FTIR SAMPLE SYSTEM LEAK CHECK

STATION Colorado State

DATE 8-2-99

PRE-Catalyst Leak Check	
TIME OF DAY	<u>23:01:00 M</u>
DURATION	(MIN.
INITIAL FLOW RATE	mL/m:n IO in.Hg
FINAL FLOW RATE	O in Hg
POST-Catalyst Leak Check	
TIME OF DAY	<u>23:02:00</u> M
DURATION	į MIN.
INITIAL FLOW RATE	10 in Hg
FINAL FLOW RATE	() in Ho

FTIR SAMPLE SYSTEM LEAK CHECK

STATION Colorado State

DATE 8-2-99

Pre-Catalyst Sample System	
TIME OF DAY	20:52:15
DURATION	í міn.
INITIAL PRESSURE	112,2 in.Torr
FINAL PRESSURE	117.8 in. Torr
TIME OF DAY	21:09:10
DURATION	[MIN.
INITIAL PRESSURE	125,6 in. Torr
FINAL PRESSURE	128,1 in. Torr

APPENDIX G

١

÷. .

/

ALC: NAME

FTIR VALIDATION

)

	VALIDATION	OF FTIR F	OR THE	ANALYS	IS OF FO	RMALDI	EHYDE	
	ed: 30 March 19			DUTLET	Ţ			
	PIKING: QUAD							
	GISTER CALC		METHOD					
ENTER VALU	JE OF SPIKED	LEVEL (CS)=	19.3				
Dilution Facto	r for Unspiked	Samples =		•	0.80			
ENTER SPIKI	ED AND UNSP	IKED CON	CENTRAT	IONS (CO	OMPARAI	BLE UNIT	S ASSUM	ED)
	CONCENTRA	TION IN PPI	M (WET)					
	SPIKED SAN	MPLES	UNSPIK	ED SAM	PLES			
RUN #	A	В	C	D	A-B		C-D	(C-D)^2
1	24.20	24.70	8.78	7.45	-0.50	0.25	1.33	1.77
2	24.40	23.80	7.45	7.41	0.60	0.36	0.04	0.00
3	24.30	23.60	7.47	7.36	0.70	0.49	0.11	0.01
4	24.20	24.40	7.50	7.30		0.04	0.20	· 0.04
. 5	24.20	23.90	7.44	7,43		0.09	0.01	0.00
6	24.60	24.60	7.87	7.38	0.00	0.00	0.49	0.24
		<u></u>						
AVERAGE:	Sm=	24.24	Mm=	7.57				[·
	DEVIATION			. <u> </u>				
STANDARD	DEVIATION:							
	SPIKED SDs=		0.32		· ·			
	21 11/10 202-		0.52			<u> </u>		
	UNSPIKED SI	 Du=	0.41		<u> </u>			
· · · ·			0.11					
	RELATIVE S	TD RSDs=	1.3%	(accepta)	ble)			•
×.								
· · · · · · · · · · · · · · · · · · ·	RELATIVE S'	TD RSDu=	5.5%	(accepta	ble)	·		
BIAS:								
	Corrected Uns	piked Conc	=	6.06				
		B=	-1.114					
· ·	STD OF MEA	N SDm=	0.524					
		t-VALUE=	2.127					
	CRITICAL t-		2.201					
	(n=12, alpha=	95%)						
						·· .		
	Bias not stati	stically sign	ificant, CI	not need	ed.		· ·	
	000000000000			2.				
	CORRECTIC	IN FACTOR	1.061	(Accepta	able)			

.

.

.

•

VALIDATION OF FTIR FOR THE ANALYSIS OF ACETALDEHYDE

OUTLET

4.8

Date Conducted: 30 March 1999

ANALYTE SPIKING: QUAD TRAINS

FEDERAL REGISTER CALCULATION METHOD

ENTER VALUE OF SPIKED LEVEL (CS)=

Dilution Factor for Unspiked Samples =

0.80

ENTER SPIKED AND UNSPIKED CONCENTRATIONS (COMPARABLE UNITS ASSUMED)

CONCENTRATION IN PPM (WET)

,	SPIKED SAMP	LES	UNSPIKE	D SAMP	LES			
RUN #	А	В	С	D	A-B	(A-B)^2	C-D	(C-D)^2
1	4.50	4.50	0.00	0.00	0.00	0.00	0.00	0.00
2	4.50	4.40	0.00	0.00	0.10	0.01	0.00	0.00
3	4.60	4.50	0.00	0.00	0.10	0.01	0.00	0.00
4	4.30	4.50	0.00	0.00	-0.20	0.04	0.00	0.00
5	4.50	4.20	0.00	0.00	0.30	0.09	0.00	0.00
6	4.30	4.40	0.00	0.00	-0.10	0.01	0.00	0.00
AVERAGE:	Sm=	4.43	Mm=	0.00	· 2	· •		

STANDARD DEVIATION:

SPIKED SDs=	0.12
UNSPIKED SDu=	0.00
RELATIVE STD RSDs=	2.6% (acceptable)

RELATIVE STD RSDu= #DIV/0! #DIV/0!

BIAS:

Corrected Unsp	piked Conc =	·	0.00
	B=	-0.367	
	2		
STD OF MEA	N SDm=	0.115	
		0.155	
	t-VALUE=	3.175	
CRITICAL t-V	ALUE=	2.201	
(n=12, alpha=9)5%)		

Bias is statistically significant

CORRECTION FACTOR 1.083 (Acceptable)

VALIDATION OF FTIR FOR THE ANALYSIS OF ACROLEIN

OUTLET

Date Conducted: 30 March 1999 ANALYTE SPIKING: QUAD TRAINS

FEDERAL REGISTER CALCULATION METHOD

ENTER VALUE OF SPIKED LEVEL (CS)= 17.0

Dilution Factor for Unspiked Samples =

0.80

ENTER SPIKED AND UNSPIKED CONCENTRATIONS (COMPARABLE UNITS ASSUMED)

CONCENTRATION IN PPM (WET)

	SPIKED SAMI	PLES	UNSPIKE	D SAMP	LES			
RUN #	А	В	С	D	A-B	(A-B)^2	C-D	(C-D)^2
1	17.70	18.10	0.00	0.00	-0.40	0.16	0.00	0.00
2	18.20	17.90	0.00	0.00	0.30	0.09	0.00	0.00
3.	18.40	18.40	0.00	0.00	0.00	0.00	0.00	0.00
4	17.40	17.40	0.00	0.00	0.00	0.00	0.00	0.00
5	18.20	17.90	0.00	0.00	0.30	0.09	0.00	0.00
6	17.90	19.00	0.00	0.00	-1.10	1.21	0.00	0.00

0.00

Mm=

AVERAGE: Sm= 18.04

STANDARD DEVIATION:

SPIKED SDs=	0.36
UNSPIKED SDu=	0.00
RELATIVE STD RSDs=	2.0% (acceptable)
RELATIVE STD RSDu=	#DIV/0! #DIV/0!

BIAS:

Corrected Unspiked Conc =	·	0.00
B=	1.042	
STD OF MEAN SDm=	0.359	
t-VALUE=	2.898	
CRITICAL t-VALUE= (n=12, alpha=95%)	2.201	

Bias is statistically significant

CORRECTION FACTOR 0.942 (Acceptable)

		Test Prog	gram: EP/	A RICE 1	Cesting:						Engine C	lass: Nat	tural Gas	Fueled, S	Spark igr	uited, Two	-Stroke,	Lean Bur	n Engine	b	
		Descripti	ion: FTIR	Daily Ca	libration	s - Nicole	t Magna	560			Engine T	ype: Coo	per-Bes:	semer GM	V-4-TF				_		
		-	urch 30, 19	-		Time:	19:58:54	to	22:06:21		Test Poi	nts: Post (- Catalyst	Validation	1						
time	H2CO	(+-)H2CO	ACROL (1	MACROL	MECHO (+-MECHC	CRUD	(+-)CRUD	COLO	(+-)COLO	CO2	(+-)CO2	NO	(+-)NO	NO2	(+-)NO2	NOX	(+-)NOX	CH4	(+-)CH4	tíme
56,82	24.17	0.48	17,95	5.02	4.69	1.34	0.26	0,06	9.09	0.78		726.15	120.4	8.62	20,72	17.13	141.12	25.78	630,89	11.05	55.82
116.14 176.71	24.72 24.44	0.48 0.49	17.71 18.11	5.11 5.09	4.48 4.45	1.36 1.37	0.25 0.25	0 06 0.06	9.05 9.17	0.77 0.78		738.62 732.85	127.29 127.56	8.76 8.77	21.25 21	17.28 17.39	148.54 148.58	26,03 26,16	640,19 641,67	11 10.94	116.14 176.71
236.04	23,95	0.49	18.15	5,08	4.6	1.37	0.26	0.06	9.07	0,76		733.13	121.05	8.61	20.68	17.17	141.73	25.78	635.91	10.95	236.04
296.61	8.78	0.43	0	4.35	0	1.2	0	0.07	11.85	0.67	34743.05	665,37	155,63	7.86	24.26	14.82	179.9	22.68	781.22	11.14	296.61
355.94	7.45	0.41	0	4.3	0	1.15	0	0.07	12.17	0.66		659.35	169.03	8.03	25.2	14.84	194.23	22.88	796.95	11.41	355.94
416.5 475.82	8.27	<u>0.41</u> 0.47	0 18.28	4.3	4.71	1.16	0 0.26	0.07 0.0 6	11.97 9.33	0,68 0,76		672,25 7 22 ,27	152.45 132.13	7.81 8.52	23,85 21,28	14.89 16.73	176,3 153,39	22.71 25.25	792.37 637.44	11.28 10.88	416.5 475.82
535.12	24.35	0.48	18.22	4.98	4.54	1.36	0,28	0.06	9.24	0.75		723.5	125.48	8.57	20.99	16.92	146.47	25.48	639.78	10.84	535.12
595.73	23.83	0.48	17.86	5.06	4.37	1.36	0.25	0.06	9.35	0.75		730.87	118.9	8,56	20.51	17.05	139.41	25.61	634.39	10.77	595.73
655.02	19.29	0.46	12,52	<u>4.91</u> 4.27	3	1.3	0.15 0	0.07 0.07	. 9.97 12.17	0.72 0.65		716.74 656.44	138.21 156.4	8.48 7.64	22.1 24.17	16.48 14.6	160.3 180.57	24.95 22.24	671.38 792.82	10.75 10.88	655.02 715.59
715.59 774.9	7.45 7.41	0.41 0.41	0	4.27	- O	1.15	0	0.07	12.17	0.64	35375.21	664.99	153.05	7.61	23.8	14.54	176.85	22.24	804.42	10.85	774.9
835,51	14.72	0.43	8.31	4.58	1.66	1.22	ō	0.07	10.57	0,68	32412.89	686.28	148.98	8.1	23,3	15.47	172.28	23.57	728.16	10.64	835.51
896.05	24.18	0.47	17.72	5.07	4.2	1.33	0.25	0.06	9,18	0.74	28671.21	725.03	115.92	8.39	20.45	16.95	136.37	25,33	639.17	10.52	896.05
956,64	24.27	0.47	18.37	5.02	4.55	1.33	0.26 0.26	0.06 0.06	9.07 9.17	0.76 0.74	28503.37 28584.71	724.45 735. 77 ·	120.56 124.08	8.41 8.55	20.61 20.89	16.88 17.04	141.18 144.97	25.29	636.89	10.57 10.61	956.64 1015.95
1015.95 1076.56	23.63 15,77	0.47 0.44	18.37 9.7	5.13 4.71	4.45 1.87	1.33 1.25	0.28	0.00	10.46	0.74	20504.71	735.77	132.87	8.08	20.69	16.05	155.18	25.59 24.13	629.76 716.84	10.87	1076.58
1137.1	7.47	0.43	0	4.32	0	1.2	0	0.07	12.11	0.65	35386,03	669.94	160.13	7.75	24.79	14.63	184.92	22.39	818,07	10.81	1137.1
1197.74	7.36	0.42	0	4.34	0	1.19	0	0.07	12.08	0.66	35493.09	664.5	160.32	7.82	24.64	14.73	184.96	22,55	804.77	11.13	1197.74
1256.99	7.17	0,42	0	4.24	0	1.18	0	0.07 0.06	12.25 9.24	0.67 0.72	35240.63 29089.8	657.85 719.73	153,33 130.88	7.58 8.29	24.04 21.71	14.62 16.49	177.38 152.58	22.21 24.78	792.94	11.19 10.93	1256.99 1317.59
1317.59 1378.16	21.85 24.23	0.46 0.48	16.94 17.39	4.92 5.13	4.22 4.33	1.3 1.35	0.23 0.24	0.08	9.24	0.72	29069.6	738.26	129.07	8.7	21.17	17.24	152.56	24.76	647.73 650.77	10.95	1378.16
1437.52	24.46	0.48	17.44	5.14	4.45	1.35	0.26	0.06	9.21	0.78	28596.65	742.58	117.28	8.56	20.31	17.34	137.59	25.9	637.57	10.98	1437.52
1498,03	7.54	0.41	0	4.33	0"	1.16	0	0.07	11.98	0.67	35194.52	663,51	161.8	7.87	24.6	14.95	186.41	22.82	789.76	11.54	1498.03
1557.37 1617.92	7.26 7.44	0.41 0.42	0	4.39 4.25	0	1.17 1.19	0	0.07 0.07	12.06 12.18	0.69 0.69	35335.38 35167.05	675.86 658.12	· 159.61 152.3	7.97 7.7	24.39 23.81	15.13 15.03	184.01 176.11	23.1 22.73	805.09 797.18	11.6 11.65	1557.37 1617,92
1677.31	21.29	0.42	16.49	4.25	3.88	1.31	0.22	0.06	9.55	0.75	29177.61	699.6	135.25	8.45	21.59	16.65	156.84	25.1	655.75	11.24	1677.31
1737.81	24.16	0.48	18.23	5.05	4.48	1.34	0.26	0.06	9.3	0.78	28363.99	728.07	125.51	8.65	20.77	17.42	146.28	26.08	630.4	11.33	1737.81
1797.15	23.87	0.47	17.85	5.18	4.21	1.34	0.25	0.07	9.16	0.81	28604.63	747.33	118.14	8.81	20.35	17.9	138.49	26.7	639.2	11.48	1797.15
1857.7 1917.09	14.03 7.44	0.45 0.42	7.89	4.75 4.42	0	1.27 1.18	0	0.07 0.07	10.84 12.02	0.74 0.68	32804.77 35250.89	713.91 676.77	153.43 160.18	8.48 7.98	23.68 24.53	16.55 15.32	177.11 184.71	25.03 23.3	739.93 787.82	11.81 11.82	1857.7 1917.09
1977.6	7.43	0.42	ŏ	4.38	ŏ	1.19	ŏ	0.07	12.25	0.69	35165.07	672.6	149.07	7.8	23.46	15.27	172.53	23.07	799.19	11.81	1977.6
2038.19	19.88	0.45	15.06	4.92	3.68	1.28	0.19	0.07	9.76	0.76	29871.38	724.41	133.02	8.5	21.64	16.95	154.65	25.45	668.89	11.38	2038.19
2097.49	24.58	0.49	17.92	5.21	4.26	1.38	0.25 0.26	0.07 0.06	9.26 9.22	0.78 0.79	28719.55 28385.29	759.43 751.04	121.59 117.34	8.89 8.78	20.5 20	17.82 17.75	142.09 137.34	26.72 26.52	635.81 633.36	11.2 11.25	2097.49 2158.15
2158.15 2217.38	<u>24.6</u> 7.87	0.49	<u> </u>	<u>5.21</u> 4.52	4.36	1.37	0.28	0.05	9.22 11.99	0.79	35128.98	690.15	161.6	8.2	24.23	15.75	185.83	23.95	794.65	11.25	2217.38
2278.16	7.38	0.43	õ	4.39	Õ	1.2	Ō	0.07	12.16	0.68	35287.35	685.42	161.23	8.06	24.46	15.46	185.69	23.52	802.46	11.67	2278.16
2338.53	9.78	0.42	0	4.49	0	1.19	0	0.07	11.68	0.69	33931.62	683.56	145.68	7.92	23.16	15.53	168.84	23.46	769.19	11.57	2338.53
2397.92 2457.16	23.95 23.78	0.48 0.48	18.19 18.58	5.16 5.17	4.5 4.22	1.36 1.36	0.26 0.26	0.06 0.06	9.19 9.06	0.78 0.77	28509.38 28416.17	741.5 733.79	124.02 124.6	8.74 8.82	20.45 20.42	17.59 17.67	144.47 145.02	26.32 26.49	631.57 636.81	11.2 11.18	2397.92 2457.16
2517.76	20.33	0.40	14.32	4.96	3.64	1.32	0.19	0.07	9.79	0.76	29680.98	734.34	123.07	8.62	20.95	17.35	144.02	25.98	665.14	11.31	2517.78
2578.31	7.46	0.42	0	4.51	Ó	1.19	0	0:07	12.02	0.69	35062.11	691.48	152.58	7.95	23.67	15.52	176.26	23.47	795.78	11.57	2578.31
2637.69	7.44	0.42	0	4.39	0	1.19 1.19	0	0.07 0.07	12.18 12.16	0.68 0.68	35186.82 35132.26	678 680.63	162.27 153.2	8.07 7.86	24.4 23.79	15.37 15.21	186.67 176.99	23.44 23.06	800.87 790.46	11.62 11.54	2637.69 2698.2
2698.2 2757.53	7.27 7.39	0.42 0.42	0	4.36 4.42	0	1.19	0	0.07	12.16	0,69	35198,15	685.92	161.69	8.05	23.75	15.37	186.29	23.42	806.06	11.54	2757.53
2818.09	7.4	0.43	ŏ	4.5	õ	1.21	ō	0.07	11.92	0.69	35403.61	693.5	167.06	8.31	24.92	15,53	191.98	23.84	793.05	11.53	2818.09
2877.44	7.36	0.43	· 0	4.48	Ó	1.2	0	0.07	12.03	0.69	35157.11	679.23	151.8	8.01	23.7	15.42	175.49	23.43	790,17	11.54	2877.44
2938	7.27	0.42	0	4.42	0	1.17	0	0.07	12.14	0.69		680.82	155.32	8.01	24.07	15.32	179.4	23.33	797.15	11.55	2938
2997.4 3057.91	7.3 7.28	0.42 0.42	0	4.47 4.46	0	1.19 1.18	0	0.07 0.07	12.12 12.04	0.7 0.68	35396.68 35272.5	686.88 691.98	162.65 151.44	8.18 8.03	24.71 24	15.49 15.48	187.36 175.44	23.67 23.51	789.03 802.58	11.53 11.5	2997,4 3057,91
3118.53	7.28	0.42	0	4.46	0	1.19	ŏ	0.07	12.04	0.69	35190.3	680.62	150.08	7.97	23.83	15.47	173.92	23.44	801.2	11.58	3118.53
3179.03	7.14	0.42	Ō	4.5	ō	1.17	Ō	0.07	12.16	. 0.7	35282.46	688.6	158.38	8.1	24.45	15.45	182.83	23.54	796.45	11.57	3179.03
3236.38	7.23	0.42	0	4.52	0	1.19	0	0.07	12.19	0.7	35278.64	698.9	153.32	8.15	24.28	15.71	177.6	23.85	796.24	11.59	3238.38
3298.92 3358.32	6.48 0.93	0.4 0.31	0	4.44 2.23	0 1.25	1.13 0.88	0.0	0.07 0.02	10.61 0	0.68 0.34	31403.41 696.84	688.88 357.35	123.98 0	7.57 3.5	22.76 10.12	15.23 9.37	146.74 0	22.8 12.87	671.47 11.11	9.86 1.18	3298.92 3358.32
3417.55	0.96	0.31	0 0	1.96	0	0.85	Õ	0.02	0.35	0.3	734.15	313.16	ō	3.06	9.18	8.79	ō	11.85	8.66	1.09	3417.55
3478.16	2.48	0.32	00	2.46	0.93	0.9	0	0.03	3.22	0.38	8737.88	395.1	32.4	3.81	12.37	9.5	44.77	13.3	152.42	2.88	3478.16

				· · ·												C t = c t = c	1	- D	F	_
	Test Prog			-						-				-	nited, Two	-Stroke	, Lear		Engin	e
	Descriptio	on: FTIR	t Daily Cai	libration	s - Nicole	t Magna (560		1	Engine T	ype: Coo	per-Bes	semer GN	NV-4-TF						
	Date: Ma	rch 30, 1	999		Time:	19:58:54	to	22:06:21	•	Test Poir	nts: Post	Catalyst	Validatio	n						
C2H4	(+-)C2H4	C2H6	(+-)C2H6	СЗН8	(+-)C3H8	тнс	(+-)THC	H2O	(+-)H2O	SF6	(+-)SF6		(+-)MEOH		(+-)NMHC					
2.22		64.62	6.68	13.15	4.3	871.02	70.02	166787.8	2046.62	0.34	0.03	6.16	4.37	871.02						
2.16	1.2	65.69	6.7	13.26	4.31	883.66		167416.9	2044.03	0.33	0.03	6.14	4.41 4.35	883.66 885.26				· .		
2.24	1.2	65.69	6.74	13.19	4.34	885.26		168259.7	1976.62 2047.14	0.33 0.34	0.03	6.21 5.91	4.55	878.38						
2.28		65.34	6.69	13.24 13.79	4.31 4.11	878.38 1067.9		167115.3 152436.4	2428.37	0.54	0.03	0.01		1067.9						
2.92		78.13 79.66	6.39 6.3	13.79	4.11	1087.84		150931.8	2447.81	ŏ	0,03	ō		1087.84						
3.03 2.99	1.01	79.51	6.34	13.63	4.08	1082.62		151271.7	2487.89	0	0.03	0		1082.62						
2.21	1.18	65.41	6.63	13.08	4.26	879.63		165033.6	2131.47	0.34	0.03	5:51	4.19	879.63						
2.28	1.17	65.66	6.68	13.09	4.3	882.86	69.62	166181.2	2073.26	0.34	0.03	6.05		882.86 875.32						
2.15	1.19	64.95	6.68	13.11	4.3	875.32		166748.6 163816.7	2061.66 2171.92	0.33 0.23	0.03 0.03	6.55 4.43	4.34 4.25	923.07	68.11					
2.51	1.16	68.18	6.55	12.98	4.21 4.09	923.07 1081.26		150492.4	2450.3	0.25	0.03	4.40	3.7	1081.26						
2.99 3.06	1.01 1.01	78.79 80.02	6.36 6.38	13.45 13.55	4.09	1096.94		150932.9	2469.11	ō	0.03	Ō		1096.94	64.18					
2.61	1.01	73.21	6.43	13.26	4.13	997.12		158215.4	2312.93	0.15	0.03	0	3.95	997.12						
2.16	1.19	65.11	6.67	13.04	4.29	880.79		166812.1	2041.68	0.33	0.03	6.7	4.39	880.79						
2.25	1.18	65.06	6.66	13.09	4.3	878.47		166822.8	2039.81	0.34	0.03	6.24	4.37	878.47	69.41					
2.23	1.21	64.41	`6.65	12.75	4.28	868.17		167398.1	2037.56	0.34	0.03 0.03	6.4 0	4.43 4.12	868.17 982.66	69.46 67.42	• •				
2.48	1.11	72.28	6.48	13.33	4.17	982.66 1115.42·		160839.4 150715.2	2289.19 2493.81	0.16 0	0.03	Ő		1115.42						
3.05	1.02	81.52 80.07	6.36 6.4	13.68 13.52	4.09 4.12	1097.21		151948.9	2436.69	ŏ	0.03	ō		1097.21	65.13	1			÷	
2.97 2.96	1.02 1	78.96	6.34	13.61	4.08	1082.12			2451.57	Ô	0.03	0	· 3.7	1082.12						
2.17	1.16	66.23	6.58	13	4.23	892.37	68.26	163788	2186.69	· 0.32	0.03	5.27	4.23	892.37	68.26					
2.26		66.43	6.76	13.02		896.36		167773.5	2020.91	0.33	0.03	6.92		896.36						
2.26		65.37	6.74	13.02		879.6		168248.7	2003.94 2418.5	0.33 0	0.03 0.03	6.54 0		879.6 1078.49						
2.79	1.02	79.25	6.38	13.51	4.1	1078.49 1098.86	65.64	152474 152981.7	2416.5	ő	0.03	· Ö		1098.86						
2.98 3.08	1.04 1	80.69 79.8	6.37 6.35	13.57 13.68	4.1	1098.80		152163.6	2408.3	ŏ	0.03	õ		1088.87			•			
2.24	1.15	67.32	6.61	13.25	4.25	904.27	68.63	164190.6	2106.27	0.31	0.03	4,85		904.27						
2.29	1.19	65.08	6.69	13.02	4.3	871.09	70.84	167492.8	2011.09	0.34	0,03	6.42		871.09						
2.29	1.22	65.7	6.75	13.17	4.34	882.57	71.63	169436	1939.15	0,33	0.03	6.72		882.57						
2.83	1.12	75.15	6.54	13.42		1014.81		161926.5	2246.43 2430.37	0.12	0.03 0.03	0 0		1014.81 1075.69	69.34 65.9	• •				
2.96	1.04	.78.97	6.36	13.38	4.09	1075.69 1091.44		153616.5 153409.1	2430.37	· o	0.03	ŏ		1091.44						
2.94	1.03	80.17 68.48	6.35 6.56	13.64 13.09	4.08 4.22	920.62		164721.5	2151.22	0.28	0.03	4.32		920.62						
2.22 2.18	1.16 1.23	65.57	6.76	13.1	4.35	878.12	71.4	169557	1961.97	0.33	0.03	6,62		878.12						
2.27	1.23	65.29	6.75	13.19	4.34	875.27			1945.91	0.34	0.03	6.21	4.45	875.27						
2.67	1.07	79.79	6.42	13.63	4.13	1085.11		156838.7	2367.14	0	0.03	0		1085.11 1095.98						
2.95	1.03	80.51	6.4	13.72		1095.98		154773.7	2422,72 2391.01	0 0.05	0.03 0.03	0 0		1095.98	66.66					
2.77	1.06	77.67	6.37	13.53	4.1	1052.51 873.23		155670.1 168758.3	1968.75	0.03	0.03	5.44		873.23						
2.21	1.21 1.22	65.48 66.01	6.72 6.77	13.09 13.2	4.32 4.35	880.31	71.54	169364.9	1909.08	0.34	0.03	6.41		880.31						
2.16 2.38	1.22	68.78	6.64	13.04	4.00	917.14		167148.6	2045.86	0.27	0.03	5,16		917.14						
3.1	1.06	80.27	6.43	13.69		1088.25		156318.8	2390.85	. 0	0.03	0		1088.25						
3.05		81.05	[°] 6.43	13.7	4.14	1095.35		154982.6	2389.89	. 0	0.03	0		1095.35						
2.97	1.03	79.94	6.38	13.57	4.11	1081.07	66	153904.8	2435.34	· 0 0	0.03 0.03	0 0		1081.07 1101.81						
2.92		81.5	6.4	13.72		1101.81	66.7 66.9	154731.4 155954.8	2426.3 2409.45	0	0.03	0		1083.81						
2.95		80.12 79.74	6.43 6.4	-13.42 13.53		1083.81 1080.08	66.37	155125.8	2389,5	ŏ	0.03	ŏ		1080.08						
2.88 3.03		79.74 80.56	6.41	13.55	4.12	1090.13		154488.8	2416.65	ō	0.03	· · O	3.82	1090.13		•				
2.91	1.05	79.29	6.37	13.3	4.1	1077.35	66.29	155306	2409.16	. 0	0.03	0		1077.35						
2.81	1.05	80.8	6.39	13.48	4.11	1095.68		155357.5	2425.8	0	0.03	0		1095.68			~	-		
2.9	1.05	80.66	6.38	13.59		1094.36		154874.3	2402.78	0	0.03 0.03	0 0		1094,36						
3.08	1.06	80.23	6.37	13.19		1087.4 1086.28	66.27 67.04	154966.2 156179.5	2427.39 2420.65	0	0.03	· 0		1086.28						
2.87	1.07	80.11 69.27	6.4 5.8	13.1 11.29	4.12 3.73	920.17	61.86	151263.2	2564.15	· 0	0.03	ő		920.17						
2.51 0	1.05 0.52	2.91	1.71	1.23		0	23.89	76832.5	1719.74	ō	0.01	Ō		Ó	23.89					
ő	0.46	2.52	1.51	1.17	0.97	0	21.45	66430.98	1482.3	0	0.01	0		0						
ŏ	0.58	19.09	2.42	3.5		216.9	29.92	84791,53	1937.9	0	0.01	0	2.23	216.9	29.92					

VALIDATION OF FTIR FOR THE ANALYSIS OF ACROLEIN

			F FTIR F	OR THE A	ANALYS	IS OF A	CROLEIN		
Date Condu		-		Π	NLET				
ANALYTE									
FEDERAL							1		:
ENTER VA)=	15.0				
Dilution Fac						0.80			
ENTER SPI	KED AND	UNSPIKI	ED CONC	ENTRATI	ONS (CO	MPARA	BLE UNITS	S ASSUM	(ED)
	CONCEN	VTRATIO	N IN PPM	I (WET)					
	SPIKE	D SAMPI	LES	UNSPIKE	D SAMPI	LES			
RUN	#	A	В	С	D	A-B	(A-B)^2	C-D	(C-D)^2
	1 ·	14.90	14.80	0.00	0.00	0.10	0.01	0.00	0.00
	2 *	14.40 ·	14.60	0.00	0.00	-0.20	0.04	0.00	0.00
	3	14.40	14.20	0.00	0.00	0.20	0.04	0.00	0.00
		14.90	14.80	0.00	0.00	0.10	0.01	0.00	0.00
	5 1	14.60	14.70	0.00	0.00	-0.10	0.01	0.00	0.00
I	6 1	14.50	14.70	0.00	0.00	-0.20	0.04	0.00	0.00
AVERAGE		Sm=	14.63	Mm=	0.00	:			·
STANDARI	O DEVIATI	ION:							
	SPIKED S	SDs=		0.11					
	UNSPIKE	ED SDu=		0.00					
	RELATIV	/E STD R	SDs=	0.8% (a	acceptable)			
	RELATIV	/E STD R	SDu= #	DIV/0! #	DIV/0!				
BIAS:	Corrected	Unspiked	Conc =	-0.375	0.00				4 - ¹
	STD OF N	VIEAN SE)m=	0.112					• •
		t-VA	LUE=	3.354					
	CRITICA (n=12, alp		JE=	2.201					

Bias is statistically significant

CORRECTION FACTOR 1.026 (Acceptable)

l,

	VALIDATION	NOF FTIR F	OR THE	ANALYS	SIS OF FO	RMALD	EHYDE]
بالصحيح ومحتج ومحتج ومحتج ومحتج ومحتج ومحتج والمحتج و	ed: 30 March 19			NLET				
	PIKING: QUAI							
	EGISTER CAL	مراغب معربي بريد معرب محروب محروب	METHOD					
	JE OF SPIKEI			20.9				
	r for Unspiked		<u> </u>	2013	0.80			
	ED AND UNS		TENTRAT	TIONS (C		BLEUNI	LS ASSUN	/ÉD)
	CONCENTRA	the second se						
,	SPIKED SA	······		ED SAM	PLES			
RUN #	A	B	C	D	A-B	(A-B)^2	C-D	(C-D)^2
1	34.70	34.40	15.80	. 15.90	0.30	0.09	-0.10	0.01
2	34.40	34.30	15.90	16.00	0.10	0.01	-0.10	0.01
3	34.10	34.90	15.80	15.90	-0.80	0.64	-0.10	0.01
4	34.30	35.00	16.00	16.10	-0.70	0.49	-0.10	0.01
5		35.30	16.00	15.90	-0.20	0.04	0.10	0.01
6	34.90	35.20	16.00	16.00	-0.30	0.09	0.00	0.00
		00.20						
AVERAGE:	Sm=	34.72	Mm=	15.94				
							!	
STANDARD	DEVIATION:							
,								
	SPIKED SDs=	= .	0.34		1			
					· ·			
	UNSPIKED S	Du=	0.06		· · · ·	·		<u> </u>
						1		
· · · · · · · · · · · · · · · · · · ·	RELATIVE S	TD RSDs=	1.0%	(acceptal	ole)			1
								3
	RELATIVE S	TD RSDu=	0.4%	(acceptal	ble)			
					1			
BIAS:							1 . 1	
	Corrected Uns	spiked Conc =	=	12.75		1		
		B=	1.063					
	STD OF MEA	AN SDm=	0.343		· · · · · ·		-	1
					-			
		t-VALUE=	3.102					
					-	-		1
	CRITICAL t-	VALUE=	2.201					
	(n=12, alpha=							
· ·····							-	
	Bias is statist	tically signifi	cant					
							-	-
	CORRECTIO	N FACTOR	0.952	(Accepta	ble)			
			1					1
END OF AN	IALYTE SPIK	NG SPREAL	SHEET.	PRESS "I	IOME"-K	EY TO RI	ETURN.	:
L								

VALIDATION OF FTIR FOR THE ANALYSIS OF ACETALDEHYDE

INLET

.

Date Conducted: 30 March 1999

ANALYTE SPIKING: QUAD TRAINS

FEDERAL REGISTER CALCULATION METHOD ENTER VALUE OF SPIKED LEVEL (CS)=

Dilution Factor for Unspiked Samples =

4.5

ENTER SPIKED AND UNSPIKED CONCENTRATIONS (COMPARABLE UNITS ASSUMED)

Mm=

CONCENTRATION IN PPM (WET)

	SPIKED SAMP	LES	UNSPIKE	D SAMPI	LES		•	
RUN #	А	В	С	D	A-B	(A-B)^2	C-D	(C-D)^2
1	3.90	3.80	0.00	0.00	0.10	0.01	0.00	0.00
2	3.50	3.60	0.00	0.00	-0.10	0.01	0.00	0.00
3	3.70	3.50	0.00	0.00	0.20	0.04	0.00	0.00
4	, 3.90	3,80	0.00	0.00	0.10	0.01	0.00	0.00
5	3.70	3.70	0.00	0.00	0.00	0.00	0.00	0.00
6	4.00	3,80	0.00	0.00	0.20	0.04	0.00	0.00
						*		

0.00

STANDARD DEVIATION:

AVERAGE:

SPIKED SDs=	0.10

Sm= 3.74

UNSPIKED SDu=	0.00
	0.00

RELATIVE STD RSDs= 2.6% (acceptable)

RELATIVE STD RSDu= #DIV/0! #DIV/0!

BIAS:

Corrected Unspiked Conc = B=	-0.758	0.00
STD OF MEAN SDm=	0.096	
. t-VALUE=	7.921	
CRITICAL t-VALUE= (n=12, alpha=95%)	2.201	
Bias is statistically significa	nt	

•

CORRECTION FACTOR 1.203 (Acceptable)

		Test Prog	gram: EF	PA RICE .	Festing:			-			Engine C	lass: Nat	tural Gas	s Fueled, S	Spark Igi	nited, Two	o-Stroke,	Lean Bui	n Engin	e	
		Descripti	on: FTIF	R Daily Ca	alibration	s - Nicole	et Rega 7	000		,	Engine T	ype: Coo	per-Bes	semer GN	IV-4-TF				-		
		Date: Ma	rch 30, 1	1999		Time:	19:42:34	to	22:02:12		Test Poir	nts: Pre C	atalyst \	alidation/							
time	H2CO	(+-)H2CO	ACROL	(+-)ACROL	MECHO	(+-)MECHC	COLO	(+-)COLO	CO2	(+-)CO2	NO	(+-)NO	NO2	(+-)NO2	NOX	(+-)NOX	CH4	(+-)CH4	C2H4	(+-)C2H4	C2H6
58.35	15.67	0.35	0.35	1.23 1.21	-0.83 -0.73	1.19	78.34 79.35	0.4 0.42	34981.95 34939.74	444.16 438.94	151.73 146.32	8.49 8.3	29.68 29.45	5.9 5.92	181.4 175.77	14.39 14.22	813.94 810	7.31 7.31	8,79 8,9	0.25 0.25	62.98 62.8
114.78 171.22	15.81 15.91	0.35 0.35	0.33 0.44	1.21	-0.73	1.2	78.88		35105.64	440.82	148.58	8.4	29.41	5,92	177.99	14.33	807.83	7.32	8.99	0.25	62.65
227.65	19.6	0.38	4.93	1.3	0.94	1.29	73.68		33069.85	454.76	147.39	8.49	27.2	5.93	174.59	14.42	764.25	7.37	8.35	0.26	59,59
284.07	33.85	0.53	17.83	1.86	5.1 6.64	1.76 1.7	60.81 58.67	0.28 0.27	27079.87 26152.93	517.56 497.61	110.59 108.69	8.23 7.83	19.35 19.94	7.24 6.56	129.95 128.63	15.47 14.39	631.69 606.38	7.7 7.35	7.03 6.93	0.38 0.39	49.65 47.67
340,52 396,95	31.34 37.35	0.51 0.57	21.34 14.18	1.9 1.71	3.64	1.86	64.15		28828.72		128.95	8.75	20.49	7.21	149.44	15.96	658.87	7.94	7.38	0.35	51.62
453.37	35.24	0.54	14.86	1.73	3.88	1.78	64.18	0.3	28456.12	508.83	118.33	8.34	20.63	7.06	138.96	15.41	654.65	7.82	7.35	0.35	51.13
509.8	34.7	0.54	14.89	1.69	3.85 3.82	1.77 1.76	63.59 62.98	0.29 0.29	28389.28 28462.56	514.38 518.62	122.94 126.95	8.43 8.63	20.87 20:66	6.96 7.09	143.8 147.6	15.38 15.72	655.54 663.25	7.79 7.82	7.28 7.31	0.34 0.35	51.26 51.91
566.23 622.65	34.41 34.78	0.53 0.54	14.83 15.01	1.74 1.73	3.62	1.77	63.62	0.23	28455.76	529.92	121.31	8.47	20.51	7.11	141.82	15.58	659.65	7.83	7.36	0.35	51.69
679.08	27.81	0.46	10.5	1.57	2.34	1.52	68.99	0.35	30548.39	507.85	126.79	8.17	23.51	6.35	150.3	14.53	702	7.56	7.91	0.32	54.63
735.52	15.8	0.35	0.78	1.23 1.18	-0.81 -0.78	1.21 1.2	78.6 79.85	0.4 0.42	34961.12 34962.05	446.74 443.61	158.09 153.88	8.71 8.65	29.49 29.55	5.92 5.95	187.58 183.42	14.63 14.6	801.33 800.24	7.3 7.32	8.86 9.04	0.25 0.24	61.94 61.94
791.92 848.35	15.87 21.6 <u>1</u>	0.35 0.39	0.89 4.97	1.10	0.83	1.34	74.1	0.38	32737.4	470.01	136.2	8.21	26.39	6.03	162.59	14.25	751.99	7.41	8.54	0.27	58.54
904.78	34.39	0.53	14.35	1.68	3.52	1.76	64.75	0,3	28748.17	518.06	130.84	8.75	21.04	7.03	151.88	15.79	665.51	7.81	7.41	0.34	52.22 52.16
961.2	34.32	0.53 0.53	14.58	1.73 1.71	3.6 3.65	1.75	64.63 64.54	0.29	28659.14 28592.88	517.74 533.41	120.67 116.27	8.39 8.35	20.93 20.57	7.03 7.24	141.6 136.83	15.41 15.59	664.52 657.25	7.81 7.79	7.47 7.47	0.35 0.35	52.16
1017.63 1074.07	34.32 28.03	0.55	14.32	. 1.6	2.07	1.54	69.17	0.33	30802.59	500.18	136.42	8.61	23.75	6.52	160.18	15.13	696,74	7.59	8.04	0.33	54.38
1130.48	15.92	0.35	0.81	1.25	-0.79	1.2	79.62	0.42	34901.92	447.65	148.03	8.36	29.47	5.94	177.49	14.29	793.53	7.3	9.01	0.25 0.26	61.36 62.22
1186.92 1243.35	16 20.77	0.36 0.39	0.57 4.66	1.27 1.4	-0.85 _0.81	1.22 1.33	79.69 73.25	0.43 0.34	35017.88 33045.71	454.46 471.37	142.27 148.1	8.2 8.6	29.53 26.9	5.96 6.07	171.8 175	14.16 14.67	804. 6 760.18	7.31 7.4	9.06 8.43	0.28	59.29
1299.78	33.42		13.76	1.71	3.44	1.74	63.99	0.31	28735.94	513.6	115.54	8.15	21.17	6,93	136.71	15.09	663.75	7.76	7.37	0.35	52.01
1356.2	34.06	0.53	14.41	1.69	3.66	1.74	63.78		28541.24	516.94	115:94	8.2	21.02	7	136.97	15.2	662.35	7.78	7.34	0.34 0.35	51.91 51.34
1412.63	34.9 33.01	0.54	14.18 13,18	1.73 1.67	3.51 3.35	1.78 1.7	63.82 65.44	0.29 0.31	28542.44 29055.96	526.57 516.29	123.6 117.85	8.62 8.23	20.44 21.45	7.29 6.91	144.04 139.3	15.91 15.14	655.56 673.5	7.81 7.76	7.42 7.53	0.35	52.59
1469.05 1525.48	16.4	0.36	1.13	1.28	-0.5	1.22	78.65		34683.26	449.9	141.85	8.15	29.38	5.93	171.24	14.08	797.07	7.3	8.81	0.26	61.48
1581.92	15.79	0.35	0.21	1.25	-0.77	1.19	79.13		35043.82		159.31	8.78	29.91	5.93	189.21	14.71	826.49	7.32 7.3	8.94 9.07	0.25 0.25	63.9 61.64
1638.33	15.93	0.35	0.73 4.68	1.24 1.27	-0.7 0.39	1.21 1.3	78.94 74.56	0.41	34982.95 33074.57	447.36 468.69	143.23 137.63	8.24 8.17	29.55 27.29	5.96 5.98	172.78 164.93	14.2 14.15	799.41 758.18	7.37	8.57	0.25	58.88
1694.78 1751.2	20.04 34.27	0.53	14.86	1.7	3.88	1.76	63.63	0.3	28625,97	522.25	128.87	8.61	21.25	6.91	150.13	15.53	659.5	7.77	7.3	0.35	51.57
1807.63	34.99	0.54	14.75	1.71	3.83	1.79	63.71	0.29	28417.88	527.61	121.27	8.52	20.64	7.26	141.91	15.78	661.9	7.83	7.31	0.35	51.91
1864.07	32.41	0.51	12.81	1.69	<u>3.03</u> -0.71	<u> </u>	65.8 78.95	0.31 0.41	29222.95 34953.13	521.99 443.56	117.84 152.96	8.34 8.53	21.48 29.73	7.12 5.93	139.31 182.69	15.45 14.47	677.38 793.38	7.75 7.28	7.58 8.9	0.34	53.16 61.47
1920.48 1976.92	16.07 15.94	0.35 0.35	0.6 0.5	1.23 1.25	-0.71	1.21	78.76	0.41	35039.03	448.94	151.01	8.5	29.67	5.95	180.69	14.45	810.49	7.31	8.99	0.25	62.87
2033.35	16.03	0.36	0.4	1.23	-0.94	1.22	80.26	0.42	34943.37	453.36	142.1	8.21	29.7	5.94	171.8	14.14	801.65	7.29	9.19	0.25 0.33	62.11 53.96
2089.78	29.6	0.48	12.27	1.62	3.09 3.7	1.59 1.78	66.45 64.71	0.3 0.29	29727.87 28471.76	505.1 526.04	133.68 124.72	8.53 8.56	23.06 21.12	6,56 7.04	156.73 145.84	15.09 15.59	686.36 655.34	7.61 7.79	7.68	0.33	51.54
2146.22 2202.63	35.07 35.29	0.54 0.55	14.58 14.67	· 1.66 1.81	3.66	1.8	64.3	0.3	28298.01	531.13	113.94	8.33	20.58	7.36	134.52	15.69	658,24	7.84	7.45	0.37	51.79
2259.07	29.37	0.48	10.25	1.53	2.44	1.6	67.83	0.32	30430.24	507.04	132.54	8.49	23.41	6.61	155.95	15.1	703.45	7.64	7.84	0.31 0.24	55.06 61.82
2315.5	15.98	0.35	0.91 0.36	1.17	-0.83 -0.82	1.2 1.19	78.51 79.7	0.41	35051.9 34907.65	445.71 444.84	157.56 142.97	8.75 8.17	29.88 29.91	5.97 5.96	187.44 172.88	14.71 14.13	797.75 799.84	7.29 7.29	9.02 8.94	0.24	61.96
2371.92 2428.35	15.9 21.47	0,35 0,4	5.37	1.21 1.41	0.76	1.37	73.75		32722.43		135.31	8.21	26.81	6.07	162.12	14.28	757.08	7.4	8.53	0.29	59.03
2484.78	34.87	0.54	14.5	1.72	4.03	1.77	64.32		28558.05		123.62	8.58	20.92	7.1	144.54 132.67	15.68 15.65	661.32 652.46	7.81	7.36 7.4	0.35 0.36	52.01 51.37
2541.2	35.16		14.67 11.1	1.75 1.57	3.79 2.66	1.77 1.58	64.03 69.3		28264.66 30208.42		112.35 126.4	8.3 8.35	20.32 23.2	7.35 6.62	149.59	15.65	696.99	7.62	7.9	0.30	54.6
2597.63 2654.05	29.36		0.37	1.24	-0.84	1.21	79.3				156.69	8.68	29.76	5.96	186.45	14.64	805.67	7.29	9.06	0.25	62.56
2710.48	15.96	0.35	0.82	1.21	-0.73	1.2	79.92		34882.01	445.4	146.25	8.28	29.98	5.92	176.23	14.21	808.74	7.28	9.11 8.52	0.24 0.28	62.76 58.89
2766.92	20.97	0.39	5.47	1.37	0.66	<u>1.33</u> 1.76	74.92 63.84		32766.15 28539.39	470.74 520.62	134.8 123.28	8.11 8.56	27.02 20.93	6.01 7.17	161.82 144.21	14.12 15.73	752.19 656.29	7.37 7.79	7.38	0.28	51.77
2823.35 2879.77	34.56 35.1	0.53 0.54	14.86 14.91	1.74	3.93	1.79	63.19		28471.51	531.85	121.03	8.49	20.98	7.21	142.01	15.7	658.72	7.81	7.34	0.36	51.93
2936.2	31.75		12.87	1.69	3.29	1.68	66.58	0.31	29290.34	505.28	117.27	8.13	22.35	6.75	139.62	14.87	678.69	7.69	7.65	0.34	53.44
2992.63	16.19		0.45	1.26	-0.72	1.2	79.22				142.08 152.89	8.19 8.56	29.54 29.79	5.96 5.95	171.61 182.68	14.14 14.51	797.07 805.6	7.29 7.29	9.02	0.26 0.25	62.03 62.83
3049.05 3105.48	15.92 15.91		0.83 0.17	1.21	-0.79 -0.8	1.2 1.2	78.99 79.69		35043.49		144.93	8.31	29.9	5.95	174.83	14.25	797.69	7.27	9	0.24	62.27
3161.92	15.87	0.35	0.61	1.28	-0.63	1.21	79.55	0.41	35096.78	443.81	152.21	8.55	30.2	5.94	182.41	14.49	805.88	7.26	9.01	0.26	63.01
3218.33	15.93	0.35	0.77	1.26	-0.66	1.21	78.76		35055.92		155.84 152.19	8.69 8.58	30.04 30.09	5.97 5.96	185.88 182.28	14.66 14:54	802.04 792.24	7.29 7.26	9.14 9.17	0.26 0.25	62.63 61.9
3274.77 3331.2	15.94 15.97		0.5 0.61	1.25 1.2	-0.8 -0.87	1.21 1.2	79.19 79.42		35134.38 34945.82		139.44	8.09	30.05	5.98	169.6	14.07	801.88	7.28	9.1	0.24	62.51
3387.63	15.83		0.44	1.23	-0.68	1.2	79.81	0.43	35131.55	444.73	155.54	8.69	30.22	5.96	185.76	14.64	795.71	7.27	8,99	0.25	61.94
3444.05	15.87	0.35	0.47		-0.73	1.19	78.49		35032.84		149.6 138.47	8.45 8.06	30 30.02	5.99 5.98	179.59 168.49	14.44 14.03	797.59 799.28	7.28 7.26	9.08 9.05	0.26 0.25	62.06 62.1
3500.5	15.89	0.35	0.45	1.21	-0.71	1.2	79.12	0.41	34861.55	400.49	130.47	0.00	30.02	5.55	100.49	14.00	, 55.20	1.20	3.00	0.20	96.1

Page 1

	-	Test Pro	gram: EP	ARICE	Testing:						Engine C	lass: Na	tural Ga	s Fueled,	Spark ig	nited, Two	o-Stroke, Lean Burn Engine
	1	Descript	ion: FTIR	Daily Ca	libration	s - Nicole	t Rega 70	00			Engine T	ype: Coo	per-Bes	semer GM	1V-4-TF		
	I	Date: Ma	arch 30, 1	999		Time:	19:42:34	to	22:02:12		Test Poir	nts: Pre C	atalyst \	/alidation			
time	(+-)C2H6	C3H8	(+-)C3H8	THC	(+-)THC	H2O	{+-}H2O	SF6	(+-)SF6		(+-)CH3OH			(+-)MEOH		(+-)NMHC	
58.35	4.96	18,74	4.4	1005.02	38.49	95254.5 95859.85	1317.18 1302.99	0 -0.01	0.01 0,01	0.51 0.5	0.32 0.33	0.03	6.16 6.14	4.37 4.41	871.02 883.68		
114.78 171.22	4.96 4.98	18.84 18.75	4.4 4.41	1000.37 998.77	33.81 38.72	97673.82	1311.18	-0.01	0.01	0,5	0.33	0,03	6,21	4.35	885.26		
227.65	5,08	17.9	4.5	947.74	34.66	103725.8	1374.09	0.09	0.01	2.11	0.35	0.03	5,91	4,52	878.38	69,68	
284.07	5.55	15.17	4.93	790,58	38.08	128767.7	1652.11	0.36	0.01	8.17	0.44	0.03	0	3.79	1067.9		
340,52 396,95	5.35 5.67	14.16 16.25	4.75 5.03	758.38 827.23	38.76 38.78	120739.5 128160	1578.73 1674.58	0.43 0.28	0.01 0.01	6.5 9,49	0.42 0.44	0.03 0. 03	0	3.74 3.77	1087.84 1082.62		
453.37	5.59	15.88	4.96	818.79	38,34	126180.1	1610.4	0.3	0.01	8,25	0.43	0.03	5,51	4.19	879.63		
509.8	5.57	15.9	4.94	821.08	38.11	125078.3	1626.2	0.3	0.01	8.06	0.42	0.03	6.05	4.45	882.86		
566,23 622,65	5.57	15.98	4.95 4.96	829.27 824.61	38.28 38.33	126772.2 127281	1642.51 1679.4	0.3 0.3	0,01 0.01	8.16 8.25	0.44 0.43	0.03 0.03	6.55 4.43	4.34 4.25	875.32 923.07		
679.08	5.59 5.32	15.9 16.58	4.90	872.98	38.57	115989	1574.28	0.2	0.01	5.49	0.39	0.03	4.45	3.7	1081.26		
735.52	4.97	18,45	4.41	990.14	33.89	98248.65	1326.79	0	0.01	0.33	0.33	0.03	0	3.77	1096.94	64.18	
791,92	4.99	18.47	4.43	989.48	38.78	97823.52	1320.45	0	0.01	0.54	0.34	0.03	0	3.95	997.12		
848.35 904.78	5.13 5.57	17.65 16.15	4.55 4.94	932.86 833.05	35.01 38.13	106798.6 125353.2	1427.83 1636.08	0.1 0.29	0.01 0.01	2.68 7.82	0.35 0.43	0.03 0.03	6.7 6.24	4.39 4.37	880.79 878.47		•
961.2	5.57	16.08	4.94	831.81	38.19	125335.7	1635.6	0.29	0.01	8.06	0,43	0.03	6.4	4.43	868.17		
1017.63	5.57	15.92	4.94	823.25	38.12	127766.3	1690.55	0.29	0.01	8.13	0.43	0.03	0	4.12	982.66	87.42	
1074.07	5.35	16.56	4.74	869.63	36.65	117313.9	1551.63	0.19	0.01	5.57	0.39	0.03	0	3.65	1115.42		
1130.48 1186.92	4.98 4.97	18.39 16.47	4.42 4.41	983.26 994.46	38.72 38.72	96364.02 97062.92	1329.99 1351.01	0	0.01 0.01	0:43 0.49	0.31 0.33	0.03 0.03	0	3.84 3.7	1097.21 1082.12	65.13 64.6	
1243.35	5.11	17.74	4.53	942.52	35.04	106584.3	1429.92	0.09	.0.01	2.4	0.34	0.03	5.27	4.23	892.37	68.28	
1299.78	5.53	16	4.91	830.56	37.94	124252.1	1819.89	0.28	0.01	7.55	0.41	0.03	8.92	4.45	896.36		14 · · · ·
1356.2	5.55 5.58	15.93	4.92 4.95	828.05 819.74	38.02 38.34	124489.9 128308.3	1632.14 1670.28	0.29 0.29	0.01 0.01	7.92 8.25	0.43 0.44	0.03 0.03	6.54 0	4.45 3.76	879.6 1078.49		
1412.63 1469.05	5.58	15.88 16.12	4.95	842.81	37.72	124258.4	1626.38	0.25	0.01	7.38	0,44	0.03	ŏ		1098.86		
1525.48	4.98	18.29	4.42	983.5	33.84	96306.72	1337.62	0.01	0.01	0.73	0.34	0.03	0	3.72	1088.87	65.28	
1581.92	4.94	18.85	4.39	1020.98	38.48	95916.24	1315.13	0	0.01	0.45	0.33	0.03	4.85	4.23	904.27		
1638.33 1694.78	4.98 5.09	16.34 17.71	4.42 4.51	987.74 939.75	33.87 34.74	97040.13 103064.2	1330,03 1414.86	0 0.08	0.01 0.01	0.53 2.18	0.33 0.36	0.03 0:03	6.42 6.72	4.35 . 4.45	871.09 882.57		
1751.2	5.55	15.89	4.92	824.44	37.93	124027.4	1647.41	0.3	0.01	7.58	0.43	0.03	0.72	4.12	1014.81	69.34	•
1807.63	5.58	15.9	4.95	827.32	38.42	127849.3	1673.46	0.3	0.01	8.13	0.43	0.03	0	3.79	1075.69		
1864.07	5.5	16.15	4.88	846.04	37.87	126206.1	1647.17	0.25	0.01	7.25	0.42	0.03	0	3.83	1091.44		
1920.48 1976.92	4.97 4.97	18.32 18.51	4.41 4.41	980.06 1000.62	34.01 34	95628.07 96921.08	1316.22 1334.25	0 -0.01	0.01 0.01	0.64 0.34	0.32 0.33	0.03 0.03	4.32 6.62	4.23 4.46	920.62 878.12		
2033.35	4.97	18.4	4.41	989.72	33.99	96666.19	1347.35	-0.01	0.01	0.42	0.34	0.03	6.21	4.45	875.27	71.42	-
2089.78	5.38	16.35	4.78	854.86	36.8	118508.9	1575.67	0.24	0.01	5.8	0.39	0.03	0	3.9	1085.11	66.82	
2146.22	5.57	15.87	4.94	820.75	38.04	125575.1	1663.52 1687.41	0.3 0.3	0.01	8.11 8.17	0.44 0.43	0.03	· 0	3.8 3.96	1095.98 1052.51	65.88 66.66	
2202.63 2259.07	5.6 5.37	15.86 16.7	4.97 4.77	824.78 876.54	38.62 37.01	128837 118372.4	1577.24	0.21	0.01	5.75	0.43	0.03	5.44	4.57	873.23	70.6	
2315.5	4.97	18.39	4.41	985.49	33.96	96234.9	1323.3	0	0.01	0.45	0.34	0.03	6.41	4.4	880.31	71.54	-
2371.92	4.97	18.42	4.41	988.49	38.67	95191.76	1319.4	0	0.01	0.49	0.31	0.03	5.16	4.41	917.14		
2428.35	5.11	17.69	4.54 4.95	938.3 3 827.26	34.9 38.21	106207.5 126271.8	1436.87 1644.85	0.1 0.3	0.01	2.57 7.93	0.35 0.42	0.03 0.03	0	4.07 3.87	1088.25		
2484.78 2541.2	5.58 5.59	16.02 15.81	4.95	818.14	36.26	128998	1690.79	0.3	0.01	8.21	0.44	0.03	ō		1081.07		
2597.63	5.37	16.58	4.77	868.8	36.85	119411.5	1575.74	0.22	0.01	5.81	0.41	0.03	0		1101.81	66.7	
2654.05	4.96	18.64	4.4	997.69	38.67	97265.23	1340.5	0	0.01	0.53	0.33 0.33	0.03 0.03	0		1083.81 1080.08	66.9 66.37	
2710.48	4.94 5.1	18.65	4.39 4.52	999.68 933.35	38.2 34.99	95389.45 105055.8	1321.56 1426.54	0 0.1	0.01 0.01	0.5 2.35	0.35	0.03	ŏ		1090.13		
2766.92 2823.35	5.57	15.92	4.94	821.16	38.37	127077.6	1648.96	0.3	0.01	7.78	0.42	0.03	õ		1077.35		
2879.77	5.58	15.96	4.95	825.36	38.38	127072.2	1684.96	0.3	0.01	8	0.43	0.03	. 0	3.89	1095.68		
2936.2	5.45	18.3	4.84	848.47	37.59	121185.8	1584.22	0.25	0.01	6.82	0.42	0.03 0.03	0 0	3.8 3.77	1094.36	66,46 66.27	
2992.63 3049.05	4.97 4.96	18.42 18.56	4.41 4.4	985.91 995.66	34.07 38.68	97090.2 96826.43	1344.85 1308.72	. O	0.01 0.01	0.66 0.46	0.33 0.33	0.03	0		1087.4 1086.28		
3105.48	4.90	18.46	4.4	986.5	33.66	96069.77	1317.69	ŏ	0.01	0.53	0.32	0.03	· õ	3.81	920.17		
3161.92	4.94	- 18.66	4.38	1000.43	38.41	95429	1315.91	0	0.01	0.51	0.33	0.01	. 0	1.95	0	23.69	
3218.33	4.96	18.5	4.4	992.69			1340.06	0	0.01 0.01	0.41 0.42	0.34 0.33	0.01 0.01	0		0 216.9		
3274.77 3331.2	4.96 4.96	18.39 18.42	4.4 4.4	982.16 992.21	38.82 38.7		1293.59 1327.24	0	0.01	0.42	0.33	0.01	U	2.23	210.9	29,92	
3387.63	4.96	18.41	4.4	984.61	38.67	95931.7	1319.44	ŏ	0.01	0.35	0.34						
3444.05	4.96	18.28	4.4	986.8		97211.45	1303.5	0	0.01	0.44	0.33						
3500,5	4.95	18.29	4.39	986.42	33.86	96108.81	1338.15	0	0.01	0.39	0.32						

Test Description: Baseline 8-5 - 736BHP 1200RPM 10BTDC

Data Point Number: Baseline		Date:	08/05/99	Time:	15:11:38
			Duratio	n (minutes):	5.00
Description	Average	Min	Max	STDV	Variance
AMBIENT AIR TEMPERATURE (F)	73.00	73.00	73.00	0.00	0.00
AMBIENT AIR PRESSURE (psia)	12.07	12.07	12.07	0.00	0.00
AMBIENT HUMIDITY (%)	61.51	60.00	62.00	0.86	1.40
AIR MANIFOLD PRESSURE ("Hg)	5.01	4.76	5.19	0.09	1.80
AIR MANIFOLD RELATIVE HUMIDITY (%)	37.85	36.00	39.00	1.06	2.81
AIR MANIFOLD HUMIDITY RATIO (Ib _w /ib _a)	0.01561	0.01422	0.01669		
AIR MANIFOLD TEMPERATURE (F)	99.63	98.00	101.00	0.60	0.60
INTAKE AIR FLOW (scfm)	1747.25	1734.02	1758.27	5.28	0.30
EXHAUST FLOW (sofm)	-124.87	-124.87	-124.87	0.00	0.00
EXHAUST STACK TEMPERATURE (F)	699.38	698.99	699.79	0.22	0.03
CYLINDER 1 EXHAUST TEMPERATURE (F)	975.36	973.60	976.97	0.71	0.07
CYLINDER 2 EXHAUST TEMPERATURE (F)	974.40	972.61	975.98	0.74	0.08
()	974.40 974.36	972.61	975.98 975.98	0.69	0.07
CYLINDER 3 EXHAUST TEMPERATURE (F)			975.98	0.78	0.08
CYLINDER 4 EXHAUST TEMPERATURE (F)	949.03	947.41	1	0.78	0.05
CYLINDER 5 EXHAUST TEMPERATURE (F)	939.66	938.08	941.06		
CYLINDER 6 EXHAUST TEMPERATURE (F)	928.50	927.17	929.95	0.63	0.07
CYLINDER EXHAUST AVERAGE TEMP (F)	956.92	955.94	957.93	0.52	0.05
EXHAUST HEADER TEMPERATURE (F)	699.38	698.99	699.79	0.22	0.03
PRE TURBO EXHAUST PRESSURE ("Hg)	37.63	37.41	37.92	0.13	0.36
PRE TURBO EXHAUST TEMPERATURE (F)	957.21	955.94	958.52	0.64	0.07
POST TURBO EXHAUST PRESSURE ("Hg)	5.06	5.01	5.12	0.02	0.43
POST TURBO EXHAUST TEMPERATURE (F)	772.01	771.02	773.00	0.52	0.07
TURBO OIL PRESSURE ("Hg)	47.10	46.16	47.77	0.31	0.66
ENGINE SPEED (rpm)	1196.86	1191.73	1200.00	1.48	0.12
ENGINE HORSEPOWER (bhp)	737.44	735.01	739.70	1.09	0.15
ENGINE OIL PRESSURE (psig)	52.19	51.64	52.93	0.32	0.61
ENGINE OIL TEMPERATURE IN (F)	165.17	164.86	165.45	0.16	0.10
ENGINE OIL TEMPERATURE OUT (F)	186.07	185.89	186.49	0.14	0.07
SPECIFIC GRAVITY	0.69	0.69	0.69	0.00	0.00
FUEL TEMPERATURE (F)	91.36	91.05	91.64	0.15	0.16
FUEL PRESSURE ("H2O above amp)	4.07	3.44	4.66	0.21	5.15
FUEL SUPPLY PRESSURE (psig)	46.83	46.75	46.90	0.04	0.08
ORIFICE DIFFERENTIAL PRESSURE ("H2O)	15.19	14.65	15.86	0.31	2.06
ORIFICE STATIC PRESSURE (psig)	46.41	46.35	46.48	0.03	0.07
ORIFICE TEMPERATURE (F)	88.18	88.04	88.30	0.05	0.05
FUEL FLOW (SCFH)	5474.35				
CALCULATED FUEL CONSUMPTION (BSFC)	7717.47		•		
FUEL HEATING VALUE (Btu)	1039.60	1039.60	1039.60	0.00	0,00
AIR FUEL RATIO	32.70	32.70	32.70	0.00	0.00
INTERCOOLER AIR DIFFERENTIAL PRESSURE ("H2O)	9.72	9.43	9.87	0.09	0.90
INTERCOOLER AIR TEMP IN (F)	299.90	299.19	300.38	0.28	0.09
INTERCOOLER AIR TEMP OUT (F)	143.43	142.64	143.83	0.35	0.24
POST INTERCOOLER AIR MANIFOLD PRESSURE ("Hg)	68.79	68.49	68.9 9	0.09	0.14
INTERCOOLER WATER DIFFERENTIAL PRESSURE ("H2O)	157.45	157.45	157.45	0.00	0.00
INTERCOOLER WATER FLOW (GPM)	57.90	57.20	58.49	0.28	0.49
INTERCOOLER WATER TEMP IN (F)	131.13	129.74	131.72	0.57	0.43
INTERCOOLER WATER TEMP OUT (F)	143.56	142.44	144.02	0.43	0.30
INTERCOOLER SUPPLY PRESSURE (psi)	2.81	2.77	2.87	0.02	0.62
PRE CATALYST TEMPERATURE (F)	730.58	729.75	731.34	0.40	0.05
POST CATALYST TEMPERATURE (F)	734.79	734.11	735.70	0.35	0.05
CATALYST DIFFERENTIAL PRESSURE ("H2O)	9.50	9.43	9.62	0.04	0.47
B.S. CO (g/bhp-hr): Pre-Catalyst	4.16	4.05	4.26	0.04	1.06
	0.29	0.28	0.30	0.00	1.48
B.S. CO (g/bhp-hr): Post-Catalyst	0.29	0.20	0.00	0.00	0.00
B.S. NO (g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0,00

Date: 08/05/99

Time: 15:11:38

111

Test Description: Baseline 8-5 - 736BHP 1200RPM 10BTDC

Data Point Number: Baseline

Data Point Number: Baseline		Date:	00/05/99	inne:	15.11.50
		,	Duration	n (minutes):	5.00
Description _	Average	Min	Max	STDV	Variance
3.S. NO (g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	, 0.00
B.S. NOx (corrected - g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
3,S. NOx (corrected - g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
3.S. NOx (g/bhp-hr): Pre-Catalyst	1.01	0.98	1.09	0.03	2.71
3.S. NOx (g/bhp-hr): Post-Catalyst	1.11	1.09	1.18	0.02	1.45
3.S. THC (g/bhp-hr): Pre-Catalyst	9.34	8.95	9.57	0.12	1.25
3.S. THC (g/bhp-hr): Post-Catalyst	9,37	9.16	9.60	0.10	1.04
3.S. Methane (g/bhp-hr): Pre-Catalyst	4,27	4.20	4.37	0.04	0.91
3.S. Methane (g/bhp-hr): Post-Catalyst	3.48	3.37	3.66,	0.08	2.34
).S. Non-Methane (g/bhp-hr): Pre-Catalyst	0.19	0.18	0.21	0.01	7.36
S. Non-Methane (g/bhp-hr): Post-Catalyst	0.15	0.13	0,16	0.01	5.58
02 (ppm): Pre-Catalyst	100.00	100.00	100.00	0.00	0.00
D2 (ppm): Post-Catalyst	9.90	9.90	9.90	0.00	0.00
CO (ppm); Pre-Catalyst	621.17	614.40	624.70	3.34	0.54
CO (ppm): Post-Catalyst	43.25	42.80	43.70	0.20	0.47
CO2 (ppm): Pre-Catalyst	6.29	6.29	6.29	0.00	0.00
CO2 (ppm): Post-Catalyst	6.30	6.28	6.32	0.01	0.16
IO (ppm): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
VO (ppm): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
VOX (ppm - Corrected): Pre-Catalyst	0.00	0.00	0.00	0.00	· 0.00
IOx (ppm - Corrected): Post-Catalyst	54.21	53.40	57.40	0.60	1.10
IOX (ppm): Pre-Catalyst	92.24	90.90	97.90	2.27	2.47
VOX (ppm): Post-Catalyst	100.56	99.20	106.50	1.08	1.07
rHC (ppm): Pre-Catalyst	2024.33	1969.00	2047.00	17.80	0.88
THC (ppm): Post-Catalyst	2017.11	1987.90	2034.30	9.44	0.47
Aethane (ppm): Pre-Catalyst	1400.68	1399.90	1403.10	1.38	0.10
Aethane (ppm): Post-Catalyst	1135.08	1120.50	1171.70	23.18	2.04
Non-Methane (ppm): Pre-Catalyst	123.40	117.00	137.80	9.52	7.71
Non-Methane (ppm): Post-Catalyst	96.72	87.90	99.60	4.97	5.14
DYNO WATER IN TEMPERATURE (F)	82.87	82.71	82.91	0.08	0.09
DYNO WATER OUT TEMPERATURE (F)	129.28	129.14	130.14	0.21	0.16
ACKET WATER IN TEMPERATURE (F)	174.86	174.58	174.98	0.13	0.07
ACKET WATER OUT TEMPERATURE (F)	180.32	179.00	182.00	0.54	0.30
JACKET WATER FLOW (GPM)	0.00	0.00	0.00	0.00	0.00
UBE OIL COOLING WATER IN TEMPERATURE (F)	89.86	89.86	89.86	0.00	0.00
LUBE OIL COOLING WATER OUT TEMPERATURE (F)	95.65	95.41	95.81	0.14	0.15
LUBE OIL FLOW (GPM)	130.72	129.86	131.63	0.28	0.22
CO F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
CO F-Factor: Post-Catalyst	0.31	0.30	0.32	0.00	1.03
NO F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NO F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
VOX F-Factor: Pre-Catalyst	0.00	0.00	0,00	0.00	0.00
VOX F-Factor: Post-Catalyst	1.19	1.16	1.25	0.02	1.35
THC F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
THC F-Factor: Post-Catalyst	9.83	9.60	10.07	0.10	1.00
Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Melhane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
ENGINE TORQUE	3235.75	3233.08	3238.45	1.82	0.06

Test Description: Baseline - 735BHP 1200RPM 10BTDC

Data Point Number: Baseline 8/6		Date:	08/06/99	Time:	14:16:3
			Duratio	n (minutes):	5.00
Description	Average	Min	Max	STDV	Variance
MBIENT AIR TEMPERATURE (F)	77.00	77.00	77.00	0.00	0.00
AMBIENT AIR PRESSURE (psia)	12.07	12.07	12.07	0.00	0.00
MBIENT HUMIDITY (%)	54.62	54.00 ·	56.00	0.93	1.70
NR MANIFOLD PRESSURE ("Hg)	5.00	4.87	5.16	0.06	1.18
NR MANIFOLD RELATIVE HUMIDITY (%)	38.37	38.00	39.00	0.48	[.] 1.26
AIR MANIFOLD HUMIDITY RATIO (Ibw/Iba)	0.01585	0.01497	0.01670		
IR MANIFOLD TEMPERATURE (F)	99.66	98.00	101.00	0.75	0.75
NTAKE AIR FLOW (scfm)	1712.03	1700.19	1724.44	5.23	0.31
XHAUST FLOW (scfm)	-124.87	-124.87	-124.87	0.00	0.00
XHAUST STACK TEMPERATURE (F)	704.59	704.15	704.95	0.19	0.03
YLINDER 1 EXHAUST TEMPERATURE (F)	976,17	974.59	977.57	0.65	0.07
YLINDER 2 EXHAUST TEMPERATURE (F)	977.77	975.19	978.76	0.91	0.09
YLINDER 3 EXHAUST TEMPERATURE (F)	980.03	978.36	981.54	0.73	0.07
YLINDER 4 EXHAUST TEMPERATURE (F)	954.39	952.77	956.14	0.79	0.08
YLINDER 5 EXHAUST TEMPERATURE (F)	945.56	944.24	947.21	0.76	0.08
YLINDER 6 EXHAUST TEMPERATURE (F)	932.59	931.54	934.12	0.65	0.00 0.07
YLINDER EXHAUST AVERAGE TEMP (F)	961.08	959.71	962.46	0.59	0.06
XHAUST HEADER TEMPERATURE (F)	704.59	704.15	704.95	0.19	0.03
RE TURBO EXHAUST PRESSURE ("Hg)	36.76	36.54	36.95	0.11	0.31
RE TURBO EXHAUST TEMPERATURE (F)	962.40	961.50	963.88	0.60	0.06
OST TURBO EXHAUST PRESSURE ("Hg)	4.91	4.87	5.01	0.03	0.56
OST TURBO EXHAUST TEMPERATURE (F)	778.87	777.96	779.55	0.41	0.05
URBO OIL PRESSURE ("Hg)	46.84	46.00	47.45	0.28	0.59
NGINE SPEED (rpm)	1196.86	1193.61	1201.13	1.47	0.12
NGINE HORSEPOWER (bhp)	737.95	735.76	740.17	0.87	0.12
NGINE OIL PRESSURE (psig)	52.03	51.40	52.77	0.33	0.63
NGINE OIL TEMPERATURE IN (F)	165.90	165.65	166.05	0.13	0.08
NGINE OIL TEMPERATURE OUT (F)	186.81	186.49	187.08	0.14	0.08
PECIFIC GRAVITY	0.66	0.66	0.66	0.00	0.00
UEL TEMPERATURE (F)	96.38	96.21	96.41	0.07	0.07
UEL PRESSURE ("H2O above amp)	4.90	4.08	5.37	0.25	5.09
UEL SUPPLY PRESSURE (psig)	46.23	46.11	46.32	0.05	0.10
RIFICE DIFFERENTIAL PRESSURE ("H2O)	14.59	14.06	15.28	0.29	1.98
RIFICE STATIC PRESSURE (psig)	46.23	46.13	46.31	0.04	0.08
RIFICE TEMPERATURE (F)	92.95	92.79	93.15	0.09	0.09
UEL FLOW (SCFH)	5462.78				
ALCULATED FUEL CONSUMPTION (BSFC)	7302.69				
UEL HEATING VALUE (Btu)	986.50	986.50	986.50	0.00	0.00
IR FUEL RATIO	28.60	28.60	28.60	0.00	0.00
NTERCOOLER AIR DIFFERENTIAL PRESSURE ("H2O)	9.34	9.17	9.51	0.09	0.92
ITERCOOLER AIR TEMP IN (F)	299.16	298.59	299.58	0.30	0.10
ITERCOOLER AIR TEMP OUT (F)	142.43	139.46	144.62	1.67	· 1.17
OST INTERCOOLER AIR MANIFOLD PRESSURE ("Hg)	68.77	68.66	. 68.91	0.08	0.11
NTERCOOLER WATER DIFFERENTIAL PRESSURE ("H2O)	157.45	157.45	157.45	0.00	0.00
ITERCOOLER WATER FLOW (GPM)	54.43	53.65	54.94	0.23	0.42
ITERCOOLER WATER TEMP IN (F)	129.31	125.77	132.32	2.29	1.77
NTERCOOLER WATER TEMP OUT (F)	142.41	138.87	145.02	2.07	1.45
ITERCOOLER SUPPLY PRESSURE (psi)	2.66	2.62	2.71	0.02	0.66
RE CATALYST TEMPERATURE (F)	735.04	734.31	736.10	0.47	0.06
OST CATALYST TEMPERATURE (F)	739.40	738.88	739.87	0.30	0.04
ATALYST DIFFERENTIAL PRESSURE ("H2O)	8.97	8.89	9.11	0.05	0.55
I.S. CO (g/bhp-hr): Pre-Catalyst	2.39	2.35	2.45	0.03	1.06

Date: 08/06/99

Time: 14:16:35

1.00

Test Description: Baseline - 735BHP 1200RPM 10BTDC

Data Point Number: Baseline 8/6

Data Point Number: Baseline 8/6		Date:	00/00/99	tune.	14.10.35
			Duratio	n (minutes):	5.00
Description	Average	Min	Max	STDV	Variance
3.S. CO (g/bhp-hr): Post-Catalyst	0.15	0.15	0.15	0.00	0.00
3,S. NO (g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
3.S. NO (g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
3.S. NOx (corrected - g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
3.S. NOx (corrected - g/bhp-hr): Post-Catalyst	0.00	0.00	0.00	0.00	0.00
B.S. NOx (g/bhp-hr): Pre-Catalyst	0.71	0.69	0.73	0.01	1.26
3.S. NOx (g/bhp-hr): Post-Catalyst	0.74	0.72	0.77	0.01	1.59
3.S. THC (g/bhp-hr): Pre-Catalyst	4.54	4.44	4.64	0.05	1.12
3.S. THC (g/bhp-hr): Post-Catalyst	4.54	4.43	4.64	0.05	1.06
3.5. Methane (g/bhp-hr): Pre-Catalyst	1.97	1.93	2.01	0.02	1.05
	2.03	1.99	2.07	0.02	1.05
3.S. Methane (g/bhp-hr): Post-Catalyst	0.07	0.07	0.08	· 0.00	6.00
B.S. Non-Methane (g/bhp-hr): Pre-Catalyst	0.07	0.07	0.07	0.00	0.00
3.S. Non-Methane (g/bhp-hr): Post-Catalyst	9.80	9.80	9.80	0.00	0.00
02 (ppm): Pre-Catalyst	9.80 9.78	9.80 9.70	9.80 9.80	0.04	0.37
02 (ppm): Post-Catalyst	9.78 621.84	9.70 618.90	9.80 624.30	1.51	0.24
CO (ppm): Pre-Catalyst			624.30 41.60	0.19	0.47
CO (ppm): Post-Catalyst	41.09	40.80		0.02	0.47 0.25
CO2 (ppm): Pre-Catalyst	6.32	6.26	6.32	0.02	0.25
CO2 (ppm): Post-Catalyst	6.51	6.50	6.52		0.00
IO (ppm): Pre-Catalyst	0.00	0.00	0.00	0,00	0.00
IO (ppm): Post-Catalyst	0.00	0.00	0.00	0.00	0.68
Ox (ppm - Corrected): Pre-Catalyst	60.21	59.10	61.10	0.41	1.09
Ox (ppm - Corrected): Post-Catalyst	64.29	62.80	65.50	0.70	0.72
IOx (ppm): Pre-Catalyst	113.06	111.10	114.20	0.82	1.16
Ox (ppm): Post-Catalyst	120.94	118.10	123.20	1.41	0.31
HC (ppm): Pre-Catalyst	1812.50	1797.90	1823.70	5.61	
HC (ppm): Post-Catalyst	1850.66	1837.30	1864.20	6.06	0.33
fethane (ppm): Pre-Catalyst	1033.00	1033.00	1033.00	0.00	0.00
Aethane (ppm): Post-Catalyst	1089.46	1086.40	1089.50	0.36	0.03
ion-Methane (ppm): Pre-Catalyst	131.61	130.00	136.40	2.79	2.12
Ion-Melhane (ppm): Post-Catalyst	126.96	123.10	130.50	3.55	2.80
DYNO WATER IN TEMPERATURE (F)	82.68	82.52	82.91	0.10	0.12
OYNO WATER OUT TEMPERATURE (F)	129.12	128.95	129.14	0.07	0.05
ACKET WATER IN TEMPERATURE (F)	173.09	172.20	173.99	0.46	0.26
ACKET WATER OUT TEMPERATURE (F)	179.80	178.00	182.00	0.72	0.40
IACKET WATER FLOW (GPM)	0.00	0.00	0.00	0.00	0.00
UBE OIL COOLING WATER IN TEMPERATURE (F)	94.53	94.22	94.82	0.30	0.32
UBE OIL COOLING WATER OUT TEMPERATURE (F)	100.07	99.78	100.57	0.23	0.23
UBE OIL FLOW (GPM)	131.45	130.99	131.95	0.23	0.17
CO F-Factor: Pre-Catalyst	4.19	4.11	4.31	0.04	1.04
CO F-Factor: Post-Catalyst	0.28	0.27	0.28	0.00	1.11
NO F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
NO F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
NOx F-Factor: Pre-Catalyst	. 1.25	1.22	1.29	0.02	1.20
NX F-Factor: Post-Catalyst	1.34	1.29	1.38	0.02	1.45
THC F-Factor: Pre-Catalyst	7.81	7.63	8.03	0.09	1.14
THC F-Factor; Post-Catalyst	7.96	7.78	8.16	0.09	1.10
Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Pre-Catalyst	0.00	0.00	0.00	0.00	0.00
Non-Methane F-Factor: Post-Catalyst	0.00	0.00	0.00	0.00	0.00
ENGINE TORQUE	3238.33	3235.77	3241.14	0.72	0.02

Colorado State University Engine and Energy Conversion Laboratory FTIR System Verification Results

DRAFT REPORT

Prepared by

Jeffrey P. LaCosse, Ph.D. Radian International, LLC P.O. Box 13000 Research Triangle Park, NC 27709

January 1997

. . .

