Field Analytical and Site Characterization Technologies Summary of Applications | | • | | | |--|---|---|-----| | | | | | | | | | | | | • | ÷ | , , | | | | | | | | | | | | | • | , | | | | | er en | į | ## Field Analytical and Site Characterization Technologies Summary of Applications U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response Technology Innovation Office Washington, D.C. 20460 #### NOTICE This material has been funded wholly by the United States Environmental Protection Agency under Contract Number 68-W5-0055. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. Copies of this report are available free of charge from the National Center for Environmental Protection and Information (NCEPI), PO Box 42419, Cincinnati, Ohio 45242-2419; telephone (800) 490-9198 or (513) 489-8190 (voice) or (513) 489-8695 (facsimile). Refer to document EPA-542-R-97-011, Field Analytical and Site Characterization Technologies, Summary of Applications. This document also can be obtained through EPA's Clean Up Information (CLU-IN) System on the World Wide Web at http://www.clu-in.com or by modem at (301) 589-8366. For assistance, call (301) 589-8368. Comments or questions about this report may be directed to the United States Environmental Protection Agency, Technology Innovation Office (5102G), 401 M Street, SW, Washington, DC 20460; telephone (703) 603-9910. #### **ACKNOWLEDGMENTS** This document was prepared for the United States Environmental Protection Agency's (EPA) Technology Innovation Office. The study was designed in coordination with EPA's National Environmental Research Laboratory at Las Vegas. Information in this document was compiled with the assistance of EPA's regional contacts for field analytical and site characterization technologies. Special acknowledgment also is given to the federal and state staff and other remediation professionals listed as contacts for individual sites and projects. Those individuals provided the detailed information presented in this document. Their willingness to share their expertise will help to further the application of field analytical and site characterization technologies at other sites. . _ #### **ABSTRACT** This report provides information about experiences in the use of field analytical and site characterization technologies at contaminated sites drawn from 204 applications of the technologies listed below. For each technology, information is presented on the reported uses of the technology; including the types of pollutants and media for which the technology was used; reported advantages and limitations of the technology; and cost data for the technology, when available. Information was obtained from federal and state site managers and from the Vendor Field Analytical and Characterization Technologies System (Vendor FACTS) database. This report is intended to provide information that will facilitate the broader use of various field analytical and site characterization technologies at hazardous waste sites by encouraging information exchange among federal, state, and private-sector site managers. However, it is not intended to provide a comprehensive review of all field analytical and site characterization technologies or of all potential uses of the technologies it does list. More detailed information about them may be obtained from other sources, including those listed in Section 1.2. This report documents uses of the following field analytical and site characterization technologies at contaminated sites: #### **Chemical Technologies** - Biosensor - Colorimetric test strip - Cone penetrometer mounted sensor - Fiber-optic chemical sensor - Fourier-transformed infrared (FTIR) spectrometry - Gas chromatography - Immunoassay - Mercury vapor analyzer - X-ray fluorescence #### **Geophysical Technologies** - Bore-hole geophysical - Direct-push electrical conductivity - Electromagnetic induction - Ground penetrating radar - Magnetometry - Seismic profiling #### Radionuclide Technologies - Gamma radiation detector - Passive alpha detector ## Sampling and Sampler Emplacement Technologies - Closed-piston soil sampling - Direct-push prepacked well screen - Low-flow ground-water pumping - Soil gas sampling - Vertical ground-water profiling - Vibrating well installation #### **CONTENTS** | Section | <u>n</u> | <u>Page</u> | |---------|-------------|--| | NOTI | CE | ii | | ACKI | NOWLE | GEMENTS iii | | ABST | RACT | iv | | 1.0 I | TRODU | CTION | | | 1.1
1.2 | PURPOSE | | | | OF APPLICATIONS OF FIELD ANALYTICAL AND SITE CHARACTERIZATION OGIES | | | 2.1 | SUMMARY OF RESULTS | | | | 2.1.1 Chemical Technologies 10 2.1.2 Geophysical Technologies 14 2.1.3 Radionuclide Technologies 17 2.1.4 Sampling and Sampler Emplacement Technologies 18 | | | 2.2 | SUMMARY OF DATA ON SPECIFIC TECHNOLOGIES | | Appe | <u>ndix</u> | | | A | LIST | F ACRONYMS | | В | DATA | COLLECTION METHODOLOGY | | C | • | OR FIELD ANALYTICAL AND CHARACTERIZATION TECHNOLOGIES SYSTEM | #### **Tables** | Table | Ţ | Page | |-------|--|------| | 1-1 | NUMBER OF SITES BY TECHNOLOGY | 2 | | 2-1 | REPORTED USES OF DATA GENERATED BY FIELD ANALYTICAL AND SITE CHARACTERIZATION TECHNOLOGIES | 6 | | 2-2 | REPORTED USES OF TECHNOLOGIES BY MEDIUM AND ANALYTE | 8 | | 2-3 | SUMMARY OF FIELD ANALYTICAL AND SITE CHARACTERIZATION TECHNOLOGIES; REPORTED DATA ON SPECIFIC TECHNOLOGIES | . 20 | #### 1.0 INTRODUCTION Newer field analytical and site characterization technologies offer potential savings in time and cost compared with traditional technologies. The United States Environmental Protection Agency (EPA) is interested in increasing awareness of these technologies by encouraging information exchange among federal, state, and private-sector site managers, remediation professionals, and other interested parties. Various field analytical and site characterization technologies have been used at Superfund and Resource Conservation and Recovery Act (RCRA) sites and at sites with leaking underground storage tanks. In addition, as a result of EPA's Brownfields Initiative to encourage the productive reuse of abandoned properties that are or are perceived to be contaminated, there is increasing interest in the use of these technologies at such sites. EPA believes that providing information about actual applications of new technologies can be very useful in increasing awareness and promoting information exchange. EPA has collected information about the uses of field analytical and site characterization technologies at 204 sites and has summarized the experiences of those involved in applying the technologies at contaminated sites. This report has two sections. Section 1.0 discusses the purpose and background of the report. Section 2.0 provides a summary of the information obtained about the uses of field analytical and site characterization technologies, including a detailed tabular presentation of the data collected about sites at which field analytical and site characterization technologies have been used. Limitations of the data, including factors that affect the applicability and cost of field analytical and site characterization technologies is also provided. Appendix A provides a list of relevant acronyms, and Appendix B describes the methodology used in collecting the data. Appendix C provides information about the Vendor Field Analytical and Characterization Technologies System (Vendor FACTS) database. #### 1.1 PURPOSE This report is a summary of information about uses of 23 field analytical and site characterization technologies, as reported by federal and state site managers. The purpose of this report is to: (1) provide information that will facilitate the broader use of various field analytical and site characterization technologies at hazardous waste sites by encouraging information exchange among federal, state, and private-sector site managers and (2) provide a selected inventory of sites at which various types of field analytical and site characterization technologies have been used. It is important to note that this report presents a summary of the information obtained from federal and state site managers and is not intended to be a comprehensive review of field analytical and site characterization technologies or of all potential uses. Table 1-1 presents a summary, by number of sites, of the field analytical and site characterization technologies included in this report. As Table 1-1 shows, information was collected from 204 sites. Appendix B presents a description of the methods used to collect the information for this report. It is important to note that many factors can affect the technical feasibility and cost of field analytical and site characterization technologies. Such factors include physical constraints, site layout, data quality requirements, time constraints, matrix interferences, expected levels of contamination, and other considerations particular to a given site. Such factors should be considered in determining whether specific field analytical and site characterization technologies are appropriate for a particular site. Table 1-1 Number of Sites by Technology | Technology | Number of Sites
Included in this Report | |---|---| | Chemical ' | Technologies | | Immunoassay | 43 | | X-ray fluorescence | 39 | | Cone penetrometer mounted sensor | 34 | | Gas chromatography | 24 | | Fourier-transformed infrared spectrometry | 3 | | Colorimetric test strip | 3 | | Fiber-optic chemical sensor | 3 | | Mercury vapor analyzer | 2 | | Biosensor | 1 | | Geophysical | Technologies | | Seismic profiling | 8 | | Ground penetrating radar | 4 | | Bore-hole geophysical | 4 | | Electromagnetic induction | 3 | | Magnetometry | 2 | | Direct-push electrical conductivity | 1 | | Radionuclide | Technologies | | Gamma radiation detector | 3 | | Passive alpha detector | 1 | | Sample and Sampler En | aplacement Technologies | | Low-flow ground-water pumping | 9 | | Vibrating well installation | 6 | | Soil gas sampling | 5 | | Vertical ground-water profiling | 4 | | Closed-piston soil sampling | 1 | | Direct-push prepacked well screen | 1 | | Total | 204 | With respect to cost information for applications of these technologies at specific sites, provided in Section 2.0 of this report, it is important to note that the costs are presented exactly as reported by site contacts and that the ways in which site contacts reported costs varied. For example, site contacts reported cost information as cost per sample, foot, time, or item. This report did not attempt to recalculate the costs on a consistent basis (normalize the costs) by technology, medium, or other parameter. Cost information provided by site contacts usually was based on their comparison of the cost of using the technology with the cost of off-site laboratory analysis. **Therefore, cost information should be considered qualitatively.** #### 1.2 BACKGROUND To better understand the factors that affect field analytical and site characterization technologies and for more detailed information about those technologies, the reader should consult: - Expedited Site Assessment Tools for Underground Storage Tank Sites: A Guide for Regulators, EPA-510-B-97-001, 1997 - Field Sampling and Analysis Matrix and Reference Guide (under preparation by the EPA and U.S. Navy, with publication expected in November 1997) - Site Characterization and Monitoring Bibliography of EPA Information Resources, EPA-542-B-96-001, February 1996 - Superfund Innovative Technology Evaluation Program, Technology Profiles, EPA-540-R-97-502, December 1996 In addition, EPA's Environmental Technology Verification Site Characterization Pilot Project (also known as the Consortium for Site Characterization Technology) verifies field analytical and site characterization technologies. The program has completed verification reports for the site characterization and analysis penetrometer system and laser-induced fluorescence (SCAPS-LIF) technology and the rapid optical survey tool (ROSTTM), also a LIF-based technology. The EPA document numbers for those reports are EPA 600-R97-019 and EPA 600-R97-020, respectively. Verification reports are pending for seven field-portable x-ray fluorescence technologies and two field-portable gas chromatography/mass spectroscopy (GC/MS) technologies. Currently, there are 20 field analytical and site characterization technologies in EPA's verification program. Information about the program is available on the World Wide Web at http://www.epa.gov/etv/. In addition, EPA is developing an encyclopedia of field analytical and site characterization technologies. This encyclopedia will be available in 1998 through EPA's Clean-Up Information (CLU-IN) World Wide Web site at http://www.clu-in.com/char1.htm. ### 2.0 SURVEY OF APPLICATIONS OF FIELD ANALYTICAL AND SITE CHARACTERIZATION TECHNOLOGIES #### 2.1 SUMMARY OF RESULTS This section provides a summary of the information obtained from 204 sites about uses of selected field analytical and site characterization technologies. Tables 2-1, 2-2, and 2-3, respectively, summarize the general uses of the technology (such as site screening, site characterization, compliance monitoring, and cleanup monitoring), the medium monitored, target analytes, and detailed reported data. Table 2-1 presents information about the general uses of data generated through the use of the field analytical and site characterization technologies summarized in this report. Table 2-2 presents information about the technologies by type of medium and analyte. Seven categories of analytes were reported: volatile organic compounds (VOC), semivolatile organic compounds (SVOC), fuels, inorganic compounds, pesticides, explosives, and radionuclides. An additional category, geophysical, was included among the analytes to allow reporting of applications in which the technologies were used to analyze the physical environment. Sections 2.1.1 through 2.1.4 provide a brief description of the technologies and a discussion of the reported advantages and limitations of each technology, when compared with traditional sampling and analysis techniques. The sections are organized by technology type. Federal and state site managers identified several common concerns related to the use of field analytical and site characterization technologies. Many users reported that the innovative technologies required experienced operators. Users also noted that several technologies yielded false negative results because of insufficient lower detection limits and other causes. Several users reported difficulty in extracting the contaminants from the soil sample and other matrix interferences. Several comments were associated with EPA's role in the use of the technologies. One user reported that his EPA region had no established sample collection procedures for a particular innovative technology. Users reported that little information was available about official verification procedures for the use of the technologies. In addition, one user noted that quality assurance and quality control (QA/QC) procedures for a certain field analytical technology were not well developed. Table 2-1 Reported Uses of Data Generated by Field Analytical and Site Characterization Technologies | Technology | 100 | Site Characterization | Cleaning Monitoring | Compliance Monitoring | Confirmation Sampling | Enforcement | Health and Safety Monitoring | Waste Charactetization | Risk Assessment | | | | |---|--|-----------------------|---------------------|-----------------------|-----------------------|-------------|------------------------------|------------------------|---|--|--|--| | Chemical Technologies Biosensor | | | | | | | | | | | | | | | | | | <u> </u> | | | | | | | | | | Colorimetric test strip | V | V | - | ~ | | | | | | | | | | Cone penetrometer mounted sensor | V | ~ | | | | | | | | | | | | Fiber-optic chemical sensor | V | V | | | | | | | | | | | | Fourier-transformed infrared spectrometry | | - | - | - | | | - | | | | | | | Gas chromatography | ~ | ~ | ~ | | ~ | | | | | | | | | Immunoassay | V | ~ | V | V | ~ | | | ~ | | | | | | Mercury vapor analyzer | | ~ | | | | | V | | | | | | | X-ray fluorescence | ~ | V | ~ | ~ | V | ~ | | | ~ | | | | | | (| Geophysic | al Techno | ologies | | • | | ' | | | | | | Bore-hole geophysical | | ~ | | | | | | | | | | | | Direct-push electrical conductivity | ~ | r | | | | | | | | | | | | Electromagnetic induction | | ٧ | | | | | | | | | | | | Ground penetrating radar | V | V | | | | ı | | | | | | | | Magnetometry | | ~ | | | | , | , | | | | | | | Seismic profiling | V | V . | | | | | | | | | | | | | R | Radionucli | ide Techn | ologies | | | l | I | | | | | | Gamma radiation detector | ~ | V | | | | | | | , | | | | | Passive alpha detector | V | ~ | | | | | ~ | | | | | | 6 Table 2-1 Reported Uses of Data Generated by Field Analytical and Site Characterization Technologies (continued) | Technology | Site Screening | Site Characterization | Cleanup Monitoring | Compliance Monitoring | Confirmation Sampling | Enforcement | Health and Safety Monitoring | Waste Characterization | Risk Assessment | | | | |---|----------------|-----------------------|--------------------|-----------------------|-----------------------|-------------|------------------------------|------------------------|-----------------|--|--|--| | Sampling and Sampler Emplacement Technologies | | | | | | | | | | | | | | Closed-piston soil sampling | | ~ | | | | | | | | | | | | Direct-push prepacked well screen | | ~ | | ~ | | | | | | | | | | Low-flow ground-water pumping | ~ | V | | V | | , | | | | | | | | Soil gas sampling | | ~ | · | | ľ | | | | ~ | | | | | Vertical ground-water profiling | | ~ | | ~ | | | | | , | | | | | Vibrating well installation | ~ | V | | | | | | | | | | | 7 Table 2-2 Reported Uses of Technologies by Medium and Analyte | Analyte | V | olatile O | rganic C | ompoun | ds | Sen | nivolatile | Organic | Compo | ınds | Fuels | | | | | |--|----------|-----------|--------------|----------|-----|----------|--------------|---------------|----------|------|-------|----------|--------------|---------------|----------| | Technology Medium | Roll | Sediment | Ground Water | Soil Gas | Air | Soil | Ground Water | Surface Water | Soil Gas | Air | Soil | Sediment | Ground Water | Surface Water | Soil Gas | | Biosensor | | | | | | | | | | | | | | | | | Colorimetric test strip | | | | | | | | | | | | | | | | | Cone penetrometer mounted sensor | > | | 7 | | | V | ~ | | | | ~ | | ~ | | | | Fiber-optic chemical sensor | | | ~ | ~ | | | ~ | | | | | | ~ | | | | Fourier-transformed infrared (FTIR) spectrometry | | | | | ~ | | | <u> </u> | | ~ | | | | | | | Gas chromatography | V | ~ | ~
