The Superfund Innovative Technology Evaluation Program Annual Report to Congress FY 1994 ### **CONTACT** Steve Rock is the EPA contact for this report. He is presently with the newly organized National Risk Management Research Laboratory's new Land Remediation and Pollution Control Division in Cincinnati, OH (formerly the Risk Reduction Engineering Laboratory). The National Risk Management Research Laboratory is headquartered in Cincinnati, OH, and is now responsible for research conducted by the Land Remediation and Pollution Control Division in Cincinnati. ## THE SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION PROGRAM ### ANNUAL REPORT TO CONGRESS FY 1994 Office of Research and Development U.S. Environmental Protection Agency Washington, DC 20460 ### **NOTICE** This document has been reviewed in accordance with the U.S. Environmental Protection Agency policy and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendations for use. ### **FOREWORD** The U.S. Environmental Protection Agency is charged by Congress with protecting the Nation's land, air, and water resources. Under a mandate of national environmental laws, the Agency strives to formulate and implement actions leading to a compatible balance between human activities and the ability of natural systems to support and nurture life. To meet these mandates, EPA's research program is providing data and technical support for solving environmental problems today and building a science knowledge base necessary to manage our ecological resources wisely, understand how pollutants affect our health, and prevent or reduce environmental risks in the future. The National Risk Management Research Laboratory is the Agency's center for investigation of technological and management approaches for reducing risks from threats to human health and the environment. The focus of the Laboratory's research program is on methods for the prevention and control of pollution to air, land, water and subsurface resources; protection of water quality in public water systems; remediation of contaminated sites and groundwater; and prevention and control of indoor air pollution. The goal of this research effort is to catalyze development and implementation of innovative, cost-effective environmental technologies; develop scientific and engineering information needed by EPA to support regulatory and policy decisions; and provide technical support and information transfer to ensure effective implementation of environmental regulations and strategies. This publication has been produced as part of the Laboratory's strategic long-term research plan. It is published and made available by EPA's Office of Research and Development to assist the user community and to link researchers with their clients. E. Timothy Oppelt, Director National Risk Management Research Laboratory ### CONTENTS | NOTICE | | |---|----| | PREFACE | ii | | FIGURES | V: | | TABLES | | | EXECUTIVE SUMMARY | vi | | SITE OVERVIEW | 1 | | INTRODUCTION | 1 | | SITE Success | 2 | | Program Successes | | | Developer Success | 3 | | User Success | 4 | | FY 94 PROGRESS AND ACCOMPLISHMENTS | 5 | | EMERGING TECHNOLOGY PROGRAM | 5 | | DEMONSTRATION PROGRAM | 9 | | MONITORING AND MEASUREMENT TECHNOLOGIES PROGRAM | 11 | | TECHNOLOGY TRANSFER ACTIVITES | 17 | | SITE Reports, Brochures, Publications, and Videos | | | Community Outreach | | | Databases Available | 18 | | FUTURE TRENDS | 20 | | PROGRAM STRUCTURE | 20 | | TECHNOLOGY AREAS | 20 | | TECHNOLOGY TRANSFER | 21 | | APPENDICIES | | | APPENDIX A - All SITE Projects; Alphabetically by State | 22 | | APPENDIX B - Publications and Videotape Titles | 40 | ### **FIGURES** | 1 | Developmental Steps the SITE Program Supports | 1 | |----|--|----| | 2 | ETP Projects by Treatment Category | 8 | | 3 | '94 New Demonstrations by Source | 9 | | 4 | '94 Completed Demonstration Projects by Technology Area | 11 | | 5 | SITE Documents Distributed during FY '94 | 17 | | 6 | Distributed SITE Documents by Occupation of Requestor | 18 | | | TABLES | | | | | _ | | 1. | New Emerging Technology Projects Awarded in FY '94 | 6 | | 2. | Emerging Technology Projects Completed in FY '94 | 7 | | 3. | SITE Demonstrations Projects Completed in FY '94 | 12 | | 4. | New Technologies Accepted into Demonstration Program in FY '94 | 14 | ### **EXECUTIVE SUMMARY** The U.S. Environmental Protection Agency's (EPA) Superfund Innovative Technology Evaluation (SITE) Program evaluates innovative technologies for the remediation of contaminated Superfund and Resource Conservation and Recovery Act (RCRA) corrective actions sites. Historically the use of innovative treatment technologies at contaminated sites has been impeded due to the lack of reliable cost and performance data. The SITE Program was created to overcome these impediments and respond to the increased demand for validated hazardous waste treatment technologies. The Superfund Amendments and Reauthorization Act of 1986 (SARA) directs EPA "to carry out a program of research, evaluation, testing, development, and demonstration of alternative or innovative treatment technologies . . . which may be utilized in response actions to achieve more permanent protection of human health and welfare and the environment" [SARA Section 209(b), CERCLA Section 311 (b)1]. Therefore, the Program's primary mission, is fully compatible with the legislative mandate. From its inception in 1986 through fiscal year 1994, the SITE Program has evaluated 72 technologies by field demonstration, 13 of which were completed during the 1994 fiscal year. The SITE Program is now considered to be the pioneer program and model for demonstrating and evaluating full-scale, viable innovative treatment technologies at hazardous waste sites. It is the first program to provide cost sharing opportunities for the private sector. The program is currently participating cooperatively with 86 technology developers. The result of the continuing effort by the SITE Program to compile and communicate data to the user community has been an increase in the number of innovative technologies being used to clean up waste sites. The program is very effective in implementing the congressional mandate. A survey of four EPA regions indicates savings of 62% using innovative instead of conventional clean up technologies, or \$21 million per site. To ensure the timely introduction of new technologies into the marketplace, the program maintains flexibility and has fortified its effort to leverage resources. This effort is being implemented through an increased focus on joint participation with other federal agencies, the private sector, EPA Regional Offices, and technology developers. One example of that leverage is the \$4,253,400 that private Technology developers committed to SITE Demonstrations and projects in FY94 This report highlights the Program's successes, discusses the Program's progress and accomplishments over the past fiscal year, catalogues current projects being undertaken and cumulative projects, and provides an indication of future directions. ### SITE PROGRAM OVERVIEW ### INTRODUCTION The U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program encourages the development of innovative technologies for faster, more effective, and less costly treatment of hazardous waste. Through the SITE Program, EPA evaluates technologies in conjunction with technology developers to determine each innovative technology's effectiveness in meeting performance and cost objectives. The SITE Program consists of the following four components: 1) The Emerging Technology Program (ETP), 2) the Demonstration Program (DP), 3) the Monitoring and Measurement Technologies Program (MMTP), and 4) Technology Transfer. The SITE Program fosters technology development and demonstration which in turn stimulates and supports economic growth. Since the onset of the program the number of innovative technology projects completed in the program and technologies selected for remedial action by the hazardous waste remediation community has increased substantiality. The program can claim a high degree of experience and knowledge, as well as producing credible and reliable information from its nine years of existence. The program provides: - 1) Technical assistance to vendors - 2) High quality performance data to users - 3) Economic analysis of technologies - 4) Financial assistance for emerging technology developers - 5) An opportunity for the technology to use actual hazardous material. The SITE Program supports all stages of technology development and demonstrates field-ready technologies to document performance. This documentation assists the user community in making selections for remediation and assists the developer in commercialization. The development sequence that the SITE Program supports are shown in Figure 1. The Figure 1. Developmental steps the SITE Program supports. SITE Program is the only program which carries its technologies through all development steps with nine years of experience. #### SITE Success Success in any program depends on the perspective of those looking at the program. SITE successes can be illustrated through three major viewpoints, (1) SITE Program, (2) SITE Developer, and (3) User Community. These three areas will be discussed and examples given to illustrate the difference between them and the similarities which tie them together. ### **Program Success** The SITE program is ultimately successful if there is a positive impact on the needs of the user community. SITE Program successes can be measured as meeting the objectives also set forth in SARA (e.g. demonstrating 10 projects per year). This year the goal of 10 completed field demonstrations was exceeded with 13 completed projects. There were also
nine emerging technology projects, and five monitoring and measurement projects completed in FY 94. Out of the 13 completed technology demonstrations, five were technologies from the ETP. Specific information on each program is discussed under the next section entitled, "FY 94 Progress and Accomplishments". The ETP achievements through September, 1994 include: 1) 53 preproposals received, 2) 8 new technologies selected from the 1993 solicitation, 3) 9 projects completed, 3) 18 EPA journal articles/reports written and, 4) 23 research presentations at the EPA's 5th Forum on Innovative Hazardous Waste Treatment Technologies. Demonstration Program highlights for FY 94 include 1) 17 new technologies were accepted into the program, 2) 13 demonstrations were completed, and 3) 66 demonstrations are ongoing. The Measuring and Monitoring program demonstrated five test methodologies for PCP measurement on two sample sites, and three cone penetrometer technologies on three different sites in FY 94. SITE emphasis on community relations at demonstration sites is shown by the informational meetings preceding the actual demonstrations and by the attendance at the Visitors' Days at each demonstration. Average attendance at a demonstration visitors' days in FY 94 was 62. More than 11,600 people viewed the SITE Community Outreach Booth at conferences, meetings and exhibitions. The SITE Program is currently involved with partnership activities with other Federal Agencies. In previous years Interagency Agreements have aided funding of ET projects. In FY 94 the Department of Energy (DOE) and the Department of Defense (DOD) have provided sites for three SITE emerging projects and five demonstrations. These include: Rocky Flats, Savannah River, and Oak Ridge for DOE, and Kelly AFB, McClellan AFB, March AFB, North Island NAS, Twin Cities AAP, and Weldon Springs for the DOD. SITE also participates in the Public/Private Partnership Programs coordinated through OSWER's Technology Innovation Office (TIO) (McClellan AFB, Pinellas Plant, and the Joliet Arsenal). Partnership activities with the State of New York have accounted for three ongoing demonstrations as of September 1994. The SITE program also partners with private developers for its projects and demonstrations. All of the ET projects enter into cooperative agreements, with cofunding from each developer. In FY 94 those developers entering the Emerging Program average \$110,800 per project. In the Demonstration Program, the developer receives no EPA funding, and each developer spends an average of about \$259,000 of its own funds during the course of the demonstration. An example of program success can also be described by a technology advancing through all the major steps toward commercialization (e.g. research-development-demonstration); High Environmental Applications (HVEA) is one such example. Two universities involved in collaborative research entered into the Emerging Technology Program. The principals went on to develop their own company, fabricate mobile equipment, and in September 1994 demonstrated the technology at the Savannah River DOE facility. This is an example where SITE helped a technology develop, and with DOE partnership, demonstrated the resultant technique. HVEA has created international as well as domestic interest, having recently taken its equipment to Germany for testing. ### **Developer Success** Private sector technology developers in the SITE Program have a unique viewpoint of the success of their involvement with the program. Their goals include a fair and comprehensive evaluation of the technology, widespread dissemination of the evaluation information, and commercial opportunities resulting in the use of their technology. The most essential is economic growth. It is essential for a developer to acquire clients, or even the best technology will not be able to stay in existence. The private sector developers continue to show a high interest in the SITE program and those who experience the program have indicated favorable results. In 1994 ETP developers and DP vendors provided comments and information on which the following was based. In 1994 60% of ETP participants were pursuing commercialization of their products, 22% had acquired one to three clients, and 9% had more than three clients. Sixty five percent have contacted 30 countries. Seventeen percent of SITE demonstration vendors reported international market achievements, while an additional 20% had inquiries from international markets. These same vendors report 533 contract awards. Participant companies are enthusiastic about the success that has come to their businesses as a result of their involvement with SITE. "The Emerging Technology Program has made a considerable difference to the R & D of the electrokinetic soil processing technology." ElectroKinetics, Inc. "The Emerging Technology Program has unquestionably made a difference in the research and development efforts toward furthering our technology . . . As a not-forprofit organization, the University would have had no other source of funding to develop this promising concept outside of our participation with ETP." University of Dayton. "At a time when other federal agencies are striving to become world leaders in the development of environmental technologies they could learn a lot from EPA's SITE and ETP programs. The centralization and extensive information dissemination efforts of the SITE/ETP programs make them leaders in environmental transfer." International Technology Corporation. As an example to show how participation in SITE can help a technology developer grow, Filter Flow Technology developed an innovative technique to filter radioactive and heavy metals from water. The company was selected to participate in a SITE demonstration at the DOE Rocky Flats site in September 1992. The demonstration provided enough credibility and exposure to propel Filter Flow into the marketplace; it has since won the prime contract at a site in Hanford, WA. From a single founder in 1992, the company has grown to 15 full- and part-time employees in 1994, and the expectation is to hire 6-7 more in 1995. #### **User Success** The user of a hazardous waste clean up technology has a different perspective on when the SITE program is successful. The owner of a site, the EPARPM, the remediation contractor and consultant have a definite need to determine the best solution (cost and performance) in addressing and remediating hazardous waste problems. The more reliable information the user can obtain, the higher level of confidence the user has in the technology. The ultimate goal of the SITE Program is to assist the user community by providing credible information about technologies for selection. In the nine years of the SITE Program, technologies such as soil vapor extraction, thermal desorption, solidification and stabilization and some methods of bioremediation have advanced from innovative technologies to commercial acceptance. Advanced oxidation, electrokinetics, biodegradation (in-situ/ex-situ), soil washing, in-situ vitrification, dechlorination, solvent extraction, chemical treatment, and air sparging are other technologies moving toward commercialization which the SITE Program has evaluated. An example of an overall success with a technology developed through the SITE programis Terra-Kleen Response Group. Their experience demonstrates SITE program success (reliable performance and cost data), developer success (clients), and user success in the form of less expensive, more effective hazardous waste clean up. Terra-Kleen is a solvent extraction process, aimed at removing PCBs from soil. The vendor contacted the Demonstration program in 1991, and after a season of field testing and some resultant redesign, moved to field demonstration in 1994. The technology was demonstrated between May 16 and June 11, 1994, at the North Island Naval Air Station (NAS) in San Diego, CA. The demonstration showed that the solvent extraction was effective in successfully reducing PCB concentrations from 170 ppm to less than 2 ppm. As a result of the information provided in the demonstration, the U.S. Navy Environmental Leadership Program (NELP) at NAS has reconsidered clean up for three sites contaminated with PCBs. NELP selected the Terra-Kleen system because "... it meets all the selection criteria, it is new and innovative, it can be completed in a relatively short time period, and it removes and isolates PCBs from the three sites." The decision also saves about \$3.5 million compared to solidification/stabilization, the previous choice. Since the demonstration, Terra-Kleen has received many other inquiries from states and countries regarding use of their technology. The founder of Terra-Kleen stated in a July 1994 letter to President Clinton, "These individuals connected with the EPA's SITE program have been of untold assistance in allowing this technology to be demonstrated so that it can now be used in full scale at other sites. Currently, we are removing DDT from soil at the Naval Communication Station, Stockton, saving the Navy considerable cost over incineration destruction of the soil. Again, none of this would have been possible without the ever-present help and assistance of the EPA's SITE program." ### FY 94 PROGRESS AND ACCOMPLISHMENTS ### EMERGING TECHNOLOGY PROGRAM The SITE Emerging Technology Program (ETP) is the EPA's first program to provide an opportunity to cost-share with the private sector, and to research, develop and move a technology forward to field demonstration and commercialization. The process is accomplished through cooperative agreements with each yendor. This effort to bring government and the private sector together has been the primary direction of the SITEETP since its inception in 1987. The following describes the accomplishments of the program within the initiatives set forth by the current administration. Fostering Government and