.

,

Table of Contents

ļ

ļ

ļ

.

Ĵ

		<u>Page</u>
1.0	Executive Summary	. 1-1
2.0	Introduction	.2-1
3.0	Verification Procedure	.3-1
	Results and Discussion	
5.0	References	. 5-1

List of Figures

3-1	FTIR System	Verification Ap	Apparatus	3-2
-----	-------------	-----------------	-----------	-----

List of Tables

3-1	Dynamic Spiking Parameters	-2
4-1	Verification Results for Formaldehyde4	-2
4-2	Verification Results for Acetaldehyde4	1-3
4-3	Verification Results for Acrolein4	-4
4-4	Post-Verification Flow Meter Calibration Results	1-5

1.0 EXECUTIVE SUMMARY

An independent verification of the Fourier Transform Infrared (FTIR) system at Colorado State University (CSU) Engine and Energy Conversion Laboratory (EECL) was conducted on 16 and 17 January 1997. The verification test was performed on the CSU FTIR system for formaldehyde, acetaldehyde, and acrolein utilizing the validation test procedures according to EPA Method 301. The sample matrix measured in the system evaluation was exhaust gas from the natural gas-fired Cooper GMV 2-cycle large-bore internal combustion (IC) engine operated under lean combustion conditions located at the EECL facility.

The CSU FTIR system met the EPA Method 301 validation criteria for all three analytes (i.e., formaldehyde, acetaldehyde, and acrolein). Relative standard deviation was significantly less than the Method 301 precision criteria of 50 percent in all cases and measurement bias was statistically insignificant for formaldehyde and acetaldehyde. The results indicate that no bias correction factor for formaldehyde and acetaldehyde is required. However, the acrolein data generated using the CSU FTIR system must be multiplied by a bias correction factor of 0.96 before subsequent use. Table 1-1 summarizes the results of the CSU FTIR system verification.

Table 1-1. FTIR System Verification Summar	Table 1-1.	FTIR System	Verification	Summary
--	------------	-------------	--------------	---------

Analyte	Percent RSD (unspiked)	Percent RSD (spiked)	Bias Significant?	Correction Factor
Formaldehyde	0.6	4.2	No	· -
Acetaldehyde	12.0	2.3	No	-
Acrolein	0.0 (1)	0.7	Yes	0.96

(1) Not detected in native sample gas during validation run.

RSD - Relative standard deviation

2.0 INTRODUCTION

Radian International, LLC was retained by Enginuity International, Inc. to conduct an independent verification of the CSU EECL FTIR system using EPA Method 301 validation procedures. The verification testing was conducted for formaldehyde, acetaldehyde, and acrolein in exhaust gases generated from natural gas-fired IC engines. The verification testing of the CSU FTIR system was essentially identical to that used in the EPA-approved validation tests performed by Radian for the Gas Research Institute [1]. The verification testing was conducted at the CSU site during 16 and 17 January 1997. The following procedure was used for generation of spiked and unspiked samples:

- Measure native stack gas for a 5 minute period;
- Start spike gas flow into sample stream;
- Let system equilibrate for 5 minutes;
- Measure spiked sample stream for 5 minutes;
- Turn off spike gas flow;
- Let system equilibrate for 5 minutes; and
- Repeat cycle.

This cycle is repeated 12 times to provide 12 spiked/unspiked pairs. These pairs were grouped further into six groups of 2 spiked/unspiked pairs to simulate a 'quad train' approach used for the Method 301 statistical calculations.

Spike level was computed from mass balance for formaldehyde, and by dilution measured from the SF_6 dilution tracer for acetaldehyde and acrolein. The equations for computing spike level can be easily derived or can be found in the GRI FTIR validation report [1].

4.0 RESULTS AND DISCUSSION

Tables 4-1, 4-2, and 4-3 present the CSU FTIR system verification results for formaldehyde, acetaldehyde, and acrolein, respectively. These tables are taken directly from the Method 301 validation spreadsheet available from the EPA EMTIC electronic bulletin board. Verification test data were grouped into 'quad train' sets to facilitate the use of the EPA spreadsheet. As previously summarized in Table 1-1, the CSU FTIR system met the EPA Method 301 validation criteria for all three analytes (i.e., formaldehyde, acetaldehyde, and acrolein).

As indicated in Table 4-1 through 4-3, all three analytes were well within the Method 301 precision criteria of 50% RSD. The highest RSD observed is 12 percent for the unspiked acetaldehyde validation. Acrolein unspiked data were set to zero since acrolein was not detected in any of the unspiked validation runs. Formaldehyde and acetaldehyde do not show any statistically significant bias, while acrolein shows a small but statistically significant bias of + 4 percent. This is easily within the Method 301 criteria of \pm 30 percent bias. As a result, formaldehyde and acetaldehyde data from the CSU EECL FTIR system do not require any bias correction, while acrolein results should be multiplied by a bias correction factor of 0.96 before final use.

Table 4-4 presents the calibration data for all flow measurement devices used in the study. As indicated, the difference between pre- and post- validation calibrations is less than 4 percent in all cases.

4-1

-								
	VALIDATIO	on of ftir foi	R THE AN	ALYSIS OF	FORMA	LDEHYDE	:	
Date Conduc	cted: 16 Jan	uary 1997						
ANALYTE S	PIKING: QU	JAD TRAINS			·			
FEDERAL R	EGISTER C	ALCULATION N	NETHOD	•			i ,	
ENTER VAL	UE OF SPI	KED LEVEL (CS)) =	35.4			ı.	
Dilution Fact	or for Unspi	ked Samples =	0.70			•		
ENTER SPI	KED AND U	NSPIKED CONC	ENTRAT	IONS (COM	PARABL	E UNITS A	SSUME))
, ,	CONCENT	RATION IN PPN	I (WET)	· · ·				
	SPIKED	SAMPLES	UNSPI	KED SAMPL	ES			
RUN #	A	В	С	D	A-B	(A-B)^2	C-D	(C-D)^2
1	53.59	55.53	18.72	19.05	-1.94	3.76	-0.33	0.11
2	53.27	49.12	18.93	18.79	4.15	17.22	0.14	0.02
3	58.21	52.52	18.70	18.71	5.69	32.38	-0.01	0.00
4	52.33	50.73	18.54	18.54	1.60	2.56	0.00	0.00
5	54.44	54.51	18.61	18.63	-0.07	0.00	-0.02	0.00
6	53.17	51.06	18.57	18.66	2.11	4.45	-0.09	0.01
AVERAGE:	Sm=	53.21	Mm=	18.70				. •
STANDARD	DEVIATION	l:						
	SPIKED Sd	s = ·	2.24		,			
· · ·	UNSPIKED	Sdu =	0.11		•			
	RELATIVE	STD RSDs =	4.2%	(acceptabl	e)			
	RELATIVE	STD RSDu=	0.6%	(acceptabl	e)			
BIAS:		••						
	Corrected L	Inspiked Conc =		13.09	1 - X			
		B =	4.714					
	STD OF ME	EAN SDm =	2.246					
	,	t-VALUE =	2.099	······································				
·····	CRITICAL t	-VALUE =	2.201	····		- · · ·		
······································	(n=12, alpha	a=95%)		•				
***_12	Bias not st	atistically signi	ficant, CF	not neede	d.		,	

Table 4-1. Verification Results for Formaldehyde

A Contraction of the local distribution of t

House .

1 6 1

Arres 134

11 a a 11

		4-2. vern			2200000	u j		
· · · · · · · · · · · · · · · · · · ·	VALIDATION	OF FTIR FO	OR THE A	NALYSIS	OF ACET	ALDEHYDI		
Date Condu	cted: 17 Januar	y 1997	i.					
ANALYTE S	PIKING: QUAD	TRAINS					1	
FEDERAL F	REGISTER CAL	CULATION	METHOD					•
ENTER VAL	UE OF SPIKED	LEVEL (CS	5)=	10.10				
	tor for Unspiked				0.90			
ENTER SPI	KED AND UNSI	PIKED CON	CENTRAT	FIONS (CC	MPARAB	LE UNITS /	ASSUMED)
	CONCENTRA	TION IN PP						
	SPIKED SA	MPLES	UNSPI	KED SAMP	PLES			
RUN#	A	В	C	D	A-B	(A-B)^2	C-D	(C-D)^2
1	10.96	11.50	0.35	1.17	-0.54	0.29	-0.82	0.67
2	12.15	12.34	1.87	2.15	-0.19	0.04	-0.28	0.08
3	12.42	12.90	2.59	2.88	-0.48	0.23	-0.29	0.08
4	12.94	12.32	3.05	2.76	0.62	0.38	0.29	0.08
5	12.89	13.01	2.82	2.97	-0.12	0.01	-0.15	0.02
6	13.15	13.18	3.00	3.22	-0.03	0.00	-0.22	0.05
AVERAGE:	Sm=	12.48	Mm =	2.40				
STANDARD	DEVIATION:							
	SPIKED Sds =		0.28					
	UNSPIKED Sd		0.29					
	RELATIVE ST	D RSDs =	2.3%	(acceptat	ole)			
	RELATIVE STI	D RSDu=	12.0%	(acceptat	ole)			
BIAS:								
6	Corrected Unsp	oiked Conc =		2.16				
		B =	0.218					
	STD OF MEAN	I Sdm =	0.403					
		t-VALUE =	0.540					
	CRITICAL t-VA		2.201					
	(n=12, alpha =							
	Bias not statis	tically sign	ificant, C	F not need	ded.			

Table 4-2. Verification Results for Acetaldehyde

ł

Ì

1

]

Í

ł

1

i

	Ta	able 4-3. Vo	erification	Results	for Acrole	in		
	VALIDATION	OF FTIR FO	OR THE AN	ALYSIS C	OF ACROL	EIN		
Date Condu	icted: 17 Janua	ary 1997						
ANALYTE	SPIKING: QUA	D TRAINS						<u></u>
FEDERAL I	REGISTER CA	LCULATION	METHOD		•			
ENTER VA	LUE OF SPIKE	D LEVEL (C	S) =	9.30			•	
Dilution Fac	tor for Unspike	ed Samples =			0.90			
ENTER SPI	KED AND UN	SPIKED CON	ICENTRA-	TIONS (CC	MPARABL	E UNITS AS	SUMED)	
	CONCENTRA	TION IN PPI	M (WET)					•
	SPIKED SA	AMPLES	UNSPI	UNSPIKED SAMPLES				· ·
RUN #	A	В	С	D	A-B	(A-B)^2	C-D	(C-D)^2
1	9.33	9.38	0.00	0.00	-0.05	0.00	0.00	0.00
2	9.67	9.68	0.00	0.00	-0.01	0.00	0.00	0.00
3	9.64	9.75	0.00	0.00	-0.11	0.01	0.00	0.00
4	9.70	9.70	0.00	0.00	0.00	0.00	0.00	0.00
5	9.86	9.72	0.00	0.00	0.14	0.02	0.00	0.00
6	9.91	10.05	0.00	0.00	-0.14	0.02	0.00	0.00
AVERAGE:	Sm=	9.70	Mm=	0.00	·			
STANDARD	DEVIATION:	1						
	SPIKED SDs=	1	0.07	······································				
1.	UNSPIKED S	Du=	0.00					
	RELATIVE ST	D RSDs=	0.7%	(acceptat	ole)			
	RELATIVE ST	D RSDu=	0.0%	(acceptat	ole)			
BIAS:	· .	•						
	Corrected Uns	piked Conc =	:	0.00	· · · · ·			
		B=	0.399					
	STD OF MEA	N SDm=	0.067					
		t-VALUE=	5.956					
	CRITICAL t-V	ALUE=	2.201					
	(n=12, alpha=	95%)						
	Bias is statis	tically signif	icant					
	Correction Fac	ctor=	0.959	(Acceptab	le)			
							A1	

C:\sdg\lisa\csu\draftdoc

Arrend and

A second s

a vite a street, st

a he same

4-4

	Calibrations	•	Baro.P=	25.15		
Dynamic Sp	iking console	Channel 1	Std. P=	29.96		
•	Time	Volume	Flow	Flow (SLM)	Flow (SLM)	% Difference
Readout	(Sec)	(1)	(I/min)	(Post test)	(Pre test)	(post - pre)
0.65	36.09	0.6	1.00	0.84		
0.65	24.08	0.4	1.00	0.84		5.
0.65	47.96	0.8	1.00	0.84		
average				0.84	0.85	-1.2
1.75	24.43	1	2.46	2.06		
1.75	24.29	1	2.47	2.07		
average				2.07	2.00	3.5
Orifice cal	(dp = 0.60 in	ch H2O)				
			Flow	Flow (SLM)	Pretest cal	
	Time (sec)	Volume (I)	(I/min)	(Post test)	(SLM)	
	9.81	1.6	9.79	8.21		
	9.58	1.6	10.02	8.41		
	9.71	1.6	9.89	8.30		
average			9.90	8.31	8.30	< 1
Syringe	pump		•			
			Post Test	1	Pretest cal	
	Time	· Vol	Flow		(ml/min)	
	(min)	(ml)	(ml/min)			
	10	. 3.5	0.35		0.34	2.9

Table 4-4. Post-Verification Flow Meter Calibration Results

C:\sdg\lisa\csu\draftdoc

1

5.0 REFERENCES

1 L.D. Ogle, G.S.-Shareef, and J.P. LaCosse. "Fourier Transform Infrared (FTIR) Method Validation at a Natural Gas-Fired Internal Combustion Engine", *Radian Corporation under Contract to Gas Research Institute*, Document GRI-95/0271, May 1995.

APPENDIX H

Ì

CALIBRATION GAS CERTIFICATION SHEETS

.

Scott Specialty Gases Dual-Analyzed Calibration Standard 500 WEAVER PARK RD, LONGMONT, CO 80501 Phone: 888-253-1635 Fax: 303-772-7673 CERTIFICATE OF ACCURACY: Interference Free **EPA Protocol Gas** Assay Laboratory Customer P.O. No.: P165299 COLORADO STATE UNIVERSITY SCOTT SPECIALTY GASES Project No.: 08-52254-003 500 WEAVER PARK RD ENERGY LAB LONGMONT, CO 80501 **430 NORTH COLLEGE** FORT COLLINS CO 80524 ANALYTICAL INFORMATION This certification was performed according to EPA Traceability Protocol For Assay & Certification of Gaseous Calibration Standards; Procedure #G1; September, 1997. Cylinder Number: ALM040676 Certification Date: 1/12/99 Exp. Date: 1/12/2001 Cylinder Pressure***: 1912 PSIG ANALYTICAL COMPONENT CERTIFIED CONCENTRATION ACCURACY** TRACEABILITY NITRIC OXIDE 112 PPM NIST +/-1% NITROGEN - OXYGEN FREE BALANCE NOX 112. PPM Reference Value Only *** Do not use when cylinder pressure is below 150 psig. ** Analytical accuracy is inclusive of usual known error sources which at least include precision of the measurement processes. Product certified as +/- 1% analytical accuracy is directly traceable to NIST standards. **REFERENCE STANDARD** CYLINDER NUMBER TYPE/SRM NO. EXPIRATION DATE CONCENTRATION COMPONENT NTRM 1685 7/10/01 ALM050868 247.5 PPM NO/N2 INSTRUMENTATION INSTRUMENT/MODEL/SERIAL# DATE LAST CALIBRATED ANALYTICAL PRINCIPLE FTIR System/8220/AAB9400251 Scott Enhanced FTIR 12/24/98 ANALYZER READINGS (Z=Zero Gas R=Reference Gas T=Test Gas r = Correlation Coefficient) Second Triad Analysis **First Triad Analysis Calibration Curve** NITRIC OXIDE Date: 01/04/99 Response Unit: PPM Date: 01/12/99 **Response Unit: PPM** Concentration = A + Bx + Cx2 + Dx3 + Ex4Z1=-0.110 R1 = 246.85 T1=111.80 71 = -0.059R1 = 247.41T1=111.87 r=0.999990 R2=247.55 Z2=-0.031 R2 = 247.58 Z2 = 0.1289T2 = 112.15T2 = 112.07Constants: A = 0.000000 Z3=0.0056 T3=112.16 Z3=0.1765 T3=112.13 R3 = 247.51 B = 1.000000 C=0.000000 R3 = 248.10Avg. Concentration: 112.0 PPM Ave. Concentration: 112.0 PPM D = 0.000000E = 0.000000

RATA CLASS

Special Notes:

APPROVED BY:

Devon VonFeldt

		RATA CLA	SS
Scott Specialt	y Gases	Dual-Analyzed C	Calibration Standard
500 WEAVER PARK RD,LONGMONT,	CO 80501	Phone: 888-253-1635	Fax: 303-772-7673
CERTIFICATE OF ACCURACY	۲: Interference Free		ent EPA Protocol Gas
Assay Laboratory		Customer	
	P165299	COLORADO STATE	UNIVERSITY
•	o.: 08-52254-005		
500 WEAVER PARK RD LONGMONT,CO 80501		ENERGY LAB 430 NORTH COLLE	CE.
		FORT COLLINS CO	
ANALYTICAL INFORMATION			
This cortification was performed according to E	PA Traceability Protocol For As	say & Certification of Gas	eous Calibration Standards;
Procedure #G1; September, 1997. Cylinder Number: ALM043082 Cylinder Pressure***: 1922 PSIG	Certification Date:	1/19/99	Exp. Date: 1/19/2001
Cyllinder Fressule 1922 FSIG	• •	ANALYTICAL	
COMPONENT CI	ERTIFIED CONCENTRATION	ACCURACY	TRACEABILITY
NITRIC OXIDE	304 PPM	+/-1%	NIST
NITROGEN - OXYGEN FREE	BALANC	E	
NOX	305. PPM	•	Reference Value Only
••• Do not use whan cylinder pressure is below 150 p	-		
Analytical accuracy is inclusive of usual known erro		cision of the measurement p	rocesses.
Product certified as +/- 1% analytical accuracy is di REFERENCE STANDARD	rectly traceable to MIST standards.		······································
	INDER NUMBER CONCE	NTRATION CON	IPONENT
NTRM 1685 7/10/01 ALM	1050868	247.5 PPM NO/N	2
INSTRUMENTATION			
INSTRUMENT/MODEL/SERIAL#	DATEL	AST CALIBRATED	ANALYTICAL PRINCIPLE
FTIR System/8220/AAB9400251		12/24/98	Scott Enhanced FTIR
		t	· •
ANALYZER READINGS	s R=Reference Gas T=	Test Gas r=Correla	ation Coefficient)
First Triad Analysis	Second Triad Analys		Calibration Curve
Date: 01/08/99 Response Unit: PPM	Date: 01/19/99 Response Unit: P	РМ С	oncentration = A + Bx + Cx2 + Dx3 + Ex4
Z1=0.2720 R1=247.22 T1=303.89	Z1 = -0.073 R1 = 247.27	T1=304.31	= 0.999990
R2=247.75 22=0.2750 T2=304.60	R2=247.66 Z2=-0.058		onstants: A=0.000000
23 = 0.8268 .73 = 304.50 R3 = 247.52 Avg. Concentration: . 304.3 PPM	Z3 = 0.0358 T3 = 304.37 Avg. Concentration: 304.5		= 1.000000 C = 0.000000 = 0.000000 E = 0.000000
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
, j			
60 5 Mc			
• •			
Special Notes:		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
· k			
APPROVED BY:	Felato		
Devon VonFeldt		• •	
	• • • • •		

. . .

COMPLIANCE CLASS

Dual-Analyzed Calibration Standard

Scott Specialty Gases

500 WEAVER PARK RD,LONGMONT,CO 80501

Phone: 888-253-1635

Fax: 303-772-7673

Assay Laboratory						Customer			
		P.O. 1		4671	_	COLORADO	STATE UNIV	ERSITY	*
SCOTT SPECIALT		Projec	ct No.: 08-5	54121-00	02				
500 WEAVER PA						ENERGY LAI			
LONGMONT,CO 8	30501					430 NORTH		~ ~	
ANALVICAL		K I				FORT COLLI	NS CO 805	24	
ANALYTICAL IN			to EDA Traca	ability Dro	togol For As	anu & Castificatio	n of Gassaus C	olibratio	- Stondarda
This certification wa Procedure #G1; Sep		-	to EPA Trace	ability Pro	DIOCOL FOR AS	say & Certificatio	n of Gaseous C	alloratio	on Standards;
Cylinder Number:		016431		ertificati	on Date:	3/10/99	Exp. [Date:	3/09/2002
Cylinder Pressure		PSIG		, or through	on Duto.	0,10,00		Julo,	0,00,2002
eyminet i roodaro						ANAL	TICAL		
OMPONENT			CERTIFIED	CONCE	NTRATION	ACCI	JRACY**	ŤF	ACEABILITY
IETHANE	· .		9	01	PPM	+/-	2%	GN	MIS
ROPANE				91.1	PPM	+/-	2%	NI	ST
IR									
** Do not use when cy	-			which at le	BALANC	•	rement processe	s.	
** Do not use when cy * Analytical accuracy i REFERENCE STANI	s inclusive of usu	ual known	error sources		ast include pre	cision of the measu			
** Do not use when cy * Analytical accuracy i EFERENCE STANI YPE/SRM NO.	s inclusive of usu DARD EXPIRATION DA	ual known ATE			ast include pre	cision of the measu	rement processe COMPONE		
** Do not use when cy * Analytical accuracy i EFERENCE STANE YPE/SRM NO. H4/AIR 50PP	s inclusive of usu	al known	error sources		ast include pre	cision of the measu	COMPONE		
** Do not use when cy * Analytical accuracy i EFERENCE STANE YPE/SRM NO. H4/AIR 50PP	s inclusive of usu DARD EXPIRATION D/ 2/18/01	al known	CYLINDER N ALM014418		ast include pre	cision of the measu NTRATION 50.20 PPM	COMPONEI METHANE		
Do not use when cy Analytical accuracy i EFERENCE STANE YPE/SRM NO. H4/AIR 50PP TRM 1669	s inclusive of usu DARD EXPIRATION D/ 2/18/01 10/02/02	al known	CYLINDER N ALM014418		ast include pre	cision of the measu NTRATION 50.20 PPM	COMPONEI METHANE		
** Do not use when cy * Analytical accuracy i EFERENCE STANI YPE/SRM NO. H4/AIR 50PP TRM 1669 NSTRUMENTATIO	s inclusive of usu DARD EXPIRATION D/ 2/18/01 10/02/02 N	al known	CYLINDER N ALM014418		ast include pre	cision of the measu NTRATION 50.20 PPM	COMPONE METHANE PROPANE	NT_	YTICAL PRINCIPLI
** Do not use when cy * Analytical accuracy i IEFERENCE STANE YPE/SRM NO. I H4/AIR 50PP TRM 1669 NSTRUMENTATIO ISTRUMENT/MODEL PGC/5710A/2010A993	s inclusive of usu DARD EXPIRATION D/ 2/18/01 10/02/02 N ./SERIAL# 310	al known	CYLINDER N ALM014418		ast include pre CONCE	NTRATION 50.20 PPM 497.0 PPM AST CALIBRATEI 03/08/99	COMPONE METHANE PROPANE	NT ANAL FID	YTICAL PRINCIPLI
Do not use when cy Analytical accuracy i IEFERENCE STANI YPE/SRM NO. H4/AIR 50PP TRM 1669 NSTRUMENTATIO NSTRUMENT/MODEI PGC/5710A/2010A993	s inclusive of usu DARD EXPIRATION D/ 2/18/01 10/02/02 N ./SERIAL# 310	al known	CYLINDER N ALM014418		ast include pre CONCE	NTRATION 50.20 PPM 497.0 PPM	COMPONE METHANE PROPANE	<u>NT</u>	YTICAL PRINCIPLI
** Do not use when cy * Analytical accuracy i EFERENCE STANE YPE/SRM NO. I H4/AIR 50PP TRM 1669 NSTRUMENTATIO ISTRUMENT/MODEL PGC/5710A/2010A993	s inclusive of usu DARD EXPIRATION D/ 2/18/01 10/02/02 N ./SERIAL# 310	al known	CYLINDER N ALM014418		ast include pre CONCE	NTRATION 50.20 PPM 497.0 PPM AST CALIBRATEI 03/08/99	COMPONE METHANE PROPANE	NT ANAL FID	YTICAL PRINCIPLI
** Do not use when cy * Analytical accuracy i EFERENCE STANE YPE/SRM NO. I H4/AIR 50PP TRM 1669 NSTRUMENTATIO ISTRUMENT/MODEL PGC/5710A/2010A993	s inclusive of usu DARD EXPIRATION D/ 2/18/01 10/02/02 N ./SERIAL# 310	al known	CYLINDER N ALM014418		ast include pre CONCE	NTRATION 50.20 PPM 497.0 PPM AST CALIBRATEI 03/08/99	COMPONE METHANE PROPANE	NT ANAL FID	YTICAL PRINCIPLI
Do not use when cy Analytical accuracy i EFERENCE STANE YPE/SRM NO. H4/AIR 50PP TRM 1669 ISTRUMENTATIO ISTRUMENT/MODEL PGC/5710A/2010A993	s inclusive of usu DARD EXPIRATION D/ 2/18/01 10/02/02 N ./SERIAL# 310	al known	CYLINDER N ALM014418		ast include pre CONCE	NTRATION 50.20 PPM 497.0 PPM AST CALIBRATEI 03/08/99	COMPONE METHANE PROPANE	NT ANAL FID	YTICAL PRINCIPLI
** Do not use when cy * Analytical accuracy i IEFERENCE STANE YPE/SRM NO. I H4/AIR 50PP TRM 1669 NSTRUMENTATIO ISTRUMENT/MODEL PGC/5710A/2010A993	s inclusive of usu DARD EXPIRATION D/ 2/18/01 10/02/02 N ./SERIAL# 310	al known	CYLINDER N ALM014418		ast include pre CONCE	NTRATION 50.20 PPM 497.0 PPM AST CALIBRATEI 03/08/99	COMPONE METHANE PROPANE	NT ANAL FID	YTICAL PRINCIPLI
Do not use when cy Analytical accuracy i IEFERENCE STANI YPE/SRM NO. H4/AIR 50PP TRM 1669 NSTRUMENTATIO NSTRUMENT/MODEI PGC/5710A/2010A993	s inclusive of usu DARD EXPIRATION D/ 2/18/01 10/02/02 N ./SERIAL# 310	al known	CYLINDER N ALM014418		ast include pre CONCE	NTRATION 50.20 PPM 497.0 PPM AST CALIBRATEI 03/08/99	COMPONE METHANE PROPANE	NT ANAL FID	YTICAL PRINCIPLI
** Do not use when cy * Analytical accuracy i REFERENCE STANI	s inclusive of usu DARD EXPIRATION D/ 2/18/01 10/02/02 N ./SERIAL# 310	al known	CYLINDER N ALM014418		ast include pre CONCE	NTRATION 50.20 PPM 497.0 PPM AST CALIBRATEI 03/08/99	COMPONE METHANE PROPANE	NT ANAL FID	YTICAL PRINCIPLI
Do not use when cy Analytical accuracy i EFERENCE STANE YPE/SRM NO. H4/AIR 50PP ITRM 1669 NSTRUMENTATIO NSTRUMENT/MODEL IPGC/5710A/2010A993	s inclusive of usu DARD EXPIRATION D/ 2/18/01 10/02/02 N ./SERIAL# 310	al known	CYLINDER N ALM014418		ast include pre CONCE	NTRATION 50.20 PPM 497.0 PPM AST CALIBRATEI 03/08/99	COMPONE METHANE PROPANE	NT ANAL FID	YTICAL PRINCIPLI

APPROVED BY: VIRGINIA CHANDLER

Scott Specialty Gases

COMPLIANCE CLASS

Dual-Analyzed Calibration Standard

500 WEAVER PARK RD,LONGMONT,CO 80501

Phone: 888-253-1635 Fax: 303-772-7673

CERTIFICATE OF ACCURACY: EPA Protocol Gas

Assay Laboratory		Customer
	P.O. No.: VERBAL PER GARY	COLORADO STATE UNIVERSITY
SCOTT SPECIALTY GASES	Project No.: 08-54121-003	•
500 WEAVER PARK RD	· · · · · · · · · · · · · · · · · · ·	ENERGY LAB
LONGMONT,CO 80501		430 NORTH COLLEGE
		FORT COLLINS CO 80524

ANALYTICAL INFORMATION

This certification was performed according to EPA Traceability Protocol For Assay & Certification of Gaseous Calibration Standards; Procedure #G1; September, 1997.

Cylinder Number:	AAL13109	Certifica	tion Date:	3/09/99	Exp. Date:	3/08/2002
Cylinder Pressure***:	1906 PSIG					
				ANALYTIC	AL	•
COMPONENT		CERTIFIED CONC	CERTIFIED CONCENTRATION		<u>CY**</u>	TRACEABILITY
METHANE		1,800	PPM	+/- 2%		GMIS
PROPANE		181	PPM	+/- 2%	, i	NIST
AIR			BALANCE			н. Т

*** Do not use when cylinder pressure is below 150 psig.

** Analytical accuracy is inclusive of usual known error sources which at least include precision of the measurement processes.

TYPE/SRM NO.	EXPIRATION DATE	CYLINDER NUMBER	CONCENTRATION	COMPONENT
CH4/AIR 50PP	2/18/01	ALM014418	50.20 PPM	METHANE
NTRM 1669	10/02/02	ALM006765	497.0 PPM	PROPANE

INSTRUMENTATION

INSTRUMENT/MODEL/SERIAL# HPGC/5710A/2010A99310 HPGC/5890/3115A34623 DATE LAST CALIBRATED 03/08/99 03/08/99

ANALYTICAL PRINCIPLE FID FID

Special Notes:

APPROVED BY:

VIRGINIA CHANDLER

			COMPLI	ANCE C	LASS
(S)	Scott Specialty Gases) 	Dual-Analyz	ed Calibratio	on Standard
~PQN	500 WEAVER PARK RD,LONGMONT,CO 80501		Phone: 888-253-10	535 Fax: 30	3-772-7673
CERT	TIFICATE OF ACCURACY: Interference	ce Free	EPA Protoc	ol Gas	
Assay	Laboratory		Customer		1
SCOTT	P.O. No.: P165299 SPECIALTY GASES Project No.: 08-52254-02	3	COLORADO ST	ATE UNIVERS	ITY ,
	EAVER PARK RD	-	ENERGY LAB		•
LONGN	MONT,CO 80501		430 NORTH CO FORT COLLINS		
ANAL	YTICAL INFORMATION		FURT CULLING	000000000000000000000000000000000000000	· · · · · · · · · · · · · · · · · · ·
֥	rtification was performed according to EPA Traceability Prot	tocol For Ass	ay & Certification o	f Gaseous Calibi	ration Standards;
Cylinde	re #G1; September, 1997. er Number: ALM027362 Certificatio er Pressure***: 1982 PSIG	n Date:	1/15/99	Exp. Date	: 1/15/2002
	NENT CERTIFIED CONCEN	TRATION	ANALYTI		TRACEABILITY
COMPOI CARBON	N MONOXIDE 43.8	PPM BALANC	<u>ACCUR</u> · +/- 29 E		NIST
-	n service - Service Market				
	ot use when cylinder pressure is below 150 psig. ical accuracy is inclusive of usual known error sources which at lea	st include pred	cision of the measuren	nent processes.	
	NCE STANDARD				
YPE/SRI			ITRATION 49.90 PPM	COMPONENT CO/N2	
NSTRU	MENTATION				
	MENT/MODEL/SERIAL# .		AST CALIBRATED		NALYTICAL PRINCIPLE
IIR Syste	em/8220/AA89400251		12/31/98	30	
-	$(-H_{1}, \overline{H}_{2}) = (-1) \int_{\overline{M}} dA = (-1) \int_{\overline{M} A = (-1) \int_{\overline{M}} dA = (-1) \int_{\overline{M} A = (-1) \int_{\overline{M} A = (-1) \int_{\overline{M} A = (-1) \int_{\overline{M} A = $				
	• • •				
-1." / N.Y					
مقد الله الله					
					· · ·
· · · · · ·			,		
			•	· . · ·	
Special I	Notes:			• • •	
ΔPPR	ROVED BY: DEVER Von Febru	·	5 - 5 C - 5	4-	
- VI I IV	Devon VonFeldt	,	er re		•
· . · · ·	en mana de tal	, i 1 1 1			
		÷,		5 1	

.

			RATA CLA	ASS	
Ŝ	Scott Special	ty Gases	Dual-Analyzed	Calibration Standard	<u>.</u>
DWAF	500 WEAVER PARK RD,LONGMON	T,CO 80501	Phone: 888-253-163	5 Fax: 303-772-7673	
CERT	IFICATE OF ACCURAC	Y: Interference Free		Gas	
<u>Assay L</u>	<u>aboratory</u> P.O. No	o.: P165299	<u>Customer</u> COLORADO STAT	TE UNIVERSITY	•
500 WE	SPECIALTY GASES Project AVER PARK RD ONT,CO 80501	No.: 08-52254-026	ENERGY LAB 430 NORTH COLI	LEGE	
			FORT COLLINS C		
	fication was performed according to e #G1; September, 1997.	EPA Traceability Protocol For As	say & Certification of G	aseous Calibration Standards;	
Cylinder	Number: ALMO25646 Pressure***: 1928 PSIG	Certification Date:	1/15/99	Exp. Date: 1/15/2002	
and a			ANALYTICA	AL .	
1	MONOXIDE	CERTIFIED CONCENTRATION 303 PPM	<u>ACCURAC</u> +/- 1%	<u>Y</u> ** <u>TRACEABILITY</u> NIST	
NITROGE	N	BALANC	E		
•• Analytics Product	use when cylinder pressure is below 150 al accuracy is inclusive of usual known e certified as +/- 1% analytical accuracy is CE STANDARD	rror sources which at least include pre	cision of the measuremen	t processes.	
TYPE/SRM				OMPONENT	
NTRM 1680	4/09/99 A	LM066528	498.8 PPM C	0/N2	
INSTRUME	IENTATION ENT/MODEL/SERIAL# n/8220/AAB9400251	<u>DATE L</u>	AST CALIBRATED 12/31/98	ANALYTICAL PRINCI Scott Enhanced FTIR	<u>'LE</u>
ANALY	ZER READINGS				
en egen	Z = Zero (First Triad Analysis	Gas R=Reference Gas T= Second Triad Analys		relation Coefficient) Calibration Curve	
CARBON	I MONOXIDE				
Date: 01/08 21 0.192 R2 - 499.11 23 0.105 Avg. Conce		Date: $01/15/99$ Response Unit: 1 $Z1 = -0.304$ $R1 = 498.97$ $R2 = 499.05$ $Z2 = -0.218$ $Z3 = -0.226$ $T3 = 302.41$ Avg. Concentration: 302.41	T1 = 302.51 T2 = 302.29 R3 = 498.37	Concentration = A + Bx + Cx2 + Dx3 + Ex4 r = 0.999990 Constants: A = 0.000000 B = 1.000000 C = 0.000000 D = 0.000000 E = 0.000000	•
Special No	otes:	5 L 5	· · · · ·	•••	
	it it	14		0 6 7 0 6	
APPRO	DVED BY: <u>j)evon lon te</u> Devon VonFeldt	lau .	jt. 1 i. i		
Back Deman	(۲. ۲. ۱			

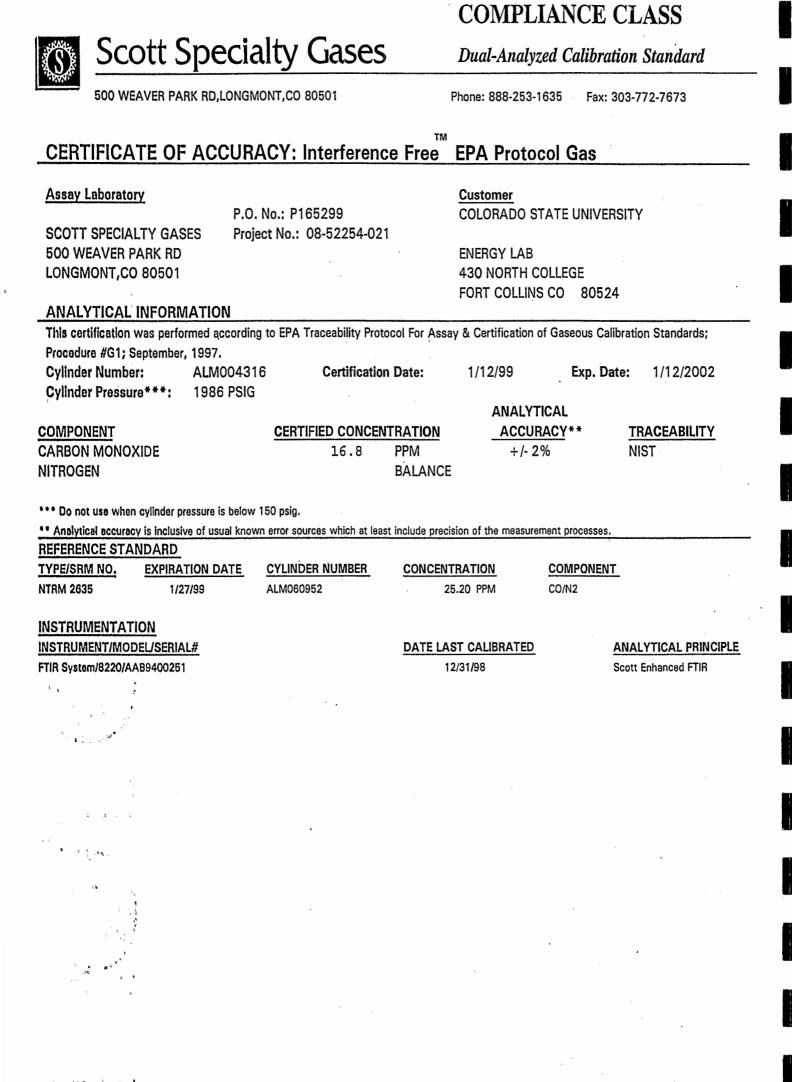
مر. مەندىمەنلىمىر بىي بىل -

1. 1.

COMPLIANCE CLASS

Dual-Analyzed Calibration Standard

Phone: 888-253-1635


Fax: 303-772-7673

CERTIFICA	TE OF ACCUR	ACY: EPA Proto	col Gas		- 			
Assay Laborator	ry			Customer				
	P.O.	No.: VERBAL PER GA		COLORAD	O STATE UNIV	ERSITY		
SCOTT SPECIAL	•	ect No.: 08-54343-00	3					
500 WEAVER P			· •	ENERGY L			· .	
LONGMONT,CC	80501				H COLLEGE LINS CO 805	24		,
ANALYTICAL	INFORMATION					24		
	and the second se	g to EPA Traceability Pro	tocol For Ass	ay & Certificat	ion of Gaseous (alibratio	n Standards;	
Procedure #G1; S		,	4.	-				
Cylinder Numbe		4 Certificatio	on Date:	3/09/99	Exp.	Date:	3/08/2002	
Cylinder Pressu	re***: 1373 PSIG					*	2	
COMPONENT						тр	ACEABILITY	
COMPONENT METHANE		CERTIFIED CONCE 4,530	PPM		<u>CURACY</u> ** /- 2%		ACEADILITY	
PROPANE		456	PPM		/- 2%	NIS		
AIR	· · ·		BALANCI					
	n cylinder pressure is below							3
		wn error sources which at lea	ast include prec	cision of the mea	asurement processe	es.		
REFERENCE STA			CONCEN	TDATION	COMPONE	NT		
TYPE/SRM NO. CH4/AIR 50PP	EXPIRATION DATE 2/18/01	CYLINDER NUMBER ALM014418		TRATION 50.20 PPM	METHANE			
NTRM 1669	10/02/02	ALM006765		497.0 PPM	PROPANE			
INSTRUMENTAT	ION						•	
INSTRUMENT/MOL				AST CALIBRAT	(ED		YTICAL PRINCIP	<u>LE</u>
HPGC/5710A/2010A				03/08/99		FID FID		
HPGC/5890/3115A34	4623		. (03/08/99				
	,							
		•						
	1997 1997 1997 - 1997 1997 - 1997 - 1997 - 1997 1997 - 1977 - 1977						,	
م محمد که او مورکشور به از مورد مود می م					·		·	
an a fair an an an								
				. · ·	•			
· · · ·								
	ана стана стана В							
Special Notes:								
s		$\bigcap \bigcap$						
APPROVED E	×	$\sum \sum (1 - 1)$	C				. · ·	
	VIRGINIA CH	IANDLER	×1					
			•					L.

500 WEAVER PARK RD, LONGMONT, CO 80501

Scott Specialty Gases

Special Notes: APPROVED BY: Devon Von Feldt

Devon VonFeldt

	RATA CLASS
S Scott Specialty Gases	Dual-Analyzed Calibration Standard
500 WEAVER PARK RD,LONGMONT,CO 80501	Phone: 888-253-1635 Fax: 303-772-7673
CERTIFICATE OF ACCURACY: Interference Free	EPA Protocol Gas
Assay Laboratory P.O. No.: P165299	Customer COLORADO STATE UNIVERSITY
SCOTT SPECIALTY GASES Project No.: 08-52254-034	
500 WEAVER PARK RD	ENERGY LAB 430 NORTH COLLEGE
ONGMONT,CO 80501	FORT COLLINS CO 80524
ANALYTICAL INFORMATION	
his certification was performed according to EPA Traceability Protocol For As	ssay & Certification of Gaseous Calibration Standards;
Procedure #G1; September, 1997.	
Cylinder Number: ALM047090 Certification Date:	1/15/99 Exp. Date: 1/15/2002
Cylinder Pressure * * *: 1970 PSIG	
OMPONENT CERTIFIED CONCENTRATION	ANALYTICAL I ACCURACY** TRACEABILITY
ARBON MONOXIDE 109 PPM	+/- 1% NIST
ITROGEN BALAN	
and a second	
* Do not use when cylinder pressure is below 150 psig.	
Analytical accuracy is inclusive of usual known error sources which at least include pr	recision of the measurement processes.
Product certified as + /- 1% analytical accuracy is directly traceable to NIST standards	
EFERENCE STANDARD	
	ENTRATION COMPONENT
IRM 1680 4/09/99 ALM066528	498.8 PPM CO/N2
	-
ISTRUMENT/MODEL/SERIAL# DATE	
	LAST CALIBRATED ANALYTICAL PRINCIPLE 12/31/98 Scott Enhanced FTIR
IR System/8220/AAB9400251	LAST CALIBRATED ANALYTICAL PRINCIPLE 12/31/98 Scott Enhanced FTIR
TIR System/8220/AAB9400251	
TIR System/8220/AAB9400251	12/31/98 Scott Enhanced FTIR = Test Gas r = Correlation Coefficient)
TIR System/8220/AAB9400251 ANALYZER READINGS (Z = Zero Gas R = Reference Gas T = First Triad Analysis Second Triad Analy CARBON MONOXIDE	12/31/98 Scott Enhanced FTIR = Test Gas r = Correlation Coefficient) rsis Calibration Curve
IR System/8220/AAB9400251 ANALYZER READINGS (Z = Zero Gas R = Reference Gas T = First Triad Analysis Second Triad Analy CARBON MONOXIDE Date: 01/08/99 Response Unit: PPM Date: 01/15/99 Response Unit:	12/31/98 Scott Enhanced FTIR = Test Gas r = Correlation Coefficient) rsis Calibration Curve PPM Concentration = A + Bx + Cx2 + Dx3 + Ex4
IR System/8220/AAB9400251 ANALYZER READINGS (Z = Zero Gas R = Reference Gas T = First Triad Analysis Second Triad Analy CARBON MONOXIDE Date: 01/08/99 Response Unit: PPM Z1=-0.192 R1=498.55 T1=109.22 Date: 01/15/99 Response Unit: Z1=-0.304 R1=498.97	12/31/98 Scott Enhanced FTIR = Test Gas r = Correlation Coefficient) rsis Calibration Curve PPM Concentration = A + Bx + Cx2 + Dx3 + Ex4 r = 0.999990 r = 0.999990
IR System/8220/AAB9400251 ANALYZER READINGS (Z = Zero Gas R = Reference Gas T = First Triad Analysis Second Triad Analy CARBON MONOXIDE Date: 01/08/99 Response Unit: PPM C1 = -0.192 R1 = 498.55 T1 = 109.22 R2 = 499.18 .22 = -0.014 T2 = 109.23	12/31/98 Scott Enhanced FTIR = Test Gas r = Correlation Coefficient) rsis Calibration Curve PPM T1 = 109.35 T2 = 109.30 Concentration = A + Bx + Cx2 + Dx3 + Ex4 r=0.999990 Constants: A = 0.000000
IR System/8220/AAB9400251 ANALYZER READINGS (Z = Zero Gas R = Reference Gas T = Second Triad Analysis First Triad Analysis Second Triad Analy CARBON MONOXIDE Date: 01/08/99 Response Unit: PPM Date: 01/08/99 Response Unit: PPM Date: 01/15/99 Response Unit: Z1 = -0.304 R1 = 498.55 T1 = 109.23 R2 = 499.18 Z2 = -0.014 T2 = 109.23 R3 = -0.105 T3 = 109.33 R3 = 498.67 Z3 = -0.226 T3 = 109.16	12/31/98 Scott Enhanced FTIR = Test Gas r = Correlation Coefficient) rsis Calibration Curve PPM T1 = 109.35 T2 = 109.30 Concentration = A + Bx + Cx2 + Dx3 + Ex4 R3 = 498.37 B = 1.000000
IR System/8220/AAB9400251 ANALYZER READINGS (Z = Zero Gas R = Reference Gas T = Second Triad Analysis First Triad Analysis Second Triad Analysis CARBON MONOXIDE Date: 01/08/99 Response Unit: PPM C1=-0.192 R1 = 498.55 T1 = 109.22 R2 = 499.18 Z2 = -0.014 T2 = 109.23 C3 = -0.105 T3 = 109.33 R3 = 498.67	12/31/98 Scott Enhanced FTIR = Test Gas r = Correlation Coefficient) rsis Calibration Curve PPM T1 = 109.35 T2 = 109.30 Concentration = A + Bx + Cx2 + Dx3 + Ex4 R3 = 498.37 B = 1.000000
R System/8220/AAB9400251 ANALYZER READINGS (Z = Zero Gas R = Reference Gas T = Second Triad Analysis First Triad Analysis Second Triad Analy CARBON MONOXIDE Date: 01/08/99 Response Unit: PPM Date: 01/08/99 Response Unit: PPM Date: 01/15/99 Response Unit: Z1 = -0.304 R1 = 498.55 T1 = 109.23 R2 = 499.18 Z2 = -0.014 T2 = 109.23 R3 = -0.105 T3 = 109.33 R3 = 498.67 Z3 = -0.226 T3 = 109.16	12/31/98 Scott Enhanced FTIR = Test Gas r = Correlation Coefficient) rsis Calibration Curve PPM T1 = 109.35 T2 = 109.30 Concentration = A + Bx + Cx2 + Dx3 + Ex4 R3 = 498.37 B = 1.000000
R System/8220/AAB9400251 ANALYZER READINGS (Z = Zero Gas R = Reference Gas T = Second Triad Analysis First Triad Analysis Second Triad Analy CARBON MONOXIDE Date: 01/08/99 Response Unit: PPM 11=-0.192 R1 = 498.55 T1 = 109.22 12=499.18 Z2 = -0.014 T2 = 109.23 I3 = -0.105 T3 = 109.33 R3 = 498.67	12/31/98 Scott Enhanced FTIR = Test Gas r = Correlation Coefficient) rsis Calibration Curve PPM T1 = 109.35 T2 = 109.30 Concentration = A + Bx + Cx2 + Dx3 + Ex4 R3 = 498.37 B = 1.000000
R System/8220/AAB9400251 ANALYZER READINGS (Z = Zero Gas R = Reference Gas T = Second Triad Analysis First Triad Analysis Second Triad Analysis CARBON MONOXIDE Second Triad Analysis Iate: 01/08/99 Response Unit: PPM 1=-0.192 R1 = 498.55 T1 = 109.22 I2 = 499.18 Z2 = -0.014 T2 = 109.23 3 = -0.105 T3 = 109.33 R3 = 498.67	12/31/98 Scott Enhanced FTIR = Test Gas r = Correlation Coefficient) rsis Calibration Curve PPM T1 = 109.35 T2 = 109.30 Concentration = A + Bx + Cx2 + Dx3 + Ex4 R3 = 498.37 B = 1.000000
R System/8220/AAB9400251 ANALYZER READINGS (Z = Zero Gas R = Reference Gas T = Second Triad Analysis First Triad Analysis Second Triad Analy CARBON MONOXIDE Date: 01/08/99 Response Unit: PPM Date: 01/08/99 Response Unit: PPM Date: 01/15/99 Response Unit: Z1 = -0.304 R1 = 498.55 T1 = 109.23 R2 = 499.18 Z2 = -0.014 T2 = 109.23 R3 = -0.105 T3 = 109.33 R3 = 498.67 Z3 = -0.226 T3 = 109.16	12/31/98 Scott Enhanced FTIR = Test Gas r = Correlation Coefficient) rsis Calibration Curve PPM T1 = 109.35 T2 = 109.30 Concentration = A + Bx + Cx2 + Dx3 + Ex4 R3 = 498.37 B = 1.000000
IR System/8220/AAB9400251 ANALYZER READINGS (Z = Zero Gas R = Reference Gas T = Second Triad Analysis First Triad Analysis Second Triad Analysis CARBON MONOXIDE Date: 01/08/99 Response Unit: PPM C1=-0.192 R1 = 498.55 T1 = 109.22 R2 = 499.18 Z2 = -0.014 T2 = 109.23 C3 = -0.105 T3 = 109.33 R3 = 498.67	12/31/98 Scott Enhanced FTIR = Test Gas r = Correlation Coefficient) rsis Calibration Curve PPM T1 = 109.35 T2 = 109.30 Concentration = A + Bx + Cx2 + Dx3 + Ex4 R3 = 498.37 B = 1.000000
IR System/8220/AAB9400251 ANALYZER READINGS (Z = Zero Gas R = Reference Gas T = First Triad Analysis Second Triad Analy CARBON MONOXIDE Date: 01/08/99 Response Unit: PPM Z1=-0.192 R1 = 498.55 T1 = 109.22 R2 = 499.18 Z2 = -0.014 T2 = 109.23 Z3 = -0.105 T3 = 109.33 R3 = 498.67	12/31/98 Scott Enhanced FTIR = Test Gas r = Correlation Coefficient) rsis Calibration Curve PPM T1 = 109.35 T2 = 109.30 Concentration = A + Bx + Cx2 + Dx3 + Ex4 R3 = 498.37 B = 1.000000
IR System/8220/AAB9400251 ANALYZER READINGS (Z = Zero Gas R = Reference Gas T = Second Triad Analysis First Triad Analysis Second Triad Analysis CARBON MONOXIDE Date: 01/08/99 Response Unit: PPM C1 = -0.192 R1 = 498.55 T1 = 109.22 R2 = 499.18 Z2 = -0.014 T2 = 109.23 R3 = -0.105 T3 = 109.33 R3 = 498.67	12/31/98 Scott Enhanced FTIR = Test Gas r = Correlation Coefficient) rsis Calibration Curve PPM T1 = 109.35 T2 = 109.30 Concentration = A + Bx + Cx2 + Dx3 + Ex4 R3 = 498.37 B = 1.000000
R System/8220/AAB9400251 (Z = Zero Gas R = Reference Gas T = Second Triad Analysis First Triad Analysis Second Triad Analy CARBON MONOXIDE Second Triad Analy ate: 01/08/99 Response Unit: PPM 1 = -0.192 R1 = 498.55 T 1 = 109.22 1 = -0.192 R1 = 498.55 T 1 = 109.22 1 = -0.105 T 3 = 109.33 R 3 = 498.67 xyg. Concentration 109.3 PPM	12/31/98 Scott Enhanced FTIR = Test Gas r = Correlation Coefficient) rsis Calibration Curve PPM T1 = 109.35 T2 = 109.30 Concentration = A + Bx + Cx2 + Dx3 + Ex4 R3 = 498.37 B = 1.000000
IR System/8220/AAB9400251 (Z = Zero Gas R = Reference Gas T = Second Triad Analy First Triad Analysis Second Triad Analy CARBON MONOXIDE Date: 01/08/99 Response Unit: PPM C1 = -0.192 R1 = 498.55 T1 = 109.22 R2 = 499.18 Z2 = -0.014 T2 = 109.23 R3 = 0.105 T3 = 109.33 R3 = 498.67 Avg. Concentration: 109.3 PPM	12/31/98 Scott Enhanced FTIR = Test Gas r = Correlation Coefficient) rsis Calibration Curve PPM T1 = 109.35 T2 = 109.30 Concentration = A + Bx + Cx2 + Dx3 + Ex4 R3 = 498.37 B = 1.000000
TIR System/8220/AAB9400251 ANALYZER READINGS (Z = Zero Gas R = Reference Gas T = First Triad Analysis Second Triad Analy First Triad Analysis Second Triad Analy CARBON MONOXIDE Date: 01/08/99 Response Unit: PPM Z1 = -0.192 R1 = 498.55 T1 = 109.22 R2 = 499.18 Z2 = -0.014 T2 = 109.23 Z3 = -0.105 T3 = 109.33 R3 = 498.67	12/31/98 Scott Enhanced FTIR = Test Gas r = Correlation Coefficient) rsis Calibration Curve PPM T1 = 109.35 T2 = 109.30 Concentration = A + Bx + Cx2 + Dx3 + Ex4 R3 = 498.37 B = 1.000000

States and and a state

ļ

ar in die

_____D

.

Devon VonFeldt

Devolt V

Scott Specialty Gases	RATA CLASS
et Mar	Dual-Analyzed Calibration Standard
500 WEAVER PARK RD,LONGMONT,CO 80501	Phone: 888-253-1635 Fax: 303-772-7673
CERTIFICATE OF ACCURACY: Interference Free	EPA Protocol Gas
Assay Laboratory	Customer
P.O. No.: P165299	COLORADO STATE UNIVERSITY
SCOTT SPECIALTY GASES Project No.: 08-52254-025 500 WEAVER PARK RD	ENERGY LAB
LONGMONT,CO 80501	430 NORTH COLLEGE
	FORT COLLINS CO 80524
This certification was performed according to EPA Traceability Protocol For As Procedure #G1; September, 1997.	say & Certification of Gaseous Calibration Standards;
Cylinder Number: ALM039419 Certification Date: Cylinder Pressure***: 1746 PSIG	1/15/99 Exp. Date: 1/15/2002
	ANALYTICAL
COMPONENT CARBON MONOXIDE CERTIFIED CONCENTRATION	ACCURACY** TRACEABILITY +/- 1% NIST
NITROGEN	
• •	
*** Do not use when cylinder pressure is below 150 psig.	
Anslytical accuracy is inclusive of usual known error sources which at least include propriet of the second sec	
REFERENCE STANDARD	
TYPE/SRM NO EXPIRATION DATE CYLINDER NUMBER CONCE	NTRATION COMPONENT
NTRM 1680 4/09/99 ALM066528	498.8 PPM CO/N2
NSTRUMENTATION	
6	AST CALIBRATED ANALYTICAL PRINCIPLE
TIR System/8220/AAB9400251	12/31/98 Scott Enhanced FTIR
	· · ·
	=Test Gas r = Correlation Coefficient)
First Triad Analysis Second Triad Analysis	sis Calibration Curve
CARBON MONOXIDE Date: 01/08/99 Response Unit: PPM Date: 01/15/99 Response Unit: FPM	PPM Concentration = A + Bx + Cx2 + Dx3 + Ex4
21=-0.192 R1=498.55 T1=157.23 Z1=-0.304 R1=498.97	T1=157.48 r=0.999990
R2=499.18 Z2=-0.014 T2=157.29 R2=499.05 Z2=-0.218	T2 = 157.32 Constants: A = 0.000000
191 A 468 894 70 457 07 00 400 67 1 1 70- 0 000 70- 407 40	R3=498.37 B=1.000000 C=0.000000 4 PPM D=0.000000 E=0.000000
23=0.105 51 T3=157.37 R3=498.67 Z3=-0.226 T3=157.43	4 PPM D=0.000000 E=0.000000
23=0.105 32=157.37 R3=498.67 23=0.226 I3=157.43 Avg. Concentration: 157.3 PPM Avg. Concentration: 157.43	
and the second of the second	
and the second of the second	[
	[
and the second of the second	L
and the second of the second	L,
Avg. Concentration: 157.3 PPM Avg. Concentration: 157.	
Avg. Concentration: 157.3 PPM Avg. Concentration: 157.	· · · · · · · · · · · · · · · · · · ·
Avg. Concentration: 157.3 PPM Avg. Concentration: 157.	· · · · · · · · · · · · · · · · · · ·
Avg. Concentration: 157.3 PPM Avg. Concentration: 157. Special Notes: APPROVED BY: Deven Von Feldt	
Avg. Concentration: 157.3 PPM Avg. Concentration: 157. Special Notes: APPROVED BY: Devon Von Feldt Devon Von Feldt	• • • • • • • • • • • • • • • • • • •

ŧ

مندة تنأس منعته

۰.

فكقشارات ومعذاءهوا

utionstand at a the termination of the state of the state

-

Scott Specialty Gases Dual-Analyzed Calibration Standard 500 WEAVER PARK RD,LONGMONT,CO 80501 Phone: 888-253-1635 Fax: 303-772-7673 CERTIFICATE OF ACCURACY: Interference Free EPA Protocol Gas

والمان بالمدمعة ومعدور أمانيه كوالتقريون المعد

. محمد المار المحمد والمرأجة المراجع المحمد المحمد الم

4 1			
Assay Laboratory		Customer	
P	.O. No.: P165299	COLORADO S	TATE UNIVERSITY
SCOTT SPECIALTY GASES P	roject No.: 08-52254-03	1	
500 WEAVER PARK RD		ENERGY LAB	
LONGMONT, CO 80501		430 NORTH C	OLLEGE
		FORT COLLIN	S CO 80524
ANALYTICAL INFORMATION		×	
This certification was performed accord	ding to EPA Traceability Prot	ocol For Assay & Certification	of Gaseous Calibration Standards;
Procedure #G1; September, 1997.			
Cylinder Number: ALM052	548 Certification	n Date: 1/19/99	Exp. Date: 1/19/2002
Cylinder Pressure***: 1998 PS	IG		
		ANALYT	TICAL
COMPONENT	CERTIFIED CONCEN	•	ACY** TRACEABILITY
CARBON DIOXIDE	1.99	% +/- 1	% NIST
NITROGEN		BALANCE	
**• Do not use when cylinder pressure is bel	ow 150 psig.	· · · · · :	•
** Analytical accuracy is inclusive of usual k	-	st include precision of the measure	ment processes.
Product certified as + /- 1% analytical acc			
REFERENCE STANDARD	· · · · · · · · · · · · · · · · · · ·		
TYPE/SRM NO. / EXPIRATION DATE	CYLINDER NUMBER	CONCENTRATION	COMPONENT
NTRM 5000 7/17/01	ALM048931	5.032 %	C02/N2
INSTRUMENTATION			
INSTRUMENT/MODEL/SERIAL#		DATE LAST CALIBRATED	ANALYTICAL PRINCIPLE
CO2/AIA-220/570497012		01/19/99	NDIR
ANALYZER READINGS			
(Z=	Zero Gas R = Reference	Gas T=Test Gas r=	Correlation Coefficient)
First Triad Analysis	Second T	riad Analysis	Calibration Curve
	,	r .	
CARBON DIOXIDE			
Date: 01/19/99 Response Unit: %			Concentration = A + Bx + Cx2 + Dx3 + Ex4
Z1=-0.002 R1=5.0380 T1=1.9920			r = 0.999999
R2=5.0340 Z2=-0.001 T2=1.9910			Constants: A = -0.009B19
Z3=-0.001 T3= 1.9940 R3= 5.0320			B=0.730591 C=0.046295
Avg. Concentration: 1.992 %			D=0.005346 E=0.000000
	l L		L
and the second	1		
and the second			
1			
Special Notes:			
	<i>,</i>		

APPROVED BY: Deven

Devon VonFeldt

	RATA CLASS
Scott Specialty Ga	Ses Dual-Analyzed Calibration Standard
500 WEAVER PARK RD,LONGMONT,CO 80501	Phone: 888-253-1635 Fax: 303-772-7673
CERTIFICATE OF ACCURACY: Interf	erence Free EPA Protocol Gas
Assay Laboratory	Customar
P.O. No.: P165299	<u>Customer</u> COLORADO STATE UNIVERSITY
SCOTT SPECIALTY GASES Project No.: 08-522	
500 WEAVER PARK RD	ENERGY LAB
LONGMONT,CO 80501	430 NORTH COLLEGE
ANALYTICAL INFORMATION	FORT COLLINS CO 80524
	lity Protocol For Assay & Certification of Gaseous Calibration Standards;
Procedure #G1; September, 1997.	
	ification Date: 1/15/99 Exp. Date: 1/15/2002
Cylinder Pressure***: 1966 PSIG	ANALYTICAL
COMPONENT CERTIFIED C	ONCENTRATION ACCURACY** TRACEABILITY
	.16 % +/-1% NIST
NITROGEN	BALANCE
*** Do not use when cylinder pressure is below 150 psig.	
** Analytical accuracy is inclusive of usual known error sources white	ch at least include precision of the measurement processes.
Product certified as + /- 1% analytical accuracy is directly traceab	
REFERENCE STANDARD	
TYPE/SRM NO. EXPIRATION DATE CYLINDER NUM NTRM 5000 7/17/01 ALM048931	BER CONCENTRATION COMPONENT 5.032 % CO2/N2
	5.052 / CO2/N2
INSTRUMENTATION	
INSTRUMENT/MODEL/SERIAL#	DATE LAST CALIBRATED ANALYTICAL PRINCIPLE
C02/AIA-220/570497012	01/15/99 NDIR
ANALYZER READINGS	
(Z=Zero Gas R=Ref	erence Gas T=Test Gas r=Correlation Coefficient)
	econd Triad Analysis Calibration Curve
CARBON DIOXIDE	
Date: 01/15/99 Response Unit: %	Concentration = A + Bx + Cx2 + Dx3 + Ex4
Z1 0.0020 R1=5.0490 T1=5.1700	r = 0.999996
R2=5,0660 T2=5,1550	Constants: A = -0.011101
Z3=0.0170 3 (3 T3=5.1640 R3=5.0590	B ≈ 1.253540 C ≈ 0.004333
Avg. Concentration: 5,163 %	D=0.037926 E=0.000000
and the second	
in a company of the second s	۰ ۲
	· · ·
Snahl Noter	
Special Notes:	
- ILT AH	
APPROVED BY: Devon Vontelato	
C Devon VonFeldt	

Ì

- 11 m

. .

and the state of the

. .

1

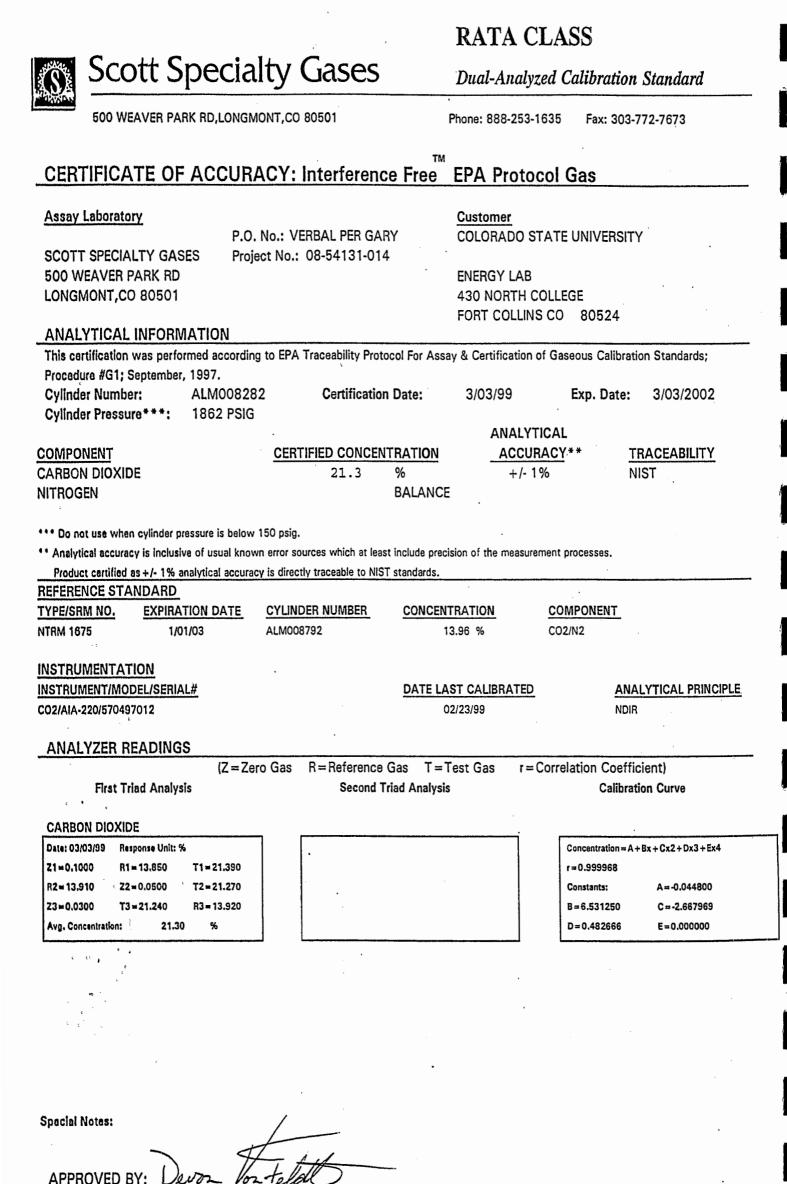
è

12 1

Devoil

	,		RATA (JLASS		
(S)	Scott Specia	alty Gases	Dual-Analy	vzed Calibrati	on Standard	
.D. .	500 WEAVER PARK RD,LONG	10NT,CO 80501	Phone: 888-253	-1635 Fax: 3	03-772-7673	
CERT	IFICATE OF ACCUR	ACY: Interference	e Free EPA Proto	ocol Gas		
	•		•			
Assay La	aboratory P O	No.: P165299		STATE UNIVER	SITV	
SCOTT		ect No.: 08-52254-033	COLORADO	STATE UNIVER		
	AVER PARK RD		ENERGY LAB	}		
LONGM	ONT,CO 80501		430 NORTH	COLLEGE		
		· .	FORT COLLIN	NS CO 80524		
	TICAL INFORMATION					
	fication was performed accordin	g to EPA Traceability Protoc	col For Assay & Certification	n of Gaseous Calib	pration Standards;	
	#G1; September, 1997. Number: AAL14777	Certification	Date: 1/15/99	Exp. Dat	te: 1/15/2002	
•	Pressure***: 1971 PSIG	Seruitation	-400 1/10/00		J. 1/15/2002	
. P.			ANALY	TICAL		
OMPON	ENT	CERTIFIED CONCENT	RATION ACCU	RACY**	TRACEABILITY	
ARBON	DIOXIDE	9.04	% +/-	1%	NIST	
ITROGE			BALANCE		¥	
Line -	· · · · · · · · · · · · · · · · · · ·	150 ania				
	use when cylinder pressure is below al accuracy is inclusive of usual know		include precision of the measu			
· ·	certified as +/- 1% analytical accurat			remant processes.		
	CE STANDARD					
YPE/SRM	NO. / EXPIRATION DATE	CYLINDER NUMBER	CONCENTRATION	COMPONENT	<u>.</u>	
TRM 5000	7/17/01	ALM048931	5.032 %	CO2/N2	\$	
					•	
	ENTATION ENT/MODEL/SERIAL#		DATE LAST CALIBRATE		ANALYTICAL PRINC	-101 5
	0/570497012		01/15/99		NDIR	
ANALY	ZER READINGS					
and and a second se	(Z=Ze			Correlation Co		
	First Triad Analysis	Second Tri	ad Analysis	Cali	bration Curve	
CARBON	DIOXIDE					
Date: 01/15] [.		Concentration	I = A + Bx + Cx2 + Dx3 + Ex4	4
Z1=0.0020				r=0.999996		
R2 = 5.0660	Z2=0.0000 T2=9.0190			Constants:	A=-0.011101	
Z3=0.0170	T3 = 9.0430 R3 = 5.0590			B=1.253540	C=0.004333	
Avg. Concer	ntration: 9.036 %			D=0.037926	6 E=0.000000	
and the second			,			,
	a ta ang ang ang ang ang ang ang ang ang an					
<i>7</i> .,						
					•	
			х ,	r .		
					•	· .
		• •	· ·			
an descal						
pecial No	ites:					
	- 4					
APPRO	VED BY: Devon Von	Feldt		1.1		
	Devon VonFel	dt				
1.1.1.1	State	2				

2. Salat Charles and St. Cats


.