| ~ | ~ | V | ~ | | | | V | | V | | 7 | | Immunoassay | V | ~ | ~ | | | ~ | ~ | ~ | | | ~ | ~ | V | V | | | Mercury vapor analyzer | | | | | | | | | | | | | | | | | X-ray fluorescence | | | | | | | | | | | | | | | | | Bore-hole geophysical | | | | | | | | | | | | | | | | | Direct-push electrical conductivity | | | | | | | | | | | | | | | | | Electromagnetic induction | | | | | | | | | | | | | | | | | Ground penetrating radar | | | | | | | | | | | | | | | | | Magnetometry | | | | | | | | | | | | | | | | | Seismic profiling | | | | | | | | | | | | | | | | | Gamma radiation detector | | | | | | | | | | | | | | | | | Passive alpha detector | | | | | | | | | | | | | | | | | Closed-piston soil sampling | | | | , | | | | | | | | | | | | | Direct-push prepacked well screen | | | ~ | | | | | | | | | | | | | | Low-flow ground-water pumping | | | ~ | | | | | | | | | | | | | | Soil gas sampling | | | , | ~ | | | - | | ~ | | | | | | | | Vertical ground-water profiling | | | V · | | | | | | | | | | | | | | Vibrating well installation | | | V | | | | V | | | | | | ~ | | | Table 2-2 Reported Uses of Technologies by Medium and Analyte (continued) | Analyte | T | Inorganics Explosives Radio-nuclides | | | | | | | | Geophysical | | | | | | | | |--|--------------|--------------------------------------|-----|------|--------------|----------|----------|--------------|----------|-----------------------|-----------|----------------------|--------------|-----------------------|-------------|-----------------|----------| | Technology Medium | Ground Water | Soil | Air | lios | Ground Water | lios | Sediment | Ground Water | Soil | Depth to Ground Water | Soil Type | Bedrock Stratigraphy | Conductivity | Buried Ferrous Metals | Temperature | Redox Potential | pH | | Biosensor | | | | ~ | V . | | | | | | | <u></u> | | | | | · | | Colorimetric test strip | 1 | V | | / | ~ | | | | | | | | | | | | | | Cone penetrometer mounted sensor | | | | | | | | | | ~ | ~ | | ~ | | ~ | ~ | / | | Fiber-optic chemical sensor | | | | | | | | | | | | | | | | | | | Fourier-transformed infrared (FTIR) spectrometry | | | | | | <u> </u> | | | <u> </u> | | | | | | | | | | Gas chromotography | | | | | | <u> </u> | | 1 | ~ | <u> </u> | | - | | | | | | | Immunoassay | <u> </u> | ~ | | | <u> </u> | <u> </u> | | V | ~ | | | | | | <u> </u> | | | | Mercury vapor analyzer | | | ~ | | | | | | | | 7. | | | | | | | | X-ray fluorescence | 1 | 1 | | · | | | | | | | | | <u> </u> | | | · | | | Bore-hole geophysical | 4 | | | | | | | | | ' | | ~ | ~ | | | | | | Direct-push electrical conductivity | | | | | | | · | | | | ~ | 1 | 1 | | | | | | Electromagnetic induction | | | | | | | | | <u> </u> | | | | 1 | | | | | | Ground penetrating radar | | | | | | | | | | ~ | | ~ | | <u> </u> | | | | | Magnetometry | | | | | | | | | | | | | | ~ | | | | | Seismic profiling | | | | | | | | | | ~ | ~ | ~ | | | | | | | Gamma radiation detector | | | | | | ~ | 1 | | | <u> </u> | | | | | | | | | Passive alpha detector | | | | | | ' | ~ | | | | | | | | | | | | Closed-piston soil sampling | | | | | | | | | | | 1 | | | | | | | | Direct-push prepacked well screen | | | | | | | | | | ~ | | | | | | | | | Low-flow ground-water pumping | V | | | | | | | | | | | | | | | | | | Soil gas sampling | | | | | | | | | | | | | | | | | | | Vertical ground-water profiling | | | | | | | | | | | | | | | | | | | Vibrating well installation | | | | | | | | | | <u></u> | | | | | | | L | #### 2.1.1 Chemical Technologies #### Biosensor (Number of Sites: 1) Biosensors are analytical tools in which the sensing element is an enzyme, antibody, deoxyribonucleic acid, or microorganism and the transducer is an electrochemical, acoustic, or optical device. The technology was used to detect explosives (trinitrotoluene [TNT]; cyclo-1,3,5-trimethylene-2,4,6-trinitramine [RDX]; and cyclotetramethylenetetranitramine [HMX]) in soil, ground water, and composite residues. #### Reported Advantages: - Potentially cost-effective - Real-time data #### Reported Limitations: • None identified #### Colorimetric Test Strip (Number of Sites: 3) Colorimetric test strips are a single measurement, portable technology that uses a wet chemistry non-immunoassay test to detect analytes in soil or water. The intensity of the color formation can be determined visually or with a spectrophotometer. Colorimetric test strips were used to detect nitrates, TNT, RDX, and HMX in soil and ground water. #### Reported Advantages: - Potentially cost-effective - Easy to use - Real-time data - Possible interference caused by nitrite - Creation of soil slurry necessary to use test strips #### Cone Penetrometer Mounted Sensor (Number of Sites: 34) Cone penetrometer mounted sensors are real-time, in situ, field screening methods for petroleum hydrocarbons and other contaminants, as well as lithologic parameters. Table 2-3 includes several uses of the Site Characterization and Analysis Penetrometer System Laser-Induced Fluorescence (SCAPS-LIF) cone penetrometer mounted sensor technology. The SCAPS-LIF technology was developed through a collaborative effort of the Army, Navy, and Air Force, under the auspices of the Tri-Service SCAPS Program. The method uses a fiber optic-based laser-induced fluorescence sensor system, deployed with a standard 20-ton cone penetrometer. Cone penetrometer mounted sensors were used to perform field screening and site characterization for PAHs and total petroleum hydrocarbons (TPH) such as diesel and jet fuel, gasoline, waste oil, heating fuel, and kerosene, in soil and ground water, as well as the lithologic parameters (pH, redox potential, conductivity, soil type, and other factors). #### Reported Advantages: - Potentially cost-effective - Continuous, real-time data - Accurate measurements - Three-dimensional mapping possible - Contaminant fingerprinting capability - Enhanced delineation of contaminant (2-inch vertical resolution) - No soil cuttings - Quick decontamination - Data allowed selection of optimal confirmation soil boring locations #### Reported Limitations: - Expensive for a limited number of sample locations - Naturally occurring fluorescent material can lead to false positives - Limited by rough terrain - Difficult to maneuver in tight spaces - Subsurface cobbles cause probe refusal #### Fiber-Optic Chemical Sensor (Number of Sites: 3) Fiber-optic chemical sensors are coating-based sensors on fiber optics that detect contaminants by monitoring the change in the refractive index on the coating of the fiber optics that alters the amount of light transmitted to a detector. The technology was used to measure concentrations of TPH; benzene, toluene, ethylbenzene, and xylene (BTEX); and halogenated VOCs, such as trichlorethylene (TCE), in ground water and soil gas. #### Reported Advantages: - Potentially cost-effective - · Can be used in situ - Easy to use - Portable - · Quick turnaround time - Possible interference from other chlorinated VOCs - Results affected by bailing method and amount of water bailed - Concentration of contaminants affects response time #### Fourier-Transformed Infrared Spectrometry (FTIR) (Number of Sites: 3) This method is an air monitoring technique that identifies compounds by fingerprinting spectra. A sample's molecular constituents are revealed through their characteristic frequency-dependent absorption bands. The technology was used to measure the concentration of VOCs in air for health and safety, compliance, and cleanup monitoring. #### Reported Advantages - Adequate detection levels - Portable - Real-time data #### Reported Limitations - Interference caused by water vapor - QA/QC methods not fully developed - Not appropriate when a high degree of spatial resolution is required #### Gas Chromatography (Number of Sites: 24) Gas chromatography (GC) is an analytical technique used to separate and analyze environmental matrices for contaminants. Gas chromatography has been accepted widely as a primary analytical tool for site characterization because of its capability to separate, detect, identify, and quantify target analytes in a complex mixture. The technique is suitable for the analysis of thermally stable organic compounds only. Gas chromatography, with the use of various detectors (photoionization, flame ionization, electron capture, electrolytic conductivity, nitrogen-phosphorus, mass spectrometer, and others), and with various sample extraction and introduction methods (headspace, purge and trap, solvent extraction, solid phase extraction, thermal desorption, and others), was used to measure concentrations of halogenated and nonhalogenated VOCs, SVOCs (including polychlorinated biphenyls [PCB], polynuclear aromatic hydrocarbons [PAH], and pentachlorophenol [PCP]), TPH, pesticides, and dioxins in soil, soil gas, sediment, ground water, and air. #### Reported Advantages: - Potentially cost-effective - Low detection limits (able to measure maximum contaminant level [MCL] concentrations) - · Quick turnaround time - · High-quality data generated - Portable - High sample throughput - Good correlation with EPA's Contract Laboratory Program (CLP) laboratory data - Ability to perform simultaneous analysis for BTEX and other hydrocarbon compounds - Experienced operator required - Learning curve associated with use of equipment - Library of components limited for mass spectrometer - Petroleum carrier solvent caused interference with analysis for PCP - Modification of extraction time required to improve consistency of results - Poor extraction of diesel fuels from soils with high organic matter - Co-elution of three types of contaminants hindered ability to meet detection limits #### Immunoassay (Number of Sites: 43) Immunoassay is a technique for detecting and measuring a target compound through the use of an antibody that binds only to that substance. Quantitation is performed by monitoring color change,
either visually or with a spectrophotometer. The technology was used to detect or to measure the concentrations of halogenated VOCs, PAHs, TPH, BTEX, PCBs, organic pesticides, mercury, and bacteria in soil, sludge, sediment, surface water, ground water, and composite residues. #### Reported Advantages: - Potentially cost-effective - Near real-time data - Reproducible results - Reasonable correlation with laboratory results - Low rate of false negative results, except when fuel compounds were highly degraded - Portability - Detection limits capable of meeting action levels - Capable of defining boundaries of contamination #### Reported Limitations: - High rate of false positives found in results from PCB and organic pesticide kits - Incapable of identifying individual PAHs - Poor extraction efficiency in peat or bog samples #### Mercury Vapor Analyzer (Number of Sites: 2) This technology monitors mercury vapors emitted from soil. These analyzers were used for health and safety monitoring and to determine soil sampling locations. #### Reported Advantages - Allowed for real-time understanding of exposure - · Quick turnaround time for data #### Reported Limitation: Learning curve associated with equipment #### X-ray Fluorescence (Number of Sites: 39) X-ray fluorescence (XRF) analyzers operate on the principle of energy dispersive XRF spectrometry. Energy dispersive XRF spectrometry is a nondestructive analytical technique used to determine the metals composition of environmental samples. Field-portable and transportable XRF units were used to detect or measure concentrations of heavy metals (mercury, chromium, lead, cadmium, copper, nickel, and arsenic) in both in situ and ex situ soils, sludge, sediment, and ground water. #### Reported Advantages: - Potentially cost-effective - No investigation-derived waste (IDW) - Good correlation with analytical laboratory results - · Real-time data - · Quick turnaround time - Capability to determine multiple analytes simultaneously - Nondestructive method - Little sample preparation - · Consistent quality of data #### Reported Limitations: - Limit on penetration depth - Some field-portable units require liquid nitrogen - One field-portable unit weighs 50 pounds - Preparation of quality control sample required - Difficulty in obtaining sufficiently low detection limits because of matrix interference - Detection limits sometimes not low enough to respond to ecological concerns #### 2.1.2 Geophysical Technologies #### Bore-hole Geophysical (Number of Sites: 4) Bore-hole geophysical technologies include ground penetrating radar (GPR), electromagnetic induction, and acoustic methods. These technologies were used to map fractures in bedrock, and to determine ground-water flow and depth of the water table. The technologies were used to generate data for use both in site characterization and in placement of monitoring wells. #### Reported Advantages: - Accurate results - Sensitivity - Facilitation of better understanding of ground-water flow - Well diameter must be greater than two inches - Well casing must be nonmetallic #### Direct-push Electrical Conductivity (Number of Sites: 1) The direct-push sensing of electrical conductivity is a geophysical technique based on the physical principles of inducing and detecting the flow of electrical current within geologic strata. Measurements of soil conductivity and logs of soil conductivity combine to supply information about the lithologic features of a site. This technology was used for site characterization and mapping to support placement of monitoring wells, and to define subsurface geologic and hydrogeologic conditions. #### Reported Advantages: - Potentially cost-effective - Easy to use - Portable - Quick turnaround time - Capability to identify thin stratigraphic layers that conventional methods miss - No soil cuttings #### Reported Limitations: - Large metal objects can cause interference - Susceptible to operator error - Experienced operator needed to calibrate and interpret logs #### **Electromagnetic Induction (Number of Sites: 3)** Electromagnetic induction units use a transmitter coil to establish an alternating magnetic field which induces electrical current flow in the earth. The induced currents generate a secondary magnetic field which is sensed by a receiver coil. This technology was used during site characterization to locate disposal trenches at a landfill. #### Reported Advantages: - Easy to use - Portable - Quick results #### Reported Limitations: • Large metal objects such as fences can cause interference #### Ground Penetrating Radar (Number of Sites: 4) Ground penetrating radar (GPR) provides a rapid, real-time display of information about the subsurface, ranging from geological features to hydrologic features. The GPR method uses a transmitter that emits pulses of high-frequency electromagnetic waves into the subsurface. The electromagnetic energy that is scattered back to the receiving antenna on the surface is recorded as a function of time. This technology was used during site characterization to identify abandoned waste pits and other subsurface disturbances, bedrock stratigraphy, and the depth to water table. The technology was also used to develop profiles of a river bottom. #### Reported Advantages: - Data useful in identifying subsurface disturbances without soil borings - Data allowed the selection of optimal soil boring locations - Focused mapping of sample location - Information compared favorably with that obtained through other methods #### Reported Limitations: - Surface vegetation can inhibit transmission of signals - Soils with high electrical conductivity can inhibit transmission of signals - Interpretation of data is complex; experienced data analyst required #### Magnetometry (Number of Sites: 2) Magnetometers detect the presence of ferrous objects in the subsurface by measuring the earth's magnetic field or how the field changes spatially. Hand-held and vehicle-towed magnetometry units were used during characterization and mapping to identify buried ferrous metals. #### Reported Advantages: - Ability to detect large ferrous metal objects 12 to 20 feet below ground surface - Ability to discriminate among subsurface anomalies - Vehicle-based magnetometers limited by terrain and field conditions - Vehicle-based magnetometers tend to underestimate the number of targets, compared with hand-held devices - Signals from extraneous metals must be filtered out #### Seismic Profiling (Number of Sites: 8) Seismic profiling technology is based upon the principle that, if an acoustic signal is introduced into the ground, a wave will echo to the surface whenever a change in the medium is encountered. Sensors at the surface receive the signal, which is recorded by a seismograph and processed by software developed by the oil industry. Two- and three-dimensional seismic profiling technologies were used during site screening and characterization to determine bedrock stratigraphy, soil type, and depth to water table. #### Reported Advantages: - Potentially cost-effective - Very detailed image of soil stratigraphy - Bedrock fractures defined to within one foot - Easy to use - Drilling costs minimized #### Reported Limitations: - Large surface objects cause interference - Data return is very specific - Trained technician required to interpret data - Vegetation must be removed - Equipment requires direct contact with the ground, presenting a problem for use in buildings #### 2.1.3 Radionuclide Technologies #### Gamma Radiation Detector (Number of Sites: 3) Gamma radiation detectors are portable instruments that often use sodium iodide or cesium iodide scintillation counter detectors to detect gamma emissions. The technology was used to detect radionuclides in soil, sediment, and liquid waste. #### Reported Advantages: - Easy to use - Portable - Lower cost than conventional methods - Data compared favorably with laboratory data - Real-time data #### Reported Limitations: - Sensitive to power fluctuations - Liquid nitrogen required - · Protection from weather required #### Passive Alpha Detector (Number of Sites: 1) Two types of commercially available passive radon detectors, electric ionization chambers and alpha track detectors, have been modified for use in screening of soil in situ for alpha contamination. The detectors were used to measure alpha contamination in soil. #### Reported Advantages: - Potentially cost-effective - Easy to use - Fast #### Reported Limitations: None identified #### 2.1.4 Sampling and Sampler Emplacement Technologies #### Closed-piston Soil Sampling (Number of Sites: 1) This technology is a discrete-depth sampling technology that uses a locking piston. The locking piston enables the user to collect samples from a previously sampled boring without allowing unwanted material from the overlying borehole to be included in the sample. This sampling technology was used in conjunction with direct-push technology during site characterization to obtain continuous soil cores from below the water table. #### Reported Advantages: - No soil cuttings - Less expensive than conventional drill rigs - Faster than conventional methods #### Reported Limitations: - Sampler is designed for use only in soils and unconsolidated sediments - Generally used at depths of less than 50 feet - If used for sampling discrete subsurface intervals, the hole must be preprobed #### Direct-push Prepacked Well Screen (Number of Sites: 1) This technology uses a direct-push method to install prepacked stainless steel screens. The technology was used during site characterization and compliance monitoring to install small-diameter monitoring wells. #### Reported Advantages: - Less expensive and faster than installing a conventional well - No soil cuttings #### Reported Limitations: - Cannot be used in bedrock - · Limit on depth - Small diameter of well may limit sampling options #### Low-flow Ground-water Pumping (Number of Sites:
9) Low-flow ground-water sampling involves the use of any number of ground-water sampling pumps that purge a monitoring well slowly so as not to cause turbulent flow into the well. The method decreases the turbidity of the water sample and allows collection of a more representative ground-water sample than is possible with conventional technologies. The technology was used to obtain ground-water samples for analysis of VOCs and heavy metals. #### Reported Advantages: - Production of low-turbidity samples possible - Less purge water generated - · More effective in low recharge wells #### Reported Limitations: • None identified #### Soil Gas Sampling (Number of Sites: 5) A number of passive and active sampling devices can be used to obtain soil gas samples. Passive soil gas absorption devices, in-well monitoring equipment, and canister devices were used to obtain soil gas samples for on- and off-site analysis of VOCs. #### Reported Advantages: - Potentially cost-effective - Quick turnaround time - · Easy to use - Large amounts of data generated - Passive soil gas sampling technology can absorb low-volatility compounds - · Good correlation with monitoring well data #### Reported Limitations: - Active soil gas sampling is not effective in impermeable soils - Passive soil gas sampling results may not correlate well with results of active soil gas sampling #### Vertical Ground-water Profiling (Number of Sites: 4) Vertical ground-water profiling technology collects point samples rather than samples over a screened interval, as is the case with conventional monitoring wells. The technology uses a probe that is advanced by a pneumatic piercing tool (air hammer) driven by a gasoline-powered air compressor. Ground water is extracted from the profiler by means of a peristaltic pump. This technology was used to vertically delineate contaminants in ground-water. #### Reported Advantages: - Potentially cost-effective - Enables vertical profiling - Enables tracking the boundaries of the contaminant plume #### Reported Limitations: - Problem with data comparability - Difficulty in modeling the migration of TCE #### **Vibrating Well Installation (Number of Sites: 6)** This technology uses a specially designed all-terrain vehicle that uses a vibrating push mechanism to install small-diameter wells. This vibrating well installation technology was used to install ground-water wells and monitoring wells to depths up to 200 feet. #### Reported Advantages: - No soil cuttings - Can be installed to 100 feet without pilot hole - Equipment fits into tight spaces #### Reported Limitations: - Well screens clog easily - · Equipment overheats frequently - Casing requires welding #### 2.2 SUMMARY OF DATA ON SPECIFIC TECHNOLOGIES The information collected using the data collection form in Appendix B has been organized and presented in tabular format to more clearly display data from individual sites. Table 2-3 is organized by technology, with site information listed sequentially by EPA region for each of the technology types. # Table 2-3 Summary of Field Analytical and Site Characterization Technologies Reported Data on Specific Technologies #### Contents | Section | Page | |--|------| | Chemical Technologies | 21 | | Biosensor | 21 | | Colorimetric Test Strip | | | Cone Penetrometer Mounted Sensor | 22 | | Fiber-optic Chemical Sensor | 29 | | Fourier-transformed Infrared (FTIR) Spectrometry | | | Gas Chromatography | | | Immunoassay | | | Mercury Vapor Analyzer | | | X-ray Fluorescence | | | Geophysical Technologies | 50 | | Bore-hole Geophysical | | | Direct-push Electrical Conductivity | 51 | | Electromagnetic Induction | 51 | | Ground Penetrating Radar | 52 | | Magnetometry | | | Seismic Profiling | | | Radionuclide Technologies | 55 | | Gamma Radiation Detector | | | Passive Alpha Detector | * | | Sampling and Sampler Emplacement Technologies | 56 | | Closed-piston Soil Sampling | | | Direct-push Prepacked Well Screen | | | Low-flow Ground-water Pumping | | | Soil Gas Sampling | | | Vertical Ground-water Profiling | | | Vibrating Well Installation | | Table 2-3 Summary of Field Analytical and Site Characterization Technologies Reported Data on Specific Technologies | Site Description | | | | | of Use | put | Data Use(s) | | | | '.Contact(s) | |--|----|--|---|--|------------------|--|---|---|---|--|--| | | | | | | Chemical | Technolo | | | | al the second of the second | | | Umatilla Army Depot-
Hermiston, OR:
explosives washout
lagoon, open burn/open
detonation (OB/OD)
area, small arms
incinerator, explosives
in ground water | 10 | Research
International, Inc. | Soil,
ground water,
composite
residues
(biotreatment
monitoring) | Military
explosives
(TNT, RDX,
HMX) | 15 months | 10-30
samples per
day | Site screening, cleanup monitoring, compliance monitoring | Not provided | Real-time data;
lower cost
compared with
analytical
laboratory; higher
sampling density at
same cost | Not provided | Harry Craig
(EPA)
503/326-3689 | | Agra PWS-
Agra, KS:
grain fumigation,
pesticide and fertilizer
production | 7 | Merck, Ltd.