Private Partnerships to Promote Innovative Technologies: Currently, 72 cooperative agreements are in effect between the ETP and the private sector. Eight of these were initiated in FY 94. Encouraging Collaborative Efforts Among Government Agencies Such as EPA, DOE and DOD: DOE has co-funded 21 ETP technology development projects; DOD has co-funded 8 ETP projects. Supporting and Encouraging the Development of Innovative Technologies for Commercialization: ETP has completed 42 technology development projects; 16 of these have been invited into the demonstration program while others have ventured directly into the commercial arena, bypassing the demonstration program. Stimulating the Economic Growth of Small Businesses in the Environmental Field: Approximately 97 percent of developers in the ETP are small businesses. The ETP includes technologies that are at different levels of development. Developments range from bench-, pilot- and field-levels of research, with over 20 of the 30 ongoing technologies involved in field development. This gives greater assurance that the technologies will be moving into the Demonstration Program and be ready for commercialization. Seventy-two treatment technologies have been or are being supported by the ETP. The program funds approximately 10 projects per year (depending on funding), and in FY 94 the program received 53 preproposals. From these preproposals 14 developers were invited to submit Cooperative Agreement Applications. Since 1987, the program has received over 3,800 requests for the Request for Preproposals (RFPs) and has received approximately 840 preproposals. In FY 94, 292 requests were received. In April of 1994, the ETP selected 8 technologies from the 1993 solicitation. These technologies are described in Table 1. Because the program is restricted to a 2-year funding limit, the ETP prefers to accept technologies that show promise of being able to move into the field upon completion. The maximum funding level is \$150,000 per year, \$300,000 for 2 years and the developer must contribute at least 5 percent of the total project cost. FY 94 entrants contributed on average 37 % of the project cost. Table 2 describes the nine TABLE1. NEW SITE EMERGING TECHNOLOGY PROJECTS AWARDED IN FY 94 | STATE | DEVELOPER | TECHNOLOGY | TREATMENT CATEGORY | |-------|--------------------------------------|--|-----------------------| | 1L | Institute of
Gas
Technology | A Supercritical Extraction/Liquid Phase Oxidation process has been developed to remove and destroy contaminants from soil and sludge. The process uses supercritical fluid extraction and wet-air oxidation steps to treat chlorinated and nonchlorinated PAHs, PCBs, and other organic compounds. Both high and low concentrations of organic contaminants are suitable for this process. | Chemical | | MA | ABB
Environmental
Services | This technology involves in-situ biological treatment of compounds such as tetrachloroethylene and trichlorethylene in saturated soils and aquifers. An advanced anaerobic/aerobic sequential biodegradation is a key element in this process. | Biological | | MN | Membran
Corp. | A membrane apparatus has been developed to transfer gases into water without bubble formation and VOC emissions. This device will be tested in bioreactors that require the transfer of oxygen, methane, and hydrogen into the water phase to biodegrade petroleum hydrocarbons and chlorinated solvents. Applications for this device also includes in-situ groundwater treatment. | | | NJ | M.L. Energia | The technology uses Reductive Thermal Oxidation and Reductive Photo-
Thermal Oxidation to convert chlorinated hydrocarbons into environmentally benign and useful materials such as hydrocarbons, hydrogen chloride, and carbon dioxide. This process is applicable for treating air streams contaminated with chlorinated hydrocarbons. | Chemical | | NM | TMA Eberline
(Thermo
Analytic) | This is a material handling process to automatically separate radioactive material from otherwise clean soil. This process may dramatically reduce the overall amount of material requiring disposal by minimizing the amount of clean soil that is co-mingled with radioactive material. | Materials
Handling | | ОН | IT Corporation | This process removes heavy metals from contaminated soils and sludges by forming a soluble chelate that can be separated, leaving clean soil. The technology is potentially applicable for treating a wide variety of metal-contaminated hazardous wastes. | Chemical | | ок | Geo-Microbial
Technologies | Anaerobic biotreatment is used to release toxic metals from contaminated soil. This has advantages over aerobic biotreatment which can produce waste streams containing sulfuric acid and soluble heavy metals. This process is applicable for treating soils, sludges, and sediments contaminated with metals, hydrocarbons and organic pollutants. | Biological | | TX | University of
Houston | This technology uses a concentrated aqueous salt solution to extract lead from contaminated soil. The technology is especially applicable to battery waste sites. However, the project will also evaluate the extraction of other heavy metals. | Chemical | TABLE 2. SITE EMERGING TECHNOLOGY PROJECTS COMPLETED IN FY 94 | STATE | DEVELOPER | TECHNOLOGY | TREATMENT
CATEGORY | |--------------|---|---|----------------------------------| | CA | Cognis | The technology, known as TERRAMET soil remediation system, leaches and recovers lead and other metals from soil, dust, sludge or sediment. An aqueous leachant is used to remove most types of lead contamination: metallic lead, soluble ions, and insoluble lead oxides and salts. Results show that greater than 98% lead removal was achieved. This technology has also been evaluated in the SITE Demonstration program. | Chemical | | CA | Pulse
Sciences Inc. | High energy X-rays are used to destroy organic contaminants while only nontoxic by-products remain. This technology has application to treating groundwater and wastewater contaminated with chlorinated and nonchlorinated organic compounds, and substances that can deplete the ozone layer such as Freon. | Physical | | MT | Montana
College of
Mineral
Science | This technology uses a specially designed hydrocyclone to treat mining wastes that contain heavy metals that are a source of ground or surface water contamination. This process is especially applicable to heavy metal sulfides. Currently, investigators are in search of waste sites to demonstrate this technology. | Materials
Handling | | NJ | ART
International | | | | NJ | NJ Institute of Technology integrates two innovative techniquespneumatic fracturing of soil and bioremediation to enhance in-situ remediation of soils contaminated with petroleum hydrocarbons and BTEX compounds. The project was successful and a full scale demonstration is anticipated. A two-year field development was completed at a British Petroleum site in Maryland. | | Biological | | ОН | University of
Dayton | University of This air treatment process involves photothermal reactions conducted at | | | TX | | | Solidification/
Stabilization | | ONT.,
CAN | Matrix
Photocatalytic | Organic contaminants in air are destroyed by a titanium dioxide photocatalytic reactor. The system can treat a wide range of chlorinated and nonchlorinated VOCs including more resistant compounds such as CCl ₄ . The developer has been invited into the SITE demonstration program where both air and water waste streams will be evaluated. | Chemical | | U. K. | AEA
Technology | This is a comprehensive soil separation and washing process that has been developed to remove metals as well as petroleum hydrocarbons, and polynuclear aromatic hydrocarbons. Sediments and sludges may also be amenable to this process. This technology can provide stand alone treatment or be incorporated into a treatment train. | Materials
Handling | technologies completed in FY 94. Four of these have been invited into the Demonstration Program. Figure 2 presents the various types of treatment exhibited by completed and ongoing ETP projects. At the end of the first year, EPA reviews each project to determine whether the progress made warrants funding for the second year. At the completion of each project, the technology's performance is documented in a final report and/or journal article, as well as an Emerging Technology Summary and Bulletin. In FY 94 there were 14 documents published on ETP projects. Some developers are initiating activity outside of the United States and have international partners, or have established companies in foreign countries. From 1994 information submitted by ETP developers, it appears that 65 percent had participated in dialogues regarding their respective technologies with at least
one foreign country. In total, ETP developers have contacted and been in dialogue with 30 countries. The SITE ETP also accepts technologies from foreign countries, and at present seven technologies developed in Canada and the United Kingdom are part of the program. Three projects are ongoing and four have been completed. Funding from other federal agencies has been extremely beneficial. The Department of Energy (DOE) has cofunded a total of 21 projects at \$3 million, and the Department of Defense (DOD) Air Force has cofunded eight projects at \$1.2 million. Both Agencies have a high interest in accelerating the development of innovative technologies and moving these technologies to sites that need cleanup. This additional funding has made it possible for the ETP to accept a greater number of technologies in previous years. No outside funding was received in FY 94, though funding is anticipated for FY 95. Figure 2. ETP projects by treatment category. The solicitation in 1994 discussed the need for technologies to address the primary interest of EPA Regional Offices and other governmental agencies. These included: technologies for distillation of wastewater; insitu soil treatment processes that do not generate air emissions; treatment of mixed and lowlevel radioactive and organic waste in soils and groundwater; groundwater treatment technologies that separate inorganics from organics as part of a treatment train; treatment technologies for munitions other than detonation, explosion, or combustion; chromium and arsenic speciation techniques for soils and sediments; thermal treatment processes, including plasma, molten metal, supercritical water, and steam reforming; nonthermal treatment processes, including wet oxidation, and acid digestion; closed loop treatment systems; chemical, mechanical, and thermal surface cleaning and substrate removal processes; and technologies that will address Dense Non-Aqueous Phase Liquids (DNAPLs) and Non-Aqueous Phase Liquids (NAPLs). ### **DEMONSTRATION PROGRAM** The SITE Demonstration Program evaluates and verifies the performance and cost of innovative treatment technologies for hazardous waste. The goal of the SITE Program is to encourage the commercial use of innovative treatment technologies that are better, faster or more cost effective than available treatment technologies. Demonstrations are conducted on hazardous waste sites, such as those on the National Priorities List (NPL), at non-NPL sites, or under simulated hazardous waste site conditions at developer or federal test and evaluation facilities. The success of the SITE Program can be attributed to its credibility and flexibility. These features have attracted new technology developers and new partnerships. The SITE Program encourages commercialization of new environmental technologies by working cooperatively with private companies, other government agencies, universities, and nonprofit organizations to provide reliable cost and performance data. More and more technology demonstrations are conducted cooperatively with other government agencies including both states and federal agencies (Figure 3). In 1994, the number of entrants sponsored by other government agencies was greater than the number of entrants attracted solely through SITE's open solicitation. Programs such as this serve as models for initiatives such as the Western Governors Association (WGA) and the Environmental Technology Innovation Figure 3. '94 New demonstrations by source. Commercialization and Enhancement (EnTICE) Program under the Environmental Technology Initiative (ETI). Once a demonstration site has been established, the SITE Demonstration process typically consists of four steps: (1) preparation of a plan including the test plan, sampling and analysis plan, quality assurance project plan, and health and safety plan; (2) performing community relations activities; (3) conducting the demonstration (ranging from days to months); (4) documenting results in two documents: an Engineering Capsule and an Innovative Technology Evaluation Report. A cooperative arrangement between EPA and the developer generally sets forth responsibilities for conducting the demonstration. These responsibilities may vary when multiple parties are a part of the cooperative arrangement. Responsibilities for a simple arrangement between the developers and EPA are as follows: | Developer | <u>EPA</u> | |---------------------------|----------------------------------| | Systems operation | Project planning | | Equipment transportation | Sampling and analysis | | Equipment set-up | Qualitycontrol\quality Assurance | | Equipment removal | Waste disposal | | Equipment decontamination | Report preparation\dissemination | The most important product from a technology demonstration is the credible data collected during the demonstration. The evaluation of the technology and the data provide many technology users with both quantitative and qualitative information on the technology performance, potential need for waste pre- and post-processing, applicable waste and media types, potential operating problems, and approximate capital and operating costs. Technology evaluations can provide insight into long-term operation and maintenance costs and long-term risks. The Demonstration Program, as of September 30, 1994, included 117 accepted, ongoing, and completed technologies. These technologies are presented alphabetically in Appendix A according to the state in which the developer's business is located. During FY 94, 13 new innovative technologies were evaluated in the field. More and more technologies are entering the program through public-private partnerships and the ET program, and an increase in the number of technology demonstrations through similar partnerships is expected in FY 95. The number of technologies evaluated in a particular treatment category vary from year to year. Each year in the annual SITE Demonstration solicitation, technologies of interest and problem areas are listed. For the past several years the material handling and solidification/stabilization areas have not been emphasized. This has been reflected in the completed projects for FY 94 (Figure 4). More emphasis has been placed on the physical/chemical and biological categories. The completed demonstrations for FY 94 are summarized in Table 3. Seventeen new technologies were accepted into the Demonstration Program in FY 94. These technologies were added through SITE's open solicitation (5), nominations by EPA's regional offices and other government agencies (8), and the Emerging Technology program (4). The greatest increase from FY 93 was in the requests from EPA's regional offices and Figure 4. '94 Completed demonstration projects by technology area. other federal agencies. In FY 93, one technology was nominated, whereas in FY 94 the number has increased to eight. One unique project was added to the list. A partnership was formed between the EPA's SITE Program, EPA's Office of Solid Waste and Emergency Response, The New York Department of Environmental Conservation, The Center for Hazardous Waste Management, and three technology vendors (SBP and Environmental Laboratories, Inc.; R.E. Wright Associates, Inc.; and ENSR Consulting & Engineering and Larson Engineering). This is a unique partnership in that two EPA program offices are cooperating with a state agency in testing and evaluating three different innovative biological treatment technologies at one site. The testing of these three technologies will be complete at the end of FY 95. New participants are listed and the technologies summarized in Table 4. ### MONITORING AND MEASUREMENT TECHNOLOGIES PROGRAM The SITE Monitoring and Measurement Technologies Program explores new and innovative technologies for assessing the nature and extent of contamination and evaluating achievement of cleanup levels at Superfund sites. Effective measurement and monitoring technologies are needed to accurately assess the degree of contamination at a site, to provide data and information to determine the effects on public health and the environment, to supply TABLE 3. SITE DEMONSTRATION PROJECTS COMPLETED IN FY 94 | STATE | DEVELOPER | TECHNOLOGY | SITE