والمصادر المستحر والمشرور ألماء مسالا فتشعف فأعوالك

. ~~

. al an manifestadian di Baddatan di sabahatan bandatan bandatan bandan di sabah di satah di sabah di Bada, m

. Sugar Sugar

Devon VonFeldt

Scott Specialty Gases Dual-Analyzed Calibration Standard Phone: 888-253-1635

Fax: 303-772-7673

RATA CLASS

500 WEAVER PARK RD,LONGMONT,CO 80501

OF ACCURACY:	

Assay Laboratory	P.O. No.: VERB	al per gar	, Y	Colorado) STATE	E UNIVERSITY	/
SCOTT SPECIALTY GASES	Project No.: 08	-54131-012					
500 WEAVER PARK RD				ENERGY LA	B		
LONGMONT, CO 80501				430 NORTH	H COLLE	EGE	•
				FORT COLL	INS CO	80524	
ANALYTICAL INFORMATIO	N						
This certification was performed a	cording to EPA Tra	ceability Proto	col For Assa	y & Certificati	on of Ga	seous Calibration	on Standards;
Procedure #G1; September, 1997.							
•		Certification	Date:	3/02/99		Exp. Date:	3/01/2002
•) PSIG						
				ANAL		L.	
COMPONENT	CERTIFI		TRATION		URACY		RACEABILITY
OXYGEN		4.38	%		/- 1%		IST
NITROGEN			BALANCE	-			
						5	
•							
*** Do not use when cylinder pressure	s below 150 osia						
*** Do not use when cylinder pressure		es which at least	t include preci	sion of the mea	surement	24229000	
** Analytical accuracy is inclusive of us	ual known error source			sion of the mea	surement	processes.	•
** Analytical accuracy is inclusive of us Product certified as + /- 1% analytica	ual known error source			sion of the mea	surement	processes.	
Analytical accuracy is inclusive of us Product certified as + /- 1% analytica REFERENCE STANDARD	ual known error source I accuracy is directly tr	raceable to NIST	standards.			· · · · · · · · · · · · · · · · · · ·	
Analytical accuracy is inclusive of us Product certified as + /- 1% analytica REFERENCE STANDARD TYPE/SRM NO. EXPIRATION D	ATE CYLINDER	NUMBER	standards.	TRATION	<u>c0</u>	MPONENT	
Analytical accuracy is inclusive of us Product certified as + /- 1% analytica REFERENCE STANDARD	ual known error source I accuracy is directly tr	NUMBER	standards.		<u>c0</u>	· · · · · · · · · · · · · · · · · · ·	
Analytical accuracy is inclusive of us Product certified as +/- 1% analytica REFERENCE STANDARD TYPE/SRM NO. EXPIRATION D NTRM 2658 1/02/01	ATE CYLINDER	NUMBER	standards.	TRATION	<u>c0</u>	MPONENT	
Analytical accuracy is inclusive of us Product certified as +/- 1% analytica REFERENCE STANDARD TYPE/SRM NO. EXPIRATION D NTRM 2658 1/02/01 INSTRUMENTATION	ATE CYLINDER	NUMBER	standards. CONCEN 9.	<u>TRATION</u> .680 %	<u>co</u> ox	YGEN	
Analytical accuracy is inclusive of us Product certified as +/- 1% analytical REFERENCE STANDARD TYPE/SRM NO. EXPIRATION D NTRM 2658 1/02/01 INSTRUMENTATION INSTRUMENT/MODEL/SERIAL#	ual known error source I accuracy is directly tr ATE <u>CYLINDER</u> ALM031952	NUMBER	Standards. CONCENT 9. DATE LA	TRATION .680 % ST CALIBRAT	<u>co</u> ox	MPONENT YGEN <u>ANA</u>	LYTICAL PRINCIPLE
Analytical accuracy is inclusive of us Product certified as +/- 1% analytical REFERENCE STANDARD TYPE/SRM NO. EXPIRATION D NTRM 2658 1/02/01 INSTRUMENTATION	ual known error source I accuracy is directly tr ATE <u>CYLINDER</u> ALM031952	NUMBER	Standards. CONCENT 9. DATE LA	<u>TRATION</u> .680 %	<u>co</u> ox	MPONENT YGEN <u>ANA</u>	LYTICAL PRINCIPLE MAGNETIC
Analytical accuracy is inclusive of us Product certified as +/- 1% analytical REFERENCE STANDARD TYPE/SRM NO. EXPIRATION D NTRM 2658 1/02/01 INSTRUMENTATION INSTRUMENT/MODEL/SERIAL# PARAMAG 02/SERVOMEX/244/701/144	ual known error source I accuracy is directly tr ATE <u>CYLINDER</u> ALM031952	NUMBER	Standards. CONCENT 9. DATE LA	TRATION .680 % ST CALIBRAT	<u>co</u> ox	MPONENT YGEN <u>ANA</u>	
Analytical accuracy is inclusive of us Product certified as +/- 1% analytical REFERENCE STANDARD TYPE/SRM NO. EXPIRATION D NTRM 2658 1/02/01 INSTRUMENTATION INSTRUMENT/MODEL/SERIAL# PARAMAG 02/SERVOMEX/244/701/14 ANALYZER READINGS	ual known error source <u>I accuracy is directly tr</u> ATE <u>CYLINDER</u> ALM031952 46	NUMBER 2	Standards. CONCEN 9. DATE LA 0	<u>TRATION</u> .680 % <u>ST CALIBRAT</u> 2/20/99	<u>C0</u> 0X ED	YGEN YGEN <u>ANA</u> PARA	MAGNETIC
Analytical accuracy is inclusive of us Product certified as +/- 1% analytical REFERENCE STANDARD TYPE/SRM NO. EXPIRATION D NTRM 2658 1/02/01 INSTRUMENTATION INSTRUMENT/MODEL/SERIAL# PARAMAG 02/SERVOMEX/244/701/14 ANALYZER READINGS	ual known error source <u>I accuracy is directly tr</u> ATE <u>CYLINDER</u> ALM031952 46	NUMBER 2 = Reference (Standards. <u>CONCEN</u> 9 <u>DATE LA</u> 0 Gas T=T	TRATION .680 % ST CALIBRAT 2/20/99 Test Gas	<u>C0</u> 0X ED	YGEN ANA PARA Para	MAGNETIC
Analytical accuracy is inclusive of us Product certified as +/- 1% analytical REFERENCE STANDARD TYPE/SRM NO. EXPIRATION D NTRM 2658 1/02/01 INSTRUMENTATION INSTRUMENT/MODEL/SERIAL# PARAMAG 02/SERVOMEX/244/701/14 ANALYZER READINGS	ual known error source <u>I accuracy is directly tr</u> ATE <u>CYLINDER</u> ALM031952 46	NUMBER 2 = Reference (Standards. CONCEN 9. DATE LA 0	TRATION .680 % ST CALIBRAT 2/20/99 Test Gas	<u>C0</u> 0X ED	YGEN ANA PARA Para	MAGNETIC
Analytical accuracy is inclusive of us Product certified as +/- 1% analytical REFERENCE STANDARD TYPE/SRM NO. EXPIRATION D NTRM 2658 1/02/01 INSTRUMENTATION INSTRUMENT/MODEL/SERIAL# PARAMAG 02/SERVOMEX/244/701/14 ANALYZER READINGS First Triad Analysis	ual known error source <u>I accuracy is directly tr</u> ATE <u>CYLINDER</u> ALM031952 46	NUMBER 2 = Reference (Standards. <u>CONCEN</u> 9 <u>DATE LA</u> 0 Gas T=T	TRATION .680 % ST CALIBRAT 2/20/99 Test Gas	<u>C0</u> 0X ED	YGEN ANA PARA Para	MAGNETIC
Analytical accuracy is inclusive of us Product certified as +/- 1% analytical REFERENCE STANDARD TYPE/SRM NO. EXPIRATION D NTRM 2658 1/02/01 INSTRUMENTATION INSTRUMENT/MODEL/SERIAL# PARAMAG 02/SERVOMEX/244/701/14 ANALYZER READINGS	ual known error source <u>I accuracy is directly tr</u> ATE <u>CYLINDER</u> ALM031952 46	NUMBER 2 = Reference (Standards. <u>CONCEN</u> 9 <u>DATE LA</u> 0 Gas T=T	TRATION .680 % ST CALIBRAT 2/20/99 Test Gas	<u>C0</u> 0X ED	YGEN YGEN ANA PARA elation Coeffic Calibrati	MAGNETIC
Analytical accuracy is inclusive of us Product certified as + /- 1% analytical REFERENCE STANDARD TYPE/SRM NO. EXPIRATION D NTRM 2658 1/02/01 INSTRUMENTATION INSTRUMENT/MODEL/SERIAL# PARAMAG 02/SERVOMEX/244/701/14 ANALYZER READINGS First Triad Analysis OXYGEN Date: 03/02/99 Response Unit: PCT	ual known error source I accuracy is directly tr ATE <u>CYLINDER</u> ALM031952 46 (Z=Zero Gas R	NUMBER 2 = Reference (Standards. <u>CONCEN</u> 9 <u>DATE LA</u> 0 Gas T=T	TRATION .680 % ST CALIBRAT 2/20/99 Test Gas	<u>C0</u> 0X ED	YGEN YGEN ANA PARA elation Coeffic Calibrati	MAGNETIC sient) ion Curve
Analytical accuracy is inclusive of us Product certified as + /- 1% analytical REFERENCE STANDARD TYPE/SRM NO. EXPIRATION D NTRM 2658 1/02/01 INSTRUMENTATION INSTRUMENT/MODEL/SERIAL# PARAMAG 02/SERVOMEX/244/701/14 ANALYZER READINGS First Triad Analysis OXYGEN Date: 03/02/99 Response Unit: PCT Z1=0.0010 R1=4.3800 T1=9	ATE <u>CYLINDER</u> ATE <u>CYLINDER</u> ALM031952 46 (Z = Zero Gas R	NUMBER 2 = Reference (Standards. <u>CONCEN</u> 9 <u>DATE LA</u> 0 Gas T=T	TRATION .680 % ST CALIBRAT 2/20/99 Test Gas	<u>C0</u> 0X ED	MPONENT YGEN ANA PARA elation Coeffic Calibrat	MAGNETIC Sient) ion Curve Bx+Cx2+Dx3+Ex4
** Analytical accuracy is inclusive of us Product certified as + /- 1% analytical REFERENCE STANDARD TYPE/SRM NO. EXPIRATION D NTRM 2658 1/02/01 INSTRUMENTATION INSTRUMENT/MODEL/SERIAL# PARAMAG 02/SERVOMEX/244/701/14 ANALYZER READINGS First Triad Analysis OXYGEN Date: 03/02/99 Response Unit: PCT Z1=0.0010 R1=4.3800 T1=9 R2=9.6700 Z2=0.0010 T2=4	ual known error source I accuracy is directly tr ATE <u>CYLINDER</u> ALM031952 46 (Z=Zero Gas R	NUMBER 2 = Reference (Standards. <u>CONCEN</u> 9 <u>DATE LA</u> 0 Gas T=T	TRATION .680 % ST CALIBRAT 2/20/99 Test Gas	<u>C0</u> 0X ED	MPONENT YGEN <u>ANA</u> PARA elation Coeffic Calibrati	MAGNETIC sient) ion Curve

Special Notes:

APPROVED BY: DIANA BEEHLER

CERTIFICATE OF ACCURACY:	EPA Protocol Ga	as		
		Mate		
Assay Laboratory	105000	Customer		
P.O. No.: PI		COLORADO STA	ATE UNIVERSITY	•
SCOTT SPECIALTY GASES Project No.: 500 WEAVER PARK RD	08-52254-029	ENERGY LAB	'	
LONGMONT,CO 80501		430 NORTH CO	LLEGE	
		FORT COLLINS		
ANALYTICAL INFORMATION				ı
This certification was performed according to EPA	Traceability Protocol For	Assay & Certification of	Gaseous Calibration Standards;	
Procedure #G1; September, 1997.	- -			
Cylinder Number: ALM036531	Certification Date:	1/19/99	Exp. Date: 1/18/2002	
Cylinder Pressure***: 1995 PSIG			NA1	,
COMPONENT CERT		ANALYTIC		
OXYGEN	12.0 %	+/- 1%		
NITROGEN	BALA			
α • ε _λ εε			1	
*** Do not use when cylinder pressure is below 150 psig.			i i	
** Analytical accuracy is inclusive of usual known error so	•		ent processes.	
Product certified as +/- 1% analytical accuracy is direct	ly traceable to NIST standard	ls.	·····	
REFERENCE STANDARD TYPE/SRM NO. / EXPIRATION DATE CYLINE	DER NUMBER CONC	CENTRATION	COMPONENT	
TYPE/SRM NO. EXPIRATION DATE CYLINE NTRM 2059 1/02/01 ALM031			OXYGEN	
INSTRUMENTATION				
INSTRUMENT/MODEL/SERIAL#	DATE	LAST CALIBRATED	ANALYTICAL PRINCI	IPLE
PARAMAG 02/SERVOMEX/244/701/1446	DATE	LAST CALIBRATED 01/12/99	ANALYTICAL PRINCI PARAMAGNETIC	IPLE
PARAMAG O2/SERVOMEX/244/701/1446	DATE			IPLE
PARAMAG 02/SERVOMEX/244/701/1446		Q1/12/99	PARAMAGNETIC	IPLE
PARAMAG 02/SERVOMEX/244/701/1446 ANALYZER READINGS (Z = Zero Gas	R=Reference Gas T	01/12/99 = Test Gas r = Co	PARAMAGNETIC	IPLE
PARAMAG 02/SERVOMEX/244/701/1446		01/12/99 = Test Gas r = Co	PARAMAGNETIC	IPLE
PARAMAG 02/SERVOMEX/244/701/1446 ANALYZER READINGS (Z = Zero Gas	R=Reference Gas T	01/12/99 = Test Gas r = Co	PARAMAGNETIC	IPLE
PARAMAG 02/SERVOMEX/244/701/1446 ANALYZER READINGS {Z = Zero Gas First Triad Analysis	R=Reference Gas T	01/12/99 = Test Gas r = Co	PARAMAGNETIC	
PARAMAG 02/SERVOMEX/244/701/1446 ANALYZER READINGS {Z = Zero Gas First Triad Analysis OXYGEN Date: 01/19/99 Response Unit: PCT Z1=0.0005 R1=20.720 T1=12.030	R=Reference Gas T	01/12/99 = Test Gas r = Co	PARAMAGNETIC rrelation Coefficient) Calibration Curve	
PARAMAG 02/SERVOMEX/244/701/1446 <u>ANALYZER READINGS</u> {Z = Zero Gas First Triad Analysis OXYGEN Date: 01/19/99 Response Unit: PCT Z1=0.0005 R1=20.720 T1=12.030 R2=20.720 Z2=0.0007 T2=12.010	R=Reference Gas T	01/12/99 = Test Gas r = Co	PARAMAGNETIC rrelation Coefficient) Calibration Curve Concentration = A + Bx + Cx2 + Dx3 + Ex4 r = 0.999999 Constants: A = -0.005293	
PARAMAG 02/SERVOMEX/244/701/1446 <u>ANALYZER READINGS</u> {Z = Zero Gas First Triad Analysis OXYGEN Date: 01/19/99 Response Unit: PCT 21 = 0.0005 R1 = 20.720 T1 = 12.030 R2 = 20.720 Z2 = 0.0007 T2 = 12.010 Z3 = 0.0008 T3 = 20.720 R3 = 12.000	R=Reference Gas T	01/12/99 = Test Gas r = Co	PARAMAGNETIC rrelation Coefficient) Calibration Curve Concentration = A + Bx + Cx2 + Dx3 + Ex4 r = 0.999999 Constants: A = -0.005293 B = 24.996153 C = 0.00000	
PARAMAG 02/SERVOMEX/244/701/1446 <u>ANALYZER READINGS</u> {Z = Zero Gas First Triad Analysis OXYGEN Date: 01/19/99 Response Unit: PCT Z1=0.0005 R1=20.720 T1=12.030 R2=20.720 Z2=0.0007 T2=12.010	R=Reference Gas T	01/12/99 = Test Gas r = Co	PARAMAGNETIC rrelation Coefficient) Calibration Curve Concentration = A + Bx + Cx2 + Dx3 + Ex4 r = 0.999999 Constants: A = -0.005293	
PARAMAG 02/SERVOMEX/244/701/1446 <u>ANALYZER READINGS</u> {Z = Zero Gas First Triad Analysis OXYGEN Date: 01/19/99 Response Unit: PCT 21 = 0.0005 R1 = 20.720 T1 = 12.030 R2 = 20.720 Z2 = 0.0007 T2 = 12.010 Z3 = 0.0008 T3 = 20.720 R3 = 12.000	R=Reference Gas T	01/12/99 = Test Gas r = Co	PARAMAGNETIC rrelation Coefficient) Calibration Curve Concentration = A + Bx + Cx2 + Dx3 + Ex4 r = 0.999999 Constants: A = -0.005293 B = 24.996153 C = 0.00000	
PARAMAG 02/SERVOMEX/244/701/1446 <u>ANALYZER READINGS</u> {Z = Zero Gas First Triad Analysis OXYGEN Date: 01/19/99 Response Unit: PCT 21 = 0.0005 R1 = 20.720 T1 = 12.030 R2 = 20.720 Z2 = 0.0007 T2 = 12.010 Z3 = 0.0008 T3 = 20.720 R3 = 12.000	R=Reference Gas T	01/12/99 = Test Gas r = Co	PARAMAGNETIC rrelation Coefficient) Calibration Curve Concentration = A + Bx + Cx2 + Dx3 + Ex4 r = 0.999999 Constants: A = -0.005293 B = 24.996153 C = 0.00000	
PARAMAG 02/SERVOMEX/244/701/1446 <u>ANALYZER READINGS</u> {Z = Zero Gas First Triad Analysis OXYGEN Date: 01/19/99 Response Unit: PCT 21 = 0.0005 R1 = 20.720 T1 = 12.030 R2 = 20.720 Z2 = 0.0007 T2 = 12.010 Z3 = 0.0008 T3 = 20.720 R3 = 12.000	R=Reference Gas T	01/12/99 = Test Gas r = Co	PARAMAGNETIC rrelation Coefficient) Calibration Curve Concentration = A + Bx + Cx2 + Dx3 + Ex4 r = 0.999999 Constants: A = -0.005293 B = 24.996153 C = 0.00000	
PARAMAG 02/SERVOMEX/244/701/1446 <u>ANALYZER READINGS</u> {Z = Zero Gas First Triad Analysis OXYGEN Date: 01/19/99 Response Unit: PCT 21 = 0.0005 R1 = 20.720 T1 = 12.030 R2 = 20.720 Z2 = 0.0007 T2 = 12.010 Z3 = 0.0008 T3 = 20.720 R3 = 12.000	R=Reference Gas T	01/12/99 = Test Gas r = Co	PARAMAGNETIC rrelation Coefficient) Calibration Curve Concentration = A + Bx + Cx2 + Dx3 + Ex4 r = 0.999999 Constants: A = -0.005293 B = 24.996153 C = 0.00000	
PARAMAG 02/SERVOMEX/244/701/1446 <u>ANALYZER READINGS</u> {Z = Zero Gas First Triad Analysis OXYGEN Date: 01/19/99 Response Unit: PCT 21 = 0.0005 R1 = 20.720 T1 = 12.030 R2 = 20.720 Z2 = 0.0007 T2 = 12.010 Z3 = 0.0008 T3 = 20.720 R3 = 12.000	R=Reference Gas T	01/12/99 = Test Gas r = Co	PARAMAGNETIC rrelation Coefficient) Calibration Curve Concentration = A + Bx + Cx2 + Dx3 + Ex4 r = 0.999999 Constants: A = -0.005293 B = 24.996153 C = 0.00000	
PARAMAG 02/SERVOMEX/244/701/1446 <u>ANALYZER READINGS</u> {Z = Zero Gas First Triad Analysis OXYGEN Date: 01/19/99 Response Unit: PCT 21 = 0.0005 R1 = 20.720 T1 = 12.030 R2 = 20.720 Z2 = 0.0007 T2 = 12.010 Z3 = 0.0008 T3 = 20.720 R3 = 12.000	R=Reference Gas T Second Triad Anal	01/12/99 '=Test Gas r=Co ysis	PARAMAGNETIC rrelation Coefficient) Calibration Curve Concentration = A + Bx + Cx2 + Dx3 + Ex4 r = 0.999999 Constants: A = -0.005293 B = 24.996153 C = 0.00000	
PARAMAG 02/SERVOMEX/244/701/1446 <u>ANALYZER READINGS</u> {Z = Zero Gas First Triad Analysis OXYGEN Date: 01/19/99 Response Unit: PCT 21 = 0.0005 R1 = 20.720 T1 = 12.030 R2 = 20.720 Z2 = 0.0007 T2 = 12.010 Z3 = 0.0008 T3 = 20.720 R3 = 12.000	R=Reference Gas T Second Triad Anal	01/12/99 '=Test Gas r=Co ysis	PARAMAGNETIC rrelation Coefficient) Calibration Curve Concentration = A + Bx + Cx2 + Dx3 + Ex4 r = 0.999999 Constants: A = -0.005293 B = 24.996153 C = 0.00000	
PARAMAG 02/SERVOMEX/244/701/1446 <u>ANALYZER READINGS</u> {Z = Zero Gas First Triad Analysis OXYGEN Date: 01/19/99 Response Unit: PCT 21 = 0.0005 R1 = 20.720 T1 = 12.030 R2 = 20.720 Z2 = 0.0007 T2 = 12.010 Z3 = 0.0008 T3 = 20.720 R3 = 12.000 Avg. Concentrationt 12.02 %	R=Reference Gas T Second Triad Anal	01/12/99 '=Test Gas r=Co ysis	PARAMAGNETIC rrelation Coefficient) Calibration Curve Concentration = A + Bx + Cx2 + Dx3 + Ex4 r = 0.999999 Constants: A = -0.005293 B = 24.996153 C = 0.00000	
PARAMAG 02/SERVOMEX/244/701/1446 <u>ANALYZER READINGS</u> [Z = Zero Gas First Triad Analysis OXYGEN Date: 01/19/99 Response Unit: PCT 21 = 0.0005 R1 = 20.720 T1 = 12.030 R2 = 20.720 Z2 = 0.0007 T2 = 12.010 Z3 = 0.0008 T3 = 20.720 R3 = 12.000 Avg. Concentration: 12.02 %	R=Reference Gas T Second Triad Anal	01/12/99 '=Test Gas r=Co ysis	PARAMAGNETIC rrelation Coefficient) Calibration Curve Concentration = A + Bx + Cx2 + Dx3 + Ex4 r = 0.999999 Constants: A = -0.005293 B = 24.996153 C = 0.00000	
PARAMAG 02/SERVOMEX/244/701/1446 <u>ANALYZER READINGS</u> {Z = Zero Gas First Triad Analysis OXYGEN Date: 01/19/99 Response Unit: PCT 21 = 0.0005 R1 = 20.720 T1 = 12.030 R2 = 20.720 Z2 = 0.0007 T2 = 12.010 Z3 = 0.0008 T3 = 20.720 R3 = 12.000 Avg. Concentrationt 12.02 %	R=Reference Gas T Second Triad Anal	01/12/99 '=Test Gas r=Co ysis	PARAMAGNETIC rrelation Coefficient) Calibration Curve Concentration = A + Bx + Cx2 + Dx3 + Ex4 r = 0.999999 Constants: A = -0.005293 B = 24.996153 C = 0.00000	

Scott Specialty Gases

• . • • •

500 WEAVER PARK RD,LONGMONT,CO 80501

Dual-Analyzed Calibration Standard

Fax: 303-772-7673

RATA CLASS

R

Phone: 888-253-1635

•	RATA CLASS
S Scott Specialty Gases	Dual-Analyzed Calibration Standard
500 WEAVER PARK RD,LONGMONT,CO 80501	Phone: 888-253-1635 Fax: 303-772-7673
CERTIFICATE OF ACCURACY: EPA Protocol Ga	as
Assay Laboratory	Customer
P.O. No.: P165299	COLORADO STATE UNIVERSITY
SCOTT SPECIALTY GASES Project No.: 08-52254-030	
500 WEAVER PARK RD	ENERGY LAB
LONGMONT,CO 80501	430 NORTH COLLEGE FORT COLLINS CO 80524
This certification was performed according to EPA Traceability Protocol For	Assay & Certification of Gaseous Calibration Standards;
Procedure #G1; September, 1997.	1/10/00 Euro Datas 1/18/2002
Cylinder Number: AAL2794 Certification Date: Cylinder Pressure***: 1995 PSIG	1/19/99 Exp. Date: 1/18/2002
	ANALYTICAL
COMPONENT CERTIFIED CONCENTRATIO	
DXYGEN 21.1 %	+/- 1% NIST
NITROGEN BALA	
*** Do not use when cylinder pressure is below 150 psig.	
** Analytical accuracy is inclusive of usual known error sources which at least include	
Product certified as +/- 1% analytical accuracy is directly traceable to NIST standar	ds.
REFERENCE STANDARD	·
REFERENCE STANDARD	ds. <u>CENTRATION</u> <u>COMPONENT</u> 20.72 % OXYGEN
REFERENCE STANDARD TYPE/SRM NO. / EXPIRATION DATE CYLINDER NUMBER CON	CENTRATION COMPONENT
REFERENCE STANDARD TYPE/SRM NO. EXPIRATION DATE CYLINDER NUMBER CON NTRM 2659 1/02/01 ALM031719 INSTRUMENTATION	CENTRATION COMPONENT 20.72 % OXYGEN
REFERENCE STANDARD TYPE/SRM NO. EXPIRATION DATE CYLINDER NUMBER CON NTRM 2659 1/02/01 ALM031719 INSTRUMENTATION INSTRUMENT/MODEL/SERIAL# DAT	CENTRATION COMPONENT 20.72 % OXYGEN E LAST CALIBRATED ANALYTICAL PRINCIPLE
REFERENCE STANDARD TYPE/SRM NO. EXPIRATION DATE CYLINDER NUMBER CON NTRM 2659 1/02/01 ALM031719 INSTRUMENTATION	CENTRATION COMPONENT 20.72 % OXYGEN
REFERENCE STANDARD TYPE/SRM NO. EXPIRATION DATE CYLINDER NUMBER CON NTRM 2659 1/02/01 ALM031719 ALM031719 INSTRUMENTATION INSTRUMENT/MODEL/SERIAL# DAT PARAMAG 02/SERVOMEX/244/701/1446 ANALYZER READINGS	CENTRATION COMPONENT 20.72 % OXYGEN E LAST CALIBRATED ANALYTICAL PRINCIPLE 01/12/99 PARAMAGNETIC
REFERENCE STANDARD TYPE/SRM NO. EXPIRATION DATE CYLINDER NUMBER CON NTRM 2659 1/02/01 ALM031719 ALM031719 INSTRUMENTATION DAT INSTRUMENT/MODEL/SERIAL# DAT PARAMAG 02/SERVOMEX/244/701/1446 Z = Zero Gas R = Reference Gas	CENTRATION COMPONENT 20.72 % OXYGEN E LAST CALIBRATED ANALYTICAL PRINCIPLE 01/12/99 PARAMAGNETIC T = Test Gas r = Correlation Coefficient)
REFERENCE STANDARD TYPE/SRM NO. EXPIRATION DATE CYLINDER NUMBER CON NTRM 2659 1/02/01 ALM031719 ALM031719 INSTRUMENTATION INSTRUMENT/MODEL/SERIAL# DAT PARAMAG 02/SERVOMEX/244/701/1446 ANALYZER READINGS	CENTRATION COMPONENT 20.72 % OXYGEN E LAST CALIBRATED ANALYTICAL PRINCIPLE 01/12/99 PARAMAGNETIC T = Test Gas r = Correlation Coefficient)
REFERENCE STANDARD TYPE/SRM NO. EXPIRATION DATE CYLINDER NUMBER CON NTRM 2659 1/02/01 ALM031719 ALM031719 INSTRUMENTATION DAT INSTRUMENT/MODEL/SERIAL# DAT PARAMAG 02/SERVOMEX/244/701/1446 Z = Zero Gas R = Reference Gas	CENTRATION COMPONENT 20.72 % OXYGEN E LAST CALIBRATED ANALYTICAL PRINCIPLE 01/12/99 PARAMAGNETIC T = Test Gas r = Correlation Coefficient)
REFERENCE STANDARD TYPE/SRM NO. EXPIRATION DATE CYLINDER NUMBER CON NTRM 2659 1/02/01 ALM031719 ALM031719 INSTRUMENTATION DAT INSTRUMENT/MODEL/SERIAL# DAT PARAMAG 02/SERVOMEX/244/701/1446 Z = Zero Gas R = Reference Gas First Triad Analysis Second Triad Analysis	CENTRATION COMPONENT 20.72 % OXYGEN E LAST CALIBRATED ANALYTICAL PRINCIPLE 01/12/99 PARAMAGNETIC T = Test Gas r = Correlation Coefficient)
REFERENCE STANDARD TYPE/SRM NO. EXPIRATION DATE CYLINDER NUMBER CON NTRM 2659 1/02/01 ALM031719 ALM031719 INSTRUMENTATION DAT INSTRUMENT/MODEL/SERIAL# DAT PARAMAG 02/SERVOMEX/244/701/1446 DAT KALYZER READINGS (Z = Zero Gas R = Reference Gas First Triad Analysis Second Triad Analysis Second Triad Analysis OXYGEN Date: 01/19/99 Response Unit: PCT Z1 = 0.0005 R1 = 20.720 T1 = 21.110	CENTRATION COMPONENT 20.72 % OXYGEN E LAST CALIBRATED ANALYTICAL PRINCIPLE 01/12/99 PARAMAGNETIC T = Test Gas r = Correlation Coefficient) alysis Calibration Curve Concentration=A+Bx+Cx2+Dx3+Ex4 r=0.999999
REFERENCE STANDARD TYPE/SRM NO. EXPIRATION DATE CYLINDER NUMBER CON NTRM 2659 1/02/01 ALM031719 ALM031719 INSTRUMENTATION DAT INSTRUMENT/MODEL/SERIAL# DAT PARAMAG 02/SERVOMEX/244/701/1446 DAT ANALYZER READINGS (Z = Zero Gas R = Reference Gas First Triad Analysis Second Triad Analysis OXYGEN Date: 01/19/99 Response Unit: PCT Z1 = 0.0005 R1 = 20.720 T1 = 21.110 R2 = 20.720 Z2 = 0.0007 T2 = 21.110 Date: 01/19/99 Response Unit: PCT	CENTRATION COMPONENT 20.72 % OXYGEN E LAST CALIBRATED ANALYTICAL PRINCIPLE 01/12/99 PARAMAGNETIC T = Test Gas r = Correlation Coefficient) alysis Calibration Curve Concentration = A + Bx + Cx2 + Dx3 + Ex4 r = 0.999999 Constants: A = -0.005293 A = -0.005293
REFERENCE STANDARD TYPE/SRM NO. EXPIRATION DATE CYLINDER NUMBER CON NTRM 2659 1/02/01 ALM031719 ALM031719 INSTRUMENTATION DAT INSTRUMENT/MODEL/SERIAL# DAT PARAMAG 02/SERVOMEX/244/701/1446 DAT KALYZER READINGS (Z = Zero Gas R = Reference Gas First Triad Analysis Second Triad Analysis Second Triad Analysis OXYGEN Date: 01/19/99 Response Unit: PCT Z1 = 0.0005 R1 = 20.720 T1 = 21.110	CENTRATION COMPONENT 20.72 % OXYGEN E LAST CALIBRATED ANALYTICAL PRINCIPLE 01/12/99 PARAMAGNETIC T = Test Gas r = Correlation Coefficient) alysis Calibration Curve Concentration=A+Bx+Cx2+Dx3+Ex4 r=0.999999
REFERENCE STANDARD TYPE/SRM NO. EXPIRATION DATE CYLINDER NUMBER CON NTRM 2659 1/02/01 ALM031719 ALM031719 INSTRUMENTATION DAT INSTRUMENT/MODEL/SERIAL# DAT PARAMAG 02/SERVOMEX/244/701/1446 DAT KANALYZER READINGS (Z = Zero Gas R = Reference Gas First Triad Analysis Second Triad Analysis OXYGEN Date: 01/19/99 Response Unit: PCT Z1 = 0.0005 R1 = 20.720 T1 = 21.110 R2 = 20.720 Z2 = 0.0007 T2 = 21.110 R3 = 20.720 T3 = 21.100 R3 = 20.720	CENTRATION 20.72 %COMPONENT OXYGENE LAST CALIBRATED 01/12/99ANALYTICAL PRINCIPLE PARAMAGNETICT = Test Gas alysis $r = Correlation Coefficient)$ calibration CurveConcentration = A + Bx + Cx2 + Dx3 + Ex4 $r = 0.999999$ Constants:A = -0.005293 B = 24.996153
REFERENCE STANDARD TYPE/SRM NO. EXPIRATION DATE CYLINDER NUMBER CON NTRM 2659 1/02/01 ALM031719 ALM031719 INSTRUMENTATION DAT INSTRUMENT/MODEL/SERIAL# DAT PARAMAG 02/SERVOMEX/244/701/1446 DAT KANALYZER READINGS (Z = Zero Gas R = Reference Gas First Triad Analysis Second Triad Analysis OXYGEN Date: 01/19/99 Response Unit: PCT Z1 = 0.0005 R1 = 20.720 T1 = 21.110 R2 = 20.720 Z2 = 0.0007 T2 = 21.110 R3 = 20.720 T3 = 21.100 R3 = 20.720	CENTRATION 20.72 %COMPONENT OXYGENE LAST CALIBRATED 01/12/99ANALYTICAL PRINCIPLE PARAMAGNETICT = Test Gas alysis $r = Correlation Coefficient)$ calibration CurveConcentration = A + Bx + Cx2 + Dx3 + Ex4 $r = 0.999999$ Constants:A = -0.005293 B = 24.996153
REFERENCE STANDARD TYPE/SRM NO. EXPIRATION DATE CYLINDER NUMBER CON NTRM 2659 1/02/01 ALM031719 ALM031719 INSTRUMENTATION DAT INSTRUMENT/MODEL/SERIAL# DAT PARAMAG 02/SERVOMEX/244/701/1446 DAT KANALYZER READINGS (Z = Zero Gas R = Reference Gas First Triad Analysis Second Triad Analysis OXYGEN Date: 01/19/99 Response Unit: PCT Z1 = 0.0005 R1 = 20.720 T1 = 21.110 R2 = 20.720 Z2 = 0.0007 T2 = 21.110 R3 = 20.720 T3 = 21.100 R3 = 20.720	CENTRATION 20.72 %COMPONENT OXYGENE LAST CALIBRATED 01/12/99ANALYTICAL PRINCIPLE PARAMAGNETICT = Test Gas alysis $r = Correlation Coefficient)$ calibration CurveConcentration = A + Bx + Cx2 + Dx3 + Ex4 $r = 0.999999$ Constants:A = -0.005293 B = 24.996153
REFERENCE STANDARD TYPE/SRM NO. EXPIRATION DATE CYLINDER NUMBER CON NTRM 2659 1/02/01 ALM031719 ALM031719 INSTRUMENTATION DAT INSTRUMENT/MODEL/SERIAL# DAT PARAMAG 02/SERVOMEX/244/701/1446 DAT KANALYZER READINGS (Z = Zero Gas R = Reference Gas First Triad Analysis Second Triad Analysis OXYGEN Date: 01/19/99 Response Unit: PCT Z1 = 0.0005 R1 = 20.720 T1 = 21.110 R2 = 20.720 Z2 = 0.0007 T2 = 21.110 R3 = 20.720 T3 = 21.100 R3 = 20.720	CENTRATION 20.72 %COMPONENT OXYGENE LAST CALIBRATED 01/12/99ANALYTICAL PRINCIPLE PARAMAGNETICT = Test Gas alysis $r = Correlation Coefficient)$ calibration CurveConcentration = A + Bx + Cx2 + Dx3 + Ex4 $r = 0.999999$ Constants:A = -0.005293 B = 24.996153
REFERENCE STANDARD TYPE/SRM NO. EXPIRATION DATE CYLINDER NUMBER CON NTRM 2659 1/02/01 ALM031719 ALM031719 INSTRUMENTATION DAT INSTRUMENT/MODEL/SERIAL# DAT PARAMAG 02/SERVOMEX/244/701/1446 DAT KANALYZER READINGS (Z = Zero Gas R = Reference Gas First Triad Analysis Second Triad Analysis OXYGEN Date: 01/19/99 Response Unit: PCT Z1 = 0.0005 R1 = 20.720 T1 = 21.110 R2 = 20.720 Z2 = 0.0007 T2 = 21.110 R3 = 20.720 T3 = 21.100 R3 = 20.720	CENTRATION 20.72 %COMPONENT OXYGENE LAST CALIBRATED 01/12/99ANALYTICAL PRINCIPLE PARAMAGNETICT = Test Gas alysis $r = Correlation Coefficient)$ calibration CurveConcentration = A + Bx + Cx2 + Dx3 + Ex4 $r = 0.999999$ Constants:A = -0.005293 B = 24.996153
REFERENCE STANDARD TYPE/SRM NO. EXPIRATION DATE CYLINDER NUMBER CON NTRM 2659 1/02/01 ALM031719 ALM031719 INSTRUMENTATION DAT INSTRUMENT/MODEL/SERIAL# DAT PARAMAG 02/SERVOMEX/244/701/1446 DAT KANALYZER READINGS (Z = Zero Gas R = Reference Gas First Triad Analysis Second Triad Analysis OXYGEN Date: 01/19/99 Response Unit: PCT Z1 = 0.0005 R1 = 20.720 T1 = 21.110 R2 = 20.720 Z2 = 0.0007 T2 = 21.110 R3 = 20.720 T3 = 21.100 R3 = 20.720	CENTRATION 20.72 %COMPONENT OXYGENE LAST CALIBRATED 01/12/99ANALYTICAL PRINCIPLE PARAMAGNETICT = Test Gas alysis $r = Correlation Coefficient)$ calibration CurveConcentration = A + Bx + Cx2 + Dx3 + Ex4 $r = 0.999999$ Constants:A = -0.005293 B = 24.996153
REFERENCE STANDARD TYPE/SRM NO. EXPIRATION DATE CYLINDER NUMBER CON NTRM 2659 1/02/01 ALM031719 ALM031719 INSTRUMENTATION DAT INSTRUMENT/MODEL/SERIAL# DAT PARAMAG 02/SERVOMEX/244/701/1446 DAT KANALYZER READINGS (Z = Zero Gas R = Reference Gas First Triad Analysis Second Triad Analysis OXYGEN Date: 01/19/99 Response Unit: PCT Z1 = 0.0005 R1 = 20.720 T1 = 21.110 R2 = 20.720 Z2 = 0.0007 T2 = 21.110 R3 = 20.720 T3 = 21.100 R3 = 20.720	CENTRATION 20.72 %COMPONENT OXYGENE LAST CALIBRATED 01/12/99ANALYTICAL PRINCIPLE PARAMAGNETICT = Test Gas alysis $r = Correlation Coefficient)$ calibration CurveConcentration = A + Bx + Cx2 + Dx3 + Ex4 $r = 0.999999$ Constants:A = -0.005293 B = 24.996153
REFERENCE STANDARD TYPE/SRM NO. EXPIRATION DATE CYLINDER NUMBER CON NTRM 2659 1/02/01 ALM031719 INSTRUMENTATION INSTRUMENT/MODEL/SERIAL# DAT PARAMAG 02/SERVOMEX/244/701/1446 DAT ANALYZER READINGS (Z = Zero Gas R = Reference Gas First Triad Analysis Second Triad Analysis Second Triad Analysis OXYGEN (Z = 20.0007 T2 = 21.110 R3 = 20.720 Arg. Concentration: Arg. Concentration: 21.11 %	CENTRATION 20.72 %COMPONENT OXYGENE LAST CALIBRATED 01/12/99ANALYTICAL PRINCIPLE PARAMAGNETICT = Test Gas alysis $r = Correlation Coefficient)$ calibration CurveConcentration = A + Bx + Cx2 + Dx3 + Ex4 $r = 0.999999$ Constants:A = -0.005293 B = 24.996153
REFERENCE STANDARD TYPE/SRM NO. EXPIRATION DATE CYLINDER NUMBER CON NTRM 2659 1/02/01 ALM031719 INSTRUMENTATION INSTRUMENT/MODEL/SERIAL# DAT PARAMAG 02/SERVOMEX/244/701/1446 DAT ANALYZER READINGS (Z = Zero Gas R = Reference Gas First Triad Analysis Second Triad Analysis Second Triad Analysis OXYGEN (Z = 20.0007 T2 = 21.110 R3 = 20.720 Arg. Concentration: Arg. Concentration: 21.11 %	CENTRATION 20.72 %COMPONENT OXYGENE LAST CALIBRATED 01/12/99ANALYTICAL PRINCIPLE PARAMAGNETICT = Test Gas alysis $r = Correlation Coefficient)$ calibration CurveConcentration = A + Bx + Cx2 + Dx3 + Ex4 $r = 0.999999$ Constants:A = -0.005293 B = 24.996153
REFERENCE STANDARD EXPIRATION DATE CYLINDER NUMBER CON NTRM 2659 1/02/01 ALM031719 CON INSTRUMENTATION INSTRUMENT/MODEL/SERIAL# DAT PARAMAG 02/SERVOMEX/244/701/1446 DAT CON (Z = Zero Gas R = Reference Gas First Triad Analysis Second Triad Analysis Second Triad Analysis Special Notes: 21.11 %	CENTRATION 20.72 %COMPONENT OXYGENE LAST CALIBRATED 01/12/99ANALYTICAL PRINCIPLE PARAMAGNETICT = Test Gas alysis $r = Correlation Coefficient)$ calibration CurveConcentration = A + Bx + Cx2 + Dx3 + Ex4 $r = 0.999999$ Constants:A = -0.005293 B = 24.996153
REFERENCE STANDARD TYPE/SRM NO. EXPIRATION DATE CYLINDER NUMBER CON NTRM 2659 1/02/01 ALM031719 INSTRUMENTATION INSTRUMENT/MODEL/SERIAL# DAT PARAMAG 02/SERVOMEX/244/701/1446 DAT ANALYZER READINGS (Z = Zero Gas R = Reference Gas First Triad Analysis Second Triad Analysis Second Triad Analysis OXYGEN (Z = 20.0007 T2 = 21.110 R3 = 20.720 Arg. Concentration: Arg. Concentration: 21.11 %	CENTRATION 20.72 %COMPONENT OXYGENE LAST CALIBRATED 01/12/99ANALYTICAL PRINCIPLE PARAMAGNETICT = Test Gas alysis $r = Correlation Coefficient)$ calibration CurveConcentration = A + Bx + Cx2 + Dx3 + Ex4 $r = 0.999999$ Constants:A = -0.005293 B = 24.996153

Scott Specialty Gases

CHECK CLASS

Noncertified Calibration Standard

500 WEAVER PARK RD, LONGMONT, CO 80501

Phone: 888-253-1635 Fax: 303-772-7673

CERTIFICATE OF CONFORMANCE: Check Class Calibration Standard

Product Information Project No.: 08-52623-001 Item No.: 08023333 YA P.O. No.: DPO763155 Folio #: Cylinder Number: 1A8708 Cylinder Size: A Certification Date: 1/12/1999

Customer

COLORADO STATE UNIVERSITY ENERGY LAB 430 NORTH COLLEGE FORT COLLINS, CO 80524

CERTIFIED CONCENTRATION

Component Name

OXYGEN NITROGEN Concentration (Moles) 40. % BALANCE

Accuracy (+/-%)

APPROVED BY:

DATE: 1/12/99

				-	
Scott	Specialty C	lases			
From:	500 WEAVER PAR LONGMONT Phone: 888-253	[,] CO 8		Fax: 303-772-7	573
	CERTIFI	CATE O	F ANA	LYSIS	
COLORADO SI	TATE UNIVERSITY	7		PROJECT #: 08	
ENERGY LAB 430 NORTH (FORT COLLIN		CO 80524		PO#: VERBAL PI ITEM #: 08015 DATE: 2/16/9	43 AL
	#: ALM044013 SSURE: 2000 PS	SIG			· · · · · · · · · · · · · · · · · · ·
PURE MATERI	IAL: HYDROGEN			CAS# 1333-74-0	4 .
GRADE:	ZERO GAS	3			
PURITY: 99	.99%				s. •
	IMPURITY THC	MAXIMUM CONCENTRA 0.5 PPM	TIONS	ACTUAL CONCENTRAT < 0.5 PPM	IONS
			•	· · ·	
	1 *	•			
	•				
CGA 350	2000 P	STG	•		

ANALYST: Wayne Johnson

Ship ped From:	500 WEAVER PAH LONGMONT Phone: 888-253	CO 80501	Fax: 303-772-7673
	CERTIF	ICATE OF AN	ALYSIS
COLORADO S ENERGY LAN 430 NORTH FORT COLLI	COLLEGE	Y CO 80524	PROJECT #: 08-54125-002 PO#: VERBAL PER GARY ITEM #: 0801543 AL DATE: 2/16/99
	R #: ALM007853 ESSURE: 2000 PS	3IG	
PURE MATER	RIAL: HYDROGEN		CAS# 1333-74-0
GRADE :	ZERO GAS	5	
PURITY: 99	9.99%	•	•
	IMPURITY THC	MAXIMUM CONCENTRATIONS 0.5 PPM	ACTUAL CONCENTRATIONS < 0.5 PPM
ţ			
		•	
			• t.
CGA 350	2000 P	, 810	

ANALYST: Wayne Johnson

	C		- 	
S Scott Specialt	y Gases	1		
Shipped 500 WEAVER From: LONGMONT Phone: 888	CO 805		03-772-7673	
CERTI	FICATE OF	ANALYS	IS	
COLORADO STATE UNIVER	SITY	PO#:	 CT #: 08-5262 DP0763155 #: 08022333	
430 NORTH COLLEGE FORT COLLINS	CO 80524		1/12/99	JA
CYLINDER #: 1C1367 FILL PRESSURE: 225				
BLEND TYPE : CERTIF				
COMPONENT HYDROGEN		STED GAS C MOLES %	ANALYSIS (MOLES) 40.0 %	
HELIUM		BALANCE	BALA	ANCE
		بو		5
				,
			· · ·	
х - с.				
				·
· · · · ·				

CGA 350 2255 PSIG

SHOCKITES STEVE

ANALYST:

23.24	t Specialty C	Gases				-
From:	500 WEAVER PAR LONGMONT Phone: 888-253	C	0 8050:		303-772-	7673
	CERTIF	ICATE	OF	ANALY	SIS	
COLORADO S	STATE UNIVERSIT	Y		PO# :	JECT #: 0 : DPO7631 4 #: 0802	
430 NORTH FORT COLLI	COLLEGE	CO 8052	4		5: 1/12/	
	R #: A2171 ESSURE: 2248 P			CAL ACCURAC EXPIRATION		
BLEND TY	YPE : CERTIFIED	WORKING S		TED GAS	ANAL	SIS
COMPONENT HYDROGEN				MOLES %	<u>(MC</u> 39.9	DLES) %
HELIUM			· · · .	BALANCE		BALANCE
		۰ ۲	,			•
						, ,
		ſ			t	
		•				
					ĩ	••
					·	ſ
	,					
CGA 350	2248	PSIG				

ANALYST:

STEVE SHOCKITES

rom:	LONGMON	/ER PARK F F 388-253-16	CO	80501	Fax: 3	03-772-7673	
	CER	FIFIC	ATE C	FAI	IALYS	IS	
OLORADO SI NERGY LAB 30 NORTH C ORT COLLIN	COLLEGE	VERSITY) 80524	- 	PO #: ITEM	CT #: 08-58 404179 #: 0801809 6/10/99	340-002 A
CYLINDER FILL PRES		675 2200 PSIG		· · ·		· 	
URE MATERI	IAL: NIT	ROGEN			CAS# 7	727-37-9	
RADE:	U	LTRA-HI P	URITY			<u>.</u>	
PURITY: 99	.9995%						
	IMPURI THC O2 CO CO2 H2O	<u>TY</u>	MAXIMUM CONCENTRA 0.5 PPM 0.5 PPM 1 PPM 1 PPM 2 PPM	ATIONS	<u>C(</u> < < <	ACTUAL DNCENTRATION 0.5 PPM 0.5 PPM 1 PPM 1 PPM 2 PPM	<u>NS</u>
		А					
				• •			
•		•			•		

CGA 580

2200 PSIG

ANALYST: Wayne Johnson

Scott Special	ty Gases		
Shrpped 500 WEAVE From: LONGMONT Phone: 88	R PARK RD CO 8 8-253-1635	0501 Fax: 303-772-7	673
CERT	IFICATE O	F ANALYSIS	
COLORADO STATE UNIVE	RSITY	PROJECT #: 08	-58340-003
ENERGY LAB 430 NORTH COLLEGE FORT COLLINS	CO 80524	PO#: 404179 ITEM #: 08018 DATE: 6/10/9	
CYLINDER #: 1A0170 FILL PRESSURE: 22			
PURE MATERIAL: NITRO	GEN	CAS# 7727-37-9	•
GRADE: HIG	H PURITY	·	•
PURITY: 99.99%			
	• • • • • • • • • • • • • • • • • • •		· .
	, ,	,	

CGA 580 2200 PSIG

Wayne JOHNSON

ANALYST:

S Scot	t Specialty G	ases	
Shipped From:	500 WEAVER PARI LONGMONT Phone: 888-253	CO 80501	Fax: 303-772-7673
	CERTIFI	CATE OF A	NALYSIS
COLORADO S	STATE UNIVERSITY		PROJECT #: 08-58340-001
ENERGY LAN 430 NORTH FORT COLL	COLLEGE	CO 80524	PO#: 404179 ITEM #: 0801022 A DATE: 6/10/99
	R #: 1A9448 ESSURE: 2200 PSI	IG	
PURE MATE	RIAL: AIR		CAS# 132259-10-0
GRADE:	HYDROCARE	BONFREE	
	IMPURITY O2 CONTENT CO CO2 H2O THC (CH4)	MAXIMUM <u>CONCENTRATIONS</u> =20 TO 21% <0.5PPM <1PPM <5PPM <0.1PPM	ACTUAL CONCENTRATIONS = 20 TO 21% < 0.5 PPM < 1 PPM < 5 PPM < 0.1 PPM
		· · · · · · · · · · · · · · · · · · ·	

CGA 590 2200 PSIG

ANALYST:

Wayne Johnson

S Scot	t Specialty (Gases		
Shipped From:	500 WEAVER PA LONGMONT Phone: 888-25	CO 80501	Fax: 303-772-7673	
	CERTIF	ICATE OF A	NALYSIS	
COLORADO S ENERGY LAP 430 NORTH FORT COLLI	COLLEGE	ΥΥ CO 80524	PROJECT #: 08-5834 PO#: 404179 ITEM #: 0801022 DATE: 6/10/99	
	R #: A3837 ESSURE: 2200 P	SIG	•	
PURE MATER	AIAL: AIR		CAS# 132259-10-0	
GRADE:	HYDROCA	RBONFREE	•	
	IMPURITY 02 CONTENT CO CO2 H2O THC (CH4)	MAXIMUM <u>CONCENTRATIONS</u> =20 TO 21% <0.5PPM <1PPM <5PPM <0.1PPM	ACTUAL <u>CONCENTRATIONS</u> = 20 TO 21% < 0.5 PPM < 1 PPM < 5 PPM < 0.1 PPM	
CGA 590	2200 PS	IG		

ANALYST: WAYNE JOHNSON

Scot	t Specialty G	ases		
Shipped From:	500 WEAVER PAR LONGMONT Phone: 888-253	CO 80501 ·	Fax: 303-772-7673	
	CERTIFI	CATE OF A	NALYSIS	•
COLORADO S ENERGY LAE 430 NORTH FORT COLLI	COLLEGE	CO 80524	PROJECT #: 08-5834 PO#: 404179 ITEM #: 0801022 DATE: 6/10/99	
	R #: A5839 ESSURE: 2200 PS	IG		·
	•			с. н. с. с. С. с.
PURE MATE	RIAL: AIR		CAS# 132259-10-0	
GRADE:	HYDROCAR	RBONFREE	· ·	
	IMPURITY O2 CONTENT CO CO2 H2O THC (CH4)	MAXIMUM <u>CONCENTRATIONS</u> =20 TO 21% <0.5PPM <1PPM <5PPM <0.1PPM	ACTUAL <u>CONCENTRATIONS</u> = 20 TO 21% < 0.5 PPM < 1 PPM < 5 PPM < 0.1 PPM	
,				· · .
			•	

CGA 590 2200 PSIG

ANALYST: WAYNE POOPINSOP Musow

	:			
Scot	tt Specialty C	lases		
33M1				
	500 WEAVER PAR LONGMONT	K RD CO 80501		
1, T Am (Phone: 888-253		Fax: 303-772-7673	
	~ ~ ~ ~ ~ ~ ~ ~ ~			
*****	СЕКТТЕТ	CATE OF A	NALYSIS	
COLORADO S	STATE UNIVERSITY	•	PROJECT #: 08-5834	0-001
	_		PO#: 404179	
ENERGY LAP 430 NORTH			ITEM #: 0801022 DATE: 6/10/99	A
FORT COLLI		CO 80524		
CYLINDE	R #: 1A021928			
	ESSURE: 2200 PS	IG		
			•	
PURE MATER	RIAL: AIR		CAS# 132259-10-0	
GRADE:	HYDROCAR	ייראובים ביבי		
GKADE :	UIDKOCAK	Boing Kee		
		MAXIMUM	ACTUAL	
	IMPURITY	CONCENTRATIONS	CONCENTRATIONS	
	OZ CONTENT	=20 TO 21%	= 20 TO 21%	
	CO CO2	<0.5PPM <1PPM	< 0.5 PPM < 1 PPM	ч.
	H2O .	<5PPM	<pre>< 1 PPM </pre> < 5 PPM	
	THC (CH4)	<0.1PPM	< 0.1 PPM	
		·		
			•	
		1	,	
	:			
		,		
		2		
	•			
CGA 590	2200 PSI	G		
		5		

,

.

.

ANALYST: Wayne JOHNSON

S So	cott Specialt	y Gases	S					
Shipped From:	d 500 WEAVER LONGMONT Phone: 888		CO	8050)1	Fax: 30	3-772-7673	
	CERTI	FICA	ТЕ	ΟF	ANZ	ALYS	IS	1
ENERGY	RTH COLLEGE		80524		- 	PO#: 7 ITEM #	T #: 08-57 98673 : 08015350 5/25/99	
	NDER #: ALM0256 PRESSURE: 200	58 0 PSIG		:				·
PURE M	ATERIAL: HELIUM					CAS# 74	40-59-7	
GRADE:	NGG1							
	: 99.999%	•				•	• • •	• • •
	•							
t.							,	

2000 PSIG

Wayne Johnson

ANALYST: WAYNE JOHNSON

S Scot	Specialty Gases
Shipped From:	500 WEAVER PARK RD LONGMONT CO 80501 Phone: 888-253-1635 Fax: 303-772-7673
	CERTIFICATE OF ANALYSIS
COLORADO S	ATE UNIVERSITY PROJECT #: 08-57603-001
ENERGY LAE 430 NORTH FORT COLLI	
	#: ALM061145 SURE: 2000 PSIG
PURE MATER	AL: HELIUM CAS# 7440-59-7
GRADE:	NGG1
PURITY: 99	999%
CGA 580	2000 PSIG

Wayne Johnson

ANALYST:

WAYNE JOHNSON

S Scot	t Specialt	y Gases	5			
Shipped From:	500 WEAVER LONGMONT Phone: 888		CO 805	501	Fax: 303-772-	7673
	CERTI	FICA	TE OF	AN	ALYSIS	· · · · · ·
COLORADO S ENERGY LAB 430 NORTH FORT COLLI	COLLEGE	SITY CO	80524		PROJECT #: 0 PO#: 798673 ITEM #: 0801 DATE: 5/25/	53501 AL
	#: 1L1183 SSURE: 200	0 PSIG				
PURE MATER	IAL: HELIUM				CAS# 7440-59-	7
GRADE:	NGG1	•				
PURITY: 99	.999%					
· · · ·	· · ·	•			· · ·	
	•		· · ·			×
•						1997) 1997 1997

2000 PSIG

ANALYST: Wayne Johnson

Ŝ	Sco			ΓJ.				vzed Calibrat	
\$ } ;{}	500 WEA	VER PARK	RD,LONGM	ONT,CO	80501	*******	Pho	ne: 888-253-163	35 Fax: 303-772-7673
CERT	<u> TIFICA</u>	TE OF /	ACCUR/	ACY:	Interfere	nce Free	EPA Proto	ocol Gas	
	Laboratory	-	P.O.		VERBAL		Customer COLORADO S	STATE UNIVER	SITY
500 W	r special Veaver Pa Mont,co	RK RD	3 Proje	ct No.:	08-58340-0	04	ENERGY LAB 430 NORTH		
	YTICAL II						FORT COLLIN	NS CO 80524	
		•	-	to EPA	Traceability Pr	otocol For Ass	ay & Certification	of Gaseous Calil	pration Standards;
Cylinde	ure #G1; Se er Number: er Pressure	: /	997. Almo2332 1932 PSIG	4	Certificat	ion Date:	3/16/99	Exp. Dat	e: 3/15/2001
							ANALY	TICAL	
OMPO	<u>NENT</u>			CERTI	FIED CONCE	NTRATION (N	<u>Aloles)</u>	CCURACY**	TRACEABILITY
TRIC C	OXIDE				105	PPM		+/-1%	Direct NIST and NMi
	EN - OXYO	gen free			435	BALANC	E	<i>∓ [</i> ~ 1 70	
ITROGI					435.		E	÷7- 170	Reference Value Only
TROGI OTAL (Do no Analytic <u>Produc</u> EFEREN (PE/SRI	EN - OXYO OXIDES Of ot use when o ical accuracy ot certified as NCE STAN	F NITROG cylinder pres is based on s +/- 1% and	EN sure is below the requireme alytical accurad DN DATE	nts of EP/ cy is direc	435. A Protocal proce tly traceable to DER NUMBER	BALANC PPM dure G1, Septen <u>NIST or NMI stat</u>	nber 1997.	<u>COMPONENT</u> NO/N2	
ITROGI OTAL (Do no Analytic Produc EFEREN YPE/SRI TRM 168 NSTRUM	EN - OXYO OXIDES Of ot use when o ical accuracy ot certified as NCE STAN	F NITROG cylinder pres is based on is +/- 1% and IDARD EXPIRATIO 7/11/0 DN EL/SERIAL#	EN sure is below the requireme alytical accurad <u>DN DATE</u> D1	nts of EPA by is direc <u>CYLINE</u>	435. A Protocal proce tly traceable to DER NUMBER	BALANC PPM dure G1, Septer <u>NIST or NMI sta</u> <u>CONCEN</u>	nber 1997. ndards. ITRATION	COMPONENT NO/N2	
ITROGI OTAL (Do no Analytic <u>Produc</u> <u>EFEREN</u> <u>YPE/SRI</u> <u>TRM 168</u> <u>ISTRUI</u> <u>ISTRUM</u> <u>ISTRUM</u>	EN - OXYC OXIDES O ot use when o ical accuracy ot certified as <u>NCE STAN</u> <u>MNO.</u> B6 <u>MENTATIC</u> <u>JENT/MODE</u>	F NITROG cylinder pres is based on <u>s +/- 1% and</u> <u>IDARD</u> <u>EXPIRATION 7/11/0 DN EL/SERIAL#</u> B9400251	EN sure is below the requireme alytical accurad DN DATE D1	nts of EP, cy is direc CYLINE ALM051	435. A Protocal proce tily traceable to DER NUMBER 1851	BALANC PPM dure G1, Septer <u>NIST or NMI sta</u> <u>CONCEN</u>	nber 1997. Idards. ITRATION 504.0 PPM AST CALIBRATED 02/19/99	COMPONENT NO/N2	Reference Value Only
ITROGI OTAL (Do no Analytic Produc EFEREN YPE/SRI ISTRUI ISTRUI ISTRUM	EN - OXYO OXIDES Of ot use when o ical accuracy ot certified as NCE STAN MNO. B8 <u>MENTATIO</u> <u>MENT/MODE</u> em/8220/AAS	F NITROG cylinder pres is based on <u>s +/- 1% and</u> <u>IDARD</u> <u>EXPIRATION 7/11/0 DN EL/SERIAL#</u> B9400251	EN sure is below the requireme alytical accurad <u>DN DATE</u> D1	nts of EP, cy is direc CYLINE ALM051	435. A Protocal proce atly traceable to DER NUMBER 1851 R = Reference	BALANC PPM dure G1, Septer <u>NIST or NMI sta</u> <u>CONCEN</u>	nber 1997. Indards. ITRATION 504.0 PPM AST CALIBRATED 02/19/99 Test Gas r=	COMPONENT NO/N2	Reference Value Only
TROGI DTAL (Do no Analytic Produc FEREN (PE/SRI RM 168 STRUM IR Syste ANAL	EN - OXYO OXIDES ON ot use when o ical accuracy ot cortified as <u>NCE STAN</u> <u>MENTATIO</u> <u>MENTATIO</u> <u>MENT/MODE</u> em/8220/AAN <u>YZER RE/</u> First Tria	F NITROG cylinder pres is based on <u>s + /- 1% and</u> <u>IDARD</u> <u>EXPIRATIO</u> 7/11/0 <u>DN</u> EL/SERIAL# B9400251 ADINGS	EN sure is below the requireme alytical accurad DN DATE D1	nts of EP, cy is direc CYLINE ALM051	435. A Protocal proce atly traceable to DER NUMBER 1851 R = Reference	BALANC PPM dure G1, Septer <u>NIST or NMI stat</u> <u>CONCEN</u> <u>DATE L/</u> ce Gas T =	nber 1997. Indards. ITRATION 504.0 PPM AST CALIBRATED 02/19/99 Test Gas r=	COMPONENT NO/N2	Reference Value Only MALYTICAL PRINCIPLE acott Enhanced FTIR
TROGI OTAL (DOTAL (DOTAL (Analytic Produc EFEREN (PE/SRI ISTRUN ISTRUM ISTRUM ISTRUM ISTRUM NITRIC	EN - OXYO OXIDES OF ot use when of ical accuracy ot certified as <u>NCE STAN</u> <u>MENTATIO</u> <u>MENTATIO</u> <u>MENTATIO</u> <u>MENTATIO</u> <u>MENTATIO</u> <u>MENTATIO</u> <u>MENTATIO</u> <u>MENTATIO</u> <u>MENTATIO</u> <u>MENTATIO</u> <u>MENTATIO</u> <u>MENTATIO</u> <u>MENTATIO</u> <u>MENTATIO</u> <u>MENTATIO</u> <u>MENTATIO</u> <u>MENTATIO</u> <u>MENTATIO</u> <u>MENTATIO</u> <u>MENTATIO</u> <u>MENTATIO</u>	F NITROG cylinder pres is based on <u>s + /- 1% and</u> <u>IDARD</u> <u>EXPIRATIO</u> 7/11/0 <u>DN</u> EL/SERIAL# B9400251 ADINGS	EN sure is below the requireme alytical accurac <u>DN DATE</u> D1 (Z = Zer	nts of EP, cy is direc CYLINE ALM051	435. A Protocal proce atly traceable to DER NUMBER 1851 R = Reference	BALANC PPM dure G1, Septer <u>NIST or NMI stat</u> <u>CONCEN</u> <u>DATE L/</u> ce Gas T =	nber 1997. Indards. ITRATION 504.0 PPM AST CALIBRATED 02/19/99 Test Gas r= s	COMPONENT NO/N2	Reference Value Only MALYTICAL PRINCIPLE acott Enhanced FTIR
TROGI OTAL (DTAL (Do no Analytic Produc EFEREN (PE/SRI TRM 168 ISTRUM ISTRUM STRUM STRUM IR Syste ANAL NITRIC Date:03/0	EN - OXYO OXIDES OI ot use when o ical accuracy ot certified as <u>NCE STAN</u> <u>MENTATIO</u> <u>MENTATIO</u> <u>MENT/MODE</u> em/8220/AAB <u>YZER RE/</u> First Tria OXIDE	F NITROG cylinder pres is based on <u>a +/- 1% ana</u> <u>IDARD</u> <u>EXPIRATIO</u> 7/11/0 <u>DN</u> EL/SERIAL# B9400251 ADINGS d Analysis	EN sure is below the requireme alytical accurac <u>DN DATE</u> D1 (Z = Zer	nts of EP, cy is direc CYLINE ALM051	435. A Protocal proce tily traceable to DER NUMBER 1851 R = Reference Second	BALANC PPM dure G1, Septer <u>NIST or NMI stat</u> <u>CONCEN</u> <u>DATE L/</u> ce Gas T = 1 Triad Analysi	nber 1997. Indards. ITRATION 504.0 PPM AST CALIBRATED 02/19/99 Test Gas r= s	COMPONENT NO/N2	Reference Value Only MALYTICAL PRINCIPLE Scott Enhanced FTIR efficient) bration Curve
ITROGI OTAL (Do no Analytic Produc EFEREN YPE/SRI TRM 168 ISTRUM	EN - OXYO OXIDES OF ot use when of ical accuracy ot certified as <u>NCE STAN</u> <u>MENTATIO</u> <u>MENTATIO</u> <u>MENTATIO</u> <u>MENTATIO</u> <u>MENTATIO</u> <u>MENTATIO</u> <u>MENTATIO</u> <u>MENTATIO</u> <u>MENTATIO</u> <u>MENTATIO</u> <u>MENTATIO</u> <u>56</u> <u>66</u> <u>72</u> <u>88</u> <u>81</u> <u>68</u> <u>72</u>	F NITROG cylinder pres is based on is +/- 1% and IDARD EXPIRATIO 7/11/0 DN EL/SERIAL# B9400251 ADINGS d Analysis	EN sure is below the requireme alytical accurad ON DATE D1 (Z = Zer M T1 = 433.03 T2 = 433.79	nts of EP, cy is direc CYLINE ALM051	435. A Protocal proce stly traceable to DER NUMBER 1851 R = Reference Second Date: 03/16/99 21=0.1958 R2=504.66	BALANC PPM dure G1, Septer <u>NIST or NMI star</u> <u>CONCEN</u> <u>DATE L/</u> Ce Gas T = I Triad Analysi Response Unit: PI R1 = 502.90 Z2 = 0.2198	nber 1997. ndards. ITRATION 504.0 PPM AST CALIBRATED 02/19/99 Test Gas r = s ² M T1 = 434.87 T2 = 435.24	COMPONENT NO/N2 Correlation Coe Cali Concentration r=0.999990 Constants:	Reference Value Only ANALYTICAL PRINCIPLE Scott Enhanced FTIR efficient) bration Curve =A+Bx+Cx2+Dx3+Ex4 A=0.000000
ITROGI OTAL (• Do no • Analytic <u>Produc</u> <u>Produc</u> <u>EFEREN</u> <u>YPE/SRI</u> <u>TRM 168</u> <u>ISTRUN</u> <u>ISTRUM</u> <u>IR Syste</u>	EN - OXYO OXIDES OF ot use when of ical accuracy ot certified as <u>NCE STAN</u> <u>MENTATIO</u> <u>MENTATIO</u> <u>MENTATIO</u> <u>MENTATIO</u> <u>MENTATIO</u> <u>MENTATIO</u> <u>MENTATIO</u> <u>MENTATIO</u> <u>MENTATIO</u> <u>MENTATIO</u> <u>MENTATIO</u> <u>56</u> <u>66</u> <u>72</u> <u>88</u> <u>81</u> <u>68</u> <u>72</u>	F NITROG cylinder pres is based on a +/- 1% and IDARD EXPIRATIO 7/11/0 DN EL/SERIAL# B9400251 ADINGS d Analysis	EN sure is below the requireme alytical accurad ON DATE O1 (Z = Zer (X = T1 = 433.03	nts of EP, cy is direc CYLINE ALM051	435. A Protocal proce tily traceable to DER NUMBER 1851 R=Reference Second Date: 03/16/99 Z1=0.1958	BALANC PPM dure G1, Septern <u>NIST or NMI star</u> <u>CONCEN</u> <u>DATE L/</u> <u>DATE L/</u> ce Gas T = I Triad Analysi Response Unit: PI R1 = 502.90 Z2 = 0.2198 T3 = 435.51	nber 1997. ndards. ITRATION 504.0 PPM AST CALIBRATED 02/19/99 Test Gas r= s PM T1=434.87 T2=435.24 R3=504.44	COMPONENT NO/N2 Correlation Coe Calil Concentration r=0.999990	Reference Value Only <u>NALYTICAL PRINCIPLE</u> Scott Enhanced FTIR efficient) bration Curve =A+Bx+Cx2+Dx3+Ex4 A=0.000000 C=0.000000

RATA CLASS

.