(purchased from
Thomas Scientific,
Inc.) | Soil (ex situ),
ground water | Nitrate | Colorimet 5 days | Soil: 10
minutes per
sample
Water: 2
minutes per
sample | Site screening,
site
characterization | \$10 per
sample,
including labor | | Check for interference caused by nitrite; creation of soil slurry necessary to achieve performance | Darrell Hamilton
(Tetra Tech EM
Inc. [Tetra Tech])
913/894-2600
Scott Alberg
(KDHE)
913/296-1541 | | Naval Submarine Base
Bangor-
Silverdale, WA:
open burn and open
detonation area | 10 | Strategic
Diagnostics, Inc.
(SDI)
(RDX soil test kit) | Soil (ex situ) | Explosives
(TNT, RDX) | 3 months | 5 samples per
hour | Site
characterization | \$20 to \$25 per
sample, plus
accessory kit | High sampling
density and
collection of real-
time data; less
expensive than
laboratory data | Not provided | Harry Craig
(EPA)
503/326-3689 | | Umatilla Army Depot-
Hermiston, OR:
explosives washout
lagoon, OB/OD area,
small arms incinerator,
explosives in ground
water | 10 | SDI | Soil,
ground water,
composite
residues | Military
explosives
(TNT, RDX,
HMX) | 15 months | | Site screening,
cleanup
monitoring,
compliance
monitoring | | Real-time data;
lower cost
compared with
analytical
laboratory; higher
sampling density at
same cost; worked
exceptionally well
with target analyte | Not provided | Harry Craig
(EPA)
503/326-3689 | Table 2-3 Summary of Field Analytical and Site Characterization Technologies Reported Data on Specific Technologies (continued) | Site Description | EPA
Region | Vendor/
Product | Media
Monitored | Contaminant/
Parameter | Period
of Use | Through-
put | Data
Use(s) | Cost | Technology
Advantages | Technology
Limitations | Contact(s) | |--|-------------------|-----------------------------------|------------------------------------|--|------------------|---|--|--------------|--
--|---| | , | | | | Con | e Penetrome | er Mounted | Sensor | | | anning a same and sa | han a san da ka | | | Not
applicable | Delft Geotechnics
(Chemoprobe) | Soil,
ground water,
soil gas | Geophysical data (pH, redox potential, specific conductivity, hydraulic conductivity), LNAPL | Not provided | Measure-
ments in 4
minutes; 0.5
hour to 1
hour for a
complete
sounding | Site
characterization | Not provided | Much quicker and more cost-effective than conventional methods; more accurate measurements; allows three-dimensional mapping | Not provided | J.J. Olie
(Delft
Geotechnics) | | Central Landfill 1-
RI | 1 | Not provided | Soil (in situ) | DNAPL | Not provided | Not provided | Cleanup
monitoring | Not provided | Rapid sampling;
greater accuracy | Subsurface
cobbles; not too
sensitive | John Courzier
(EPA)
617/573-5779 | | Hanscom Air Force Base
(AFB)-
MA | 1 | Not provided | Soil | Not provided | Not provided | Not provided | Site
characterization,
cleanup
monitoring | Not provided | Rapid sampling;
greater accuracy | Subsurface
cobbles; not too
sensitive | Bob Lim
(EPA)
617/223-5521 | | Industriplex 1-
MA | 1 | Not provided | Soil | Not provided | 1994 | Not provided | Site
characterization | Not provided | Rapid sampling;
greater accuracy | Subsurface
cobbles; not too
sensitive | Joe Lemay
(EPA)
617/573-9622 | | Loring AFB-
ME | 1 | Not provided | Soil (in situ) | Not provided | Not provided | Not provided | Cleanup
monitoring | Not provided | Rapid sampling;
greater accuracy | Subsurface
cobbles; not too
sensitive | Mike Nalipinski
(EPA)
617/223-5503 | | Silresim 1-
MA | 1 | Not provided | Soil,
ground water | VOCs | Not provided | Not provided | Cleanup
monitoring | Not provided | Not provided | Not provided | Almerinda Silva
(EPA)
617/573-9627 | | Stamina Mills 1-
RI | 1 | Not provided | Soil (in situ) | TCE | Not provided | Not provided | Cleanup
monitoring | Not provided | Technology
minimizes vertical
migration | Not provided | Neil Handler
(EPA)
617/573-9636 | | Union Chemical 1-
ME | 1 | Not provided | Soil (in situ) | VOCs | Not provided | Not provided | Cleanup
monitoring | Not provided | Not provided | Not provided | Terry Connelly
(EPA)
617/573-9638 | Table 2-3 Summary of Field Analytical and Site Characterization Technologies Reported Data on Specific Technologies (continued) | Site Description | EPA
Region | Vendor/
Product | Media
Monitored | Contaminant/
Parameter | Period
of Use | Through-
put | Data
Use(s) | Cost | Technology
Advantages | Technology
Limitations | Contact(s) | |---|---------------|---|---------------------------|--|---------------------|--------------------------------|--------------------------|--|---|---------------------------|---| | | | | | Cone Pen | etrometer Mo | ounted Senso | r (continued) | | | | | | Naval Weapons Station
Earle-
Colts Neck, NJ | 2 | U.S. Navy
(SCAPS) | Soil (in situ) | BTEX,
nonhalogenated
VOCs,
nonhalogenated
SVOCs, | Not provided | 4 per hour | Site
characterization | Not provided | Quick turnaround
of results and
fingerprinting
capability; good
for measuring the
extent of free
product in soils | Not provided | Jeffrey Gratz
(EPA)
212/637-4320
John Mayhew
(U.S. Navy)
610/595-0567
x125 & x146 | | Freedom Textile Chemicals Co Charlotte, NC: landfill contaminated with VOCs and SVOCs | 4 | Not provided | Soil (in situ),
sludge | Halogenated
and
nonhalogenated
VOCs and
SVOCs | Not provided | Not provided | Site
characterization | Not provided | Not provided | Not provided | Joseph Alfand
(EPA)
404/562-8496
Phillip Pelp
(Freedom Textile
Chemicals Co.)
704/393-0089 | | Naval Air Station
New Orleans-
New Orleans, LA:
fuel farm and piping | 6 | Navy Research and
Development
(NRaD)
(SCAPS) | | PAHs
(JP-5 aviation
fuel) | 1/26/96-
1/27/96 | 41 LIF
pushes (296
feet) | Site
characterization | \$2,300 to
\$4,600 per day
for an average
push rate of
200 feet per
day | Enhanced site delineation | Not provided | Tom Hampton
(NRaD)
619/553-1172
Hal Bolinger
(LDEQ)
504/765-0232 | | Sandia National
Laboratory-
Albuquerque, NM | 6 | NRaD
(SCAPS) | Soil (in situ) | (diesel fuel) | | 18 LIF
pushes (905
feet) | Site
characterization | \$2,300 to
\$4,600 per day
for an average
push rate of
200 feet per
day | Enhanced site
delineation | Not provided | Tom Hampton (NRaD) 619/553-1172 John Wesnousky (California Environmental Protection Agency [CalEPA]) 916/322-2543 Steve Billets (USEPA National Environmental Research Laboratory-Las Vegas [NERL-LA]) 702/798-2232 | Table 2-3 Summary of Field Analytical and Site Characterization Technologies Reported Data on Specific Technologies (continued) | Site Description | EPA
Region | Vendor/
Product | Media
Monitored | Contaminant/
Parameter | Period
of Use | Through-
put | Data
Use(s) | Cost | Technology
Advantages | Technology
Limitations | Contact(s) | |--|---------------|---|---------------------------------|---------------------------------------|---------------------|---|--------------------------|--|--
--|--| | | | | | Cone Pene | etrometer Mo | ounted Sensor | (continued) | - | | and the second s | | | Site unidentified-
Location not provided:
former manufactured
gas plant, coal tar wastes | 7 | TriServices
SCAPS program | Soil (in situ),
ground water | PAHs,
TPH | 10 days | | Site
characterization | for an average | Continuous, real-
time data; quick
decontamination;
no soil cuttings | Limited by rough
terrain, tight
spaces, and
subsurface cobbles | Greg Stenback (Iowa State University) Dr. Al Bevolo (Ames Laboratory) 515/294-5414 Kathy Older (USACE) | | Site unidentified-
Lexington, NE:
manufacturing site, use
of solvents, cutting oils,
motor fuels, hydraulic
fluids, and heating oil | 7 | Unisys
Corporation
(Rapid Optical
Screening Tool
[ROST™]) | Soil (in situ) | Aromatic
petroleum
hydrocarbons | 3 days | Cone penetro- meter is advanced at 2 centimeters per second or 290 feet per day | Site
characterization | \$7,000 per
day, or \$500
per push, or
\$24 per foot | Faster and less expensive than traditional techniques; continuous and real-time data; no soil cuttings; quicker decontamination than other methods | Difficult to
correlate
fluorescence
intensity with TPH
data | Kevin Earley and
Keith Rapp
(Unisys) | | Department of Defense
Housing Facility-
Novato, CA:
exchange gas station | 9 | NRaD
(SCAPS) | Soil (in situ) | PAHs
(diesel fuel and
gasoline) | 5/15/96-
5/22/96 | 15 LIF
pushes (178
feet) | Site
characterization | \$2,300 to
\$4,600 per day
for an average
push rate of
200 feet per
day | Enhanced site
delineation | Not provided | Tom Hampton
(NRaD)
619/553-1172
John Pfister
(NAVFAC EFA-
West)
415/244-2568 | | Guadelupe Oil Field-CA: | 9 | NRaD
(SCAPS) | Soil (in situ) | PAHs
(kerosene) | 8/23/94-
9/8/94 | 36 LIF
pushes
(1,327 feet) | Site
characterization | \$2,300 to
\$4,600 per day
for an average
push rate of
200 feet per
day | Enhanced site
delineation | Not provided | Tom Hampton
(NRaD)
619/553-1172
Richard Aleshire
(California
Central Coast
Regional Water
Quality Control
Board)
805/542-4631 | Table 2-3 Summary of Field Analytical and Site Characterization Technologies Reported Data on Specific Technologies (continued) | Site Description | EPA
Region | Vendor/
Product | Media
Monitored | Contaminant/
Parameter | Period
of Use | Through-
put | Data
Use(s) | Cost | Technology
Advantages | Technology
- Limitations | Contact(s) | |--|---------------|----------------------|--------------------|---|---------------------|--|--------------------------|--|--|---|---| | | | | | Cone Pen | etrometer Mo | ounted Sensor | 's (continued) | | | | | | Marine Corps Air
Station, Site 13-
Gallarnd, CA:
leaking USTs,
refinery wastes | 9 | U.S. Navy
(SCAPS) | Soil (in situ) | ТРН | 2 weeks | 4 cone
penetrometer
testing (CPT)
soundings
per day
(depends on
depth) | Site
characterization | \$3,500 per day | Real-time profile;
quick
understanding of
site; allows
focusing of CLP
sampling | Expensive;
requires a lot of
equipment;
naturally occurring
fluorescence
material can lead
to false positives | Rachael Simon
(EPA)
415/744-2383 | | Marine Corp Air
Station-
29 Palms, CA | 9 | NRaD
(SCAPS) | | PAHs
(JP-5 [aviation
fuel], diesel
fuel, waste and
heating oil) | 8/23/95-
8/25/95 | 8 LIF pushes
(220 feet) | Site
characterization | \$2,300 to
\$4,600 per day
for an average
push rate of
200 feet per
day | Enhanced site delineation | Not provided | Tom Hampton
(NRaD)
619/553-1172 | | Marine Corps Base-
Camp Pendelton, CA:
ground control approach
facility | 9 | NRaD
(SCAPS) | Soil (in situ) | PAHs
(diesel fuel) | 6/27/94-
7/6/94 | | Site
characterization | \$2,300 to
\$4,600 per day
for an average
push rate of
200 feet per
day | Enhanced site delineation | Not provided | Tom Hampton
(NRaD)
619/553-1172
Vickie Church
(San Diego
County,
California)
619/338-2243 | | Marine Corp Air
Station-
Yuma, AZ:
firefighter training area
and fuel bladders | 9 | NRaD
(SCAPS) | | PAHs
(JP-5 [aviation
fuel], diesel and
gasoline fuel) | 5/17/94-
6/9/94 | 29 LIF
pushes (1169
feet) | Site
characterization | \$2,300 to
\$4,600 per day
for an average
push rate of
200 feet per
day | Enhanced site delineation | | Tom Hampton
(NRaD)
619/553-1172
Davis Mangold
(Navy Facilities
Command
Southwest
Division
[NAVFACSW-
DIV])
619/532-2534 | Table 2-3 Summary of Field Analytical and Site Characterization Technologies Reported Data on Specific Technologies (continued) | Site Description | EPA
Region | Vendor/
Product | Media
Monitored | Contaminant/
Parameter | Period
of Use | Through-
put | Data
Use(s) | Cost | Technology
Advantages | Technology
Limitations | Contact(s) | |---|---------------|----------------------|---------------------------------|--|--|--|--------------------------|--|--|---|--| | in Fire | | | | Cone Pene | trometer Mo | unted Sensor | s (continued) | | | | T | | Marine Corp Recruit Depot- Yuma, AZ: fire training area, disposal of aircraft cleaning fluids (solvents), landfill, sewage lagoon | 9 | U.S. Navy
(SCAPS) | | PAHs
(diesel and
gasoline fuel) | 2/21/95-
3/1/95 | 25 LIF
pushes (514
feet)
21 LIF
pushes (318
feet) | Site
characterization | Not provided | Enhanced site
delineation | Not provided | Tom Hampton
(U.S. Navy)
619/553-1172
Vickie Church
(San Diego
County)
619/338-2243 | | Naval Air Station, Site
13-
Alameda, CA:
former refinery | 9 | NRaD
(SCAPS) | Soil (in situ),
ground water | PAHs
(refinery waste) | 3/17/94-
4/6/94 | 45 LIF
pushes (808
feet) | Site
characterization | \$2,300 to
\$4,600 per day
for an average
push rate of
200 feet per
day | Enhanced site
delineation | Not
provided | Tom Hampton
(NRaD)
619/553-1172
Lt. Mike
Petouhoff
(Base
Environmental)
510/263-3726 | | Naval Air Station North
Island-
CA:
leaking UST | 9 | NRaD
(SCAPS) | Soil (in situ) | PAHs
(diesel fuel) | 7/25/94-
8/4/94 | 25 LIF
pushes (701
feet) | Site
characterization | \$2,300 to
\$4,600 per day
for an average
push rate of
200 feet per
day | Enhanced site
delineation; data
was used to
support the closure
of USTs | Not provided | Tom Hampton
(NRaD)
619/553-1172
Richard Mach
(NAVFAC
SWDIV)
619/556-9934 | | Naval Complex-
Long Beach, CA:
multiple UST sites | 9 | NRaD
(SCAPS) | Soil (in situ),
ground water | PAHs
(diesel fuel,
gasoline, and
waste oil) | 9/16/96-
9/27/96,
10/7/96-
10/18/96,
and
10/28/96-
11/8/96 | 121 LIF
pushes (1667
feet) | Site
characterization | \$2,300 to
\$4,600 per day
for an average
push rate of
200 feet per
day | Enhanced site delineation; assisted with plume delineation; site closure with minimum sampling; obtained regulatory closure of 16 sites with LIF data and limited confirmation sampling of soil and ground water by a fixed laboratory | Minor mineral
fluorescence,
spectrally
indistinguishable | Tom Hampton
(NRaD)
619/553-1172
Hugh Marley
(Los Angeles
Regional Water
Quality Control
Board)
213/266-7669
Gary Simon
(NAVFAC
SWDIV)
619/532-2537 | Table 2-3 Summary of Field Analytical and Site Characterization Technologies Reported Data on Specific Technologies (continued) | Site Description | EPA
Region | | | Contaminant/
Pårameter | Period
of Use | Through-
put | Data
Use(s) | Cost | Technology
Advantages | Technology
Limitations | Contact(s) | |--|---------------|-----------------|----------------|---------------------------|--|--|--------------------------|--|---|---|--| | | | | | Cone Pene | trometer Mo | unted Sensor | s (continued) | Andrew State of the Control C | | | | | Naval Radio Receiving
Facility-
Imperial Beach, CA | 9 | NRaD
(SCAPS) | Soil (in situ) | PAHs
(fuel oil) | 3/6/95-
3/22/95 | 36 LIF
pushes (813
feet) | Site
characterization | \$2,300 to
\$4,600 per day
for an average
push rate of
200 feet per
day | Enhanced site
delineation;
obtained regulatory
closure of 2 UST
sites with only 1
confirmatory soil
boring each | Petroleum UST
cleanups are
moving toward
risk-based closure;
therefore, the
screening-level
data from SCAPS
is becoming less
valuable | Tom Hampton
(NRaD)
619/553-1172
Richard Mach
(NAVFAC
SWDIV)
619/556-9934 | | Naval In Service
Engineering/West-
San Diego, CA:
hydraulic pump pit | 9 | NRaD
(SCAPS) | Soil (in situ) | PAHs
(hydraulic oil) | 7/22/96-
7/23/96 | 8 LIF pushes
(56 feet) | Site
characterization | \$2,300 to
\$4,60 per day
for an average
push rate of
200 feet per
day | Enhanced site delineation; rapid delineation with limited confirmatory soil and water sampling; permitted regulatory approval of site reuse | Not provided | Tom Hampton
(NRaD)
619/553-1172 | | Naval Training Center-
San Diego, CA:
exchange service station
and hobby shop | 9 | NRaD
(SCAPS) | Soil (in situ) | | 10/24/94-
11/8/94, and
11/15/94-
11/16/94 | 33 LIF
pushes (593
feet)
16 LIF
pushes (214
feet) | Site
characterization | for an average
push rate of