LOCATION | TREATMENT
CATEGORY | |-------|---|--|---------------------------|-----------------------| | CA | Cognis, Inc. | The Cognis, TERRAMET soil remediation system leaches and recovers lead and other metals from contaminated soil, dust, sludge or sediment. Appropriate sites include contaminated ammunition testing areas, firing ranges, battery recycling centers, scrap yards, metal plating shops, and chemical manufacturers. The technology was demonstrated at the Twin Cities Army Ammunition Plant. | New
Brighton,
MN | Physical/
Chemical | | CA | North
American
Tech./ Aprotek | This hydrocarbon recovery technology is based on an oleophilic amine-coated ceramic chip that separates suspended and dissolved hydrocarbons, and some chemical emulsions from aqueous solutions. The technology is effective on gasoline, crude oil, diesel fuel, benzene, toluene, ethylbenzene, xylene compounds as well as polynuclear aromatic hydrocarbons. The unit also
removes a variety of chlorinated hydrocarbons. | Fort
Lauderdale,
FL | Physical/
Chemical | | CA | ROCHEM | The ROCHEM Disc Tube Module System uses membrane separation to treat aqueous solutions ranging from wastewater to leachate contaminated with organic solvents. Many types of waste material can be treated with this system, including sanitary and hazardous landfill leachate containing both organic and inorganic chemical species. | Johnston,
RI | Physical/
Chemical | | CA | Roy F. Weston The Unterdruck-Verdampfer Brunnen (UVB) vacuum vaporizing well is an in situ system for remediating contaminated aquifers, especially those contaminated with volatile organic compounds. Depending on the circumstances, the UVB system may also remediate semivolatile compounds and heavy metals. The demonstration was conducted at March Air Force Base. | | Ontario, CA | Physical/
Chemical | | ID | J.R. Simplot | The Simplot Anaerobic Biological Remediation process is designed to treat soils contaminated with nitroaromatic pollutants. The technology was demonstrated on TNT at The Weldon Springs Ordnance Works, an abandoned manufacturing site. | Weldon
Springs, MI | Biological | | MA | KAI
Technology | The radio frequency heating (RFH) is an in situ process that uses electromagnetic energy to heat soil and enhance soil vapor extraction (SVE). The RFH technique has been tested in removing petroleum hydrocarbons and volatile and semivolatile organics from soils. It was demonstrated at Kelly Air Force Base as part of a joint project with the U.S. Air Force Armstrong Laboratory. | San
Antonio, TX | Thermal | | MA | Maxymillian
Tech., Inc. | This technology is a portable thermal desorption system (TDS) that uses rotary kiln technology to remove contaminants from soils. The TDS is designed to remediate soils contaminated with volatile organic compounds (VOCs), semivolatile compounds (SVOCs), and polynuclear aromatic hydrocarbons (PAHs). | Utica, NY | Thermal | | TABLE 3. | TABLE 3. Site Demonstration Projects Completed in FY 94 continued | | | | | | |----------|---|--|--------------------|-----------------------|--|--| | NM | NM Billings & Associates, Inc. The SVVS technology uses a network of injection and extraction wells to treat subsurface organic contamination through soil vacuum extraction combined with in situ biodegradation. This system applies to sites with leaks or spills of gasoline, diesel fuels, and other hydrocarbons, including halogenated compounds. | | Buchanan,
MI | Physical/
Chemical | | | | NY | Texaco
Syngas, Inc. | The Texaco entrained-bed gasification process is a noncatalytic, partial oxidation process in which carbonaceous substances react at elevated temperatures and pressures, producing a gas containing primarily carbon monoxide and hydrogen. This gas can be used to produce other chemicals or burned as fuel. The system can treat soils, sludge and sediment contaminated with both organic and inorganic constituents, chemical wastes and petroleum residues. | Fresno, CA | Thermal | | | | ок | Terra Kleen
Response
Group, Inc. | The solvent extraction treatment system is a waste minimization process designed to remove SVOCs, VOCs, and chlorinated compounds from soils. | San Diego,
CA | Physical/
Chemical | | | | VA | Dynaphore
Inc. | The Dynaphore FORAGER Sponge is an open-celled cellulose sponge with an amine-containing polymer that has a selective affinity for aqueous heavy metals in both cationic and anionic states. The Sponge can scavenge metals in concentration levels of parts per million and parts per billion from industrial discharges, municipal sewage, process streams and acid mine drainage waters. | Pedricktown
NJ | Physical/
Chemical | | | | WA | Geosafe,
Corp. | The Geosafe technology is an in situ vitrification system that uses an electric current to melt soil or other earthen materials at high temperatures destroying organic pollutants by pyrolysis. Inorganics are incorporated within the vitrified glass and crystalline mass. | Grand
Ledge, MI | Thermal | | | | Canada | Grace
Dearborn, Inc, | The organic amendment-enhanced bioremediation technology (DARAMEND) is designed to degrade organic contaminants, including pentachlorophenol (PCP), polynuclear aromatic hydrocarbons (PAH), and petroleum hydrocarbons in industrial soils and sediments. The technology treats batches of soil by incorporating DARAMEND amendments into the soil using conventional agricultural methods. | Ontario,
Canada | Biological | | | TABLE 4. NEW TECHNOLOGIES ACCEPTED INTO SITE DEMONSTRATION PROGRAM IN FY 94 | STATE | DEVELOPER | TECHNOLOGY | TREATMENT
CATEGORY | |-------|---|--|-----------------------| | CA | SIVE Services | SIVE-LF is an enhanced steam injection and vacuum extraction method designed for in situ treatment of contaminated soil at relatively shallow depths. | Physical/
Chemical | | CA | Lockheed
Missiles and
Space Co. | The Batch Electrokinetic Remediation (BEKR) Process uses ceramic electrodes to move contaminates through soils. Water is circulated through the electrode casings to collect and remove contaminants. The BEKR process is designed to remove both toxic anions and cations from soils, muds, and sludges. Regeneration of the system produces a concentrated contaminant brine which can be further treated or disposed. | Palo Alto, CA | | со | Pintail
Systems, Inc. | This technology uses microbial detoxification of cyanide in heap leach processes to reduce cyanide levels in spent ore and process solutions. Two full-scale cyanide detoxification projects have been completed. The demonstration is planned for the Summitville Mine Superfund Site in Colorado. | Biological | | ID | Morrison
Knudsen,
Corp. | The STG clay based grouting technology is an integrated method involving three primary phases: obtaining detailed information about site characteristics; developing a site-specific grout formulation; and placing the grout. The technology was developed by a Ukrainian firm. The technology is being evaluated at an abandon mine in Montana. | Physical/
Chemical | | ID | Process
Technologies,
Inc. | The Photolytic Destruction process photolyses vapor-phase halogens. One key feature of the technology is that there are no moving parts, and its modular design allows for easy scale-up. The technology demonstration began in late September at McClellan Air Force Base in Sacramento, CA on off-gases from an existing soil vapor extraction system. | Physical/
Chemical | | СТ | SBP and
Environmental
Laboratories,
Inc. | The Vacuum-Vaporized Well (UVB) System consists of a specially adapted | | | LA | Electro-
kinetics | The Electro-Klean electrokinetics soil process separates and extracts heavy metals and organic contaminants from soils. This technology may be applied in situ or ex situ, and uses direct currents with electrodes placed on each side of the contaminated mass. Several studies of this technology have been conducted under the Emerging Technology Program. | Physical/
Chemical | | NM | Sandia
National
Laboratories | The Electrokinetic remediation technology is an in situ process designed to treat cadmium in arid soils. The demonstration is planned for mid 1995 in Albuquerque, NM. | Physical/
Chemical | | NY | Xerox, Corp. | The two-phase extraction process uses a high-vacuum source applied to an extraction tube within a water well to increase groundwater removal rates and to volatilize and extract that portion of contaminant from the sorbed or free product phases. The demonstration of this process began in August of 1994 at the McClellan Air Force Base in Sacramento, CA. | Physical/
Chemical | | TABLE 4. | New Technologi | es Accepted Into SITE Demonstration Program In FY 94 continued | | |----------|--|--|-----------------------| | Pa | Pa R.E Wright Associates, Inc. This process uses a
bioventing technology where injection and extraction wells allow the developer to regulate oxygen and nutrient levels to stimulate the native bacteria in the soil into biodegrading the contaminants of concern. This technology is a part of the jointly sponsored demonstration with the New York State Department of Environmental Conservation and the New York State Center for Hazardous Waste Management. | | Biological | | PA | Vortec, Corp. | The Vortec system oxidizes and vitrifies soils, sediments, sludges and mill tailings that have organic, inorganic and heavy metal contamination. This technology has been tested under the Ernerging Technology Program. Transportable systems are being developed for DOE soil remediation. | Thermal | | TN | RKK, Ltd. | CRYOCELL is a frozen soil barrier that completely contains waste migration to the soil or isolates a contaminated area during an in situ remediation program. Preliminary tests have been conducted at the DOE Oak Ridge National Laboratory. The demonstration is planned for the DOE Hanford facility in Richland, WA. | Physical/
Chemical | | ΤX | EET, Inc. | The TECHXTRACT process employs proprietary chemical formulations in successive steps to remove polychlorinated biphenyls (PCB), toxic hydrocarbons, heavy metals, and radionuclides from the subsurface of porous materials such as concrete, wood, brick and steel. | | | TX | ENSR
Consulting &
Engineering
and Larson
Engineering | The ENSR process treats volatile organic contaminated soils in biovaults. Nutrients, moisture and oxygen levels may be controlled within the constructed vaults. This technology is a part of the jointly sponsored demonstration with the New York State Department of Environmental Conservation and the New York State Center for Hazardous Waste Management. | Biological | | VA | BioGenesis
Enterprises,
Inc. | The Biogenesis process uses specialized equipment, surfactants and water to clean soil and sediments contaminated with PCBs. A different BioGenesis system was tested under the SITE program in 1992 on hydrocarbons. The PCB sediment washing system will be tested in early 1995 at the Alameda Naval Station in Alameda, CA. | Physical/
Chemical | | Canada | Matrix Photo-
catalytic, Ltd. | The Photocatalytic oxidation system removes and destroys dissolved organic contaminants from water in a continuous flow process at ambient temperatures. The Matrix system also treated chlorinated compounds such as PCBs. A demonstration is planned at the DOE Oak Ridge National Laboratory. | Physical/
Chemical | | Canada | Matrix Photo-
catalytic, Ltd. | The Photocatalytic oxidation system removes and destroys organic contaminants from air. | Physical/
Chemical | | Canada | TriWaste
Reduction
Services, Inc. | The TriWaste Reduction system combines a thermal phase separation system with a soil washing treatment system. The system is designed to treat metals and chlorinated organic compounds. | Physical/
Chemical | data to help select the most appropriate remedial action, and to monitor the success or failure of a selected remedy. The objectives of this portion of the SITE Program are: - to identify existing technologies that can enhance field monitoring and site characterization; - to support the development of monitoring capabilities that current technologies cannot address in a cost-effective manner; and - to prepare protocols, guidelines, and standard operating procedures for new methods. The goal of the SITE Monitoring and Measurement Technologies Program is to accelerate the recognition and use of those technologies that have the potential to provide more cost-effective, better, faster, or safer means to detect and monitor contaminants and the geophysical characteristics of Superfund sites. Candidate technologies may come from within the federal government or from the private sector. Through the program, developers are provided the opportunity for rigorous evaluation of their technology's performance. By distributing the results and recommendations of that evaluation, the market for the technology is enhanced. This Program is administered by ORD's Environmental Monitoring **Systems** Laboratory in Las Vegas, NV (EMSL-LV). To the best of our knowledge, this is the only program that exists at the federal, state, or private level for demonstrating the performance of monitoring, measurement, and site characterization technologies under field conditions; reporting on the performance; and communicating the results to the user community. The technologies in this program are listed in Appendix A. During FY 1994 the MMTP redesigned its report format after the draft reports for the polychlorinatedbiphenyl (PCB) screening technologies were prepared. The most significant improvement was a condensation from hundreds of pages to about 50 pages by removing much of the laboratory quality control (QC) data and by eliminating redundant text. While this created a delay, the reports are now more manageable and easier to read. The reports still contain all the performance data, a description of the technology, and cost information. All the laboratory QC data and other seldom used or referenced data are available as a single volume, available on request. This new report format was also used to present the results of the pentachlorophenol (PCP) and the cone penetrometer-deployed sensor demonstrations. The PCB and PCP reports were sent out for peer review in the fourth quarter of FY 1994. The PCP demonstration involved five technologies. These were: PENTA RISc (Ensys, Inc.); HNU-Hanby Test Kit (HNU Systems); Envirogard PCP raPID Assay (Ohmicron Corporation). In addition, an abbreviated version of a standard EPA laboratory method for the analysis of PCP was evaluated. The demonstration was conducted at the Koppers Wood Treatment site in Morrisville, NC, along with a demonstration of the Base Catalyzed Decomposition Process (BCD) technology. Additional samples were also collected from the Winonia Post site in Winona, MO. These samples were used to evaluate the impact of different matrices on the performance of the technologies. The demonstration of the cone penetrometer-deployed sensors was conducted in August 1994 at three sites in the Midwest. The sites were located in Atlantic, IA; Fort Riley, KS; and York, NE. The technologies included the GeoProbe conductivity sensor (GeoProbe Systems, Inc.); the Rapid Optical ScreenTool(ROST, from Unisys Corporation); and the Site Characterization Analysis Penetrometer System (SCAPS) which currently is being developed through the Department of Defense Tri-Services cone penetrometer-deployed sensor program. The reports from this demonstration will be produced in FY 1995. ### TECHNOLOGY TRANSFER ACTIVITIES In the Technology Transfer Program, technical information on innovative technologies in the Demonstration, Emerging Technology, and Measuring and Monitoring Technologies Programs is disseminated through various activities. These activities increase awareness and promote the commercial use of innovative technologies for assessment and remediation at Superfund sites. The goal of technology transfer activities is to promote communication requiring up-to-date technical information. ### SITE Reports Brochures, Publications, and Videos EPA's Center for Environmental Research Information (CERI) has published the following SITE documents: Program publication outputs through FY 94 totalling 33 Applications Analysis Reports (AARs), 224 Bulletins and numerous of Journal Articles. In FY 94 16,508 Technology Profiles had been distributed as well as 108,698 AARs, 9,456 Technical Evaluation Reports (TERs), 75,932 Demonstration Bulletins, 43,023 Emerging Technology Bulletins, 39,900 Demonstration Project Summaries and 29,219 Emerging Technology Project Summaries (Figure 5). In total, 322,740 publications for the SITE Program have been distributed to requesters in FY 94, up approximately 14% from FY 1993. The highest percent of requesters were from engineering consulting firms with approximately 44% (Figure 6). Appendix B lists available SITE documents and videotapes. ### **Community Outreach** The Technology Transfer Program reaches the environmental community through various media, including: - program-specific regional, state, and industry brochures; - onsite Visitor's Days and demonstration videotapes; Figure 5. SITE Documents distributed during FY 94. Figure 6. Distributed SITE documents by occupation of requestor. - project-specific fact sheets, bulletins, Capsules, Application Reports (AARs & ITERs) and project-specific technical data packages; - the SITE exhibit, displayed nationwide at conferences; - networking through forums, interagency task forces, associations, regions and states; - technical assistance to regions, states, and remediation cleanup contractors. #### **Databases Available** SITE information is also available through the following on-line information clearinghouses: The Alternative Treatment Technology Information Center (ATTIC) System (Hotline: 703-908-2137) provides upto-date information on innovative treatment technologies to clean up hazardous waste sites. It provides access to several independent databases and is a mechanism for retrieving full-text documents of key literature. It can be accessed with a personal computer and modem 24 hours a day, and there are no user fees. ATTIC provides "one-stop shopping" for information on alternative treatment options. it provides access to: #### Treatment Technology Database This contains abstracts from the literature on all types of treatment technologies, including biological, chemical, physical, and thermal methods. The best literature as viewed by experts is highlighted. ### Treatability Study Database This provides performance information on technologies to remove contaminants from wastewaters and soils. It is derived from treatability studies. This database is available through ATTIC or separately as