APPROVED BY: _____

Devon VonFeldt

Dual-Analyzed Calibration Standard

Ŝ

Scott Specialty Gases

Phone: 888-253-1635

Fax: 303-772-7673

Access Laboratory			0	ustomer		
Assay Laboratory	P.O.	No.: P169978			TATE UNIVER	SITY
SCOTT SPECIALTY		ect No.: 08-61261-00		02011/12/0		
500 WEAVER PARK	RD		E	NERGY LAB		
LONGMONT, CO 805	501	1	4	30 NORTH C	OLLEGE	
			F	ORT COLLINS	SCO 80524	4
ANALYTICAL INFO			, ,			
Certified to exceed the	minimum specifica	itions of EPA Prot ol 1	Procedure #G2.			
Cylinder Number:	ALM00245	5 Certificatio	on Date:	8/30/99	Exp. Da	ite: 8/29/2002
Cylinder Pressure***		e entiroutie	, Dator	0,00,00		
				ANALYT	ICAL	
OMPONENT		CERTIFIED CONCEN		es) AC	CURACY**	TRACEABILITY
TETHANE		910	PPM		+/-2%	GMIS
PROPANE		91.6	PPM		+/-2%	GMIS
NR .		н. Табрата (1997) - С.	BALANCE			
** Do oot waa webaa awiin	dae anageria in holow	150				
** Do not use when cyline						
	and an the requireme	onto of EDA Drotopol proceed	unan Contomber 10	007	•	
		ents of EPA Protocal proced	ures, September 19	997.		
REFERENCE STANDA	RD				COMPONENT	
REFERENCE STANDA		CYLINDER NUMBER ALM014418	CONCENTRA		COMPONENT METHANE	<u> </u>
REFERENCE STANDA	RD PIRATION DATE	CYLINDER NUMBER	CONCENTRA	ATION		<u> </u>
REFERENCE STANDA TYPE/SRM NO. EXI CH4/AIR 50PP GMIS.01%C3H8	RD PIRATION DATE 2/18/01	CYLINDER NUMBER ALM014418	CONCENTRA	ATION 0 PPM	METHANE	<u> </u>
REFERENCE STANDA YPE/SRM NO. EXI CH4/AIR 50PP SMIS.01%C3H8 NSTRUMENTATION	RD PIRATION DATE 2/18/01 2/15/01	CYLINDER NUMBER ALM014418	<u>CONCENTR/</u> 50.2 151.	a <u>tion</u> o PPM o PPM	METHANE PROPANE	-
REFERENCE STANDA TYPE/SRM NO. EXI CH4/AIR 50PP SMIS.01%C3H8 NSTRUMENTATION NSTRUMENT/MODEL/S	RD PIRATION DATE 2/18/01 2/15/01	CYLINDER NUMBER ALM014418	CONCENTR/ 50.2 151. DATE LAST	ATION 0 PPM 0 PPM CALIBRATED	METHANE PROPANE	ANALYTICAL PRINCI
REFERENCE STANDA YPE/SRM NO. EXI CH4/AIR 50PP EXI SMIS.01%C3H8 EXI NSTRUMENTATION EXI NSTRUMENT/MODEL/S EXI IPGC/5890/3115A34623 EXI	RD PIRATION DATE 2/18/01 2/15/01	CYLINDER NUMBER ALM014418	<u>CONCENTR/</u> 50.2 151. <u>DATE LAST</u> 08/3	ATION 0 PPM 0 PPM CALIBRATED 0/99	METHANE PROPANE	<u>Analytical princi</u> Fid
REFERENCE STANDA	RD PIRATION DATE 2/18/01 2/15/01	CYLINDER NUMBER ALM014418	CONCENTR/ 50.2 151. DATE LAST	ATION 0 PPM 0 PPM CALIBRATED 0/99	METHANE PROPANE	ANALYTICAL PRINCI
REFERENCE STANDA YPE/SRM NO. EXI YPE/SRM NO. EXI H4/AIR 50PP SMIS.01%C3H8 NSTRUMENTATION NSTRUMENT/MODEL/S IPGC/5890/3115A34623	RD PIRATION DATE 2/18/01 2/15/01	CYLINDER NUMBER ALM014418	<u>CONCENTR/</u> 50.2 151. <u>DATE LAST</u> 08/3	ATION 0 PPM 0 PPM CALIBRATED 0/99	METHANE PROPANE	<u>Analytical princi</u> Fid
REFERENCE STANDA TYPE/SRM NO. EXI CH4/AIR 50PP SMIS.01%C3H8 NSTRUMENTATION NSTRUMENT/MODEL/S HPGC/5890/3115A34623	RD PIRATION DATE 2/18/01 2/15/01	CYLINDER NUMBER ALM014418	<u>CONCENTR/</u> 50.2 151. <u>DATE LAST</u> 08/3	ATION 0 PPM 0 PPM CALIBRATED 0/99	METHANE PROPANE	<u>Analytical princi</u> Fid
REFERENCE STANDA TYPE/SRM NO. EXI CH4/AIR 50PP SMIS.01%C3H8 NSTRUMENTATION NSTRUMENT/MODEL/S NSTRUMENT/MODEL/S HPGC/5890/3115A34623	RD PIRATION DATE 2/18/01 2/15/01	CYLINDER NUMBER ALM014418	<u>CONCENTR/</u> 50.2 151. <u>DATE LAST</u> 08/3	ATION 0 PPM 0 PPM CALIBRATED 0/99	METHANE PROPANE	<u>Analytical princi</u> Fid
REFERENCE STANDA YPE/SRM NO. EXI YPE/SRM NO. EXI H4/AIR 50PP SMIS.01%C3H8 NSTRUMENTATION NSTRUMENT/MODEL/S IPGC/5890/3115A34623	RD PIRATION DATE 2/18/01 2/15/01	CYLINDER NUMBER ALM014418	<u>CONCENTR/</u> 50.2 151. <u>DATE LAST</u> 08/3	ATION 0 PPM 0 PPM CALIBRATED 0/99	METHANE PROPANE	<u>Analytical princi</u> Fid
REFERENCE STANDA YPE/SRM NO. EXI YPE/SRM NO. EXI H4/AIR 50PP SMIS.01%C3H8 NSTRUMENTATION NSTRUMENT/MODEL/S IPGC/5890/3115A34623	RD PIRATION DATE 2/18/01 2/15/01	CYLINDER NUMBER ALM014418	<u>CONCENTR/</u> 50.2 151. <u>DATE LAST</u> 08/3	ATION 0 PPM 0 PPM CALIBRATED 0/99	METHANE PROPANE	<u>Analytical princi</u> Fid
EFERENCE STANDA YPE/SRM NO. EXI H4/AIR 50PP MIS.01%C3H8 NSTRUMENTATION NSTRUMENT/MODEL/S IPGC/5890/3115A34623	RD PIRATION DATE 2/18/01 2/15/01	CYLINDER NUMBER ALM014418	<u>CONCENTR/</u> 50.2 151. <u>DATE LAST</u> 08/3	ATION 0 PPM 0 PPM CALIBRATED 0/99	METHANE PROPANE	<u>Analytical princi</u> Fid
EFERENCE STANDA YPE/SRM NO. EXI H4/AIR 50PP MIS.01%C3H8 NSTRUMENTATION NSTRUMENT/MODEL/S IPGC/5890/3115A34623	RD PIRATION DATE 2/18/01 2/15/01	CYLINDER NUMBER ALM014418	<u>CONCENTR/</u> 50.2 151. <u>DATE LAST</u> 08/3	ATION 0 PPM 0 PPM CALIBRATED 0/99	METHANE PROPANE	<u>Analytical princi</u> Fid
REFERENCE STANDA YPE/SRM NO. EXI YPE/SRM NO. EXI H4/AIR 50PP SMIS.01%C3H8 NSTRUMENTATION NSTRUMENT/MODEL/S IPGC/5890/3115A34623	RD PIRATION DATE 2/18/01 2/15/01	CYLINDER NUMBER ALM014418	<u>CONCENTR/</u> 50.2 151. <u>DATE LAST</u> 08/3	ATION 0 PPM 0 PPM CALIBRATED 0/99	METHANE PROPANE	<u>Analytical princi</u> Fid
REFERENCE STANDA YPE/SRM NO. EXI YPE/SRM NO. EXI H4/AIR 50PP SMIS.01%C3H8 NSTRUMENTATION NSTRUMENT/MODEL/S IPGC/5890/3115A34623	RD PIRATION DATE 2/18/01 2/15/01	CYLINDER NUMBER ALM014418	<u>CONCENTR/</u> 50.2 50.2 151. <u>DATE LAST</u> 08/3	ATION 0 PPM 0 PPM CALIBRATED 0/99	METHANE PROPANE	<u>Analytical princi</u> Fid
REFERENCE STANDA TYPE/SRM NO. EXI CH4/AIR 50PP SMIS.01%C3H8 NSTRUMENTATION NSTRUMENT/MODEL/S NSTRUMENT/MODEL/S HPGC/5890/3115A34623	RD PIRATION DATE 2/18/01 2/15/01	CYLINDER NUMBER ALM014418	<u>CONCENTR/</u> 50.2 50.2 151. <u>DATE LAST</u> 08/3	ATION 0 PPM 0 PPM CALIBRATED 0/99	METHANE PROPANE	<u>Analytical princi</u> Fid

APPROVED BY: **DEVON VONFELDT**

Dual-Analyzed Calibration Standard

S

500 WEAVER PARK RD,LONGMONT,CO 80501

Scott Specialty Gases

Phone: 888-253-1635

Fax: 303-772-7673

Assay Laboratory					Customer	,	
	P.0	. No.:	P169978		COLORADO	STATE UNIVER	RSITY
SCOTT SPECIALTY G	ASES Pro	ject No.:	08-61261-00	04			
500 WEAVER PARK F	RD				ENERGY LA	B	
LONGMONT,CO 8050	D1				430 NORTH	H COLLEGE	
					FORT COLL	INS CO 8052.	4
ANALYTICAL INFO	RMATION		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			·
Certified to exceed the n	ninimum specific	ations of I	EPA Prot ol 1	Procedure #	G2.		
			• • • • •	_			
Cylinder Number:	AAL2014		Certification	on Date:	8/30/99	Exp. Da	ite: 8/29/2002
Cylinder Pressure***	2000 PSIC	ì				•	.* .*
		050TI		TDATION (YTICAL	
OMPONENT		CERTI	FIED CONCEN		Violes)	ACCURACY**	TRACEABILITY
METHANE			2,750	PPM		+/-2%	GMIS
ROPANE			275	PPM	\ F	+/- 2%	GMIS
NR				BALANC	E		, i
ee Do oos voo vilooo ovitodo		150					
** Do not use when cylinde * Analytical accuracy is bas	-			uron Contorn	her 1007	•	· ·
EFERENCE STANDAR			A Protocal proced	ures, Septem	Der 1997.		
	RATION DATE	CYLINE	DER NUMBER	CONCE	NTRATION	COMPONENT	r
	2/18/01	ALM014			50.20 PPM	METHANE	_
	2/15/01	ALM05	3511		151.0 PPM	PROPANE	,
NSTRUMENTATION							
STRUMENT/MODEL/SE	RIAL#			DATE L	AST CALIBRATI	ED	ANALYTICAL PRINCIPL
PGC/5890/3115A34623					08/30/99		FID
PGC/5890/3115A34623					08/30/99		FID

APPROVED BY: ing File States , ". **DEVON VONFELDT**

Dual-Analyzed Calibration Standard

(Ŝ)	

Scott Specialty Gases

500 WEAVER PARK RD,LONGMONT,CO 80501

Phone: 888-253-1635

Fax: 303-772-7673

Assay Laboratory SCOTT SPECIALTY G		. No.: P169978 ect No.: 08-61261-0		er ADO STATE UNIVER	SITY
500 WEAVER PARK I		ect No.: 00-01201-0	ENERG'		
ONGMONT,CO 805					
				COLLINS CO 80524	1
ANALYTICAL INFO	RMATION	1			•
Certified to exceed the r	minimum specific	ations of EPA Prot of	1 Procedure #G2.		
Cylinder Number:	AAL20141		ion Date: 8/30/	99 Exp. Da	te: 8/29/2002
Cylinder Pressure***	: 2000 PSIG	i	•		
•				NALYTICAL	1
OMPONENT		CERTIFIED CONCEN		ACCURACY**	TRACEABILITY
		2,750	PPM	+/-2%	GMIS
ROPANE		275	PPM BALANCE	+/- 2%	GMIS
n .			DALANUE		
* Do not use when cylind	er pressure is below	/ 150 psig.			
		ents of EPA Protocal proce	dures , September 1997.		
FERENCE STANDAR				·····	•
PE/SRM NO. EXP	IRATION DATE	CYLINDER NUMBER	CONCENTRATION	COMPONENT	• · · ·
14/AIR 50PP	2/18/01	ALM014418	50.20 PPM	METHANE	
vxS.01%C3H8	2/15/01	ALM053511	151.0 PPM	PROPANE	
ISTRUMENTATION					
STPUMENT/MODEL/SE	ERIAL#	•	DATE LAST CALIB	RATED	ANALYTICAL PRINCIP
PGC/5890/3115AG4623			08/30/99		FID
PGC/5890/3115A34623 PGC/5890/3115A34623			08/30/99 08/30/99		FID
GC/5890/3115AC4623 GC/5890/3115A34623					
GC/5890/3115A34623 GC/5890/3115A34623					
GC/5890/3115A34623 GC/5890/3115A34623	•				
GC/5890/3115A34623 GC/5890/3115A34623	•				
GC/5890/3115A34623 GC/5890/3115A34623					
PGC/5890/3115A54623 PGC/5890/3115A34623	•				
GC/5890/3115A34623 GC/5890/3115A34623	•				
GC/5890/3115A34623 GC/5890/3115A34623					
PGC/5890/3115A54623 PGC/5890/3115A34623					

DEVON VONFELDT

			·	
1976 ·	Specialty G			
	500 WEAVER PAR LONGMONT	CO 8050	1	
	Phone: 888-253		Fax: 303-772-7673	
	CERTIFI	CATE OF	ANALYSIS	
COLORADO SI	TATE UNIVERSITY	· · · · · · · · · · · · · · · · · · ·	PROJECT #: 08-58	340-002
ENERGY LAB			PO#: 404179 ITEM #: 0801809	A
430 NORTH C FORT COLLIN		C O 80524	DATE: 6/10/99	
	#: A017675 SSURE: 2200 PS	SIG	· · · · · · · · · · · · · · · · · · ·	
			•	
רקקיעא קסווס	IAL: NITROGEN		CAS# 7727-37-9	
		ידי איז דר ד ווונז	CAD# 1121-31-3	
GRADE:	ULTRA-HI	PUKTIY		
PURITY: 99.	,9995*		•	
	IMPURITY	MAXIMUM CONCENTRATION		S
	THC O2	0.5 PPM 0.5 PPM	< 0.5 PPM < 0.5 PPM	-
	CO . CO2	1 PPM 1 PPM	< 1 PPM < 1 PPM	· . ·
	H2O	2 PPM	< 2 PPM	
		1		
		t		
		٤		
003 500	2200 22	110		
CGA 580	2200 PS	JIG		

ANALYST: Wayne Johnson

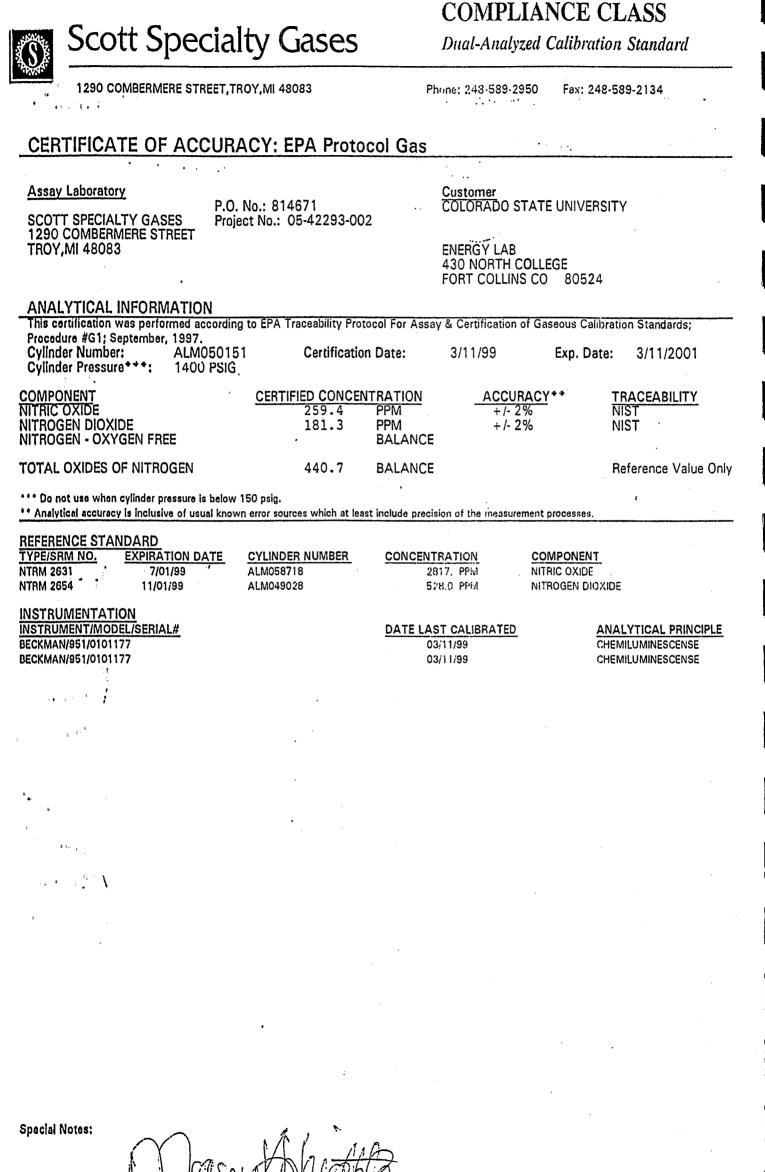
				-	
S Scot	t Specialty G	ases			
Shipped From:	500 WEAVER PARI LONGMONT Phone: 888-253	CO 805		Fax: 303-772-7673	
•	CERTIFI	CATE OF	ANA	LYSIS	
COLORADO S ENERGY LAE 430 NORTH FORT COLLI	COLLEGE	CO 80524		PROJECT #: 08-5834 PO#: 404179 ITEM #: 0801809 DATE: 6/10/99	
FILL PRE	R #: 1A013986 ESSURE: 2200 PS	IG			
PURE MATER	RIAL: NITROGEN		`	CAS# 7727-37-9	
GRADE:	ULTRA-HI	PURITY			
PURITY: 99	9.9995%				
	IMPURITY THC O2 CO CO2 H2O	MAXIMUM CONCENTRATIC 0.5 PPM 0.5 PPM 1 PPM 1 PPM 2 PPM	ONS	ACTUAL <u>CONCENTRATIONS</u> < 0.5 PPM < 0.5 PPM < 1 PPM < 1 PPM < 2 PPM	
		• • •			
	•	•		•	

2200 PSIG

ANALYST: WAYNE MU JOHNSON

Shipped From:	500 WEAVER PA LONGMONT Phone: 888-25	1	CO 8050		Fax: 303-772-767	3
	CERTIF	ICATE	OF	ΑΝΑ	LYSIS	
COLORADO S	TATE UNIVERSIT	ч У			PROJECT #: 08-5	8340-003
ENERGY LAE 430 NORTH FORT COLLI	COLLEGE	CO 805	24		PO#: 404179 ITEM #: 0801817 DATE: 6/10/99	A
	· · · · · · · · · · · · · · · · · · ·					
FILL PRE	#: XA1472 SSURE: 2200 Pa	SIG			⁰ 76# 7727 27 0	
FILL PRE PURE MATER	SSURE: 2200 P				CAS# 7727-37-9	
FILL PRE	SSURE: 2200 PA TAL: NITROGEN HIGH PU				CAS# 7727-37-9	
FILL PRE PURE MATER GRADE:	SSURE: 2200 P IAL: NITROGEN HIGH PU			•• •	CAS# 7727-37-9	

2200 PSIG


•

Wayne JOHNSON ANALYST:

Scot	t Specialt	y Gase	es				
Shipped From:	500 WEAVER LONGMONT Phone: 888	PARK RD	CO	80501	Fax: 30	3-772-7673	······································
	CERTI	FICA	TE C) FAN	ALYS	IS	
COLORADO S ENERGY LAB 430 NORTH FORT COLLI	COLLEGE		80524	· 	PO#: 4 ITEM #	T #: 08-58 04179 : 0801817 6/10/99	340-003 A
	#: XA1472 SSURE: 220	0 PSIG					
PURE MATER	IAL: NITROG	EN			CAS# 77	27-37-9	
GRADE:	99%	PURITY	• • •				
	•						
					÷		

2200 PSIG

ANALYST: Wayne Johnson

APPROVED BY

LUMPH

Dual-Analyzed Calibration Standard

S

Scott Specialty Gases

Phone: 888-253-1635

Fax: 303-772-7673

CERTIFICATE OF ACCURACY: Interference Free[™] Multi-Component EPA Protocol Gas

Assay Laboratory

SCOTT SPECIALTY GASES 500 WEAVER PARK RD LONGMONT,CO 80501 P.O. No.: 814671 Project No.: 08-54617-001 COLORADO STATE UNIVERSITY

ENERGY LAB 430 NORTH COLLEGE FORT COLLINS CO 80524

COMPONENT

CARBON MONOXIDE

CO2/N2

METHANE

NO/N2

ANALYTICAL INFORMATION

Certified to exceed the minimum specifications of EPA Protocol 1 Procedure #G2.

	Cylinder Number: Cylinder Pressure***:	ALM068001 1786 PSIG	Certificatio	n Date:	3/16/99	Exp. Date:	3/16/2001
	COMPONENT CARBON DIOXIDE CARBON MONOXIDE METHANE NITRIC OXIDE NITROGEN - OXYGEN FRE	Æ	CERTIFIED CONCEN 6.80 190 1,300 262	VTRATION % PPM PPM PPM BALANCE	ACCURAC +/- 2% +/- 2% +/- 2% +/- 2%	- NI NI GI	RACEABILITY ST ST MIS MIS
ļ	TOTAL OXIDES OF NITRO	GEN	263.	PPM		Re	eference Value Only

*** Do not use when cylinder pressure is below 150 psig.

** Analytical accuracy is inclusive of usual known error sources which at least include precision of the measurement processes.

REFERENCE STANDARD

TYPE/SRM NO.	EXPIRATION DATE	CYLINDER NUMBER
NTRM 5000	7/17/01	ALM049007
NTRM 2636	2/01/03	ALM066877
CH4/AIR 50PP	2/18/01	ALM014418
GMIS	1/06/01	ALM039666

INSTRUMENTATION

INSTRUMENT/MODEL/SERIAL# CO2/AIA-220/570497012 HPGC/5710A/2010A99310 HPGC/5890/3115A34623 FTIR System/8220/AAB9400251 DAT

DATE LAST CALIBRATED

CONCENTRATION

5.032 %

248.7 PPM

50.20 PPM

497.0 PPM

03/12/99 03/09/99 03/08/99 03/05/99 ANALYTICAL PRINCIPLE NDIR FID FID Scott Enhanced FTIR

APPROVED BY: DINTE VOL Falab

Scott Specialty Gases						
SUPPORT .	500 WEAVER PARK RD LONGMONT CO 80501					
	Phone: 888-253-1635 Fax: 303-772-7673					
***	CERTIFICATE OF ANALYSIS					
COLORADO S	TATE UNIVERSITY PROJECT #: 08-54127-002 PO#: VERBAL PER GARY					
ENERGY LAB 430 NORTH FORT COLLI	ITEM #: 0802N0005201XL COLLEGE DATE: 3/02/99					
	#: PGS9650 ANALYTICAL ACCURACY: +/-1% SSURE: 232 PSIG PRODUCT EXPIRATION: 3/02/2000					
BLEND TY	PE : GRAVIMETRIC MASTER GAS					
COMPONENT N-BUTANE CARBON DIOX ETHANE N-HEXANE ISOBUTANE	4. % 4.00 %					
ISOPENTANE NITROGEN N-PENTANE PROPANE METHANE	.2 % 0.200 % .2 % 0.201 % .2 % 0.200 % 2. % 1.98 % .2 % 0.200 % 1. % 1.00 % BALANCE BALANCE BALANCE					
CGA 510	232 PSIA GRAVIMETRICALLY PREPARED					
EXPOSURE TO TEMPERATURE BELOW 32 DEG F MAY CAUSE COMPONENTS TO LIQUIFY. KEEP CYLINDER ABOVE 70 DEG F FOR 1-2 DAYS OR HEAT FOR 1-2 HOURS. ROLL CYLINDER FOR 15 MINUTES BEFORE USING. ************************************						
ANALYST:	NIST TRACEABILITY: BY WEIGHTS					

Scott Specia	Ity Gases		<u>POBO</u>	<u>x-310</u>	•
	DVILLE L5-766-8861	PA 18949-	-0310	215-766-:	2070
	IFICAT			•	2070
COLORADO STATE UNIVI PO # 814671 ENERGY LAB	SKSITY	1.2 1.2 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	PO#:	814671	1-14795-002 F2002304AL
430 NORTH COLLEGE FORT COLLINS	CO 80)524		: 3/17/	
CYLINDER #: ALM018 FILL PRESSURE: 20			AL ACCURAC EXPIRATION	Y: +/-5% : 9/19	 /1999
BLEND TYPE : CERT	IFIED MASTER		ED GAS	ANAT.V	STS .
COMPONENT FORMALDEHYDE			AOLES PPM	(MO)	LES)
NITROGEN		±0.	BALANCE		BALANCE
					•. •
					5. · ·
			· ·		
			·		
		\$. ·			
	* *	•		·	•
				' •,	•
	•				
	·				:
	·		· ·		•
				, 1	• • ••
		-		•	
		1		·	ъ.
Λ	n	1"•			
ANALYST: (14)	the				
CHRIS ABE	R'		•	1.	

COMPLIANCE CLASS Scott Specialty Gases Dual-Analyzed Calibration Standard 1290 COMBERMERE STREET, TROY, MI 48083 Phone: 248-589-2950 Fax: 248-589-2134 . . . τ., **CERTIFICATE OF ACCURACY: EPA Protocol Gas** -----Assay Laboratory Customer COLORADO STATE UNIVERSITY P.O. No.: 814671 SCOTT SPECIALTY GASES 1290 COMBERMERE STREET Project No.: 05-42293-002 ENERGY LAB **TROY, MI 48083 430 NORTH COLLEGE** FORT COLLINS CO 80524 2. **ANALYTICAL INFORMATION** This certification was performed according to EPA Traceability Protocol For Assay & Certification of Gaseous Calibration Standards; Procedure #G1: September, 1997. ALM050151 Cylinder Number: **Certification Date:** 3/11/99 Exp. Date: 3/11/2001 Cylinder Pressure***: 1400 PSIG ACCURACY** COMPONENT **CERTIFIED CONCENTRATION** TRACEABILITY NITRIC OXIDE 259.4 PPM NIST +/-2% NITROGEN DIOXIDE PPM +1-2% 181.3 NIST NITROGEN - OXYGEN FREE BALANCE TOTAL OXIDES OF NITROGEN 440.7 BALANCE **Reference Value Only** *** Do not use when cylinder pressure is below 150 psig. ** Analytical accuracy is inclusive of usual known error sources which at least include precision of the measurement processes. **REFERENCE STANDARD** COMPONENT CYLINDER NUMBER TYPE/SRM NO. **EXPIRATION DATE** CONCENTRATION NTRM 2631 NITRIC OXIDE 7/01/99 ALM058718 2817. PPM NITROGEN DIOXIDE 11/01/99 ALM049028 528.0 PPM NTRM 2654 INSTRUMENTATION INSTRUMENT/MODEL/SERIAL# ANALYTICAL PRINCIPLE DATE LAST CALIBRATED BECKMAN/951/0101177 03/11/99 CHEMILUMINESCENSE BECKMAN/951/0101177 03/11/99 CHEMILUMINESCENSE 1.16 **Special Notes:** APPROVED BY

AT .

ь . <u>з</u>

-

Scott Specialty Gases

500 WEAVER PARK RD,LONGMONT,CO 80501

Phone: 888-253-1635 Fax: 3

Fax: 303-772-7673

Customer	Assay Laboratory	Project No.: 08-52254-019
COLORADO STATE UNIVERSITY	L	P.O. No.: P165299
	SCOTT SPECIALTY GASES	
ENERGY LAB	500 WEAVER PARK RD	
430 NORTH COLLEGE	LONGMONT, CO 80501	. t t
FORT COLLINS, CO 80524	· ·	
ANALYTICAL INFORMATION		
Certified to exceed the minimum specifications	of EPA Protocol 1 Procedure #G2.	
Cylinder Number: ALM047254	Continentian Datas 10/00/00	Free D. (10/00/0001
Cylinder Number: ALM047254 Cylinder Pressure***: 1937 PSIG	Certification Date: 12/28/98	Exp. Date: 12/28/2001
Cymruer riessure 1937 roid	CERTIFIED	· · ·
OMPONENT	CONCENTRATION	ANALYTICAL ACCURACY**
IETHANE	4,510 PPM	+/- 2% NIST TRACEABLE
IR	BALANCE	
** Do not use when cylinder pressure is below 150 p	sig.	•
Analytical accuracy is inclusive of usual known erro	or sources which at least include precision of the meas	urement processes.
Product certified as + /- 1% analytical accuracy is d		
EFERENCE STANDARD		
YPE/SRM NO. EXPIRATION DATE CYL	LINDER NUMBER CONCENTRATION	COMPONENT
RM 2750 5/06/03 CAL	.013993 49.30 PPM	METHANE
	•	• • •
ISTRUMENT/MODEL/SERIAL#	LAST DATE CALIBRATE	
ORIOBA/FIA-23A/OPE 435/850658079	12/28/98	FID
ORIOBA/FIA-23A/OPE 435/850658079		
ORIOBA/FIA-23A/OPE 435/850658079	12/28/98	
ORIOBA/FIA-23A/OPE 435/850658079	12/28/98	FID
ORIOBA/FIA-23A/OPE 435/850658079 ANALYZER READINGS (Z = Zero Ga	12/28/98 as R=Reference Gas T=Test Gas r	FID = Correlation Coefficient)
ORIOBA/FIA-23A/OPE 435/850658079 ANALYZER READINGS (Z = Zero Ga	12/28/98 as R=Reference Gas T=Test Gas r	FID = Correlation Coefficient)
ORIOBA/FIA-23A/OPE 435/850658079 ANALYZER READINGS (Z = Zero Ga First Triad Analysis	12/28/98 as R=Reference Gas T=Test Gas r	FID = Correlation Coefficient)
ORIOBA/FIA-23A/OPE 435/850658079 ANALYZER READINGS (Z = Zero Ga First Triad Analysis METHANE	12/28/98 as R=Reference Gas T=Test Gas r	FID = Correlation Coefficient) Calibration Curve
ORIOBA/FIA-23A/OPE 435/850658079 ANALYZER READINGS (Z = Zero Ga First Triad Analysis METHANE Date: 12/28/98 Response Unit: PPM Z1 = 0.0000 R1 = 49.110 T1 = 4504.0 R2 = 49.410 Z2 = 0.0010 T2 = 4517.0	12/28/98 as R=Reference Gas T=Test Gas r	FID = Correlation Coefficient) Calibration Curve Concentration=A+Bx+Cx2+Dx3+Ex4
ORIOBA/FIA-23A/OPE 435/850658079 ANALYZER READINGS (Z = Zero Ga First Triad Analysis METHANE Date: 12/28/98 Response Unit: PPM Z1 = 0.0000 R1 = 49.110 T1 = 4504.0	12/28/98 as R=Reference Gas T=Test Gas r	FID = Correlation Coefficient) Calibration Curve Concentration=A+Bx+Cx2+Dx3+Ex4 r=0.999998
ORIOBA/FIA-23A/OPE 435/850658079 ANALYZER READINGS (Z = Zero Ga First Triad Analysis METHANE Date: 12/28/98 Response Unit: PPM Z1 = 0.0000 R1 = 49.110 T1 = 4504.0 R2 = 49.410 Z2 = 0.0010 T2 = 4517.0	12/28/98 as R=Reference Gas T=Test Gas r	FID = Correlation Coefficient) Calibration Curve Concentration = A + Bx + Cx2 + Dx3 + Ex4 r = 0.999998 Constants: A = 0.012491
ORIOBA/FIA-23A/OPE 435/850658079 ANALYZER READINGS (Z = Zero Ga First Triad Analysis METHANE Date: 12/28/98 Response Unit: PPM Z1 = 0.0000 R1 = 49.110 T1 = 4504.0 R2 = 49.410 Z2 = 0.0010 T2 = 4517.0 Z3 = 0.0000 T3 = 4512.0 R3 = 49.380	12/28/98 as R=Reference Gas T=Test Gas r	FID = Correlation Coefficient) Calibration Curve Concentration=A+Bx+Cx2+Dx3+Ex4 r=0.999998 Constants: A=0.012491 B=32.829778 C=0.00000
ORIOBA/FIA-23A/OPE 435/850658079 ANALYZER READINGS (Z = Zero Ga First Triad Analysis METHANE Date: 12/28/98 Response Unit: PPM Z1 = 0.0000 R1 = 49.110 T1 = 4504.0 R2 = 49.410 Z2 = 0.0010 T2 = 4517.0 Z3 = 0.0000 T3 = 4512.0 R3 = 49.380	12/28/98 as R=Reference Gas T=Test Gas r	FID = Correlation Coefficient) Calibration Curve Concentration=A+Bx+Cx2+Dx3+Ex4 r=0.999998 Constants: A=0.012491 B=32.829778 C=0.00000
ORIOBA/FIA-23A/OPE 435/850658079 ANALYZER READINGS (Z = Zero Ga First Triad Analysis METHANE Date: 12/28/98 Response Unit: PPM Z1 = 0.0000 R1 = 49.110 T1 = 4504.0 R2 = 49.410 Z2 = 0.0010 T2 = 4517.0 Z3 = 0.0000 T3 = 4512.0 R3 = 49.380	12/28/98 as R=Reference Gas T=Test Gas r	FID = Correlation Coefficient) Calibration Curve Concentration=A+Bx+Cx2+Dx3+Ex4 r=0.999998 Constants: A=0.012491 B=32.829778 C=0.00000
ORIOBA/FIA-23A/OPE 435/850658079 ANALYZER READINGS (Z = Zero Ga First Triad Analysis METHANE Date: 12/28/98 Response Unit: PPM Z1 = 0.0000 R1 = 49.110 T1 = 4504.0 R2 = 49.410 Z2 = 0.0010 T2 = 4517.0 Z3 = 0.0000 T3 = 4512.0 R3 = 49.380	12/28/98 as R=Reference Gas T=Test Gas r	FID = Correlation Coefficient) Calibration Curve Concentration=A+Bx+Cx2+Dx3+Ex4 r=0.999998 Constants: A=0.012491 B=32.829778 C=0.00000
ORIOBA/FIA-23A/OPE 435/850658079 ANALYZER READINGS (Z = Zero Ga First Triad Analysis METHANE Date: 12/28/98 Response Unit: PPM Z1 = 0.0000 R1 = 49.110 T1 = 4504.0 R2 = 49.410 Z2 = 0.0010 T2 = 4517.0 Z3 = 0.0000 T3 = 4512.0 R3 = 49.380	12/28/98 as R=Reference Gas T=Test Gas r	FID = Correlation Coefficient) Calibration Curve Concentration=A+Bx+Cx2+Dx3+Ex4 r=0.999998 Constants: A=0.012491 B=32.829778 C=0.00000
ORIOBA/FIA-23A/OPE 435/850658079 ANALYZER READINGS (Z = Zero Ga First Triad Analysis METHANE Date: 12/28/98 Response Unit: PPM Z1 = 0.0000 R1 = 49.110 T1 = 4504.0 R2 = 49.410 Z2 = 0.0010 T2 = 4517.0 Z3 = 0.0000 T3 = 4512.0 R3 = 49.380	12/28/98 as R=Reference Gas T=Test Gas r	FID = Correlation Coefficient) Calibration Curve Concentration=A+Bx+Cx2+Dx3+Ex4 r=0.999998 Constants: A=0.012491 B=32.829778 C=0.00000
ORIOBA/FIA-23A/OPE 435/850658079 ANALYZER READINGS (Z = Zero Ga First Triad Analysis METHANE Date: 12/28/98 Response Unit: PPM Z1 = 0.0000 R1 = 49.110 T1 = 4504.0 R2 = 49.410 Z2 = 0.0010 T2 = 4517.0 Z3 = 0.0000 T3 = 4512.0 R3 = 49.380	12/28/98 as R=Reference Gas T=Test Gas r	FID = Correlation Coefficient) Calibration Curve Concentration=A+Bx+Cx2+Dx3+Ex4 r=0.999998 Constants: A=0.012491 B=32.829778 C=0.00000
ORIOBA/FIA-23A/OPE 435/850658079 ANALYZER READINGS (Z = Zero Ga First Triad Analysis METHANE Date: 12/28/98 Response Unit: PPM Z1 = 0.0000 R1 = 49.110 T1 = 4504.0 R2 = 49.410 Z2 = 0.0010 T2 = 4517.0 Z3 = 0.0000 T3 = 4512.0 R3 = 49.380	12/28/98 as R=Reference Gas T=Test Gas r	FID = Correlation Coefficient) Calibration Curve Concentration=A+Bx+Cx2+Dx3+Ex4 r=0.999998 Constants: A=0.012491 B=32.829778 C=0.00000
ORIOBA/FIA-23A/OPE 435/850658079 (Z = Zero Ga First Triad Analysis METHANE Date: 12/28/98 Response Unit: PPM Z1 = 0.0000 R1 = 49.110 T1 = 4504.0 R2 = 49.410 Z2 = 0.0010 T2 = 4517.0 Z3 = 0.0000 T3 = 4512.0 R3 = 49.380 Avg. Concentration: 4510. PPM	12/28/98 as R=Reference Gas T = Test Gas r Second Triad Analysis	FID = Correlation Coefficient) Calibration Curve Concentration = A + Bx + Cx2 + Dx3 + Ex4 r = 0.999998 Constants: A = 0.012491 B = 32.829778 C = 0.00000 D = 0.00000 E = 0.00000
ORIOBA/FIA-23A/OPE 435/850658079 ANALYZER READINGS (Z = Zero Ga First Triad Analysis METHANE Date: 12/28/98 Response Unit: PPM Z1 = 0.0000 R1 = 49.110 T1 = 4504.0 R2 = 49.410 Z2 = 0.0010 T2 = 4517.0 Z3 = 0.0000 T3 = 4512.0 R3 = 49.380 Avg. Concentration: 4510. PPM	12/28/98 as R=Reference Gas T = Test Gas r Second Triad Analysis	FID = Correlation Coefficient) Calibration Curve Concentration=A+Bx+Cx2+Dx3+Ex4 r=0.999998 Constants: A=0.012491 B=32.829778 C=0.00000
DRIOBA/FIA-23A/OPE 435/850658079 ANALYZER READINGS (Z = Zero Ga First Triad Analysis METHANE Date: 12/28/98 Response Unit: PPM Z1=0.0000 R1=49.110 T1=4504.0 R2=49.410 Z2=0.0010 T2=4517.0 Z3=0.0000 T3=4512.0 R3=49.380 Avg. Concentration:	12/28/98 as R=Reference Gas T = Test Gas r Second Triad Analysis	FiD = Correlation Coefficient) Calibration Curve Concentration = A + Bx + Cx2 + Dx3 + Ex4 r = 0.999998 Constants: A = 0.012491 B = 32.829778 C = 0.00000 D = 0.00000 E = 0.00000
DRIOBA/FIA-23A/OPE 435/850658079 ANALYZER READINGS (Z = Zero Ga First Triad Analysis METHANE Date: 12/28/98 Response Unit: PPM 21 = 0.0000 R1 = 49.110 T1 = 4504.0 R2 = 0.0010 R2 = 49.410 Z2 = 0.0010 T2 = 4517.0 Z3 = 0.0000 T3 = 4512.0 Ayg. Concentration: 4510. PPM	12/28/98 as R=Reference Gas T = Test Gas r Second Triad Analysis	FID = Correlation Coefficient) Calibration Curve Concentration= $A+Bx+Cx2+Dx3+Ex4$ r=0.999998 Constants: $A=0.012491$ B=32.829778 C=0.00000 D=0.00000 E=0.00000 LYST: C

	,		· · · ·			· · · · · · · · · ·
Scott Specialty	Gases				•	
6141 EASTONShippedFrom:From:Phone:215-7	LE I	PA 1894	PO BO 9-0310 Fax:		2070	
CERTIF	FICATE	OF	ANALY	SIS	·	•
COLORADO STATE UNIVERSI			PROJ	 ECT #: 01	10819-(001
DEPT MECH ENG ENERGY LA 430 N. COLLEGE FT COLLINS	DB CO 8052	23	ITEM	P165299 #: 0102F : 1/06/9	20023047	۸L
CYLINDER #: CC50760 FILL PRESSURE: 2015	PSIA	PRODUCT	CAL ACCURAC	Y: +/-5% : 7/05/	199 9	
BLEND TYPE : CERTIFIE COMPONENT FORMALDEHYDE	D MASTER GA	REQUEST CONC	ED GAS	ANALYS (MOL		
NITROGEN		10.	PPM BALANCE	10.33	PPM BALANCE	
			•			
		;		•		
		' .	• •			r I I I I I I I I I I I I I I I I I I I
					1 -	
¢			·•			s
		• • •••			· .	
		•	•		:	
t t	and in the second second	10 .X. 1			:	
- 				•		
ANALYST: MAR Ale						
CHRIS ABER	· · · ·	-			•	

Scott Specialty Gases Dual-Analyzed Calibration Standard 500 WEAVER PARK RD,LONGMONT,CO 80501 Phone: 888-253-1635 Fax: 303-772-7673 **CERTIFICATE OF ACCURACY: Interference Free EPA Protocol Gas** Assay Laboratory Customer P.O. No.: P165299 COLORADO STATE UNIVERSITY SCOTT SPECIALTY GASES Project No.: 08-52254-027 **500 WEAVER PARK RD** ENERGY LAB LONGMONT, CO 80501 **430 NORTH COLLEGE** FORT COLLINS CO 80524 **ANALYTICAL INFORMATION** This certification was performed according to EPA Traceability Protocol For Assay & Certification of Gaseous Calibration Standards; Procedure #G1; September, 1997.

Cylinder Pressure***:	2006 PSIG		•		
•	•		• •	ANALYTICAL	
COMPONENT		CERTIFIED CONC	ENTRATION	ACCURACY**	TRACEABILITY
CARBON MONOXIDE		450	PPM	+/-1%	NIST
NITROGEN			BALANCE		

Certification Date:

*** Do not use when cylinder pressure is below 150 psig.

** Analytical accuracy is inclusive of usual known error sources which at least include precision of the measurement processes.

Product certified as +/- 1% analytical accuracy is directly traceable to NIST standards.

ALM025834

REFERENCE STANDARD					
TYPE/SRM NO.	EXPIRATION DATE	CYLINDER NUMBER	CONCENTRATION	COMPONENT	
NTRM 1680	4/09/99	ALM066528	498.8 PPM	CO/N2	,

INSTRUMENTATION

Cylinder Number:

INSTRUMENT/MODEL/SERIAL#	DATE LAST CALIBRATED	ANALYTICAL PRINCIPLE
FTIR System/8220/AAB9400251	12/31/98	Scott Enhanced FTIR
ANALYZER READINGS		

•••••		(Z=Zero Gas	R=Reference Gas	T=Test Gas	r=Correlation Coefficient)
	First Triad Analysis		Second Triad A	nalysis	Calibration Curve
•					

CARBON MONOXIDE

8/99 Respon	nse Unit: PPN	1
2 R1=4	98.55	T1 = 450.05
8 à Z2=-0	0.014	T2=449.43
5 T3=4	49.57	R3 = 498.67
entration:	449.7	PPM
	2 R1=4 8 Z2=-0 5 T3=4	2 R1 = 498.55 8 Z2 = -0.014 5 T3 = 449.57

Date: 01/15/99	Response Unit: PP	M	
Z1 = -0.304	R1 = 498.97	T1=450.17	
R2=499.05	Z2=-0.218	T2=450.03	
Z3=-0.226	T3=449.96	R3 = 498.37	
Avg. Concentratio	n: 450.1	PPM	
1			

Concentration = A + Bx + Cx2 + Dx3 + Ex4				
r=0.999990				
Constants:	A=0.000000			
B = 1.000000	C=0.000000			
D=0.000000	E=0.000000			

RATA CLASS

Special Notes: APPROVED BY: Devon VonFeldt

1/15/99

Exp. Date:

1/15/2002

			RATA (CLASS	
S	Scott Specialt	y Gases	Dual-Analy	yzed Calibration	Standard
	500 WEAVER PARK RD,LONGMONT	,CO 80501	Phone: 888-253	-1635 Fax: 303-7	72-7673
CERT	TIFICATE OF ACCURAC	Y: Interference Fr	ee EPA Proto	ocol Gas	
Assay I	Laboratory	•	Customer		
	· P.O. No.	: P165299		STATE UNIVERSITY	,
	SPECIALTY GASES Project N EAVER PARK RD	lo.: 08-52254-027	ENERGY LAB		
LONGM	10NT,CO 80501		430 NORTH	1	
ANALY	TICAL INFORMATION			IS CO 80524	
	tification was performed according to I re #G1; September, 1997.	EPA Traceability Protocol Fo	r Assay & Certification	of Gaseous Calibration	on Standards;
Cylinde	r Number: ALM025834 r Pressure***: 2006 PSIG	Certification Date	1/15/99	Exp. Date:	1/15/2002
COMPON		ERTIFIED CONCENTRATI	ANALY		ACEABILITY
		450 PPM	<u>+/-</u>		ST
NITROGE	EN	BALA	ANCE		x
	t use when cylinder pressure is below 150 p				
	cal accuracy is inclusive of usual known error t cartified as +/- 1% analytical accuracy is d			ement processes.	
REFEREN	ICE STANDARD			·	
TYPE/SRM NTRM 1680		LINDER NUMBER COM	498.8 PPM	COMPONENT CO/N2	
, ·· *	• • • • • • • • • • • • • • • • • • •				
	<u>MENTATION</u> ENT/MODEL/SERIAL#	DAT	E LAST CALIBRATED	ANAL	YTICAL PRINCIPLE
FTIR System	m/8220/AAB9400251		12/31/98	Scott	Inhanced FTIR
ANALY	ZER READINGS	•			
• • • • • • • • • • • • • • • • • • •	(Z=Zero Ga First Triad Analysis	as R=Reference Gas Second Triad An		Correlation Coeffici Calibratio	•
	N MONOXIDE 8/99 Response Unit: PPM	Date: 01/15/99 Response U	nit: PPM	Concentration = A + E	x+Cx2+Dx3+Ex4
Z1 = -0.192		Z1=-0.304 R1=498.9		r=0.999990	
R2=499.11 23=-0.105	5	R2=499.05 Z2=-0.218 Z3=-0.226 T3=449.90		Constants: B = 1.000000	A = 0.000000 C = 0.000000
Avg. Conce	miration: 449.7 PPM	Avg. Concentration: 4	50.1 PPM	D=0.000000	E=0.000000
	and the second sec				
				, '	
•	- 1942 (21)				
		•	, ,		
	₽ 5 6.4 \$ 5.2.2.4	×.			1
Special No	i i i 			•••	
	* /			6 6 8	
	OVED BY: Dayton Total	6		· *	
	Devon VonFeldt		tin ti		
a aresi¢innan A	(JTATA FIR'S	۰.	• • • • • • • •	(. 1
	· · • • • •				

.

From:	500 WEAV LONGMONT		RD	CO 8(0501	•	·	
	Phone: 8		1635		· • • -	Fax:	303-772-	7673
	CERI	IFIC	CAT	E O I	A	NALY	SIS	ĩ
COLORADO S	STATE UNIV	ERSITY					ECT #: 0 P165299	8-50854-00
EPT MECH	ENG ENERG	Y LAB						H2021764AL
30 N. COI	_		,				: 12/14/	
T COLLINS	5	(CO 80)523				
CYLINDE	R #: ALM04 ESSURE: 2							
CYLINDER FILL PRE	R #: ALM04	059 PSIC	 G	PRODU GAS	JCT EX	PIRATION	I: 12/10	/1999
CYLINDER FILL PRE BLEND TY	R #: ALM04 SSURE: 2	059 PSIC	 G	PRODU GAS REQU	JCT EX JESTED	PIRATION GAS	I: 12/10 ANALY	/1999 SIS
CYLINDER FILL PRE BLEND TY MPONENT	R #: ALM04 SSURE: 2 VPE : CERT	059 PSIC	 G	PRODU GAS REQU	JCT EX JESTED ONC MO	PIRATION GAS LES	I: 12/10 ANALY _(MC	/1999 SIS DLES)
CYLINDEF FILL PRE BLEND TY MPONENT LOCARBON	R #: ALM04 SSURE: 2 VPE : CERT	059 PSIC	 G	PRODU GAS REQU	JCT EX JESTED DNC MO	PIRATION GAS LES	I: 12/10 ANALY	/1999 SIS D <u>LES)</u> PPM
CYLINDEF FILL PRE BLEND TY MPONENT LOCARBON	R #: ALM04 SSURE: 2 VPE : CERT	059 PSIC	 G	PRODU GAS REQU	JCT EX JESTED DNC MO	PIRATION GAS LES PPM	I: 12/10 ANALY <u>(MC</u> 40.0	/1999 SIS D <u>LES)</u> PPM
CYLINDEF FILL PRE BLEND TY MPONENT LOCARBON	R #: ALM04 SSURE: 2 VPE : CERT	059 PSIC	 G	PRODU GAS REQU	JCT EX JESTED DNC MO	PIRATION GAS LES PPM	I: 12/10 ANALY <u>(MC</u> 40.0	/1999 SIS DLES) PPM
CYLINDEF FILL PRE BLEND TY MPONENT LOCARBON	R #: ALM04 SSURE: 2 VPE : CERT	059 PSIC	 G	PRODU GAS REQU	JCT EX JESTED DNC MO	PIRATION GAS LES PPM	I: 12/10 ANALY <u>(MC</u> 40.0	/1999 SIS D <u>LES)</u> PPM
CYLINDER FILL PRE BLEND TY	R #: ALM04 SSURE: 2 VPE : CERT	059 PSIC	 G	PRODU GAS REQU	JCT EX JESTED DNC MO	PIRATION GAS LES PPM	I: 12/10 ANALY <u>(MC</u> 40.0	/1999 SIS D <u>LES)</u> PPM

ANALYST:

2059 PSIG

STEVE SHOCKITES

Shipped From:	500 WEAVER H LONGMONT Phone: 888-2		CO 80501	Fax: 3	303-772-	7673
	CERTI	FICATE	E OF A	NALYS	SIS	
COLORADO	STATE UNIVERS	 [TY		PROJE	ECT #: 08	 3-50854-002
DEPT MECH 30 N. CO T COLLIN		AB CO 805	523	PO#: ITEM	P165299	H2021764AL
	R #: ALM04739 ESSURE: 2059					/1999
BLEND T	YPE : CERTIFI	ED MASTER (D GAS	ANALY	SIS
MPONENT LOCARBON			IOLES PPM	(MO	LES)
TROGEN	44			BALANCE		,
				· · ·	•	
				· .		
				· .		
			• •	· •		
				· ·	• .	
				•	• .	
			· ·	· · ·	•	
			•	•	•	
			•	•	• • •	
	·	•			• • •	
	·	•		•	• • •	

F

2059 PSIG

ANALYST: 🖊 L STEVE SHOCKITES

APPENDIX I

ľ

`

BASELINE METHANE/NON-METHANE ANALYZER

ı

1030H SOURCE METHANE/NON-METHANE

BASELINE FINAL TEST PROCEDURE

ORDER:

A

R

CSU

SERIAL #: 1322

VISUAL INSPECTION

- 1 Visual check per BLI Quality Assurance standards.
- 2 All cable connections secure and not damaged.
- 3 All solder connections clean, no cold solder joints.
- 4 Power cord and back panel plumbing fittings are provided.
- 5 All PC boards are serialized, with matching test slips in the unit file.
- 6 Verify plumbing according to attached application document.
- 7 Verify options according to attached engineering document.
- 8 Prior work order routings signed and completed.

FUNCTIONAL CHECK

- 1 470 ohm resistors correct.
- 2 Air and H2 regulators turn and lock correctly, gauges reflect pressure change.
- 3 Range switches function correctly.
- 4 Signal selection switch set to two position and centered on panel.
- 5 Power, Pump, Zero, and H2 switches work correctly.
- 6 Span pots turn easily and are set correctly

MOTHERBOARD

- 1 AC Power supply wired for correct source(110V/220V).
- 2 -5V, +15VISO, and -15V regulator isolated from chassis ground.
- 3 Ignite button jumps cut. (For Auto Ignite Option)
- 4 Confirm orientation on all capacitors.

ELECTRICAL CHECK

- 1 AC transformer voltages checked at J11.
- 2 DC regulator voltages checked at motherboard

а	+12VDC [11.97
b	-5 VDC=[-5.05
C	15 VDC=[14.9
d	-15 VDC=[-15.29
е	15V ISO = [15.25
f	+5 VDC=[5

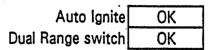
3 Collector Voltage checked at E2

а

b			

C

-148
-15
100


OPTIONS INSTALLED

	DK ·	Custom Collector Voltage Board
(ОК	Jumper selectable Collector Voltage
	ОК	Secondary trim pot on Amp board at P1
(ЭК	Dual 4-20mA Modules
()K	0-1V to 0-10V converters(on each 4-20mA module)

-150V supply =

-15V supply =

Custom supply =

110V

F

INTERFACE BOARD INSTALLATION

1 Install interface board on an extender card in slot 4

2 Place unit in "manual" mode, enter the logic codes listed below.

3 Check the voltages at the pins indicated.

<u> Pin #</u>	REST	LOGIC	RESET	VOLTS
3	0 VDC	01	XX,00	5 VDC
4	0 VDC	11	XX,00	5 VDC
5	0 VDC	21	XX,00	5 VDC
6	0 VDC	31	XX,00	5 VDC
7	0 VDC	41	XX,00	5 VDC
8	0 VDC	51	XX,00	5 VDC
9	0 VDC	61	XX,00	5 VDC
10	5 VDC	X1	00	0 VDC
11	0 VDC	15 or 25 & X1	16,26,00	15 VDC (unloaded)
12	5 VDC	X1	00	0 VDC
13	0 VDC	33	XX,00	5 VDC
15	0 VDC	55	XX,00	5 VDC
16	0 VDC	13	14,00	15 VDC (unloaded)
17	0 VDC	23	24,00	15 VDC (unloaded)
18 ·	0 VDC	45	46,00	5 VDC
20	0 VDC	25	26,00	5 VDC
22	0 VDC	15	16,00	5 VDC
Ĺ	5 VDC	X5	00	0 VDC
N	0 VDC	65	XX,00	5 VDC
Р	0 VDC	35	XX,00	5 VDC
S	0 VDC	X1	00	15 VDC (unloaded)
U	0 VDC	03	04,00	5 VDC
V	0 VDC	05	06,00	5 VDC

4 Remove the extender card and replace the interface board in slot 4.

AMPLIFIER BOARD INSTALLATION

- 1 Plug the amplifier board on the extender card in slot 7.
- 2 Clip a jumper between the bottom side of R4 and the upper right pin on the detector plug matrix.(DET 1)
- 3 In the MANUAL mode enter code 00(reset).
- 4 Set the RANGES to 2, the SPAN pots to 10, and the SIGNAL to Methane.

Set the Dual Range (HIGH/LOW) switch to LOW.

- 5 Adjust the voltage at pin 10 of U2 to 0.0mVDC with P2.
- Adjust the voltage at pin 12 of U2 to 0.0mVDC with P1.
 - 6 Enter code 01 (enable detector 1 signal out).
 - 7 Adjust the voltage at pin 12 of U4 to 0.0mVDC with P4.
 - 8 Enter code 00(reset).
 - 9 Adjust the voltage at pin 10 of U8 to 0.0mVDC with P12.
- 10 Adjust the voltage at pin 12 of U8 to 0.0mVDC with P13.
- 11 Enter code 01 and 05(SPAN).
- 12 Adjust the voltage at pin 10 of U8 to 1.00VDC with P3.
- 13 Remove the jumper and plug the ribbon cable into the electrometer.
- 14 Remove the extender card and replace the Amplifier board in slot 7.

special

special

G

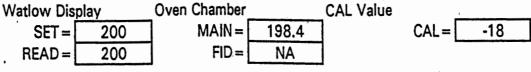
12/31/98

<u>.0C</u>

Pb1

·A1

void OFF void 100


25

-20 0

1 2 3 4 5 6	Make sure p Adjust the v Attach auto Adjust P2 u Turn unit of through a bi Diode 5(H2 Afterwards, and diode 4	roltage at test ignite test f ntil diode 10 f, then on to inary count s Shutoff) sho diode 5 sho (coil on) sho	PAL chip is in st point 1 to 3 ixture to test p (occilation free reset. Diodes sequence, with puld remain lit puld respond to puld respond to	.00V with P points 1-12. quency) turn 6-9 on the diode 4(coi until a binar the front p the Ignite b	is on every 10 secon test fixture should st il on) lighting every o y count of 10. anel H2 ON/OFF swi	ds. ep other step. tch
			, ,			
	SAMPLE PU		the front nand	lowitch		
			the front pane		against the case as t	hov
		h the oven v		or molating (against the case as t	ncy
				ibrating agai	nst each other.	
				•••	iount spacing.	
2	Access the the UP and Use the UP, M(mode) ke	setup menu DOWN keys /DOWN keys ey to advanc	s simultaneous	w temperatu Ily for three s Iriables withi selection.	re controller by press seconds. n a selection and the	
	0	٢L	-200	Ot 2	dEA	rtd
	Н	rH	1250	HSA	2	rP
	0	Ot 1	ht	LAt	nLA	rt
	С	HSC	2	SIL	OFF	PL
5	Use the UP M(mode) ke	/DOWN keys ey to advance	nenu by pressi s to change va ce to the next I by MSA-Bas	ariables withi selection.	de) key. n a selection and the	3
	3	Ct1	5	rA2	void	ALH
	0.15	Pb2	void	Ct2	void	CAL
	0.33	rE2	void	ALO	-25	AUt
	1					

- 7 Note: Most values in the operation menu will set themselves by setting the AUt selection to 2. See the Watlow Manual for more information.
- 8 Use the UP/DOWN keys to select a set point. Normally set at 200.
- **9** Monitor oven temperature with an external temperature probe. You will have to adjust the CAL value in the operation menu so that the Watlow controllers Temp. Read matches the external probe.

11 After athe temperature has stabilized, note the final value.

12/31/98

٩	
J	INTEGRATOR BOARD TEST
special	Set integrator board dip switch to 4(may have to be adjusted w/custom ranges)
	1 Note dip switch setting 8
	2 Set signal switch to Methane and the methane Range to 50.
special	Set the Dual Range switch to LOW
	3 Enter code 00, 05, 01. Wait 50 seconds. Enter code 02. Actual value found
	4 Adjust the methane span pot until the display reads 50.0 50.0
	Change the range to 20, display should read 20.0 19.7
	Change the range to 10, display should read 10.0 09.6
	Change the range to 5, display should read 5.00 5.00
	Change the range to 2, display should read 2.00 1.97
	Note methane span pot setting 8.22
special	Note: When a multiplication factor is involved on an instrument,
	multiply both the range and the display by the same amount.
	For example, a range of 50ppm (x10) is 500ppm, and the display of
	50.0 (x10) is also 500.
	5 Attach volt meter between pin 5 (methane out) and pin 1 (methane iso-ground).
special	Output should be 20.0 mA(w/4-20mA module) or 1.000V.
	7 Change the methane range back to 50.
	8 Enter code 00, 05, 01. Wait 25 seconds. Enter code 02.
	9 Value displayed should be 25.0 24.9
special	Output at pin 5 should be 12.0mA(w/4-20mA module) or 0.500V.
	11 Set the signal switch to Non-Methane.
	12 Enter code 00, 05, 11. Wait 50 seconds. Enter code 12. actual value found
	13 Adjust the non-methane span pot until the display reads 50.0 50.0
	Change the range to 20, display should read 20.0 19.6
	Change the range to 10, display should read 10.0 09.6
	Change the range to 5, display should read 5.00 5.00
	Change the range to 2, display should read 2.00
onatal	14 Attach volt meter between pin 6(non-methane out) and pin 9(non-meth iso-ground).
special	Output should be 20.0mA(w/4-20mA module) or1.000 VDC.
	16 Change the non-methane range back to 50.
	17 Enter code 00, 05, 11. Wait 25 seconds. Enter code 12.
enertet	18 Value displayed should be 25.0 24.9 24.9
special	Output at pin 5 should be 12mA(w/4-20mA module) or 0.500 VDC.0.519 Note non methane span pot setting.8.01

4-20mA OUTPUT OPTION (Methane)

К

Note: check all values below at the 4-20mA modules mounted on the instruments left side panel

- 1 Check for AC line voltage on dual 20V module.
- 2 Check U1 20V output

3 Check U2 20V output

20.41

4 Check 0-10V signal in at U on the mA module.

- 5 Check 4-20mA output between T (gnd) and I (signal) on the same side .
- 6 Indicate exact results using the span signal as the input.

input	output
00.0mV	4.05
10.11V	20.02

special

Check that the x10V board is operating correctly(pin 4 = 0.1V in, pin 3 = 0.10V out) (Non-Methane)

20.2

20.33

7 Check for AC line voltage on dual 20V module.

8 Check U1 20V output

9 Check U2 20V output

10 Check 0-10V signal in at UE on mA module.

11 Check 4-20mA output between terminal T (gnd) and I (signal) on the same side.

12 Indicate exact results using the span signal as the input.

input	output
00.0mV	3.99
10.11V	20.02

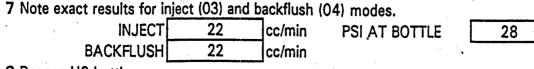
special Check that the x10V board is operating correctly(pin 4 = 0.1V in, pin 3 = 0.10V out)

FLOW CALIBRATION

 Attach H2 and HCF Air to their respective inlets on the back panel. Bottle pressure should be 40PSI in both cases. Note: It is common to "T" the Air line to provide pressure for both the

combustion Air inlet and the SP (valve actuation) inlet.

2 Attach a flow meter to the outlet side of the built in H2 regulator. Adjust the pressure until a flow of 40 cc/min is obtained.


3 Attach a flow meter to the outlet side of the Air regulator. Adjust to pressure until a flow of 200cc/min is obtained.

4 Note exact results.

. Air =	27	PSI at	200	cc/min.
H2 =	ı 21	PSI at	40	cc/min
	ADDIED IN a ant	In a second set 11		

5 Attach carrier gas to CARRIER IN port. (normally HCF Air or Zero N2)

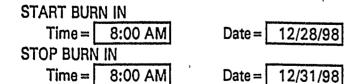
6 Adjust carrier gas bottle pressure until a flow of 45cc/min is obtained. Note: Flow must be measured at the FID inside the oven. H2 flow must be cut prior to measurement, and the temperature must have stabilized at the normal operational setting. Normally a bottle pressure of 25 PSI will produce the desired flow rate. Use a high temperature flow rate probe.

8 Reopen H2 bottle.

IGNITE FID

- 1 Install FID in the oven. Connect Fuel and Air lines. Make sure the extender and chimney locking collars are set tightly.
- 2 Attach the electrometer board to the extender as it emerges from the oven wall. After checking that the FID ignites, reattach the electrometer inside its shield with insulation.
- 3 Turn unit off, then on to reset the auto ignite sequence. Check for flame by looking for condensation on cold steel at the chimney vent.
- 4 Confirm that the ignite LED on the front panel lights when the flame does.
- 5 If the flame does not light:
 - a Manually light the flame by holding open the H2 ON/OFF switch and pressing the ignite button.
 - b Try increasing the H2 pressure slightly
 - c Remove the FID chimney and check that the coil is glowing brightly when the ignite button is pressed.

M <u>DISPLAY METER, RANGE, AND SIGNAL OUT TEST</u>


special The Dual Range swith adds a multiplier to the amp board circuit prior to the span signal, and so it should have no impact on this test.

- 1 Connect the multimeter to back panel terminals number 10(ground) and number 3(0 to 100mVDC signal out)
- 2 Enter code 00(reset). Ranges set to 2. Signal set to Methane.
- 3 Voltage at terminal 3 = 00.0 mVDC.
- 5 Enter code 01 (enable output)
- 6 Voltage at terminal 3 = 0.0 mVDC.
- 7 Enter code 05(span).
- 8 Voltage at terminal 3 = 100.0 mVDC.
- 9 Range Set to 5. Voltage at terminal 3 = 40.0 mVDC.
- 11 Range Set to 10. Voltage at terminal 3 = 20.0 mVDC.
- 12 Range Set to 20. Voltage at terminal 3 = 10.0 mVDC.
- 14 Range Set to 50. Voltage at terminal 3 = 4.0 mVDC.
- 15 Enter code 00(reset)
- 16 Voltage at terminal 2 = 0.000 VDC.
- 17 Enter code 01(enable output) and 05(span)
- 18 Voltage at terminal 2 = 10.0 VDC.

Ν

BURN IN

1 Let unit run for 48 hours with the sample pump drawing from a zero nitrogen stream at a slight overpressure.

Actual Values Found

CODE 11

0	
-	
 المتعرفة البالبا بالباري	

CODE 01

100	100
39.8	37.8
20	20
10	9.9
04.0	3. 9 ·

0	5.0
ند	

1	0.0)7

. 17

			10301	I SOURCE M	ETHA	NE	E / NON-I	ИЕТН	ANE		
				BASELINE APP	LICAT	ION	I DATA SH	EET			_
OR	DER:		· · · · · · · · · · · · · · · · · · ·	CSU	1				SERIAL #:	1322	1
-		COLL	ECTOR VOLTAG	SE:	Low		-15.18		DETECTOR:	FID	╉
-		0022			high		-99.8		Derteoroim		╉
	Ranges		DUAL (x100)20	0.500.1000.2)00		5K.1	0K.20K.50K		╈
	Columns		Part #	Material			bing	<u>,,,,,,,,</u>			t
		C1	SC001020	3S unibeads	6'	_	/8" SS				t
			SC001021	1S unibeads			/8" SS			·····	t
			Arangement:	Port 7 on the v	the second s			Port 6	on the valve		t
	Sample lo	op									T
		S1	10.7" x ,085 l.	D. SS	aprox	ima	tely 1 mL	volum	e		
	Program										
		<u>Step</u>	Time	<u>Code</u>				Des	scription	· · ·	
		00	00:00	03 0000	Inject	val	ve one			· ·	
		01	00:15	15 0015			etector one				
		02	01:33-	01 0114	Open	pea	ak one(met	hane)	window	·	1
		03	01:53-	02 0137	Close	pe	ak one(met	hane)	window		
		04	-02:00 -	04 0140			h valve one				
		05	03:36-	11 0 305	Open	pea	ak two(non	-meth	ane) window		
		06	04:30-	12 0 329	Close	pe	ak two(nor	n-meth	ane) window	· · · · · · · · · · · · · · · · · · ·	
		07	04:45	00 0335	Reset	loç	jic j				
		08	-04:50>	99 0345	Look	to I	Recycle				
										· · · ·	_
		99	-00:05	00 0004	Recyc	le					4
·			1		<u> </u>		<u> </u>				4
LIN	NEARITY T			Note: Dip swit	ch on i	nte	·····				+
	50(x100) ra	1		ne Peak		<u> </u>	50(x100)			nane Peak	+
		peak		Display				peak	PPM	Display	┥
	· · · · · · · · · · · · · · · · · · ·		.5.00	04.9				2	5.00 50.0	04.8 48.9	┥
		3		49.9	<u> </u>			4		2.31	┥
			ane Span: es Used:	<u>6.10</u> 2		No	L MEO feet		leth Span:		+
						Note: MEQ factors were not used since the Non-Met peak can be independently scaled and ranged at the			+		
1	HIGH LIN	_	TTACHED			1			uy scaled and range		-
	LOW LIN				Operators discretion. SEE CURVE SHEETS FOR HIGH RANGE LINEARITY			+			
3			I								-
<u>5</u> 4				· · · · · · · · · · · · · · · · · · ·	After shipment, run clean carrier gas through columns for 24 hours for best results						
=					-		24 10015 101	003110			_
FL	OWS			ELEC	TROM	ETE	R	OVEN	TEMPERATUR	ES	-
	stream	psi	<u>cc/min</u>		1		MegOhm	Contr	oller Type:	WATLOW	
	Air	27	200		1		υF	Temp	erature Set:	200	
	H2	21	40		1		T.C.	Temp	erature Read:	200	
	Sample	pump	2.2LPM	10	k/100k		at R6	Main	Oven:	198.4C	
	Carrier I	28	22		normal	Z	lero circuit				
	CarrierB	28	22	Carrier Gas Us	sed:		HCF Air				
-		(COMPLETED BY	AFN				DATE	12/31/98		

UNIT: 1030H M/N SERIAL # 1322 DATE 12/31/98 BY A.N. Separation Test 1 5000 ppm Methane 2 5000 ppm Propane 3 1% Methane 4 1% Propane BALANCE HCF Air high range FLOW SETTINGS PSI STREAM RATE 27 AIR 200 cc/min 21 H2 40 cc/min 28 Carier Inj. 22 cc/min 28 Carier Bk. 22 cc/min TRIM POT SETTINGS Methane 5.89 Non-Methane 2.26 ELECTROMETER	
DATE 12/31/98BYA.N.Separation Test1 5000 ppm Methane2 5000 ppm Propane31% Methane41% PropaneBALANCE HCF Airhigh rangeFLOW SETTINGSPSISTREAM27 AIR200 cc/min21 H240 cc/min28 Carrier Inj.22 cc/min28 Carrier Bk.22 cc/minTRIM POT SETTINGSMethane5.89Non-Methane2.26	
Separation Test 1 5000 ppm Methane 2 5000 ppm Propane 3 1% Methane 4 1% Propane BALANCE HCF Air high range FLOW SETTINGS PSI STREAM RATE 27 AIR 200 cc/min 21 H2 40 cc/min 28 Carier Inj. 22 cc/min 28 Carrier Bk. 22 cc/min TRIM POT SETTINGS Methane 5.89 Non-Methane 2.26	
Separation Test 1 5000 ppm Methane 2 5000 ppm Propane 3 1% Methane 4 1% Propane BALANCE HCF Air high range FLOW SETTINGS PSI STREAM RATE 27 AIR 200 cc/min 21 H2 40 cc/min 28 Carrier Inj. 22 cc/min 28 Carrier Bk. 22 cc/min TRIM POT SETTINGS Methane 5.89 Non-Methane 2.26	
1 5000 ppm Methane 2 5000 ppm Propane 3 1% Methane 4 1% Propane BALANCE HCF Air high range FLOW SETTINGS PSI STREAM RATE 27 AIR 200 cc/min 21 H2 40 cc/min 28 Carier Inj. 22 cc/min 28 Carrier Bk. 22 cc/min TRIM POT SETTINGS Methane 5.89 Non-Methane 2.26	
2 5000 ppm Propane 3 1% Methane 4 1% Propane BALANCE HCF Air high range FLOW SETTINGS PSI STREAM RATE 27 AIR 200 cc/min 21 H2 40 cc/min 28 Carier Inj. 22 cc/min 28 Carrier Bk. 22 cc/min TRIM POT SETTINGS Methane 5.89 Non-Methane 2.26	
3 1% Methane 4 1% Propane BALANCE HCF Air high range FLOW SETTINGS PSI STREAM 27 AIR 200 cc/min 21 H2 40 cc/min 28 Carier Inj. 22 cc/min 28 Carrier Bk. 22 cc/min TRIM POT SETTINGS Methane 5.89 Non-Methane 2.26	
4 1% Propane BALANCE HCF Air high range FLOW SETTINGS PSI STREAM 27 AIR 200 cc/min 21 H2 40 cc/min 28 Carier Inj. 22 cc/min 28 Carrier Bk. 22 cc/min TRIM POT SETTINGS - Methane 5.89 Non-Methane 2.26	
BALANCE HCF Air high range FLOW SETTINGS PSI STREAM 27 AIR 200 cc/min 21 H2 40 cc/min 28 Carier Inj. 22 cc/min 28 Carrier Bk. 22 cc/min TRIM POT SETTINGS Methane 5.89 Non-Methane	
high rangeFLOW SETTINGSPSI STREAM RATE27 AIR200 cc/min21 H240 cc/min28 Carier Inj.22 cc/min28 Carrier Bk.22 cc/minTRIM POT SETTINGSMethane5.89Non-Methane2.26	
FLOW SETTINGSPSISTREAMRATE27AIR200cc/min21H240cc/min28Carier Inj.22cc/min28Carrier Bk.22cc/min28Carrier Bk.22cc/minTRIM POT SETTINGS-Methane5.89Non-Methane2.26	
PSISTREAMRATE27AIR200cc/min21H240cc/min28Carier Inj.22cc/min28Carrier Bk.22cc/minTRIM POT SETTINGS-Methane5.89Non-Methane2.26	
27 AIR200 cc/min21 H240 cc/min28 Carier Inj.22 cc/min28 Carrier Bk.22 cc/minTRIM POT SETTINGSMethane5.89Non-Methane2.26	
21 H240 cc/min28 Carier Inj.22 cc/min28 Carrier Bk.22 cc/minTRIM POT SETTINGS-Methane5.89Non-Methane2.26	
28 Carier Inj.22 cc/min28 Carrier Bk.22 cc/minTRIM POT SETTINGS-Methane5.89Non-Methane2.26	
28 Carrier Bk.22 cc/minTRIM POT SETTINGSMethane5.89Non-Methane2.26	
TRIM POT SETTINGSMethane5.89Non-Methane2.26	
Methane5.89Non-Methane2.26	
Non-Methane 2.26	
1 MEGOHM	
1 MICROFARAD	
1 SEC T.C.	
10K/100K at R6	
normal zero circuit	
OVEN TEMPERATURES	
TYPE: WATLOW	4 2
200 SET	
200 READ	
198.4°C MAIN OVEN	
-18 CAL	
DETECTOR	
TYPE : FID	
COLLECTOR VOLTS: -99.8	
RANGE (x1000)	
Methane Non-Methane	
50000 ppm 50000 ppm	-
50 POSITION 50 POSITION	
CHART REC. SETTINGS	
SPEED: 5 mm/min	
FULL SCALE: 100mV	

UNIT: 1030H M/N	
SERIAL # 1322	
DATE 12/31/98 BY A.N.	
Separation Test	
1 500 ppm Methane	
2 500 ppm Propane	
3 5000ppm Methane	
4 5000ppm Propane	
BALANCE HCF Air	
low range	
FLOW SETTINGS	
PSI STREAM RATE	
27 AIR 200 cc/min	
21 H2 40 cc/min	4 3
28 Carier Inj. 22 cc/min	3
28 Carrier Bk. 22 cc/min	
TRIM POT SETTINGS	
Methane 6.10	
Non-Methane 2.31	
ELECTROMETER	
1 MEGOHM	
1 MICROFARAD	
1 SEC T.C.	
10K/100K at R6	
normal zero circuit	
OVEN TEMPERATURES	
TYPE: WATLOW	
200 SET	
200 READ	
198.4°C MAIN OVEN	
-18 CAL	
DETECTOR	
TYPE: FID	
COLLECTOR VOLTS: -1	
RANGE (x100)	
Methane Non-Methane	
5000 ppm 5000 ppm	
50 POSITION 50 POSITION	
· · · · · · · · · · · · · · · · · · ·	
CHART REC. SETTINGS	
SPEED: 5 mm/min	
FULL SCALE: 100mV	

Page 1 of 6

1030H SOURCE METHANE/NON-METHANE

BASELINE FINAL TEST PROCEDURE

ORDER:

A

В

C

D

E

SERIAL #: 132

VISUAL INSPECTION

1 Visual check per BLI Quality Assurance standards.

CSU

- 2 All cable connections secure and not damaged.
- 3 All solder connections clean, no cold solder joints.
- 4 Power cord and back panel plumbing fittings are provided.
- 5 All PC boards are serialized, with matching test slips in the unit file.
- 6 Verify plumbing according to attached application document.
- 7 Verify options according to attached engineering document.
- 8 Prior work order routings signed and completed.