200 feet per
day | Enhanced site delineation; provided data to develop and implement site remediation and closure | | Tom Hampton
(NRaD)
619/553-1172
Thomas
Macchiarelli
(NAVFAC
SWDIV)
619/532-3808 | | Naval Weapons Station-
China Lake, CA | 9 | NRaD
(SCAPS) | , | | 8/29/95-
8/30/95 | 12 LIF
pushes (224
feet) | Site
characterization | ,, | Enhanced site
delineation | | Tom Hampton
(NRaD)
619/553-1172 | Table 2-3 Summary of Field Analytical and Site Characterization Technologies Reported Data on Specific Technologies (continued) | Site Description | EPA
Region | Vendor/
Product | Media
Monitored | Contaminant/
Parameter | Period
of Use | Through-
put | Data
Use(s) | Cost | Technology
Advantages | Technology
Limitations | Contact(s) | |--|---------------|--------------------|--------------------|--|---|--------------------------------|--------------------------|--|--|---------------------------|---| | | | | | Cone Pene | trometer Mo | unted Sensor | s (continued) | | | (V | | | Naval Outlying Landing
Field-
Imperial Beach, CA:
fuel depot | 9 | NRaD
(SCAPS) | Soil (in situ) | PAHs
(JP-5 [aviation
fuel], diesel fuel
and gasoline) | 11/30/94-
12/15/94 | 38 LIF
pushes (698
feet) | Site
characterization | for an average
push rate of | Enhanced site
delineation; data
was used to
support the closure
of 2 USTs | Not provided | Tom Hampton
(NRaD)
619/553-1172
Richard Mach
(NAVFAC
SWDIV)
619/532-1156 | | Naval Station-
San Diego, CA:
Bldg. 279 | 9 | NRaD
(SCAPS) | Soil (in situ) | PAHs
(gasoline) | 8/12/96-
8/15/96 | 20 LIF
pushes
(177 feet) | Site
characterization | \$2,300 to
\$4,600 per day
for an average
push rate of
200 feet per
day | Enhanced site
delineation | Not provided | Tom Hampton
(NRaD)
619/553-1172 | | Naval Station-
San Diego, CA:
firefighter training
facility | 9 | NRaD
(SCAPS) | Soil (in situ) | PAHs
(JP-5 [aviation
fuel], gasoline) | 1/11/94-
2/8/94 | 22 LIF
pushes (313
feet) | Site
characterization | \$2,300 to
\$4,600 per day
for an average
push rate of
200 feet per
day | Enhanced site
delineation | Not provided | Tom Hampton
(NRaD)
619/553-1172
Rick Bassinet
(NAVFAC
SWDIV)
619/532-1636 | | Naval Construction
Battalion Corps-
Port Hueneme, CA:
hydrocarbon national
test site and exchange
gas station | 9 | NRaD
(SCAPS) | Soil (in situ) | PAHs
(diesel fuel) | 4/4/95-
4/11/95,
5/16/95-
5/22/95, and
5/28/96-
5/30/96 | 24 LIF
pushes (472
feet) | Site
characterization | \$2,300 to
\$4,600 per day
for an average
push rate of
200 feet per
day | Enhanced site
delineation;
vertical resolution
of 2 inches;
enhanced vertical
resolution | Not provided | Tom Hampton
(NRaD)
619/553-1172
John Wesnousk
(CalEPA)
916/322-2543
Steve Billets
(USEPA NERL
LV)
702/798-2232 | | Naval Air Station North
Island-
Coronado, CA:
fuel tank depot | 9 | NRaD
(SCAPS) | Soil (in situ) | PAHs
(JP-5
[aviation
fuel], marine
diesel fuel) | 7/14/93-
7/15/93,
8/18/93-
8/31/93, and
10/5/93-
10/8/93 | 40 LIF
pushes (708
feet) | Site
characterization | \$2,300 to
\$4,600 per day
for an average
push rate of
200 feet per
day | Enhanced site
delineation;
vertical resolution
of 2 inches; data
used to develop
site remediation
system | Not provided | Tom Hampton
(NRaD)
619/553-1172
Richard Mach
(NAVFAC
SWDIV)
619/556-9934 | Table 2-3 Summary of Field Analytical and Site Characterization Technologies Reported Data on Specific Technologies (continued) | | | | · · | | Garage Season Co. | | | | | | | |--|---------------|--|---------------------------|---------------------------------------|--------------------|------------------------------------|--|--------------|--|--|---| | Site Description | EPA
Region | Vendor/
Product | Media
Monitored | Contaminant/
Parameter | Period
of Use | Through-
put | Data
Use(s) | | Technology
Advantages | Technology
Limitations | Contact(s) | | | | | and the second | Cone Pene | trometer Mo | unted Sensor | s (continued) | Transferance | and the second | ang distribution of the second | | | Naval Amphibious
Base-
Coronado, CA:
abandoned fuel farm | 9 | NRaD
(SCAPS) | | PAHs
(gasoline and
diesel fuel) | 2/15/94-
3/1/94 | 22 LIF
pushes (274
feet) | Site
characterization | Not provided | Enhanced site
delineation | Not provided | Tom Hampton
(NRaD)
619/553-1172
Kevin Heaton
(San Diego
County,
California)
619/338-2243 | | | | | 1 | | Fiber-optic (| hemical Sen | ior | | | Apple 1 | | | Site unidentified-
Northeast United States
(specific location not
provided):
two leaking UST sites | 1 | ORS
Environmental
Systems
(ChemSensor) | | VOCs (TCE),
SVOCs,
BTEX,
TPH | Not provided | 10 minutes
per measure-
ment | Site screening,
site
characterization | Not provided | Easy to use; rapid,
inexpensive data;
very portable | Concentration of contaminants affects response time | John Hanshaw
(ORS
Environmental
Systems)
800/228-2310 | | | | | | | | | | | | | | | Savannah River Site-
Aiken, SC:
TCE used as degreasing
solvent | 4 | Lawrence Livermore National Laboratory (TCE sensor) | Soil gas,
ground water | VOC (TCE) | Not provided | Continuous
measure-
ment | Site screening,
site
characterization | Not provided | Capable of in situ
measurements; less
expensive than off-
site analysis; rapid
measurements | Possible
interference from
other chlorinated
VOCs | Joe Rossabi
(Westinghouse
Savannah River
Company)
803/725-5220 | | Site unidentified-
Las Vegas, NV:
leaking UST site | ļ | FCI
Environmental,
Inc. (PetroSense®
PHA-100) | Ground water | | Not provided | • | Site
characterization | Not provided | Can be used in
situ; real-time
data; easy to use;
less expensive than
off-site analysis | Results affected by
bailing method and
amount of water
bailed | Devinder P.Salini
(FCI
Environmental,
Inc.)
702/361-7921 | | | | | Vajandoja, ir iliji | Fourier-tra | nsformed Info | rared (FTIR) | Spectrometry | Files Factor | a de la companya l | | | | French Limited
Superfund Site-
Crosby, TX | 6 | Not provided | | | 4 days | Continuous
measure-
ment | Cleanup
monitoring (to
evaluate
bioremediation),
health and safety
monitoring | Not provided | Not provided | Water vapor
presents a potential
interference for the
absorption features
of toluene,
benzene, and
naphthalene | Jim Sealy
(ManTech
Environmental
Technology)
405/436-8658 | Table 2-3 Summary of Field Analytical and Site Characterization Technologies Reported Data on Specific Technologies (continued) | Site Description | EPA
Region | Vendor/
Product | Media
Monitored | Contaminant/
Parameter | Period
of Use | Through-
put | Data
Use(s) | Cost | Technology
Advantages | Technology
Limitations | Contact(s) | |---|---------------|--|--------------------|---------------------------|-----------------------|--|--|--------------|--|--|--| | | | | Fo | urier-transforn | ed Infrared | (FTIR) Speci | rometry (contin | ied) | THE RESERVE THE PROPERTY OF TH | | | | Bliss Ellisville-
Wild Wood, MO:
dioxin-contaminated oil
sprayed on site, buried
drums of industrial
waste, and uncontained
waste | 7 | Not provided | Air | VOCs | 4 months | 40-50
measure-
ments over a
4-month
period | Health and safety
monitoring | Not provided | Real-time data;
portable system;
compound-specific | QA/QC methods
not well developed | Wood Ramsey
(EPA)
913/551-7382
Mark Thomas
(EPA)
913/551-7937
Randy
Scheidermann
(E&E)
913/432-9961 | |
Site unidentified-
Location not provided | 7 | None - developed
by universities | Air | VOCs | 1 day | Measure-
ments every
12 minutes | Compliance
monitoring (for
air emissions) | Not provided | accepted Method
TO-14; adequate
detection levels;
fast, on-site data | a high degree of
spatial resolution
in ambient air
monitoring | Jody Hudson
(EPA)
913/551-5064 | | | | | | | Gas Chro | matography | | | | | | | Site unidentified-
Jard, VT | 1 | Not provided | Not provided | Not provided | 12/31/91-
11/11/92 | Not provided | Cleanup
monitoring | Not provided | Avoided
downtime; data
quality effective
for determining
final sampling
locations | Not provided | Mary Eilen
Stanton
(EPA)
617/573-9670 | | Beede Waste Oil-
NH | 1 | PE Photovac, Inc.,
Thermo Instrument
Systems, Inc. | Soil | VOCs,
PCBs | 11/93-12/93 | Not provided | Site
characterization | Not provided | Avoided
downtime; data
quality effective
for determining
final sampling
locations | Not provided | Dorrie Paar
(EPA)
617/573-5768 | | Connecticut Building
Wrecking-
CT | 1 | PE Photovac, Inc. | Air | VOCs | 12/23/91 | Not provided | Site
characterization | Not provided | Avoided
downtime; data
quality effective
for determining
final sampling
locations | Not provided | Dorrie Paar
(EPA)
617/573-5768 | | Indian Line Farm-
MA | 1 | PE Photovac, Inc.,
Thermo Instrument
Systems, Inc. | Soil | VOCs,
PCBs | 2/27/92-
5/28/93 | Not provided | Site
characterization,
cleanup
monitoring | Not provided | Avoided
downtime; data
quality effective
for determining
final sampling
locations | Not provided | Gary Lipson
(EPA)
617/223-5584 | Table 2-3 Summary of Field Analytical and Site Characterization Technologies Reported Data on Specific Technologies (continued) | Site Description | | | Media
Monitored | Contaminant/
Parameter | of Use | Through-
put | | Cost | | Technology
Limitations | Contact(s) | |--|---|--|-----------------------------|---------------------------|--------------------|-------------------------------|--|--------------|--|--|--| | A Company of the Comp | | | | G | is Chromatog | raphy (conti | nued) | | | | Park State of Contract Cont | | Site unidentified-
Leicester, MA:
landfill | 1 | PE Photovac, Inc.,
Thermo Instrument
Systems, Inc. | Air | VOCs | 1/22/92 | | Site
characterization | Not provided | Avoided
downtime; data
quality effective
for determining
final sampling
locations | Not provided | Dorrie Paar
(EPA)
617/573-5768 | | Pichillo Farm Superfund
Site-Coventry, RI | 1 | тма | Soil (ex situ),
soil gas | VOCs,
SVOCs | 6/96-12/96 | 2 soil
samples per
hour | Site
characterization | Not provided | On-site real-time
results | Not provided | Anna Kraskow
(EPA)
617/573-5749
Richard Willy
(EPA)
617/573-9639
Alan Peterson
(EPA)
617/860-4607 | | Resolve 1- MA | 1 | PE Photovac, Inc. | Air | VOCs | 6/93-7/94 | Not provided | Compliance
monitoring | Not provided | Avoided
downtime; data
quality effective
for determining
final sampling
locations | Instrument calibration requires a significant amount of time | Joe Lemay
(EPA)
617/573-9622 | | Site unidentified-
Stratford, CT | 1 | Thermo Instrument
Systems, Inc. | Soil | PCBs | 6/17/93 | Not provided | Cleanup
monitoring | Not provided | Avoided downtime; data quality effective for determining final sampling locations | Not provided | Mike Jagingici
(EPA)
617/573-5786 | | Three C-
MA | 1 | Thermo Instrument
Systems, Inc. | Soil | PCBs | 8/8/95-
8/26/95 | Not provided | Site
characterization,
cleanup
monitoring | Not provided | Avoided
downtime; data
quality effective
for determining
final sampling
locations | Not provided | Dorrie Paar
(EPA)
617/573-5768 | | Toka-Renbe Farm-
MA | 1 | PE Photovac, Inc.,
Thermo Instrument
Systems, Inc. | Soil | VOCs,
PCBs | 7/7/94 | Not provided | Site
characterization,
cleanup
monitoring | Not provided | Avoided
downtime; data
quality effective
for determining
final sampling
locations | Not provided | Lisa Danek
(EPA)
617/573-5707 | Table 2-3 Summary of Field Analytical and Site Characterization Technologies Reported Data on Specific Technologies (continued) | Site Description | EPA
Region | Vendor/
Product | Media
Monitored | Contaminant/
Parameter | Period
of Use | Through-
put | Data
Use(s) | Cost | Technology
Advantages | Technology
Limitations | Contact(s) | |---|---------------|--|--|--|------------------|--------------------------------------|--|---|---|--
---| | | | | | Ga | s Chromatog | raphy (conti | aued) | | | | | | Site unidentified-
Location not provided:
active manufacturing
facility | 3 | PE Photovac, Inc.
(10S70GC with
photoionization
detector) | Soil (ex situ) | Halogenated
and
nonhalogenated
VOCs | Not provided | 120 samples
per day with
3 GCs | Cleanup
monitoring | , | On-site data used to guide investigation; less costly than off-site analysis; high sample throughput; saved costs for the removal action | Not provided | David Catherman
(Environmental
Resources
Management,
Inc.)
610/524-3500 | | Site unidentified-
Illinois:
contamination from old
compressors that used
PCB-containing oils | 4 | Hewlett Packard
(5890 Series II
GC) | Soil (ex situ),
sediment
(ex situ) | PCBs | Not provided | 20 minutes
per sample | Cleanup
monitoring | Not provided | Good correlation
between on-site
and off-site data;
reduced cost;
quick data | extraction time | Brad Anderer
(TRC
Environmental
Corporation) | | Koppers-Morrisville-
Morrisville, NC:
wood treatment
operations | 4 | Shimadzu
(14AGC) | Soil (ex situ),
ground water,
air | SVOCs (PCP),
dioxin | 3 weeks | 2 samples per
hour | Cleanup
monitoring,
health and safety
monitoring | \$13.50 per
sample for
expendables;
\$23,214 to
purchase GC
system; \$1,500
per month to
rent GC
system | On-site data used
to verify
performance of
remediation
technology; quick-
turnaround data;
less expensive than
formal analysis | Petroleum carrier
solvent for PCP
caused interference
problems, resulting
in poor recovery
for some soil
samples | Darrell Hamilton
(Tetra Tech)
913/894-2600 | | Florida Department of
Transportation -
Fairbanks, FL:
contaminated landfill | 4 | Not provided | Soil (ex situ) | PAHs | 1 year | Not provided | Site screening,
site
characterization,
cleanup
monitoring,
confirmation
sampling | Not provided | Allows for quick
separation of soil
into clean or dirty
groups when
removing large
volumes of soil | Operator must be familiar with equipment | Wesley S.
Hardegree
(EPA)
404/562-8486
Steve Spurlin
(EPA)
404/562-8743 | Table 2-3 Summary of Field Analytical and Site Characterization Technologies Reported Data on Specific Technologies (continued) | W. 120 | EPA
Region | | Media
Monitored | Contaminant/
Parameter | S | Through-
put | Data
Use(s) | Cost | Technology
Advantages | Technology
Limitations | Contact(s) | |--|---------------|--|---------------------------------|---|--------------|-----------------|--|--|---|--|--| | Pig's Eye Landfill-
St. Paul, MN:
municipal solid waste
landfill (also contains
industrial wastes) | 5 | Tekmar-
Dohrmann, Inc. | | Halogenated
and
nonhalogenated
VOCs,
solvents,
BTEX | 3 weeks | | Site screening (to determine extent of contamination), site characterization | \$50 per sample | | Not provided | Patrick Splichal
(Tetra Tech)
913/894-2600 | | Hastings Superfund Site- NB: landfill, contaminated ground water | 7 | Not provided
(GC used with
electron capture
detector) | Soil (ex situ),
ground water | Halogenated
VOCs | 6/97 | Not provided | Site
characterization,
cleanup
monitoring | Not provided | Real-time data;
CLP equivalent; no
purge and trap
required | Technology
requires mobile
laboratory | Diane Easley
(EPA)
915/551-7797 | | Kinsley Airport-
Kinsley, KS:
pesticide formulation,
spraying, and tank and
applicator cleaning | 7 | Hewlett Packard | Soil (ex situ),
ground water | Pesticides,
herbicides
(containing
chlorinated and
nitrogen
compounds) | 1 week | Not provided | Site screening,
site
characterization | Approxi-
mately \$100
per sample | Ability to detect compounds at MCL concentrations; technology produced quick results at about one-third the cost of off-site analysis | Simultaneous
elution of 3 target
pesticides hinders
ability to meet
detection limits | Darrell Hamilton
(Tetra Tech)
913/894-2600 | | Site unidentified-
Location not provided:
drum recycling site | 8 | Viking Instruments
Inc.