a disk that can be mailed. ### Underground Storage Tank Database This presents information on underground storage tank corrective actions, surface spills, emergency response, and remedial actions. ### Oil/Chemical Spill Database This provides abstracts on treatment and disposal of spilled oil and chemicals. ATTIC allows immediate access to other disk-based systems such as the Vendor Information System for Innovative Treatment Technologies (VISITT) and the Bioremediation in the Field Search System (BFSS). Users may download these programs to their own PC via a high-speed modem. • The Vendor Information System for Innovative Treatment Technologies database (VISITT version 3.0) (Hotline: 800-245-4505) is designed to capture current information on the availability, performance, and cost of innovative technologies to remediate contaminated waste sites. It gives innovative technology companies an opportunity to market their capabilities and enables federal, state and private sector environmental professionals to screen innovative technologies for application to specific sites. The database contains information on 277 technologies offered by 171 developers. • The OSWER CLU-IN electronic bulletin board facilitates communication on status of SITE technology demonstrations. ### Vendor Facts EPA is currently developing the Vendor Field Analytical and Characterization Technology System. This system will contain information on innovative field methods that may streamline the site assessment process. Vendor FACTS will be a Dos-based, menudriven database requiring little set-up time and will be available on diskette. This database is being developed jointly by the Technology Innovation Office (TIO) and the National Exposure Research Laboratory (NERL-LV). Technical reports may be obtained by contacting the Center for Environmental Research Information (CERI), 26 W. Martin Luther King Drive in Cincinnati, OH 45268 at 513-569-7562. ### **FUTURE TRENDS** The basic functions of the SITE Program, development and demonstration of technologies for hazardous waste site remediation and monitoring, are anticipated to continue into FY 95 and beyond; but the emphasis of the Program and its operation are shifting to meet current market and regulatory needs. Technology development and commercialization, interagency cooperation, regulatory changes, and cleanup needs contribute to define the SITE Program course. Some technologies in the program have passed the innovative stage and are now accepted as applicable standards. One of these technologies, Terra Vac's soil vapor extraction (SVE), is now considered a standard option for removal of VOCs from the unsaturated zone. As a testimonial to the strength of the market, many other companies have developed and are now marketing SVE technologies, some with enhancements such as hot air injection combined with groundwater extraction. Several of these SVE companies are participants in the SITE Program. Many thermal desorption systems are also moving into the arena of accepted technology since performance and cost information is becoming easier to obtain. Similarly, the solidification and stabilization systems offered for metal contamination may also be considered available technology in many applications. ### PROGRAM STRUCTURE The ETP provides a firm foundation for collecting data on innovative technologies at bench-, pilot-, and field-scale, and will continue to support innovative technology developers through cooperative agreements for technical and financial assistance. The future of the ETP will be determined by (1) the availability of funding and (2) the quality and quantity of innovative technologies submitted to the program. Several technologies moved from the ETP to the Demonstration Program this year, and it is anticipated that this trend will grow over the next two to three years. Both the ETP and the Demonstration Program will continue to solicit cooperative ventures with other federal agencies and states as a means of extending SITE's productivity and influence. Partnership programs in the demonstration Program have grown over the past year, and are expected to become an increasing part of the SITE operation. Work with state and federal Agencies, along with private companies brings technology expertise, funding support, and increased public support to SITE projects. The MMTP will continue to operate demonstrations with an increased emphasis on conducting concurrent work with SITE's technology demonstrations. In support of the Superfund Program, projects will highlight rapid, field-worthy techniques for real-time data production. ### **TECHNOLOGY AREAS** For FY 95 and 96, SITE is particularly interested in in-situ technologies for groundwater remediation other than pump and treat. One of the critical needs for remediation technology is for methods to accelerate aquifer cleanup. By nature, groundwater is a slow-moving, slow-to-change medium. Groundwater contamination may consist of multi-phasic contaminant plumes, light non-aqueous phase liquids (LNAPLS), and dense non-aqueous phase liquids (DNAPLS), which can potentially move in different directions. Other emphasis areas include: treatment technologies for metals in soil and combinations of metals and organics in soil; treatment for mixed, low level radioactive waste in soil and groundwater; in-situ and onsite bioremediation processes for contaminated soil containing compounds that are resistant to biodegradation (e.g. TCE and PCBs); and combined methods for improved delivery and/or recovery along with in-situ remediation operations (e.g. soil fracturing or directional drilling combined with bioremediation, soil flushing, etc.). Technologies for on-site aqueous treatment, biological degradation of simple hydrocarbons, off-gas treatment, data management systems, thermal destruction processes, and solidification/stabilization techniques are a lower priority for SITE. Specific soil pollutants posing a continuing problem for remediation technologies include lead, arsenic, pentachlorophenol (PCP), polynuclear aromatic (PNA) compounds, creosote, and dioxins and furans. Petrochemical wastes with high levels of volatile organic compounds (VOCs) also are noted to pose significant problems during construction, excavation, and other material handling activities. Some of the most important technology breakthroughs are anticipated in chemical conversion methodologies. Technologies which rely on chemical conversion of the contaminant species rather than destruction or stabilization will end the remediation process at treatment. Conversion eliminates the need for further environmental engineering, containment, or control of waste products or byproducts (for example, incineration ash, solidified waste material). These technologies are also at the core of in-line, chemical conversion research that could eventually supply solutions for re-engineered processes to reduce waste material generation. The need for recycling and reuse will help drive the development of chemical conversion technologies because of their potential for cost savings and for limiting liability. ### TECHNOLOGY TRANSFER In addition to the standard SITE reports, the program anticipates additional formats tailored to the needs of the partnership projects which will increase in FY 95 and FY 96. These may be published by more than one agency. Work on several documents to summarize technology areas will also be initiated. For instance, a great deal of data now exists about thermal desorption systems. SITE will be in a position to analyze and collect this data into a format which will allow the user community to compare these technologies, along with their costs and applications. These summary documents, departing from the normal project reports, will be available as the Program matures and its data base becomes more complete. Samuel Committee Com ### APPENDIX A ALL SITE PROJECTS, MAY 1994 ### SITE PROGRAM PARTICIPANTS, September 1994 | State | Developer | Technology | Technology
Contact | Program | Status | |------------|--|---|--|--|---------------------------------| | Alabama | CMS Research
Corporation
Birmingham, AL | Minicams | H. Ashley Page
205-773-6911 | Monitoring and
Measurement
Technologies
Program | Completed | | Alaska | Brice Environmental
Services
Corporation
(BESCORP),
Fairbanks, AK | Soil Washing
Plant | Craig Jones
907-452-2512 | Demonstration
Program | Completed,
September
1992 | | Arizona | Arizona State
University
Tempe, AZ | Photocatalytic
Oxidation and
Air Stripping | Gregory Raupp
602-965-2828 | Emerging
Technology
Program | Ongoing | | | STC Omega
(formerly Silicate
Technology
Corporation,
Scottsdale, AZ | Solidification
and
Stabilization
Treatment
Technology | Stephen Pelger
or Scott
Larsen
602-948-7100 | Demonstration
Program | Completed,
November
1990 | | , | Vulcan Peroxidation Systems, Inc. (formerly Peroxidation Systems, Inc.) Tucson, AZ | perox-pure™
Chemical
Oxidation
Technology | Chris Giggy
602-790-8383 | Demonstration
Program | Completed,
September
1992 | | California | Analytical and
Remedial
Technology, Inc.,
Menlo Park, CA | Automated
Volatile Organic
Analytical
System | D. MacKay
415-324-2259 | Monitoring and
Measurement
Technologies
Program | Completed,
May 1991 | | | APROTEK
Suisun, CA | Ton Conduction
Agglomeration
System | Cathryn
Wimberly
916-366-6165 | Demonstration
Program | Ongoing | | | AWD Technologies,
Inc.,
San Francisco, CA | Integrated Vapor
Extraction and
Steam Vacuum
Stripping |
David
Bluestein
415-227-0822 | Demonstration
Program | Completed,
September
1990 | | · | Berkeley Env. Restoration Ctr. (formerly, Udell Technologies) Emeryville, CA | In Situ Enhanced
Extraction | Kent Udell
510-653-9477 | Demonstration
Program | Completed
1993 | | | COGNIS, Inc.,
Santa Rosa, CA | Biological/
Chemical
Treatment | Ron Wilson
707-576-6231 | Emerging
Technology
Program | Ongoing | | | | Chemical
Treatment | William
Fristad
707-576-6235 | Emerging
Technology
Program | Completed,
1994 | | | | | | Demonstration
Program | Completed,
1994 | | State | Developer | Technology | Technology
Contact | Program | Status | |------------|---|--|---|--|---------------------------------| | California | Energy and
Environmental
Research | Hybrid Fluidized
Bed System | Richard
Koppang
714-859-8851 | Emerging
Technology
Program | Completed
1992 | | | Corporation,
Irvine, CA | Reactor Filter
System | Jerald Cole
714-859-8851 | Emerging
Technology
Program | Ongoing | | | Environmental
Biotechnologies
Montara, CA | Microbial
Composting | Douglas
Munnecke
415-728-8609 | Emerging
Technology
Program | Ongoing | | | EPOC Water, Inc.,
Fresno, CA | Precipitation,
Microfiltration,
and Sludge
Dewatering | Ray Groves
209-291-8144 | Demonstration
Program | Completed,
May 1992 | | | GIS/Solutions,
Inc.,
Concord, CA | GIS/Key
Environmental
Data Management
Software | Asad Al-Malazi
510-827-5400 | Demonstration
Program | Completed,
August 1993 | | | Groundwater
Technology
Government
Services, Inc.,
Concord, CA | Biological
Composting | Ronald Hicks
510-671-2387 | Emerging
Technology
Program | Ongoing | | | Hughes
Environmental
Systems, Inc.,
Manhattan Beach, CA | Steam Enhanced
Recovery Process | Ron Van Sickle
310-616-6634 | Demonstration
Program | Completed,
September
1993 | | | IT Corporation,
San Bernardino, CA | Air Sparging
Process | Walter Grinyer
909-799-6869 | Demonstration
Program | Ongoing | | | Lockheed Missiles &
Space Company, Inc.
Palo Alto, CA | Electro-chemical process for contaminated sludges | Steven H.
Schwartzkopf
415-424-3176 | Demonstration
Program | Ongoing | | | Magnum Water
Technology,
El Segundo, CA | CAV-OX® Process | Dale Cox
310-640-7000 | Demonstration
Program | Completed,
March 1993 | | | Membrane Technology
and Research, Inc.,
Menlo Park, CA | VaporSep
Membrane Process | Tessa Annals
415-328-2228 | Emerging
Technology
Program | Completed,
1991 | | | MTI Analytical Instruments (formerly Microsensor Technology Inc.) Fremont, CA | Portable Gas
Chromatograph | Gary Lee
415-490-0900 | Monitoring and
Measurement
Technologies
Program | Completed | | | North American
Technologies, Inc.,
San Ramon, CA | Ex-situ
Bioremediation | Cathryn
Wimberly
916-366-6165 | Demonstration
Program | Ongoing | | | North American
Technologies,
Inc.,/APROTEK
San Ramon, CA | Oleofilter | Cathryn
Wimberly
916-366-6165 | Demonstration
Program | Completed,
June 1994 | | State | Developer | Technology | Technology
Contact | Program | Status | |-------------------|---|---|--|--|---------------------------------| | <u>California</u> | NOVATERRA, Inc.
(formerly Toxic
Treatments USA,
Inc.),
Torrance, CA | In Situ Steam
and Air
Stripping | Philip LaMori
310-328-9433 | Demonstration
Program | Completed,
September
1989 | | | NRT/General Atomics
(formerly, Ogden
Environmental | Circulating Bed
Combuster | Jeffrey Broido
619-455-4495 | Demonstration
Program | Completed,
March 1989 | | | Services),
San Diego, CA | Acoustic Barrier
Separator | Robert Goforth
619-455-2499 | Emerging
Technology
Program | Ongoing | | | Praxis
Environmental
Services,
San Francisco, CA | In Situ Steam
Enhanced
Extraction | Lloyd Steward
415-641-9044 | Demonstration
Program | Ongoing | | · | Pulse Sciences,
Inc.,
San Leandro, CA | X-Ray Treatment
(Aqueous) | Vernon Bailey
510-632-5100 | Emerging
Technology
Program | Completed,
1994 | | | Purus, Inc.,
San Jose, CA | Photolytic
Oxidation | Paul Blystone
408-955-1000 | Emerging
Technology | Completed,
1992 | | | | | | Demonstration
Program | Ongoing | | | Retech, Inc.,
Ukiah, CA | Plasma Arc
Vitrification | R.C.
Eschenbach or
L.B. Leland
707-462-6522 | Demonstration
Program | Completed,
July 1991 | | | Rochem Separation
Systems, Inc.,
Torrance, CA | Rochem Disc Tube
Module System | David LaMonica
310-370-3160 | Demonstration
Program | Completed,
August 1994 | | | Roy F. Weston,
Woodland Hills, CA | Air Sparging
Process | John Chicca
818-596-6900 | Demonstration
Program | Completed,
1994 | | | S.M.W. Seiko, Inc.,
Hayward, CA | In Situ
Solidification
and
Stabilization | David Yang
510-783-4105 | Demonstration
Program | Ongoing | | | SRI Instruments,
Torrance, CA | Gas
Chromatograph | Dave Quinn
310-214-5092 | Monitoring and
Measurement
Technologies
Program | Completed,
January
1992 | | | Separation and
Recovery Systems,
Inc.,
Irvine, CA | SAREX Chemical
Fixation Process | Joseph
DeFranco
714-261-8860 | Demonstration
Program | Ongoing | | | SIVE Services
Dixon, CA | Steam Injection
and Vacuum
Extraction | 916-678-8358 | Demonstration
Program | Ongoing | | | Titan/Pulse
Sciences,
San Leandro, CA | X-Ray Treatment
(Soils) | Vernon Bailey
510-632-5100 | Emerging
Technology
Program | Ongoing | | State | Developer | Technology | Technology
Contact | Program | Status | |-------------|--|--|--|---|-----------------------------------| | California | Ultrox a Division
of Zimpro
Environmental, Inc.
Santa Ana, CA | Ultraviolet
Radiation and
Oxidation | David Fletcher
714-545-5557 | Demonstration
Program | Completed,
March 1989 | | | U.S. EPA Region IX,
San Francisco, CA | Excavation and
Foam Suppression
of Volatiles | John Blevins
415-744-2241 | Demonstration
Program | Completed,
July 1990 | | | XonTech, Inc.,
Van Nuys, CA | XonTech Sector
Sampler | Matt Young
818-787-7380 | Monitoring and
Measurement
Technologies
Program | Completed | | Colorado | Colorado School of
Mines,
Golden, CO
Colorado Department
of Health,
Denver, CO | Wetlands-Based
Treatment | Thomas
Wildeman
303-273-3642
Rick Brown
303-692-3383 | Emerging
Technology
Program
Demonstration
Program | Completed
1991
Ongoing | | | GEOCHEM, A Division
of Terra Vac,
Lakewood, CO | In Situ
Remediation of
Chromium in
Groundwater | Jim Rouse
303-988-8902 | Demonstration
Program | Ongoing | | | Hydrologics, Inc.,
Englewood, CO | Electro-
coagulation | Carl Dalrymple
303-761-6960 | Demonstration
Program | .Ongoing | | | Pintail Systems,
Inc.,
Aurora, CO | Biodegradation
of Cyanide | David Nakles
412-826-3340 | Demonstration
Program | Ongoing | | Connecticut | Dexsil Corporation,
Hamden, CT (4
Demonstrations) | Environmental
Test Kits (PCB)
Clor-N-Soil
L2000
PCB/Chloride
Analyzer | Steve Finch
203-288-3509 | Monitoring and
Measurement
Technologies
Program | Completed,
August
1992,1993 | | | SBP and
Environmental
Laboratories, Inc. | Bioventing, Air
Sparging,
Biological.
Treatment for
groundwater
(Multi-developer
project with
state of New
York) | Richard
Desrosiers
208-789-8261 | Demonstration
Program | Ongoing | | Delaware | E.I. DuPont de
Nemours and Co. and
Oberlin Filter Co.,
Newark, DE and
Waukesha, WI | Membrane
Microfiltration | Ernest Mayer
302-366-3652 | Demonstration
Program | Completed,
April-May
1990 | | Florida | ASI Environmental
Technologies, Inc./
Dames & Moore
Tampa, FL | Hydrolytic
Terrestrial
Dissipation | Stoddard
Pickrell
813-626-3811 | Demonstration
Program | Ongoing . | | State | Developer | Technology | Technology
Contact | Program | Status | |---------|--|---|--|---|--| | Florida | High Voltage Environmental Applications, Inc. with Florida International University and University of Miami, Miami, FL | High-Energy
Electron
Irradiation
(Aqueous) | William Cooper
305-593-5330 | Emerging
Technology
Program
Demonstration
Program | Completed,
1993
Completed,
1994 | | | High Voltage
Environmental
Applications; Inc.