FUNCTIONAL CHECK

- 1 470 ohm resistors correct.
- 2 Air and H2 regulators turn and lock correctly, gauges reflect pressure change.
- 3 Range switches function correctly.
- 4 Signal selection switch set to two position and centered on panel.
- 5 Power, Pump, Zero, and H2 switches work correctly.
- 6 Span pots turn easily and are set correctly

MOTHERBOARD

- 1 AC Power supply wired for correct source(110V/220V).
- 2 -5V, +15VISO, and -15V regulator isolated from chassis ground.
- 3 Ignite button jumps cut. (For Auto Ignite Option)
- 4 Confirm orientation on all capacitors.

ELECTRICAL CHECK

- 1 AC transformer voltages checked at J11.
- 2 DC regulator voltages checked at motherboard

а	+12VDC	11.82
b	-5 VDC=	-5.02
С	15 VDC=	14.94
d	-15 VDC=	-15.17
6	15V ISO =	15.01
f	+5 VDC=	5
		أعركين الفاكف وتينتكوني الفتكوان الفاقي والبناء

3 Collector Voltage checked at E2

-150V supply = а

-150V supply =	-146.8
-15V supply =	-15.18
Custom supply =	-98.7

OPTIONS INSTALLED

b

C

and the second se	1	
	OK	Custom Collector Voltage Board
	ОК	Jumper selectable Collector Voltage
•	OK	Secondary trim pot on Amp board at P1
	ОК	Dual 4-20mA Modules
	ОК	0-1V to 0-10V converters(on each 4-20mA module)
•	OK OK	Secondary trim pot on Amp board at P1 Dual 4-20mA Modules

Auto Ignite **OK Dual Range switch** OK

110V

Page 2 of 6

INTERFACE BOARD INSTALLATION

1 Install interface board on an extender card in slot 4

2 Place unit in "manual" mode, enter the logic codes listed below.

3 Check the voltages at the pins indicated.

<u> Pin #</u>	<u>REST</u>	LOGIC	RESET VOLTS	
3	0 VDC	01	XX,00	5 VDC
4	0 VDC	11	XX,00	5 VDC
5	0 VDC	21	XX,00	5 VDC .
6	0 VDC	31	XX,00	5 VDC
7	0 VDC	-41	XX,00	5 VDC
8	0 VDC	51	XX,00	5 VDC
9	0 VDC	61	XX,00	5 VDC
10	5 VDC	X1	00	0 VDC
11	0 VDC	15 or 25 & X1	16,26,00	15 VDC (unloaded)
12	5 VDC	X1	00	0 VDC
13	0 VDC	33	XX,00	5 VDC
15	0 VDC	55	XX,00	5 VDC
16	0 VDC	13	14,00	15 VDC (unloaded)
17	0 VDC	23	24,00	15 VDC (unloaded)
18.	0 VDC	45	46,00	5 VDC
20	0 VDC	25	26,00	5 VDC
22	0 VDC	15	16,00	5 VDC
L	5 VDC	X5	00	0 VDC
N	0 VDC	65	XX,00	5 VDC
Р	0 VDC	35	XX,00	5 VDC
S	0 VDC	X1	00	15 VDC (unloaded)
U	0 VDC	03	04,00	5 VDC
V	0 VDC	05	06,00	5 VDC

4 Remove the extender card and replace the interface board in slot 4.

AMPLIFIER BOARD INSTALLATION

- 1 Plug the amplifier board on the extender card in slot 7.
- 2 Clip a jumper between the bottom side of R4 and the upper right pin on the detector plug matrix.(DET 1)
- 3 In the MANUAL mode enter code 00(reset).
- 4 Set the RANGES to 2, the SPAN pots to 10, and the SIGNAL to Methane. Set the Dual Range (HIGH/LOW) switch to LOW.
- 5 Adjust the voltage at pin 10 of U2 to 0.0mVDC with P2. Adjust the voltage at pin 12 of U2 to 0.0mVDC with P1.
- 6 Enter code 01 (enable detector 1 signal out).
- 7 Adjust the voltage at pin 12 of U4 to 0.0mVDC with P4.
- 8 Enter code 00(reset).
- 9 Adjust the voltage at pin 10 of U8 to 0.0mVDC with P12.
- 10 Adjust the voltage at pin 12 of U8 to 0.0mVDC with P13.
- 11 Enter code 01 and 05(SPAN).
- 12 Adjust the voltage at pin 10 of U8 to 1.00VDC with P3.
- 13 Remove the jumper and plug the ribbon cable into the electrometer.
- 14 Remove the extender card and replace the Amplifier board in slot 7.

special

special

H

1

1

AUTO IGNITE BOARD CHECK

- 1 Make sure programmed PAL chip is in position U3 on the Auto Ignite board.
- 2 Adjust the voltage at test point 1 to 3.00V with P1.
- 3 Attach auto ignite test fixture to test points 1-12.
- 4 Adjust P2 until diode 10(occilation frequency) turns on every 10 seconds.
- 5 Turn unit off, then on to reset. Diodes 6-9 on the test fixture should step through a binary count sequence, with diode 4(coil on) lighting every other step.
- 6 Diode 5(H2 Shutoff) should remain lit until a binary count of 10. Afterwards, diode 5 should respond to the front panel H2 ON/OFF switch and diode 4(coil on) should respond to the Ignite button.
- 7 Short terminal 7 on the back panel to ground. The sequence should reset.

SAMPLE PUMP SETUP

- 1 Turn on the pump with the front panel switch.
- 2 Check that the fittings and lines are not vibrating against the case as they pass through the oven wall.
- 3 Check that the internal lines are not vibrating against each other.
- 4 If vibration is a problem, adjust the pump shock mount spacing.

TEMPERATURE CONTROLLER SETUP

- 1 Access the setup menu on the Watlow temperature controller by pressing the UP and DOWN keys simultaneously for three seconds.
- 2 Use the UP/DOWN keys to change variables within a selection and the M(mode) key to advance to the next selection.

LOC	0	rL	-200	Ot 2	dEA	rtd	void
In	H	rH	1250	HSA	2	rР	OFF
dEC	0	Ot 1	ht	LAt	nLA	rt	void
CF	C	HSC	2	SIL	OFF	PL	100

- 4 Access the operation menu by pressing the M(mode) key.
- 5 Use the UP/DOWN keys to change variables within a selection and the M(mode) key to advance to the next selection.
- 6 The normal values used by MSA-Baseline are:

Pb1	3	Ct1	5 [.]	rA2	void	ALH	25
rE1	0.15	Pb2	void	Ct2	void	CAL	-20
rA1	0.33	rE2	void	ALO	-25	AUt	0

- 7 Note: Most values in the operation menu will set themselves by setting the AUt selection to 2. See the Watlow Manual for more information.
- 8 Use the UP/DOWN keys to select a set point. Normally set at 200.
- 9 Monitor oven temperature with an external temperature probe. You will have to adjust the CAL value in the operation menu so that the Watlow controllers Temp. Read matches the external probe.

11 After athe temperature has stabilized, note the final value.

Watlow Dis	play	Oven Chamber		CAL Value	
. SET =	200	MAIN =	198.8		CAL = -11
READ =	200	FID=	NA		

	·	
J	INTEGRATOR BOARD TEST	
special	Set integrator board dip switch to 4(may have to be adjusted w/custon	n ranges)
	1 Note dip switch setting	8
	2 Set signal switch to Methane and the methane Range to 50.	
special	Set the Dual Range switch to LOW	
	3 Enter code 00, 05, 01. Wait 50 seconds. Enter code 02. Ac	tual value found
	4 Adjust the methane span pot until the display reads 50.0	50.0
	Change the range to 20, display should read 20.0	19.7
<pre>fill</pre>	Change the range to 10, display should read 10.0	09.7
	Change the range to 5, display should read 5.00	5.00
· • •	Change the range to 2, display should read 2.00	1.96
	Note methane span pot setting	7.99
special	Note: When a multiplication factor is involved on an instrument,	
	multiply both the range and the display by the same amount.	
	For example, a range of 50ppm (x10) is 500ppm, and the display of	· · ·
	50.0 (x10) is also 500.	
	5 Attach volt meter between pin 5(methane out) and pin 1 (methane iso-g	round).
🕳 special	Output should be 20.0 mA(w/4-20mA module) or 1.000V.	1
	7 Change the methane range back to 50.	
	8 Enter code 00, 05, 01. Wait 25 seconds. Enter code 02.	
	9 Value displayed should be 25.0	24.3
special	Output at pin 5 should be 12.0mA(w/4-20mA module) or 0.500V.	0.488
	11 Set the signal switch to Non-Methane.	
		tual value found
	13 Adjust the non-methane span pot until the display reads 50.0	50.0
	Change the range to 20, display should read 20.0	19.8
	Change the range to 10, display should read 10.0	09.7
	Change the range to 5, display should read 5.00	5.00
	Change the range to 2, display should read 2.00	
	14 Attach volt meter between pin 6(non-methane out) and pin 9(non-meth	
special	Output should be 20.0mA(w/4-20mA module) or1.000 VDC.	0.999
.	16 Change the non-methane range back to 50.	· ·
	17 Enter code 00, 05, 11. Wait 25 seconds. Enter code 12.	24.9
anasist	18 Value displayed should be 25.0	0.5
special	Output at pin 5 should be 12mA(w/4-20mA module) or0.500 VDC.	7.92
	19 Note non methane span pot setting.	

4-20mA Ol (Methane) OPTION

ĸ

Note: check all values below at the 4-20mA modules mounted on the instruments left side panel

20.43

20.23

Check that the x10V board is operating correctly(pin 4 = 0.1V in, pin 3 = 0.10V out)

19.9

20.15

- 1 Check for AC line voltage on dual 20V module.
- 2 Check U1 20V output
- 3 Check U2 20V output

4 Check 0-10V signal in at U on the mA module.

- 5 Check 4-20mA output between T (gnd) and I (signal) on the same side .
- 6 Indicate exact results using the span signal as the input.

input	output
00.0mV	3.98
10.11V	20.02

special

L

(Non-Methane)

7 Check for AC line voltage on dual 20V module.

8 Check U1 20V output

9 Check U2 20V output

10 Check 0-10V signal in at UE on mA module.

11 Check 4-20mA output between terminal T (gnd) and I (signal) on the same side.

12 Indicate exact results using the span signal as the input.

input	output
00.0mV	3.97
10.11V	19.93

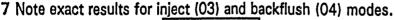
special Check that the x10V board is operating correctly(pin 4 = 0-1V in, pin 3 = 0-10V out)

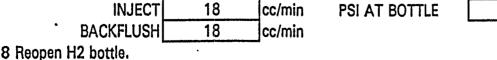
FLOW CALIBRATION

1 Attach H2 and HCF Air to their respective inlets on the back panel. Bottle pressure should be 40PSI in both cases. Note: It is common to "T" the Air line to provide pressure for both the

combustion Air inlet and the SP (valve actuation) inlet.

- 2 Attach a flow meter to the outlet side of the built in H2 regulator. Adjust the pressure until a flow of 40 cc/min is obtained.
- 3 Attach a flow meter to the outlet side of the Air regulator. Adjust to pressure until a flow of 200cc/min is obtained.
- 4 Note exact results.


Air =	24	PSI at	200	cc/min.
H2 =	22	PSI at	40	cc/min


26

5 Attach carrier gas to CARRIER IN port. (normally HCF Air or Zero N2)

6 Adjust carrier gas bottle pressure until a flow of 45cc/min is obtained.

 Note: Flow must be measured at the FID inside the oven. H2 flow must be cut prior to measurement, and the temperature must have stabilized at the normal operational setting. Normally a bottle pressure of 25 PSI will produce the desired flow rate. Use a high temperature flow rate probe.

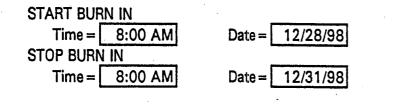
Μ

а

- 1 Install FID in the oven. Connect Fuel and Air lines. Make sure the extender and chimney locking collars are set tightly.
- 2 Attach the electrometer board to the extender as it emerges from the oven wall. After checking that the FID ignites, reattach the electrometer inside its shield with insulation.
- **3** Turn unit off, then on to reset the auto ignite sequence. Check for flame by looking for condensation on cold steel at the chimney vent.
- 4 Confirm that the ignite LED on the front panel lights when the flame does.
- 5 If the flame does not light:
 - Manually light the flame by holding open the H2 ON/OFF switch and pressing the ignite button.
 - b Try increasing the H2 pressure slightly
 - c Remove the FID chimney and check that the coil is glowing brightly when the ignite button is pressed.

DISPLAY METER, RANGE, AND SIGNAL OUT TEST

special The Dual Range swith adds a multiplier to the amp board circuit prior to the span signal, and so it should have no impact on this test.


- 1 Connect the multimeter to back panel terminals number 10(ground) and number 3(0 to 100mVDC signal out)
- 2 Enter code 00(reset). Ranges set to 2. Signal set to Methane.
- **3** Voltage at terminal 3 = 00.0 mVDC.
- 5 Enter code 01 (enable output)
- **6** Voltage at terminal 3 = 0.0 mVDC.
- 7 Enter code 05(span).
- 8 Voltage at terminal 3 = 100.0 mVDC.

9 Range Set to 5. Voltage at terminal 3 = 40.0 mVDC.

- 11 Range Set to 10. Voltage at terminal 3 = 20.0 mVDC.
- 12 Range Set to 20. Voltage at terminal 3 = 10.0 mVDC.
- 14 Range Set to 50. Voltage at terminal 3 = 4.0 mVDC.
- 15 Enter code 00(reset)
- 16 Voltage at terminal 2 = 0.000 VDC.
- 17 Enter code 01 (enable output) and 05(span)
- 18 Voltage at terminal 2 = 10.0 VDC.

<u>BURN IN</u>

1 Let unit run for 48 hours with the sample pump drawing from a zero nitrogen stream at a slight overpressure.

COMPLETED BY
AFN

CODE 01	CODE 11
Actual Valu	les Found
0]

- U	

00.0

10.04

100	101.8
39.1	40.6
19.5	20.5
9.7	10.2
03.8	4.1

1030H SOURCE METHANE / NON-METHANE BASELINE APPLICATION DATA SHEET OPDER: SERIAL #: 1321 COLLECTOR VOLTAGE: Low	_		***	10201	1 0		ETU/	NIT		METU	ANE	
OPDER: CSU SERIAL #: 1321 COLLECTOR VOLTAGE: Low -15.18 DETECTOR: FID Rances DUAL (x10)20.50,100.200.500(x100)200,500,000,200,5000 Columns Part # Material tubing - Columns Part # Material tubing - - - Arangement: Port 7 on the valve to C2 to C1 to Port 6 on the valve Sample loop - - - Step Time Code Description - - - 00 00+00 03 0000 Inject valve one - - - 01 00:15 15 0010 2135 Open pask one(methane) window - - 02 04:12 0714 Close pask two(non-methane) wind				10301	_		the second s				ANE	
COLLECTOR VOLTAGE: Low -15.18 DETECTOR: FID Image: Ima		DED.			DAG		LICAI		UATA SE		CEDIAL #	1221
Image Image Image Image Rences DUAL (x10)20,50,100,200,500(x100)200,500,1000,2000,5000 Image Image C1 SC001020 35 unibeads 6' x 1/8' SS Image C1 SC001020 35 unibeads 5' x 1/8' SS Image Arangement: Port 7 on the valve to C2 to C1 to Port 6 on the valve Sample loop Image Sample loop Image Image Image Image Step Time Code Image Image Program Image Image Image Image 00 90:00 0 000 Image Image Image 01 00:1: 15 0 0/15 Image Image 02 -0::::::::::::::::::::::::::::::::::::	<u>Ur</u>										SCHIAL #:	1321
Image Image Image Image Rences DUAL (x10)20,50,100,200,500(x100)200,500,1000,2000,5000 Image Image C1 SC001020 35 unibeads 6' x 1/8' SS Image C1 SC001020 35 unibeads 5' x 1/8' SS Image Arangement: Port 7 on the valve to C2 to C1 to Port 6 on the valve Sample loop Image Sample loop Image Image Image Image Step Time Code Image Image Program Image Image Image Image 00 90:00 0 000 Image Image Image 01 00:1: 15 0 0/15 Image Image 02 -0::::::::::::::::::::::::::::::::::::	_		COLL		25.		1.014		15 10		DETECTOR	EID
Rances DUAL (x10)20,50,100,200,500(x100)200,500,1000,2000,5000 Columns Part # Material tubing C1 SC001020 35 unbeads 6' x 1/8' SS C2 SC001021 15 unibeads 5' x 1/8' SS Arangement: Port 7 on the valve to C2 to C1 to Port 6 on the valve Sample loop Image: Code Description 00 64:00 03 06:00 Step Time Code Description 00 64:00 03 06:00 Inject valve one Description 01 00:15 15 015 GP 15' Close peak one(methane) window 03 6:#50 02 1.6' Close peak one(methane) window 03 6:#50 02 1.0' 3.0' Second 04 62:#60 04 02:00 Backflush valve one Description 05 60:#46 10 0.3'// 2' Close peak two(non-methane) window 06 64:#69 12 0'// 1' Close peak two(non-methane) w			UOLL								DETECTOR:	
Columns Part # Material tubing C1 SC001020 35 unibeads 6' x 1/8' SS		Danges		DUAL (v10)20	50 1	100 200 50	ويتفسين بجراهم والمتحد			00.20	00 5000	
C1 SC001020 3S unibeads 6' x 1/8' SS C2 SC001021 115 unibeads 5' x 1/8' SS Sample loop Arangement: Port 7 on the valve to C2 to C1 to Port 6 on the valve Sample loop Image: Sample loop Image: Sample loop Sten Time Code Description Sten Time Code Description 00 60:00 03 08:00 Inject valve one Image: Sample description 01 00:15 15 01/5 Enable detector one output Image: Sample description 02 -0+:25 01 01 02:0 04:12 Close peak one(methane) window 03 0::50 02:0 Ja 3:50 Open peak two(non-methane) window 06 0::4:50 10:0:3:35 Open peak two(non-methane) window 06 0::4:50 10:0:0:57 Open peak two(non-methane) window 07 0::4:50 10:0:0:57 Open peak Image: Simple description 08 0::4:50 10:0:0:57 Open peak Imag		the second second second second		and the second se		وراي الكالي المتحد المتحد الترجيا الأراي			the second s	100,20	00,5000	4
C2 SC001021 11 sunibeads 5'x 1/8' SS Arangement: Port 7 on the valve to C2 to C1 to Port 6 on the valve Sample loop Image: C2 to C1 to Port 6 on the valve Sample loop Image: C2 to C1 to Port 6 on the valve Step Time Code Program Image: C2 to C1 to Port 6 on the valve Step Time Code O0 060:03 060:015 Enable detector one output Image: C2 to C1 to Port 6 on the valve Description O0 060:02 for 15 to Port 5 Enable detector one output Image: C2 to C1 to Port 6 on the valve Description O3 071:05 O1 for 15 to Port 6 Enable detector one output Image: C2 to Port 20 be ack one(methane) window O2 for 15 to Port 6 O4 02:05 O2 for 15 to Port 6 Close peak two(non-methane) window O6 04:450 O0 of 5 for 12 cose peak two(non-methane) window O7 04:455 O0 of 25 for 20 be port 12 cost to Resct logic Image: C1 to Port 6 Ot 20 of 5 for 12 cose peak two 6 for 0		CORTINIS	C1				6'	_				
Arangement: Port 7 on the valve to C2 to C1 to Port 8 on the valve Sample loop aproximately 1 mL volume S1 10.7" x ,085 I.D. SS aproximately 1 mL volume Program aproximately 1 mL volume Description 00 90:00 03 00:00 Inject valve one Image: constraint of the valve 01 00:15 15 0015 Enable detector one output Image: constraint of the valve one Image: constraint of the valve one 02 -04:25 01 013 355 Open peak one(methane) window 03 04:50 02 0.5% Close peak two(non-methane) window 06 04:49 0.0 0.7% 0.46:45 00 0.7% 0.6 0.4:40 0.1 </td <td></td>												
Sample loop Sample loop S1 10.7" x .085 l.D. SS aproximately 1 mL volume Program Image: Step Time Cade 00 90+00 03 0000 01 00:15 15 0015 Enable detector one output 02 -94+25 01 01.03 Open peak one(methane) window 03 01+50 02 01.51 Open peak one(methane) window 04 02+00 04 02.00 Backflush valve one Image: Step one peak two(non-methane) window 05 02+45 11 03.35 Open peak two(non-methane) window 06 04+50 12 07/1/5 Close peak two(non-methane) window 07 04+456 00 07/3.5 Prescription 99 04405 00 04.50 Prescription 108 04+50 12 07/1/5 Look to Recycle 1199 04405 00 00.05,7 Recycle Image: Step on 0.05,0 108 04400 0.00 </td <td></td> <td></td> <td>- 04</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>Port 6</td> <td>on the value</td> <td></td>			- 04				_			Port 6	on the value	
S1 10.7" x ,085 l.D. SS aproximately 1 mL volume Program		Sample In	00	Alangementi						FULL		
Program Code Description 00 90:00 03 0000 Inject valve one Inject valve one 01 00:15 15 0015 Enable detector one output Inject valve one 02 -04:25 01 015 Enable detector one output Inject valve one 03 01:50 02 015 Close peak one(methane) window Inject valve one In		Sample IO						<u> </u>				
Program Code Description 00 90:00 03 0000 Inject valve one Inject valve one 01 00:15 15 0015 Enable detector one output Inject valve one 02 -04:25 01 015 Enable detector one output Inject valve one 03 01:50 02 015 Close peak one(methane) window Inject valve one In				10 7" × 085 I		22	anrox	ima	toly 1 ml	volum	0	
Step Time Cade Description 00 00-000 03 ØØØØ Inject valve one				10.7 x ,005 1.	0.3	<u> </u>	aprox	11110		Voluit		
00 00+00 03 0000 Inject valve one 01 00+15 15 0015 Enable detector one output 02 -9##25 01 0/13 Open peak one(methane) window 03 91:50 02 0/15 Close peak one(methane) window 04 02:00 04 02:00 Backflush valve one 05 09:45 11 03:35" Open peak two(non-methane) window 06 04:90 12 07/15 Close peak two(non-methane) window 06 04:90 12 07/15 Close peak two(non-methane) window 07 04:469 99 0/15 Look to Recycle			Stan	Time	Cod	0		L		Da	cription	
01 00:15 15 0015 Enable detector one output 02 -04+25 01 0/35 Open peak one(methane) window 03 04+200 04 0200 Backflush valve one 04 05 08+5 11 0335 Open peak two(non-methane) window 06 06 04+30 12 0745 Close peak two(non-methane) window 07 07 04+45 00 0745 Icox to the two(non-methane) window 07 08 04+59 99 0445 Look to Recycle 1 1 99 02495 00 0005 Recycle 1 1 1 1 1 50 00.05 Recycle 1 1 1 1 5.00 05.1 2 5.00 05.0 1 1 5.00 5.0 1 5.00 05.1 2 5.00 5.0 5.0 5.0 5.0 5.0 1 5.00	,			the second s			Inject	Val				
02 -01725 01 0/37 Open peak one(methane) window 03 01570 02 01574 Close peak one(methane) window 04 02:00 02:00 Backflush valve one				والمجاد الترادي المارية ومعروف والمربع المتحد المراجع والمتع					the second s		ıt	
03 01:50 02 01:54 Close peak one(methane) window 04 02:00 04 02:00 Backflush valve one 05 09:45:11 03:35:0 Open peak two(non-methane) window 06 04:49:0 0 07:0 04:49:0 0 08 04:60 99 0.49:5 Close peak two(non-methane) window 08 04:60 99 0.49:5 Close peak two(non-methane) window 09 00:00:5 Reset logic					<u> </u>			_				
04 02:00 Backflush valve one 05 09:45 11 03:35 Open peak two(non-methane) window 06 04:30 12 07:18 Close peak two(non-methane) window 07 04:45 00 07:30 Reset logic												
05 09:45 11 0 3 35' Open peak two(non-methane) window 06 04:490 12 07/18 Close peak two(non-methane) window 07 04:445 00 07/30' Reset logic Image: State interval in								<u> </u>			WIIIdow	
06 04:30 12 07/18 Close peak two(non-methane) window 07 04:450 00 07/30 Reset logic				and the second se				_			ane) window	
07 04:45 00 04:30 Reset logic 08 04:50 99 04/45 Look to Recycle								_	and the second se			
08 04:50 99 0445 Look to Recycle 99 90:05 00 00.05 Recycle LINEARITY TEST (LOW) Note: Dip switch on integrator card set to 8. 50(x100) range Methane Peak 50(x100) range Non Methane Peak peak PPM Display peak PPM 1 5.00 05.1 2 5.00 05.0 3 50.0 49.9 4 50.0 50.2 Methane Span: 534:08 Nor-Meth Span: 1,751:48 Curves Used: 2 Note: MEQ factors were not used since the Non-Methane CURVE SHEETS ATTACHED peak can be independently scaled and ranged at the 1 HIGH LINEARITY operators discretion. 1 2 LOW LINEARITY SEE CURVE SHEETS FOR HIGH RANGE LINEARITY 3						بنجاكي أبادي أشتر المتحد فالتناف				I-meui	ane, window	
99 QQ:Q5 00 Q Q Q Q S Recycle LINEARITY TEST (LOW) Note: Dip switch on integrator card set to 8. 50(x100) range Methane Peak 50(x100) range Non Methane Peak 1 5.00 05.1 2 5.00 05.0 3 50.0 49.9 4 50.0 50.2 Methane Span: 53 53 1.75 1.75 1.75 Curves Used: 2 Note: MEQ factors were not used since the Non-Methane 0 CURVE SHEETS ATTACHED peak can be independently scaled and ranged at the 1 1.15 1.75 1.48 2 LOW LINEARITY operators discretion. 1 1.75 1.48 2 LOW LINEARITY SEE CURVE SHEETS FOR HIGH RANGE LINEARITY 3 After shipment, run clean carrier gas through columns 4 4 for 24 hours for best results 1 5 ELECTROMETER OVEN TEMPERATURES 200 41 10 MegOhm Controller Type: WATLOW 41 200 0.1 uF Temperature Read: 200								_			······	
LINEARITY TEST (LOW) Note: Dip switch on integrator card set to 8. 50(x100) range Methane Peak 50(x100) range Non Methane Peak 1 5.00 05.1 2 5.00 05.0 3 50.0 49.9 4 50.0 50.2 Methane Span: 5324:00 Non-Meth Span: 1,751.48 Curves Used: 2 Note: MEQ factors were not used since the Non-Methane CURVE SHEETS ATTACHED peak can be independently scaled and ranged at the 1 HIGH LINEARITY operators discretion. 2 LOW LINEARITY SEE CURVE SHEETS FOR HIGH RANGE LINEARITY 3 After shipment, run clean carrier gas through columns 4 for 24 hours for best results ELOWS ELECTROMETER OVEN TEMPERATURES stream pai cc/min 10 MegOhm Controller Type: WATLOW Air 24 0 1 T.C. Temperature Read: 200 HIQ 10 MegOhm Controller Type: WATLOW Air 24 1 T.C. Temperature Read: 200 <t< td=""><td></td><td></td><td></td><td>04.00</td><td>00</td><td>0173</td><td>LOOK</td><td></td><td></td><td></td><td></td><td></td></t<>				04.00	00	0173	LOOK					
LINEARITY TEST (LOW) Note: Dip switch on integrator card set to 8. 50(x100) range Methane Peak 50(x100) range Non Methane Peak 1 5.00 05.1 2 5.00 05.0 3 50.0 49.9 4 50.0 50.2 Methane Span: 5324:00 Non-Meth Span: 1,751.48 Curves Used: 2 Note: MEQ factors were not used since the Non-Methane CURVE SHEETS ATTACHED peak can be independently scaled and ranged at the 1 HIGH LINEARITY operators discretion. 2 LOW LINEARITY SEE CURVE SHEETS FOR HIGH RANGE LINEARITY 3 After shipment, run clean carrier gas through columns 4 for 24 hours for best results ELOWS ELECTROMETER OVEN TEMPERATURES stream pai cc/min 10 MegOhm Controller Type: WATLOW Air 24 0 1 T.C. Temperature Read: 200 HIQ 10 MegOhm Controller Type: WATLOW Air 24 1 T.C. Temperature Read: 200 <t< td=""><td></td><td></td><td>99</td><td>00:05</td><td>00</td><td>DAAE</td><td>Becvo</td><td></td><td></td><td></td><td></td><td></td></t<>			99	00:05	00	DAAE	Becvo					
50(x100) rangeMethane Peak50(x100) rangeNon Methane PeakpeakPPMDisplaypeakPPMDisplay15.0005.125.0005.0350.049.9450.050.2Methane Span:5.2Non-Meth Span:1.751.48Curves Used:2Note: MEQ factors were not used since the Non-MethaneCURVE SHEETS ATTACHEDpeak can be independently scaled and ranged at the1 HIGH LINEARITYoperators discretion.2 LOW LINEARITYSEE CURVE SHEETS FOR HIGH RANGE LINEARITY3After shipment, run clean carrier gas through columns4for 24 hours for best resultsFLOWSELECTROMETERaOVEN TEMPERATURESstreampeilcc/min10MegOhmController Type:WATLOWAir2.612.204013.21.21.2113.22.21.2113.22.21.2113.23.22.21.2113.23.22.21.2114.23.23.22.21.2114.23.23.22.21.2114.23.23.23.23.23.2314.23.23.23.23.23.23.23.23.2314.23.23.23.23.23.23.23.23.23.23.23.23.23.	-		100 ·			0000	rice ye				· · · · · · · · · · · · · · · · · · ·	
50(x100) rangeMethane Peak50(x100) rangeNon Methane PeakpeakPPMDisplaypeakPPMDisplay15.0005.125.0005.0350.049.9450.050.2Methane Span:5.2Non-Meth Span:1.751.48Curves Used:2Note: MEQ factors were not used since the Non-MethaneCURVE SHEETS ATTACHEDpeak can be independently scaled and ranged at the1 HIGH LINEARITYoperators discretion.2 LOW LINEARITYSEE CURVE SHEETS FOR HIGH RANGE LINEARITY3After shipment, run clean carrier gas through columns4for 24 hours for best resultsFLOWSELECTROMETERaOVEN TEMPERATURESstreampeilcc/min10MegOhmController Type:WATLOWAir2.612.204013.21.21.2113.22.21.2113.22.21.2113.23.22.21.2113.23.22.21.2114.23.23.22.21.2114.23.23.22.21.2114.23.23.23.23.23.2314.23.23.23.23.23.23.23.23.2314.23.23.23.23.23.23.23.23.23.23.23.23.23.	LIN	VEARITY T	EST (OW)	Not	e: Dip swite	h on i	nte	arator care	set to	8.	
peakPPMDisplaypeakPPMDisplay15.0005.125.0005.0350.049.9450.050.2Methane Span:5.24:08Non-Meth Span:1,751.48Curves Used:2Note: MEQ factors were not used since the Non-MethaneCURVE SHEETS ATTACHEDpeak can be independently scaled and ranged at the1HIGH LINEARITYoperators discretion.2LOW LINEARITYSEE CURVE SHEETS FOR HIGH RANGE LINEARITY3After shipment, run clean carrier gas through columns4for 24 hours for best resultsELOWSELECTROMETERstreampaicc/min10Air2.40122004017.101082001220401132.21140101412.618normal281829104014126401412641104210441045200461472.6401412.640141422.214344444445464647474849 </td <td>factor of</td> <td></td> <td></td> <td>the second s</td> <td></td> <td></td> <td></td> <td>T</td> <td>1</td> <td></td> <td></td> <td>ane Peak</td>	factor of			the second s				T	1			ane Peak
1 5.00 05.1 2 5.00 05.0 3 50.0 49.9 4 50.0 50.2 Methane Span: 5384.08 Non-Meth Span: 1,751.48 Curves Used: 2 Note: MEQ factors were not used since the Non-Methane 2URVE SHEETS ATTACHED peak can be independently scaled and ranged at the 1 HIGH LINEARITY operators discretion. 2 LOW LINEARITY SEE CURVE SHEETS FOR HIGH RANGE LINEARITY 3 After shipment, run clean carrier gas through columns 4 for 24 hours for best results 5 ELECTROMETER OVEN TEMPERATURES stream pei cc/min 10 Air 24 200 0.1 uF 4 10 MegOhm Controller Type: WATLOW Air 24 200 0.1 uF Temperature Read: 200 H2 29 40 1 T.C. Temperature Read: 200 Sample pump 2.2LPM 10k/100k <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td></t<>								-				
3 50.0 49.9 4 50.0 50.2 Methane Span: 5.3 5.4 Non-Meth Span: 1,75 1,75 CURVE SHEETS ATTACHED peak can be independently scaled and ranged at the 1 1,75 1.48 1 HIGH LINEARITY operators discretion. 1 1 2 LOW LINEARITY SEE CURVE SHEETS FOR HIGH RANGE LINEARITY 3 3 After shipment, run clean carrier gas through columns 4 4 for 24 hours for best results 1 5 ELECTROMETER OVEN TEMPERATURES stream gai 10 MegOhm Controller Type: WATLOW Air 24 200 0.1 uF Temperature Read: 200 H2 29 40 1 T.C. Temperature Read: 200 Sample pump 2.2LPM 10k/100k at R6 Main Oven: 198.8C Carrier 1 26 18 carrier Gas Used: HCF Air 198.8C			1	The second se								
Methane Span:5384-08-Non-Meth Span:1,751-48Curves Used:2Note: MEQ factors were not used since the Non-MethaneCURVE SHEETS ATTACHEDpeak can be independently scaled and ranged at the1HIGH LINEARITYoperators discretion.2LOW LINEARITYSEE CURVE SHEETS FOR HIGH RANGE LINEARITY3After shipment, run clean carrier gas through columns4for 24 hours for best results5ELECTROMETER9OVEN TEMPERATURES10MegOhmAir24, 20011T.C.12200124013T.C.1422201531015410154101551015			3								and the second se	
Curves Used: 2 Note: MEQ factors were not used since the Non-Methane CURVE SHEETS ATTACHED peak can be independently scaled and ranged at the 1 HIGH LINEARITY operators discretion. 2 LOW LINEARITY SEE CURVE SHEETS FOR HIGH RANGE LINEARITY 3 After shipment, run clean carrier gas through columns 4 for 24 hours for best results FLOWS ELECTROMETER OVEN TEMPERATURES stream pei cc/min 10 MegOhm Controller Type: WATLOW Air 24 10 MegOhm Controller Type: WATLOW Air 24 200 0.1 uF Temperature Set: 200 Air 24 200 1 T.C. Temperature Read: 200 Karper at the carrier 10k/100k at R6 Main Oven: 198.8C Carrier I 26 18 Carrier Gas Used: HCF Air Incervice					53			-			a la	the second s
CURVE SHEETS ATTACHED peak can be independently scaled and ranged at the 1 HIGH LINEARITY operators discretion. 2 LOW LINEARITY SEE CURVE SHEETS FOR HIGH RANGE LINEARITY 3 After shipment, run clean carrier gas through columns 4 for 24 hours for best results 5 ELECTROMETER 6 VEN TEMPERATURES 5 stream 9 200 10 MegOhm 10 MegOhm 11 T.C. 12 220 13 10 14 10 15 240 16 1 17.C. Temperature Set: 200 1 17.C. Temperature Read: 200 1 10 Main Oven: 198.8C Carrier I 26 18 18 Carrier Gas Used: 10 HCF Air						ويستبدئ فبراقت ويستعد ويستوجيه أعت		No	te: MEQ facto			
1 HIGH LINEARITY operators discretion. 2 LOW LINEARITY SEE CURVE SHEETS FOR HIGH RANGE LINEARITY 3 After shipment, run clean carrier gas through columns 4 for 24 hours for best results 5 ELECTROMETER 9 OVEN TEMPERATURES 1 10 MegOhm 1 24 0.1 1 10 MegOhm 1 24 200 1 10 MegOhm 1 24 200 1 10 MegOhm 1 10 10 1 10 10 1 10 10 1 10 10 1 10 10 1 10 10 1 10 10 1 10 10	CU	JRVE SHEI				فيقاد بجري مرما النطب طحيات الا						
2 LOW LINEARITY SEE CURVE SHEETS FOR HIGH RANGE LINEARITY 3 After shipment, run clean carrier gas through columns 4 for 24 hours for best results 5 ELECTROMETER 9 OVEN TEMPERATURES 10 MegOhm Controller Type: 10 MegOhm Controller Type: 11 T.C. Temperature Set: 200 11 T.C. Temperature Read: 200 11 T.C. Temperature Read: 200 12 22 40 1 T.C. 11 T.C. Temperature Read: 200 11 Sample pump 2.2LPM 10k/100k at R6 Main Oven: 198.8C 12 26 18 carrier Gas Used: HCF Air Image: Control of the set in the set	Cold and	A CONTRACTOR OF A CONTRACT						+		·•	,	
3 After shipment, run clean carrier gas through columns 4 for 24 hours for best results FLOWS ELECTROMETER OVEN TEMPERATURES stream pel cc/min 10 MegOhm Controller Type: WATLOW Air 245 200 0.1 uF Temperature Set: 200 H2 220 40 1 T.C. Temperature Read: 200 Sample pump 2.2LPM 10k/100k at R6 Main Oven: 198.8C Carrier I 26 18 Carrier Gas Used: HCF Air ICF Air	and the	- AND THE REPORT OF A DESCRIPTION OF A D		the second s				+			R HIGH RANGE LIN	EARITY
4 for 24 hours for best results FLOWS ELECTROMETER OVEN TEMPERATURES stream psi cc/min 10 MegOhm Controller Type: WATLOW Air 245 200 0.1 uF Temperature Set: 200 H2 29 40 1 T.C. Temperature Read: 200 Sample pump 2.2LPM 10k/100k at R6 Main Oven: 198.8C Carrier I 26 18 normal Zero circuit Image: Colored text in the set in the se	- 1 T.	Constraint and and an other state of the local division of the loc	Γ		1		<u> </u>	+				
FLOWSELECTROMETEROVEN TEMPERATURESstreampeicc/min10MegOhmController Type:WATLOWAir2452000.1uFTemperature Set:200H2210401T.C.Temperature Read:200Samplepump2.2LPM10k/100kat R6Main Oven:198.8CCarrier I2618normalZero circuit			1									
streampaicc/min10MegOhmController Type:WATLOWAir2452000.1uFTemperature Set:200H2220401T.C.Temperature Read:200Samplepump2.2LPM10k/100kat R6Main Oven:198.8CCarrier I2618normalZero circuitCarrierB2618Carrier Gas Used:HCF Air			1									
streampaicc/min10MegOhmController Type:WATLOWAir2452000.1uFTemperature Set:200H2210401T.C.Temperature Read:200Samplepump2.2LPM10k/100kat R6Main Oven:198.8CCarrier I2618normalZero circuitCarrierB2618Carrier Gas Used:HCF Air	FL	ows	1			ELECT	ROM	TE	R	OVEN	TEMPERATUR	ES
Air2 (\$)2000.1uFTemperature Set:200H22 (2)401T.C.Temperature Read:200Samplepump2.2LPM10k/100kat R6Main Oven:198.8CCarrier I2618normalZero circuitCarrier B2618Carrier Gas Used:HCF Air		1	psi	cc/min	1		1	-				
H22D401T.C.Temperature Read:200Samplepump2.2LPM10k/100kat R6Main Oven:198.8CCarrier I2618normalZero circuit198.8CCarrier B2618Carrier Gas Used:HCF Air100	-		the second s			•		-				
Samplepump2.2LPM10k/100kat R6Main Oven:198.8CCarrier I2618normalZero circuitCarrierB2618Carrier Gas Used:HCF Air	-		the second se		1	174 <u>1 171 - 174 - 1845</u> - 1845	1	1		<u> </u>		
Carrier I 26 18 normal Zero circuit CarrierB 26 18 Carrier Gas Used: HCF Air				2.2LPM		10k	/100k					The second s
CarrierB 26 18 Carrier Gas Used: HCF Air					1			· · · · · · ·				
		CONTRACTOR OF CONTRACTOR			Car							
	-		0	OMPLETED BY		AFN		T	1.	DATE	1,2/31/98	

-

j

UNIT: 1030H M/N					•
SERIAL # 1321			r de la companya de la compa	-	
DATE 12/31/98 BY A.N.					
Separation Test		•			
1 50 ppm Methane					
2 50 ppm Propane		4			
3 500ppm Methane	-		3		
4 500ppm Propane					
BALANCE HCF Air					
low range					-
FLOW SETTINGS					
PSI STREAM RATE	, i				
24 AIR 200 cc/min					
22 H2 46- 30 -cc/min					
26 Carier Inj. 18 cc/min					
26 Carrier Bk. 18 cc/min					
TRIM POT SETTINGS					
Methane 4.08					
Non-Methane 1.48					·
ELECTROMETER					
10 MEGOHM					
0.1 MICROFARAD					
1 SEC T.C.					
10K/100K at R6					
normal zero circuit					
OVEN TEMPERATURES					
TYPE: WATLOW					
200 SET					
200 READ					
198.8°C MAIN OVEN					
-11 CAL					
DETECTOR	I share the second s				
TYPE: FID					
COLLECTOR VOLTS: -15.18					
			2		
RANGE (x10)				2	
Methane Non-Methane		 			
500 ppm 500 ppm					
50 POSITION 50 POSITION					
· ·				·/ \	
CHART REC. SETTINGS					
SPEED: 5 mm/min			; t		
FULL SCALE: 100mV	/ <u></u>		<u></u>		

CSU	
UNIT: 1030H M/N	
SERIAL # 1321	
DATE 12/31/98 BY A.N.	
Separation Test	
1 500 ppm Methane	
2 500 ppm Propane	
3 5000ppm Methane	
4 5000ppm Propane	
BALANCE HCF Air	
high range	
FLOW SETTINGS	
PSI STREAM RATE	
24 AIR 200 cc/min	
22 H2 년 403 0 cc/min	
26 Carier Inj. 18 cc/min	
26 Carrier Bk. 18 cc/min	
TRIM POT SETTINGS	
Methane 4.08	
Non-Methane 1.48	
ELECTROMETER	
10 MEGOHM	
0.1 MICROFARAD	
1 SEC T.C.	
10K/100K at R6	
normal zero circuit	
OVEN TEMPERATURES	
TYPE: WATLOW	
200 SET	
200 READ	
198.8°C MAIN OVEN	
-11 CAL	
DETECTOR	
TYPE : FID	
COLLECTOR VOLTS: -15.18	2 1 2
RANGE (x100)	
Methane Non-Methane	
5000 ppm 5000 ppm	
50 POSITION 50 POSITION	
CHART REC. SETTINGS	
SPEED: 5 mm/min	
FULL SCALE: 100mV	

APPENDIX J

PRESSURE AND TEMPERATURE CALIBRATIONS

Waukesha Engine Testbed Calibrations

Date:	3-2-99	
Test:	EPA	

PRESSURES

.

E.01621416)6	Range	Zere	Span	Scipioni	Reading
Intercooler Water	0-30psi	0	. 29	20	20.1
Fuel/Air Manifold	· · · ·			· · ·	
and Air Manifold	0-250"H2O				
Diff.		0	250.4	125	125.2
Fuel Supply and Air		•			
Manifold Diff	0-15"H2O	0.1	15	7	7.1
Fuel Supply	0-50psi	0.2	50. 5	30	36
Intercooler Water	0-150"H2O				
Diff		- (148	25	24
Intercooler Air Diff	0-15"H2O	0	15	ッ	2
Airbox	0-100"H2O	0	99.9	50	49.9
Intercooler Air	0-1 3 0psi	0	130,1	70	20.8
Exhaust	0-100"H2O	0	18	50	49
Catalyst Diff	0-80"H2O	0.2	7.9.3	40	39.7
Orifice Diff	0-100"H2O	0	99.8	55	551
Orifice Static	0-70psi	6	69.8	69.)	69.64
Engine Oil	0-300psi	0,1	299.4	200	199.7
Turbo Oil	0-300psi	0	299.7	200	199.8
Pre Turbo Exhaust	0-30psi	0	30,1	20	19.9

Waukesha Engine Testbed Calibrations

ī

Date: 8/2/99 Test: <u>FPA</u>

TEMPERATURES

Location	Range	Zin	Span	Semoin	Reading
Dyno Water In	0-200°F	3	203	80	83
Dyno Water Out	0-200°F	3	203	130	133
Intercooler Water In	0-200°F	3	203	120	/23
Intercooler Water Out	0-200°F	3	203	180	183
Intercooler Air In	0-300°F	4	303	290	293
Intercooler Air Out	0-300°F	6	304	130	135
Intake Manifold	0-200°F	З	203	130	133
Engine Jacket Water In	0-200°F		204	180	184
Engine Jacket Water Out	0-200°F	4 3	203	180	183
Air/Fuel Intake Manifold	0-200°F	3	203	150 .	153
Air Manifold In	0-200°F	4	2.04	130	134
Lube Oil Cooling Water In	0-200°F	3	203	160	163
Lube Oil Cooling Water Out	0-200°F	3	203	163	164
Oil Header	0-200°F	2	203	160	163
Engine Lube Oil In	0-200°F	2	203	160	162
Engine Lube Oil Out	0-200°F	4	204	150	184
Engine Fuel Gas	0-200°F	3	203	150	153
Exhaust Cylinder #1	0-350°F/57	2	1002	950	952
Exhaust Cylinder #2	0-850°F1	3	1853	750	953
Exhaust Cylinder #3	0-\$50°F	3	1903	250	953
Exhaust Cylinder #4	0-850°F	4	1004	450	954
Exhaust Cylinder #5	0-850°F	- 3	1003	550 .	753
Exhaust Cylinder #6	0-850°F	¥	1004	950	954
Pre Turbo Exhaust	0-1000°F	4	1304	950	954
Post Turbo Exhaust	0-1000°F	z	1803	709	703
Pre Catalyst	0-850°F	2	853	650	6.53
Post Catalyst	0-850°F	Ś	853	650	653
Exhaust Header	0-850°F	£	854	650	654.

APPENDIX K

EQUIPMENT CERTIFICATION SHEETS

•

El Paso Energy Tennessee Gas Pipeline Measurement Services Metrology Center Laboratory Report

Important Document

These documents certify that the instrument indicated has been inspected in accordance with accepted measurement practices and quality control procedures established for this laboratory and demonstrates reliable performance made by direct comparison to standards maintained by the Metrology Center. The Metrology Center standards are serviced and re-certified on a periodic basis with an unbroken chain of measurements traceable to the U.S. National metrology standards retained by the National Institute of Standards and Technology(NIST).

Duplicate copies of these documents are maintained on file for five years. The statistical information from our prior certifications provides the basis for assignment of certification period validity and preventative maintenance procedures.

The Metrology Center is a controlled environment facility located 30 06 15 North and 95 50 14 West at an elevation of 253ft above sea level. For additional information, duplicates of this document, or a complete file copy, please write to P.O. box 280, Hockley TX 77447 or call (713) 757-6685, and talk to Tim Hannan the Lead Metrology Specialist.

Report #

99031903

El Paso Energy Tennessee Gas Pipeline Measurement Services Metrology Center Laboratory Report # 99031903 Receiving Report

Date Received in Lab:3/17/99Serial Numbers11514Model NumbersBeta 0-5, 0-100

Inspections:

1. Received with or without freight damage decribed as follows: None

2. Received missing parts listed as follows: None

3. Received with physical damage described as follows: None

4. Received without case? No

5. Received with damaged case? No

6. Received with calibration tag removed? No

7. Received partially or completely assembled? No

8. Received with apparent fluid or particle contamination? No

9. Received with quick connects or valves? No

(quick connects and valves will be removed for testing.)

Maintenance & Repair Report

The information below is in reference to any preventative or repair measures provided during the certification procedures.

1. Inspected connectors & cables for electrical integrity as applicable. OK

2. Tested battery and charger as applicable

Parts used: 1	, qty	Description/Reason for usage	
2		· ·	
3			
4	 		
5			
б		· · · · · · · · · · · · · · · · · · ·	

Recommendations: None

Comments:

El Paso Energy Tennessee Gas Pipeline Measurement Services Metrology Center Laboratory Report # 99031903 Standards of Comparison

The primary and secondary standards below are the comparison basis for the equipment under test. These instruments are periodically tested by approved authorities and may be traced to the National Institute of Standards and Technology.

Equipment	Range Accuracy	Certification Date Re-certification Due
a. DH Hydraulic piston & cyl. No. 3342	200 psi/kg 0.01 % of reading	04/30/98 04/30/00
		· · ·
.2. DH 1502 Divider No.	0-20 psid	04/22/98
4087	0.01 % of reading	04/22/00
. DH 10KG Mass Set No.	0-10 kg	07/17/97
2590	0.002% of reading	07/17/99
4. DH Pneumatic piston	250 psig/kg	07/24/97
& cyl. No. 3674A	0.01 % of reading	07/23/99
5. Ametek PK Ball &	654 In. H2O	07/31/98
Nozzle No. 82579	0.015 % of reading	07/31/99
. 6. Ametek PK Mass Set No. 82579	4&10"wtc+654"WC Included	07/31/98 07/31/99
. Paroscientific Mdl 760-15G	0-15 psig	08/10/98
No. 67204	.01% FS	08/10/99
s. Hart Scientific Mdl 9105	-13 to +284 degrees F	02/13/98
No.82563	.1 degrees F	02/13/99
9. Ametek / M & G RK-200 SS	0-200 psig	08/14/98
No. 72793	0.025% of reading	08/14/99

Report # 99031903

DATE: 3/19/99

Certificate of Accuracy

DIVISION / OWNER:Gary HutchersonINSTRUMENT TYPE:Beta 320, 0-5INSTRUMENT MFG.:HathawayGRAVITY:N/ASERIAL #:11514TEST STANDARD:AMETEK - PK TESTER (.015 % OF READING)

COMMENTS: Tested with Paroscientific Standard. The following results are based on 73 degree data.. Prior to testing the unit was powered up for 30 minutes. Cycled unit from zero to span several times before testing.

* Unit left within manufacturers specifications.

AMET	AMETEK PK STANDARD			AS				AFTER	
	(IN. H2O)				RECEIVED		CAI	LIBRATION	V - V
CORI	RECTED FOR	SITE		INST.	% READ	% F.S.	INST.	% READ	% F.S.
GRAV	ITY + A.G.A.	TEMP.		READING	ERROR	ERROR	READING	ERROR	ERROR
0.00	=	0.00		0.000	0.000	0.000	0.000	0.000	0.000
30.00	=	30.00		30.140	0.467	0.009	29.990	0.033	0.001
60.00	=	60.00		60.210	0.350	0.014	59.990	0.017	0.001
90.00	z	90.00		90.190	0.211	0.013	89.990	0.011	0.001
120.00	=	120.00		120.030	0.025	0.002	120.020	0.017	0.001
140.00	z	140.00		139.820	0.129	0.012	140.000	0.000	0.000
120.00	z	120.00		120.050	0.042	0.003	120.020	0.017	0.001
90.00	=	90.00		90.240	0.267	0.016	90.010	0.011	0.001
60.00	E	60.00		60.260	0.433	0.017	60.010	0.017	0.001
30.00	=	30.00		30.190	0.633	0.013	30.000	0.000	0.000
0.00	2	0.00		0.000	0.000	0.000	0.000	0.000	0.000

Calibration Date : Calibration Due Date :

3/19/99 9/16/99

BY: Rene Elizalde

signature:

230UPDN.WK3

6-97

PCM 1997

Certificate of Accuracy

DIVISION / OWNER: Gary Hutcherson **INSTRUMENT TYPE:** Beta 320, 0-100 Hathaway **INSTRUMENT MFG.:** N/A **GRAVITY:** SERIAL #: 11514 TEST STANDARD: Ametek HL-200-SS D.W. (.05 % OF READING)

OMMENTS: Tested with Paroscientific Standard. The following results are based on 73 degree data.. Prior to testing the unit was powered up for 30 minutes. Cycled unit from zero to span several times before testing.

Unit left within manufacturers specifications.

the second s		and the second		ليتقد مختفاه والبادي ويستعد فالتقب والمستعد والتها	the second s					
Ametek	STANDARD	(PSIG)		· · ·	AS				AFTER	
CORI	RECTED FOR	SITE		1. 	RECEIVED			CAI	LIBRATION	Ŕ
	GRAVITY	1		INST.	% READ	% F.S.		INST.	% READ	% F.S.
979.308	(lab)/980.665(st	andard)		READING	ERROR	ERROR		READING	ERROR	ERROR
0.00	·	0.00		0.000	0.000	0.000		0.000	0.000	0.000
25.00		24.965		24.96	0.022	0.000		24.95	0.062	0.001
50.00		49.931		49.94	0.018	0.001		49.93	0.002	0.000
75.00	2	74.896		74.94	0.058	0.003		74.89	0.008	0.000
100.00		99.862		99.90	0.038	0.003		99.85	0.012	0.001
75.00	= ·	74.896		74.95	0.072	0.004		74.88	0.022	0.001
50.00	-	49.931		49.94	0.018	0.001		49.93	0.002	0.000
25.00	=	24.965		24.97	0.018	0.000		24.95	0.062	0.001
0.00		0.00		0.000	0.000	0.000		0.000	0.000	0.000
	CORI 979.308 0.00 25.00 50.00 75.00 75.00 50.00 25.00	CORRECTED FOR GRAVITY 979.308(lab)/980.665(st 0.00 = 25.00 = 50.00 = 75.00 = 75.00 = 50.00 = 75.00 = 50.00 = 25.00 =	$\begin{array}{r llllllllllllllllllllllllllllllllllll$	CORRECTED FOR SITE GRAVITY979.308(lab)/980.665(standard) $0.00 = 0.00$ $25.00 = 24.965$ $50.00 = 49.931$ $75.00 = 74.896$ $100.00 = 99.862$ $75.00 = 74.896$ $50.00 = 49.931$ $25.00 = 24.965$	CORRECTED FOR SITE GRAVITY979.308(lab)/980.665(standard)INST. READING $0.00 = 0.00$ 0.000 $25.00 = 24.965$ 24.96 $50.00 = 49.931$ 49.94 $75.00 = 74.896$ 74.94 $100.00 = 99.862$ 99.90 $75.00 = 74.896$ 74.95 $50.00 = 49.931$ 49.94 $25.00 = 24.965$ 24.97	CORRECTED FOR SITE GRAVITYRECEIVED979.308(lab)/980.665(standard)INST. % READ READING $0.00 = 0.00$ 0.000 0.000 $25.00 = 24.965$ 24.96 0.022 $50.00 = 49.931$ 49.94 0.018 $75.00 = 74.896$ 74.94 0.058 $100.00 = 99.862$ 99.90 0.038 $75.00 = 74.896$ 74.95 0.072 $50.00 = 49.931$ 49.94 0.018 $25.00 = 24.965$ 24.97 0.018	CORRECTED FOR SITE GRAVITYRECEIVED979.308(lab)/980.665(standard)INST.% READ% F.S.979.308(lab)/980.665(standard) 0.00 $ERROR$ $ERROR$ 0.00=0.00 0.000 0.000 0.000 25.00=24.965 24.96 0.022 0.000 50.00=49.931 49.94 0.018 0.001 75.00=74.896 99.90 0.038 0.003 100.00=99.862 99.90 0.038 0.003 75.00=74.896 49.94 0.018 0.001 25.00=24.965 24.97 0.018 0.001	CORRECTED FOR SITE GRAVITYRECEIVED $979.308(lab)/980.665(standard)INST.% READ% F.S.READING0.00=0.000.0000.0000.00025.00=24.96524.960.0220.00050.00=49.93149.940.0180.00175.00=74.89674.940.0580.003100.00=99.86299.900.0380.00375.00=74.89674.950.0720.00450.00=49.93124.970.0180.001$	CORRECTED FOR SITE GRAVITYRECEIVEDCAI $979.308(lab)/980.665(standard)READINGCAI0.00=0.000.0000.0000.0000.00025.00=24.96524.960.0220.0000.00025.00=49.93174.940.0580.00399.8575.00=74.89699.900.0380.00399.8575.00=74.89674.950.0720.00474.8850.00=49.93124.970.0180.00124.95$	CORRECTED FOR SITE GRAVITYRECEIVEDCALIBRATION $979.308(lab)/980.665(standard)INST.% READ% F.S.READINGREADINGERRORREADING0.00=0.000.0000.0000.0000.0000.0000.00025.00=24.96524.960.0220.0000.00024.950.06250.00=49.93174.940.0180.00149.930.00275.00=74.89699.900.0380.00399.850.01275.00=74.89699.900.0180.00174.890.00275.00=74.89699.900.0380.00399.850.01275.00=74.89624.970.0180.00149.930.00225.00=24.96524.970.0180.00024.950.062$

Calibration Date :	3/19/99
Calibration Due Date :	9/16/99

BY: Tim Hannan

signature:

230UPDN.WK3

PCM 1997

MANSFIELD & GREEN DIVISION

8600 SOMERSET DRIVE, LARGO, FLORIDA 34643 TELEPHONE: (813) 536-7831

CERTIFICATION OF ACCURACY FROM M & G STANDARDS LABORATORY

M & G Model PK2-254WC-SS

Purchase Order No. P77840

Serial No. 84809

Certification Date: 12/13/95

Recommended Recertification Date: 12/13/96

ACCURACY: THE INSTRUMENT IS CERTIFIED TO BE ACCURATE WITHIN A MAXIMUM ERROR OF .025% OF INDICATED READING.

CERTIFICATION PROCEDURE

This Certification was made by direct comparison with Ametek/Mansfield & Green Division Laboratory master standards, which are periodically referred to one or more of the primary standards traceable to NIST or other national physical measures recognized as equivalent by NIST. This calibration procedure meets the requirements of MIL-STD-45662A, ANSI/ASME N45.2, and 10CFR50 Appendix B. The above standards are traceable to the National Institute of Standards and Technology on Report Numbers:

PISTON & CYLINDER/BALL & NOZZLE AREA REFERENCED TO 23 DEG. C SO'S'IN. NIST AREA REPORT NUMBERS (CAL DATE) MODEL P-8436(12/21/92) RK. P-8476 (5/17/94) RK. P-8436 (12/21/92) PK. P-8365(10/22/90) HK. 01 P-8469 (01/10/94) 10, T, R, WG, HL. 102 4 P-8469 (01/10/94) .05 - P-8390(10/04/91), P-8469(01/10/94) .10 - P-8390(10/04/91) MASS @ 35% RELATIVE HUMIDITY NIST MASS REPORT NUMBERS: 822/MET56, (09/17/92); 822/MET55, (4/23/93) 822/MET57, (10/01/93); 822/253849, (07/21/94) 731/243669, (03/03/93) PRESSURE READINGS ARE REFERENCED TO A GRAVITY OF 980.6650 GALS. CERTIFIED CORRECT

THE SERVICE WAS PROCESSED IN ACCORDANCE WITH QA MANUAL REV. 25 DATED 12/1/94.

Y ASSURANCE MANAGER

MANSFIELD & GREEN DIVISION

RONAN

CERTIFICATE OF CALIBRATION

CUSTOMER NAME: COLORADO STATE UNIVERSITY CENTRAL RECEIVING FORT COLLINS, CO 80523-6011

MODEL NO.: X88 DESCRIPTION: CALIBRATOR

SERIAL NO.: 00447

REPORT NO.: 92-3998TR

PURCHASE ORDER NO.: DPO767588

PROCEDURE: QCTX88FINAL

TEMPERATURE: 78 DEGREES F.

ITEM CONDITION AS RECEIVED: IN TOLERANCE AS LEFT: IN TOLERANCE

DATE CALIB.: 02/10/99

CALIB. DUE: 02/10/2000

Ronan Engineering Company does hereby certify the above listed instrument meets or exceeds all published specifications and has been calibrated using standards whose accuracies are traceable to the National Institute of Standards and Technology. Our "Calibration System Requirements" satisfy MIL-STD-45662A.

STANDARDS EMPLOYED

I/D NO. MANUFACTURER		MOD. NO.	DUE DATE N	IST
CC24311	DATA PRECISION	8200	10/23/99	6599
CC88401	FLUKE	8840A	11/03/99	15803
CC86TE35	RONAN	X86	09/28/99	254980
NB-101A	JULIE RESEARCH	10 OHM	06/11/99	PRO-106LT
NB-102A	JULIE RESEARCH	100 OHM	06/11/99	PRO-106LT
NB-103	JULIE RESEARCH	1K OHM	06/11/99	PRO-106LT

QUALITY ASSURAN

RONAN ENGINEERING COMPANY P.O. Box 1275 • Woodland Hills, California 91365 21200 Oxnard Street • Woodland Hills, California 91367 • (818) 883-5211 FAX (818) 992-6435

MODEL X88 CALIBRATOR TEST DATA SHEET

SERIA		
BY	4-0	
DATE	2-10-99	
_		

RMA# 92-3998

		INPUT	OUTPUT						
	CALIBRATOR INPUT	DISPLAY	CALIBRATOR LIMIT	DISPLAY	MEASURED	CALIBRATION LIMIT			
	00.00 mV [·]	00.00	±.01	00.00 mV	00.002	** ±.01			
150 mV	100.00 mV	100.00	±.02	100.00 mV	100.001	±.02			
	149.90 mV	149.91	±.03	50.00 m	50.003	· .			
	.0000V	.0000	±.0001	•.					
1.5 V	1.0000 V	1.0000	±.0002	,	•				
	1.4990 V	1.4991	±.0003						
	0.000 V	0.000	±.001	0.000 V	0.000	* ±.001			
15V INPUT 10V OUTPUT	10.000 V .	. 10.000	±.002	9.999 V	9.9990	±.001			
	14.990 V	14.991	±.003	10.000 V	10.0000	±.001			
C €	10.00 V	10.00	±.01						
150 V	100.00 V	100.00	±.02						
	149.90 V	149,91	±.03						
	20 mA	20.00	±.01	1.00 mA	1.004]** ±.01			
100 mA	100 mA 4_ mA	100.00	±.02	20.00 mA	20.002] ±.01 .			
19 - State and the state of the last days of the state of	10mA	0.4.00	······	60.00 mA	60.001] ±.02			
¢	00.00 ohms	00,00	±.01		ADJ.	0 K			
150 ohms	10.00 ohms	0.00] ±.01	FINE ADJ	. ·	ok			
•	100.00 ohms	100.00	±.02	Batte	ry Voltage:	=7.04			
1.5 kohms	100.0 ohms	100.0] ±.1			ok			
1.0 1011115	1000.0 ohms	1000.0] ±.2	LL L2-WIRE T	RANSMITTER SUPPLY	ΰK			
Record data to .XXXX (4 places). Record data to .XXXX (4 places). Record data to .XXX (3 places). A S Left Fact on y: Unit meets the specifications. CC: 24311 CC: X86TE36 CC: X86TE35 CC: X86TE									

🏵 VAISALA

LUV TIOT2000073

ISO YOUZ CERTIFIED

Calibration Laboratory REPORT OF RELATIVE HUMIDITY CALIBRATION

Report #: _99-1-0122-L11	S.O. #: <u>N/A</u>	Calibration Data 1 (20 to a
Instrument Model: HMP233		Calibration Date: 1/22/99
Instrument Range: 0 to 100% RH		Serial Number: T4310021
Accuracy: Relative Humidiber ±10/ D		libration Procedure: 3-19-20c.doc
Accuracy: Relative Humidity; $\pm 1\%$ R	ri (0 to 90% RH), ±2	.% RH (90 to 100% RH)
Temperature; ± 0.2° C @ 20° C	Du	e Date: 1 year from above date
Customer: COLORADO ST	ATE UNIVERSI	ТҮ
City, State: FT. COLLINS, CO		

Calibration Information

This unit was calibrated by comparing its readings at 0.0 and 75.5% RH to a reference humidity instrument. Vaisala model HMP 233, S/N: R1630017 . Additional instrument verification checkpoints were made at 11.3% and 97.6% RH, respectively. Calibration and instrument verification sequences utilize dry nitrogen and a set of Controlled Aqueous Salt Solutions, Vaisala S/N: P3940000. Interval: 6 months. Laboratory ambient conditions are maintained at a temperature of $22 \pm 1^{\circ}$ C with a relative humidity level of 50% \pm 5% RH. Sensor stabilization time is > 30 minutes prior to adjustment. Calibration uncertainty is ±0.6% RH @ 22°C. The temperature is checked at ambient temperature against NIST standard traceable through a F250 (SN# 1297-030-597), PRT ASL T25/02 (SN# S257).

Calibration Data

Temperature	2		Unit as Ca	librated	•		Tolerance
Standard	•		22.8		· .		;
Unit Under T	est	•	22.9)	1		±0.2° C
Hamidity Sclution Dry Nitrogen	Nominal Value 0.1% RH		(UUT) 0.1%	(REF) %	Acceptanc [(Low) 0.9%	e Limits (High) _ <u>1.1%</u>	±1.0%RH
NaCl	75.5% RH	•	74.9%	74.9%	73.9%	75.9%	±1.0%RH
LiCl	11.3% RH	•	10.8%		10.3%	12.3%	±1.0%RH
K ₂ SO ₄	97.6% RH		96.6%	:	95.6%	99.6%	±2.0%RH

Service Technician

Service Department Supervisor

This calibration report is traceable to the National Institute of Standards and Technology through NIST Test Report Number TN 261093 dated 10 December, 1998. Due date: 12/10/1999. Vaisala's calibration system complies with the requirements ANSI/NCSL Z540-1-1994. This certificate can not be reproduced except in full, without the expressed written consent of Vaisala.

Mailing address: Vaisala Inc. 100 Commerce Way Woburn, MA 01801-1068

TeL (781) 933-4500 Fax (781) 933-8029 http://www.vuisala.com

4-19-011.doc

ç

APPENDIX L

.

DYNAMOMETER CALIBRATION

Dynamometer Calibration

Colorado State University Engines & Energy Conversion Laboratory

Test Sponsor: EPA

Date: 8-2-99

Achialetorque	Calculated Lorque	Co Astural Horance
- 0		
833	838 830	100,1
1524	1540 1522	100.46
2217	2215	100.5
2909	2943 2908	100.5
3600	3644 3600	100.61
4292	434 7 4292	100,64
4984	5048 4983	100.63

% Actual Torque = Calculated Torque/Actual Torque

Dynamometer Calibration

Colorado State University Engines & Energy Conversion Laboratory

Test Sponsor: EPA

Date: 8-3-99

AGNALLOFOU	Galeniare l'Horon	WAR MAIN MOTOR
- 0		
833	829 830	99.582
. 1524	1521 1523	99.872
2217	2214 2215	99.89%
2909	2906 2908	99.93%
3600	.3599 3601	100.00%
4292	4292	100.01%
4984	4984	100% Goodness!!!

% Actual Torque = Calculated Torque/Actual Torque

Dynamometer Calibration

Colorado State University Engines & Energy Conversion Laboratory

Test Sponsor: EPA

Date: 8-5-99

Actual Horigue	Calculated. Forque	26 Aonal-Rorque
0		
833	830 831	100,3
1524	1522 1524	100.06
2217	2215	100,04
2909	290 7 2909	100,03
3600	3600 3602	100.02
4292	4294 4294	100,03
4984	4985 4985	100,02

% Actual Torque = Calculated Torque/Actual Torque

APPENDIX M

ľ

DYNAMOMETER CALIBRATION PROCEDURE

Midwest Eddie Current Dynamometer

Calibration

Check zero with no weights or calibration arm. If it is a couple units or more off, set toggles to zero, press, and hold Auto Zero button on DynLoc controller for one second.

Record reading.

Put on calibration arm and first weight. Let it settle and record reading.

Repeat for next five weights.

Put on last weight (there will be one weight not used) and let it settle. If it is a couple units or more off, set toggle switches to 4984, press, and hold Auto Span button on DynLoc controller for one second.

Record reading.

Remove weight; let it settle, and record reading.

Repeat for next six weights.

Remove calibration arm.

Average loading and unloading calculated torque. Calculate % actual torque as per calibration sheet.

All should be within one % of actual torque. If not, recalibrate.

APPENDIX N

ľ

ĺ

GAS ANALYSIS

alculation Results from CO St U Stream 1 Tue Aug 03 06:05:12 1999

HEXANE PANE - BUTANE - BUTANE - BUTANE - PENTANE - PENTANE I TROGEN METHANE	MolPct 0.0125 1.9428 0.1273 0.1870 0.0000 0.0241 0.0172 0.4001 78.3579	BTUGross 0.66 49.00 4.15 6.11 0.00 0.97 0.69 0.00 793.22	RelDens 0.0004 0.0296 0.0026 0.0038 0.0000 0.0006 0.0004 0.0039 0.4340
		••••	
	100.0000	1109.00	

pmpressibility Factor	=	1.0030
Reating Value Gross BTU Dry	· =	1142.51
Heating Value Gross BTU Sat.	=	1122.63
eating Value Gross BTU Act.	· =	1142.51
eating Value Net BTU Act.	=	1034.07
Relative Density Gas Corr.	· =	0.6875
Total Unnormalized Conc.	=	106.823
as Density lbm/1000 ft3	-	52.595

Calculation Results from CO St U Stream 1 Wed Aug 04 12:18:09 1999

Analysis

	MolPct	BTUGross	RelDens
n-HEXANE	0.0265	1.40	0.0009
I PANE	1.7286	43.59	0.0263
i-BUTANE	0.0875	2.85	0.0018
n-BUTANE	0.1380	4.51	0.0028
NEOPENTANE	0.0000	0.00	0.0000
i-pentane	0.0211	0.85	0.0005
n-PENTANE	0.0234	0.94	0.0006
NITROGEN	0.4370	0.00	0.0042
METHANE	0.4370 78.9644	799.36	0.4374
CARBON DIOXIDE	2.8890	0.00	0.0439
ETHANE	15.6846	278.20	0.1628
TOTAL	100.0000	1131.70	0.6812
		ē	
Compressibility	Factor	E	1.0030
Heating Value G	ross BTU I	Dry =	1135.06
Heating Value G	ross BTU S	Sat. =	1115.31
Heating Value G	ross BTU A	Act. =	1135.06
Heating Value No			1027.12
Relative Density	y Gas Cori	c. =	0.6829
Total Unnormali	zed Conc.	=	106.464
Gas Density 1bm,	/1000 ft3	=	52.242

Î

alculation Results from CO St U Stream 1 Wed Aug 04 05:32:44 1999

	MolPct	BTUGross	RelDens
HEXANE	0.0118	0.62	0.0004
)PANE	1.7758	44.78	0.0270
BUTANE	0.0811	2.64	0.0016
BUTANE	0.1361	4.45	0.0027
EOPENTANE	0.0000	0.00	0.0000
-PENTANE	0.0145	0.58	0.0004
PENTANE	0.0134	0.54	0.0003
TROGEN	0.4425	0.00	0.0043
IETHANE	77.4268	783.79	0.4289
RBON DIOXIDE	2.9507	0.00	0.0448
HANE	17.1474	304.14	0 .1 780
OTAL	100.0000	1141.55	0.6885

mpressibility Factor	=	1.0030
Eating Value Gross BTU Dry	=	1145.03
leating Value Gross BTU Sat.	=	1125.11
ating Value Gross BTU Act.	=	1145.03
ating Value Net BTU Act.	=	1036.45
Relative Density Gas Corr.	=	0.6903
tal Unnormalized Conc.	=	107.839
s Density lbm/1000 ft3	=	52.807

.