(GC/MS) | Soil gas,
air | VOCs | Not provided | Not provided | Cleanup
monitoring,
health and safety
monitoring | Not provided | Data correlated well with off-site data; data could be used to guide the removal action; portable system; data could be used to monitor public safety | Not provided | Alan Humphrey
(EPA)
732/321-6748
Steven Hawthorn
(EPA)
303/312-6061 | Table 2-3 Summary of Field Analytical and Site Characterization Technologies Reported Data on Specific Technologies (continued) | Site Description | EPA
Region | Vendor/
Product | Media
Monitored | Contaminant/
Parameter | Period
of Use | Through-
put | Data
Use(s) | Cost | Technology
Advantages | Technology
Limitations | Contact(s) | |---|---------------|--|---|--|------------------|--------------------------------|---|--|---|--|--| | · | | | | Ga | s Chromatog | raphy (conti | nued) | | | | | | Mount Olivet Cemetery-
Salt Lake City, UT | 8 | PE Photovac, Inc. | Soil (ex situ) | VOCs
(Pentachloro-
ethane [PCE]) | Ongoing | Not provided | Site screening
(plume tracing) | Not provided | Time savings; cost
savings | Not provided | Luke Chaved
(EPA)
303/312-6512
Barry Hayhurst
(URS Greiner,
Inc.)
303/291-8270 | | China Lake NAWS-
Ridgecrest, CA:
laboratory wastes and
petroleum wastes from
refueling operations and
leaking USTs | 9 | Hewlett-Packard
(5890 GC) | Soil (ex situ),
ground water | TPH-
extractable,
PAHs,
PCBs,
phthalates,
light
nonaqueous
phase liquids
(LNAPL) | 6 weeks | 20 samples
per day | Site screening,
site
characterization | | Quick turnaround
data; reduced
number of samples
sent off-site for
analysis; reduced
costs | Lack of positive identification because there was no mass spectroscopy or second column confirmation; requires operator experience; TPH interference | Darrell Hamilton
(Tetra Tech)
913/894-2600 | | Moffett Field-Mountain-
View, CA:
leaking USTs and
pipelines at fuel farm | 9 | Shimadzu
(14A GC)
Tekmar-
Dohrmann, Inc.
(headspace
analyzer) | Soil (ex situ),
ground water | TPH-
purgeable,
BTEX | 2 weeks | 25 to 30
samples per
day | Site screening,
site
characterization | Equipment can
be rented for
about \$2,500
per month | Simultaneous
analysis for BTEX,
as well as several
fuels; inexpensive;
no solvent waste | Poor extraction of
diesel fuel from
soils with high
organic matter | Patrick Splichal
(Tetra Tech)
913/894-2600
Jean Barranco
(Tetra Tech)
303/295-1101 | | Piper Aircraft
Corporation-
Vero Beach, CA | 9 | Sentex Systems,
Inc.
(portable GC -
Sentograph™) | Soil (ex situ),
sediment (ex
situ),
ground water | VOCs (TCE) | 8/23-8/26/92 | 25 samples
per 4 days | Site
characterization | Not provided | Real-time data | Library of
components
limited | Roger E. Carlton
(EPA)
706/355-8609
Bill Bokey and
Arthur Lee
(Piper Aircraft
Corporation)
706/355-8604 | | Garden City Ground
Water-
Garden City, ID:
ground water
contamination | 10 | Not provided (sample extracted using mobile laboratory equipment and analyzed with field GC) | Soil (ex situ),
ground water,
soil gas | VOCs,
solvents | 5 weeks | 2 samples per
hour | Site screening,
site
characterization,
enforcement | Not provided | Quick turnaround
time; allowed
sampling of a large
area for a low cost | Not provided | David Bennett
(EPA)
206/553-2103 | Table 2-3 Summary of Field Analytical and Site Characterization Technologies Reported Data on Specific Technologies (continued) | Site Description | | | | Contaminant/
Parameter | of Use | Through-
put
graphy (confi | and the second second second | | Technology
Advantages | | Contact(s) |
--|------------------|--|---|---------------------------|--------------|----------------------------------|---|--|--|---|--| | Preston Ground Water-
Preston, ID:
gas station with a
leaking UST, causing
ground-water
contamination | 10 | Hewlett Packard
(HP 5890) | Soil (ex situ),
ground water | VOCs,
BTEX | 1 month | 3 samples per
hour | Site screening,
site
characterization | 50 percent of
the cost of
CLP data | Real-time data to
help direct the
field program;
tracking of the
plume; cost-
effective; high
quality results | Not provided | Chris Field
(EPA)
206/553-1674 | | | | | | para ara mana | Imm | ınoassay | | ne
Santanti | 100 | And the same of the same of | | | Industrial Buildings-
Location not provided | Not
specified | ImmunoSystems,
SDI (EnviroGard) | Wipe samples
from solid
surfaces | PCBs | Not provided | 20 samples
per 2 hours | Cleanup
monitoring,
health and safety
monitoring | Not provided | Reduced cost per
sample; rapid
analysis; on-site
data | Better control
needed for
heterogeneity of
PCB distribution;
possible
interference from
PCB cleansers | Craig Kostyshyn
(SDI)
215/860-5115
(contact obtained
from Vendor
FACTS database) | | Site unidentified-
Location not provided | Not
specified | BioNebraska
(BiMelyze
Mercury Assay) | Soil (ex situ),
sediment
(ex situ),
ground water | Mercury | Not provided | Not provided | Site
characterization | Not provided | Convenient; cost- effective; real-time data; highly selective for mercury; data correlates well with those obtained by other methods | Not provided | Craig Schweitzer
(BioNebraska)
800/786-2580
(contact obtained
from Vendor
FACTS database) | | CYRO Industries-
Location not provided | 1 | SDI | Soil | PAHs | 10/95-11/95 | Not provided | Site
characterization | Not provided | Low cost;
90% accuracy | • | Ernest Waterman
(EPA)
617/223-5511 | | Site unidentified-
Norwood, MA | 1 | SDI | | PCBs,
PAHs | 12/94-8/95 | | Cleanup
monitoring,
health and safety
monitoring | Not provided | Low cost; rapid | • | John LeMay
(EPA)
617/573-9622 | Table 2-3 Summary of Field Analytical and Site Characterization Technologies Reported Data on Specific Technologies (continued) | Site Description | EPA
Region | Vendor/
Product | Media
Monitored | Contaminant/
Parameter | Period
of Use | Through-
put | Data
Use(s) | Cost | Technology
Advantages | Technology
Limitations | Contact(s) | |---|---------------|--|-----------------------------|---------------------------|------------------|--------------------------------|-----------------------|-----------------|---|----------------------------------|---| | | | | | | Immunoassa | ny (continued |) | | | | | | Nyanza Chemical Waste
Superfund Site-
Ashland, MA:
dye manufacturing
facility, mercury
contamination in soils
and sediments | 1 | BioNebraska, Inc.
(BiMelyze
Mercury Assay) | Sediment,
soil (ex situ) | Mercury | | 70 split
samples per
day | Site screening | | Results showed acceptable correlation with laboratory results; mercury concentrations ranged from less than 0.5 parts per million (ppm) to greater than 100 ppm | | Greg Morin
(U.S. Army
Corps of
Engineers
[USACE])
617/647-8232
Pam Shields
(EPA)
617/573-9632 | | Pine Street 1-
VT | 1 | Not provided | Soil | PAHs | Not provided | Not provided | Cleanup
monitoring | Not provided | Rapid, low cost | caused by soil | Ross Gilleland
(EPA)
617/573-5766 | | Pinette's-
ME | 1 | Not provided | Soil | PCBs | Not provided | Not provided | Cleanup
monitoring | Not provided | Rapid, low cost | • | Ross Gilleland
(EPA)
617/573-5766 | | Raymark 3-
CT | 1 | Not provided | Soil | PCBs | 9/93-9/97 | Not provided | Cleanup
monitoring | Not provided | Rapid, low cost | Not provided | Mike Jasinski
(EPA)
617/573-5786 | | Resolve 1-
MA | 1 | SDI | Soil | PCBs | Not provided | Not provided | Cleanup
monitoring | Not provided | Low cost; 90% accuracy | 10% false positives | Joe Lemay
(EPA)
617/573-9622 | | Resolve 2-
MA | 1 | SDI | Soil | PCBs | Not provided | Not provided | Cleanup
monitoring | Not provided | Low cost | False positives | Joe Lemay
(EPA)
617/573-9622 | | Resolve 1 & 2-
MA:
PCB-contaminated sites | 1 | SDI | Soil (ex situ) | PCBs | 2 months | 3 per hour | Cleanup
monitoring | \$10 per sample | Results more
conservative than
laboratory
(confirmation
sampling) | No major problems
encountered | Joe Lemay
(EPA)
617/573-9622 | Table 2-3 Summary of Field Analytical and Site Characterization Technologies Reported Data on Specific Technologies (continued) | Site Description: | EPA
Region | Vendor/
Product | Media
Monitored | Contaminant/
Parameter | Period
of Use | Through-
put | Data
Use(s) | Cost | Technology
Advantages | Technology
Limitations | Contact(s) | |--|---------------|--|--|---------------------------|-----------------------------------|-----------------------|--|--|---|---|--| | | | | | | Immunoas | say (continue | d) | | | | | | General Electric Corp.
(GE) Site No. 5-
NY:
industrial landfill | 2 | SDI (EnviroGard) | Soil (ex situ) | PCBs (Aroclor
1260) | Not provided | 80 samples
per day | Site
characterization
(technology
evaluation
performed by
GE) | \$18 per sample | | Not provided | L.A. Socha
(GE) | | General Motors, Central
Foundary Division Site-
Massena, NY | 2 | SDI
(PCB RISC™) | Soil (ex situ),
sediment
(ex situ) | PCBs | 2-3 months
on 2 occas-
ions | 4 samples per
hour | Cleanup
monitoring,
compliance
monitoring | Not provided | Large savings in time and analytical costs; savings in labor and equipment costs; real-time data aided in guiding excavation activities | No official report
on verification
procedures | Lisa Jackson and
Anne Kelly
(EPA)
212/637-4274
Jim Hartnett
(GMC)
315/764-2239 | | Aberdeen Proving
Ground-
Aberdeen, MD:
military activities | 3 | New Horizons Diagnostic Corp. (The SMART Test) | Soil,
sediment
(ex situ) | Bacteria | 7/93-7/97 | Not provided | Not provided | \$6 per sample | Not provided | Not provided | Peter Stopa
(U.S. Army) | | Delaware Sand and
Gravel-
New Castle, DE:
landfill drum pit | 3 | ОНМ | Soil (ex situ) | PCBs | Not provided | Not provided | Site screening | Not provided | Real-time
monitoring | Not provided | Eric Newman
(EPA)
215/566-3237 | | Former Coal Gasification Site- Georgetown, DE: coal gasification wastes | 3 | SDI
(RaPID® Assay) | | VOCs,
BTEX,
PAHs | | 40 samples
per day | Site screening,
site
characterization | BTEX-\$20 per
sample
PAHs-\$25 per
sample | Not provided | Not provided | Robert M.
Schulte
(Delaware
Department of
Natural
Resources) | | Saunders Supply-
VA:
wood treating facility | 3 | Not provided | Ground water | SVOCs
(PCP) | 2 days | Not provided | Site
characterization | Not provided | Fast results | Not provided | Andy Palestini
(EPA)
215/566-3223 | | Woodbridge Research
Facility-
Woodbridge, VA:
former radio
transmission
facility/research lab | 3 | Not provided | Soil (ex situ) | PCBs | 1994 | | Site
characterization | Not provided | | False positives
detected | Jack Porosnak
(EPA)
215/566-3362
Jeff Waugh
(Earth Tech)
410/671-1615 | Table 2-3 Summary of Field Analytical and Site Characterization Technologies Reported Data on Specific Technologies (continued) | Site Description | EPA
Region | Vendor/
Product | Media
Monitored | Contaminant/
Parameter | Period
of Use | Through-
put | Data
Use(s) | Cost | Technology
Advantages | Technology
Limitations | Contact(s) | |--|---------------|-----------------------|---
--|------------------|--------------------------|--|--|--|--|--| | | atus
G | | | 270 | Immunoass | ay (continued |) | | | Manusino città di Mangagana anno anno anno anno anno anno a | | | Agricultural Cooperative- South-central, WI: herbicide and pesticide manufacturing | 4 | SDI
(RaPID® Assay) | Soil (ex situ) | Pesticides
(atrazine) | Not provided | 20 samples
per day | Not provided | \$50 per sample | Not provided | | Dr. Kirsti Sorsa
(RMT, Inc.) | | American Creosote
Works-
Jackson, TN:
wood preserving facility | 4 | SDI (EnviroGard) | Soil (ex situ) | PAHs | Not provided | 80 samples
per day | Site
characterization
(technology
evaluation) | \$18 per sample | Good agreement
with results
produced by EPA
Method 8270 | Not provided | Dennis Revell
(EPA)
703/355-8807 | | Transformer and
Refurbishing Facility-
MI:
utility wastes | 5 | SDI
(RaPID® Assay) | Soil (ex situ),
ground water | PCBs | Not provided | Not provided | Not provided | \$25 per sample | Not provided | Not provided | P. Berlinski
(Delta
Environmental,
Inc.)