Miami, FL | High Energy
Electronic Beam
(Solids) | William
Cooper
305-593-5330 | Emerging
Technology
Program | Ongoing | | | PCP, Inc.
West Palm Beach, FL | Ion Mobility
Spectrometry | Martin Cohen
407-683-0507 | Monitoring and
Measurement
Technologies
Program | Completed | | Georgia | American
Combustion, Inc.,
Norcross, GA | PYRETRON®
Thermal
Destruction | Gregory Gitman
404-564-4180 | Demonstration
Program | Completed,
January
1988 | | , | ETG, Inc.
Norcross, GA | Long-Path
Fourier
Transform
Infrared
Spectrometer | Orman Simpson
404-242-0977 | Monitoring and
Measurement
Technologies
Program | Completed,
January
1992 | | | SBP Technologies,
Inc.,
Stone Mountain, GA | Membrane
Separation and
Bioremediation | David Drahos
404-498-6666 | Demonstration
Program | Completed,
October
1991 | | | Sonotech, Inc.,
Atlanta, GA | Frequency
Tunable Pulse
Combustion
System | Zin Plavnik
404-525-8530 | Demonstration
Program | Ongoing
, | | · | Williams Environmental Services, Inc., (formerly Harmon Environmental Services, Inc.), Stone Mountain, GA | Soil Washing | S. Jackson
Hubbard
(US. EPA)
513-569-7507 | Emerging
Technology
Program | Exited,
1992 | | Idaho | J.R. Simplot
Company,
Pocatello, ID (2
demonstrations) | Anaerobic
Biological
Process | Dane Higdem
208-234-5367 | Emerging
Technology
Program
Demonstration | Completed,
1993
Completed,
July 1993;
Completed, | | | | | | Programs 1)
Dinoseb
2)
TNT | Feb. 1994 | | | Morrison Knudsen,
Corp./STG
Technologies
Boise, ID | Grouting
Technique | Kathryn Levihn
R. MacHartley
208-386-6115 | Demonstration
Program | Ongoing | | | Process
Technologies, Inc.
Boise, ID | Photolytic
Destruction of
SVE Off-Gases | Michael Swan
208-385-0900 | Demonstration
Program | Ongoing | | State | Developer | Technology | Technology
Contact | Program | Status | |----------|---|---|--------------------------------------|--|--| | Illinois | Allied Signal
Corporation,
Des Plaines, IL | Submerged Fixed
Film Reactor | Steve Lupton
708-391-3500 | Demonstration
Program | Ongoing | | | Institute of Gas
Technology,
Chicago, IL | Chemical and
Biological
Treatment | Robert Kelley
312-949-3809 | Emerging
Technology
Program | Completed,
1993 | | | | Fluid
Extraction-
Biological
Degradation
Process | Albert Paterk
708-768-0500 | Emerging
Technology
Program | Completed,
1992 | | | | Fluidized-Bed
Cyclonic
Agglomerating
Incinerator | Mike Mensinger
708-768-0602 | Emerging
Technology
Program | Ongoing | | | | Supercritical
Extraction/
Liquid Phase
Oxidation of
Waste | | Emerging
Technology
Program | Ongoing | | | RUST Remedial Services, Inc. (formerly Chemical Waste Management) Palos Heights, IL | X*TRAX™ Thermal
Desorption | Chetan Trivedi
708-361-7520 | Demonstration
Program | Completed,
May 1992 | | | Wheelabrator Clean
Air Systems
(formerly Chemical
Wasted Management)
Schaumburg, IL | PO*WW*ER
Technology | AnnaMarie
Connoly
708-706-6900 | Demonstration
Program | Completed
September
1992 | | Indiana | Bio-Rem, Inc.,
Butler, IN | Augmented In
Situ Subsurface
Bioremediation
Process | David Mann
219-868-5823 | Demonstration
Program | Completed,
December
1993 | | · | Canonie Environmental Services Corporation, Porter, IN | Low Temperature
Thermal Aeration | Joseph Hutton
219-926-8651 | Demonstration
Program | Completed,
September
1992 | | | Sevenson
Environmental
Services, Inc.
Munster, IN | MAECTITETM
Treatment
Process | Karl Yost
219-836-0116 | Demonstration
Program | Ongoing | | | SoilTech ATP Systems, Inc., Porter, IN (2 demonstrations) | Anaerobic
Thermal
Processor | Joseph Hutton
219-926-8651 | Demonstration
Program | Completed,
May 1991
and
June 1992 | | Kansas | Geoprobe
Salina, KS | Soil, Water,
Vapor Sampling
Cone
Penetrometer | Stephen
Spradlin
913-825-1842 | Monitoring and
Measuring
Technologies
Program | Ongoing | | State | Developer | Technology | Technology
Contact | Program | Status | |---------------|---|---|---|---|---------------------------------| | Kansas | International Waste
Technologies/
Geo-Con, Inc.,
Wichita, KS (2
demonstrations) | In Situ
Solidification
and
Stabilization | Jeff Newton
316-269-2660
Chris Ryan
412-856-7700 | Demonstration
Program | Completed,
April-May
1988 | | | Trinity Environmental Technologies, Inc., Mound Valley, KS | Ultrasonically
Assisted
Detoxification
of Hazardous
Materials | Duane Koszalka
316-328-3222 | Emerging
Technology
Program | Completed,
1992 | | Louisiana | Advanced Remediation Mixing, Inc. (formerly Chemfix Technologies), Kenner, LA | Solidification
and
Stabilization | Sam Pizzitola
504-461-0466 | Demonstration
Program | Completed,
March 1989 | | | Electrokinetics,
Inc.,
Baton Rouge, LA | Electrokinetic
Remediation | Yalcin Acar
504-388-3992 | Emerging
Technology
Program
Demonstration
Program | Completed,
1993
Ongoing | | Maine | Binax Corporation,
Antox Division,
South Portland, ME | Equate®
Immunoassay
(PCB) | Roger Piasio
207-772-3544 | Monitoring and
Measurement
Technologies
Program | Completed,
1992 | | Maryland | Microsensor
Systems, Inc.,
Havre de Grace, MD | Portable Gas
Chromatograph | N.L. Jarvis
410-939-1089 | Monitoring and
Measurement
Technologies
Program | Completed,
January
1992 | | | SCAPS U.S. Army
Environmental
Center
APG, MD | Laser
Fluorescence
PAH, BTEX,
Screening Cone
Penetrometer | George
Robitaille
401-671-1576 | Monitoring and
Measurement
Technologies
Program | Ongoing | | Massachusetts | ABB Environmental
Services, Inc.,
Wakefield, MA | Two-Zone Plume
Interception In
Situ Treatment
Strategy | Willard Murray
617-245-6606 | Emerging
Technology
Program | Completed | | | | Anaerobic/
Aerobic
Sequential
Bioremediation
of PCE. | Willard Murray
617-245-6606 | Emerging
Technology
Program | Ongoing | | | Bruker Instruments,
Billerica, MA | Bruker Mobile
Environmental
Monitor | John Wronka
506-667-9580 | Monitoring and
Measurement
Technologies
Program | Completed,
September
1990 | | | CF Systems
Corporation,
Woburn, MA (2
Demonstrations) | Solvent Extraction Batch Organics | Chris Shallice
617-937-0800
Susan Erickson | Demonstration
Program | Completed,
September
1988 | | | | Extraction Unit | 617-937-0800 | | Ongoing | | State | Developer | Technology | Technology
Contact | Program | Status | |---------------|---|---|--|--|---| | Massachusetts | Clean Berkshires,
(Maxymillian Tech.
Inc.) Lanesboro,
MA | High Temperature
Thermal
Processor | Jim
Maxymillian
413-499-9862 | Demonstration
Program | Completed,
December
1993 | | | Energy and
Environmental
Engineering, Inc.,
East Cambridge, MA | Laser-Induced
Photochemical
Oxidative
Destruction | James Porter
617-666-5500 | Emerging
Technology
Program | Completed,
1993 | | | HNU Systems, Inc.,
Newtown, MA
(3 Demonstrations) | Portable Gas
Chromatograph | Clayton Wood
617-964-6690 | Monitoring and
Measurement
Technologies | Completed,
January
1992 | | | | Portable X-ray
Fluorescence
Spectrometer | John Moore
617-964-6690 | Program | Ongoing | | b | ' | PCP Test Kit | Bob Laliberte
800-726-6690 | | Ongoing | | | Millipore
Corporation,
Bedford, MA | EnviroGard™ PCB
Immunoassay Test
Kit | Alan Weiss
617-275-9200 | Monitoring and
Measurement
Technologies | Completed,
1991 and
1992 | | | (4 Demonstrations) | Immunoassay for
PCP (Soil,
Water) | | Program | Completed
1993 | | | Niton Corporation
Bedford, MA | Portable X-ray
Fluorescence
Spectrometer | Shephen
Shefsky
617-275-9275 | Monitoring and
Measurement
Technologies
Program | . Ongoing | | | Ohmicron
Corporation
Newton, MA | Ohmicron PCP
RaPID Assay | Dave Hertzog
Mary Hayes
215-860-5115 | Monitoring and
Measurement
Technologies
Program | Completed
1993 | | | PSI Technology
Company,
Andover, MA | Metals Immobilization and Decontamination of Aggregate Solids | Steve Johnson
508-689-3232 | Emerging
Technology
Program | Completed,
1993 | | Minnesota | BioTrol, Inc.,
Eden Prairie, MN | Methanotrophic
Bioreactor
System | Durell Dobbins
612-942-8032 | Emerging
Technology
Program | Completed,
1992 | | | | Biological
Aqueous
Treatment System | Dennis
∕Chilcote
612-942-8032 | Demonstration
Program | Completed,
July-
September
1989 | | | | Soil Washing
System | Dennis
Chilcote
612-942-8032 | Demonstration
Program | Completed,
September-
October
1989 | | State | Developer | Technology |
Technology
Contact | Program | Status | |---------------|---|--|-------------------------------------|--|---| | Minnesota | Membran Corp.
Minneapolis, MN | Membrane Gas
Transfer in
Waste
Remediation | Charles
Gantzer
612-378-2160 | Emerging
Technology
Program | Ongoing | | | Unisys
Eagen, MN | Laser
Fluorescence
PAH, BTEX
Screening Cone
Penetrometer | David Bohne
612-456-2339 | Monitoring and
Measuring
Technologies
Program | Ongoing | | Montana | Montana College of
Mineral Science &
Technology, | Air-Sparged
Hydrocyclone | Theodore
Jordan
406-496-4112 | Emerging
Technology
Program | Completed,
1994 | | | Butte, MT | Campbell
Centrifugal Jig | Gordon Ziesing
406-494-1473 | Emerging
Technology
Program | Ongoing | | Nevada | Powerful Green
International, Inc.
Las Vegas, NV | Soil washing | Robert Schmidt
702-876-0724 | Demonstration
Program | Ongoing | | | U.S. EPA,
Las Vegas, NV | Field Analytical
Screening
Program (FASP) | Lary Jack
702-798-2373 | Monitoring and
Measurement
Technologies
Program | Completed | | New Hampshire | Wheelabrator
Technologies, Inc.
Hampton, NH | Solidification/
Stabilization | Mark Lyons
603-929-3000 | Demonstration
Program | Ongoing | | New Jersey | Accutech Remedial
Systems, Inc.,
Keyport, NJ (2
demonstrations) | Pneumatic
Fracturing
Extraction and
Catalytic
Oxidation | Harry
Moscatello
908-739-6444 | Demonstration
Program | Completed,
July-August
1992;
Ongoing | | | ART International,
Inc.,
(formerly Enviro
Sciences, Inc.),
Denville, NJ | Low-Energy
Solvent
Extraction
Process | Werner Steiner
201-627-7601 | Emerging
Technology
Program | Completed,
1994 | | | Dehydro-Tech
Corporation,
East Hanover, NJ | Carver-
Greenfield
Process® for
Extraction of
Oily Waste | Thomas
Holcombe
201-887-2182 | Demonstration
Program | Completed,
August 1991 | | | M.L. ENERGIA, Inc.,
Princeton, NJ | Reductive Photo-
Dechlorination
Treatment | Moshe Lavid
609-799-7970 | Emerging
Technology
Program | Ongoing | | | | Reductive Photo-
Thermal
Oxidation
Processes for
Chlorocarbons | Moshe Lavid
609-799-7970 | Emerging
Technology
Program | Ongoing | | State | Developer | Technology | Technology
Contact | Program | Status | |------------|---|---|--|--|-------------------------------| | New Jersey | Hazardous Substance
Management Research
Center at New
Jersey Institute of
Technology,
Newark, NJ | Pneumatic
Fracturing/
Bioremediation | John Schuring
201-596-5849 | Emerging
Technology
Program | Completed,
1994 | | | New Jersey
Institute of
Technology,
Newark, NJ | GHEA Associates
Process | Itzhak
Gottlieb
201-596-5862 | Emerging
Technology
Program | Completed,
1992 | | | Sentex Sensing
Technology,
Incorporated,
Ridgefield, NJ | Portable Gas
Chromatograph | Amos Linenberg
201-945-3694 | Monitoring and
Measurement
Technologies
Program | Completed,
January
1992 | | New Mexico | BCI California/JWF
Associates
Bloomfield, NM | Enzyme-catalyzed
Accelerated
Bioremediation
(BioTreat™ Land
Treatment) | Jerry Finney
505-632-3383
619-399-1372 | Demonstration
Program | Ongoing | | | Billings and
Associates, Inc.,
Albuquerque, NM | Subsurface
Volatilization
and Ventilation
System | Gale Billings
505-345-1116 | Demonstration
Program | Completed,
May 1994 | | | Bio-Recovery
Systems, Inc.,
Las Cruces, NM | Biological
Sorption | Mike Hosea
505-523-0405
800-697-2001 | Emerging
Technology
Program | Completed,
1990 | | | Sandia National
Laboratories
Albuquerque, NM | Electrokinetic
Extraction in
Unsaturated
Soils | | Demonstration
Program | Ongoing | | | TMA Eberline
(Thermo Analytic) | Segmented Gate
System for
Radioactive
Materials | Edward
Bramlett
505-345-9931 | Emerging
Technology
Program | Ongoing | | New York | Andco Environmental
Processes, Inc.,
Amherst, NY | Electrochemical
In Situ Chromate
Reduction and
Heavy Metal
Immobilization | Michael
Brewster
716-691-2100 | Demonstration
Program | Ongoing | | | Electro-Pure
Systems, Inc.,
Amherst, NY | Alternating
Current
Electrocoagulati
on Technology | James LaDue
716-691-2610 | Emerging
Technology
Program | Completed,
1992 | | | Photovac
International, Inc.
Deer Park, NY | Photovac 10S
PLUS | Mark Collins
516-254-4199 | Monitoring and
Measurement
Technologies
Program | Completed,
January
1992 | | | State University of
New York at Oswego,
Oswego, NY | Photocatalytic
Treatment for
Sediments | Ronald
Scrudato
315-341-3639 | Emerging
Technology
Program | Ongoing | | · | Texaco Syngas Inc.,
White Plains, NY | Entrained-Bed
Gasification | Richard Zang
914-253-4047 | Demonstration
Program | Completed,
1994 | | State | Developer | Technology | Technology
Contact | Program | Status | |-------------------|--|---|---|---|---| | New York | Xerox Corp.