([:]

Analysts

Calculation Results from CO St U Stream 1 Thu Aug 05 05:36:07 1999

Analysis

	MolPct	BTUGross	RelDens
n-HEXANE	19.0 PPM	0.10	0.0001
()pane	1.8505	46.67	0.0282
i-BUTANE		2.57	
n-BUTANE	0.1200	3.92	0.0024
NEOPENTANE	0.0000	0.00	0.0000
1-PENTANE	84.3 PPM	0.34	0.0002
n-PENTANE	58.3 PPM	0.23	0.0001
NITROGEN	0.4137	0.00	0.0040
METHANE	76.9053	778.51	0.4260
CARBON DIOXIDE	2.7897	0.00	0.0424
ETHANE	17.8258	316.18	0.1851
TOTAL	100.0000	1148.52	0.6900
Compressibility	Factor	=	1.0031
Heating Value G	ross BTU I	Dry =	1152.06
Heating Value G	ross BTU S	Sat. =	1132.01
Heating Value G	ross BTU A	Act. =	1152.06
Heating Value No	et BTU Act	:. =	1042.95
Relative Densit	y Gas Cori	c. =	0.6919
Total Unnormali	zed Conc.	=	109.891
Gas Density 1bm	/1000 ft3	=	52.926

ť

Ĺ.

lculation Results from CO St U Stream 1 Fri Aug 06 05:22:13 1999

	_		
	MolPct	BTUGross	RelDens
HEXANE	57.3 PPM	0.30	0.0002
OPANE	1.4401	36.32	0.0219
BUTANE	0.1019	3.32	0.0020
BUTANE	0.1371	4.48	0.0028
NEOPENTANE	0.0000	0.00	0.0000
i – PENTANE	0.0182	0.73	0.0005
PENTANE	0.0117	0.47	0.0003
TROGEN	0.5355	0.00	0.0052
METHANE	83.5854	846.13	0.4630
RBON DIOXIDE	2.8971	0.00	0.0440
HANE	11.2673	199.85	0.1170
IOTAL	100.0000	1091.61	0.6568

mpressibility Factor	=	1.0027
ating Value Gross BTU Dry	Ξ	1094.56
Heating Value Gross BTU Sat.	=	1075.51
ating Value Gross BTU Act.	=	1094.56
ating Value Net BTU Act.		989.36
Relative Density Gas Corr.	=	0.6583
Latal Unnormalized Conc.	=	103.889
s Density lbm/1000 ft3	Ξ	,50.360

Gas Analy.

.

APPENDIX O

ì

.

GAS ANALYSIS CALIBRATIONS

culation Results from CO St U Stream 1 Tue Aug 03 05:39:19 1999

	MolPct	BTUGross	RelDens
1 HEXANE	0.1941	10.26	0.0064
PANE	1.0006	25.23	0.0152
È-BUTANE	0.2002	6.52	0.0040
n BUTANE	0.1990	6.51	0.0040
N OPENTANE	0.0000	0.00	0.0000
- PENTANE	0.1973	7.91	0.0049
n PENTANE	0.1964	7.89	0.0049
IROGEN	2.0095	0.00	0.0194
TETHANE	90.0624	911.70	0.4989
CARBON DIOXIDE	1.9861	0.00	0.0302
EHANE	3.9545	70.14	0.0411
FAL	100.0000	1046.17	0.6290

Impressibility Factor	= '	1.0024
Lating Value Gross BTU Dry	=	1048.63
Teating Value Gross BTU Sat.	=	1030.39
Leating Value Gross BTU Act.	=	1048.63
I ating Value Net BTU Act.	. =	946.66
Relative Density Gas Corr.	=	0.6302
Cotal Unnormalized Conc.	=	100.239
S Density lbm/1000 ft3	=	48.211

Calculation Results from CO St U Stream 1 Wed Aug 04 05:49:59 1999

	MolPct	BTUGross	RelDens
n-HEXANE	0.1987	10.51	0.0066
('DPANE	0.9994	25.20	0.0152
ì-BUTANE	0.2005	6.54	0.0040
n-BUTANE	0.1994	6.52	0.0040
NEOPENTANE	0.0000	0.00	0.0000
1-pentane	0.1984	7.96	0.0049
n-PENTANE	0.1979	7.95	0.0049
NITROGEN	1.9831	0.00	0.0192
METHANE	89.9826	910.89	0.4984
CARBON DIOXIDE	2.0025	0.00	0.0304
ETHANE	4.0374	71.61	0.0419
TOTAL	100.0000	1047.19	0.6296

Compressibility Factor	II	1.0024
Heating Value Gross BTU Dry	=	1049.65
Heating Value Gross BTU Sat.	=	1031.39
Heating Value Gross BTU Act.	Ξ	1049.65
Heating Value Net BTU Act.		947.61
Relative Density Gas Corr.	=	0.6309
Total Unnormalized Conc.	=	100.007
Gas Density lbm/1000 ft3	=	48.260

(

Ć

Cal Check

lculation Results from CO St U Stream 1 Thu Aug 05 06:10:37 1999

=

48.203

	MolPct	BTUGross	RelDens
HEXANE	0.1999	10.57	0.0066
PANE	1.0009	25.24	0.0152
i-BUTANE	0.2013	6 [.] .56	0.0040
BUTANE	0.2002	6.55	0.0040
OPENTANE	0.0000	0.00	0.0000
1-PENTANE	0.1998	8.01	0.0050
p PENTANE	0.1986	7.98	0.0049
TROGEN	1.9843	0.00	0:0192
METHANE	90.1251	912.34	0.4992
CARBON DIOXIDE	1.9771	0,00	0.0300
HANE	3.9129	69.40	0.0406
TAL	100.0000	1046.65	0.6289
mpressibility	Factor	=	1.0024
ating Value G	ross BTU I	Dry =	1049.11
Heating Value G			1030.86
Heating Value G	ross BTU A	Act. =	1049.11
ating Value Ne			947.10
Relative Density			0.6301
Total Unnormaliz	zed Conc.	=	101.049
	• _		

cal k

Total Unnormalized Conc.

(

Calculation Results from CO St U Stream 1 Fri Aug 06 05:56:44 1999

	MolPct	BTUGross	RelDens
n-HEXANE	0.2007	10.61	0.0066
OPANE	1.0032	25.30	0.0153
L •BUTANE	0.2016	6.57	0.0040
n-BUTANE	0.2005	6.56	0.0040
NEOPENTANE	0.0000	0.00	0.0000
i-pentane	0.1993	7.99	0.0050
n-PENTANE	0.1972	7.92	0.0049
NITROGEN	1.9956	0.00	0.0193
METHANE	90.4182	915.30	0.5008
CARBON DIOXIDE	1.9252	0.00	0.0293
ETHANE	3.6586	64.89	0.0380
TOTAL	100.0000	1045.15	0.6272
Compressibility	Factor	• =	1.0023
Heating Value G	ross BTU I	Dry =	1047.60

Heacing value Gross Bro Dry	=	1047.00
Heating Value Gross BTU Sat.	=	1029.37
Heating Value Gross BTU Act.	=	1047.60
Heating Value Net BTU Act.	=	945.66
Relative Density Gas Corr.	Ξ	0.6284
Total Unnormalized Conc.	=	100.026
Gas Density lbm/1000 ft3	=	48.075

Cal Check

APPENDIX P

GAS ANALYSIS CALCULATIONS

GAS ANALYSIS CALCULATIONS

.

3-Aug-99	4-Aug-99	5-Aug-99	6-Aug-99
Mol. Fraction	Mol. Fraction	Mol. Fraction	Mol. Fraction
0.4001	0.4370	0.4137	0.5355
2.9035	2.8890	2.7897	2.8971
78.3579	78.9644	76.9053	83.5355
16.0275	15.6846	17.8258	11.2673
1.9428	1.7286	1.8505	1.4401
0.1273	0.0875	0.0788	0.1019
0.1870	0.1380	0.1200	0.1371
0.0241	0.0211	0.0084	0.0182
0.0172	0.0234	0.0058	0.0117
0.0125	0.0265	0.0019	0.0057
1030.7	1023.9	1039.6	1039.6
		the second s	1094.6
استعداد المحمد والمحمد و			0.6890
0.0524	0.0521	0.0527	0.0527
Mass Fraction	Mass Fraction	Mass Fraction	Mass Fraction
يصفين فكالمتعاد والمتعادين المتعاد			0.1500
			1.2750
			13.4017
			3.3881
			0.6350
			0.0592
the second se	0.0802 0.0152 0.0169	0.0061 0.0042	0.0797 0.0131 0.0084
· · · · · · ·_			
0.0120	0.0254	0.0018	0.0055
19 8617	19 7295	19 9856	19.0159
			17,5909
[10,4710	10.5557	10.0420	17.5505
Density	Density	Density	Density
0.0296	0.0323	0.0306	0.0396
0.3375	0.3358	0.3243	0.3368
3.3200	3.3457	3.2585	3.5394
1.2729	1.2457	1.4157	0.8948
0.2263	0.2013	0.2155	0.1677
0.0195	0.0134	0.0121	0.0156
0.0287	0.0212	0.0184	0.0210
0.0046	0.0040	0.0016	0.0035
0.0033	0.0045	0.0011	0.0022
0.0040	0.0085	0.0006	0.0018
0.0525	0.0521	0.0528	0.0502
120.6835	119.6919	121.7760	114.4274
	0.0607	0.0609	0.0602
0.0608			1 444 5000
0.0608	116.8029	118.9863	111.5303
		118.9863 431.5657	416.0956
117.7800 428.9526	116.8029 426.9540	431.5657	416.0956
117.7800	116.8029		
	Mol. Fraction 0.4001 2.9035 78.3579 16.0275 1.9428 0.1273 0.1870 0.0241 0.0172 0.0125 1030.7 1142.5 0.6850 0.0524 Mass Fraction 0.1121 1.2778 12.5711 4.8195 0.8567 0.0174 0.0120 19.8617 18.4718 Density 0.0296 0.3375 3.3200 1.2729 0.2263 0.0195 0.0287 0.0046 0.0033	Mol. Fraction Mol. Fraction 0.4001 0.4370 2.9035 2.8890 78.3579 78.9644 16.0275 15.6846 1.9428 1.7286 0.1273 0.0875 0.1870 0.1380 0.0241 0.0211 0.0172 0.0234 0.0125 0.0265 1030.7 1023.9 1142.5 1135.1 0.6850 0.6810 0.0524 0.0521 Mass Fraction Mass Fraction 0.1121 0.1224 1.2778 1.2714 12.5711 12.6684 4.8195 4.7164 0.8567 0.7623 0.0740 0.0509 0.1087 0.0802 0.0174 0.0152 0.0124 0.0169 0.0120 0.0254 19.8617 19.7295 18.4718 18.3357 19.263 0.2263 0.2033 0.2013 </td <td>Mol. Fraction Mol. Fraction Mol. Fraction 0.4001 0.4370 0.4137 2.9035 2.8890 2.7897 78.3579 78.9644 76.9053 16.0275 15.6846 17.8258 1.9428 1.7286 1.8505 0.1273 0.0875 0.0788 0.1870 0.1380 0.1200 0.0241 0.0211 0.0084 0.0172 0.0234 0.0058 0.0125 0.0265 0.0019 1030.7 1023.9 1039.6 1142.5 1135.1 1152.1 1030.7 1023.9 1039.6 1142.5 1135.1 1152.1 0.6850 0.6810 0.6890 0.0524 0.0521 0.0527 Mass Fraction Mass Fraction Mass Fraction 0.1121 0.1224 0.1159 1.2778 1.2714 1.2277 12.5711 12.6684 12.3380 4.8195 4.7164 5.3603</td>	Mol. Fraction Mol. Fraction Mol. Fraction 0.4001 0.4370 0.4137 2.9035 2.8890 2.7897 78.3579 78.9644 76.9053 16.0275 15.6846 17.8258 1.9428 1.7286 1.8505 0.1273 0.0875 0.0788 0.1870 0.1380 0.1200 0.0241 0.0211 0.0084 0.0172 0.0234 0.0058 0.0125 0.0265 0.0019 1030.7 1023.9 1039.6 1142.5 1135.1 1152.1 1030.7 1023.9 1039.6 1142.5 1135.1 1152.1 0.6850 0.6810 0.6890 0.0524 0.0521 0.0527 Mass Fraction Mass Fraction Mass Fraction 0.1121 0.1224 0.1159 1.2778 1.2714 1.2277 12.5711 12.6684 12.3380 4.8195 4.7164 5.3603

GAS ANALYSIS CALCULATIONS

Fuel Calculations				
Total HC in Fuel(Hh)	96,6963	96.6741	96.7966	96,5175
HC1/Hh	0.8104	0.8168	0.7945	0.8655
HC2/Hh	0.1658	0.1622	0.1842	0.1167
HC3/Hh	0.0201	0.0179	0.0191	0.0149
HC4/Hh	0.0033	0.0023	0.0021	0.0025
HC5/Hh	0.0004	0.0005	0.0001	0.0003
HC6/Hh	0.0001	0.0003	0.0000	0.0001
			L	
MW of HC in Fuel	19.1029	18.9665	19.2589	18.2256
	· ·			•
Non CH4 Fuel Calc.				
Total HC - Non CH4	18.3384	17.7097	19.8913	12.9820
NmC2/Nmh	0.8740	0.8857	0.8962	0.8679
NmC3/Nmh	0.1059	0.0976	0.0930	0.1109
NmC4/Nmh	0.0171	0.0127	0.0100	0.0184
NmC5/Nmh	0.0023	0.0025	0.0007	0.0023
NmC6/Nmh	0.0007	0.0015	0.0001	0.0004
MW of Non CH4 HC	32,1769	32.0010	31.6921	32.2688
G		:		······
Constituent	Mol. Fraction	Mol. Fraction	Mol. Fraction	Mol. Fraction
NITROGEN	0.4001	0.4370	0.4137	0.5355
CARBON DIOX.	2,9035	2.8890	2.7897	2.8971
METHANE	78.3579	78.9644	76.9053	83.5355
ETHANE	16.0275	15.6846	17.8258	11.2673
PROPANE	1.9428	1.7286	1.8505	1.4401
I-BUTANE	0.1273	0,0875	0.0788	0.1019
N-BUTANE	0.1870	0.1380	0.1200	0.1371
I-PENTANE	0.0241	0.0211	0.0084	0.0182
N-PENTANE	0.0172	0.0234	0.0058	0.0117
HEXANE +	0.0125	0.0265	0.0019	. 0.0057
		·		
F-Factor Calculation				
Constituent	Mol. Fraction	Mol. Fraction	Mol. Fraction	Mol. Fraction
NITROGEN	0.004001	0.004370	0.004137	0.005355
CARBON DIOX.	0.029035	0.028890	0.027897	0.028971
METHANE	0.783579	0.789644	0.769053	0.835355
ETHANE	0.160275	0.156846	0.178258	0.112673
PROPANE	0.019428	0.017286	0.018505	0.014401
I-BUTANE	0.001273	0.000875	0.000788	0.001019
N-BUTANE	0.001870	0.001380	0.001200	0.001371
I-PENTANE	0.000241	0.000211	0.000084	0.000182
		()	0.000059	0.000117
N-PENTANE	0.000172	0.000234	0.000058	0.000117

• •

GAS ANALYSIS CALCULATIONS

Fuel MW Total	19.8617	19.7295	19.9856	19.0159
Upper Dry Heating Value	1030.70	1023.90	1152.06	1094.56
Fuel Density	0.05239	0.05209	0.05270	0.05270
EPA F-Factor (dscf/MMBtu)	9599.9	9607.2	8656.6	9087.7

Carbon Content	· ·	· .		1
Constituent	1		x	
NITROGEN	0.000000	0.000000	0.000000	0.000000
CARBON DIOX.	0.029035	0.028890	0.027897	0.028971
METHANE	0.783579	0.789644	0.769053	0.835355
ETHANE	0.320550	0.313692	0.356516	0.225346
PROPANE	0.058284	0.051858	0.055515	0.043203
I-BUTANE	0.005092	0.003500	0.003152	0.004076
N-BUTANE	0.007480	0.005520	0.004800	0.005484
I-PENTANE	0.001205	0.001055	0.000422	0.000910
N-PENTANE	0.000860	0.001170	0.000292	0.000585
HEXANE +	0.000837	0.001775	0.000127	0.000384
Carbon Wt. %:	0.729894	0.728807	0.731890	0.722812

Hydrogen Content				
Constituent				
NITROGEN	0.000000	0.000000	0.000000	0.000000
CARBON DIOX.	0.000000	0.000000	0.000000	0.000000
METHANE	3.134316	3.158576	3.076212	3.341420
ETHANE	0.961650	0.941076	1.069548	0.676038
PROPANE	0.155424	0.138288	0.148040	0.115208
I-BUTANE	0.012730	0.008750	0.007880	0.010190
N-BUTANE	0.018700	0.013800	0.012000	0.013710
I-PENTANE	0.002892	0.002532	0.001012	0.002184
N-PENTANE	0.002064	0.002808	0.000700	0.001404
HEXANE +	0.001924	0.004079	0.000292	0.000882
Hydrogen Wt. %:	0.217706	0.218154	0.217667	0.220569

Oxygen Content				
Constituent				
NITROGEN	0.000000	0.000000	0.000000	0.000000
CARBON DIOX.	0.058070	0.057780	0.055794	0.057942
METHANE	0.000000	0.000000	0.000000	0.000000
ETHANE	0.000000	0.000000	0.000000	0.000000
PROPANE	0.000000	0.000000	0.000000	0.000000
I-BUTANE	0.000000	0.000000	0.000000	0.000000
N-BUTANE	0.000000	0.000000	0.000000	0.000000
I-PENTANE	0.000000	0.000000	0.000000	0.000000
N-PENTANE	0.000000	0.000000	0.000000	0.000000
HEXANE +	0.000000	0.000000	0.000000	0.000000
Oxygen Wt. %:	0.046778	0.046856	0.044666	0.048751

Nitrogen Content				
Constituent				
NITROGEN	0.008002	0.008740	0.008274	0.010710
CARBON DIOX.	0.000000	0.000000	0.000000	0.000000
METHANE	0.000000	0.000000	0.000000	0.000000
ETHANE	0.000000	0.000000	0.000000	0.000000
PROPANE	0.000000	0.000000	0.000000	0.000000
I-BUTANE	0.000000	0.000000	0.000000	0.000000
N-BUTANE	0.000000	0.000000	0.000000	0.000000
I-PENTANE	0.000000	0.000000	0.000000	0.000000
N-PENTANE	0.000000	0.000000	0.000000	0.000000
HEXANE +	0.000000	0.000000	0.000000	0.000000
Nitrogen Wt. %:	0.005643	0.006205	0.005799	0.007889

Stoichiometric Air/Fuel Ratio Calculation

Fuel								
Constit.	· %	Mole Fraction	MW	MW* Mole Frac.	C content	H content	O content	N content
CH4	78.3579	0.783579	16.0426	12.57064	0.783579	3.134316	0	0
C2H6	16.0275	0.160275	30.0694	4.819373	0.32055	0.96165	0	0
C3H8	1.9428	0.01943	44.0962	0.856701	0.058284	0.155424	0	0
C4H10	0.3143	0.00314	58.123	0.182681	0.012572	0.03143	0	· 0
C6H14	0.0125	0.00013	86.1766	0.010772	0.00075	0.00175	0	- 0
C10H22	0.0413	0.00041	142.2838	0.058763	0.00413	0.009086	0	O
N2	0.4001	0.004001	28.0134	0.112082	0	0	0	0.008002
02	0.0001	0.000001	31.9988	3.2E-05	0	0	0.000002	0
CO2	2.9035	0.029035	44.0098	1.277825	0.029035	0	0.05807	. 0
Sums>	100	1	480.8136	19.88887	1.2089	4.293656	0.058072	0.008002

Combustion Stoichiometry Analysis Date: 8/3/99

MWave = 19.88887

	Air						
Constit.	%	% Mole Fraction		MW* Mole Frac.	02 normal		
N2	77.16266	0.771627	28.0134	21.61588	3.773725		
02	20.44734	0.204473	31.9988	6.542904	1		
H2O	2.39	0.0239	18.0152	0.430563	0.116886		
Sums		1			4		

MWave = 28.58935

MW of Elements				
С	12.011			
H	1.0079			
N	14.0067			
0	15.9994			

Urban and Sharp, 1994				
y = 3.55170				
z =	0.048037			
f = 👘 .	0.006619			
A=	1.863908			
A/Fs =	15.6655			

A/Fstoic = 15.6655

ļ

Stoichiometric Air/Fuel Ratio Calculation

	Fuel								
Constit.	%	Mole Fraction	MW	MW* Mole Frac.	C content	H content	0 content	N content	
CH4	78.9644	0.789644	16.0426	12.66794	0.789644	3.158576	0	0	
C2H6	15.6846	0.156846	30.0694	4.716265	0.313692	0.941076	0	0	
C3H8	1.7286	0.01729	44.0962	0.762247	0.051858	0.138288	0	0	
C4H10	0.2255	0.00226	58.123	0.131067	0.00902	0.02255	0	0	
C6H14	0.0265	0.00027	86.1766	0.022837	0.00159	0.00371	0	0	
C10H22	0.0445	0.00045	142.2838	0.063316	0.00445	0.00979	0	0	
N2	0.437	0.00437	28.0134	0.122419	0	0	0	0.00874	
02	0.0001	0.000001	31.9988	3.2E-05	0	0	0.000002	0	
CO2	2.889	0.02889	44.0098	1.271443	0.02889	0	0.05778	0	
Sums>	100.0002	1.000002	480.8136	19.75757	1.199144	4.27399	0.057782	0.00874	

Combustion Stoichiometry Analysis Date: 8/4/99

MWave = 19.75757

Air						
Constit.	%	Molẹ Fraction	MW	MW* Mole Frac.	02 normal	
N2	77.16266	0.771627	28.0134	21.61588	3.773725	
02	20.44734	0.204473	31.9988	6.542904	1	
H2O	2.39	0.0239	18.0152	0.430563	0.116886	
Sums		1				

MWave = 28.58935

MW of Elements		
C	12.011	
Н	1.0079	
N	14.0067	
0	15.9994	

A/Fstoic = 15.66795

Urban and Sharp, 1994			
y =	3.564201		
z =	0.048186		
f =	0.007289		
A=	1.866957		
A/Fs =	15.66795		

Stoichiometric Air/Fuel Ratio Calculation

Combustion	1 Stoic	hiometry
Analysis	Date:	8/5/99

	1. S. 1. S. 1.			Fuel		5.5.7		17.
Constit.	%	Mole Fraction	MW	MW* Mole Frac.	G content	H content	O content	N content
CH4	76.9053	0.769053	16.0426	12.33761	0.769053	3.076212	0	0
C2H6	17.8258	0.178258	30.0694	5.360111	0.356516	1.069548	. . . 0	0
C3H8	1.8505	0.01851	44.0962	0.816	0.055515	0.14804	0	0
C4H10	0.1988	0.00199	58.123	0.115549	0.007952	0.01988	. 0	0
C6H14	0.0019	0.00002	86,1766	0.001637	0.000114	0.000266	0	0
C10H22	0.0142	0.00014	142.2838	0.020204	0.00142	0.003124	0	0
N2	0.4137	0.00437	28.0134	0.115891	0	. 0	0	0.008274
02	0.0001	0.000001	31.9988	3.2E-05	0	0	0.000002	0
CO2	2.7897	0.027897	44.0098	1.227741	0.027897	0	0.055794	·····0
Sums>	100	1	480.8136	19.99478	1.218467	4.31707	0.055796	0.008274

MWave = 19.99478

Air						
Ċonstit.	%	Mole Fraction	MW	MW* Mole Frac.	O2 normal	
N2	77.16266	0.771627	28.0134	21.61588	3.773725	
02	20.44734	0.204473	31.9988	6.542904	1	
H2O	2.39	0.0239	18.0152	0.430563	0.116886	
Sums		1			, 1	

MWave = 28.58935

MW of Elements		
С	12.011	
Н	1.0079	
N	14.0067	
0	15.9994	

Urban and Sharp, 1994			
y = 3.543034			
z =	0.045792		
f =	0.00679		
A=	1.862863		
A/Fs = 15.69705			

A/Fstoic = 15.69705

COMPUTING AIR/FUEL RATIO FROM EXHAUST COMPOSITION

Charles M. Urban Department of Emissions Research Southwest Research Institute San Antonio, Texas

Christopher A. Sharp Department of Emissions Research Southwest Research Institute San Antonio, Texas

1

ABSTRACT

Alternative fuels, catalytic converters, and high scavenging ratios necessitate refined approaches toward calculating air/fuel ratio from measured exhaust composition. Computation methods were developed for most of the situations encountered, including a method based on oxidation potential for use in catalyst applications. The methods developed, along with the technical basis and derivations, are provided in this paper.

INTRODUCTION

This is the third in a series of technical papers involving emissions related computations for alternative fuels. The two previous papers by Urban et al (1992 and 1993) involved hydrogen and natural gas engines. The subject of this paper is the computation of air/fuel ratio, from exhaust composition, for combustion of any carbon-containing fuel. Computations provided in this paper were developed as a result of specific needs within the laboratory of the authors. It is hoped that providing these computations will save others from having to go through the mathematical derivation exercise, when the need arises in their activities.

Over the past almost 100 years, there have been several periods of development of air/fuel ratio calculations. The most recent extensive development was in the 1960's, which is considered exemplified by

the "landmark" technical paper by Spindt (1965). With the widespread use of alternative fuels and personal computers, further development of AFR calculational methods has again become both essential and practical. Any who are interested in the history of the development of air/fuel ratio calculations are referred to a technical paper of a few years ago by Uyehara(1991), which contains numerous pertinent references.

DERIVATION APPROACH

After a brief review of previous efforts toward developing air/fuel ratio (AFR) calculations for alternate fuels, the decision was made to begin with the basic combustion equation and to include as many of the potential fuel and exhaust constituents as practical in developing standard AFR computations. Another approach involved determination of an "oxidation potential" for use when the AFR is very near stoichiometric. It was also decided that no laboratory effort would be conducted in this endeavor, and that the literature would be relied on to provide a suitable water-gas equilibrium constant.

In this paper, multiplication will be designated by an asterisk (*) and division will be designated by an oblique line (/). Rather than have a list of definitions to which the reader must continually refer, an attempt has been made to minimize the number of terms and identifiers requiring definition, and to provide necessary definitions at the point where needed.

Water-Gas Equilibrium Constant

At the present time, water and hydrogen are not measured in the exhaust. The hydrogen (H_2) concentration is related to the concentrations of carbon monoxide (CO), carbon dioxide (CO₂), and water (H₂O) as follows:

$$CO_2 + H_2 \rightleftharpoons CO + H_2O$$

Extent of reaction is defined by the water-gas equilibrium constant (k) defined as follows:

$$k = CO * H_2 O / CO2 * H_2$$

An initial question is whether k is really a constant. The answer appears to be that k is not an actual constant, and an absolute value for k is not known and For practical purposes, however, the value of k is adequately known and sufficiently constant to enable acceptable computation of AFR.

Reported values for k have ranged from a low of 3 to a high of 4, but the predominant accepted value appears to be 3.5.⁽⁴⁾ First, let us look at the effect of variation in the value of k on computed AFR. The error in calculated AFR with variation in k is approximately as follows:

% Error in AFR = 0.0025=[(% Variation in k)*(Exh %CO)=HCR]

Even taking a worst case of ten percent variation in k, ten percent CO in the exhaust, and a fuel HCR of 4, the error in computed AFR would only be a relatively insignificant one percent. Therefore, the predominantly-used value for k of 3.5 will be used in developing the computations in this paper.

It should be pointed out that the value of k could change when a catalyst is being used, because the activity of the catalyst on CO and H_2 can differ, and the resulting concentrations may not equilibrate. Error in calculated AFR would generally be insignificant, however, because with a catalyst in the exhaust stream, concentrations of CO and H_2 will generally be low.

Combustion Equation

Based on review of numerous equations over the years, the usefulness of meaningful variable names has been well established. In this paper, fuel components will be expressed as atoms and exhaust constituents will be expressed as molecules. The generally used x, y, and z for the fuel components of carbon (C), hydrogen (H), and oxygen (O) will be retained, and an "f" will be used for all other components of the fuel. Variable names for exhaust constituents, other than oxygen (O₂), will be the first letter of the last word in their names (e.g., d for CO₂, n for oxides of nitrogen (NO_x), w for water (H₂O), etc.). A "t", rather than an "o", is used for exhaust O₂, to eliminate possible confusion between the letter "o" and zero, and an "A" is used for air (rather than an "a").

Therefore, to follow the equations in this paper, it will only be necessary to memorize the variables designated by "f" and "t" and to remember the process used in naming the other variables. Also, in an attempt to make the equations less confusing, from this point forward, subscripts will not be used (e.g., $CO_2 = CO2$, $H_2O = H2O$, etc).

The combustion equation is as follows:

 $FUEL + AIR \rightarrow EXHAUST$ (1)

FUEL = xC + yH + zO + fN

AIR = AO2 + [3.7742 * A]N2

EXHAUST =
$$cHC + mCO + hH2 + dCO2 + nNOX$$

+ $wH20 + tO2 + [3.7742*A - 0.5n]N2 + fN$

The fuel components are to include all of each component, regardless of the source (e.g., the C and the O for gaseous fuels include that from the CO2), and the N is to include all components that are not C. H, or O. Initially, let x equal 1; then y becomes the hydrogen- to-carbon ratio (HCR), and z becomes the oxygen-to-carbon ratio of the fuel (on a per atom basis). Note that the N2 in the "AIR" includes all of the constituents of air, other than oxygen, as given on Page F-155 of the CRC Handbook (1988). Also, the oxides of nitrogen (NOX) are considered to be nitric oxide (NO), because the ratio of NO to NO2 is generally unknown, and the majority of the NOX is generally NO in raw exhaust.

COMPUTING STOICHIOMETRIC AFR

For stoichiometric combustion (c, m, h, and t = 0, w = 0.5 y, and n set = 0), the AFR can be determined as follows:

SAFR =
$$[A*(MWoz + 3.7742*MWNz)]$$

/ $[AWc + y*AWH + z*AWo + f*AWN]$
Where: $A = 1 + 0.25y - 0.5z$

Note: MW is molecular weight and AW is atomic weight

Using the preceding value for A and inserting the molecular and atomic weights, the SAFR is as follows:

$$SAFR = \frac{(1 + 0.25y - 0.5z) * (31.999 + 3.7742 * 28.159)}{12.011 + 1.008y + 15.999z + 14.007f}$$

Notes: • The MW of 28.159 given for N2 is the average MW for all of the components in air, other than oxygen.

• If some additional fuel constituent other than the N is present in significant quantity, use a corrected AW in place of the 14.007.

$$SAFR = \frac{138.28 * (1.0 + 0.25y - 0.5z)}{12.011 + 1.008y + 15.999z + 14.007f}$$
(2)

COMPUTING COMBUSTION AFR

This section of the paper describes the approach taken and provides the basic criteria applied toward computation of the combustion air/fuel ratio (AFR). The derivations of the equations for computing the AFR are given in the attachment to this paper. In essence, the computation requires deriving the value of variable "A" from the exhaust constituents. This would involve a rather simple exercise if the concentrations of all exhaust constituents were known. Such is not the case, however, because the amounts of hydrogen and water from combustion are not generally measured, and at times oxygen is not measured. The AFR calculated is for dry air (does not include humidity). To compare the results to an AFR calculated from measured fuel and air, the water vapor in the intake air must be mathematically subtracted from the AFR derived from measured fuel and air or added to result derived from measured exhaust constituents.

Initial Conversion of Input Data

Initially all fuel and exhaust composition data must be converted into consistent units. Assuming fuel components are input as mass fractions of the total fuel (i.e., Total Fuel = 1), the conversions to number of atoms of a fuel constituent per atom of carbon (or moles per mole) are as follows:

FUE	EL	FA	CTORS:	· .	(3)
•	X	=	(FFC/FFC) * (12.011/12.011)	for carbon	
	у	=	(FFH/FFC) * (12.011/ 1.008)	for hydrogen	
	Z	=	(FFO/FFC) * (12.011/15.999)	for oxygen	
	f	=.	(FFX/FFC) * (12.011/AAWX)	for all other	
		FF	= Fuel Fraction	•	

AAW = Average Atomic Weight (Use 14.007 if N or unknown) Use total C, H, and O - including that in CO2, H20, etc.

For the exhaust constituents, all measured concentrations must be expressed in percent on a dry basis. Additionally, the CO2 concentration must be corrected for background (BG), and the HC concentration must be corrected for FID response. Equations for performing the necessary conversions are as follows:

CONVERSION EQUATIONS: (Exhaust Constituents)

(4)

Measured Dry (dew point less than -30°C): Dry %XX = Measured %XX

Measured Ice-Trap Dry (dew point 0°C to 2°C): Dry %XX = (Measured %XX)*1.0068

Note: Following equations include constants derived empirically by primary author.

Measured Wet (no water removed from sample): Dry%XX \approx Wet%XX*[(100 +H2OFAC +HUMFAC)/100] H2OFAC \approx 0.005*y*%CO2 + 0.005*y*%CO - 0.01*y*SAFR*[%CO +0.0121*(%CO)^{2.6}] HUMFAC \approx 0.168*HUM (HUM = Intake humidity in grams/kg of dry air).

CO2 Corrected for Background CO2:

 $%CO2 \approx Measured %CO2 - 1.1*BG%CO2$

 \approx Measured %CO2 - 0.04 (if BG%CO2 not measured)

" HC Corrected for FID Response:

%HC = Measured %HC / FID Response Factor If unknown: FIDRF $\approx [0.87 + 0.07*y - 0.33*z]$

Balance Equations and Water-Gas Ratio

Three balance equations can be generated from the combustion equation. The equations (for carbon, oxygen, and hydrogen) are:

BALANCE EQUATIONS:

(5)

Carbon Balance: 1 = c + m + d (When x = 1)

0.5z + A = 0.5zc + 0.5m + d + 0.5n + t + 0.5w

Hydrogen Balance:

0.5y = 0.5yc + h + w w = 0.5y - 0.5yc - h

The water-gas ratio for determining exhaust H2 from measured exhaust constituents is as follows:

$$k = 3.5 = [CO*H2O] / [H2*CO2] = [m*w] / [h*d]$$

Substituting for "w" and solving for "h" provides:

$$h = [0.5m(y - c)] / [3.5d + m]$$
(6)

Relating Variables To Concentrations

The next requirement is to define the variables in the combustion equation in terms of the measured values for the exhaust constituents. This can be done in the form of ratios, as follows:

c/c = %HC/%HC m/c = %CO/%HC d/c = %CO2/%HC

Then substituting into the carbon balance equation:

l = c + m + d l = c(%HC/%HC) + c(%CO/%HC) + c(%CO2/%HC)c = %HC / (%HC + %CO + %CO2)

Solving all of the other variables in terms of the measured exhaust constituents, in like manner, provides the following:

VARIABLES IN TERMS OF CONCENTRATIONS: (7)

c = %HC / (%HC + %CO + %CO2) m = %CO / (%HC + %CO + %CO2) d = %CO2 / (%HC + %CO + %CO2) n = %NOX / (%HC + %CO + %CO2)t = %O2 / (%HC + %CO + %CO2)

Solution of AFR Equation

At this point, all of the necessary conversions have been defined and all of the necessary equations have been developed to enable deriving the equations for computation of AFR. It <u>only</u> remains to carry the resolution to a final solution.

Initially, an attempt was made to use the computer to effect the solution, but no available program was capable of solving the numerous simultaneous equations. Therefore, the solution was derived manually. The solution is included in Appendix A to the extent practical.

wet enlisions

EQUATIONS FOR CALCULATING AFR AND LAMBDA

Computations of AFR and Lambda (λ) have been developed for cases in which:

- All exhaust constituents are measured;
- All exhaust constituents, except oxygen, are measured;
- Oxygen is the only exhaust constituent measured.

Lambda is the combustion AFR divided by the stoichiometric AFR. In the definition of lambda, the O in the exhaust NO is effectively taken as being available oxygen. With three-way catalyst systems. the NO is the source for the oxygen involved in oxidizing the CO.

Basic equations for calculation of AFR and λ are as follows:

AFR =
$$\frac{138.28*A}{12.011 + 1.008*y + 15.999*z + 28.016*f}$$
 (8)

$$\lambda = AFR / SAFR$$
(9)

Derivations for most, and the computations for all, of the variables (except "A") are provided in the text of this paper. Derivations for "A" are more involved and are provided only in the attachment. In these applications, exhaust H2 concentration is computed (identified as H2FAC) as follows:

$$H2FAC = \frac{0.5*\%CO*[y*(\%HC+\%CO+\%CO2) - \%HC]}{3.5*\%CO2 + \%CO}$$
(10)

All Exhaust Constituents Available

For the situations in which all exhaust constituents are measured, and it can be assumed that CO2 and O2 are both measured with equal accuracy (accuracy as a percent of the measured value), the measured values of both are included in the computation. In situations where the O2 measurements are significantly less accurate than the CO2 measurements, use the computation in the next section, in which an O2 value is effectively derived from the measured CO2. The equation for computation of "A" when the measured CO2 and O2 are considered to be equally valid is as follows:

$$A = [(0.5*z-0.25*y)*\%HC + 0.5*\%CO + \%CO2 + 0.5*NOX + \%O2 - 0.5*H2FAC] / [\%HC+\%CO+\%CO2] + 0.25*y - 0.5*z$$
(11)

Oxygen Balance Computation

An oxygen balance computation (O2BAL) has been developed to indicate accuracy of the measured exhaust CO2 and O2, when both are measured. In this process, an O2 value is calculated from the other exhaust constituents, and that calculated O2 value is compared to the measured O2 value. Derivation of the balance computation is as follows:

CALO2 = [Calculated t] * [%HC+%CO+%CO2]

 $O2BAL = \frac{\%O2/(\%HC+\%CO+\%CO2) - Calc. t*100.]}{A+0.5*z}$ (19)

Calc. t = [20.946/(%HC+%CO+%CO2)]- [(0.2095 - 0.1976y + 0.393z)c - 0.6047m+ 0.1858h - d - 0.5n - 0.1976y + 0.3953z - 0.2095f]

The result in percent is defined as the difference between the measured O2 and the value O2 should be, assuming measured values of other exhaust constituents (primarily CO2) were exactly correct. In general, when the O2BAL value is significant (the primary author usually uses a limit of two percent), either the O2 or the CO2 measurement is incorrect.

Exhaust O2 Concentration Not Available

When all exhaust constituents, other than O2, are available, the computation process computes a concentration for O2. This calculated concentration is that which would be present, assuming the measured concentrations for all the other exhaust constituents were exact. When a valid exhaust O2 concentration is not available, the equation for computation of "A" is as follows:

A = [20.946 - (0.2095 + 0.0524*y - 0.1047*z)*%HC - 0.1047*%CO - 0.3142*H2FAC] / [%HC+%CO+%CO2] + 0.0524*y - 0.1047*z - 0.2095*f (13)

Only Exhaust CO2 or O2 Available

When only the exhaust CO2 ccncentration or the O2 concentration is available, and the concentrations of other exhaust constituents are known to be negligible, it is possible to compute a reasonable estimate of AFR. When only the exhaust CO2 or O2 is known, and the other constituents are either unknown or negligible, the equations for "A" reduce to the following:

CO2 Known:

$$A \approx 20.946 / \% CO2 + 0.0524 * y - 0.1047 * z - 0.2095 * f$$
 (14)

O2 Known:

$$A \approx [\%O2*(4.7742 + 0.9435*y - 1.8871*z + f)] / [100. - 4.7742*\%O2] + 1.0 + 0.25*y - 0.5*z$$
(15)

AFR COMPUTATION PROCESS

Computation of AFR is outlined as follows:

- 1. Compute fuel factors using Equations 3.
- 2. Convert emissions using Equations 4.
- 3. Compute A using Equation 11, 13, 14 or 15.
- 4. When Equation 10 is used, compute O2BAL.
- 5. Compute SAFR and AFR using Equations 2 and 8.
- 6. If λ is desired, compute using Equation 9.

4

12-14 . . .

...

•• •

منية منية المنية. منطقة المنية المناطقة المناطقة المناطقة المنطقة المنطقة المنطقة المنطقة المنطقة المنطقة المنطقة المنطقة المنطقة

OXIDATION POTENTIAL PROCESS

When the AFR is very close to stoichiometric (such as with threeway catalyst systems), the standard AFR computation can result in significant error, relative to the magnitude of the AFR. Under such conditions, a better approach is to utilize an "oxidation potential" process (OXIPOT). This process is related to the REDOX computation developed by Gandhi et al (1976), and utilizes the exhaust constituents that are present in relatively small quantities near stoichiometric AFR (OXIPOT process does not use CO2, H2O, and N2). The exhaust AFR is stoichiometric, relative to oxidation potential, when:

t + 0.5n = (1+0.25y-0.5z)c + 0.5m + 0.5h

The components having oxidizing potential are to the left of the equal sign, and those having reducing potential are on the right of the equal sign. OXIPOT is defined as the oxidizing potential divided by the reducing potential:

OXIPOT =
$$[t + 0.5n] / [(1+0.25y-0.5z)c + 0.5m + 0.5h]$$

Solving OXIPOT in terms of the concentrations of the exhaust constituents results in (H2FAC from Equation 10):

$$OXIPOT = \frac{[2.*\%O2 + \%NOX]}{[(2.+0.5*y-z)*\%HC + \%CO + H2FAC]}$$
(16)

It is also possible to calculate lambda ($\lambda = AFR/SAFR$) using the oxidation potential. The AFR is stoichiometric when the total oxygen from the intake air is (2. + 0.5*y - z), and the computation for OXIPOT λ is as follows:

OXIPOT
$$\lambda = \frac{[(2. + 0.5*y - z) + O2FAC]}{[2. + 0.5*y - z]}$$
 (17)

O2FAC = [2.*%O2 +%NOX -(2.+0.5*y-z)*%HC -%CO -H2FAC] / [%HC+%CO+%CO2]

The values for OXIPOT and OXIPOT λ can be used in determining whether the exhaust composition is oxidizing (has excess O2) or reducing (deficient in O2) as follows:

.

OXIPOT or OXIPOT $\lambda \ge 1$	Exhaust is Oxidizing	(18)
OXIPOT or OXIPOT $\lambda \leq 1$	Exhaust is Reducing	(19)

OTHER CONSIDERATIONS

There are several other considerations, such as wet air-to-fuel ratio (WAFR), fuel-to-air ratio (FAR and WFAR), and air-to-combustible fuel ratio (ACFR and WACFR), that can be computed:

Wet Air-to-Fuel Ratio

Calculated dry AFR can be converted to a wet air-to-fuel ratio (WAFR) as follow:

$$WAFR = AFR * (1 + H/1000)$$
 (20)

Fuel-to-Air Ratio

Fuel-to-air ratio (FAR) is total fuel divided by dry air (FAR is the inverse of the AFR):

$$FAR = FUEL/AIR$$

$$FAR = 1/AFR$$
(21)

FAR divided by the stoichiometric FAR (SFAR) is identified as ϕ :

$$\phi = FAR/SFAR$$

$$\phi = SAFR/AFR$$
(22)

REFERENCES

5

CRC Handbook of Chemistry and Physics, 69th Edition, CRC Press, Inc. 1988.

Gandhi, H. S., Piken, A. G., Shelf, M., and Delosh, R. G., 1976

"Laboratory Evaluation of Three-Way Catalysts," SAE Paper 760201.

Spindt, R. S., 1965, "Air-Fuel Ratios from Exhaust Gas Analysis." SAE Paper 650507.

Urban, C. M., Fritz, S. G., 1992, "Computing Emissions from Hydrogen-Fueled Engines," ASME Paper 92-ICE-15.

Urban, C. M., Sharp, C. A., 1993, "Computing Emissions from Natural Gas and Dual-Fuel Engines," ASME Paper 93-ICE-29.

Uyehara, O., 1991, "A Method to Estimate H₂ in Engine Exhaust," SAE Paper 910732.

APPENDIX A. DERIVATIONS

All of the equations derived in this appendix originate from the basic combustion equation given in the text, as (1), and repeated below:

[A]

[D]

[E]

 $FUEL + AIR \rightarrow EXHAUST$

FUEL = xC + yH + zO + fN

AIR = AO2 + [3.7742 * A]N2

EXHAUST = cHC + mCO + hH2 + dCO2 + nNOX + wH20 + tO2 + [3.7742*A - 0.5n]N2 + fN

In all cases, the derivation revolves around solving for the amount of air "A" in the combustion equation. Fuel components are known, but some of the some exhaust constituents are not known. Derivations presented cover two cases: when oxygen in the exhaust is measured, in addition to HC, CO, CO_2 , and NO_x ; and when oxygen is not measured.

OXYGEN MEASURED

When oxygen is measured, the value of t is known, and the solution is reasonably straightforward.

Begin with the equations:

A = 0.5zc + 0.5m + d + 0.5n + t + 0.5w - 0.5z	(from the oxygen balance)	[B]
w ≕ 0.5y – 0.5yc – h	(from the hydrogen balance)	[C]

Substituting [C] into [B] and simplifying yields:

A = (0.5z - 0.2y)c + 0.m + d + 0.5n + t - 0.5h + 0.25y - 0.5z

"A" can be expressed in terms of measured emission concentrations by substituting the following equations, taken from (6) and (7) in the text for c, m, d, n, t, and h.

VARIABLES IN TERMS OF CONCENTRATIONS:

c = %HC / (%HC + %CO + %CO2) m = %CO / (%HC + %CO + %CO2) d = %CO2 / (%HC + %CO + %CO2) n = %NOX / (%HC + %CO + %CO2)t = %O2 / (%HC + %CO + %CO2)

h = [0.5m(y - c)] / [3.5d + m] (from hydrogen balance and water-gas ratio)

Combining (D) and (E) and simplifying the result yields:

$$A = \frac{(0.5z-0.25y)\%HC + 0.5\%CO + \%CO2 + 0.5\%NOX + \%O2 - 0.5H2FAC}{\%HC + \%CO + \%CO2} + 0.25y - 0.5z$$
[F]

Where: H2FAC =
$$0.5*\%CO * [y*(\%HC+\%CO+\%CO2)-\%HC]/[3.5*\%CO2 + \%CO2)$$

:6

OXYGEN NOT MEASURED

This solution is more complex because the value of t must be expressed in terms of other exhaust constituents, and thus eliminated, before expressing "A" in terms of measured emission concentrations. The solution is from the basic combustion equation as follows:

Begin with the following from [B], [C], and [E] on the previous page:

$$A = 0.5zc + 0.5m + d + 0.5n + t + 0.5w + 0.5z$$
 [G]

$$w = 0.5y - 0.5yc - h$$
[H]

$$w_{O2} = tr(w_{HC} + w_{CO} + w_{CO2}) \quad from t = w_{O2} / (w_{HC} + w_{CO2} + w_{CO2})$$
[I]

From the basic combustion equation, the percentage of free oxygen in the total dry exhaust is:

$$\%O2 = \frac{t*100}{c+m+h+d+n+t+3.7792A-0.5n+f}$$
 [J]

Setting [I] equal to [J] yields:

$$\frac{100}{\% HC + \% CO2} = c + m + h + d + 0.5n + t + 3.7742A + f$$
 [K]

Substituting [H] into [G] and then substituting revised [G] into [K] yields:

$$100 / [\%HC + \%CO + \%CO2] = c + m + h + d + 0.5n + t + 1.8871zc + 1.8871m + 3.7742d + 1.8871n + 3.7742t + 0.9436y - 0.9436yc - 1.8871h [L]$$

Simplifying [L] and solving for t gives:

1

$$t = \frac{20.946}{\% HC + \% CO} - 0.2095c - 0.6047m + 0.1858h - d - 0.5n - 0.3953zc - 0.1976y + 0.1976yc + 0.3953z - 0.2095f [M]$$

Now that t is known, "A" may be solved for in terms of exhaust emission concentrations.

<u>ن</u>ة.

Substituting [M] into [G], for t, and simplifying yields:

$$A = 0.1047zc - 0.1047m + \frac{20.946}{\%HC+\%CO+\%CO2} - 0.2095c - 0.3142h + 0.00524y - 0.0524yc - 0.1047z + 0.2095f$$
[N]

Now the equations for c, m, and h from [E] are substituted into [N] to express "A" in terms of measured emission concentrations. Simplifying the resulting equation yields the final solution:

$$A = \frac{20.946 - (0.2095 + 0.0524y - 0.1047z)*\%HC - 0.1047*\%CO - 0.3142*H2FAC}{\%HC + \%CO + \%CO2]} + 0.0524y - 0.1047z - 0.2095f$$
 [O]
Where: H2FAC = 0.5*%CO * [y*(%HC + %CO + %CO2) - %HC]/[3.5*%CO2 + %CO]

÷

APPENDIX S

AN INVESTIGATION OF INLET AIR HUMIDITY EFECTS ON A LARGE-BORE, TWO STROKE NATURAL GAS FIRED ENGINE

AN INVESTIGATION OF INLET AIR HUMIDITY EFFECTS ON A LARGE-BORE, TWO STROKE NATURAL GAS FIRED ENGINE

Dean Huntley Tennessee Gas Pipeline Plant Services, Mechanical Testing Houston, Texas 77002

Jay Holden Engines & Energy Conversion Laboratory Colorado State University Fort Collins, Colorado 80523

ABSTRACT

The natural gas transmission industry has in service over 8000 large-bore, natural gas engines of various makes and vintages for compressing natural gas. Many of these engines are operated in high relative humidity conditions of the gulf and East Coast regions of the United States. Significant changes in emissions are often observed with changing ambient conditions and can be related to a combination of inlet air temperature as well as humidity effects. In an effort to investigate the humidity parameter, a project was sponsored by the American Gas Association to study humidity effects at the Colorado State University Large Bore Engine Test In this project, an inlet air humidification Bed. system was constructed to deliver a known amount of entrained water vapor to a Cooper-Bessemer GMV engine. A combination of steam injection and atomizing water nozzles were used to inject the desired quantity of water into the inlet air of the GMV test engine. Feedback control was accomplished through humidity sensors located in the inlet air duct. Due to the extensive level of instrumentation and control on this engine, it was possible to isolate the effects of humidity on engine performance and emissions.

In this paper, the direct effects of changing the humidity of the inlet air on engine performance and emissions are presented. Test data and theory are used to demonstrate the effects of varying inlet air humidity on the emission of oxides of nitrogen,

unburned hydrocarbons, carbon monoxide, and air toxics (formaldehyde) from the engine.

ACKNOWLEDGEMENT AND DISCLAIMER

This paper is based on work funded under various contracts with PRC International (PCRI) and the Gas Research Institute (GRI). The data presented is considered to be work in progress and therefore it has not been approved by the sponsors. The opinions, findings, and conclusions expressed are those of the author and not necessarily those of the American Gas Association (A.G.A.), or PRCI or GRI. Mention of company or product name is not to be considered an endorsement by A.G.A., PRCI or GRI. Neither A.G.A., members of A.G.A., PRCI, or members of PRCI, GRI, or members of GRI, or any person acting on behalf of them; makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this paper, or that the use of any information, apparatus, method, or process disclosed in this paper may not infringe privately-owned rights. Finally, neither A.G.A. and its members, PRCI and its members, or GRI and its members, or any person acting on their behalf of all three organizations, assumes any liability with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this paper.

INTRODUCTION

The automotive industry has conducted research regarding the effects of humidity on emissions in four stroke gasoline and diesel engines (1,2,3). This body of work has identified the general trends of emissions with increasing humidity levels and investigated the relationships between humidity and air fuel ratio and in-cylinder heat capacity change (4, 5). As is usually the case, there is little data examining the humidity effects on large-bore engines. Additionally, the majority of the automotive research was conducted before there was any interest in air toxic emissions and only considered criteria pollutants.

The American Gas Association (AGA) sponsored a project in the fail of 1996 to investigate the effects of varying humidity levels on emissions from a large-bore engine. The project was conducted at the Colorado State University Large-Bore Engine Test-bed (LBET) and included criteria and air toxic emission data. The project equipment was specified, installed and the testing completed by September 1997.

PROJECT OBJECTIVE

The goal was to provide a system capable of simulating a 100% relative humidity day at sea level and 90°F in the LBET for the range of ambient conditions typically encountered in Fort Collins, Colorado. Additionally, the capability to control and vary the humidity level from the minimum possible (Fort Collins ambient conditions) to 100% RH on a 90°F day at sea level was required. Once the system was in place, the testing program consisted of various humidity maps in which the humidity was the only independent parameter.

TEST SETUP

The humidity control system was designed and specified by the EECL personnel and consisted of a variety of commercially available items. The Woodward Governor Company provided assistance with the controls and integrated them into the existing engine controller. The major components of the humidity control system included the LBET, water supply system, steam humidification delivery system, the atomizing nozzle system, and humidity sensors.

Large-Bore Engine Test-bed

The LBET was commissioned by the gas pipeline industry in 1992 to provide an independent research facility to assist in the development of emission reduction technologies for large-bore engines. Due to the generous support of the industry, the LBET has evolved into a state-of-theart facility conducting some of the most advanced research ever attempted on large-bore engines. The centerpiece of the test-bed is a highly instrumented four cylinder, 14 inch bore, 14 inch stroke, two-cycle natural gas fired Cooper-Bessemer GMV-4TFS engine. The engine has a sea-level rating of 440 bhp at 300 rpm. There are 102 engine parameters continuously monitored, including in-cylinder pressures for real-time combustion analysis. Load control is accomplished with a water brake dynomometer and the engine is outfitted with a turbocharger simulation package which allows operation at a range of air manifold pressures to mimic piston scavenged and clean burn GMV configurations. The engine is equipped with a Woodward Governor Autobalancer system to provide precise cylinder peak pressure balance during testing. The test-bed uses protocol analyzers as well as a Fourier Transform Infrared Spectrometer (FTIR) to examine criteria and air toxic emissions. The addition of the humidity system compliments the existing systems that allow control of air manifold temperature and pressure, fuel manifold temperature and pressure, and jacket water temperature.

Water Supply System

A reverse osmosis water supply system was selected to provide the pure water for humidification of the engine inlet air (Figure 3). A 1500 gallon storage tank was added to reduce the duty cycle of the reverse osmosis machine.

Steam Humidification Delivery System

A high pressure, natural gas fired boiler was used to generate steam and deliver it through a control valve to injection rails placed inside the inlet air duct of the engine (Figures 1, 2, 6). The injection was carried out downstream of the supercharger (turbocharger simulator) and required the addition of a mixing section of duct to ensure entrainment of the water vapor in the air stream (Figure 2). The steam injection was the primary method of injecting water vapor. In order to maintain a constant air manifold temperature in the summer months, an atomizing nozzle water injection system was also installed in the mixing section of the duct (Figure 4).

Water Injection System

Atomizing nozzles using pressurized water and compressed air were installed to deliver water vapor and to cool the inlet air stream if needed to maintain a constant air manifold temperature in the summer months (Figure 4). The intercooler (Figure 2) at the LBET operates near 100% of its capacity during the hottest summer months of operation. Steam injection during the summer has the potential to exceed the cooling capacity of the intercooler which required installation of the atomizing nozzles to ensure year round operation of the humidity system. Both the steam and atomizing nozzles can be operated at the same time and in this manner provide the capability to control both humidity and air manifold temperature.

Humidity Sensors

Vailsiala humidity sensors were placed in the inlet air duct both upstream and downstream of the supercharger. The downstream humidity sensor was used to provide feedback control of the humidity delivery system and provided setpoint control for the delivery systems. To verify the accuracy of the humidity sensors, the engine intake air was sampled periodically with the FTIR to determine the percent water in the intake air. Percent water is easily correlated to the required relative humidity level and provided an easy check of the measurement system.

HUMIDITY UNITS

The amount of water vapor contained in atmospheric air can be described either by the humidity ratio or the relative humidity. The humidity ratio is defined as the ratio of water mass to the mass of dry air in a moist air sample and is usually given the symbol W. The units are pounds of water per pounds of air.

W= lbs water/lbs dry air

For an air-water mixture:

 $W = 0.61298 * (P_w/(P_{tot}-P_w))$, where:

 P_w = partial pressure of water vapor P_{tot} = total pressure of mixture

Relative humidity is the ratio of the partial pressure of the water vapor to the saturation pressure at the temperature of the air. For every temperature, there is a unique saturation pressure.

$RH = P_v / P_{sat}$

If the partial pressure of the water vapor is equal to the saturation pressure, the air is saturated (i.e., 100 % relative humidity).

These two terms are easily correlated to each other by using ideal gas equations and the liquidvapor saturation curve for water. The humidity ratio is a more meaningful parameter for the purpose of this research. This is because the relative humidity is exponentially dependent on ambient temperature, which can confuse the results if ambient temperature is not held constant. Humidity ratio represents the mass fraction of water in the intake charge, which affects the combustion process directly.

TESTING PROCEDURE

Test points were determined by first calculating the humidity ratio of 90 °F, 14.696 psig air at a desired relative humidity. This humidity ratio was then back calculated to a test point relative humidity at the operating air manifold temperature and pressure of the engine. The test point relative humidity was then used as the control set point for the system.

The primary humidity map was conducted at 7.5 inches Hg boost and 110 °F air manifold temperature. This map consists of 8 points varying in humidity ratio from 0.007 to 0.25 lb/lb dry air . To verify the trends observed in the first humidity map points, additional maps were conducted at 10 and 12.5 inches Hg boost pressure and 90 and 140 °F air manifold temperature. Finally, to investigate the effects of humidity at a constant air/ fuel ratio, additional data was taken to permit analysis at matched trapped air/ fuel ratio points. A summary of the data points used in the maps and matched air fuel ratio points is contained in Tables I through IX.

Protocol analyzers were used to measure the concentrations of NOx, CO, THC, O2, and CO2 during the testing. A FTIR was used to measure Formaldehyde concentrations.

ENGINE CONFIGURATION

Testing was performed on the GMV-4TF engine with Woodward Governor Electronic Gas Admission Valves (EGAV). Speed control was accomplished by governing on duration through the Autobalancer 5000 system. Duration governing works by using a proportional / integral / derivative (PID) speed loop to increase or decrease fuel delivered to the engine to maintain the speed at the desired setpoint.

The engine balance was precisely maintained by using the Autobalancer feature, and the Altronic CPU 2000 ignition system was used in all the testing.

Table I: Test Matrix 1 440 BHP, 7.5" AMP, 110 °F AMT

	and the second	ومراقعا فتشمع وبجوي والمتقاد
Test .	Relative Humidity	Grains/lb
Points	90 °F & 29.92 in Hg	
H1.4-6	24.29	68.32
H1.7-9	41.63	87.93
H1.10-12	52.97	112.51
H1.13-15	63.5	135.58
H1.20-22	68.33	146.24
H1.26-28	74.81	160.60
H1.29-31	79.27	170.56
H1.32-34	83.40	179.84

Table II: Test Matrix 2 440 BHP, 10" AMP, 110 °F AMT

Test Points	Relative Humidity 90 °F & 29.92 in Hg	Grains/lb
H2.2-4	29.56	62.09
H2.8-9	53.62	113.93
H2.10-11	64.55	137.90
H2.12-13	73.38	157.44
H2.14-15	98.83	214.72

Table III: Test Matrix 3 440 BHP, 12.5" AMP, 110 °F AMT

Test Points	Relative Humidity 90 °F & 29.92 in Hg	Grains/lb
H2.5-7	24.74	51.83
H2.22-23	39.74	83.87
H2.18-19	66.17	141.47
H2.20-21	77.17	165.87

Table IV: Test Matrix 4 440 BHP, 7.5" AMP, 90 °F AMT

Test Points	Relative Humidity 90 °F & 29.92 in Hg	Grains/lb
H3.5-7	36.63	77.20
H3.8-10	51.30	108.89
H3.11-13	72.50	155.48
H3.14-16	75.31	161.74

Table V: Test Matrix 5 440 BHP, 7.5" AMP, 140 °F AMT

Test Points	Relative Humidity 90 °F & 29.92 in Hg	Grains/lb
H3.2-4	30.97	65.09
H3.31-32?	45.00	95.21
H3.29-30	58.90	125.42
H3.21-22	84.74	182.83
H3.27-28	86.00	185.67

Table VI: Test Matrix 6A/F MATCH, 440 BHP, 7.5" AMP, 110 °F AMT

Test Points	Relative Humidity 90 °F & 29.92 in Hg	Grains/lb
H1.1-3	32.49	68.32
H1.10-12	52.97	112.51
H1.26-28	74:81	. 160.60
H4.3-4	81.44	175.42

Table VII: Test Matrix 7 A/F MATCH, 440 BHP, 10" AMP, 110 °F AMT

Test Points	Relative Humidity 90 °F & 29.92 in Hg	Grains/lb
H2.2-4	29.56	62.09
H2.8-9	53.62	113.93
H2.12-13	73.38	157.44
H4.5-6	77.61	166.86

Table VIII: Test Matrix 8 A/F MATCH, 440 BHP, 12.5" AMP, 110 °F AMT

Test Points	Relative Humidity 90 °F & 29.92 in Hg	Grains/lb
H2.5-7	24.74	51.83
H2.18-19	66.17	165.87
H2.20-21	. 77.17	165.87
H4.7-8	79.86	171.89

Table IX: Test Matrix 9 A/F MATCH, 440 BHP, 12.5" AMP, 140 °F AMT

Test Points	Relative Humidity 90 °F & 29.92 in Hg	Grains/lb
H3.2-4	30.97	65.09
H3.31-32	45.00	95.21
H4.1-2	73.45	157.59
H3.21-22	84.74	182.83

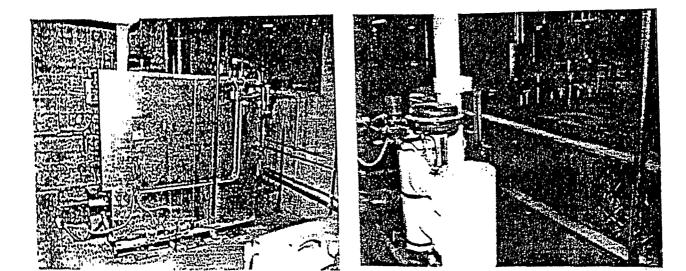


Figure 1: Boiler

Figure 4: Steam Control Valve and Atomizing Nozzle Tubing

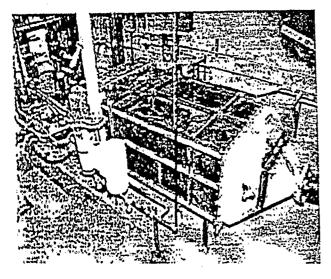


Figure 2: Mixing Duct, Air Manifold Intercooler

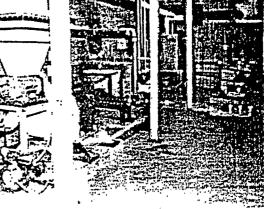


Figure 5: Supercharger, Mixing Duct, and Boiler

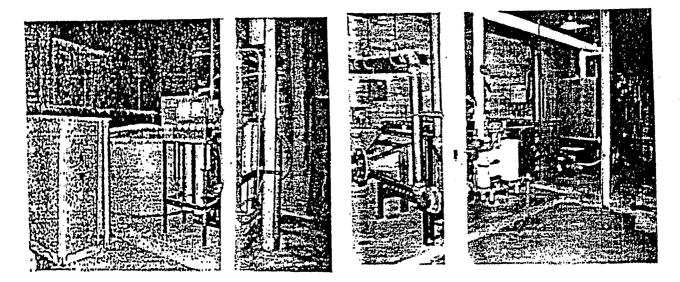


Figure 3: Reverse Osmosis Water Supply and Storage Tank

Figure 6: Mixing Duct and Boiler

RESULTS AND DISCUSSION

The results presented here are a summary of findings of the AGA sponsored testing. Colorado State University will issue the official AGA project test report.

Previous researchers have shown that inlet air humidity has an affect on engine emissions and performance. Two prominent mechanisms have been offered to explain the effects of humidity on engine performance and emissions. The first is the decrease in cylinder temperatures caused by the increase in the total heat capacity of the cylinder charge. The second, the decrease in the air fuel ratio as water vapor displaces oxygen in the inlet air. The decrease in oxygen supplied to the engine causes a richer mixture. The lower air fuel ratio translates to a higher in cylinder temperature. Although opposite in effect, both mechanisms have an affect on in-cylinder temperature. The decrease in the oxygen concentration in the in cylinder charge, appears to have more of an affect on engines operating at or near stoichiometric conditions (rich burn four-stroke engines (1)).

The majority of research has focused on the most prominent affect of these changes, NO_x production. Additionally, research papers reviewed in conjunction with this program, indicate that to date, no work has been conducted on either two-stroke, or large-bore industrial class engines in the relation to the effects of humidity on engine performance and emissions. Results presented within this document will provide information on variations in inlet air humidity in relation to engine emissions, and engine combustion parameters. In order to completely understand the ensuing discussion, a definition of the terminology used to explain the effects of humidity on engine emissions and performance is required.

Trapped Air Fuel Ratio

The trapped air / fuel ratio refers to the mixture captured in the cylinder that participates in the combustion event. On a two-stroke engine, determining the trapped air / fuel ratio is complicated by the presence of scavenging air. To determine a trapped air / fuel ratio, an assumption of engine trapping efficiency is made and is applied to the overall air / fuel ratio of the engine. The overall air / fuel ratio is determined by measuring

the air and fuel mass flow rates, or an analysis of the exhaust gas constituents.

Previous work by Olsen et al. (5) at the EECL has used a tracer gas method to measure the trapping efficiency of the test engine. A tracer gas was used that was destroyed at in cylinder combustion temperatures but would pass through the engine if used in a scavenging process. Before and after engine concentrations of the tracer gas were measured with a FTIR spectrometer and the concentrations are a direct indication of trapping efficiency.

Figure 8 show the calculated trapped air fuel ratio decreasing with increasing humidity levels for all boost levels. For each of the three boost levels, the air / fuel ratio decreased approximately one air / fuel ratio unit. The data was taken at a fixed air manifold pressure, therefore as intake humidity was increased the air was displaced with the water vapor the air / fuel ratio decreased. This is characteristic of fixed air supply engines.

Figures 11-14 show the humidity effect at a constant trapped air / fuel ratio. This means the humidity effect is due to more than just a changing air / fuel ratio and for these plots directly indicate the effects of increasing heat capacity.

Specific Heat Capacity

The specific heat capacity, or specific heat is a thermodynamic property which is defined as the amount of heat required per unit mass to raise the temperature by one degree. To evaluate the specific heat changes associated with increasing humidity, calculations were performed to evaluate the specific heat capacity of the trapped cylinder charge. A fuel gas analysis, measured intake air moisture content, and calculated trapped air / fuel ratio were used to calculate a constant volume adiabatic flame temperature. The products of combustion were assumed to be H2O, CO2, O2 and N2. The specific heat of the combustion products was then evaluated at the flame temperature. Figures 15 - 18 are a plot of emissions versus specific heat at the flame temperature for the humidity maps at the different boost levels tested. The calculated flame temperatures are presented in Figure 21 for different boost levels.

To account for the mass changes of different air *l* fuel ratios, the mixture specific heat was multiplied by the trapped mass to give an absolute measure of the cylinder heat capacity which is termed total heat capacity. The total heat capacity of a gas mixture can be augmented three ways, (1) by adding a constituent with a significantly different specific heat capacity such as H2O, (2) by adding more mass, and (3) by increasing the temperature provided that the mixture does not consist entirely of monatomic gases. The absolute heat capacity data for the different boost levels tested are plotted in Figure 19 and compared to a constant humidity boost map.

In Cylinder Bulk Temperature

In cylinder temperature is a calculated average temperature and is based on peak pressure, location of peak pressure, engine geometry, mass of charge and speed. Bulk temperature data are The bulk in cylinder plotted in Figure 10. temperatures were insensitive to changes in humidity ratio but did decrease with increasing The lack of change of bulk boost levels. temperatures is most likely due to the offsetting effects of the decreasing air / fuel ratio and increasing mixture total heat capacity. This behavior was also seen with the calculated flame temperatures.

Stack Temperature

Figure 9 show the exhaust stack temperature increasing slightly with increasing humidity. This is partly due to a decrease in trapped air / fuel ratio with increasing humidity. Also, the location of peak pressures occur later as the humidity increases, which generally results in an increase in stack temperature. When cylinder pressure peaks later in the cycle, less of the chemical energy from the fuel is converted to shaft power, resulting in higher exhaust temperatures. The stack temperature, which is tied strongly to location of peak pressure, does not necessarily correlate with peak bulk incylinder temperature, calculated directly from peak pressure amplitude. The stack temperature also calculated flame correlate to not does temperatures. This insensitivity of the bulk and flame temperatures to the humidity ratio most likely results from competing effects of decreasing air / fuel ratio and increased charge heat capacity.

Combustion Parameters

Figures 23-26 display the results of increasing humidity levels on the combustion parameters. The only combustion parameters affected by the humidity were the cylinder peak pressures and location of peak pressures. Cylinder peak pressures are decreasing slightly with increasing humidity and do not correspond to an expected decrease in cylinder bulk temperature. This is due to the increased heat capacity in the cylinder from the increased moisture content. The location of peak pressure is increasing as the humidity increases and the mixture becomes richer.

Standard deviations of the combustion parameters generally describe the combustion stability, or the cycle to cycle variability of the combustion event. Increasing humidity levels did not adversely affect the combustion. No significant levels of misfires were observed during the testing.

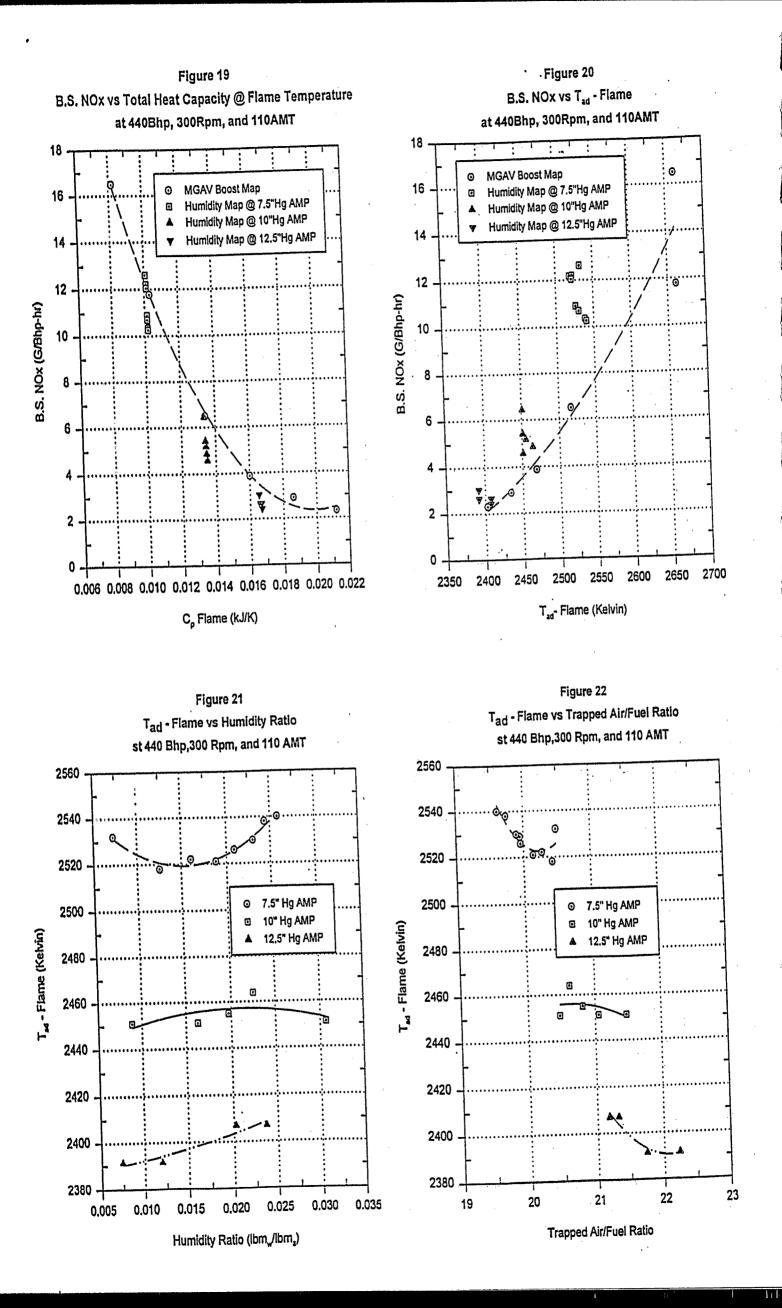
BSFC Results

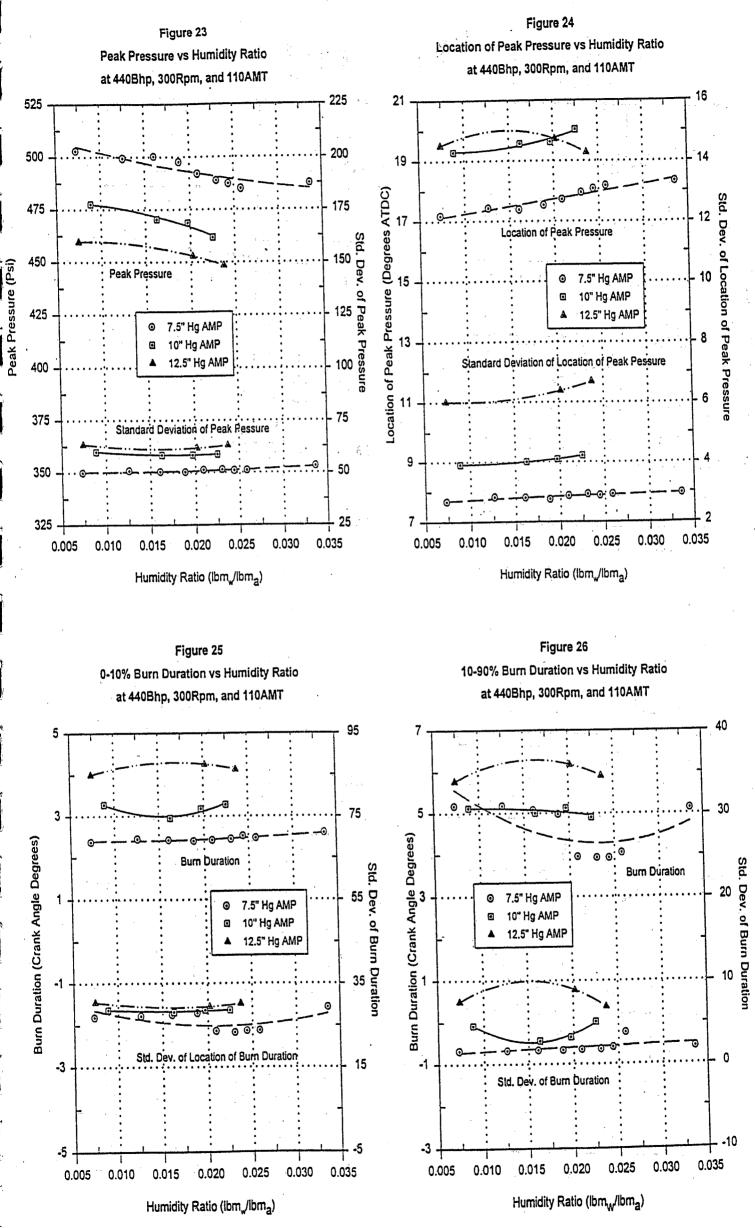
Figure 7 shows a trend of increasing fuel consumption as humidity levels are increased. This trend has been previously documented in a paper by Quader (1), which shows specific fuel consumption increasing with percent by volume of water in the intake charge. Although the previous author provided no explanation for this trend, it is most likely related to the high value and strong temperature dependence of the specific heat of water.