916/638-2085 | | Amesor Timber-
Steelville, MO:
lumber treatment | 7 | SDI | Soil (ex situ) | SVOCs (PCP) | 3 days | 25 samples
per day | Site
characterizations | \$225 per kit | Cost-effective;
quick turnaround
time for results;
helped to direct
sampling efforts;
reduced the
number of samples
needed to
characterize the
site | Sufficient reagent
was not provided;
only 60 of the 70
samples collected
produced valid
results | Paul Doherty
(EPA)
913/551-7924 | | Farmland Refinery-
Coffeyville, KS:
refinery (petroleum
waste) | 7 | SDI
(RaPID® Assay) | Soil (ex situ),
ground water,
surface water | PAHs | 5 days | 20 samples in
2 hours | Site
characterization | \$50 per sample
exclusive of
labor | Easy to use; low
detection limits;
rapid data | Interference caused
by high
concentration of
petroleum; cannot
identify individual
PAHs | Patrick Splichal
(Tetra Tech)
913/894-2600
Scott Ritchey
(EPA)
913/551-7641 | | Former Manufactured
Gas Plant-
Marshalltown, IA:
coal gasification | 7 | SDI
(D Tech) | Soil (ex situ),
sediment
(ex situ),
ground water | TPH (coal tar
and coal
gasification
wastes),
dense
nonaqueous
phase liquids
(DNAPL) | Not provided | 50 samples
per day | Site
characterization | \$12,855 to
complete
project and
report | Results of the
survey showed the
area of DNAPL
contamination | Conditions of interference affected the data | Dr. Al Bevolo
(Ames
Laboratory)
515/294-5414 | Table 2-3 Summary of Field Analytical and Site Characterization Technologies Reported Data on Specific Technologies (continued) | Site Description | EPA
Region | Vendor/
Product | Media
Monitored | Contaminant/
Parameter | | Through-
put | Data
Use(s) | Cost | Technology
Advantages | Technology
Limitations | Contact(s) | |---|---------------|------------------------------------|---|---------------------------|----------------------|----------------------------------|---|--|--|---|---| | | | | | | Immunoass | ay (continue | d) | | | All. | | | Kinsley Airport-
Kinsley, KS:
washing of pesticide
application rigs | 7 | SDI (Envirogard) | Soil (ex situ) | Toxaphene | 3 days | 12 soil
samples in 3
hours | Site screening,
site
characterization | \$50 per sample
exclusive of
labor | Cost savings;
portable; quick
turnaround times;
detection limits
capable of meeting
action levels | High percentage of false negative results when compared with | T | | Osage Metal-
Kansas City, KS:
metal salvage yard,
recycling of car batteries
and transformers | 7 | SDI | Soil (ex situ) | PCBs | 5 months | 50 samples | Cleanup
monitoring,
confirmation
sampling, waste
characterization | Not provided | Saved time;
produced usable
results | Unsure of specific detection limits of the test | Wood Ramsey
(EPA)
913/551-7382 | | Roanoke Apartments-
Kansas City, MO:
gasoline service station
with a leaking UST | 7 | SDI
(D Tech) | Soil (ex situ),
sediment
(ex situ),
ground water | TPH,
LNAPL | Not provided | 50 samples
per day | Site
characterization | \$13,345 to
complete
project | Allowed definition
of migration
pathways | Not provided | Craig Kostyshyn
(SDI)
215/860-5115
(contact obtained
from Vendor
FACTS database) | | Whiteman AFB-
MO:
gasoline service station
with a leaking UST | | SDI
(D Tech) | Soil (ex situ),
sediment
(ex situ),
ground water | Fuel oil | Less than 1
month | 50 samples
per day | Site
characterization | characteriza- | Allowed straight-
forward definition
of 2 plumes
confirmed by FID
readings | | Craig Kostyshyn
(SDI)
215/860-5115
(contact obtained
from Vendor
FACTS database) | | Crows Landing-
Patterson, CA:
burn pit, landfill area | 9 | SDI
(PETRO RISC TM) | Ground water | ТРН | | 2 hours | Site screening,
site
characterization | tests; \$400 per
week for | portable; quick | Test kit gave false
negative results
because fuel oil
was degraded | Todd Bechtel
(Tetra Tech)
303/295-1101 | Table 2-3 Summary of Field Analytical and Site Characterization Technologies Reported Data on Specific Technologies (continued) | Site Description | EPA
Region | Vendor/
Product | Media
Monitored | Contaminant/
Parameter | Period
of Use | Through-
put | Data
Use(s) | Cost | Technology
Advantages | Technology
Limitations | Contact(s) | |---|---------------|-----------------------|--------------------|-------------------------------------|-------------------|------------------------|---|--------------|--|---------------------------|--| | | | | | | Immunoass | y (continued |) | | | | | | Gila River Indian
Reservation-
Gila River Indian
Community, AZ:
storage, mixing, and
application of pesticides | 9 | SDI | Soil (in situ) | Pesticides | | every 20 | Site screening,
site
characterization | | Faster method of collecting reliable data; easier to use (can develop a generic sampling plan); cheaper; quick, reliable data; real-time data; flexible for use in the field | | Carolyn Douglas
(EPA)
415/744-2343 | | Hickam Air Force Base-
Honolulu, HI:
leaking UST site | 9 | SDI (EnviroGard) | Soil (ex situ) | TPH (JP-4
aviation fuel) | Less than 1 month | 10 samples in
1 day | Site screening,
site
characterization | | Low rate of false
positive results
(one false positive
result in 10
samples at a
screening level of
1,000 ppm) | Not provided | Bryce Hataoka
(Hawaii
Department of
Health) | | McCormick and Baxter-
Stockton, CA:
wood treatment | 9 | SDI
(RaPID® Assay) | Soil (ex situ) | Halogenated
SVOCs (PCP),
PAHs | 10 days | 233 samples | Site screening,
site
characterization | Not provided | Technology saved
money by allowing
reduction in the
number of samples
sent to the off-site
lab | Not provided | Marie Lacey
(EPA)
415/744-2236 | Table 2-3 Summary of Field Analytical and Site Characterization Technologies Reported Data on Specific Technologies (continued) | Site Description | EPA
Region | Vendor/
Product | Media
Monitored | Contaminant/
Parameter | Period
of Use | Through-
put | Data
Use(s) | Cost | Technology
Advantages | Technology Limitations | Contact(s) | |---|---------------|---|---|---|------------------|---------------------------------|--|-----------------|--|--
--| | | | | | | Immunoass | ay (continue | l) | | | | | | Navajo Nation Dip Vats
Project-
AZ:
toxaphene dip vats | 9 | SDI (EnviroGard) | Soil (ex situ) | Pesticides
(toxaphene) | Ongoing | 1 sample
every 20
minutes | Site screening,
site
characterization
(technology
demonstration) | \$20 per sample | Good agreement
with EPA Method
8081 (no false
positive or
negative results at
10-ppm level);
faster method of
collecting reliable
data; easy to use
cheaper; flexible
for use in the field | Not provided | Carolyn Douglas
(EPA)
415/744-2343
Stanley Edison
(Navajo Nation)
520/871-6861 | | Naval Station, Treasure
Island-
San Francisco, CA:
fire training area,
fuel farms | 9 | SDI (PETRO
RISC™,
D Tech) | Soil (in situ),
storm drain
sediments | PCBs,
BTEX,
TPH (gas,
diesel) | 6 months | 4 samples per
hour | Site screening | \$30 per test | Real-time data;
able to delineate
and verify
contamination in
the field | Need better
concentration
range; operator
must be certified to
use kit | Gina Kathuria
(California
Regional Water
Quality Board)
510/286-4267 | | Naval Station Treasure
Island-
San Francisco, CA:
leaking USTs and
pipelines | 9 | SDI (PETRO
RISC™ and PCB
RISC™) | ground water | BTEX,
PCBs,
PAHs | 5 months | 4 samples per
hour | Site screening,
site
characterization | Not provided | Not provided | laboratory; PAH | Thorsten Anderson (Tetra Tech) 415/543-4880 Gina Kathuria (California Regional Water Quality Board) 510/286-4267 | | NCS Stockton-Stockton,
CA:
pesticide storage,
leaking drums
containing pesticides | .9 | SDI (EnviroGard
and RISC TM) | Soil (ex situ),
ground water | Pesticides
(Dichlorodi-
phenyltrichloro-
ethane [DDT]) | 2-3 weeks | 4 samples per
hour | Site screening,
site
characterization | | Field screening
data showed good
correlation with
independent
laboratory data | TPH interference required dilution and affected detection limit; peat or bog samples gave poor extraction efficiency | Beth Kelley
(Tetra Tech)
916/853-4523 | | Sanders Aviation-
Tempe, AZ:
crop duster activities | 9 | SDI | Soil (ex situ) | Pesticides | 2 weeks | 10 samples in
1 hour | Site screening,
site
characterization | • | Real-time data;
cost-effective;
identification of
hot spots | Must be careful
about setting up
and defining
ranges | Tom Dunkelman
(EPA)
415/744-2294 | Table 2-3 Summary of Field Analytical and Site Characterization Technologies Reported Data on Specific Technologies (continued) | Site Description | EPA
Region | Vendor/ | Media
Monitored | Contaminant/
Parameter | Period
of Use | Through-
put | Data
Use(s) | Cost | Technology
Advantages | Technology
Limitations | Contact(s) | |--|---------------|--|--|---------------------------|------------------|---------------------------|--|---|---|--|--| | : | | | | | Immunoass | ay (continued | () | | - TD - 1 - TD - 1 | St. 12 | | | Astoria Plywood-
Astoria, OR:
plywood mill operations | | SDI (PETRO
RISC™ and PCB
RISC™) | Soil (ex situ) | PCBs,
TPH | 4 days | 4 samples per
hour | Site screening,
site
characterization | PCB-\$38 per
sample;
TPH-\$29 per
sample;
accessory kit
rented for
\$550 per week | samples screened
with PCB test kits
showed reasonable
correlation with
analytical
laboratory data | Data for soil samples screened with TPH test kits showed poor correlation with data from analytical laboratory; possible matrix interference from presence of hydraulic oil having higher molecular chains | Joe Mollusky
(Tetra Tech)
206/587-4650 | | Battery Recycling Plant-AK: | | BioNebraska, Inc.
(BiMelyze
Mercury Assay) | Soil (ex situ),
sludge | Heavy metals
(mercury) | Not provided | 48 samples
per day | Not provided | | Operational
mercury range up
to 4,400 ppm for
analysis of
confirmation
samples | Not provided | Mike Boykin
(Ecology and
Environment)
206/624-9537 | | Environmental Pacific
Corp
Amity, OR:
abandoned battery
recycling facility | 10 | BioNebraska, Inc.
(BiMelyze(R)
Mercury) | Soil (ex situ),
ground water,
dust, sludge,
concrete
residue | Heavy metals
(mercury) | 1 month | 1-2 samples
per hour | Site screening,
compliance
monitoring,
verification
sampling | Not provided | Cost-effective;
real-time data;
reproducible
results | Not provided | Thor Cutler
(EPA)
206/553-1673 | | Pacific Wood Treating-
Ridge Field, WA:
former wood treating
facility | 10 | SDI
(RaPID® Assay) | Soil (ex situ),
ground water,
surface water | SVOCs,
PCBs,
PAHs | 1 month | 1 sample
every 2 hours | Site screening,
site
characterization,
cleanup
monitoring | Not provided | Quick turnaround,
allowed for
definition of extent
of contamination;
reduced analytical
costs allowed for
effective direction
of field efforts | Not provided | Bill Langston
(EPA)
206/553-1679
Mark Ader
(EPA)
206/553-1808 | Table 2-3 Summary of Field Analytical and Site Characterization Technologies Reported Data on Specific Technologies (continued) | Site Description | EPA
Region | Vendor/
Product | 00 tany | Contaminant/
Parameter | of Use | | Data
Use(s) | | Technology
Advantages | Technology
Limitations | Contact(s) | |--|---------------|---|---|--|-----------|---|--|-----------------|--|---|---------------------------------------| | | | | | | Immunoass | ay (continue | 0) | | | | | | Reynolds Metal Co
Troutdale, OR:
aluminum reduction
facility | 10 | SDI
(RaPID® Assay) | Soil (ex situ),
sediment (ex
situ),
ground water | PCBs,
PAHs | 3 months | 51 samples
per hour
(after
extraction
and analysis
in batches) | Site screening,
cleanup
monitoring,
confirmation
sampling | \$20 per sample | | Cannot distinguish individual PCBs | Chris Field
(EPA)
206/553-1674 | | Umatilla Army Depot-
Hermiston, OR:
explosives washout
lagoon, OB/OD, small
arms incinerator,
explosives in ground
water | | SDI
(RaPID® Assay,
D-TECH) | Soil,
ground water,
composite
residues | Military
explosives
(TNT, RDX,
HMX) | 15 months | 10-30
samples per
day | Site screening,
cleanup
monitoring,
compliance
monitoring | Not provided | Real-time data;
lower cost
compared with
analytical
laboratory; higher
sampling density at
same cost | Not provided | Harry Craig
(EPA)
503/326-3689 | | | | | | | Mercury V | ipor Analyze | r . | | | | | | Dewey Daggett-
MA:
landfill | 1 | Jerome Meter
(mercury vapor
analyzer) | Air | Heavy metals
(mercury) | 8/30/95 | Not provided | Cleanup
monitoring | 1 | Avoided
downtime; data
quality effective
for determining
final sampling
locations; fast
analysis | Not provided | Not provided | | Truman-
St. Joseph, MO:
mercury spill | 7 | Jerome Meter
(mercury vapor
analyzer), Gillian
pump™ | Air | (mercury) | 6/96-7/97 | | Cleanup
monitoring,
confirmation
sampling, health
and safety
monitoring | | of exposure; quick
turnaround time on
data | Learning curve associated with the operation of the technology; Gillian pumps TM did not work well if the pumps were not charged fully | Ken Rapplean
(EPA)
913/551-7769 | | | | | | 11 m | X-Ray FI | uorescence | | SIE | | | | | Bristol Sandblasting-
RI | 1 | TN Spectrace
(Spectrace 9000) | | Heavy metals
(lead) | 10/19/94 | • | Site
characterization,
cleanup
monitoring | - | Effective in guiding final sampling locations | Not provided | Dorrie Paar
(EPA)
617/573-5768 | Table 2-3 Summary of Field Analytical and Site Characterization Technologies Reported Data on Specific Technologies (continued) | Site Description | EPA
Region | Vendor/
Product | Media
Monitored | Contaminant/
Parameter | Period
of Use | Through-
put | Data
Use(s) | Cost | Technology
Advantages | Technology
Limitations | Contact(s) |
--|---------------|----------------------------------|--------------------|---------------------------|---------------------|-----------------|--|--------------|--|---------------------------|---| | | | | | Х | -Ray Fluores | cence (contin | ued) | | | | | | Brockton Gas-
MA | 1 | Not provided | Soil | Heavy metals
(lead) | Not provided | Not provided | Cleanup
monitoring | Not provided | Not provided | Not provided | Dorrie Paar
(EPA)
617/573-5768 | | Carroll Products-
RI | 1 | Not provided | Soil,
sludge | Heavy metals
(lead) | Not provided | Not provided | Site
characterization | Not provided | Not provided | Not provided | Bob Brackett
(EPA)
617/573-5744 | | Cohen Property-
MA | 1 | Not provided | Soil | Heavy metals
(lead) | 8/9/94 | Not provided | Cleanup
monitoring | Not provided | Not provided | Not provided | Janis Tsang
(EPA)
617/573-5732 | | Finberg Field-
MA | 1 | TN Spectrace
(Spectrace 9000) | Soil | Heavy metals
(lead) | 6/8/95 | Not provided | Site
characterization | Not provided | Effective in guiding final sampling locations | Not provided | Frank Gardner
(EPA)
617/573-5722 | | Goldfedders-
CT | 1 | TN Spectrace
(Spectrace 9000) | Soil | Heavy metals
(lead) | 3/20/95-
8/18/95 | Not provided | Cleanup
monitoring | Not provided | Not provided | Not provided | Frank Gardner
(EPA)
617/573-5722 | | Hatherway and
Patterson-
MA | 1 | Not provided | Soil | Heavy metals
(lead) | Not provided | Not provided | Cleanup
monitoring | Not provided | Not provided | Not provided | Lisa Danek
(EPA)
617/573-5707 | | Kearsarge-
NH | 1 | Not provided | Soil | Heavy metals
(lead) | 9/26/90-
4/17/91 | Not provided | Cleanup
monitoring | Not provided | Not provided | Not provided | Dean Taglioferro
(EPA)
617/263-5596 | | Lake Success Business
Park, Remington Arms-
Bedford, MA | 1 | Niton XL spectrum
analyzer | Soil | Heavy metals
(lead) | 10/96-present | Not provided | Site
characterization,
cleanup
monitoring | Not provided | Low cost; quick
turnaround time
for data; ease of
use | Not provided | Stephanie Carr
617/573-5593
Niton, Inc.
800/875-1578 | | New Hampshire Plating
Co
Merrimack, NH:
electroplating facility | 1 | Not provided | Soil (ex situ) | Heavy metals
(cadmium) | 1993 | Not provided | Site
characterization | Not provided | Not provided | Not provided | Dick Goehlevet
(EPA)
(617) 573-5742 | Table 2-3 Summary of Field Analytical and Site Characterization Technologies Reported Data on Specific Technologies (continued) | Site Description | EPA
Region | Vendor/
Product | Media
Monitored | Contaminant/
Parameter | Period
of Use | Through-
put | Data
Use(s) | Cost | Technology
Advantages | Technology
Limitations | Contact(s) | |--|---------------|----------------------------------|--------------------|-------------------------------------|--------------------|-----------------|--------------------------|--------------|--|---------------------------|--| | A CONTRACTOR OF THE PARTY TH | | | | X | -Ray Fluores | scence (contin | nued) | | | | | | New Hampshire Plating
Co
Merrimack, NH:
electroplating facility | 1 | Not provided | Soil | Heavy metals
(lead) | 6/93-6/94 | Not provided | Cleanup
monitoring | Not provided | Rapid analyses;
low cost | Not provided | Jim DiLorenzo
(EPA)
617/223-5510 | | Precision Chrome
Plating Corporation-
RI | 1 | TN Spectrace
(Spectrace 9000) | Soil | Heavy metals
(lead,
chromium) | 4/24/95 | Not provided | Site
characterization | Not provided | Effective in guiding selection of final sampling locations | Not provided | Dorrie Paar
(EPA)
617/573-5768 | | RAE Battery-
CT | 1 | TN Spectrace
(Spectrace 9000) | Soil | Heavy metals
(lead) | Not provided | Not provided | Cleanup
monitoring | Not provided | Speed and less
down time | Not provided | Lisa Danek
(EPA)
617/573-5707 | | Raymark-
CT | 1 | Not provided | Soil | Heavy metals
(lead) | Not provided | Not provided | Site
characterization | Not provided | Not provided | Not provided | Mike Jasinski
(EPA)
617/573-5786 | | Shapiro Site-
MA | 1 | TN Spectrace
(Spectrace 9000) | Soil | Heavy metals | 6/14/95 | Not provided | Site
characterization | Not provided | Effective in guiding selection of final sampling locations | Not provided | Dorrie Paar
(EPA)
617/573-5768 | | Sparkling Fiber-
NH | 1 | TN Spectrace
(Spectrace 9000) | Soil | Heavy metals
(lead) | Not provided | Not provided | Site
characterization | Not provided | Effective in guiding selection of final sampling locations | Not provided | Dorrie Paar
(EPA)
617/573-5768 | | Site unidentified-
Stratford, CT | 1 | Not provided | | Heavy metals
(lead) | 6/17/93 | Not provided | Cleanup
monitoring | Not provided | Not provided | Not provided | Mike Jasinski
(EPA)
617/573-5786 | | Surrette Battery-
NH | | TN Spectrace
(Spectrace 9000) | Soil | | 4/2/95-
8/22/95 | Not provided | Cleanup
monitoring | Not provided | Effective in guiding selection of final sampling locations | Not provided | Frank Gardner
(EPA)
617/573-5722 | | West Street Property-
MA | | TN Spectrace
(Spectrace 9000) | | Heavy metals
(lead) | Not provided | Not provided | Site
characterization | | Effective in guiding selection of final sampling locations | Not provided | Dorrie Paar
(EPA)
617/573-5768 | Table 2-3 Summary of Field Analytical and Site Characterization Technologies Reported Data on Specific Technologies (continued) | Site Description | EPA
Region | Vendor/
Product | Media
Monitored | Contaminant/
Parameter | Period
of Use | Through-
put | Data
Use(s) | Cost | Technology
Advantages | Technology
Limitations | Contact(s) | |---|---------------|---|-----------------------------------|---|---------------------|--|--------------------------|--|--|---|--| | | | | | X- | Ray Fluores | cence (contin | ued) | | | | | | Vega Baja Solid Waste
Disposal Site-
PR | 2 | TN Spectrace
(model number not
provided) | Soil (in situ),
soil (ex situ) | Heavy metals | 7 days | 350 samples | Site
characterization | \$17 per sample | Effective use of
time and resources,
resulting in further
cost savings;
identification of
hot spots | Research needed to
determine how
effective an
analytical tool
technology would
be for non-
screening purposes | Dennis Munhall
(EPA)
212/637-4343
Juan Davila
(EPA)
212/637-4341 | | Hebelka-
Location not provided | 3 | Not provided | Soil (ex situ) | Heavy metals
(lead) | 2 months in
1992 | Not provided | Fred MacMillian
(EPA)
215/566-3201 | | Mid-Atlantic Wood
Preserves-
MD:
wood treatment facility | 3 | Not provided | Soil (in situ) | Heavy
metals
(copper,
chromium,
arsenic) | Not provided | 200 samples
per 3 days | Cleanup
monitoring | Not provided | Fast verification
during response
action; good
correlation with
lab samples | May want to use concentration range to allow flexibility in decision making | Eric Newman
(EPA)
215/566-3237 | | Palmerton Zine-
Palmerton, PA:
wall paint | 3 | Outokumpu
Electronics and
Princeton Gamma
Tech | Solid walls | Heavy metals | 6 months in
1991 | 200 hours | Site
characterization | Not provided | Not provided | Penetration depth
was limited | Fred MacMillan
(EPA)
215/566-3201 | | Site unidentified-
Location not provided:
active manufacturing
facility | 3 | TN Spectrace
(Spectrace 6000) | Soil (ex situ) | Heavy metals
(chromium,
copper, nickel) | 4 months | 954 samples
per 4 months | Cleanup
monitoring | \$146 per
sample | Less expensive
than off-site
analysis; no waste
generated;
nondestructive
method; real-time
data; reduced cost
of cleanup | Not provided | David Catherman
(Environmental
Resources
Management,
Inc.)