Webster, NY | Groundwater
Extraction | Ron Hess
716-422-3694 | Demonstration
Program | Ongoing | | North
Carolina | Ensys Incorporated,
Research Triangle
Park, NC | Immunoassay for
PCP | Stephen
Friedman
914-941-5509 | Monitoring and
Measurement
Technologies
Program | Completed,
September
1989 | | | Ensys Incorporated,
Morrisville, NC | Immunoassay for | Aisling
Scallen | Monitoring and
Measurement | Completed | | | (2 Demonstrations) | PENTA™ RISC Test
Kit | 919-941-5509 | Technologies
Program | Completed | | Ohio . | Babcock and Wilcox
Co.,
Alliance, OH | Cyclone Furnace | D.K. Haidet
216-821-9110 | Emerging
Technology
Program
Demonstration
Program | Completed
1992
Completed,
November
1991 | | | Battelle Memorial
Institute,
Columbus, OH | In Situ
Electroacoustic
Soil
Decontamination | Satya Chauhan
614-424-4812 | Emerging
Technology
Program | Completed | | | Ferro Corporation,
Independence, OH | Waste
Vitrification
Through Electric
Melting | Tack Whang
216-641-8580 | Emerging
Technology
Program | Completed | | | IT Corporation
Cincinnati, OH | Chelation/Electr
o-deposition of
Toxic Metals
from Soils | Curtis Kellogg
513-782-4700 | Emerging
Technology
Program | Ongoing | | | OHM Remediation
Services
Corporation,
Findlay, OH | Oxygen
Microbubble In
Situ
Bioremediation | Douglas Jerger
419-4 <u>2</u> 3-3526 | Emerging
Technology
Program | Ongoing | | | University of
Dayton Research
Institute, Dayton,
OH | Photothermal
Detoxification
Unit (PDU) | John Graham
513-229-2846 | Emerging
Technology
Program | Completed,
1994 | | | U.S. EPA Risk
Reduction
Engineering
Laboratory and ETG
Environmental
Cincinnati, OH | Base-Catalyzed
Dechlorination
Process | Yei-Shong
Shieh
215-832-0700 | Demonstration
Program | Completed,
August 1993 | | | U.S. EPA Risk
Reduction
Engineering | Bioventing | Paul McCauley
513-569-7444 | Demonstration
Program | Ongoing | | | Laboratory
Cincinnati, OH | Volume Reduction
Unit | Richard
Griffith
908-321-6629 | Demonstration
Program | Completed,
November
1992 | | State | Developer | Technology | Technology
Contact | Program | Status | |--------------|---|---|--|--|--------------------------------------| | Ohio | U.S. EPA Risk Reduction Engineering Laboratory and IT Corporation, Cincinnati, OH | Debris Washing
System | Michael Taylor
or Majid
Dosani
513-782-4700 | Demonstration
Program | Completed,
August 1990 | | | U.S. EPA Risk Reduction Engineering Laboratory and USDA Forest Products Laboratory, Cincinnati, OH | Fungal Treatment
Technology | Richard Lamar
608-231-9469 | Demonstration
Program | Completed,
November
1992 | | | U.S. EPA Risk Reduction Engineering Laboratory and University of Cincinnati, Cincinnati, OH | Hydraulic
Fracturing | Larry Murdoch
513-556-2526 | Demonstration
Program | Completed,
September
1992 | | Oklahoma | Geo-Microbial
Technologies
Ochelata, OK | New Technology
for Metals
Release and
Removal from
Wastes | Donald Hitzman
918-535-2281 | Emerging
Technology
Program | Ongoing | | | Terra-Kleen
Corporation,
Oklahoma City, OK | Soil Restoration
Unit | Alan Cash
405-728-0001 | Demonstration
Program | Completed,
1994 | | Oregon | Mebrex, Inc.
Bend, OR | Field Portable
X-ray
Fluorescence
(FPXRF) | Jim
Pasmore
503-385-6748 | Monitoring and
Measuring
Technologies
Program | Ongoing | | Pennsylvania | Aluminum Company of
America (formerly
Alcoa Separations
Technology, Inc.),
Pittsburgh, PA | Bioscrubber | Paul Liu
412-826-3711 | Emerging
Technology
Program | Completed
1993 | | | Center for
Hazardous Materials | Acid Extraction
Treatment System | Stephen Paff
412-826-5320 | Emerging
Technology | Completed
1992 | | | Research
Pittsburgh, PA | Lead Smelting | | Program | Completed
1993 | | | | Organics
Destruction and
Metals
Stabilization | A. Bruce King
412-826-5320 | Emerging
Technology
Program | Ongoing | | | Horsehead Resource
Development Co.,
Inc.,
Monaca, PA (2
demonstrations) | Flame Reactor | Regis Zagrocki
412-773-2289 | Demonstration
Program | Completed,
March 1991;
Ongoing | | | Lewis Environmental
Services, Inc.
Pittsburgh, PA | Soil Leaching
Process | Tom Lewis III
412-322-8100 | Emerging
Technology
Program | Ongoing | | State | Developer | Technology | Technology
Contact | Program | Status | |-------------------|---|---|--------------------------------|---|--------------------------------| | Pennsylvania | Ohmicron Corp.
Newtown, PA | Immunoassay for
PCP | Dave Hertzog
215-860-5115 | Monitoring and
Measurement
Technologies
Program | Completed | | | R.E. Wright
Middletown, PA | Bioventing, Air
Sparging,
Biological
Treatment for
groundwater
(Multi-developer
project with
state of New
York) | Richard Cronce
717-944-5501 | Demonstration
Program | Ongoing | | | Remediation
Technologies, Inc.,
(formerly MoTec
Inc.),
Pittsburgh, PA | Slurry
Biodegradation | David Nakles
412-826-3340 | Demonstration
Program | Ongoing | | | Roy F. Weston,
Inc.,
West Chester, PA | Low Temperature
Thermal
Treatment System | Mike Cosmos
215-430-7423 | Demonstration
Program | Completed,
December
1992 | | | | Steam
Regeneration
Adsorption
System
(Ambersorb TM) | Russ Turner
215-43-3097 | Emerging
Technology
Program | Ongoing | | | Vortec Corporation,
Collegeville, PA | Oxidation and
Vitrification
Process | James Hnat
215-489-2255 | Emerging
Technology
Program
Demonstration
Program | Completed,
1993
Ongoing | | South
Carolina | University of South
Carolina,
Columbia, SC | In Situ
Mitigation of
Acid Water | Frank Caruccio
803-777-4512 | Emerging
Technology
Program | Ongoing | | Tennessee | Bergmann USA,
Gallatin, TN | Soil and
Sediment Washing
Technology | Richard Traver
615-452-5500 | Demonstration
Program | Completed,
May 1992 | | | IT Corporation,
Knoxville, TN | Batch Steam
Distillation and
Metal Extraction | Ed Alperin
615-690-3211 | Emerging
Technology
Program | Completed,
1992 | | | | Eimco Biolift™
Slurry Reactor | Kandi Brown
615-690-3211 | Emerging
Technology
Program | Ongoing | | | | Mixed Waste
Treatment
Process | Ed Alperin
615-690-3211 | Emerging
Technology
Program | Ongoing | | ; | | Photolytic and
Biological Soil
Detoxification | Robert Fox
615-690-3211 | Emerging
Technology
Program | Completed,
1993 | | State | Developer | Technology | Technology
Contact | Program | Status | |-----------|---|---|---|--|---------------------------------| | Tennessee | Illinois Institute
of Technology/
Halliburton NUS,
Oak Ridge, TN | Radio Frequency
Heating | Clifton
Blanchard
615-483-9900 | Demonstration
Program | Completed,
August 1993 | | | KAI/Halliburton
NUS,
Oak Ridge, TN | Radio Frequency
Heating | Clifton
Blanchard
615-483-9900 | Demonstration
Program | Completed,
1994 | | | WASTECH Inc.,
Oak Ridge, TN | Solidification
and
Stabilization | E. Benjamin
Peacock
615-483-6515 | Demonstration
Program | Completed,
August 1991 | | Texas | ASOMA Instruments
Austin, TX | Portable X-ray
Fluorescence
Spectrometer | Phillip
Almquist
512-258-6608 | Monitoring and
Measuring
Technologies
Program | Ongoing | | | EET, Inc.
Bellaire, TX | PCB/Metals
Extraction from
Porous Services | Tim Tarrillion
713-662-0727 | Demonstration
Program | Ongoing | | | ENSR Consulting Engineering and Larson Engineering Houston, TX | Bioventing, Air
Sparging,
Biological
Treatment for
groundwater
(Multi-developer
project with
state of New
York) | Gil Long
(ENSR)
713-520-9900 | Demonstration
Program | Ongoing | | | Filter Flow
Technology, Inc.,
League City, TX | Heavy Metals and
Radionuclide
Sorption Method | Todd Johnson
713-334-6080 | Demonstration
Program | Completed,
September
1993 | | | Funderburk and
Associates),
Fairfield, TX | Dechlorination
and
Immobilization | Paul DePercin
(US. EPA)
513-569-7809 | Demonstration
Program | Completed,
October
1987 | | | Hrubetz
Environmental
Services, Inc.,
Dallas, TX | HRUBOUT® Process | Michael
Hrubetz or
Barbara
Hrubetz
214-363-7833 | Demonstration
Program | Completed,
February
1993 | | | Soliditech, Inc.,
Houston, TX | Solidification
and
Stabilization | Bill
Stallworth
713-497-8558 | Demonstration
Program | Completed,
December
1988 | | | TN Technologies,
Inc.
Round Rock, TX | Portable X-ray
Fluorescence
Spectrometer | Margo Meyers
512-388-9200 | Monitoring and
Measuring
Technologies
Program | Ongoing | | State | Developer | Technology | Technology
Contact | Program | Status | |------------|--|--|--|-----------------------------------|---------------------------------| | Texas | TechTran
Environmental,
Inc.,
Houston, TX | Combined Chemical Precipitation, Physical Separation, and Binding Process for Radionuclides and Heavy Metals | E.B. (Ted)
Daniels
713-688-2390 | Demonstration
Program | Ongoing | | | University of
Houston
Houston, TX | Concentrated
Salt Extraction
of Lead | Dennis
Clifford
713-743-4250 | Emerging
Technology
Program | Ongoing | | - | Western Product
Recovery, Group,
Inc.,
Houston, TX | CCBA Physical
and Chemical
Treatment | Donald Kelly
713-493-9321 | Emerging
Technology
Program | Completed,
1994 | | Virginia | BioGenesis
Enterprises, Inc., | PCB Sediment
Washing | Thomas Rogeux
703-913-9700 | Demonstration
Program | Ongoing | | | (formerly BioVersal
USA),
Fairfax Station, VA | BioGenesis™ Soil
Washing Process | Charles Wilde
703-250-3442
or
Mohsen Amiran
708-827-0024 | Demonstration
Program | Completed,
November
1992 | | | Dynaphore, Inc.
Richmond, VA | Removal of
Dissolved Heavy
Metals via
FORAGER Sponge | Norman Rainer
804-288-7109 | Demonstration
Program | Completed,
Aprīl 1994 | | | RKK Ltd.
Arlington, VA | CRYOCELL Freeze
Barrier | Christopher
Reno
206-653-4844 | Demonstration
Project | Ongoing | | Washington | ECOVA Corporation,
Redmond, WA | Bioslurry
Reactor | Alan Jones
206-883-1900 | Demonstration
Program | Completed,
September
1991 | | | Geosafe
Corporation,
Richland, WA | In Situ
Vitrification | James Hansen
509-375-0710 | Demonstration
Program | Completed,
1994 | | | Remediation
Technologies, Inc.,
(ReTec)
Seattle, WA | Methanotrophic
Biofilm Reactor | Hans Stroo
206-624-9349 | Emerging
Technology
Program | Ongoing | | | Resources
Conservation Co.,
Bellevue, WA | BEST Solvent
Extraction | Lanny Weimer
301-596-6066 | Demonstration
Program | Completed,
July 1992 | | | University of
Washington,
Seattle, WA | Adsorptive
Filtration | Mark Benjamin
206-543-7645 | Emerging
Technology
Program | Completed,
1992 | | State | Developer | Technology | Technology
Contact | Program | Status | |-----------|--|---|--|---|-------------------------------| | Wisconsin | Allis Mineral
Systems, Inc.,
(formerly Boliden
Allis, Inc.),
Oak Creek, WI | Pyrokiln Thermal
Encapsulation
Process | John Lees
414-798-6265
Glenn Heian
414-762-1190 | Emerging
Technology
Program | Completed,
1993 | | | Scitec Corporation
Richland, WA | Field Portable
X-ray
Fluorescence | Chester Dilday
1-800-466-5323 | Monitoring and
Measurement
Technologies
Program | Ongoing | | | Zimpro Passavant
Environmental
Systems, Inc.,
Rothschild, WI | PACT® Wastewater
Treatment System | William Copa
715-359-7211 | Demonstration
Program | Ongoing | | Wyoming | Western Research
Institute,
Laramie, WY | Contained
Recovery of Oily
Wastes (CROW TM) | Lyle Johnson
307-721-2011 |
Emerging
Technology
Program
Demonstration
Program | Completed,
1991
Ongoing | #### International Participants | Location | Developer | Technology | Technology
Contact | Program | Status | |----------|---|---|---|--|--------------------------------| | Canada | Atomic Energy of
Canada, Limited,
Chalk River, ON | Ultrasonic-Acid
Leachate Treatment
for Mixed Wastes | Shiv Vijayan
613-584-3311
ext. 3220 | Emerging
Technology
Program | Ongoing | | | · | Chemical Treatment
and Ultrafiltration | Leo Buckley
613-584-3311 | Emerging
Technology
Program | Completed,
1993 | | | ConeTech
Investigations
Vancouver, BC | Resistivity, pH,
Seismic,
Temperature, Cone
Penetrometer | Ward Phillips
604-327-4311 | Monitoring
and Measuring
Technologies
Program | Completed | | | ELI Eco Logic
International,
Inc., Rockwood, ON
(2 demonstrations) | Thermal Gas Phase
Reduction and
Thermal Desorption
Process | Jim Nash
519-856-9591 | Demonstration
Program | Completed,
December
1992 | | | EnviroMetal
Technologies,
Inc., | Metal Enhanced
Abiotic Degradation | John Quayle
514-827-0432 | Demonstration
Program | Ongoing | | | Grace Dearborn,
Inc.,
Mississauga, ON | Daramend™ Process | Alan Seech | Demonstration
Program | Completed,
1994 | | Location | Developer | Technology | Technology
Contact | Program | Status | |------------------------|--|--|---|---|--| | Canada | Matrix Photocatalytic Ltd. (formerly Nutech Environmental), | TiO ₂ Photocatalytic
Treatment of Aqueous
Waste Streams | Bob Henderson
519-660-8669 | Emerging
Technology
Program
Demonstration
Program | Completed,
1993
Ongoing | | | London, ON | TIO ₂ Photocatalytic
Air Treatment | Bob Henderson
519-660-8669 | Emerging
Technology
Program
Demonstration
Program | Completed
1994
Ongoing | | | Toronto Harbor
Commission,
Toronto, ON | Soil Recycling | Dennis Lang
416-863-2047 | Demonstration
Program | Completed,
April-May
1992 | | | TriWaste Reduction
Services, Inc.