NOx Results

As previously mentioned, variations in inlet air humidity appear to have the most prominent effect on NO_x production.. This trend is uniform over all air manifold pressures and temperatures tested. The data indicates that increases in humidity ratio bring about a resulting decrease in NO_x production. The reduction in NOx appears to be not as pronounced at leaner air / fuel ratios. By looking at the data in terms of trapped air/fuel ratio and heat capacity of the trapped charged, it can be seen that the NO_x emissions are being reduced at higher humidity levels even though the air fuel ratio is becoming richer. This can be seen in Figure (X). Bulk cylinder temperatures and calculated flame temperatures were previously shown to be relatively constant through the humidity map. Therefore, the decreasing NOx emissions are likely due to the effects of increasing heat capacity from increased moisture in the air / fuel mixture.

The current school of thought is that the increased heat capacity brings about a reduction in the overall combustion temperatures by lowering combustion pressures and slowing the combustion flame propagation. Test programs which derived these results maintained a constant air / fuel ratio while changing humidity ratio. The current test program increased the humidity ratio at a constant air manifold pressure. The air / fuel ratio changed by one air / fuel unit over the range of humidity ratios tested at each boost condition. The increase in humidity ratio has an offsetting effect to the changes in air / fuel ratio which resulted in a constant adiabatic flame temperature. Additional data was collected in which air / fuel ratio was held constant over varying humidity ratios. This was conducted at all three test boost pressures. The results from this data are displayed in Figures 11 to 14 which show the trend of decreasing NOx with increasing humidity. The data from these various mapping processes support the current school of thought and offer a second plausible explanation for the reduction in NOx with increasing humidity ratio.


The data which displays the constant air / fuel ratio points for varying humidity ratios shows a decrease in NOx as humidity increases. The combustion pressures decrease and locations of peak pressure occur later (figures 23-26). These changes do occur but are not of a great magnitude. The data which represents the varying humidity ratios at a constant boost pressure indicate minimal change in the combustion parameters, with adiabatic flame temperature remaining constant. These minimal changes in peak pressures and adiabatic flame temperatures indicate that the combustion is occurring in essentially the same manner. With the assumption that the combustion processes for all humidity ratios is starting at a similar adiabatic flame temperature (as indicated by test data), what happens as the composition cools during the expansion stroke becomes important. During the expansion stroke, the NO formed in the flame front is decomposing to an equilibrium state as the temperatures decline. As the expansion stroke continues and the temperature drops, the NO equilibrium reaction is frozen prior to reaching the final equilibrium state (N2 and O2). With increased heat capacity (due to increased water vapor) of the post combustion composition, the change in


temperature in relation to the change in time (dT/dt) is less. This translates to the post combustion composition remaining at a higher temperature for a longer period of time. The effect of this mechanism on the NOx production would be a decrease in NOx emissions.

Test data collected tend to support this Calculated adiabatic flame mechanism. bulk in cylinder peak temperatures and calculations show constant temperature varying humidity ratios. for temperatures Measured exhaust gas temperatures show an increase in temperature, which would be expected with higher post combustion temperatures during the expansion stroke. This data correlates well with the slight changes in the measured. combustion parameters, which appear to have minimal changes in relation to the reduction in NOx. Additionally, the slight decreases in peak pressures are at richer air / fuel ratios where one temperatures would expect elevated and pressures.

Total Hydrocarbons and Carbon Monoxide

The effects of humidity ratio and specific heat on total hydrocarbon (THC) and carbon monoxide (CO) emissions are given in Figures (12,13,16,17). THC emissions display a gradual increasing trend with increasing humidity ratio with the exception of the 7.5 in. Hg boost data, which does not change significantly for the range of humidity ratio tested. The increasing trend seen at higher boost levels has been observed by other researchers (4, 5). One possible explanation for the increasing trend in our data is the decrease in air/fuel ratio as humidity ratio increases. For richer mixtures, higher concentrations of hydrocarbons exist in regions which are not processed by the flame, such as crevice volumes. As humidity ratio increases, CO emissions are reduced initially then increase. Thus, there is a optimum level of humidity that minimizes CO. However, the changes in CO are small, between the range of 3 to 14% with the largest effect occurring at the lowest boost. This is in contrast to THC emissions, where the smallest effect was seen at the lowest boost level. A hydrocarbon trend is not evident during the humidity map at 7.5 inches of boost. It is likely that any additional hydrocarbon emissions resulting from the decrease in air / fuel ratio are oxidized at the relatively high bulk gas temperature at this boost level.

$$Mass/hr = \frac{Mass of Emission}{Mole of Exhaust Gas} \times \frac{Moles of Exhaust Gas}{hr}$$
(2)

However, the moles of exhaust gas/hr produced by the combustion source is not known. It is this quantity that can be derived from the fact that the fuel and exhaust gas contain the same amount of carbon, as shown in the next section.

B. Derivation of an Expression for Moles/Hr of Exhaust Gas

An expression for the Moles of Exhaust/Hr can be derived from fuel composition and molecular weight and the measured values of fuel flow and volumetric concentrations of CO, CO₂, and hydrocarbons in the exhaust. The expression is:

$$\frac{\text{Moles of Exhaust}}{\text{hr}} = \frac{\begin{pmatrix} \text{Mass of Carbon in Fuel} \\ \text{hr} \\ \frac{\text{Mass of Carbon in Exhaust}}{\text{Mole of Exhaust}} \end{pmatrix}$$

(3)

(4)

(5)

Since the total mass of carbon/hr put into the system by the fuel must be equal to the total mass of carbon/hr leaving the system in the exhaust gas.

Sections 1 and 2 below will derive the expressions for mass of carbon from fuel/hr and mass of carbon from exhaust/mole of exhaust, respectively.

1. Derivation of Expression for Mass of Carbon from Fuel/Hr

The problem is to determine the Mass of Carbon/Hr put into the system from the fuel using either an assumed or actual fuel composition and the measured fuel flow.

If the mass (or mass rate) of a gas mixture is known, the mass (or mass rate) of each constituent can be found as follows:

Mass of Constituent = Mass of Mixture X Mass %

where:

Part - Toman - Toma

١

and the mass of constituent/mole of mixture is found from measured volumetric concentrations using equation (1). Now, the mass of carbon in any carbon compound can be calculated knowing the mass of compound, the compound molecular weight, and the number of carbon atoms per molecule, thusly:

Mass of Carbon = Mass of Compound Compound

X Molecular Weight of Carbon Molecular Weight of Compound

(6)

X Number of Carbon Atoms Molecule of Compound

Substituting equations (1), (4), and (5) in equation (6) gives the following equation for the mass of carbon from one compound:

Mass of Carbon= Mass of Mixture XVol. % of Comp. X Molecular Wt. of CarbonCompoundMolecular Weight of Mixture

X Molecular Weight of Carbon X Number of Carbon Atoms Molecular Weight of Compound X Molecule of Compound

Simplifying:

Obviously, the total carbon mass in the mixture is the sum of the carbon mass from each of the carbon-bearing compounds. Thusly:

More concisely expressed:

Mass of Carbon in Mixture = Mass of Mixture X $\frac{Molecular Weight of Carbon}{Molecular Weight of Mixture}$

$$X \xrightarrow{\Sigma}_{i}$$
 (No. of Carbon Atoms in Compound (i) $X \xrightarrow{Vol.\%}_{100}$ Compound (i) (8)

necessary to apply the total carbon method to natural gas fueled combustion processes.

As an example, assume that the natural gas fuel contains CH₄, C_{2H₆}, C<sub>3H₁₆. H₂, He, CO₂, and N₂. The summation term in equation (10) would be:

$$\sum_{i} \left(\frac{(\%\text{Compound X No. C Atoms})i}{100} \right) = \frac{1}{100} \left((1X1\%\text{CH}_{4}) + (2X\%\text{C}_{4}\text{H}_{1}) + (3X\%\text{C}_{3}\text{H}_{8}) + (4X\%\text{C}_{4}\text{H}_{10}) + (5X\%\text{C}_{5}\text{H}_{12}) + (6X\%\text{C}_{6}\text{H}_{14}) + (1X\%\text{CO}_{2}) \right)$$</sub>

The summation should include all carbon compounds in fuel whether part of the combustion process or not. The molecular weight of the natural gas is found by summing the product of the mole fraction of each constituent and its molecular weight, for all the constituent gases in the fuel.

$$\begin{aligned} \text{Molecular Weight} &= \left(\frac{\% CH_4}{100} \times 16.04303\right) + \left(\frac{\% C_2 H_6}{100} \times 30.07012\right) \\ &+ \left(\frac{\% C_2 H_8}{100} \times 44.09721\right) + \left(\frac{\% C_4 H_{10}}{100} \times 58.12430\right) \\ &+ \left(\frac{\% C_5 H_{12} \times 72.15139}{100}\right) + \left(\frac{\% C_6 H_{14}}{100} \times 86.17848\right) \\ &+ \left(\frac{\% H_2}{100} \times 2.01594\right) + \left(\frac{\% He}{100} \times 4.00260\right) \\ &+ \left(\frac{\% C02}{100} \times 44.0095\right) + \left(\frac{\% N_2}{100} \times 28.01340\right). \end{aligned}$$

E. <u>Application of the General Equation to Emissions from Gasoline</u> Fueled Combustion Sources

Since gasoline is the result of a refining and blending process, it is a much more consistent product than natural gas and for all practical purposes contains only liquid hudrocarbons.

While an analysis of gasoline fuel is not normally available, the generally accepted hydrogen to carbon ratio for gasoline is 1.85. This gives a mass fraction of carbon in gasoline of .86519.

It should be recognized that the summation term in equation (10) divided by the fuel molecular weight, needs only to be multiplied by the molecular weight of carbon to be an expression for the mass fraction of carbon in the fuel. Therefore, the expression could be thought of as the mass fraction of carbon in fuel divided by the molecular weight of carbon.

Substituting the appropriate numerical values in equation (10) gives the equation for gasoline.

Emission (Mass/hr) = $\frac{\text{Vol. \% Emission}}{\text{Vol. \% CO+Vol. \% CO_2+Vol. \% HC}} X$ Mass of Fuel

X Molecular Weight of Emission X $\frac{.86519}{12.000}$ (11)

As a further example, the equation for mass emissions of NO_x given in the Federal Register (Vol. 37, No. 175, Friday, Sept. 8, 1972) for heavy duty gasoline engines will be derived.

First, note that the Federal Register defines the term TC:

 $TC = Vol. \% CO_2 + Vol. \% CO + (1.8 X 6 X \% HC)$

The constant multipliers 1.8 and 6 come from the fact that the Federal procedure uses NDIR measurement with hydrocarbons expressed as hexane, not a flame ionization technique as assumed in this derivation.

From equation (11):

ļ

 $NO_{X} (grams/hr) = \frac{PPM NO}{10000} X Fuel (grams/hr) X 46.0055 X .0721$

 $NO_x (grams/hr) = \frac{46.0055 X .0721}{10000} NO (PPM) X \frac{Fuel (grams/hr)}{TC}$

 $NO_x (grams/hr) = 3.32 \times 10^{-4} \times NO (PPM) \times \frac{Fuel (grams/hr)}{TC}$

APPENDIX A-7. EQUATIONS USED IN COMPUTER PROGRAM

A. Fuel Gas Calculation

1. The fuel gas molecular weight is calculated from the mole percentages of each constituent in the actual fuel gas. These percentages are obtained from the fuel gas analysis taken during the on-site testing.

Fuel molecular wt. = $\int_{n}^{\Sigma} \frac{Mole * of n}{100} \times Molecular Wt. of n$ (11)

 The fuel percent carbon, FPCTC, is calculated from the mole percentages of each hydrocarbon component in the fuel gas using the equation:

$$FPCTC = \frac{\sum_{n}^{\infty} (n \times Mole \ \ C_{n}H_{2n+2})}{100}$$

3. The hydrogen-to-carbon ratio, CHCR, in the case of natural gas can be represented in two ways. The fuel hydrocarbon hydrogen-to-carbon ratio of the hydrocarbon components only is used in the calculation of the mass exhaust emissions.

CHCR =
$$\frac{\sum_{n}^{\Sigma} (2n+2) \times \text{Mole } \& C_{n}H_{2n+2}}{\sum_{n} (n \times \text{Mole } \& C_{n}H_{2n+2})}$$

The total fuel hydrogen-to-carbon ratio is a measure of all of the hydrogen to all of the carbon in the fuel. This takes into account the portions of diatomic hydrogen gas and carbon dioxide which are in many fuel gases.

Total fuel hydrogen-to-
carbon ratio
$$= \frac{\sum_{n=1}^{\infty} \left[(2n+2) \times Mole \ \ C_{n}H_{2n+2} \right] + (2 \times Mole \ \ H_{2})}{\sum_{n=1}^{\infty} (n \times Mole \ \ C_{n}H_{2n+2}) + Mole \ \ CO_{2}}$$

4. In the event that a lower heating value is not obtained with the fuel gas analysis, this value is calculated using the equation: Lower Heating Value = Higher Heating Value -

$$\left[\left(25.21 \times CHCR \times \sum_{n} (n \times Mole \ C_{n}H_{2n+2}) \right) \times \left(\left(\sum_{n} (2n+2) \times Mole \ C_{n}H_{2n+2} \right) + 2 \times Mole \ H_{2} \right) \times \left(100 - Mole \ He - Mole \ C_{2} - Mole \ N_{2} - 0.87 \right) \right] \times \left(100 - Mole \ He - Mole \ C_{2} - Mole \ N_{2} - 0.87 \right) \times \left(\sum_{n} Mole \ C_{n}H_{2n+2} \right) \times \sum_{n} \left((2n+2) \times Mole \ C_{n}H_{2n+2} \right) \times 100 \right]$$

A-17

(12)

APPENDIX A-7 (CONT'D). EQUATIONS USED IN COMPUTER PROGRAM

Measured %
$$O_2 = \frac{E_{NO_X} \times (ppm NO_2 \times MW of O_2 + ppm NO \times AW OF O)}{(ppm NO_2 + ppm NO) \times MW of NO_2} + H$$

$$\frac{E_{CO_2} \times MW \text{ of } O_2}{MW \text{ of } CO_2} + \frac{E_{CO} \times AW \text{ of } O}{MW \text{ of } CO} + E_{O_2} + \frac{E_{H_2O} \times AW \text{ of } O}{MW \text{ of } H_2O}$$

This is compared to the oxygen content calculated from the intake air. This calculation assumes a correct value for CO₂ in the fuel and in the exhaust and the calculated value for the absolute humidity. The equation is:

Calculated % $O_2 = \frac{Mass Airflow \times 7000 \times 0.2318}{AH \times 7000} +$

$$\frac{\text{Mole } \text{\% CO}_2^{(\text{fuel})} \times \text{MW of O}_2 \times \text{W}_{\text{f}}}{\text{FMW}}$$

The oxygen balance is the percent difference between the measured and the calculated percent oxygen.

Oxygen balance =
$$\frac{\text{measured } \text{\% } \text{O}_2 - \text{calculated } \text{\% } \text{O}_2}{\text{measured } \text{\% } \text{O}_2} \times 100$$

The computer program then calculates the correct oxygen value assuming that the CO_2 , CO, and NO and NO_x concentration have been measured correctly.

Correct % $O_2 =$ % $O_2 \times \frac{(100 - 0.678) \times AFR \times Exhaust Specific gravity \times 7000}{(100 - % H_2O) \times (AFR + 1) \times (7000 + AH)} -$ $\left[\left(1 + \frac{HCRT}{4}\right) \times (Volume % E_{CO_2} - \frac{0.033 \times AFR}{1 + AFR}) \right] -$ $\left[\left(0.5 + \frac{HCRT}{4}\right) \times Volume % E_{CO} \right] - \left[\left(1 - 0.5 \times \frac{ppm \ NO}{ppm \ NO_x}\right) \times Volume % E_{NO_x} \right] + \frac{Mole % CO_2(fuel)}{(1 + AFR) \times SG(fuel)}$

The equation is based on a constant oxygen concentration in the intake (assumed) and the measured values for each of the oxygen containing emissions. It is a good cross check for the measured oxygen and carbon dioxide concentrations in the exhaust because these are the two major oxygen containing compounds in the exhaust. The water concentration is also included which is calculated from the measured intake humidity and the calculated exhaust moisture content.

APPENDIX A-7 (CONTD). EQUATIONS USED IN COMPUTER PROGRAM

$$T_{WB}$$
 = wet bulb temperature

いたないであってき

ĥ

į.

BP = barometric pressure

The relative humidity, RH, is computed from the partial pressure of the water vapor and the saturation vapor pressure at the dry bulb temperature, P_{DB} , with the equation:

$$RH = \frac{(P_{V}) (100)}{P_{DB}}$$
(14)

The specific or absolute humidity on the dry basis of the intake air is defined as

$$H = \frac{(K) (P_v)}{BP - P_v}$$
(15)

Where H = specific or absolute humidity

$$K = \frac{0.6220 \text{ g H}_20}{\text{g/dry air}} \times \frac{453.6 \text{ g/lb}}{0.0648 \text{ g/gr}}$$

The absolute humidity can also be determined from the relative humidity. This equation is a rearrangement of equation (14).

$$P_{V} = \frac{(RH) (P_{DB})}{100}$$

This value for the partial pressure of the water vapor is entered into equation (15) to determine the absolute humidity.

E. Miscellaneous Calculation

1. The exhaust duct or stack area is calculated from the measured dimensions of the duct or stack. The equation for a rectangular exhaust duct is

Area = length x width

If the exhaust stack is circular, the area is determined with the equation

Area = C (diameter)²

Where $C = \frac{\pi}{4}$

2. A means of verifying the measured oxygen concentration in the exhaust was incorporated into the computer program. The oxygen content of the exhaust is tied up in the combustion products, i.e. CO_2 , CO, NO_x and H_2O as well as the excess oxygen. The total measured oxygen content is

APPENDIX A-7 (CONT'D). EQUATIONS USED IN COMPUTER PROGRAM

- 4. The mass flow rate of the nitrogen/argon in the exhaust is determined with equation 13 where the molecular weight reflects the proportion of argon in the air (i.e., 28.159).
- 5. The air mass flow rate is the difference between the exhaust mass flow rate and the fuel mass flow rate in lbs/hr.

Mass Airflow (lbs/hr.) = Exhaust Flow (lbs/hr.) - Wf

6. The air to fuel ratio is then calculated from the mass airflow rate using the equation:

AFR =
$$\frac{\text{Mass airflow (lbs/hr.)}}{W_{f}}$$

7. The absolute humidity is calculated with a series of equations. The vapor pressure at the wet and dry bulbs are calculated from the Wexler and Greenspan equation.

$$P = \exp \left(B \ln T + \sum_{i=1}^{10} T^{i-3} \right)$$

Where P = saturation vapor pressure of water at the wet or dry bulb temperature in pascals

- B = -12.150799
- T = wet or dry bulb temperature in °K
- $F_1 = -8.49922 \times 10^3$
- $F_2 = -7.4231865 \times 10^3$
- $F_3 = 96.1635147$

 $F_4 = 2.4917646 \times 10^{-2}$ $F_5 = -1.3160119 \times 10^{-5}$ $F_6 = -1.1460454 \times 10^{-8}$ $F_7 = 2.1701289 \times 10^{-11}$ $F_8 = -3.610258 \times 10^{-15}$ $F_9 = 3.8504519 \times 10^{-18}$

$$F_{10} = -1.4317 \times 10^{-21}$$

The partial pressure of the water vapor is then determined from "Ferrels equation."

$$P_v = P_{wB} - 0.000660 (T_{DB} - T_{wB}) BP [1+0.00115 (T_{wB} - 273.15)]$$

Where P_{v} = partial pressure of the water vapor in pascals

 P_{WB} = saturation vapor pressure of water at the wet bulb temperature T_{DB} = dry bulb temperature

A-22

APPENDIX A-7 (CONTD). EQUATIONS USED IN COMPUTER PROGRAM

D. Airflow Calculations

The airflow is not a measured value. It is calculated from the measured composition of the exhaust gas, the calculated water vapor content of the exhaust and the remainder is nitrogen and argon in the same proportion to each other as in air.

 The determination of percent water in the exhaust is not a measured quantity. It is calculated from the water content of the intake air and the water produced from combustion by a double pass through these equations in the computer program:

$$H_2O = \frac{100 \text{ DC} + H_1 (100 - H_2)}{100 + \text{ DC} - H_2}$$

Where:

 H_2O = the percent water in the exhaust

$$DC = \frac{HCRT}{2} \times (CO_2 + CO - \frac{0.033 \text{ AFR}}{\text{AFR} + 1})$$

 H_1 = Exhaust water content due to inlet air

 $H_{1} = \frac{H \times MWR \times AFR \times 100}{(7000 + AH) \times (1 + AFR)}$

H₂ = Exhaust water content of sample conditioned at 34°F assuming 100% relative humidity.

= 0.678

HCRT = Total fuel hydrogen to carbon ratio

AFR = Air to fuel ratio

H = Absolute or specific humidity

2. The mole fraction of nitrogen/argon combination is determined using the equation:

Mole Percent $(N_2 + Ar) = 100 - 0.678 - Mole & H_2O + Mole & O_2 + Mole & CO_2 + Mole & CO + Mole & HC + Mole & NO_X$

3. The mass flow rate of water in the exhaust is calculated from equation (13):

 $E_{W} = \frac{\$H_{2}O \times MW \text{ of } H_{2}O \times W_{f} \times FPCTC \times (100 - 0.678)}{TC \times (100 - \$ H_{2}O) \times MW \text{ of fuel}}$

Where:

 E_w = the mass flow rate of water, lbs/hr.

A-21

APPENDIX A-7 (CONTD). EQUATIONS USED IN COMPUTER PROGRAM

3. Brake Specific Emissions

The brake specific or work output emissions can also be calculated from the mass emission rates using the equation:

$$BSE = \frac{E \times 453.6 \text{ g/lbs.}}{HP}$$

Where:

BSE = the brake specific emissions g/HP-HR

4. NO_x Correction for 15% O₂

The volumetric NO_x emissions can also be expressed in terms of 15% O2 using the equation:

$$CNO_{x}^{'} = \frac{E \times (20.9 - 15)}{20.9 - Volume & O_{2}}$$

Where:

 $\texttt{CNO}_{\mathbf{X}}$ = the corrected $\texttt{NO}_{\mathbf{X}}$ concentration, ppm by volume

This takes into account the established oxygen content of the air and the measured oxygen content of the exhaust. The value is then corrected to an assumed oxygen level of 15% in the exhaust.

5. The exhaust gas mass flow rate in lbs/hr. is the sum of all of the mass flow rates of the components in the exhaust:

Exhaust Flow = NO_x mass (lbs/hr.) + CO_2 mass (lbs/hr.) + HC mass (lbs/hr.) + CO mass (lbs/hr.) + O_2 mass (lbs/hr.) + H₂O mass (lbs/hr.)* + N_2 + Ar mass (lbs/hr.)*

6. The exhaust specific gravity is obtained from the exhaust gas mass flow rate and the molecular weight of air (28.9644) with the equation:

Exhaust specific gravity = $\frac{\text{Exhaust Flow}}{28.9644}$

7. The exhaust velocity in ft/sec. is determined from the exhaust gas mass flow rate and the measured area of the stack with the equation:

Exhaust velocity = <u>AREA</u> x VOLUME (corrected) x 3600 sec/hr.

APPENDIX A-7 (CONT'D). EQUATIONS USED IN COMPUTER PROGRAM

C. Exhaust Emissions

.,

1.0

• •

1. The total carbon method of calculating mass exhaust emission rates is based on the assumption that all of the carbon in the exhaust comes from the fuel. The general equation for mass emissions in terms of lbs/hr is:

$$E = \frac{\text{Volume } \$ \text{ E x MW of E x W}_{f} \text{ x FPCTC}}{\text{TC x MW of fuel}}$$
(13)

Where:

E = Mass exhaust emission rate constituent under consideration (i.e. HC, CO, or NO_x)

Volume % E = the measured volumetric concentration of E

MW of E = molecular weight of E = 46.0055 for NO_{X} = 12.01 + 1.008 $\frac{CHCR}{FPC}$ for HC = 28.0106 for CO

FFCTC = Fuel percent carbon (equation 12)

TC = Total exhaust carbon (see below)*

FMW = Fuel molecular weight (equation 11)

The measured volumetric concentration of CO is corrected for the humidity at 34° F from the condenser and for the CO₂ removed with the ascarite in the drying column. The equation is:

Volume % $E_{CO} = \frac{ppm CO}{1000} \times \frac{100}{100 + 0.678} \times \frac{100 - Volume % E_{CO2}}{100}$

Of all of the components present in the intake air, CO₂ is assumed to be the only compound present in significant quantities to affect the exhaust emissions in the carbon balance calculation. This correction is applied because the ambient species are not monitored. The carbon balance equation for total exhaust carbon is expressed as:

*TC = Volume % CO₂ + Volume % CO + Volume % HC - $\frac{0.33 \times 180}{180 + Volume % CO_2}$

2. Fuel Specific Emissions

The mass emission rates are converted to fuel specific or heat input emission rates using the equation:

 $FSE = E/H_{f}$

Where:

FSE = the fuel specific emission, lbs./MIL BTU

APPENDIX A-7 (CONTD). EQUATIONS USED IN COMPUTER PROGRAM

B. <u>Calculation for Fuel Flow</u>

1. The volumetric fuel flow is either calculated from the orifice data using the equation

$$Q = C' \sqrt{h P}_{w b}$$

Where:

$$Q = Fuel flow, SCFH$$

C' = Orifice Constant

 $\mathbf{h}_{tr} = \mathbf{Orifice differential pressure}$

P_b = Static Pressure, psia

or is taken directly from the data when another means of measuring the fuel flow is used.

2. The fuel flow in lbs/hr is calculated from the volumetric fuel flow rate with the equation:

$$W_{2} = Q \times SG \times D$$

Where:

 $W_f = Fuel flow, lbs/hr.$

SG = Fuel gas specific gravity

- D = 0.076487 lbs/ft³ (density of air at standard conditions)
- 3. The fuel heat flow in lbs/million BTU is obtained from the volumetric fuel flow rate with the equation:

$$H_{f} = \frac{Q \times HHV}{10^{6}}$$

Where:

 H_{f} = Fuel heat flow, MIL BTU/SCF

HHV = Higher heating value, BTU/SCF

4. The brake specific fuel consumption is obtained from the equation:

$$BSFC = \frac{H_f \times 10^6}{HP}$$

Where:

BSFC = the brake specific fuel consumption, BTU/HP-HR

HP = the engine brake horsepower

. Į

ļ

APPENDIX U

ANNUBAR FLOW CALCULATIONS

· · ·

.

ANNUBAR FLOW CALCULATIONS

Supplied by Dietrich Standard

Dieterich Standard ANNUBAR Flow Calculation 10-JAN-94

٠

.

۲ ۴

i

:

١

Dieterich	Standa	ard ANNUBA	R Flow Calc	ulation	10-JAN-94
Reference no: EXH1 I	tem: 7	· P.C			
Customer: REP			g:		U
Fluid: Stack gas		Serial n	10 :		11's 0
Model: DCR-25	HA2 C	B2SS		ExH. e	1" Hy Recss.
Pipe Size: I.D.	.= 9.	.760 Wa	11= .120	0.D.= 10.0	00 Inche
بی و هم های این ها این ها این این ها زنین ها زنین ها این ها این ها بین وی زنین زنین این این این این این این این این ا		وی هو چو بور برو بود در با در با د	و چه هه هه نند چه چه چه چه چه ده خو د	نه بن هه هبه ريز، بنه بن ون هه ننبا که X	المیں کے بلک بلک ہوتا ہے۔ 1997ء - 1997ء کے بلک بلک بلک ہوتا ہے اور
D.P. Eq'n 2.4 REV 1.0 Gas .	Volu	ume Rate o	f Flow @ STI	D Cond	A
2				-	
C'= Fna x K x D x Fra x Ya x	k rpo x	FTD X FT	i x Fg x Fp	v x fm	
x Faa x Fl					
1 (Qs) 2			/		
		$0s = C^{1}$	x V hw x Pi	6	
hw = x (-)			V	-	
ه سنه هنه منه بسه بسه اینه میل وی دینه بین مین بینه بینه بینه بینه بینه بینه بینه بی		ملت جرو هم هم بران جمعها الله هي ا	ه مد هه دی این این هم می نیز چو بین بین می -	نی ها بد که ثابتین ها که بار دو و	
Description	Term	Value	Units		
"Inthe Monward on Tasker '		E 6969	ب جب دی دی اور	ک ناب هیچه به نم خا ک به ده خا	
Units Conversion Factor ANNUBAR Flow Coefficient	Fna K	5.6362 .6242	*		
Internal Pipe Diameter	D	•0242 9.76	inches		
Base Pressure Factor Fpl	_	1			3
Base Temperature Factor	Ftb			60 F	
	Fg	• -	-		
Manometer Factor	Fn	1			
Gage: Location Factor	Fl '	l	•		· · · · · ·
			و و و به به به مرود مرود م		II
• • • • • •		MAX	NORM	. MIN	12
					-
Flowrate	Qs	3100	1856	680	SCFM
Calculation Constant Pipe Reynolds Number	C'	226.033		226.781	
Reynolds Number Factor	RD Fra	0	0.	0	
Gas Expansion Factor	Ya	1 •9965	.9987	1	• •
1971 and man 1981 as an address	uf	.3305	.9987	.9998	Continuido
Flowing Temperature	·Tf		700		Centipoise
Flowing Temp Factor	Ftf		.6694		£ .
· · · ·	Fpv		.0094		
Thermal Expansion Factor			1.01		
Flowing Pressure	Df	•••	14.559		PSIA
Differential Pressure	hw	12.9	4.61	.618	in H20
وها ها به ها به	. Co in the test of a co				
* - Indicates Manual Overrid	le _.				4.6
ہ ایارے کے بنا کے سے کا ڈیلر اور جو بہ اور اور کے اور اور کے اور	يىر، دىم مى جاخلا خان د				**** 1
· · · · · · · · · · · · · · · · · · ·	•	LIMITS			
Customer Design P & 1	1.	10	in Ha AGOR	& 900 ·	F
Max Allowable DE		194	in H20		r F n
Flow at Max Allowable DI		11400			
Natural Frequency		397	CPS	•	
Max'Allowable Pressure	2:		PSIG	e 850	F
and Temperature		850	F		- 1
•					
CAUTION Model Temp limit exce CAUTION Mounting Hardware					

CAUTION Mounting Hardware required CAUTION CMH or LMH Req'd, Std=1.313"

Dieterich Standard ANNUBAR Flow Calculation 10-JAN-94

۰.

:. :

•

Customer: REP Fluid: Stack gas	IA1 (B P.O Ta Serial n B1 MP2	g:	EGRC	4" H
D.P. Eq'n 2.4 REV 1.0 Gas -	- Volu	me Rate o	f Flow @ STI) Cond	
2 C'= Fna x K x D x Fra x Ya x x Faa x Fl	c Fpb 2	Ftb x Ft	f x Fg x Fpv	7 x Fm	
$hw = \frac{1}{Pf} (Qs) 2$ Pf (C')		Qs = C' :	/ x \/ hw x Pf	2	
Description	Term	Value	Units		
Units Conversion Factor ANNUBAR Flow Coefficient Internal Pipe Diameter Base Pressure Factor Fph Base Temperature Factor Specific Gravity Factor Manometer Factor Gage Location Factor	Fna K D Ftb Fg Fn F1	5.6362 .6235 4.026 1 1 1 1 1	inches @ 1 @ SG =	L4.73 PS 60 F 1.0000	LY
		MAX	NORM	MIN	
Flowrate Calculation Constant Pipe Reynolds Number Reynolds Number Factor Gas Expansion Factor	Qs C' RD Fra Ya	600 47.1112 0 1 .997	150 47.2435 0 1 .9998	0 0 1 .9967	SCFM
Flowing Viscosity	uf		0		Centipoise
Flowing Temperature Flowing Temp Factor Supercmprss. Factor Thermal Expansion Factor	Tf Ftf Fpv Faa Pf	•	300 .8271 1 1.003		F.
Flowing Temperature Flowing Temp Factor Supercmprss. Factor	Ftf Fpv	11.1	300 .8271 1	0	PSIA in H20
Flowing Temperature Flowing Temp Factor Supercmprss. Factor Thermal Expansion Factor Flowing Pressure	Ftf Fpv Faa Pf hw	11.1	300 .8271 1 1.003 14.559	0	F PSIA
Flowing Temperature Flowing Temp Factor Supercmprss. Factor Thermal Expansion Factor Flowing Pressure Differential Pressure	Ftf Fpv Faa Pf hw	11.1 LIMITS	300 .8271 1 1.003 14.559	0	F PSIA
Flowing Temperature Flowing Temp Factor Supercmprss. Factor Thermal Expansion Factor Flowing Pressure Differential Pressure	Ftf Fpv Faa Pf hw le	1 487 939 939 939 939 939 939 939 939 93 	300 .8271 1 1.003 14.559		F PSIA

X

Dieterich Standard ANNUBAR Flow Calculation

10-JAN-94

Reference no: AIR2 Item: 2 P.O.: Customer: REP Tag: Fluid: Air Serial no: Model: DCR-25 HA2 CA2 MP4 Pipe Size: 8"SCH 40 Are e 70°F D.P. Eq'n 2.4 REV 1.0 Gas -- Volume Rate of Flow @ STD Cond C'= Fna x K x D x Fra x Ya x Fpb x Ftb x Ftf x Fg x Fpv x Fm 👌 x Faa x Fl 1 (Qs) 2 .bw = --- x (-) $Qs = C' \times / hw \times Pf$ Description Term Value Units Units Conversion Factor Fna 5.6362 ANNUBAR Flow Coefficient K -6173 Internal Pipe Diameter D 7.981 inches Base Pressure Factor 1 6 14.73 Fpb PSTA "Base Temperature Factor Ftb e 1 60 F Specific Gravity Factor 1.0000 Fg 1 SG =Hanometer Factor Fn 1 'Gage Location Factor 1. Fl MAX. NORM MIN Flowrate . Qs 3000 1775 680 SCFM Calculation Constant C۱ 219.223 219.399 219.487 Pipe Reynolds Number RD . 0 0 0 Reynolds Number Factor 1 1 1 Fra Gas Expansion Factor .9995 Ya .9987 .9999 Flowing Viscosity Centipoise uf 0 Flowing. Temperature Tf 70 F Flowing Temp Factor Ftf .9905 Supercopres. Factor Fpv 1 Thermal Expansion Factor Flowing Pressure Faa 1 Pf 22.395 PSIA Differential Pressure hw 2.92 .429 8.36 in H2O * - Indicates Mànual Override LIMITS Customer Design P & T: in Hg @60F & 20 70 F Wax Allowable DP: 327 in H2O 6 70 F Flow at Max Allowable DP: SCFM 17800 Natural Frequency: CPS 508 Max'Allowable Pressure:

, Ye

1440

600

and Temperature:

PSIG

F

9

70

F

Dieterich Standard ANNUBAR Flow Calculation 10-JAN-94

۰.

.

È.

. 1

Customer: REP Fluid: Air	tem: HA2 CH 40	Ta Serial n	g: o:	ATE @ 1100	
D.P. Eq'n 2.4 REV 1.0 Gas -	Vol	ume Rate o	f Flow & STD	Cond	
		· · · ·			·
$C' = Fna) x (\hat{R} \times \hat{D}^{2} \times Fra \times Ya x$ x Faa x F1	c Fpb	x Ftb x Ft	\hat{f} x Fg x Fpv	x Fn	
1 (Qs) 2 hw = x (-) Pf (C')		Qs = C'	/ x ∨ hw x Pf	•	
			1	•	
Description	Tern	Value	Units	8#88**********************************	
Units Conversion Factor	Fna	. 5.6362			
ANNUBAR Flow Coefficient	K	.6173	•		
Internal Pipe Diameter	D	7.981	inches		
Base Pressure Factor Fpl). 	1		.73 PSI	A
Base Temperature Factor	Ftb	1	666	0 F_	
Specific Gravity Factor	Fg	1 1		1.0000 . 9	\mathbf{k}
Manometer Factor	Fn	ī			1
Gage Location Factor	Fl	ī			
		MAX	NORM	MIN	
Flowrate	Qs	3000	1775	680	SCFM
Calculation Constant	Ĉ'	211.346		211.642	
Pipe Reynolds Number	RD	0	0	0	
Reynolds Number Factor	Fra	1	. 1	1	•
	Ya		0005	0000	
			•3320		
Flowing Viscosity	uf .	• 3300	•9995 0	•9999	Centipoise
Flowing Viscosity Flowing Temperature	uf Tf	•3203	0	• 3333	Centipoise F
Flowing Temperature	Tf	•3365	0 110	•3333	
Flowing Temperature Flowing Temp Factor	Tf Ftf		0 110 .9551 /	•9999	
Flowing Temperature Flowing Temp Factor Supercmprss. Factor	Tf		0 110	• • • • • • • • • •	
Flowing Temperature Flowing Temp Factor	Tf Ftf Fpv		0 110 .9551 / 1 1		
Flowing Temperature Flowing Temp Factor Supercmprss. Factor Thermal Expansion Factor	Tf Ftf Fpv Faa		0 110 .9551 ⁄ 1	.9999	F
Flowing Temperature Flowing Temp Factor Supercmprss. Factor Thermal Expansion Factor Flowing Pressure Differential Pressure	Tf Ftf Fpv Faa Pf hw	· · · ·	0 110 .9551./ 1 1 22.395 /	•	F PSIA
Flowing Temperature Flowing Temp Factor Supercmprss. Factor Thermal Expansion Factor Flowing Pressure	Tf Ftf Fpv Faa Pf hw	· · · ·	0 110 .9551./ 1 1 22.395 /	•	F PSIA
Flowing Temperature Flowing Temp Factor Supercmprss. Factor Thermal Expansion Factor Flowing Pressure Differential Pressure	Tf Ftf Fpv Faa Pf hw	· · · ·	0 110 .9551./ 1 1 22.395 /	•	F PSIA
Flowing Temperature Flowing Temp Factor Supercmprss. Factor Thermal Expansion Factor Flowing Pressure Differential Pressure * - Indicates Manual Overric	Tf Ftf Fpv Faa Pf hw	9 LIMITS	0 110 .9551./ 1 1 22.395 3.14./	•461 	F PSIA in H2O
Flowing Temperature Flowing Temp Factor Supercmprss. Factor Thermal Expansion Factor Flowing Pressure Differential Pressure	Tf Ftf Fpv Faa Pf hw le	9 LIMITS 20	0 110 .9551./ 1 22.395 3.14./ in Hg @60F &	.461 	F PSIA
Flowing Temperature Flowing Temp Factor Supercmprss. Factor Thermal Expansion Factor Flowing Pressure Differential Pressure * - Indicates Manual Overric Customer Design P & T Max Allowable D	Tf Ftf Fpv Faa Pf hw le	9 LIMITS 20 327	0 110 .9551./ 1 22.395 3.14./ in Hg @60F & in H20 @	•461 	F PSIA in H2O F
Flowing Temperature Flowing Temp Factor Supercmprss. Factor Thermal Expansion Factor Flowing Pressure Differential Pressure * - Indicates Manual Overric	Tf Ftf Fpv Faa Pf hw le	9 LIMITS 20	0 110 .9551./ 1 22.395 3.14./ in Hg @60F &	.461 	F PSIA in H2O F
Flowing Temperature Flowing Temp Factor Supercmprss. Factor Thermal Expansion Factor Flowing Pressure Differential Pressure * - Indicates Manual Overric Customer Design P & T Max Allowable DI Flow at Max Allowable DI	Tf Ftf Fpv Faa Pf hw le	9 LIMITS 20 327 17200	0 110 .9551./ 1 22.395 3.14./ in Hg @60F & in H20 @ SCFM	.461 110 110	F PSIA in H2O F

۰.

-

					1.
Dieterich	Standa	rd ANNUBAR	Flow Calcu	lation	10-JAN-94
Reference no: AIR3 It	en: 3	P.O.	:		1
Customer: REP)	Tag			U U
Fluid: Air		Serial no			
Model: DCR-25 H	A2 C	CA2 MP4			n
· Pipe Size: 8"SC				· · ·	
، همه هو برد بده هم این هو است هو است هو این هو این برد هم هو این این هم خو این این برد این این برد این این این ا			هيه جيل ڪر ويو نهه اين اين يو ري وي بين بين	Aze e	120 4
D.P. Eq'n 2.4 REV 1.0 Gas -	- Volu	me Rate of	Flow @ STD	Cond	
2	771	114.1			
C'= Fna x K x D x Fra x Ya x	rpp x	rtd X Ftf	x rg x Fpv	X FM	U
x Faa x Fl				•	·
1 (0~) 0			1		Î N
1 (Qs) 2 hw =x (-)		0= -01	/ : \/ hw x Pf	Y	·
$\mathbf{h}\mathbf{W} = \mathbf{X} \left(- \right)$ $\mathbf{Pf} \left(\mathbf{C}^{v} \right)$	• ,	X°,-C'X	V HW X PI		
	•				B
		د جره جلب سو می هو بین بنده این که خاه		و الحق والي ملك التالي حلك الإليّا الحل الحل ملك الإليّا عليها.	
Description	Term	Value	Units		U
	و و الله الله مي جي الريا	ه جو خت سر هو خت سر هو اخا ه ا			الله من هو من زي من من بن من
Units Conversion Factor	Fna	5.6362			· · · · · ·
	.K	-6173			
Internal Pipe Diameter	_D		inches		
Base Pressure Factor Fpb	۱.	1	-	14.73 PSI	A 💼
Base Temperature Factor	Ftb	1	-	60 F	
.Specific Gravity Factor	Fg	1	SG =	1.0000	
Manometer Factor	Fn	1	.*		
Gage Location Factor	F1	1	•		
an a		MAX	NORM	MIN	
			MMUM 	ri1N ••••••••••••••	
Flowrate	Qs	3000	1775	680	SCFM
·Calculation Constant	Č'	204.471	204.696	204.778	
Pipe Reynolds Number	RD	0	0	0	al.
Reynolds Number Factor	Fra	1	1	1	
Gas Expansion Factor	Ya	.9984	.9995	.9999	
Flowing Viscosity	uf		0		Centipoise
Flowing Temperature	Tf		150	·	F
Flowing Temp Factor	Ftf		.9232		
Supercopres. Factor	Fpv		1		
Thermal Expansion Factor	Faa		1.001	•	
Flowing Pressure	Pf	4	22.395	•	PSIA ·
Differential Pressure	hw	9.61	3.36	.492	in H2O
	ه به به نب هدن :	وي الله الله الله الله الله الله الله الل		ي فق فق هو بني چك فت ها اي في هو د	
* - Indicates Manual Overrid					. 3.
ین این می بین می بینی می بین می می بین این این این این این این این می می بین این این این این این این این این ای ا		•	- 14 - 29 - 29 - 20 - 20 - 20 - 20 - 20 - 20	ین خط هی خط قط ها خلا این خط به دو د	
		LIMITS			
Customer Design P & T	3:	20	in Hg @60F	& 15 0	F
Max Allowable DP				e 150	F m
Flow at Max Allowable DP			SCFM		-
Natural Frequency		508	CPS		
Nacural Frequency Nax'Allowable Pressure				e 150	F
and Temperature			F	- 130	-
		200	-		

».

Dieterich Standard ANNUBAR Flow Calculation 10-JAN-94

Customer: REP Fluid: Air	A2 · C	Ta Serial n CA2 MP4	g: o:		'in 11" Proc 00 Inche
D.P. Eq'n 2.4 REV 1.0 Gas - 2 C'= Fna x K x D x Fra x Ya x x Faa x Fl					
$hw = \frac{1}{Pf} (Qs) 2$ Pf. (C')		Qs = C' :	x ∨ hw x P	f	-
Description	Term	Value	Units		
Units Conversion Factor ANNUBAR Flow Coefficient Internal Pipe Diameter Base Pressure Factor Fpb Base Temperature Factor Specific Gravity Factor Manometer Factor Gage Location Factor	Fna K D Ftb Fg Fn F1	5.6362 .6328 13.72 1 1 1 1 1	inches e e SG =	14.73 PSI 60 F 1.0000	A
		Max	NORM	MIN	
Pipe Reynolds Number	Qs C' RD Fra Ya Uf Tf Ftf Fpv Faa Pf hw	3000 641.096 0 1 .9998	1775 641.16 0 1 .9999 0 110 .9551 1 1 22.395 .342	680 641.224 0 1 1	SCFM Centipoise F PSIA in H20
* - Indicates Manual Overrid	e 	199 60 40 as as as as as as as		مر مع دور دور دور نیز بال کا ک	
	•	LIMITS		t	
Customer Design P & T Max Allowable DP Flow at Max Allowable DP Natural Frequency	:	40 125 33100 230	in Hg @60F in H2O SCFM CPS	ê 110	F F
Max Allowable Pressure and Temperature		1420 600	PSIG F	ê 110	F

CAUTION Low DP warning @ Min. flow

"

Dieterich Standard ANNUBAR Flow Calculation

10-JAN-94

I

•

• •

:

\$

Diefericu	Scanua	ard ANNUBA	K FIOW CAIC	aración	10-0AN-94
Deference not ITD/	en: 4	1 P.O	•	•	
	сщ. ч				*
Customer: REP		Ta			
Fluid: Air		Serial no	D:		
Model: DCR-25 H	A2 C	CA2 MP4		•	
Pipe Size: 8"SC	H 40			A-R	4" Hey Press
ید به سه ی بن چند غاری اه به به به به به به به به بین او این او می هد زند ای کار از ای از ا 	نو دی وی زیو بین نه				1 Hey MCCSS
D.P. Eq'n 2.4 REV 1.0 Gas -	- Volu	me Rate of	f Flow @ ST	D Cond	
2	- 1				
C'= Fna x K x D x Fra x Ya x	Fbp X	c Ftb x Ft	f x Fg x Fp	v x Fm	
x Faa x Fl					
					1
1 (Qs)2		•*	/		•
hw = x (-)		Qs = C'	\sim / hw x Pi	Ê	
· Pf (C')	•		•		
		•			
این های های این دی این دی این این این این این در باین بین در بین بین دی این این این در این در این در این در این ا				ی غیبا چرب این عبد ندن قلله است کف است در برد. د	ان روز مع چه هه به به به مع ناه ان ان ان ان ا
Description	Tern	Value	Units		
Units Conversion Factor	Fna	5.6362	ہ جو بل من کے لیے ہین میں ہے ہے میں ب	یو جو خبر این وی بوارد ای این بر به این ای	ن و و وو خن و و 9 9 9 1 1
ANNUBAR Flow Coefficient	K	.6173			
• • • • • • • • • • • • • • • • • • • •			inches		
Internal Pipe Diameter	D	7.981	inches		
Base Pressure Factor Fpb		1	-	L4.73 PSI	A
Base Temperature Factor	Ftb	1	e	60 F	
Specific Gravity Factor	Fg	1		1.0000	
Manometer Factor	Fn	1			•
	Fl	1	<i>.</i>		
Gage Location Factor	r.T	ـــــــــــــــــــــــــــــــــــــ			
		MAX	NORM	MIN	,
ب سر هم چې چې د چې چې ور د وله وې				ر ب بید در می می می می می می بید بید می بید می می می می می می می می می	
Flowrate	Qs	3000	1775	680	SCFM
Calculation Constant	Ĉ١	210.944	211.41	211.621	- 5
Pipe Reynolds Number	RD	0	0	0	
Reynolds Number Factor		1	1	· 1	
	Fra	1	2000 T	L	•
Gas Expansion Factor	Ya	•9966	.9988	•9998	
Flowing Viscosity	uf		0		Centipoise
Flowing Temperature	Tf		110		F
Flowing Temp Factor	Ftf		.9551		
Supercmprss. Factor	Fpv .	•	1	-	
Thermal Expansion Factor	Faa		· 1		
Alviina Droames			1/ 550		DOTI
Flowing Pressure	Pf		14.559		PSIA
Differential Pressure	hw	13.9	4.84	•709	in H2O
* - Indicates Manual Override		**********		ور بر این خدن این که زمه که این این این این و	

		LIMITS	•		•
• • • • •		••		•	
Customer Design P & T		20	in Hg @60F	& 110	F
Max Allowable DP	:	327		e 110	F
Flow at Max Allowable DP		13400	SCFM ·	~	-
Natural Frequency		508	CPS		•
				A 110	73
Max'Allowable Pressure		1420	PSIG	e 110	F
	-	<i>C</i> 00	14		
and Temperature	•	600	F		

N.

Dieterich Standard ANNUBAR Flow Calculation 10-JAN-94

•

:

- Volu		و های خان این این این این خود های این این این این ا		40" Hy Press.
	me kate o	f Flow @ ST		
Fpb 3		f x Fg x Fp		•
•	Qs = C' 3	/ k \/ hw x Pi		
Term	Value	Units	ن چپ <u>هو هو ان ان جل که که که که م</u> ه ه	: :
Fna K D Ftb Fg Fn Fl	5.6362 .6173 7.981 1 1 1 1 1			SIA
	MAX	NORM	MIN	
Qs C' RD Fra Ya uf Tf Ftf Fpv Faa Pf hw	3000 211.515 0 1 .9993	0 1 .9998 0 110 .9551 1 1 32.191	0 1 1	SCFM Centipoise F PSIA in H2O
e 			يروبو بوري کا اگا کا کا ک	
	LIMITS			
:	40 327 20900 508 1420	in Hg @60F in H20 SCFM CPS PSIG	& 110 @ 110 @ 110	F F F
	Fna K D Ftb Fg Fn F1 Qs C' RD Fra Ya uf Fff Fpv Faa Pf	Term Value Fna 5.6362 K .6173 D 7.981 1 1 Ftb 1 Fg 1 Fg 1 Fg 1 Fn 1 Fl 1 MAX Qs Qs 3000 C' 211.515 RD 0 Fra 1 Ya .9993 uf Tf Ftf Fpv Faa Pf hw 6.25 e LIMITS : 40 : 327 : 20900 : 508 : 1420	Term Value Units Fna 5.6362	Fna 5.6362 K .6173 D 7.981 inches 1 ê 14.73 PS Ftb 1 ê 60 F Fg 1 SG = 1.0000 Fn Fn 1 Fl 1 SG = 1.0000 Fn 1 SG = 1.0000 Fn Fl 1 1 SG = 1.0000 Fn 1 1 Fn 1 Fl 1 1 Fn 1 Value 3000 1775 680 G C' 211.515 211.621 211.664 RD 0 0 0 Fra 1 1 1 Ya .9993 .9998 1 uf 0 0 0 Ftf .10 .10 .321 Fe .2.19 .321 .321 e LIMITS .10 .10 LIMITS .10 .10 .10

X

APPENDIX V

ADDITIONAL CALCULATIONS

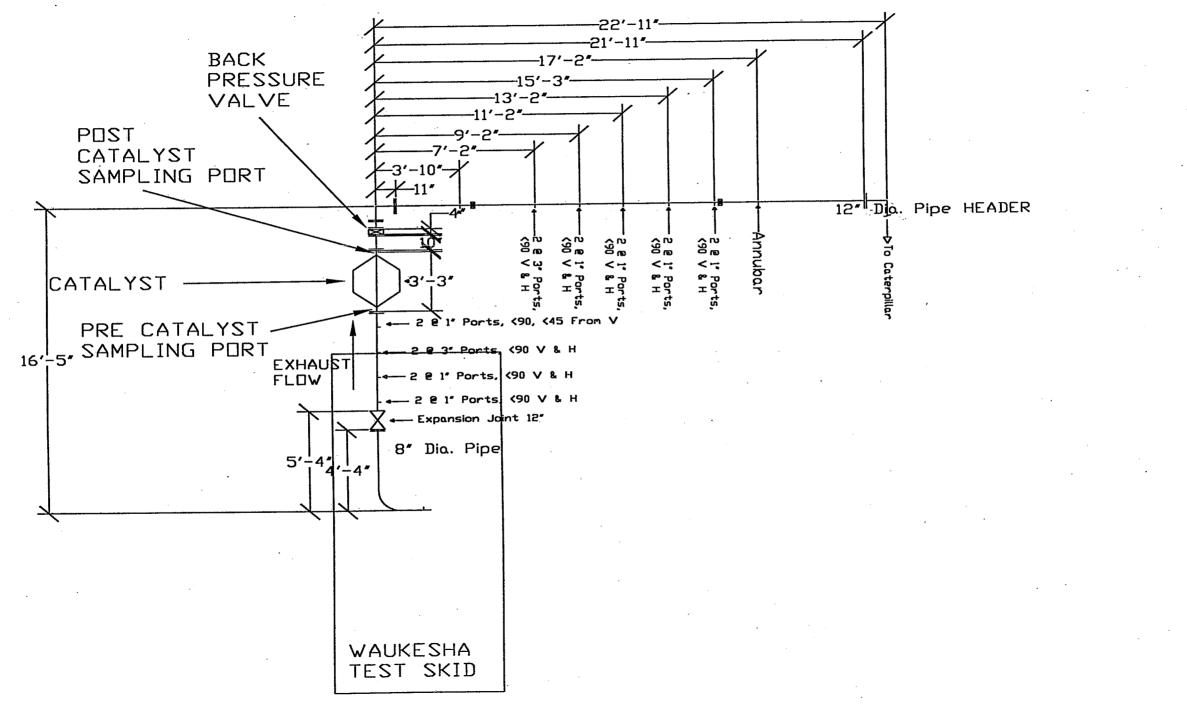
U

l

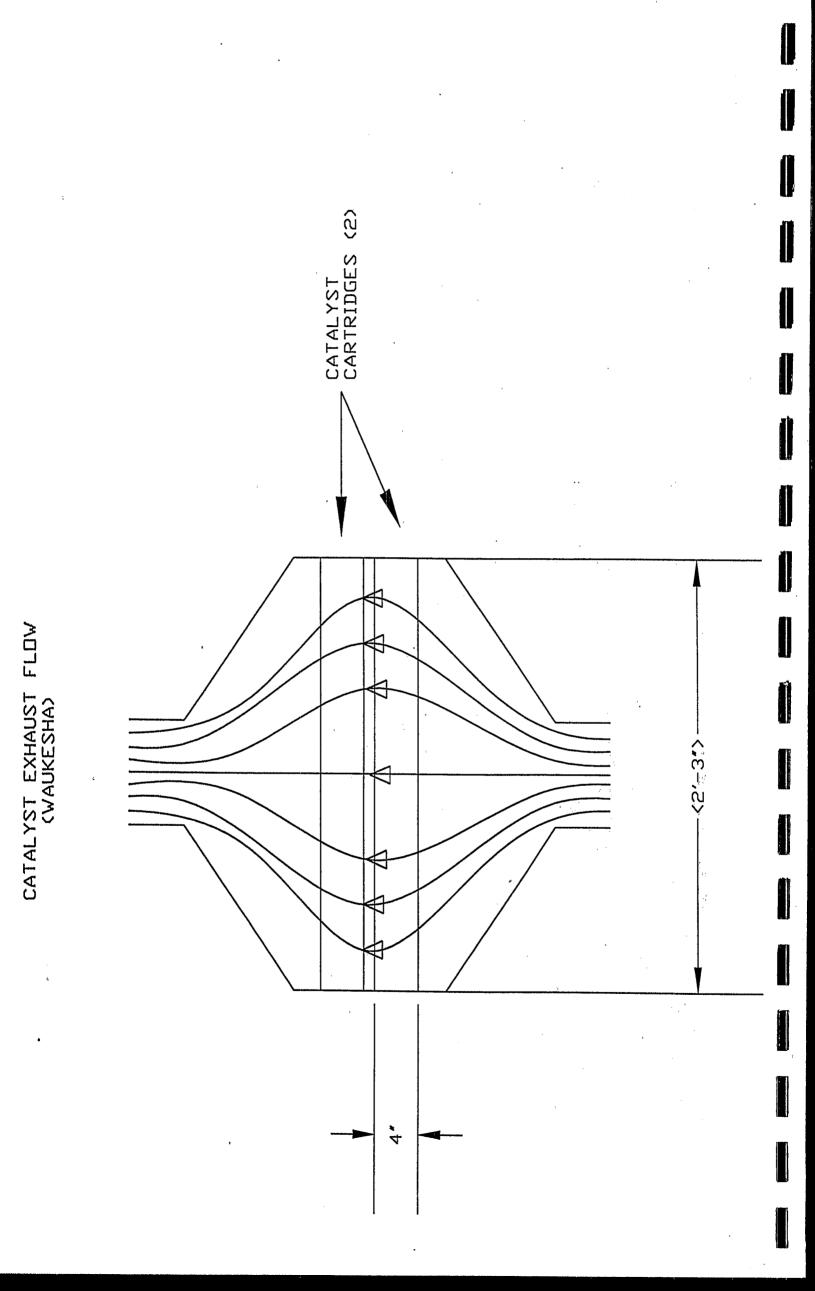
IJ

APPENDIX W

EXHAUST PIPING SCHEMATIC


٩

Û


D

l

WAUKESHA EXHAUST SYSTEM

. .

APPENDIX B

,

EXAMPLE CALCULATIONS RELATED CORRESPONDENCE

ļ ľ ľ Î /

,

,

ľ

1

Example Calculations for Pollutant Mass Flow Rates Waukesha 3521GL Engine (shown using data from Run 1)

***NOTE: Calculated results may not agree exactly with spreadsheet results due to rounding.

Part I – Determination of Volumetric Flow.

Volumetric flow rate was calculated by multiplying the heat applied to the engine by an oxygen-based combustion products (F_d) factor:

Heat Applied to engine:

Heat Rate (MMBtu/hr) = [Fuel Flow Rate (scfh) * Higher Heating Value (Btu/cf)] / 10⁶ Btu/MMBtu

Heat Rate (MMBtu/hr) = [5418 scfh * 1135.1 Btu/cf] / 10⁶

Heat Rate = 6.15 MMBtu/hr

Volumetric Flow Rate

Volumetric Flow Rate (dscfm) = F_d (dscf/MMBtu) * Heat Rate (MMBtu/hr) * [20.9/(20.9-O₂)] / 60 min/hr

Volumetric Flow Rate (dscfm) = 8654 dscf/MMBtu * 6.15 MMBtu/hr * [20.9/(20.9-9.8)] / 60 min/hr

Volumetric Flow Rate (dscfm) = 1670 dcsfm

Part II – Determination of Pollutant Mass Flow.

The concentration of the target pollutant was converted to units of lb/cf, and multiplied by the calculated volumetric flow rate to obtain a mass flow rate. The example shows the calculation of mass flow rate of carbon monoxide (CO) at the pre-catalyst location.

Mass Flow Rate - lb/hr

 E_{co} (lb/hr) = C_{co} (ppmvd) * (MW_{co} / 385.3 x 10⁶)* Volumetric Flow Rate (dscfm) * 60 min/hr

 E_{CO} (lb/hr) = 620 ppmvd * (28 / 385.3 x 10⁶) * 1670 dscfm * 60 min/hr

 $E_{co} = 4.51 \text{ lb/hr}$

Mass Flow Rate - g/bhp-hr

 E_{CO} (g/bhp-hr) = E_{CO} (lb/hr) * 453.6 (g/lb) / Engine Load (bhp)

 E_{co} (g/bhp-hr) = 4.51 lb/hr * 453.6 g/lb / 737.29 bhp

 $E_{co} = 2.77 \text{ g/bhp-hr}$

Part III - Determination of Catalyst Removal Efficiency.

Catalyst removal efficiency was determined by subtracting the mass flow rate at the outlet from the mass flow rate at the inlet, then dividing by the mass flow rate at the inlet.

Catalyst Destruction Efficiency

%DE = [E_{co} Inlet (g/bhp-hr) – E_{co} Outlet (g/bhp-hr)] / E_{co} Inlet (g/bhp-hr) * 100

%DE = (4.51 g/bhp-hr – 0.301 g/bhp-hr) / 4.51 g/bhp-hr * 100

DE = 93.3%

ſ

ľ

1

ENGINES & ENERGY CONVERSION Laboratory

Phone:	(970) 490-1418
Fax:	(970) 493-6403
E-mail:	bryan@engr.colostate.edu

Energy Lab Memo

 To: Mr. Terry Harrison, U.S. Environmental Protection Agency Mr. Michael Maret, Pacific Environmental Services, Inc.
 From: Dr. Bryan Willson Research Director, Engines & Energy Conversion Laboratory

Date: July 13, 2001

Subject: Modifications to Report on 4-Stroke Lean Burn Engine (Waukesha)

The following modifications / errata apply to the "Four-Stroke, Lean-Burn, Natural Gas Fired Internal Combustion Engine" report (i.e. the "Waukesha Report") submitted to PES in April, 2000.

2 "Waukesha stated that certain values in Table 2.2 of the draft report appeared to be incorrect, specifically the value for oxygen at the catalyst inlet for Run Nos. 3 and 13."

This was discussed in Section 3.4 of the CSU report. As noted in Section 3.4, the precatalyst oxygen data for Run #3 is incorrect. The paramagnetic oxygen analyzer failed during the test. As noted in Section 3.4, the air/fuel ratio is 28:1 for the oxygen value of 9.81% measured at the catalyst outlet.

The pre-catalyst oxygen value of 10.44% measured during Run No. 13 is higher than the 9.81% value measured at the catalyst outlet. The pre-catalyst value is suspect, but as the analyzer passed a QC check, a pre-test calibration check, and and a post-test calibration check, CSU has no justification to "invalidate" the oxygen reading.

15 "This comment states that the air/fuel ratios shown in the baseline run on August 5 are in error, and that the correct air/fuel ratio should be closer to 28.6."

Due to a failure with the oxygen analyzer, the air/fuel ratio is incorrect. Using an air/fuel ratio of 9.9%, the value at the catalyst outlet, the air/fuel ratio is calculated at 28.6.

18 "This comment notes that the units of barometric pressure reported in the CSU reports are in inches of mercury, but the values appear to be in psia."

The comment is correct. The units of barometric pressure should be modified to read "psia"

19 "Waukesha noted that the tabulated "Air Manifold" temperatures are always about 99.5 °F, and noted that this does not make sense."

The "Air Manifold" temperature is actually the temperature of the air in the air supply manifold to the engine, and not on the engine itself. The air supply temperature is maintained at this value by a closed-loop control system.

20 "Waukesha noted that the values for the "Average Cylinder Exhaust Temperature" are always in the low to mid 700 °F range, and that this value is too low."

A thermocouple was added at an intermediate point in the exhaust between the pre-catalyst

AnnubarTM flow meter and the catalyst. The parameter was mis-labeled on the engine test run summary.

21 "Waukesha commented that a value for "In-cylinder Temperature" was also given and that this value was typically 25 - 35 °F."

This measurement is made during testing of other types of engines at the EECL. It was not used during testing of the Waukesha. Its inclusion on the datasheet was in error.

22 "This comment notes that the removal efficiencies for formaldehyde were presented in decimal format instead of percent format."

The comment is correct. The efficiency values are listed in decimal format, and not in percent format as indicated in Appendix A.

24 "Waukesha noted that the inlet air humidity in CSU's Table 3 is incorrect."

The comment is correct. The inlet air humidity baseline should written as ".015 lb H_2O/lb Air", not the ".0015 lb H_2O/lb Air" listed in Table 3.

1000 West St. Paul Avenue • Waukesha, Wisconsin 53188-4999 • 414-547-3311

September 1, 2000

Mr. Terry Harrison United States Environmental Protection Agency Emission Measurement Center MD 19 Research Triangle Park, NC 27711

Reference: Draft Final Report; Waukesha F3521GL Engine Test

Dear Mr. Harrison,

Thank you for sending me a copy of the draft final report on the HAPs testing of a 4stroke, lean burn, gas-fired, reciprocating internal combustion engine (the Waukesha F3521GL) at Colorado State University (CSU) to review. I have been able to review the main Pacific Environmental Services (PES) text and the text and Appendices A and B of the CSU report (part of Appendix A of the PES document). I will provide most of my comments in this letter. However, as you suggested, I am also attaching copies of pages from the report with notations made in the margins. In no specific order I offer the following comments and suggestions for your consideration:

To answer your first question, the engine appears to be operating normally during all of the 16 data runs. To further verify engine operation I compared the performance summary in Table 2.2 with our published performance at two load points, data runs #1 and #3. Our published data are reference Waukesha document S-06124-62.

Run #1: 1200 rpm, rated 738 bhp

Fuel consumption74Exhaust temperature73Exhaust gas flow16

<u>Table 2.2</u> 7468 Btu/bhp-hr 735° F 1660 dscfm <u>S-06124-62</u> 7377 Btu/bhp-hr 703° F 1616 dscfm

Run #3: 1000 rpm, 432 bhp

· -	Table 2.2	S-06124-62
Fuel consumption	7718 Btu/bhp-hr	7528 Btu/bhp-hr
Exhaust temperature	677° F	666° F
Exhaust gas flow	914 dscfm	966 dscfm

These values agree within a normally expected tolerance.

- Having said that, there are certain values in Table 2.2 (and, of course, the CSU Appendix A values from which they were obtained) that appear to be incorrect. These incorrect values can result in subsequent erroneous calculated values. Specifically, the catalyst inlet oxygen values appear to be in error too high for runs #3 and #13. In both cases the value should be closely 9.8%. Run #3 in the CSU Appendix A data actually indicates 100.0% oxygen. This was, apparently, interpreted by PES as being 10.0%. The catalyst outlet oxygen values are correct. You can confirm these errors by comparing the catalyst inlet and outlet values. The normal difference is measured in hundredths of a percentage point. In addition, the oxygen value for these runs was to have been set to 9.8%, the standard value. In run #13 this oxygen error is seen to noticeably affect the calculated catalyst inlet gas flow value. The 1703 dscfm value is too high.
- In general, the criteria emittant (NOx, CO, and THC) values agree with Waukesha experience. However, the NOx values are a bit lower and the total hydrocarbon values a bit higher than expected. This would be consistent with the engine running slightly leaner than our standard setting.
- The non-methane hydrocarbon values are about twice Waukesha's normal value. This is directly due to the fuel gas composition at CSU having about twice the ethane and heavier components than our normal, Midwestern natural gas.
- The formaldehyde levels presented in the report are higher than those measured at Waukesha on a similar engine.
- It should be noted in the report and considered by the EPA during the HAPs MACT rulemaking that NOx universally <u>increased</u> across the oxidizing catalyst. Reference Table 2.3 values. The average increase was just over 8%. I assume that the NOx values given for both the catalyst inlet and outlet are on the same basis, i.e., as NO₂ per EPA convention. <u>This characteristic will result in increased difficulty for lean burn engine sources fitted with an oxidizing catalyst to comply with existing NOx standards, some of which are now at very stringent levels.</u>
- I understand that the methane / non-methane values and the total hydrocarbons values were measured with different instrumentation (reference Table 5.1 and Figure 5.1). There is a noticeable discrepancy between the two measurements. Table 2.3 shows both methane and non-methane hydrocarbons decreasing across the catalyst (with one exception that likely represents erroneous values). The total hydrocarbon values, however, increase across the catalyst for 12 of the 16 runs. Of the other four runs, one showed no change and the remaining three showed very minimal decrease. There may be little change in methane across the catalyst due to methane's high "light off" temperature, but, in our experience, non-methanes and, therefore, total hydrocarbons should decrease across an oxidizing catalyst.

- The non-methane hydrocarbon value at the catalyst outlet in run #8 appears to be in error in Table 2.3. It shows a very unusual large increase over the inlet value. See also Table 2.4.
- \succ The total hydrocarbon instrumentation is not described in the text in section 5.
- ➤ Why are the NOx and methane (catalyst inlet) and NOx (catalyst outlet) values given to only one place after the decimal (tenths) for runs 10 – 16 in Table 2.3? The reduced precision of these values versus the other nine runs makes accurate comparisons difficult.
- Comparing runs #1, #2, and #5 with runs #4, #3, and #8, respectively, (speed reduction at constant loading) I note that the brake specific NOx decreased with the decrease in speed. Waukesha's experience indicates the opposite response. Typically with all other factors constant reducing speed leads to an increase in brake specific NOx rate.
- Runs #15 and #16 do not appear to give any significant information. Here, engine unbalance / misadjustment was simulated by retarding / advancing the spark timing of one cylinder relative to the remaining five. At most, these changes would be expected to yield 17% (1/6) of the <u>changes</u> seen in runs #13 and #14 where the timing of all six cylinders was changed. The results seem to indicate that the changes in engine performance were masked, i.e., were less than normal run-to-run variation.
- Table 2.3 in the report gives different emission rate values across the board for all specie criteria and HAPs than those in the Colorado State tabulation in CSU Appendix A. I assume that the g/bhp-hr and lb/hr values were recalculated from the raw data by PES using a different methodology resulting in the different values. However, since this apparent discrepancy can result in confusion to anyone reading the report, this situation should be specifically addressed and explained in the report.

Comments specifically regarding the CSU data presented in CSU Appendix A:

- In general, all of the CSU air / fuel ratio values in CSU Appendix A seem a bit high typically running above 28.5:1. With the fuel used at CSU and the standard 9.8% oxygen nominal carburetor setting I would expect values about 1 AFR lower, i.e., about 27.5:1 nominal.
- The air / fuel ratio values given in the August 5 baseline in CSU Appendix B are in error. Instead of the indicated 32.70 figure, the "correct" value should be closer to the 28.6 figure shown in the August 6 baseline.
- CSU Appendix B does not include the 1000 rpm baseline run that was also taken on August 6.

- As noted earlier, CSU Appendix A, run #3 shows pre-catalyst oxygen as 100% and A/F ratio (wet) as 31.5. Both are obviously wrong. The oxygen level should be about 9.8% and the A/F ratio about 28.8:1. The 100% oxygen level appears to have resulted in all the F-factor Emissions Calculations (down to acetaldehyde) being listed as negative and significantly reduced in absolute value.
- The barometric pressure values in CSU Appendix A are listed as inches of mercury while the numerical values appear to be psia. If not noticed and corrected, this could affect calculated values.
- The tabulated "Air Manifold" temperatures are always about 99.5° F. This does not make sense unless the air manifold referred to is not the air manifold on the engine but, rather, a duct bringing air to the turbocharger. The engine mounted air manifold (intake manifold) temperature should be about that of the intercooler air out.
- The "Average Cylinder Exhaust Temperature" is always in the low to mid 700° F range. This is too low. It should have about the same value as the average given in the exhaust temperature block of data, i.e., in the mid 900° F range typically. The lower temperature is more compatible with an exhaust stack temperature post-turbocharger. An "Exhaust Header Temperature" in the mid-700° F range is also listed. This temperature must also be at a location downstream of the turbocharger.
- An "In-Cylinder Temperature" (just above the F-Factor Emissions values) is also given. This value is typically 25° - 35° F and is nowhere near an engine in-cylinder temperature.
- The CSU tabulated catalyst conversion efficiencies for formaldehyde are given in a decimal format, not the percent value as indicated.
- As previously mentioned, the 10.44% value for pre-catalyst oxygen given for run #13 is incorrect. It should be about 9.8%. The air/fuel ratio listed is compatible with a 9.8% oxygen level.

Text and typographical comments:

- The inlet air humidity level in CSU Table 3 is incorrect. It should be .015 lb H₂O / lb air.
- PES report, page 3-1, §3.1, first paragraph. "Air is delivered to the engine via a supercharged air delivery system...". This is confusing since the F3521GL engine is, itself, <u>turbocharged</u> but superchargers are used on smaller engines. If this sentence is referring to a *facility* air delivery system I suggest use of an alternative word, e.g., "pressurized", to eliminate confusion. If this sentence does, in fact, refer to the engine's air delivery system the text should be corrected to read "... turbocharged air delivery system ...".