610/524-3500 | | Lockheed Martin
Advanced Recorders-
Sarasota, FL:
ground-water and soil
contamination | 4 | Not provided | Soil (ex situ) | Heavy metals | 5 days | Not provided | Site
characterization | Not provided | Not provided | Analysis of metals
other than lead
may be suspect | Wesley S.
Hardegree
(EPA)
404/562-0486 | | Old Citgo Refinery-
Bossier City, LA:
petroleum refinery
operations | 6 | TN Spectrace
(Spectrace 9000) | Soil (ex situ),
sludge | Heavy metals
(chromium,
lead) | 1 week | Collected and
analyzed 200
to 300
samples | Site screening | Approxi-
mately \$4,000
per week | Time and cost savings | Not provided | Paul Dubois
(Tetra Tech)
214/740-2012 | Table 2-3 Summary of Field Analytical and Site Characterization Technologies Reported Data on Specific Technologies (continued) | Site Description | EPA
Region | Vendor/
Product | Media
Monitored | Contaminant/
Parameter | Period
of Use | Through-
put | Data
Use(s) | Cost | Technology
Advantages | Technology
Limitations | Contact(s) | |---|---------------|----------------------------------|-----------------------------------|--|------------------|------------------------|--|--|--|--|---| | | | T T | | Х | -Ray Fluores | scence (contin | ued) | | | | | | St. Charles Metal
Finishing Company-
St. Charles, MO:
plating wastes | 7 | HNU Systems, Inc.
(SEFA-P) | Soil (ex situ) | Heavy metals
(lead and
chromium) | 5 days | 10 samples
per hour | Site
characterization | \$55,000 to
purchase
SEFA-P; rental
charge of
\$2,000 for 2
weeks | Less expensive than off-site analysis; quick turnaround time; data used to guide investigation; can handle multiple analytes simultaneously; little sample preparation | Detection limits
for chromium at
least 200
milligrams per
kilogram;
instrument weighs
50 lbs and is not
very portable;
requires liquid
nitrogen | Ruben McCullers
(EPA)
913/551-7455 | | Tri-State-
Jasper County, MO:
airborne emissions
deposited from smelter | 7 | Metorex
(X-MET-880) | Soil (in situ),
soil (ex situ) | Heavy metals | 1 year | 10,000
samples | Site screening,
site
characterization,
cleanup
monitoring,
confirmation
sampling | \$10 to \$20 per
sample
(exclusive of
labor cost) | Real-time data to
guide excavation;
quick turnaround;
portable | Equipment
malfunctioned | Dave Williams
(EPA)
913/551-7625 | | Site unidentified-
Location not provided:
15 abandoned or
inactive smelter sites | 8 | TN Spectrace
(Spectrace 9000) | Soil (ex situ) | Heavy metals | Not provided | Not provided | Site
characterization | | Rapid on-site data;
inexpensive; little
sample
preparation; no
solvent waste; can
handle multiple
analytes
simultaneously | Not provided | Lawrence Kaelin
(RF Weston)
Steve Hawthorn
(EPA)
303/312-6061 | | California Gulch
Superfund Site-
Leadville, CO:
old mining and smelter
operations | 8 | Metorex
(X-MET 880) | Soil (ex situ) | Heavy metals
(lead) | | | Site
characterization | | correlated well with CLP data; | check sample | C.A. Kuharic and
W.H. Cole
(Lockheed
Martin) | Table 2-3 Summary of Field Analytical and Site Characterization Technologies Reported Data on Specific Technologies (continued) | Site Description | EPA
Region | Vendor/
Product | Media
Monitored | Contaminant/
Parameter | Period
of Use | Through-
put | Data
Use(s) | Cost | Technology
Advantages | Technology
Limitations | Contact(s) | |---|---------------|----------------------------------|---|---------------------------|------------------|--|--------------------------|------------------------------------|--|--|---| | | | | | X | -Ray Fluores | cence (contin | ued) | | | | Total Control of the | | China Lake NAWS-
Ridgecrest, CA:
laboratory wastes
discharged to drainage
ditches and lagoons | 9 | TN Spectrace
(Spectrace 9000) | Soil (ex situ),
soil (in situ),
sediment
(ex situ),
sediment
(in situ) | Heavy metals | 1 month | 12 samples
per hour | Site
characterization | Leased for
\$6,000 per
month | perform in situ | High detection
limits (200 mg/kg)
for chromium;
field portable XRF
barium data did
not compare well
with confirmatory
data | Bryce Smith or
Scott Schulte
(Tetra Tech)
913/894-2600 | | Concord Naval Weapons
Station-
Concord, CA:
storage and distribution
of military munitions | 9 | Not provided | Soil (ex situ) | Heavy metals | Fall 1995 | 30-50
samples per
day (no
preparation)
20 samples
per day (with
preparation) | Site
characterization | Not provided | Quick screening of
sites; identification
of hot spots | Detection limits not low enough to meet ecological concerns; matrix interference; results only indicate surface conditions and therefore may not provide adequate information for remediation purposes | Barbara Smith
(EPA)
415/744-2366 | | Defense Distribution
Region West, Sharpe
Depot-
Lanthrop, CA:
storage and distribution
of military munitions | 9 | Not provided | Soil (ex situ) | Heavy metals | 2 weeks | 3 samples per
hour | Site
characterization | Not provided | Quick turnaround
time; cheaper than
use of
CLP
laboratory;
good results | Data not
comparable to
laboratory data | John Guzman
(Defense
Logistics
Agency) '
209/982-2093
Mike Wolfram
(EPA)
415/744-2410 | | Defense Distribution
Region West-
Location not provided | 9 | Not provided | Soil (in situ),
soil (ex situ) | Heavy metals | Not provided | Not provided | Site
characterization | Not provided | Can collect more
samples per area
because of cost
savings; allows for
identification of
trends in the field;
saves time and
money | Lack of guidance
on data validation
procedures | Marlon Mezquita
(EPA)
41 <i>51</i> 744-1527 | Table 2-3 Summary of Field Analytical and Site Characterization Technologies Reported Data on Specific Technologies (continued) | Site Description | EPA
Region | Vendor/
Product | Media
Monitored | Contaminant/
Parameter | Period
of Use | Through-
put | Data
Use(s) | Cost | Technology
Advantages | Technology
Limitations | Contact(s) | |--|---------------|-----------------------------------|--|---------------------------|------------------|-----------------------|--|--------------|---|---|---| | | | | | 7 | -Ray Fluore | scence (contii | nued) | | | | | | Mare Island Naval Shipyard- Vallejo, CA: naval submarine and ship repair, maintenance, and construction facility | 9 | TN Sprectrace
(Spectrace 6000) | Soil (ex situ),
sediment
(ex situ) | Heavy metals | Ongoing | Not provided | Site
characterization | Not provided | Rapid turnaround
time; lower cost;
flexibility in the
field; consistent
quality control,
instead of
inconsistencies
that arise when
various
laboratories are
used | Analytical biases
for certain metals;
difficulties in
obtaining
sufficiently low
detection limits
because of matrix
interference | Tom Huetteman
(EPA)
415/744-2384 | | Sacramento Army
Depot-
Sacramento, CA | 9 | Not provided | Soil (in situ),
soil (ex situ) | Heavy metals | 9 months | Not provided | Site
characterization,
cleanup
monitoring | Not provided | Can collect more
samples per area
because of cost
savings; allows for
identification of
trends in the field;
saves time and
money | Lack of guidance
on data validation
procedures | Marlon Mezquita
(EPA)
415/744-1527 | | Verdese Carter Park-
Oakland, CA:
lead acid waste, disposal
of batteries | 9 | Not provided | | Heavy metals
(lead) | 2 years | 50 samples
per day | Site screening,
site
characterization,
cleanup
monitoring | | Saves time and money; non-destructive (therefore the same sample analyzed in the field can be analyzed in the laboratory) | No EPA Region 9
standard operating
procedures | Mike Bellot
(EPA)
415/744-2364
Loran Henning
(EPA)
415/744-1305 | | McCarty's Pacific Hide
and Fur-
Pocatello, ID:
metal salvaging yard and
lead acid battery storage | | Outokumpu
Electronics | | Heavy metals
(lead) | 10 days | - | Site screening,
site
characterization,
cleanup
monitoring,
confirmation
sampling | | Transportable; capable of screening 6 elements simultaneously; data correlated well with laboratory data | | Ann Williamson
(EPA)
206/553-2739
Lorraine Edmond
(EPA)
206/553-7366
David Frank
(EPA)
206/553-4019 | Table 2-3 Summary of Field Analytical and Site Characterization Technologies Reported Data on Specific Technologies (continued) | Site Description | EPA
Region | Vendor/
Product | Media
Monitored | Contaminant/
Parameter | Period
of Use | Through-
put | Data
Use(s) | Cost | Technology
Advantages | Technology
Limitations | Contact(s) | |---|---------------|---|----------------------------------|----------------------------|------------------|-----------------------------|--|------------------------------|--|--|---| | | | | | Х- | Ray Fluores | cence (contin | ued) | | | | | | Umatilla Army Depot-
Hermiston, OR:
explosives washout
lagoon, OB/OD area,
small arms incinerator,
explosives in ground
water | 10 | TN Spectrace
(model number not
provided) | Soil | Heavy metals
(lead) | | 10-30
samples per
day | Cleanup
monitoring,
compliance
monitoring | | Real-time data;
lower cost,
compared with
cost of using
analytical
laboratory; higher
sampling density at
same cost | | Harry Craig
(EPA)
503/326-3399 | | | <u> </u> | | | - | | | | | | 0 | | | | | | | Ge | eophysical | l Technolo | ogies | | | | tain a in in | | | | | | - | Bore-hole | Geophysical | | | | | | | Loring AFB-
Limestone, Maine:
fuel oil release area,
blasting conducted to
support recovery of fuel
oil | 1 | Mala Geo-
Sciences, Inc.
(Terra Plus bore-
hole GPR) | Soil (bedrock) | Bedrock
stratigraphy | 6/95-present | Not provided | Site
characterization | Bore-hole
radar \$250,000 | Produces "picture"
of bedrock planes
to 25-50 meter
radius of the bore-
hole | Not provided | Pete Haeni
(United States
Geological
Survey [USGS] -
Connecticut)
860/240-3299
Richard Willy
(EPA)
617/573-9639 | | New Hampshire Plating
Co
Merrimack, NH:
electroplating facility | 1 | Geonics Ltd. (EM-39 bore-hole electromagnetic induction unit used in conjunction with natural gamma log survey) | Soils (in situ),
ground water | Electrical
conductivity | 1994 | Continuous
readout | Site
characterization | \$25,000 per
unit | Technology
delivered good
results | Can be used only in open bore-holes/PVC with diameter > 2", (non-metallic wells) | Richard Willy
(EPA)
617/573-9639
Thomas Mach
(USGS)
603/226-7805 | | Letterkenny Army
Depot-
Letterkenny, PA | 3 | Geophex
(bore-hole acoustic
equipment) | Ground water | Depth to ground water | 5/95-6/97 | 1 hole per
day | Site
characterization | \$120,000 per
unit | Produces superior
data; produces
picture of bedrock
fractures; real-time
data | Post-processing of data is expensive | Paul Stone
(USACE)
717/261-6863 | Table 2-3 Summary of Field Analytical and Site Characterization Technologies Reported Data on Specific Technologies (continued) | Sife Description | EPA
Region | Vendor/
Product | | Contaminant/ | | Through- | Data
Use(s) | Cost | Technology
Advantages | Technology
Limitations | Contact(s) | |--|---------------|--|----------------|--
--|--------------------------|--------------------------|---|--|---|--| | | | | | A., 60700. Sept. 2007. 5008.00 | No Colonia I religioni nell'alla di la colonia colon | | nued) | College and the physics of the college of the | ov. Vest water of the second | 10 | | | Limestone Rd
Cumberland, MD:
ground water
contamination | 3 | USGS | | Bedrock
fracture
identification,
temperature | 7/93 | 3 bore-holes
per day | Site
characterization | Not provided | Better
understanding of
ground-water flow | Bore-hole size and
terrain may limit
equipment | Andy Sochanski
(EPA)
215/566-3370
Leslie Brunner
(EPA)
215/566-3239
Dan Phelan
(USGS)
410/828-1535 | | | | | 7 S. A. A. | Dir | ect-push Elec | trical Condu | crivity | | | | | | Salina North-
Salina, KS:
industrial area, solvent
use and disposal, grain
fumigation, chemical
manufacturing | 7 | Geoprobe® Systems (Direct Image® soil conductivity logging system) | Soil (in situ) | Site subsurface
lithology (to
define
subsurface
geologic and
hydrogeologic,
conditions) | 3 days | | Site
characterization | \$14,000 per
unit | Capable of identifying stratigraphic layers that conventional | Susceptible to
operator error;
experienced
operator needed to
calibrate and
interpret logs | Curt Enos
(Tetra Tech)
913/839-8515
Wes McCall
(Geoprobe
Systems, Inc.)
913/825-1842
Susan Stover
(KDHE)
913/296-5531 | | | | | | | Electromagi | netic Inductio | n. | | | | | | Holtrachem-
Location not provided | 1 | VLF
Electromagnetic
Survey equipment | Bedrock | Not provided | 1994 | Not provided | Site
characterization | Not provided | Not provided | Not provided | Ernest Waterman
(EPA)
617/223-5511 | | Bliss Ellisville-
Wild Wood, MO:
buried drums containing
dioxin | 7 | Geonics, Limited
(EM-31) | Soil (in situ) | Buried ferrous
metal | 2 months | 7 acres | Site
characterization | Not provided | Not provided | Overhead power
lines caused
interference | Wood Ramsey
(EPA)
913/551-7382 | | Letterkenny Army
Depot-
Letterkenny, PA:
landfill | 3 | Geophex
(multifrequency
conductivity
instrument) | Soil (in situ) | Disposal
trenches | 6/97 | 12 acre site
per week | Site
characterization | \$10,000 per
acre | Quick turnaround
time; ease of use,
portable | introduce noise | Paul Stone
(USACE)
717/261-6863
Eric Powers
(Geophex)
919/839-8515 | Table 2-3 Summary of Field Analytical and Site Characterization Technologies Reported Data on Specific Technologies (continued) | Site Description | EPA
Region | Vendor/
Product | Media
Monitored | Contaminant/
Parameter | Period
of Use | Through-
put | Data
Use(s) | Cost | Technology
Advantages | Technology
Limitations | Contact(s) | |---|---------------|---|----------------------------------|---|------------------|-----------------------|--------------------------|---------------------|--|---|---| | | | | | | Ground Pen | etrating Rada | ar | | | | | | Ciba-Geigy-
Cranston, RI | 1 | Not provided | Till,
bedrock | Structure contours | 1991 | | Site
characterization | Not provided | Nonintrusive | Poor identification of buried utilities | Frank Battaglia
(EPA)
617/573-5747 | | General Electric-
Pittsfield, MA | 1 | Not provided | Till | Structure
contours | 1995-present | Not provided | Site
characterization | Not provided | Nonintrusive | Not provided | Bryan Olsen
(EPA)
617/573-5747 | | Gilson Road-
Nashua, NH:
former waste disposal
site (1960-70s) | 1 | Not provided | Subsurface | Water table,
bedrock
stratigraphy | Not provided | Continuous
profile | Site
characterization | Not provided | Information pertaining to depth of water table and bedrock compared favorable with GFR data; produced a picture of the bedrock plane | Not provided | Thomas Mack
(USGS, New
Hampshire)
603/226-7805 | | Dupont-Newport-
Newport, DE:
contamination in
riverbed | 3 | OceanSystems,
Inc.
(GPR with dual
frequency
sounding and side-
scanning sonar) | Soil (in situ)
(river bottom) | Sediment layers | Not provided | Continuous
profile | Site
characterization | Not provided | Focused sample
location mapping | Fine grain analysis
more expensive | Randy Sturgeon
(EPA)
215/566-3227 | | | | | | | Magn | etometry | | | | | | | Naval Air Engineering
Station-
Lakehurst, NJ | 2 | Geo-Centers, Inc.
(Surface-Towed
Ordnance Locating
System [STOLS]) | Soil (in situ) | Buried ferrous metals | Not provided | 0.75 acre per
hour | Site
characterization | \$8,600 per
acre | Relatively quick
survey of terrain | Limited by field conditions (mud, severe weather, foliage, and deeply located anomalies); equipment tends to underestimate number of targets compared with hand-held devices; signals from extraneous metals must be
filtered out | | Table 2-3 Summary of Field Analytical and Site Characterization Technologies Reported Data on Specific Technologies (continued) | Site Description | EPA
Region | 2 | Media
Monitored | Contaminant/
Parameter | Period of Use | Through-
put
try (continue | Data
Use(s) | Acres City City City | Technology
Advantages | Technology
Limitations | Contact(s) | |---|---------------|--|--------------------------------|--|---|---|--|--------------------------------|---|---|--| | Bliss Ellisville-
Wild Wood, MO:
buried drums containing
dioxin | 7 | Geonics Limited
(proton
magnetometer,
G-856) | Soil (in situ) | Buried ferrous metal | 2 months | 7 acres | Site
characterization | Not provided | Not provided | Overhead power lines caused interference | Wood Ramsey
(EPA)
913/551-7382 | | Secretary II. | | e de la companya l | eger fi ^{(eg) ye del} | | Seismi | Profiling | and the second | | | | | | Allegany Ballistics
Laboratory-
Rocket City, WV:
TCE disposal pit, drum
storage area | 3 | Resolution
Resources, Inc.
(three-dimensional
seismic reflection
technology) | Soil (in situ) | Bedrock
stratigraphy | 10/95-11/95 | Not provided | Site
characterization | Not provided | Cost-effective
method for
determining
migration path for
DNAPLs | Data return is very
specific; trained
technicians
required | Jeff Kidwell
(Navy Sea
Systems
Command)
757/322-4795 | | National Aeronautic and
Space Administration
(NASA) Kennedy Space
Center-
FL:
former components
cleaning facility for
rocket parts | 4 | Resolution
Resources, Inc.
(three-dimensional
seismic reflection
technology) | Soil (in situ) | Soil type | 12 days on
site; 45 days
for data
assessment | 2 months to
sample and
delineate
seismic data
for a 1,500' x
1,500' area | Site
characterization | model | Very detailed image of soil stratigraphy that aids in the placement of wells; defines fractures within one foot | Removal of
vegetation required | Jacqueline Quinn
(NASA)
407/867-4265 | | Former Vickers Site-
Omaha, NE:
hydraulic pump facility | 7 | Resolution
Resources, Inc.