Calgary, AB | Thermal Phase
Separator and TRACE
Soil Washing Unit | Phil Carson
403-234-3229 | Demonstration
Program | Ongoing | | | Wastewater
Technology Centre,
Burlington, ON | Cross-Flow
Pervaporation System | Chris Lipski
416-336-4689 | Emerging
Technology
Program | Completed,
1992 | | | Zenon
Environmental
Systems Inc., | Cross-Flow
Pervaporation System | Phil Canning
416-639-6320 | Demonstration
Program | Ongoing | | Burlington,
Ontario | | ZenoGem [™] Process | Chris Lipski
416-639-6320 | Demonstration
Program | Ongoing | | United
Kingdom | Davy Research and
Development,
Limited,
Cleveland, UK | Chemical Treatment | Graham
Wightman
44-642-607108 | Emerging
Technology
Program | Ongoing | | -
- | AEA Technology
(formerly Warren
Spring
Laboratory),
Stevenage
Hertsfordshire, UK | Physical and
Chemical Treatment | Peter Wood
44-0235-463040 | Emerging
Technology
Program | Completed,
1994 | | | Graseby Ionics,
Ltd.,
Waterford Herts,
UK | Ion Mobility
Spectrometry | John
Brokenshire
011-44-923-
816166
Martin Cohen
407-683-0507 | Measuring and
Monitoring
Technologies
Program | Completed
Summer
1990 and
Fall 1990 | | Italy | Gruppo Italimpresse, (developed by Shirco Infrared Systems, Inc.), (Formerly ECOVA) Rome, Italy (2 Demonstrations) | Infrared Thermal
Destruction | Gruppo Italimpresse Rome: 011-39-06- 8802001 Padova: 011- 39-049-773490 (No longer available from U.S. vendors) | Demonstration
Program | Completed,
August
1987 and
November
1987 | | Puerto Rico | Terra Vac, Inc.,
San Juan, PR | In Situ Vacuum
Extraction | James Malot
809-723-9171 | Demonstration
Program | Completed,
December
1987-April
1988 | # APPENDIX B PUBLICATIONS AND VIDEOTAPES # Documents Available from the U.S. EPA Risk Reduction Engineering Laboratory Superfund Technology Demonstration Division¹ #### **General Publications** | | <u> </u> | SITE Profiles, Seven | nth Editior | t to Congress 1993 (EPA/540/R-94/518)
n (EPA/540/R-94/526) | |-------------------------|---|---|---------------------------|--| | | J | Sites (EPA/540/2-91 | 1/010) | Technologies Used at Hazardous Waste | | | | Interim Status Repo
Hazardous Waste Si | rt U.S. and
ites (EPA/ | l German Bilateral Agreement on Remediation of 540/R-94/500) | | | nstration Project I | | ٥ | Technology Evaluation Vol. II (EPA/540/R-92/017B) | | Injection, Phase | | on ana 1101 Gas | | PB92-222223 | | ☐ Techno | ology Evaluation (EPA/54
216596 | 0/R-93/509) | ۵ | Applications Analysis (EPA/540/AR-92/017)
PB93-122315 | | ☐ Techno | ology Demo. Summary (E | PA/540/SR-93/ | · Q | Technology Demo. Summary (EPA/540/SR-92/017) ³ | | | nstration Bulletin (EPA/54
cations Analysis (EPA/540 | | | Demonstration Bulletin (EPA/540/MR-92/011) | | | 117439 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Bergmar | nn USA—Soil/Sediment Washing System | | | | | | Demonstration Bulletin (EPA/540/MR-92/075) | | ☐ Applic☐ Techno | | /A5-89/008) | Brice En | Soil Washing System Battery Enterprises Site—avironmental Services, Inc. Demonstration Bulletin (EPA/540/MR-93/503) | | | nstration Bulletin (EPA/54 | | _ <u>_</u> | sis Soil Washing Technology Demonstration Bulletin (EPA/540/MR-93/510) Innovative Technology Evaluation Report | | | Situ Subsurface Bioremed | iation Process, | | (EPA/540/R-93/510) | | Bio-Rem, Inc. Demor | nstration Bulletin (EPA/54 | -0/MR-93/527) ³ | . 0 | Site Technology Capsule (EPA/540/SR-93/510) ³ | | | | | Biotrol- | -Biotreatment of Groundwater | | Stripping Applic PB92- | gies, Inc.— or Extraction and Steam V cations Analysis (EPA/540 218379 nstration Bulletin (EPA/54 | /A5-91/002) | | Technology Evaluation (EPA/540/5-91/001) PB92-110048 Applications Analysis (EPA/540/A5-91/001) Technology Demo. Summary (EPA/540/S5-91/001) Demonstration Bulletin (EPA/540/M5-91/001) | | Rahcock and W | ilcox—Cyclone Furnace | Vitrification | Riotrol | -Soil Washing System | | ☐ Techno
017A) | ology Evaluation Vol. I (E | | | Technology Evaluation Vol. I (EPA/540/5-91/003a) PB92-115310 | | | | | | | National Technical Information Service 5285 Port Royal Road Springfield VA 22161 Telephone 703-487-4650. ¹ Order documents free of charge by calling EPA's Center for Environmental Research Information (CERI) at 513-569-7562. Documents with a PB number are out of stock in CERI and must be ordered by that number at cost from National Tacknical Information Service ³ Out of stock | ۵ | Technology Evaluation Vol. II Part A | ☐ Technology Demo. Summary (EPA/540/S5-90/ | |-----------|--|--| | ٥ | (EPA/540)5-91/003b) PB92-115328
Technology Evaluation Vol. II Part B
(EPA/540/5-91/003c) PB92-115336 | 007) Demonstration Bulletin (EPA/540/M5-90/007) | | ٥ | Applications Analysis (EPA/540/Å5-91/003) Technology Demo. Summary (EPA/540/S5-91/ | Ex-Situ Anaerobic Bioremediation System, Dinoseb, J.R. Simplot Company | | ۵ | 003) Demonstration Bulletin (EPA/540/M5-91/003) | Demonstration Bulletin (EPA/540/MR-94/508) | | CF Syste | ems Corp.—Solvent Extraction | Forager Sponge Technology | | | Technology Evaluation Vol. I (EPA/540/5-90/ | ☐ Demonstration Bulletin (EPA/540/MR-94/522) | | | 002) Technology Evaluation Vol. II (EPA/540/5-90/ | Fungal Treatment Technology | | | 002a)
PB90-186503 | ☐ Demonstration Bulletin (EPA/540/MR-93/514) | | | Applications Analysis (EPA/540/A5-90/002)
Technology Demo. Summary (EPA/540/S5-90/ | Gas-Phase Chemical Reduction EcoLogic International, | | | 002) | Inc | | | Technologies, Inc.—
Il Fixation/Stabilization | ☐ Demonstration Bulletin (EPA/540/MR-93/522)
☐ Technology Evaluation—Vol. I (EPA/540/R-93/522a) | | | Technology Evaluation Vol. I (EPA/540/5-89/ | PB95-100251 | | <u></u> | 011a) | ☐ Technology Evaluation—Appendices (EPA/540/
R-93/522b) PB95-100251 | | ū | PB91-127696 Technology Evaluation Vol. II (EPA/540/5-89/011b) | ☐ Technology Demo. Summary (EPA/540/SR-93/522) | | П | PB90-274127
Applications Analysis (EPA/540/A5-89/011) | GIS/KEY Environmental Data Management System | | | Technology Demo. Summary (EPA/540/S5-89/011) ³ | ☐ Innovative Technology Evaluation Report (EPA/540/R-94/505) | | ٥ | Demonstration Bulletin (EPA/540/M5-89/011) ³ | ☐ SITE Technology Capsule (EPA/540/SR-94/505)☐ Demonstration Bulletin (EPA/540/MR-94/505) | | Colloid 1 | Polishing Filter Method Filter Flow Technology, | | | Inc. | | Hazcon—Solidification | | | Demonstration Bulletin (EPA/540/MR-94/501)
Capsule (EPA/540/R-94/501a) | Technology Evaluation Vol. I (EPA/540/5-89/
001a)
PB89-158810 | | Delividro | -Tech—Carver-Greenfield | ☐ Technology Evaluation Vol. II EPA/540/5-89/ | | | Technology Evaluation (EPA/540/R-92/002) PB92-217462 | 001b)
PB89-158828 | | П | Applications Analysis (EPA/540/AR-92/002) | ☐ Applications Analysis (EPA/540/A5-89/001) | | | Technology Demo. Summary (EPA/540/SR-92/002) | Technology Demo. Summary (EPA/540/S5-89/001) ³ | | | Demonstration Bulletin (EPA/540/MR-92/002) | ☐ Demonstration Bulletin (EPA/540/M5-89/001)³ | | Dupont/6 | Oberlin—Microfiltration System | Horsehead Resource Development | | | Technology Evaluation (EPA/540/5-90/007)
PB92-153410 | Technology Evaluation Vol I (EPA/540/5-91/005) PB92-205855 | | 0 | Applications Analysis (EPA/540/A5-90/007) | ☐ Applications Analysis (EPA/540/A5-91/005) | | | | | National Technical Information Service 5285 Port Royal Road Springfield VA 22161 Telephone 703-487-4650. ¹ Order documents free of charge by calling EPA's Center for Environmental Research Information (CERI) at 513-569-7562. ² Documents with a PB number are out of stock in CERI and must be ordered by that number at cost from ³ Out of stock | • | | |---|--| | ☐ Technology Demo. Summary (EPA/540/S5-91/005) | ☐ Applications Analysis (EPA/540/AR-93/520)
PB94-189438 | | Demonstration Bulletin (EPA/540/M5-91/005) | (D)T-10)T30 | | Hrubetz Environmental Services, Site Demonstration | McColl Superfund Site—Demonstration of a Trial Excavation | | Program ☐ Demonstration Bulletin (EPA/540/MR-93/524) | Technology Evaluation (EPA/540/R-92/015) PB92-226448 | | Hydraulic Fracturing of Contaminated Soil | Applications Analysis (EPA/540/AR-92/015) Technology Demo. Summary (EPA/540/SR-92/015) | | Demonstration Bulletin (EPA/540/MR-93/505) Technology Evaluation and Applications Analysis Combined (EPA/540/R-93/505) Technology Demo. Summary (EPA/540/SR-93/ | Microfiltration Technology EPOC Water, Inc. Demonstration Bulletin (EPA/540/MR-93/513) | | 505) | Mobile Volume Reduction Unit at the Sand Creek Superfund | | In-Situ Steam Enhanced Recovery System—Hughes
Environmental Systems, Inc. | Site Treatability Study Bulletin (EPA/540/MR-93/512) | | ☐ Demonstration Bulletin (EPA/540/MR-94/510) | Mobile Volume Reduction Unit at the Escambia Superfund Site | | In-Situ Vitrification—Geosafe Corporation ☐ Demonstration Bulletin (EPA/540/MR-94/520) | ☐ Treatability Study Bulletin (EPA/540/MR-93/511) | | ☐ Technology Capsule (EPA/540/R-94/522a) | Ogden Circulating Bed Combustor—McColl Superfund Site | | IWT/GeoCon In-Situ Stabilization | Technology Evaluation (EPA/540/R-92/001)Demonstration Bulletin (EPA/540/MR-92/001) | | Technology Evaluation Vol. I (EPA/540/5-89/004a) | Outboard Marine Corporation Site—Soiltech Anaerobic | | ☐ Technology Evaluation—Appendices (EPA/540/R-93/522b) Technology Evaluation Vol. II (EPA/540/5-89/004b) PB89-194179 | Thermal Processor Demonstration Bulletin (EPA/540/MR-92/078) | | □ Technology Evaluation Vol. III (EPA/540/5-89/004c) PB90-269069 □ Technology Evaluation Vol. IV (EPA/540/5-89/004d) PB90-269077 □ Applications Analysis (EPA/540/A5-89/004) □ Technology Demo. Summary (EPA/540/S5-89/004) □ Technology Demo. Summary., Update Report (EPA/540/S5-89/004a) □ Demonstration Bulletin (EPA/540/M5-89/004)³ Low Temperature Thermal Aeration (LTTA) System, Canonie Environmental Services, Inc. □ Demonstration Bulletin (EPA/540/MR-93/504) Magnum Water Technology—CAV-OX Ultraviolet Oxidation Process □ Demonstration Bulletin (EPA/540/MR-93/520) | Perox-Pure™ Chemical Oxidation Treatment □ Demonstration Bulletin (EPA/540/MR-93/501) □ Applications Analysis (EPA/540/AR-93/501) □ Technology Evaluation (EPA/540/R-93/501) □ PB93-213528 □ Technology Demo. Summary (EPA/540/SR-93/501) Pilot-Scale Demonstration of Slurry-Phase Biological Reactor for Creosote-Contaminated Wastewater □ Technology Demo. Summary (EPA/540/S5-91/009) □ Technology Evaluation Vol. I (EPA/540/S5-91/009) □ PB93-205532 □ Applications Analysis (EPA/540/A5-91/009) □ Demonstration Bulletin (EPA/540/M5-91/009) PO*WW*ER™ Wastewater Treatment System Lake Charles Treatment Center □ Applications Analysis (EPA/540/AR-93/506) □ Demonstration Bulletin (EPA/540/MR-93/506) | | Order documents free of charge by calling EPA's Center for Environmental Research Information (CERI) at 513-569-7562. | Documents with a PB number are out of stock in CERI and
must be ordered by that number at cost from
National Technical Information Service
5285 Port Royal Road
Springfield VA 22161
Telephone 703.487.4650 | | ☐ Technology Evaluation Vol. I (EPA/540/R-93/ | SBP Technologies—Membrane Filtration | |--|---| | 506A) PB94-160637 | ☐ Demonstration Bulletin (EPA/540/MR-92/014) | | Technology Evaluation Vol. II (EPA/540/R-93/
506B) PB94-160660 | Applications Analysis (EPA/540/AR-92/014) | | Technology Demo. Summary (EPA/540/SR-93/506) | SFC Oleofiltration System North American Technologies Group, Inc. | | The state of s | ☐ Demonstration Bulletin (EPA/540/MR-94/525) | | Radio Frequency Heating—IIT Research Institute ☐ Demonstration Bulletin (EPA/540/MR-94/527) | • | | Definolistration Butterin (EFA/340/MIX-34/321) | Shirco—Infrared Incineration | | Radio Frequency Heating—KAI Technologies, Inc. | Technology Evaluation—Peake Oil | | Demonstration Bulletin (EPA/540/MR-94/528) | (EPA/540/5-88/002a) ☐ Technology Evaluation—Rose Township | | · · | (EPA/540/5-89/007a) PB89-125991 | | Resources Conservation Company—The Basic Extractive Sludge Treatment (B.E.S.T.) | ☐ Technology Evaluation—Rose Township Vol. II (EPA/540/5-89/007b), PB89-167910 | | Demonstration Bulletin (EPA/540/MR-92/079) | Applications Analysis (EPA/540/A5-89/010) | | ☐ Applications Analysis (EPA/540/AR-92/079) | ☐ Technology Demo. Summary (EPA/540/S5-89/
007)³ | | ☐ Technology Evaluation Vol. I (EPA/540/R-92/ | Demonstration Bulletin (EPA/540/M5-88/002) ³ | | 079a) | Technology Evaluation Report—Peake Oil Vol. | | PB93-227122 ☐ Technology Evaluation Vol. II, Part 1 | II | | (EPA/540/R-92/079b) PB93-227130 | (EPA/540/5-88/002B) PB89-116024 | | ☐ Technology Evaluation Vol. II, Part 2 | | | (EPA/540/R-92/079c) PB93-227148 | Silicate Technology Corporation—Solidification/ | | ☐ Technology Evaluation Vol. II, Part 3
(EPA/540/R-92/079d) PB93-227155 | Stabilization of Organic/Inorganic Contaminants ☐ Demonstration Bulletin (EPA/540/MR-92/010) | | ☐ Technology Demo. Summary (EPA/540/SR-92/079) | Applications Analysis (EPA/540/AR-92/010) PB93-172948 | | Retech Plasma Centrifugal Furnace | Soiltech ATP