- PES report, page 3-1, §3.1, second paragraph. "During the expansion stroke ...". This is incorrect and should read "During the intake stroke ...". In the context of a 4stroke cycle engine, the expansion stroke is identical to – and is an alternative term for – the power stroke.
- PES report, page 3-4, §3.2, first paragraph (and other places). The correct units of torque are <u>pound-feet or lb-ft</u> (force x distance). This is entirely analogous to the SI system of units where torque is specified in Newton-meters or N-m.
- PES report, page 3-4, §3.2, first paragraph. "... engine timing (the location of the cylinder, relative to top dead center, at the time of peak pressure in the combustion chamber, measured in degrees) ...". This is incorrect in several respects. It should properly read "... engine timing (the location of the <u>piston</u>, relative to <u>its</u> top dead center, at the time <u>the spark plug fires</u> in the <u>pre-combustion</u> chamber, measured in degrees) ..."

Waukesha appreciates the opportunity to review and comment on this draft report before it is finalized. If you have any question, or if I can clarify any of my comments, please do not hesitate to contact me at 262.549.2753 or by e-mail at bob_stachowicz@wed.dresser.com.

Sincerely,

WAUKESHA ENGINE DIVISION A HALLIBURTON COMPANY

Robert Stachowicz, PE Senior Development Engineer

Enclosures: annotated pages from draft report

CC (letter only):

Mr. Sims Roy – USEPA Mr. J.M. Derra – WED Mr. R.A. Schleifer – WED Mr. M.W. McCormick – WED

TABLE 2.2

.Lb-FI

SUMMARY OF EXHAUST GAS FLOW RATES

Run ID	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7	Run 8	
Engine Speed, m	1197	1197	1002	1002	1197	1197	1197	1001	
Engine Torque, ft-lb	· 3236	2263	2264	3234	3235	3234	2263	3234	
Horsepower, bhp	737	516	432	617	737	737	516	617	
Fuel Flow Rate, scfn	5378	4083	3205	4368	5523	5337	4040	4424	
Equivalence Ratio, 🛉	0.56	0.56	0.55	0.56	0.52	0.59	0.59	0.53	
Lower Heating Value, Btu/cf	1024	1040	1040	[•] 1040	1040	1040	1040	1040	
Heat Rate, MMBtu/hr	5.51	4.24	3.33	4.54	5.74	5.55	4.20	· 4.60	
Dry Fuel Factor, Fd dscf/MMBtu	9607	9088	8657	9088	8657	8657	9088	9088	
		An commercy	Catalyst Inl	et _	klot Ri	ght -~	though	ben	Red
Gas Temperature, *F	735	706	677	685	711	759	728	. 663	
Oxygen, % d.b.	9.8	9.82	(10) 9.8	10.51	9.1	9.2	10.5	
Carbon Dioxide, % d.b.	6.29	6.23	6.37	6.24	5.86	6.65	6.65	5.86	
Moisture, %	12.25	11.73	12.53	12.02	÷. 11.56	12.71	12.35	11.55	
Gas Flow Rate, dscfm	1660	1213	922	1295	1666	1418	1136	1400	
		0	Catalyst Outl	et		•			
Gas Temperature, *F	740	710	679	688	718	760	731	669	
Oxygen, % d.b.	9.8	9:83	9.81	9.8	10.44	9.01	9.09	10.5	
Carbon Dioxide, % d.b.	6.46	· 6.42	6.4	6.41	5.96	6.83	6.79	5.99	
Moisture, %	12.42	11.92	12.25	12.19	11.60	12.86	12.46	11.66	
Gas Flow Rate, dscfm	1660	1214	906	1295	1655	1407	1126	1400	

2-4

rpm - revolutions per minute

ft-lb - foot-pounds

bhp - brake horsepower

scfn - standard cubic feet per hour @ 68*F and 29.92 in. Hg

4 - reciprocal of % Excess Air

Stu/cf - British Thermal Units per cubic foot of natural gas

MMBtu/hr - million British Thermal units per hour

dscf/MMBtu - dry standard cubic feet of exhaust products per

million Btu of heat input @ 0% excess air

*F - degrees Fahrenheit

% vol d.b. - % volume dry basis

dscfm - dry standard cubic feet per minute @ 68 *F and 29.92 in. Hg

Draft Final Report Waukesha 3521GL

August 2000

TABLE 2.2 (CONCLUDED)

SUMMARY OF EXHAUST GAS FLOW RATES

Run ID	Run 9	Run 10	Run 11	Run 12	Run 13	Run 14	Run 15	Run 16	
Engine Speed, rpm	1197	1197	1197	1197	1197	1197	1197	1197	· · ·
Engine Torque, ft-lb Ub-F7	3234	3237	3238	3236	3236	3235	3236	3235	
Horsepower, bhp	737	738	738	738	737	737	737	737	
Fuel Flow Rate, scfh	5389	5341	5353	5411	5683	5272	5452	5372	
Equivalence Ratio, ø	0.56	0.56	0.56	0.55	0.53	0.56	0.55	0.56	
Lower Heating Value, Btu/cf	1024	1040	1040	1040	. 1040	1024	1040	1040	
Heat Rate, MMBtu/hr	5.52	5.55	5.56	5.63	5.91	5.40	5.67	5.58	
Dry Fuel Factor, F _d dscf/MMBtu	9607	9088	9088	9088	8657	9607	8657	8657	
		-	Catalyst Inl	et -	1	al4	O Show	ilder 1	29.8%0
Gas Temperature, *F	735		731	736	767	722	738		•
Oxygen, % d.b.	9.69	9.8	9.81	9.9	10.44	9.81	9.9	9.82	
Carbon Dioxide, % d.b.	6.35	6.35	6.29	6.29	6.27	6.24	6.22	6.23	
Moisture, %	12.31	12.12	12.19	12.00	12.08	12.11	12.08	12.10	
Gas Flow Rate, dscfm	1647	1583	1588	1619	1703) 1629	. 1554	1520	
		0	Catalyst Out	let .	p.	-Thi	i Valu	e too	high
Gas Temperature, *F	· 740	741	736	740	771	718	742	733	1
Oxygen, % d.b.	9.7	9.73	9.79	9.85	9.81	9.89	9.82	9.8	
Carbon Dioxide, % d.b.	6.51	6.5	6.47	6.41	6.38	6.41	6.35	6.36	
Moisture, %	12.46	12.25	12.36	12.08	12.16	12.26	12.17	12.21	
Gas Flow Rate, dscfm	1649	1574	1586	1611	1606) 1641	1542	1517	

rpm - revolutions per minute

ft-ib - foot-pounds

bhp - brake horsepower

scfn - standard cubic feet per hour @ 68°F and 29.92 in. Hg

reciprocal of % Excess Air

Btu/cf - British Thermal Units per cubic foot of natural gas

MMBtu/hr - million British Thermal units per hour

dscf/MMBtu - dry standard cubic feet of exhaust products per

million Btu of heat input @ 0% excess air

*F - degrees Fahrenheit

% vol d.b. - % volume dry basis

dscfm - dry standard cubic feet per minute @ 68 *F and 29.92 in. Hg

Draft Final Report Waukesha 3521GL

2-5

August 2000

TABLE 2.3

EMISSION RATES OF DETECTED FTIR AND CEM COMPOUNDS

Run ID		Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7	Run 8
Catalyst Inlet	and an and a second								
	mg/bhp-hr	306	343	298	280	353	276	351	316
Formaldehyde	mib/hr	498	390	284	380	574	449	399	429
	mg/bhp-hr	ND	ND	ND	ND	ND	ND	ND	ND
Acetaldehyde	mib/hr	ND	ND	ND	ND	ND	ND	ND	ND
	mg/bhp-hr	3.88	ND	ND	0.388	ND	0.148	ND	ND
Acrolein	mlb/hr	6.31	ND	ND	0.527	ND	0.241	ND	ND
	g/bhp-hr	0.82	0.58	0.51	0.74	0.53	1.28	1.05	0.45
Nitrogen Oxides (as NO ₂)	lb/hr	1.33	0.66	0.48	1.00	0.86	2.09	1.19	0.61
	g/bhp-hr	2.76	2.75	2.42	2.45	3.31	2.55	2.79	2.88
Carbon Monoxide	lb/hr	4.49	3.12	2.30	3.34	5.38	4.14	3.17	3.91
	g/bhp-hr	3.87	4.40	4.58	4.04	4.77	2.76	3.58	5.13
Vethane	lb/hr	5.97	5.00	4.36	5.49	7.76	4.49	4.07	6.97
	g/bhp-hr	1.18	1.33	1.39	0.97	1.47	0.80	1.14	1.36
ion-methane Hydrocarbons	lb/hr	1.92	1.51	1.33	1.32	2.39	1.30	1.29	1.85
Total Hydrocarbons	g/bhp-hr	4.54	5.66	5.85	5.14	6.28	3.49	4.53	6.45
	lb/hr	7.38	6.43	5.57	6.99	10.20	5.67	5.16	8.77
Catalyst Outlet									
	mg/bhp-h	98	85	56	81	119	65	69	109
Formaldehyde	mlb/hr	159	97	53	110	193	106	78	148
······	mg/bhp/hr	ND	ND	CN C	ND	ND	ND	ND	ND
Acetaldehyde	mlb/hr	ND	ND	ND	ND	ND	ND	ND	ND
	mg/bhp-hr	ND	· ND	ND	ND	ND	ND	ND -	ND
Acroleín	mib/hr	ND	ND	ND	ND	ND	ND	ND	ND
	g/bhp-tr	0.871	0.631	0.557	0.772	0.570	1.33	1.09	0.485
Nitrogen Oxides (as NO ₂)	lb/hr	1.42	0.717	0.530	<u>∖1.05</u>	0.927	2.16	1.24	0.659
	g/bhp-ht	0.184	0.125	0.091	0.125	0.238	0.149	0.114	0.161
Carbon Monoxide	Ib/hr	0.299	0.142	0,087	0.171	0.387	0.243	0.129	0.219
	g/bhp-hr	3.20	4.00	3.76	3.67	4.26	2.43	3.17	3.42
Methane .	lb/hr	5.20	4.55	3.58	4.99	6.92	3.96	3.60	4.65
	g/bhp-hr	0.94	1.09	1.09	0.84	1.22	0.62	0.85	2.26
Non-methane Hydrocarbons	ib/hr N	1.53	1.24	1.04	1.14	1.99	1.01	0.97	3.08
	g/bhp-hr	4.78	5.78	5.83	5.14 ·	6.29	3.44	4.55	6.68
Total Hydrocarbons	ib/hr	7.74	6.57	5.55	6.99	10.22	5.59	5.17	9.08

g/bhp-hr - grams per brake horsepower hour

lb/hr - pounds per hour

mg/bhp-hr - milligrams per brake horsepower hour

mib/bhp-hr-millpounds per brake horsepower hour

THE INCREASES ND - Not Detected. Refer to Table 6.1 for run-by-run summery of detection smits.

Draft Final Report Waukesha 3521GL

2-6

August 2000

TABLE 2.3 (CONCLUDED)

EMISSION RATES OF DETECTED FTIR AND CEM COMPOUNDS

Run ID		Run 9	Run 10	Run 11	Run 12	Run 13	Run 14	Run 15	Run 16]
Catalyst Inlet										1
Formaldehyde	mg/bhp-hr	305	295	· 291	303	319	299	292	286	1 1 1
· •····	mlb/hr	495	479	474	493	519	486 [.]	475	465	
Acetaldehyde	mg/bhp-hr	ND	ND	ND	ND	ND	ND	ND	ND	
	mib/hr	' ND	ND	ND	ND	ND	ND	ND	ND	
Acrolein	mg/bhp-hr	4.82	ND	0.71	ND	ND .	4.36	ND	ND	1 huar
. <u>m</u>	mlb/hr	7.82	ND	1.15	ND	ND	7.09	ND	ND	why
Nitrogen Oxides (as NO ₂)	g/bhp-hr	0.78	0.9	0.8	0.8	0.5	1.3	0.6	0.7	1 DUNA
	lb/hr	1.27	1.5	1.2	1.3	0.8	2.0	· 1.0	1.2	
Carbon Monoxide	g/bhp-hr	2.74	2.66	2.64	2.66	2.83	2.87	2.61	2.56	mig
	lb/hr	. 4.45	4.32	4.30	4.32	4.60	4.66	4.24	4.16	Jult .
g/bl	g/bhp-hr	3.71	3.0	3.3	3.4	4.1	3.5	3.6	3.5	ADDIE
	lb/hr	6.03	4.9	5.3	5.6	6.7	5.8	5.9	5.6	1 Dicini Co
Non-methane Hydrocarbons	g/bhp-hr	1.17	0.95	1.07	0.98	1.36	1.04	1.19	1.09	Markent
	lb/hr	1.89	1.55	1.74	1.60	2.22	1.69	1.94	1.78	" encuer
Lotal Hydrocarbone	g/bhp-hr	4.59	4.16	4.48	4.36	4.97	4.43	4.41	4.33	curo-
	lb/hr	7:45	6.76	7.28	7.08	8.08	7.20	7.17	7.04	
Catalyst Outlet	/									Whyan rules only 1 d poont Hakesco Lifficult Note - i Sevenal Lafter she werene ylbup - tr Note - i Note - i
Towns a left a hundra	mg/bhp-hr/	95	92.8	93.5	93.0	81.8	100.3	88.0	86.9	NO 01
Formaldehyde	mlb/hr	154	151	152	151	133	163	143	141	in which a
A antababanda	mg/bhp-t/r	ND	ND	ND	ND	ND	ND	ND	ND	545 540
Acetaldehyde	mlb/hr	ND	ND	ND	ND	ND	ND .	ND	ND	il pro
N1-i-	mg/bhp-hr	ND	ND	ND	ND	ND	ND	ND	ND	La Dille
Acrolein	mlb/hr	ND	ND	ND	ND	ND	ND	ND	ND	inclusion
	g/bhp-hr	0.857	1.0.	0.8	0.8	0.5	1.3	0.7	, 0.8	nl.p-10
Nitrogen Oxides (as NO ₂)	lb/hr	1.392	1.5	1.3	1.4	0.8	2.2	1.1	1.3	aler
	g/bhp-ht	0.180	0.177	0.177	0.178	0.192	0.186	0.176	0.171	1 t.
Carbon Monoxide	lb/hr	0.292	0.288	0.288	0.289	0.312	0.303	0.287	0.278	NET
· ··	g/bhp-hr	3.28	2.96	3.15	3.23	3.50	3.12	3.21	3.09	
Aethane	lb/hr	5.33	4.82	5.13	5.25	5.69	5.07	5.22	5.02	
	g/bhp-hr	0.92	0.84	0.99	0.83	0.84	0.86	0.85	0.86	
Non-methane Hydrocarbons	lb/hr	1.49	1.37	1.61	[·] 1.35	1.37	1.39	1.38	1.40	-
	g/bhp-hr	4.73	4.33	4.60	4.66	4.93	4.57	4.65	4.44	
Total Hydrocarbons	lb/hr	7.68	7.05	7.48	7.58	8.02	7.43	7.55	7.22	

g/bhp-hr - grams per brake horsepower hour

mg/bhp-hr - milligrams per brake horsepower hour mib/bhp-hr - millipounds per brake horsepower hour

ib/hr - pounds per hour

across catalyst.

ND - Not Detected. Refer to Table 6.1 for run-by-run summary of detection limits.

THC

Draft Final Report Waukesha 3521GL

2-7

August 2000

TABLE 2.4

CATALYST HAP REMOVAL EFFICIENCIES

Run ID	Run 1	Run 2	Run 3	Run 4	Run 5	· Run 6	Run 7	Run 8	
Formaldehyde	68%	75%	81%	71%	66%	76%	80%	65%	A.
Carbon Monoxide	93%	95%	96%	95%	93%	94%	96%	94%	Envirence
Methane	13%	9%	18%	9%	11%	12%	12%	33%	All- purpe
Non-methane Hydrocarbons	20%	18%	21%	13%	17%	23%	25%	-66% -	-1-6.

Ŧ

Run ID	Run 9	Run 10	Run 11	Run 12	Run 13	Run 14	Run 15	Run 16	Average
Formaldehyde	69%	68%	68%	69%	74%	66%	70%	70%	71%
Carbon Monoxide	93%	93%	93%	93%	93%	94%	93%	93% ·	94%
Methane	12%	2%	4%	6%	14%	12%	11%	11%	12%
Non-methane Hydrocarbons	21%	12%	8%	16%	38%	18%	29%	21%	14%

Draft Final Report Waukesha 3521GL

2-9

: 2

August 2000

2-6

3.0 SOURCE DESCRIPTION AND OPERATION

This section presents discussions of the candidate engine and the catalyst used for the test program. The sections that follow describe the engine and the operation of the engine during testing. turbocharged ??

3.1 **ENGINE DESCRIPTION**

The Waukesha 3521GL is a 4-stroke stationary internal combustion engine. The engine has six inline cylinders; the total piston displacement is 3520 cubic inches. Each cylinder is 9.375 inches in diameter, and has an 8.5-inch stroke. The compression ratio is 10.5:1. Air is delivered to the engine via a supercharged air delivery system; air manifold pressures are controlled by the EECL process control system. Engine loading is controlled by a computercontrolled water brake dynamometer. Before the test program EECL installed an oxidation catalyst, manufactured by MiraTech Corporation, on the engine. EECL aged the catalyst under its normal operating condition (i.e., burned in the catalyst) before the test program. This procedure ensured that the catalyst's HAP destruction efficiency approximated the HAP destruction efficiency of mature catalysts installed on 4-stroke engines in industry. Table 3.1 presents specifications of the engine and the catalyst. Table 3.2 presents nominal engine intake operating parameters.

The 4-stroke cycle requires two revolutions of the engine crankshaft for each power stroke. During the expansion stroke, the piston moves down the cylinder and an air/fuel mixture is injected into the piston chamber. On the compression stroke, the piston moves back up the chamber, and the mixture is compressed and ignited. The expanding gas generated upon combustion forces the piston back down the chamber. This stroke is the power stroke. The last stroke of the 4-stroke cycle is the exhaust stroke. The piston travels back up the chamber and the combustion products are vented through the exhaust manifold.

The 3521GL engine was outfitted with lean-burn technology, which controls NO_x emissions. The lean-burn system uses pre-combustion chambers to ignite a lean air/fuel mixture in the main combustion chambers. A rich mixture of air and fuel is drawn into the precombustion chamber and is ignited by a spark plug. The resulting flame is then directed into the main combustion chamber, which contains a lean mixture of air and fuel. The flame jet from the pre-combustion chamber ignites the air/fuel mixture in the main chamber.

3.2 ENGINE OPERATION DURING TESTING

As stated in Section 2 of this document, three types of test runs were conducted during the test program: quality assurance runs, sampling runs for FTIRS and CEMS, and baseline runs. The operation of the engine during these various runs is discussed in the following pages and tables. The four-stroke engine test matrix described in the QAPP was based upon estimated operating parameters for a candidate engine to be installed and operated at the EECL. When the engine was received and first operated by EECL the actual operating parameters differed from the estimates. Table 3.3 presents the test matrix for the Waukesha engine based upon the actual engine parameters. During the test program, the six engine operating parameters expected to have the greatest impact on pollutant formation were varied from their baseline values. These parameters were: engine speed (measured in revolutions per minute or rpm), engine torque (measured in foot-pounds or ft-lb), air-to-fuel ratio (calculated as an equivalence factor), engine timing (the location of the Chinder) relative to top dead center, at the time of peak pressure in the prescombustion chamber, measured in degrees), air manifold temperature (measured in degrees Fahrenheit), and jacket water outlet temperature (measured in degrees Fahrenheit). Accark

Table 3.4 presents engine parameters recorded during each test run and their percent deviation from the target values. Sixteen sampling runs were conducted on the engine during the two-day period. Except for air/fuel ratios, the actual parameters agreed with the target parameters to within 5%. Although the calculated air/fuel ratios were not within 5% of the target air/fuel ratios, testing was conducted while operating at rich air/fuel ratios (Runs 5 and 8) and at lean air/fuel ratios (Runs 6 & 7). The air/fuel ratio was varied to simulate the range of air/fuel ratios that typcial in field applications.

Before starting Run 7, the humidity control system failed. The humidity system could not be repaired quickly so the run was conducted without inlet air humidity control. Run 2 was also conducted without inlet air humidity control. The set point for the humidity ratio for all test points was 0.015 lb. water / lb. air. The actual humidity ratios for Runs 2 and 7 were 0.0126 and 0.0127 lb. water / lb. air respectively. The engine emissions for Runs 2 and 7 should be similar to engine emissions at the specified humidity ratio. The most dramatic effect will be on NO_x emissions as can be seen from the data and the graphs presented in Appendix S of the CSU test report. At a constant humidity ratio, it would be expected that formaldehyde emissions would either remain constant or increase slightly with similar changes in CO and THC emissions.

RICH

TABLE 3

WAUKESHA 3521GL BASELINE CONDITIONS

Engine Operating Parameters	Nominal Value	Acceptable Range	Designation
Engine Torque	3383 ft-lb. to 3230 ft-lb.	± 2% of value	Primary
Engine Speed	1000 RPM	± 5% of value	Primary '
Jacket Water Temperature Outlet	180°F	± 5% of value	Primary
Engine Oil Temperature Header	180°F	\pm 5% of value	Primary
Air Manifold Temperature	85°F to 130°F	± 5% of value	Primary
Air Manifold Pressure	30.0" Hg above Atm.	\pm 5% of value	Primary
Exhaust Manifold Pressure	5.0" Hg below AMP	± 5% of value	Primary
Ignition Timing	10°BTDC	± 5% of value	Primary
Overall Air:Fuel Ratio	28:1	± 5% of value	Primary
Inlet Air Humidity-Absolute	.0015 lb H ₂ O/lb Air	± 10% of value	Primary
Engine Fuel Flow SCFH	4460 to 4360 SCFH	\pm 5% of value	Primary
Engine Oil Pressure Inlet	45 lb.	± 10% of value	Secondary
Inlet Air Flow	1400-1500 SCFM	± 5% of value	Secondary
Average Engine Exhaust Temperature	660° F	\pm 5% of value	Secondary

should be .015 Lb/Lb

Pacific Environmental Services

2 - 4

Colorado State University

Î

Î

-August 4-6, 1999 **EPA RICE Testing**

Waukesha

Engine Class: Natural Gas Fueled, Spark Ignited, Four-Stroke, Lean Burn Engine

Waukesha]
ENGINE OPERATING PARAMETERS	Run 1	Run 2	Run 3	Run 4	
nition Type	PCC	PCC	PCC	PCC	
iel Measurements					
atic Fuel (psia)	46.5	46.6	46.9	46.6	
101 Differential (in. H10)	14.4	8.4	5.1	9.6	
rifice Temperature (*F)	85.6	87.9	84.7	86.1	, i
uel Flow (sefh)	5378	4083	3205	4368	
el Consumption (BSFC)	7468	8230	7718	7365	
ower Heating Value-Dry (Btu)	1024	1040	1040	1040	
uci Tube I.D. (in.)	3.068	3.068	3.068	3.068	
uel Orifice O.D. (in.)	0.5	0,5	0.5	0.5	
nnubar Flow Rates					A SE DEN
let Air Flow (sofm)	1713.6	1291.8	1020.5	1377.1	(ine all
chaust Flow (scfm)	2028.9	1557.8	1205.1	1673.1	
mblent Conditions	·				K mille rice
arometric Pressure (in. Hg)	12.08	12.07	12.07	12.07	Wat psi
arometric Pressure (in. Hg) ry Bulb Temperature (*F) P-1 (Co	64.0	65.0	69.0	62.1	Wese appear Waldes osia to be in the
clative Humidity (%)	80.0	74.6	63.9	78.Ò	10, 10,
bsolute Humidity (lbvb)	0.012	0.012	0.012	0.011	Fi Fai
bsolute Humidity (gr/lb)	86.668	83.651	82.295	78.961	100
ir Manifold Conditions					
oost Pressure (in. Hg)	5.02	5.00	5.00	5.00	
ny Bulb Temperature (*F)	99.5	99.9	99.7	99.3	
clative Humidity (%)	37.8	30.4	37.3	36.1	
elative Humidity (%) - Corrected*	51.2	41.7	50.9	48.7	
beolute Humidity (lb/b)	0.016	0.013	0.015	0.015	
bsolute Humidity (gr/lb)	108.712	88.188	108.105	103.280	1

*Air manifold relative humidity corrected to the reference ambient conditions of 90°F, 14.696 psi.

Cylinder Exhaust Temperatures (Degrees *F)				
Cylinder 1	976.9	960. 5	884.2	908.3
Cylinder 2	977.8	953.2	880.5	910.3
Cylinder 3	1980.4	954.7	877.5	913.0
Cylinder 4	954.3	931.2	861.6	893.0
Cylinder 5	945.3	913.2	850.8	886.8
Cylinder 6	929.7	914.2	843.4	873.4
Engine Average	960.73	937.84	843.41	873.35

? is This The initake) ongine air (initake) manifold or a facility air chief?

Colorado State University August 4-6, 1999 **EPA RICE Testing** Waukesha

Engine Class: Natural	Gas Fueled, Spark	Ignited, Four-Stroke,	Lean Burn Engine
-----------------------	-------------------	-----------------------	------------------

	Colorado State U August 4-6, EPA RICE T Waukesh	1999 esting	., <u></u>		WEBREET 2N SEE WING
Engine Class: Natural Gas F	ueled, Spark Igr	ited, Four-Strok	e, Lean Burn E	ngine	SEE Jung.
Lb-FT					L'Elle
Waukesha					r r
ENGINE OPERATING PARAMETERS	Run 1	Run 2	Run 3	Run 4	
Ignition Type	PCC	PCC	PCC	/ PCC	
Dynamometer Torque (R-Ib)	3236	2263	2264	/ 3234	1. A.
Brake Horsepower (hp)	737	516	432	617	
BSFC (btw/bhp-hr)	7468	8230	7718	7365	
Engine Speed (rpm)	1197	1197	1002	1002	
Timing (Degrees BTDC)	10.00	10.00	10.00	10.00	
A/F (Wet)	28.7	28.8	31.5	28.9	
Pressures	5.02	6.00	£ 00	·	
Air Manifold (in. Hg)		5.00	5.00	5.00	· ·
Fuel Manifold (psig)	· 4.12	6.60	6.88	6.21	
Fuel Supply (psig)	46.73	47.17	47.45	47.16	
Intercooler Air Differential (in. H ₂ O)	9.26	5.85	4.79	6.59	· ·
Post Intercooler Air Manifold (in. Hg)	69.21	66.06	54.27	66.48	
Intercooler Water Differential (in. H ₂ O)	, 157.45	157.45	157.45	157.45	
Intercooler Supply (psi)	3.12	2.72	2.83	2.72	
Pre-Turbo Exhaust (in. Hg)	36.51	28.80	21.26	30.55	
Post-Turbo Exhaust (in. Hg)	4.82	4.99	4.98	5.16	
Turbo Oil (in. Hg)	46.91	47.35	45.32	44.90	
Catalyst Differential (in. H ₂ O)	9.1	5.6	3.9	6.0	4
Temperatures ('F) and Flows (GPM)				•	
Air Manifold Temperature	99.5	99.9	99.7	99.3	
Fuel Manifold Temperature	85.6	87.9	84.7	- 86.1	
Average Cylinder Exhaust Temperature	707.3	*1 759.4	770.7	760.1	· ·
Exhaust Stack Temperature	704.5	676.4	. 640.4	656.9	
Exhaust Header Temperature	704.5	676.4	640.4	656.9	
Jacket Water Inlet Temperature Jacket Water Outlet Temperature Lube Oil Inlet Temperature Lube Oil Outlet Temperature Lube Oil Flow Lube Oil Flow	173.1	175.3	176.4	175.4	
Jacket Water Outlet Temperature These The	179.4	179.0	178.8	179.5	
Lube Oil Inlet Temperature	81.1	81.5	82.7	76.9	
Lube Oil Outlet Temperature	86.7	86.6	86.9	81.6	
	129.2	129.2	129.3	128.3 .162.4	
Engine Oil In Temperature Engine Oil Out Temperature	164.6 185.7	163.3 183.2	162.8 180.0	181.1	
Intercooler Air In Temperature	296.9	280.9	232.3	282.3	
Intercooler Air Dut Temperature	142.2	137.1	135.2	138.5	
Intercooler Water In Temperature	131.6	127.6	130.3	128.5	
Intercooler Water Out Temperature	142.9	137.1	135.7	138.7	
Intercooler Water Flow	62.6	55.5	58.5	55.5	
Pre-Turbo Exhaust Temperature	961.0	926.7	860.6 ·	905.0	
Post-Turbo Exhaust Temperature	797,9	750.4	725.6	725.8	
Pre-Catalyst Temperature	734.5	705.5	677.0	685.2	
Post-Catalyst Temperature	739.56	709.99	679.03	688.42	

IS THIS before OR AFTER TURBOCHARGER? "CYLIDDER" TEMPERATURE IMPLIES BEFORE IT SU THE VALUE SHOULD BE ABOUT THE SHALE AS "ENGINE AVERAGE" TEAPERATURE ON PREVIOUS PAGE,

Colorado State University August 4-6, 1999 EPA RICE Testing Waukesha

l

ĺ

Î

Engine Class: Natural Gas Fueled, Spark Ignited, Four-Stroke, Lean Burn Engine

Waukesha					
MEASURED EMISSIONS	Run 1	Run 2	Run 3	Run 4	
Ignition Type	PCC	PCC	PCC	PCC	
Air Manifold Pressure ("Hg)	5.02	5.00	5.00	5.00	
Brake Horsepower (bhp)	737	516	432	617	
Emissions Measured (Dry)					
NO _x (ppm): Pre-Catalyst	112.26	76.27	72.83	107.78	
NO _s (ppm): Post-Catalyst	119.34	82.48	81.66	113.18	should be g. 8%
CO (ppm): Pre-Catalyst	620.26	590.96	573.32	590.78	in the lot
CO (ppm): Post-Catalyst	41.32	26.75	21.89	30.19	CUUS REG
THC (ppm): Pre-Catalyst	1785.06	2129.30	2424.42	2166.33	
THC (ppm): Post-Catalyst	1869.94	2172.32	2458.76	2165.00	12 Martin
O1 %: Pre-Catalyst	· 9.80	9.82	100.00	9.80	
O ₂ %: Post-Catalyst	9.80	9.83	9.81	9.80	
CO ₂ %: Pre-Catalyst	6.29	6.23	6.37	6.24	
	1 1				
CO ₂ % Post-Catalyst	6.46	6.42	6.40	6.41	
Emissions Measured (Wet)	1000			1 100 20	
Nfethane (ppm): Pre-Catalyst	126610	1462.36	1661.04	1498.39	
Michane (ppm): Post-Catalyst	1100.08	1326.13	1391.50	1358.65	
Non-Methane (ppm): Pre-Catalyst	148.47	160.09	183.77	130.64	
Non-Methane (ppm): Post-Catalyst	117.90	131.14	147.28	113.19	
Carbon Balance Calculations	12.26		19.63	12.02	
Exhaust H10% (Pre-Catalyst)	12.25	11.73	12.53	12.02	
Exhaust H10% (Post-Catalyst)	12.42	11.92	12.25	12.19	
O ₃ %	10.11	10.20	12.47	10.22	
O1 Balanco	-1.44	-1.84	77.06	-1.91	
Exhaust Flow (lb/hr)	8326.6	6419.1	5480.8	6875.9	
Air Flow (lb/hr) 7 W Hall 13	8046.5	6203.9	5311.9	6645.7	
Exhaust Flow (lb/hr) Air Flow (lb/hr) In Cylinder Temperature 2 What is Mis?	26.9	· 19.1	23.7	31.6	
Aurros Kallo	28.7	28.8	(31.5)	28.9	
F-Factor Emissions Calculations	1				
NO _g (g/bhp-hr): Pre-Catalyst	0.911	0.615	-0.077	0.777	· ·
NOg (lb/hr): Pre-Catalyst	1.480	0.700	-0.073	1.056	:
NOg (g/bhp-hr): Post-Catalyst	0.968	0.665	-0.087	0.815	1
NO _x (ib/hr): Post-Catalyst	0.573	0.757	-0.082	1.109	
THC (g/bhp-hr): Pre-Catalyst	5.128	6.083	-0.910	5.528	
THC (lb/hr): Pre-Catalyst	8.334	6.916	-0.866	7.514	
THC (g/bhp-hr): Post-Catalyst	5.371	6.206	-0.923	5.524	
THC (lb/hr): Post-Catalyst	8.731	7.056	-0.878	7.510	
CO (g/bhp-hr): Prc-Catalyst	3.111	2.947	-0.376	2.632	
CO (lb/hr): Pre-Catalyst	5.056	3.351	-0.357	3.578	
CO (g/bhp-hr): Post-Catalyst	0.207	0.133	-0.014	0.134 · .	
CO (lb/hr): Post-Catalyst	0.337	0.152	-0.014	0.183	
Methane (g/bhp-hr): Pre-Catalyst	4.192	4.782	-0.717	4.396	
Methane (lb/hr): Pre-Catalyst	6.814	5.437	-0.682	5.976	
Methans (g/bhp-hr): Post-Catalyst	3.642	4.336	-0.601	3.986	
Methane (lb/hr): Post-Catalyst	5.919	4.931	-0.572	5.418	
Non-Methane (g/bhp-hr): Pre-Catalyst	1.351	1.439	-0.218	1.053	
Non-Methane (lb/hr): Pre-Catalyst	2.196	1.636	· -0.208	1.432	
Non-Methane (g/bhp-hr): Post-Catalyst	1.073	1.179	-0.175	0.913	
Non-Methane (lb/hr): Post-Catalyst	1.744	1.340	-0.166	1.241	
Formaldehyde (g/bhp-hr): Pre-Catalyst	0.349	0.372	-0.047	0.303	
Formaldehyde (lb/hr): Pre-Catalyat	0.567	0.423	-0.044	0.412	
Formaldchyde (g/bhp-hr): Post-Catalyst	0.111	0.094	-0.009	0.089	
Formaldchyde (lb/hr): Post-Catalyst	0.181	0.107	-0.008	0.121	· .
Acetaldehyde (g/bhp-hr): Pre-Catalyst	-0.031	-0.037	0.007	-0.031	
Acctaldchyde (lb/hr): Pre-Catalyst	-0.051 [.]	-0.042	0.006	-0.043	
Acetaldchyde (g/bhp-hr): Post-Catalyst	0.000	0.000	0.000	0.000	
Acetaldehyde (lb/hr): Post-Catalyst	0.000	0.000	0.000	0.000	
Acrolein (g/bhp-hr): Pre-Catalyst	0.004	-0.003	0.001	0.000	
Acrolein (g/bhp-hr): Pre-Catalyst	0.007	-0.003	0.000	0.001	
Acrolcin (g/bhp-hr): Post-Catalyst	0.000	0.000	0.000	0.000	
Acrolein (lb/hr): Post-Catalyst	0.0	0.0	0.0	0.0	1

Colorado State University August 4-6, 1999 EPA RICE Testing

Waukesha

Engine Class: Natural Gas Fueled, Spark Ignited, Four-Stroke, Lean Burn Engine

MEASURED EMISSIONS	Run 1	Run 2	Run 3	Run 4
gnition Type	PCC	PCC	. PCC	PCC
Air Manifold Pressure ("Hg) Brake Horsepower (bhp)	5.02	5.00 516	5.00	5.00
TIR Measured Emissions (ppm, Wet)		510	432	
Water-H,O	132315	126394	130933	130209
Carbon Monoxide-CO (ppm): Pre-Catalyst	532.071	512.242	496.451	511.649
Carbon Monoxide-CO (ppm): Post-Catalyst	24.137	11.351	6.267	14.166
Carbon Dioxide-CO2 (ppm): Pre-Catalyst	56847	55598	56370	55618
Carbon Dioxide-CO2 (ppm): Post-Catalyst	54430	54281	53813	53975
Nitric Oxide-NO (ppm): Pre-Catalyst	34.762	15.089	16.156	37.505
Nitric Oxide-NO (ppm): Post-Catalyst	90.771	6 0 .962	60.266	85.112
Vitrogen Dioxide-NO1 (ppm): Pre-Catalyst	52.508	4 3. 941	41.465	47.879
Nitrogen Dioxide-NO2 (ppm): Post-Catalyst	0.000	0.000	0.000	0.000
Nitrous Oxide-N ₂ O (ppm): Pre-Catalyst	0.491	0.492	0.458	0.483
Nitrous Oxide-N2O (ppm): Post-Catalyst Ammonia-NH3 (ppm): Pre-Catalyst	0.000	0.000	0.000	0.000
Ammonia-NH ₃ (ppm): Post-Catalyst	0.000	0.000	0.000	0.000
Oxides of Nitrogen-NO _x (ppm): Pre-Catalyst	87.271	59.029	57.621	- 85.385
Oxides of Nitrogen-NO _x (ppm): Pre-Catalyst	90.771	60.962	58.790	85.112
Methane-CH, (ppm): Pre-Catalyst	1390.505	1694.023	1883.877	1730.944
Methane-CH ₄ (ppm): Post-Catalyst	1394.899	1654.721	1810.803	1668.765
Acetylene-C-H ₂ (ppm): Pre-Catalyst		0.103	0.363	0.000
Acetylenc-C2H2 (ppm): Post-Catalyst	0.000	0.000	0.000	0.000
Ethylene-C2H4 (ppm): Pre-Catalyst	59.778	61.237	59.081	48.021
Ethylene-C ₂ H ₄ (ppm): Post-Catalyst	22.421	15.968	9.756	12.296
Ethane-C2H4 (ppm): Pre-Catalyst	154.137	173.349	208.761	155.649
Ethane-C2H5 (ppm): Post-Catalyst	208.203	229.031	279.990	203.376
Cyclopropene-C3H6 (ppm): Pre-Catalyst	1.527	2.425	1.858	1.289
Cyclopropene-C ₃ H ₆ (ppm): Post-Catalyst	0.000	0.000	0.000	0.000
Formaldehyde-H ₂ CO (ppm): Pre-Catalyst	56.310	60.753	57.630	55.249
Formaldehyde-H ₂ CO (ppm): Post-Catalyst	17.970	15.326	10.604	16.225
Methanol-CH ₃ OH (ppm): Pre-Catalyst	1.729	1.843	1.871	1.435
Methanol-CH ₃ OH (ppm): Post-Catalyst	0.000	0.000	0.000	0.000 33.995
Propane-C ₃ H ₈ (ppm): Pre-Catalyst Propane-C ₃ H ₈ (ppm): Post-Catalyst	32.908 27.758	37.072	43.230 35.193	27.606
Sulfur Dioxide-SO1 (ppm): Pre-Catalyst	1.678	30.019 2.895	2.303	3.175
Sulfur Dioxide-SO ₂ (ppm): Post-Catalyst	1.893	1.191	0.000	1.298
Total Hydrocarbons-THC (ppm): Pre-Catalyst	1897.534	2256.388	2526.730	2222.342
Total Hydrocarbons-THC (ppm): Post-Catalyst	2076.828	2401.490	2675.504	2355.141
Acetaldehyde-CH3CHO (ppm): Pre-Catalyst	-3.441	-4.132	-5.545	-3.892
Acetaidehyde-CH3CHO (ppm): Post-Catalyst	0.000	0.000	0.000	0.000
Acrolein CH2=CHCHO (ppm): Pre-Catalyst	0.382	-0.232	-0.345	0.041
Acrolein CH ₂ =CHCHO (ppm): Post-Catalyst	0.000	0.000	0.000	0.000
1-3 Butadiene (ppm): Pre-Catalyst	0.818	1.246	1.480	1.302
1-3 Butadiene (ppm): Post-Catalyst	0.000	0.000	0.000	0.000
Isobutylene (nom): Pre-Catalyst	1 0.001			
Isobutylene (ppm): Pre-Catalyst Isobutylene (ppm): Post-Catalyst	0.001 0.000	0.000	0.000	0.000
Isobutylene (ppm): Post-Catalyst Calculated Catalyst Efficiency		•		0.000
Isobutyiene (ppm): Post-Catalyst		0.000 97.78%		1.

21

.

Colorado State University

ĺ

Î

August 4-6, 1999

EPA RICE Testing Waukesha

Engine Class: Natural Gas Fueled, Spark Ignited, Four-Stroke, Lean Burn Engine

Waukesha				······
MEASURED EMISSIONS	Run 13	Run 14	Run 15	· Run 16
Ignition Type	PCC .	PCC	PCC	PCC
Air Manifold Pressure ("Hg)	5.00	5.02	5.00	5.00
Brake Horsepower (bhp)	737	737	737	737
Emissions Measured (Dry)				
NO _x (ppm); Pre-Catalyst	64.65	174.30	94.19	108.39
NOg (ppm); Post-Catalyst	70.85	183.80	102.07	117.02
CO (ppm): Pre-Catalyst	619.92	655.62	625.17	627.01
CO (ppm): Post-Catalyst	44.53	42.27	42.56	42.14
THC (ppm): Pre-Catalyst	1904.33	1773.43	1851.82	1859.21
THC (ppm): Pre-Catalyst THC (ppm): Post-Catalyst O ₂ %: Pre-Catalyst O ₃ %: Post-Catalyst CO ₃ %: Pre-Catalyst CO ₃ %: Pre-Catalyst CO ₅ %: Post-Catalyst	o ^{2002.80}	1817.69	1964.55	1911.39
On the Pre-Catalyst JUIS W life	(10.44	9.81	9.90	9.82
On the Post-Catalyst a relation of	9.81	9.89	9.82	9.80
CO ₁ %: Pre-Catalyst SVC , CI, C (0	6.27	6.24	6.22	6.23
CO, %: Post-Catalyst	6.38	6.41	6.35	6.36
Emissions Measured (Wet)				
Methane (ppm): Pre-Catalyst	1377.56	1249.40	1331.48	1306.95
Methane (ppm): Post-Catalyst	1248.62	1088.91	1193.13	1166.45
Non-Methane (ppm): Pre-Catalyst	167.00	133.26	160.15	150.09
Non-Methane (ppm): Post-Catalyst	109.40	108.78	115.08	118.19
Carbon Balance Calculations				
Exhaust H10% (Pre-Catalyst)	12.08	12.11	12.08	12.10
Exhaust H10% (Post-Catalyst)	12.16	12.26	12.17	12.21
0, %	10.14	10.19	10.23	10.23
O ₂ Balance	1.02	-1.69	-1.55	-1.84
Exhaust Flow (lb/hr)	8947.4	8209.7	8639.6	8506.0
Air Flow (lb/hr)	8647.9	7935.1	8352.3	8222.8
In Cylinder Temperature	29.3	26.5	28.2	2 7.7
Air/Fuel Ratio	· 28.9	· 28.9	29.1	29.0
F-Factor Emissions Calculations				
NO _s (g/bhp-hr): Pre-Catalyst	0.538	1.388	0.715	0.805
NO _x (lb/hr): Pre-Catalyst	0.874	2.256	1.162	1.308
NO _s (g/bhp-hr): Post-Catalyst	0.589	1.464	0.775	0.869
NO _s (ib/hs): Post-Catalyst	Q.958	2.379	1.259	1.413
THC (g/bhp-hr): Pre-Catalyst	5.611	5.003	4.977	4.890
THC (lb/hr): Pre-Catalyst	9.120	8.128	8.090	7.948
THC (g/bhp-hr): Post-Catalyst	5.901	5.128	5.280	5.027
THC (lb/hr): Post-Catalyst	9.592	8.331	8.583	8.171
CO (g/bhp-hr): Pre-Catalyst	3.189	3.229	2.933	2,879
CO (ib/hr): Pro-Catalyst	5.184	5.247	4.769	4.680
CO (g/bhp-hr): Poet-Catalyst	0.229	0.208	0.200 0.325	0.194
CO (ib/hr): Post-Catalyst Methane (g/bhp-hr): Pre-Catalyst	0.372 4.665	0.338 4.058	4.116	3.954
Methane (by onp-na): Fre-Catalyst	7.582	6.593	6.691	6.428
Methane (g/bhp-hr): Post-Catalyst	4.228	3.537	3.688	3.529
Methane (lb/hr): Post-Catalyst	6.873	5.746	5.996	5,737
Non-Methano (g/bhp-hr): Pre-Catalyst	1.554	1.190	1.361	1.248
Non-Methano (lb/hr): Pre-Catalyst	2.527	1.933	2.212	2.029
Non-Methane (g/bhp-hr): Post-Catalyst	1,018	0.971	0.978	0.983
Non-Methane (lb/lur): Post-Catalyst	1,655	1.578	1.590	1.598
Formaldehyde (g/bhp-hr): Pre-Catalyst	0.363	0.341	0.333	0.326
Formaldehyde (lb/hr): Pre-Catalyst	0.590	0.554	0.541	0.529
Formaldehyde (g/bhp-hr): Post-Catalyst	0.098	0.113	0.101	0.099
Formaldehyde (lb/hr): Post-Catalyst	0.160	0.184	0.164	0.161
Acetaldehyde (g/bhp-hr): Pre-Catalyst	-0.032	-0.026	-0.031	-0.029
Acetaldeinyde (ib/hr): Pre-Catalyst	-0.052	-0.042	-0.050	-0.047
Acetaldehyde (g/bhp-hr): Post-Catalyst	0.000	0.000	0.000	0.000
Acetaldehyde (lb/lur): Post-Catalyst	0.000	0.000	0.000	0.000
Acrolein (g/bhp-hr): Pre-Catalyst	-0.006	0.005	-0.002	-0.001
Acrolein (g/bhp-hs): Pre-Catalyst	-0.010	0.008	-0.003	-0.002
Acrolcin (g/bhp-hr): Post-Catalyst	0.000	0.000	0.000	0.000
Acrolein (lb/hr): Post-Catalyst	0,0	0.0	0.0	• 0.0

Colorado State University: Engines and Energy Conversion Laboratory

Test Description: Baseline 8-5 - 736BHP 1200RPM 10BTDC

.

	Data Point Number: Baseline		Date:	08/ 0 5/99	Time:	15:11:38
				Duratio	n (minutes):	5.00
	Description	Average	Min	Max	STDV	Variance
	AMBIENT AIR TEMPERATURE (F)	73.00	73.00	73.00	0.00	0.00
	AMBIENT AIR PRESSURE (psia)	12.07	12.07	12.07	0.00	0.00
	AMBIENT HUMIDITY (%)	61.51	60.00	62.00	0.86	1.40
	AIR MANIFOLD PRESSURE ("Hg)	5.01	4.76	5.19	0.09	1.80
	AIR MANIFOLD RELATIVE HUMIDITY (%)	37.85	36.00	39.00	1.06	2.81
	AIR MANIFOLD HUMIDITY RATIO (Ibw/iba)	0.01561	0.01422	0.01669	•	
	AIR MANIFOLD TEMPERATURE (F)	99.63	98.00	101.00	0.60	0.60
i ÿ	INTAKE AIR FLOW (scfm)	1747.25	1734.02	1758.27	5.28	0.30
■ . ² ³	EXHAUST FLOW (scfm)	-124.87	-124.87	-124.87	0.00	0.00
Ŕ	EXHAUST STACK TEMPERATURE (F)	699.38	698.99	699.79	0.22	0.03
Sec. 1	CYLINDER 1 EXHAUST TEMPERATURE (F)	975.36	973.60	9 76 .97	0.71	0.07
	CYLINDER 2 EXHAUST TEMPERATURE (F)	974.40	972.61	975.98	0.74	0.08
1	CYLINDER 3 EXHAUST TEMPERATURE (F)	974.36	972.61	975.98	0.69	0.07
	CYLINDER 4 EXHAUST TEMPERATURE (F)	949.03	947.41	950.98	0.78	0.08
	CYLINDER 5 EXHAUST TEMPERATURE (F)	939.66	938.08	941.06	0.51	0.05
	CYLINDER 6 EXHAUST TEMPERATURE (F)	928.50	927.17	929.95	0.63	0.07
	CYLINDER EXHAUST AVERAGE TEMP (F)	956.92	955.94	957.93	0.52	0.05
Х.	EXHAUST HEADER TEMPERATURE (F)	699.38	698.99	6 99.7 9	0.22	0.03
	PRE TURBO EXHAUST PRESSURE ("Hg)	37.63	37.41	37.92	0.13	0.36
	PRE TURBO EXHAUST TEMPERATURE (F)	957.21	955.94	958.52	0.64	0.07
	POST TURBO EXHAUST PRESSURE ("Hg)	5.06	5.01	5.12	0.02	0.43
	POST TURBO EXHAUST TEMPERATURE (F)	772.01	771.02	773.00	0.52	0.07
	TURBO OIL PRESSURE ("Hg)	47.10	46.16	47.77	0.31	0.66
	ENGINE SPEED (rpm)	1196.86	1191.73	1200.00	1.48	0.12
	ENGINE HORSEPOWER (bhp)	737.44	735.01	739.70	1.09	0.15
	ENGINE OIL PRESSURE (psig)	52.19	51.64	52.93	0.32	0.61
	ENGINE OIL TEMPERATURE IN (F)	165.17	164.86	165.45	0.16	0.10
(4)	ENGINE OIL TEMPERATURE OUT (F)	186.07	185.89	186.49	0.14	0.07
	SPECIFIC GRAVITY	0.69	0.69	0.69	0.00	0.00
	FUEL TEMPERATURE (F)	91.36	91.05	91.64	0.15	0.16
	FUEL PRESSURE ("H2O above amp)	4.07	3.44	4.66	0.21	5.15
	FUEL SUPPLY PRESSURE (psig)	46.83	46.75	46.90	0.04	0.08
	ORIFICE DIFFERENTIAL PRESSURE ("H2O)	15.19	14.65	15.86	0.31	2.06
1	ORIFICE STATIC PRESSURE (psig)	46.41	46.35	46.48	0.03	0.07
	ORIFICE TEMPERATURE (F)	88.18	88.04	88.30	0.05	0.05
	FUEL FLOW (SCFH)	5474.35	•			
	CALCULATED FUEL CONSUMPTION (BSFC)	7717.47				
- D	FUEL HEATING VALUE (Btu)	1039.60	1039.60	1039.60	0,00	0.00
	AIR FUEL RATIO	32.70	32.70	32.70	0.00	0.00
	INTERCOOLER AIR DIFFERENTIAL PRESSURE ("H2O)	9.72	9.43	9.87	0.09	0.90
	INTERCOOLER AIR TEMP IN (F)	299.90	299.19	300.38	0.28	0.09
	INTERCOOLER AIR TEMP OUT (F)	143.43		143.83	0.35	0.24
	POST INTERCOOLER AIR MANIFOLD PRESSURE ("Hg)	68.79	68.49	68.99	0.09	0.14
	INTERCOOLER WATER DIFFERENTIAL PRESSURE ("H20)		157.45	157.45	0.00	0.00
	INTERCOOLER WATER FLOW (GPM)	57.90	57.20	58.49	0.28	0.49
	INTERCOOLER WATER TEMP IN (F)	131.13	129.74	131.72	0.57	0.43
	INTERCOOLER WATER TEMP OUT (F)	143.56	142.44	144.02	0.43	0.30
14	INTERCOOLER SUPPLY PRESSURE (psi)	2.81	2.77	2.87	0.02	0.62
	PRE CATALYST TEMPERATURE (F)	730.58	729.75	731.34	0.40	0.05
	POST CATALYST TEMPERATURE (F)	734.79	729.75	735.70	0.35	0.05
72		9.50	9.43	9.62	0.04	0.47
	CATALYST DIFFERENTIAL PRESSURE ("H2O)	9.50 4.16	9.45 4.05	9.02 4.26	0.04	1.06
	B.S. CO (g/bhp-hr): Pre-Catalyst	0.29	4.05	4.20 0.30	0.00	1.48
-	B.S. CO (g/bhp-hr): Post-Catalyst	0.00	0.28	0.00	0.00	00.0
•	B.S. NO (g/bhp-hr): Pre-Catalyst	0.00	0.00	0.00	0.00	

Gas Research Institute

8600 West Bryn Mawr Avenue Chicago, Illinois 60631-3562 773/399-8100 FAX: 773/399-8170

September 20, 2000

Mr. Terry Harrison Emissions Measurement Center (MD-19) U.S. Environmental Protection Agency Research Triangle Park, NC 27711

SUBJECT: Comments on the EPA Draft Report on the Emission Test Results for the Waukesha at the Colorado State University Engines and Energy Conversion Laboratory

Dear Terry:

Thank you for the opportunity to review the EPA draft report, "Testing of a 4-Stroke Lean Burn Gas-Fired Reciprocating Internal Combustion Engine to Determine the Effectiveness of an Oxidation Catalyst System For Reduction of Hazardous Air Pollutant Emissions," dated August 2000. For your information, in April 2000, the Gas Research Institute (GRI) and the Institute of Gas Technology (IGT) combined to form GTI, Gas Technology Institute. This letter provides the comments from GTI and PRC International.

Our specific comments are attached. In general we were pleased to see that the draft report for the 4-Stroke Lean Burn (4SLB) engine used a format and approach similar to the final report for the 2-Stroke Lean Burn (2SLB) engine, which incorporated a number of the comments we had submitted on the draft 2SLB report. Thank you for providing a copy of the comments submitted by Bob Stachowicz of Waukesha. Bob made a number of good points and we have noted our agreement with several of his comments.

If you have questions regarding the comments provided, please contact me at your convenience.

Sincerely,

fames MMc any

James M. McCarthy Program Leader, Air Quality Gas Technology Institute

Mr. Terry Harrison September 20, 2000 Page 2

GTI and PRC International Comments on the EPA Draft Report

- 1. As noted above, Bob Stachowicz of Waukesha submitted a number of constructive comments in his September 1, 2000 letter to Terry Harrison of EPA. We particularly note our support of the following issues raised by Bob:
 - a) The formaldehyde levels presented in the report are higher than levels measured in field tests on 4SLB engines. For example, for natural gas transmission facilities, field testing shows formaldehyde emissions at 0.23 g/bhp-hr for 4SLB engines running in a low-NOx configuration (see Topical Report GRI-96/0009.1, "Measurement of Air Toxic Emissions from Natural Gas-Fired Internal Combustion Engines at Natural Gas Transmission and Storage Facilities"), whereas the formaldehyde levels in the draft 4SLB report range from 0.28 to 0.35 g/bhp-hr.
 - b) NOx does increase across the catalyst and that fact raises issues about the ability of 4SLB engines with oxidation catalysts to comply with NOx requirements. The error bounds of the data may also contribute to the apparent increase in NOx across the catalyst and this issue should be investigated further.
 - c) The 4SLB report should include a more detailed explanation of the total hydrocarbon, non-methane hydrocarbons, and methane results, including a discussion of the uncertainties related to the data. In addition, the report should consider the reactions that may occur across the catalyst, such as the partial oxidation of methane or other hydrocarbons, that would impact the measured total hydrocarbons, non-methane hydrocarbons, or methane reduction efficiencies. Finally, given the uncertainties related to the total hydrocarbon and non-methane hydrocarbon data, percent reduction efficiencies for those compounds should not be presented in the report. We also submitted this comment on the draft 2SLB report.
 - d) The 4SLB report should include the equations used to calculate the lb/hr and g/bhp-hr emission levels from the ppm values. As Bob noted, the values do not agree with the values presented in the data report provided by CSU (and included in Appendix A).
 - e) The 100% oxygen reading reported pre-catalyst for Run 3 clearly is in error and the value affected the g/bhp-hr and lb/hr emission rates reported in the CSU report -- the values are negative. As Bob noted, PES apparently interpreted this value as 10.0%. PES will need to correct the g/bhp-hr and lb/hr values for Run 3 once the correct oxygen reading is available from CSU.
- 2. Comments related to detection limits:
 - a) The detection limits for all compounds should be included in the body of the report. We understand that EPA is awaiting information from Colorado State University regarding the detection limits, by run, for the FTIR measurements. The detection limits should be included in the final 4SLB report.
 - b) In Section 2.4, the report notes that removal efficiencies were not included for acetaldehyde based on the in-stack detection limit downstream of the catalyst

Mr. Terry Harrison September 20, 2000 Page 3

since the FTIR detection limits were not available for the draft report. This statement must be in error since acetaldehyde was not detected for any test condition before or after the catalyst. The statement may refer to acrolein, which was detected before the catalyst in 6 of 16 test conditions, and was not detected after the catalyst for any test condition.

As we noted in our September 8, 1999 comments on the draft 2SLB report, destruction efficiency calculations based on the detection limit of a method are misleading. The report should not include emission reduction efficiencies when a pollutant is not detected pre- or post-catalyst. If EPA intends to present emission reduction efficiencies when pollutants are not detected, appropriate consideration should be given to the error band associated with data measured at or near the detection limit. Such consideration would result in a range of efficiencies based on the range of both catalyst inlet and outlet concentrations.

- 3. Section 6.3 includes a discussion of EPA's Data Quality Objective for the 4SLB emissions test. This discussion states that EPA intended to use the 4SLB emissions test to evaluate the effects of combustion modifications as well as the effectiveness of oxidation catalysts. As we have noted previously, the operating conditions used to conduct the 4SLB emissions test were selected to simulate operating conditions that may be encountered in the normal field operation of natural gas-fired engines. The operating conditions tested are not sufficient to allow EPA to evaluate the effect of combustion modifications on HAP emissions. Also, engines in variable load applications, such as natural gas transmission, must have the flexibility to operate at a variety of conditions. Note that the final 2SLB report includes a similar discussion.
- 4. On page 5-1, the 4SLB report indicates that FTIR is classified as a Type II method and states: "Type II methods were those that used permanently installed instruments housed in a temperature-controlled environment and operated in the same fashion as continuous monitors used by industry to show compliance with emission regulations. Because these instruments are maintained in a laboratory-type environment (the control room at EECL), fewer QA activities and calibrations adequately show their continuing accuracy." As we noted in our comments on the draft 2SLB report, the second half of the first sentence is not true for FTIR, since there are no instances where FTIR is used for IC engines as a continuous monitor to show compliance with emission regulations. Also, the characterization of FTIR as a continuous compliance monitoring method is not relevant to the point being made that less QA activities and calibrations were necessary for Type II methods. The second half of the first sentence should be deleted, so that it reads "Type II methods were those that used permanently installed instruments housed in a temperature-controlled environment. Because these instruments are maintained in a laboratory-type environment (the control room at EECL), fewer QA activities and calibrations adequately show their continuing accuracy."

MEMORANDUM July 6, 2001

To:	Terry Harrison, US EPA
	Bryan Willson, CSU EECL

From: Mike Maret, PES

Re: Response to comments received on the Waukesha Draft Final Report

This memorandum summarizes the telephone conference between Terry Harrison (EPA EMC), Bryan Willson (CSU EECL), and Mike Maret (PES) that took place on June 11, 2001. The purpose of the telephone conference was to 1) discuss comments that were received by EPA on the draft final report for the Waukesha 3521 reciprocating engine, 2) to decide which comments would necessitate revisions when preparing the final report, and 3) the form of the revisions in the final report.

The call began at approximately 11:10 a.m. EDT. EPA received two sets of comments pertaining to the Waukesha draft final report. The first set of comments that was discussed were those received from Mr. Bob Stachowicz of Waukesha. Mr. Stachowicz's comments were not numbered; the group numbered the comments during the phone call. EPA's response to each comment is summarized below.

1. The first comment compared engine operational data developed by CSU for Runs 1 and 3 with historical Waukesha engine data. Waukesha stated that the values developed by CSU were within normally expected tolerances.

EPA decided that since the comment does not identify an error or omission, no change to the report is required.

2. Waukesha stated that certain values in Table 2.2 of the draft report appeared to be incorrect, specifically the value for oxygen at the catalyst inlet for Run Nos. 3 and 13.

CSU stated that the oxygen data for Run No. 3 was invalid. Together CSU, EPA and PES developed a strategy to correct invalid data. When invalid oxygen data is detected, the oxygen data for the 5-minute Quality Control run will be substituted and used for subsequent calculations. If the QC data is also determined to be invalid, oxygen data from the catalyst outlet

P:\PES_Projects\S604\Admin\Waukesha RTC.wpd

will be substituted and used for subsequent calculations. Since for Run No. 3 the oxygen data was invalid EPA directed CSU to recalculate inlet values using the outlet concentration of outlet oxygen value of 9.8%.

CSU recognized that the measured oxygen value of 10.4% during Run No. 13 appeared to be higher that normal. An examination of the raw data did not turn up any reason to invalidate the data. EPA directed PES to use the oxygen value supplied by CSU, but to footnote the value as being suspect.

3. This comment discussed observed criteria emittant (NO_x, CO, and THC) values.

EPA decided that since the comment does not identify an error or omission, no change to the report is required.

4. This comment discussed observed non-methane hydrocarbon (NMHC) values.

EPA decided that since the comment does not identify an error or omission, no change to the report is required.

5. This comment discussed observed formaldehyde values.

EPA decided that since the comment does not identify an error or omission, no change to the report is required.

6. This comment requested that it be noted in the final report that NO_X universally increased across the oxidizing catalyst.

EPA decided that since the comment does not identify an error or omission, no change to the report is required..

7. This comment discussed methane and NMHC data, the fact that these measurements were made with different make and models of analyzers, and perceived discrepancies in the measurements over the 16-run test program.

EPA directed PES not to make any corrections to any data, but to note in a footnote that different models of analyzers were used to measure these values.

8. Waukesha noted that the NMHC value at the catalyst outlet during Run No. 8 is very high compared to the inlet and appears to be in error.

EPA, PES, and CSU examined the NMHC concentration data for Run No. 8. The reported pre-catalyst concentration was 171 ppm. The reported post-catalyst concentration was 284 ppm. The NMHC concentration data for the QC run conducted just prior to Run No. 8 was examined. The NMHC concentrations were 168 ppm and 155 ppm at the pre- and post-catalyst locations, respectively. CSU and PES proposed that NMHC mass flow rates and NMHC destruction efficiency be calculated using the data from the QC run, and that the data from the test run be invalidated. EPA agreed with this approach. These values will be footnoted in the revised table.

9. This comment states that the a description of the total hydrocarbon instrumentation used was not included in the report.

EPA directed PES to include a description of the instrumentation used.

10. This comment states that NO_x and methane values at the catalyst inlet and NOX values at the catalyst outlet were only reported to only one place after the decimal for runs 10 - 16 in Table 2.3.

Upon inspection of the table PES noted an error in the number of significant figures that were reported. EPA directed PES to correct the error in the final report.

11. This comment notes that brake specific NOX emissions during the testing program decreased with the decrease in engine speed, which is contrary to Waukesha's experience.

EPA decided that since the comment does not identify an error or omission, no change to the report is required.

12. This comment states that Runs #15 and #16 did not appear to give any significant information.

EPA decided that since the comment does not identify an error or omission, no change to the report is required.

13. This comment notes that the emissions reported by PES in Table 2.3 differ from the

emission rates reported by CSU in Appendix A.

PES used EPA Method 19 to calculate pollutant mass flow rates at the catalyst inlet and catalyst outlet locations, as specified in the Quality Assurance Project Plan (QAPP). The gas volumetric flow rate at each location was calculated using the fuel factor and flue flow rates supplied by CSU. The mass flow rate for each target compound was calculated using the concentration values reported by CSU, and the calculated volumetric flow rates. PES could not reproduce CSU's calculated values when preparing the draft final report. EPA directed PES to prepare a set of example calculations that were used, and to forward these calculations to CSU and EPA for further review.

The following comments were made specifically regarding the CSU data presented in the CSU report, which was included as Appendix A in the draft final report.

14. Waukesha stated that all of the air/fuel ratios reported by CSU seemed a bit to high compared to Waukesha's expected values.

EPA decided that since the comment does not identify an error or omission, no change to the report is required.

15. This comment states that the air/fuel ratios shown during the baseline run on August 5 are in error, and that the correct air/fuel ratio should be closer to 28.6.

CSU examined the oxygen data presented in the baseline run. The catalyst inlet oxygen monitor failed during this run, therefore the calculated air/fuel ratio is in error. This error was described on Page 3-4 of the CSU report. CSU will recalculate the air/fuel ratio using the oxygen value of 9.8% at the catalyst outlet.

16. This comment notes that CSU's Appendix B does not include data for the 1000 rpm baseline run that was taken on August 6.

The 1000 rpm is an invalid baseline data point. Baseline testing was conducted at an engine speed of 1200 rpm. A 1200 rpm baseline run was conducted on August 5 and 6. EPA directed PES to remove the 1000 rpm baseline run from the final report.

17. Waukesha commented that the pre-catalyst oxygen value observed during testing (100%) is obviously wrong.

This comment is addressed in Item No. 2.

18. This comments notes that the units of barometric pressure reported in the CSU report are in inches of mercury, but the values appear to be in psia.

CSU confirmed that the values are in psia. CSU will generate an errata sheet noting this error. PES will include this error in the final report. Further, PES will make a hand notation on the CSU run data in Appendix A of the CSU report.

19. Waukesha noted that the tabulated "Air Manifold" temperatures are always about 99.5 °F, and noted that this does not make sense.

CSU explained that the "Air Manifold" temperature is the temperature of the air supplied to the engine by the EECL's combustion air blower. CSU will add this mis-labeled parameter to the errata sheet. PES will make a hand notation in the CSU run data.

20. Waukesha noted that the values for the "Average Cylinder Exhaust Temperature" are always in the low to mid 700 °F range, and that this value is too low.

CSU explained that a thermocouple was added at an intermediate point in the exhaust between the pre-catalyst annubar flow meter and the catalyst. The parameter was mis-labeled on the engine test run summary. CSU will add this error to the errata sheet. PES will make a hand notation in the CSU run data.

21. Waukesha commented that a value for "In-cylinder Temperature" was also given and that this value was typically 25 - 35 °F.

CSU stated that this value is an erroneous value for the Waukesha engine set-up. This value is sometimes used during testing of other engines at the facility. CSU will add this error to the errata sheet. PES will make a hand notation in the CSU run data.

22. This comment notes that the removal efficiencies for formaldehyde were presented in decimal format instead of percent format.

CSU will add this error to the errata sheet. PES will make a hand notation in the CSU run data.

23. This comment notes that the pre-catalyst oxygen value for Run #13 is incorrect.

This comment was addressed in Item No. 2.

The following comments are text and typographical comments:

24. Waukesha noted that the inlet air humidity in CSU's Table 3 is incorrect.

CSU will add this error to the errata sheet. PES will make a hand notation in the CSU's Table 3.

25. Waukesha noted that PES' reference to a supercharged air delivery system (page 3-1, Section 3.1, first paragraph of the draft final report) is confusing. Waukesha recommended an alternative word, "pressurized" when referring to the air delivery system at the CSU EECL.

EPA directed PES to incorporate the change.

26. Waukesha noted that PES's usage of "expansion stroke" (page 3-1, Section 3.1, second paragraph of the draft final report) is incorrect. Waukesha recommended using the term "intake stroke".

EPA directed PES or incorporate the change.

27. Waukesha noted that the correct units of torque are pound-feet or lb-ft, instead of footpounds, as used in the PES and CSU reports.

EPA directed PES to leave the units of torque as reported in the draft final report unchanged.

28. Waukesha noted several mistakes in the sentence (page 3-4, Section 3.2, first paragraph of the draft final report) "...engine timing (the location of the cylinder, relative to top dead center, at the time of peak pressure in the combustion chamber, measured in degrees)..." Waukesha recommended the following correction: ...engine timing (the location of the *piston*, relative to *its* top dead center, at the time of the *spark plug fires* in the *pre*-combustion chamber, measured in degrees)..."

EPA directed PES to incorporate the suggested change.

The second set of comments received by EPA were from Mr. James M McCarthy of the Gas Research Institute. The comments were numbered. EPA's response to each comment is presented below.

1a. This comment states that the formaldehyde levels measured during the test program were higher than levels measured in field tests on 4SLB engines.

EPA decided that since the comment does not identify an error or omission, no change to the report is required.

1b. GRI reiterated the fact that NO_x emissions increased across the catalyst, and stated that this phenomenon would raise issues about the ability of 4SLB engines with oxidation catalysts to comply with NO_x requirements.

EPA decided that since the comment does not identify an error or omission, no change to the report is required.

1c. GRI requested that the final report include a more detailed explanation of the total hydrocarbon, non-methane hydrocarbon and methane results, and that chemical reactions across the catalyst (such as partial oxidation reactions) should be considered. The comment also stated that destruction efficiencies for these compounds not be included in the final report.

EPA decided that since the comment does not identify an error or omission, no change to the report is required.

1d. This comment requested that examples of the equations used to calculate mass flow rates and catalyst removal efficiencies be provided.

EPA directed PES to include these calculations in the final report.

1e. This comment notes the error in the measurement of the oxygen concentration for Run 3.

7

This comment is address in Item No. 2 of the previous section.

P:\PES_Projects\S604\Admin\Waukesha RTC.wpd

2a. This comment requested that FTIR detection limits be included in the final report.

EPA directed PES to include FTIR detection limits in the final report. CSU has provided this data.

2b. The draft final report, in Section 2.4, says that destruction efficiencies for acetaldehyde were not calculated due to a lack of acetaldehyde detection limit data at the catalyst outlet location. This comment states that this statement is in error, and that most likely acrolein is the compound for which estimated destruction efficiency could not be calculated.

EPA directed PES to correct the error.

3. This comment addresses Section 6.3 of the draft final report. The comment states that the range of engine operating conditions during the test program are not sufficient to allow EPA to evaluate the effect of combustion modifications on HAP emissions.

EPA decided that since the comment does not identify an error or omission, no change to the report is required.

4. The comment states that the draft report classified FTIR as a "Type II" methods, and states that "Type II methods were those that used permanently installed instrument housed in a temperature-controlled environment and operated in the same fashion as continuous monitors used by industry to show compliance with emissions regulations." This comments states that this sentence is in error, since there are no cases where FTIR is used by industry to show continuing compliance. The comment states that the last part of the sentence should be deleted.

EPA directed PES to incorporate the change.

	TECHNICAL REPORT DAT Please read instructions on the reverse before co			
1. REPORT NO. EPA-454/R-00-037	2.	3. RECIPIENT'S ACCESSION NO.		
4. TITLE AND SUBTITLE Final Report - Testing of a 4-Stroke Lean B Engine to determine the Effectiveness of an	5. REPORT DATE September 2001			
Hazardous Air Pollutant Emissions Volume I of I	6. PERFORMING ORGANIZATION CODE			
7. AUTHOR(S) Michael D. Maret		8. PERFORMING ORGANIZATION REPORT NO.		
9. PERFORMING ORGANIZATION NAMI Pacific Environmental Services, Inc.	10. PROGRAM ELEMENT NO.			
Post Office Box 12077 Research Triangle Park, North Carolina 27	11. CONTRACT/GRANT NO. 68-D-01-003			
12. SPONSORING AGENCY NAME AND U.S. Environmental Protection Agency	13. TYPE OF REPORT AND PERIOD COVEREI Final			
Office of Air Quality Planning and Standar Emissions, Monitoring and Analysis Divisi Research Triangle Park, North Carolina 27	on .	14. SPONSORING AGENCY CODE		
15. SUPPLEMENTARY NOTES		· .		
conducted on a Waukesha 3521GL natural-ga agreed that the Waukesha 3521 GL engine at t representative of existing and new natural-gas- could be used to develop Maximum Achievabl installed on the Waukesha 3521GL could be u results from testing at the 4SLB matrix conditi The testing was performed to estimate HA CSU personnel installed it on the engine. Four formaldehyde, acetaldehyde, and acrolein. Co carbon dioxide (CO ₂), nitrogen oxides (NO _x), o (NMHC).	es of hazardous air pollutants (HAPs). This document of s-fired, 4-stroke, lean burn (4SLB) engine. Early in 1995 he Colorado State University's (CSU) Engine and Ener- fired 4SLB engines. The group agreed that a matrix of e Control Technology (MACT) standards for RICE. The sed to determine the effectiveness of oxidation catalysts ons at CSU as the basis for developing the MACT stand P emissions before and after the oxidation catalyst. Mir- ier transform infrared spectroscopy (FTIRS), owned and operate carbon monoxide (CO), total hydrocarbons (THC), meth- and consists of the report text, and Appendices A and B.	98, several industry and EPA representatives gy Conversion Laboratory (EECL) is adequately test results from testing conducted at the EECL he group further agreed that an oxidation catalyst for these engines, and that the EPA could use the ard for natural-gas-fired 4SLB engines. atech Corporation manufactured the catalyst and d operated by CSU, was used to measure ed by CSU, were used to measure oxygen (O_2), hane (CH ₄), and non-methane hydrocarbons		
17. KEY WORDS AND DOCUMENT ANALYSIS				
a. DESCRIPTIONS	b. IDENTIFIERS/OPEN ENDED TERMS	c. COASTI Field/Group		
Emission Testing Hazardous Air Pollutants Oxidation Reduction Catalyst Reciprocating Internal Combustion Engines				
18. DISTRIBUTION STATEMENT	19. SECURITY CLASS (This Report) Unclassified	21. NO. OF PAGES 427		
Unlimited	20. SECURITY CLASS (This page) Unclassified	22. PRICE		

EPA Form 2220-1 (Rev. 4-77) PREVIOUS EDITION IS OBSOLETE

~

.

.

F:\U\FMeadows\TRD.Frm\WP 6.1

s

:

. . .

e 2 -