Systems—Aostra-Soil-Tech Anaerobic | | ☐ Technology Evaluation Vol. I (EPA/540/5-91/ | Thermal Process | | 007a) | ☐ Demonstration Bulletin (EPA/540/MR-92/008) | | PB 92-216035 ☐ Technology Evaluation Vol. II (EPA/540/5-91/ | | | 007b) | Soliditech, Inc.—Solidification | | PB92-216043 | ☐ Technology Evaluation Vol. I (EPA/540/5-89/
005a) | | Applications Analysis (EPA/540/A5-91/007) | ☐ Technology Evaluation Vol. II (EPA/540/5-89/ | | PB92-218791 Technology Demo. Summary (EPA/540/S5-91/ | 005b) | | 007) | PB90-191768 | | ☐ Demonstration Bulletin (EPA/540/M5-91/007) | ☐ Applications Analysis (EPA/540/A5-89/005) ☐ Technology Demo. Summary (EPA/540/S5-89/005)³ | | Roy F. Weston, Inc.—Low Temperature Thermal | ☐ Demonstration Bulletin (EPA/540/M5-89/005) | | Treatment (LT3) System | | | Demonstration Bulletin (EPA/540/MR-92/019) | Subsurface Volatilization and Ventilation System | | ☐ Applications Analysis (EPA/540/AR-92/019) | ☐ Demonstration Bulletin (EPA/540/MR-94/529) | | | | Telephone 703-487-4650. ³ Out of stock ¹ Order documents free of charge by calling EPA's Center for Environmental Research Information (CERI) at 513-569-7562. ² Documents with a PB number are out of stock in CERI and must be ordered by that number at cost from National Technical Information Service 5285 Port Royal Road Springfield VA 22161 | Terra Kleen Solvent Extraction Technology—Terra
Kleen Response Group, Inc. | ☐ Technology Demo. Summary (EPA/540/SR-93/517) | |--|--| | ☐ Demonstration Bulletin (EPA/540/MR-94/521) | | | Terra Vac—Vacuum Extraction | Toxic Treatments (USA)—In-Situ Steam/Hot Air
Stripping | | ☐ Technology Evaluation Vol. I (EPA/540/5-89/
003a)
PB89-192025 | ☐ Applications Analysis (EPA/540/A5-90/008) ☐ Demonstration Bulletin (EPA/540/M5-90/003) | | ☐ Technology Evaluation Vol. II (EPA/540/5-89/003b) PB89-192033 | Ultrox International—UV Ozone Treatment for Liquids ☐ Technology Evaluation (EPA/540/5-89/012) PB90-198177 | | ☐ Applications Analysis (EPA/540/A5-89/003) ☐ Technology Demo. Summary (EPA/540/S5-89/003) | ☐ Applications Analysis (EPA/540/A5-89/012) ☐ Technology Demo. Summary (EPA/540/S5-89/012) | | ☐ Demonstration Bulletin (EPA/540/M5-89/003)³ | Demonstration Bulletin (EPA/540/M5-89/012) | | Texaco Gasification Process—Texaco, Inc. □ Demonstration Bulletin (EPA/540/MR-94/514) | U.S. EPA—Design and Development of a Pilot-Scale Debris Decontamination System | | Thermal Desorption System, Clean Berkshires, Inc. □ Demonstration Bulletin (EPA/540/MR-94/507) □ Capsule (EPA/540/R-94/507a) ³ | ☐ Technical Evaluation (EPA/540/5-91/006a) ☐ Technical Evaluation Vol. II (EPA/540/5-91/006b) PB91-231464 ☐ Technology Demo. Summary (EPA/540/S5-91/006) | | Thermal Desorption Unit Eco Logic International, Inc. | 000) | | ☐ Demonstration Bulletin (EPA/540/MR-94/504) | U.S. EPA—Mobile Volume Reduction Unit | | Thorneco, Inc.—Enzyme-Activated Cellulose Technology ☐ Treatability Study Bulletin (EPA/540/MR-92/018) ³ | □ Demonstration Bulletin (EPA/540/MR-93/508) □ Applications Analysis (EPA/540/AR-93/508) □ Technology Evaluation (EPA/540/R-93/508) □ PB94-136264 □ Technology Demo. Summary (EPA/540/SR-93/ | | Toronto Harbour Commissioners—Soil Recycling
Treatment Train | 508) | | Demonstration Bulletin (EPA/540/MR-92/015) Applications Analysis (EPA/540/AR-93/517) Technology Evaluation (EPA/540/R-93/517) PB93-216067 | X-TRAX Model 100 Thermal Desorption System Chemical Waste Management Demonstration Bulletin (EPA/540/MR-93/502) | ¹ Order documents free of charge by calling EPA's Center for Environmental Research Information (CERI) at 513-569-7562. ² Documents with a PB number are out of stock in CERI and must be ordered by that number at cost from National Technical Information Service 5285 Port Royal Road Springfield VA 22161 Telephone 703-487-4650. ³ Out of stock ## **Emerging Technologies Program Reports** | Aluminum Company of America—Bioscrubber for
Removing Hazardous Organic Emission from Soil,
Water, and Air Decontamination Process | Center for Hazardous Materials Research—Acid
Extraction Treatment System for Treatment of Metal
Contaminated Soils | |--|--| | Emerging Tech. Report (EPA/540/R-93/521) PB93-227205 Emerging Tech. Bulletin (EPA/540/F-93/507) | ☐ Emerging Tech. Report (EPA/540/R-94/513)
☐ Emerging Tech. Summary (EPA/540/SR-94/513) | | Emerging Tech. Summary (EPA/540/SR-93/521) Journal Article AWMA Vol. 44, No. 3, March
1994 | Center for Hazardous Materials Research—Reclamation of Lead from Superfund Waste Material Using Secondary Lead Smelters | | Atomic Energy of Canada Limited—Chemical Treatment and Ultrafiltration | ☐ Emerging Tech. Bulletin (EPA/540/F-94/510) | | ☐ Emerging Tech. Bulletin (EPA/540/F-92/002) | Colorado School of Mines—Constructed Wetlands
Receiving Acid Mine Drainage | | Babcock and Wilcox—Cyclone Furnace Soil Vitrification | ☐ Emerging Tech. Summary (EPA/540/SR-93/523) ☐ Emerging Tech. Report (EPA/540/R-93/523) | | Emerging Tech. Bulletin (EPA/540/F-92/010) Emerging Tech. Report (EPA/540/R-93/507) PB93-163038 | PB93-233914 ☐ Emerging Tech. Bulletin (EPA/540/F-92/001) | | ☐ Emerging Tech. Summary (EPA/540/SR-93/507) | Electro-Pure Systems—Alternating Current Electrocoagulation | | Battelle Memorial Institute—Development of Electro- Acoustic Soil Decontamination (ESD) Process for In Situ Applications □ Emerging Technology (EPA/540/5-90/004) PB90-204728 | Emerging Tech. Bulletin (EPA/540/F-92/011) Emerging Tech. Summary (EPA/540/S-93/504) Journal Article AWMA Vol. 43, No. 5, May 1993 | | ☐ Emerging Tech. Summary (EPA/540/S5-90/004)³ | Energy and Environmental Engineering—Laser-Induced Photochemical Oxidative Destruction | | Bio-Recovery Systems—Removal and Recovery of Metal Ions from Groundwater | ☐ Emerging Tech. Bulletin (EPA/540/F-92/004)
☐ Emerging Tech. Report (EPA/540/R-92/080) | | Emerging Technology (EPA/540/5-90/005a)Emerging Tech.—Appendices (EPA/540/5-90/005b) | PB93-131431 ☐ Emerging Tech. Summary (EPA/540/SR-92/080) | | PB90-252602 Emerging Tech. Summary (EPA/540/S5-90/005) Emerging Tech. Bulletin (EPA/540/F-92/003) Journal Article AWMA Vol. 41, No. 10, October | Energy and Environmental Research Corporation © Emerging Tech. Bulletin (EPA/540/F-93/508) | | 91 | Florida International University — Electron Beam Treatment for Removal of Benzene and Toluene from Aqueous Streams and Sludge | | Biotrol, Inc.—Methanotrophic Bioreactor System Emerging Tech. Bulletin (EPA/540/F-93/506) Emerging Tech. Summary (EPA/540/SR-93/505) | ☐ Emerging Tech. Bulletin (EPA/540/F-93/502) | | Journal Article AWMA Vol. 43, No. 11, November 1993 | Electron Beam Treatment for the Trichloroethylene and Tetrachloroethylene from Aqueous Stream □ Emerging Tech. Bulletin (EPA/540/F-92/009) | | | | National Technical Information Service 5285 Port Royal Road Springfield VA 22161 Telephone 703-487-4650. ¹ Order documents free of charge by calling EPA's Center for Environmental Research Information (CERI) at 513-569-7562. ² Documents with a PB number are out of stock in CERI and must be ordered by that number at cost from National Technical Information Community ³ Out of stock ## **Emerging Technologies Program Reports (continued)** | — Removal of Phenol from Aqueous Solutions Using
High Energy Electron Beam Irradiation □ Emerging Tech. Bulletin (EPA/540/F-93/509) | PURUS, Inc.—Destruction of Organic Contaminants in Air Using Advanced Ultraviolet Flashlamps ☐ Emerging Tech. Bulletin (EPA/540/F-93/501) ☐ Emerging Tech. Summary (EPA/540/SR-93/516 | |--|--| | Institute of Gas Technology (CBT-Chemical and Biological Treatment) | Emerging Tech. Report (EPA/540/R-93/516) PB93-205383 | | ☐ Emerging Tech. Bulletin (EPA/540/F-94/504) | Superfund Innovative Technology Evaluation Program:
Innovation Making a Difference | | Institute of Gas Technology—Biological Degradation Process | Emerging Tech. Brochure (EPA/540/F-94/505) | | ☐ Emerging Tech. Bulletin (EPA/540/F-94/501) IT Corporation—Photolysis/Biodegradation of PCB and PCDD/PCDF Contaminated Soils | Superfund Innovative Technology Evaluation Program: Technology with an Impact | | ☐ Emerging Tech. Bulletin (EPA/540/F-94/502) | Emerging Tech. Brochure (EPA/540/F-93/500) | | J.R. Simplot—Anaerobic Destruction of Nitroaromatics ☐ Journal Article App. Env. Micro, Vol. 58, pp. 1683-89 | University of Washington—Metals Treatment at Superfund Sites by Adsorptive Filtration ☐ Emerging Tech. Bulletin (EPA/540/F-92/008) ☐ Emerging Tech. Report (EPA/540/R-93/515) PB93-231165 | | Matrix Photocatalytic—Tio ₂ UV Oxidation ☐ Journal Articles (EPA/540/A-93/282, EPA/540/J-93/297). | ☐
Emerging Tech. Summary (EPA/540/SR-93/515) Wastewater Technology Centre—A Cross-Flow Pervaporation System for Removal of VOCs from | | M. L. Energia—Reductive Photo-Dechlorination Process for Safe Conversion of Hazardous Chlorocarbon Waste Streams | Contaminated Soil Emerging Tech. Bulletin (EPA/540/F-93/503) Emerging Tech. Report (EPA/540/R-94/512) PB94-170230 Emerging Tech. Summary (EPA/540/SR-94/512) | | New Jersey Institute of Technology—Ghea Associates Process [for Soil Washing and Wastewater Treatment] □ Emerging Tech. Bulletin (EPA/540/F-94/509) | Volatile Organic Compound Removal from Air Streams by Membrane Separation ☐ Emerging Tech. Bulletin (EPA/540/F-94/503) | Telephone 703-487-4650. ¹ Order documents free of charge by calling EPA's Center for Environmental Research Information (CERI) at 513-569-7562. Documents with a PB number are out of stock in CERI and must be ordered by that number at cost from National Technical Information Service 5285 Port Royal Road Springfield VA 22161 ³ Out of stock ## Superfund Technology Demonstration Division RREL/RCB Videotape Library Videotapes documenting 26 USEPA Risk Reduction Engineering Laboratory (RREL) Projects have been combined into four 1/2" VHS (NTSC format) tapes. Each tape is available at the cost of \$30.00 plus \$5.00 shipping/handling fee (per copy). Contents of SITE Videotape S1 (6 technology demonstrations): ECOVA (SHIRCO) Infrared Incineration System, Brandon, FL—8/87 ECOVA (SHIRCO) Infrared Incineration System, Rose Twp., MI—3/89 EMTECH (HAZCON) Solidification Process. Douglassville, PA—10/87 IWT/GEO-CON In Situ Stabilization/Solidification, Hialeah, FL—4/88 TERRA VAC Vacuum Extraction System, Groveland, MA—1/88 CF SYSTEMS Solvent Extraction Unit, New Bedford, MA—3/89 Contents of SITE Videotape S2 (4 technology demonstrations): ULTROX Ultraviolet Radiation and Oxidation, San Jose, CA—3/89 BIOTROL Biological Aqueous Treatment, New Brighton, MN 9/89 BIOTROL Soil Washing System, New Brighton, MN—9/89 IT/RREL Debris Washing System, Hopkinsville, KY—12/89 Contents of SITE Videotape S3 (4 technology demonstrations): SOLIDITECH Solidification and Stabilization, Morganville, NJ—12/88 CHEMFIX Solidification and Stabilization, Clackamas, OR—3/89 NOVATERRA (TTUSA) In Situ Steam and Air Stripping, San Pedro, CA—9/89 AWD Integrated Vapor Extraction/Steam Vacuum Stripping, Burbank, CA—9/90 Contents of SITE Videotape S4 (4 technology demonstrations): E.I. DUPONT/OBERLIN FILER Membrane Microfiltration, Palmerton, PA—5/90 HORSEHEAD Flame Reactor, Atlanta, GA—3/91 RETECH Plasma Centrifugal Furnace, Butte, MT—7/91 BABCOCK & WILCOX Cyclone Furnace, Alliance, OH—11/91 Contents of SITE Videotape S5 (4 technology demonstrations): STC Immobilization of Organic/Inorganic Contaminants in Soils, Selma, CA—11/90 THC Soil Recycle Treatment Train at Toronto Harbor, Toronto, Ont., Canada—5/92 R.C.C. Basic Extractive Sludge Treatment (B.E.S.T.), Grand Calumet River, Gary, IN—7/92 Peroxidation Systems, Inc. Purox-Pure Chemical Oxidation Treatment, Altamont Hills, CA—9/92 Contents of SITE Videotape S6 (4 technology demonstrations): Bergmann Soil/Sediment Washing Technology, Saginaw Bay, MI—2/93 # Superfund Technology Demonstration Division RREL/RCB Videotape Library (continued) BESCORP Soil Washing System, Fairbanks, AK-8/92 ELI Eco Logic International Inc. Hydrogen Reduction Gas-Phase Chemical Reduction Process, Bay City, MI—11/ 93 Magnum Water Technology CAV-OX Ultraviolet Oxidation Process, Edwards AFB, CA—1/94 R1 RREL/RCB Research Programs This composite videotape contains five documentaries on research projects conducted under the auspices of the Risk Reduction Engineering Laboratory's Releases Control Branch: Synthetic Soils Matrix (SSM) Program Dioxin and the Mobile Incineration System Mobile Carbon Regeneration System Mobile Soils Washing System Mobile In Situ Containment/Treatment Unit USEPA-produced videotapes may be obtained by contacting Foster Wheeler Envirosponse, Inc., Attn: Ms. Marilyn Avery - 8 Peach Tree Hill Rd., Livingston, NJ 07039 . . .