(three-dimensional
seismic reflection
technology) | Soil (in situ) | Depth to ground
water,
bedrock
stratigraphy | 5/12-5/20/97 | 62,000 sq ft
per day | Site
characterization,
cleanup
monitoring | \$100,000 per
500,000 sq ft | Portable unit;
identified fractures
in bedrock | | Paul Broorner
(Unisys)
612/687-2673
Mike Westerheiw
612/687-2887 | | N: I Air Station Al eda- Al: ueda, CA: air aft support op ations | 9 | Resources, Inc. | ` ′ | Bedrock
stratigraphy | 11/96-
10 days | Not provided | Site screening | | time; cost-
effective; easy to
use | Equipment requires direct contact with ground, which presents a problem in buildings; data require interpretation | Ken Speilman
(Navy EFA West)
415/244-2539 | Table 2-3 Summary of Field Analytical and Site Characterization Technologies Reported Data on Specific Technologies (continued) | Site Description | EPA
Region | Vendor/
Product | Media
Monitored | Contaminant/
Parameter | Period
of Use | Through-
put | Data
Use(s) | Cost | Technology
Advantages | Technology
Limitations | Contact(s) | |---|---------------|--|---------------------------|--|------------------|-----------------|--|-------------------------------|--|---|---| | | | | | | Seismic Profi | ling (continu | ed) | | | | | | Lawrence Livermore
National Laboratory-
Livermore, CA:
landfills, disposal pits,
spills | 9 | EG&G, Inc.
(Innovative
Transducers) | Sediment,
ground water | Depth to ground
water,
soil type,
bedrock
stratigraphy | 1992-present | Not provided | Site
characterization,
cleanup
monitoring | \$150,000 per
unit | Rapid data collection; provides opportunity to properly design and install remedial system and determine migration pathways for contaminants | Works best where
water table is
shallow | Robert Bainer
(Lawrence
Livermore
National
Laboratory)
510/422-4635 | | Lawrence Livermore
National Laboratory-
Livermore, CA | 9 | Resolution Resources, Inc. (three-dimensional seismic reflection technology) | Sediments,
bedrock | Subsurface
stratigraphy
(structure) | 1-2 weeks | Not provided | Site
characterization | Not provided | Information can be
used to determine
likely migration
pathways | Not provided | Robert Bainer
(Lawrence
Livermore
National
Laboratory)
510/422-4635
Mary-Linda
Adams
(Resolution
Resources)
540/349-9172 or
517/647-1832 | | Naval Air Station North Island- San Diego, CA: chemical waste dumping site | 9 | Resolution
Resources, Inc.
(three-dimensional
seismic reflection
technology) | Soil (in situ) | Bedrock
stratigraphy | 2 months | Not provided | Site
characterization | \$250,000 for
40-acre site | Cost-effective method of obtaining detailed on-site stratigraphy, using minimal preexisting borehole data; able to identify fault zones (contaminant migration pathways), saving several months in field exploration | Not provided | Bill Collins
(NAVFACSW-
DIV)
619/556-8929 | Table 2-3 Summary of Field Analytical and Site Characterization Technologies Reported Data on Specific Technologies (continued) | Site Description | | | Media
Monitored | 7 (1.000) | of Use | Through-
put | | Cost | Technology
Advantages | Technology
Limitations | Eontact(s) | |--|---|--|--|---------------------------------------|------------|---|---------------------------|---|--|---|---| | Stringfellow hazardous
waste site-
Riverside, CA:
Former hazardous waste
landfill (1956-1972) | 9 |
Resolution
Resources, Inc.
(three-dimensional
seismic reflection
technology) | Soil (in-situ) | Bedrock
stratigraphy,
fractures | 1/97-6/97 | 11 acres
(7,800 data
points) per
30 days | ed) Site characterization | Not provided | Used to locate
groundwater
extraction wells,
minimizing
drilling costs | Metal objects on
surface (fence)
caused
interference, but
did not prohibit
use of equipment | Stewart Black
(URS Greiner,
Inc.)
916/929-2346 | | | | | | Ra | | e Technol | | | | | | | Site unidentified-
Texas City, TX:
abandoned tin smelter
facility | 6 | Ludlum, Inc.
(Model 19 with a
sodium iodide
scintillation
detector) | Soil (in situ),
sediment
(in situ) | Radionuclides | l e | Not provided | | Not provided | Rapid, real-time data; portable system; data compared favorably with laboratory data; less expensive | Not provided | Warren Zehner
(EPA)
281/983-2127
Joe Cornelius
(E&E) | | Ramp Industries Removal Action - Denver, CO: radioactive and mixed waste processor, transfer station, abandoned material at site, spills | 8 | Canberra
(gamma
spectrography) | Liquid waste
(drummed) | Radionuclides | 2.5 months | Not provided | Waste
characterization | \$900 per wk
rental,
inspector at
\$370 per wk | Identifies waste in
the field before
shipping and
disposal | Expensive; requires trained operator; sensitive to power fluctuations; requires liquid nitrogen; needs protection from elements | Dave Christenson
(EPA)
303/312-6645
Dave Hall
(SEG)
423/376-8246 | | Naval Air Station
Alameda,
Hunters Point Annex-
Oakland, CA | 9 | EG&G ORTEC
(Micro Nomad) | Soil (in situ) | Radionuclides | 9/95-11/95 | Not provided | Site
characterization | (minus laptop) | Ease of use;
portability; much
cheaper than
conventional
methods | Not provided | Kevin Taylor
(Tetra Tech)
404/225-5505 | Table 2-3 Summary of Field Analytical and Site Characterization Technologies Reported Data on Specific Technologies (continued) | Site Description | EPA
Region | Vendor/
Product | Media
Monitored | Contaminant/
Parameter | Period
of Use | Through-
put | Data
Use(s) | Cost | Technology
Advantages | Technology
Limitations | Contact(s) | |--|---------------|--|--------------------|--|------------------|--|--|--|---|--|--| | | | | | - C - 2 - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 | Passive Al | pha Detector | <u> </u> | | | | | | Area 11B at the Nevada
Test Site-
Mercury, NV | 9 | Rad Electric, Inc.
(electric ionization
chambers and
alpha track
detectors made by
Landuer, Inc.) | | Radionuclides,
(uranium) | Not provided | Not provided | Site
characterization,
health and safety
monitoring | | defectors have fewer potential interferences than electric ionization chamber; both techniques are fast, easy to use, and inexpensive | Not provided | C.S. Dudney and
K.E. Meyer
(Oak Ridge
National
Laboratory) | | - popujajnos cercerios pr | <u> </u> | a in an in the second second | 1 1 1 1 1 1 | 44 -45 5 | | | | | S par 3 | • | 1 | | | | | San | npling and | Sampler I | Emplacem | ent Technol | ogies | k | | | | | | | | | Closed-pisto | n Soil Sampli | ing | | ·. | | | | Salina North-
Salina, KS:
industrial area, solvent
use and disposal, grain
fumigation, chemical
manufacturing | 7 | Geoprobe Systems,
Inc.
(Marco-Core®
closed piston soil
sampler) | Soil (ex situ) | Not provided | 2 days | Not provided | Site
characterization | \$630 per unit | soil cores from
below the water
table (saturated
materials); no
cuttings; faster and | The sampler is designed for use only in soils and unconsolidated sediments; it generally is used at depths of less than 50 feet; if used for discrete interval sampling at depth, the bore hole must be preprobed to the top of the targeted sampling interval | Wes McCall
(Geoprobe
Systems Inc.)
913/825-1842
Susan Stover
(KDHE)
913/296-5531 | | | | | | Dia | ect-push Pre | packed Well | Screen | | | | | | Salina North-
Salina, KS:
industrial area, solvent
use and disposal, grain
fumigation, chemical
manufacturing | 7 | Geoprobe
(direct-push
prepacked-screen
monitoring well) | Ground water | Halogenated
and
nonhalogenated
VOCs | 1 week | 3 hours to
install one
prepacked
well to 65
feet | Site
characterization,
compliance
monitoring | \$45 per 3-foot
prepacked
screen | Less expensive and
faster than
installing well by
conventional
methods; no soil
cuttings | Depth limitations;
wells cannot be
placed in bedrock;
small diameter of
well creates
difficulty in
developing,
purging, and
sampling when
large volumes of
water are needed | Wes McCall
(Geoprobe
Systems Inc.
913/825-1842
Susan Stover
(KDHE)
913/296-5531 | Table 2-3 Summary of Field Analytical and Site Characterization Technologies Reported Data on Specific Technologies (continued) | Site Description | EPA
Region | Vendor/
Product | Media
Monitored | Contaminant/
Parameter | Period
of Use | Through-
put | Data
Use(s) | Cost | Technology Advantages | Technology
Limitations | Contact(s) | |---|---------------|--------------------|--------------------|---------------------------------|------------------|-----------------|---|--------------|---|---|--| | | | | | Lo | w-flow Grou | nd-water Pu | mping | | | | | | Auburn Road-
NH:
Iandfill | 1 | Not provided | Ground water | VOCs,
heavy metals | 4/95-4/96 | Not provided | Cleanup
monitoring | Not provided | Samples for inorganic water quality are more representative | Longer sampling
time, increasing
cost | Darryl Luce
(EPA)
617/573-5767 | | Davis GSR-
RI | 1 | Not provided | Ground water | VOCs,
SVOCs,
heavy metals | 4/93-8/93 | Not provided | Cleanup
monitoring | Not provided | Samples for inorganic water quality are more representative | Not provided | Joe Lemay
(EPA)
617/573-9622 | | Fort Devens-
MA | 1 | Not provided | Ground water | VOCs,
heavy metals | 1/96-present | Not provided | Cleanup
monitoring | Not provided | Fewer waste by-
products; data
quality | Not provided | Jim Byrne
(EPA)
617/573-5799 | | Otis AFB-
MA | 1 | Not provided | Ground water | VOCs,
heavy metals | 1993-present | Not provided | Cleanup
monitoring | Not provided | Fewer waste by-
products; data
quality | Not provided | Carol Keating
(EPA)
617/223-5594 | | Peterson/Puritan-
RI | i 1 | Not provided | Ground water | VOCs,
heavy metals | 5/95-present | Not provided | Cleanup
monitoring | Not provided | Fewer waste by-
products; data
quality | Not provided | Dave Newton
(EPA)
617/573-9612 | | Revere Textile-
CT | 1 | Not provided | Ground water | VOCs,
heavy metals | 1993-present | Not provided | Cleanup
monitoring | Not provided | Fewer waste by-
products; data
quality | Not provided | Leslie McVickar
(EPA)
617/573-9689 | | Saco Land Fill-
ME | 1 | Not provided | Ground water | Heavy metals | 1992-1993 | Not provided | Cleanup
monitoring | Not provided | Fewer waste by-
products; data
quality | Not provided | Ron Jennings
(EPA)
617/573-5794 | | Tibbetts-
NH | 1 | Not provided | Ground water | VOCs,
heavy metals | 6/95-present | Not provided | Cleanup
monitoring | Not provided | Fewer waste by-
products; data
quality | Longer sampling time, increasing costs | Darryl Luce
(EPA)
617/573-5767 | | Ponders Comer
(Lakewood)-
South of Tacoma, WA:
drycleaning and laundry
operations | 10 | Brainard-Kilman | Ground water | Halogenated
VOCs | 7 days | • | Site screening,
site
characterization,
cleanup
monitoring | Not provided | Minimizes sucking
of soil and
sediments into
sampler | Not provided | Ann Williamson
(EPA)
206/553-2739 | Table 2-3 Summary of Field Analytical and Site Characterization Technologies Reported Data on Specific Technologies (continued) | Site Description | EPA
Region | Vendor/
Product | Media
Monitored | Contaminant/
Parameter | Period
of Use | Through-
put | Data
Use(s) | Cost | Technology
Advantages | Technology
Limitations | Contact(s) | |--|------------------|--|---|-----------------------------------
--------------------------------|--|--|-----------------------|--|---|--| | | | | | | Soil Gas | Sampling | A STATE OF THE PARTY PAR | | | | | | Site unidentified-
eastern United States:
former coal gas
manufacturing plant | Not
specified | W.L. Gore and
Associates
(GORE-
SORBER SM) | Soil gas
(also used to
monitor soil
and ground
water) | PAHs,
SVOCs | Exposure
time of 3
weeks | | Site
characterization | Not provided | Low-volatility
compounds can be
absorbed; can be
used in situ; cost
savings; good
correlation with
monitoring well
data | Not provided | Mark Stutman
and Mark
Wrigley
(W.L. Gore and
Associates)
410/996-3406 | | Davis GSR -
Smithfield, RI:
landfill | 1 | Not provided | Soil gas | VOCs | 4/92-8/92 | Not provided | Site investigation | Not provided | Cost-effective;
real-time data | Not provided | Joe Lemay
(EPA)
617/573-9622 | | Sothersworth -
NH:
landfill | 1 | Petrex | Soil gas | VOCs | Not provided | Not provided | Cleanup
monitoring | Not provided | Not provided | Not provided | Roger Duwart
(EPA)
617/573-9628 | | Site unidentified-
Location not provided | 7 | Not provided
(Summa Canister) | Soil gas | VOCs
(solvents) | Not provided | Not provided | Site
characterization,
cleanup
monitoring,
compliance
monitoring,
health and safety
monitoring | \$658 per
canister | Easy to collect a
sample; portable
system | Not provided | Harry Kimball
(EPA)
913/551-5171 | | Sacramento Army
Depot-
Sacramento, CA | 9 | SEAMIST
(equipment used in
conjunction with
soil gas monitoring
wells) | Soil gas | Halogenated
VOCs
(TCE, PCE) | 9 months | 50 samples
per well, 6
wells per day | Verification
sampling | \$30,000 per
well | Independent verification; versatility of application (can sample the ports desired); retractable (could move the wells) | Must customize
technology to the
site's lithology | Marlon Mezquita
(EPA)
415/744-1527 | | | 1 | <u> </u> | | v | ertical Grout | id-water Pro | iling | | | | | | Pease AFB 3-
NH | 1 | Waterloo Centre
for Groundwater
Research | Ground water | DNAPL | 1/95-9/95 | Not provided | Cleanup
monitoring | Not provided | Vertical
delineation of
contaminants | Not provided | Mire Daly
(EPA)
617/573-5783 | Table 2-3 Summary of Field Analytical and Site Characterization Technologies Reported Data on Specific Technologies (continued) | Site Description | EPA
Region | Vendor/
Product | Media
Monitored | Contaminant/
Parameter | Period
of Use | Through- | Data
Use(s) | Cost | Technology
Advantages | Technology
Limitations | Contact(s) | |---|---------------|---|--------------------|-------------------------------|------------------|------------------------|--------------------------|---------------------|--|--|--| | | | | | Vertic | al Ground-wa | er Profiling (c | ontinued) | | | | | | Savage-
NH | 1 | Waterloo Centre
for Groundwater
Research | Ground water | DNAPL | 3/95-5/95 | Not provided | | \$350, 000 | Vertical
delineation of
contaminants | Not provided | Dick Goehlert
(EPA)
617/573-5742 | | Wells G&H 1-
MA | 1 | Waterloo Centre
for Groundwater
Research | Ground water | Not provided | 8/94 | Not provided | Cleanup
monitoring | Not provided | Discrete fracture
ground water
samples | Not provided | Mary Garren
(EPA)
617/573-9613 | | Sacramento Army
Depot-
Sacramento, CA | 9 | Not provided
(BAT Probe) | Ground water | Halogenated
VOCs | 6 months | Not provided | Site
characterization | Not provided | Cost-effective;
enables vertical
profiling; can
target monitoring
well zones; enables
tracking of plume
boundaries | Problems with data
comparability;
difficult to model
migration of TCE | Marlon Mezquita
(EPA)
415/744-1527 | | | | | | | Vibrating W | ell Installati | on | | | | | | Town Garage/Radio
Beacon-
NH | 1 | Solinst, Inc.
(Ground-water
Packer)
Mykro Waters, Inc.
(Microwells) | Ground water | VOCs | 1/91-7/97 | Not provided | Cleanup
monitoring | Not Provided | Discrete fracture
ground water
samples | Not provided | Jim Di Lorenzon
(EPA)
617/223-5510 | | Yaworski-
CT | 1 | Mykro Waters, Inc.
(Microwells) | Ground water | VOCs
(benzene) | 9/97-present | Not provided | Cleanup
monitoring | Not provided | Lower cost, rapid installation | Not provided | Anni Loughlin
(EPA)
617/223-5575 | | Fletcher's Paint-
NH | | Mykro Waters, Inc.
(Microwells) | Ground water | VOCs,
inorganics | 9/94 | Not provided | Cleanup
monitoring | \$1,000 per
well | Lower cost, rapid installation | Not provided | Darryl Luce
(EPA)
617/573-5767 | | Gallops Quarry-
CT | | Mykro Waters, Inc.
(Microwells) | Ground water | VOCs,
inorganics | 9/94 | Not provided | Cleanup
monitoring | Not provided | Lower cost, rapid installation | Not provided | Leslie McVickar
(EPA)
617/573-9689 | | New Hampshire Plating-
NH | | Mykro Waters, Inc.
(Microwells) | | VOCs,
SVOCs,
inorganics | 6/93-6/94 | Not provided | Cleanup
monitoring | Not provided | Lower cost, rapid installation | Not provided | Jim Di Lorenzo
(EPA)
617/223-5510 | 59 Table 2-3 Summary of Field Analytical and Site Characterization Technologies Reported Data on Specific Technologies (continued) | Site Description | EPA
Region | Vendor/
Product | Media
Monitored | Contaminant/
Parameter | Period
of Use | Through-
put | Data
Use(s) | Cost | Technology
Advantages | Technology
Limitations | Contact(s) | |--|---------------|------------------------------------|-----------------------|---------------------------|------------------|-----------------|--|------|--|---------------------------|--| | | | | | Vibra | iting Well In | stallation (co | ntinued) | | | | | | Hastings Superfund Site- NE: landfill, contaminated ground water | 7 | Mykro Waters, Inc.
(Microwells) | Ground water,
soil | VOCs | 6/97 | | Site
characterization,
cleanup
monitoring | • | installed to
approximately 100'
without pilot hole
and 200' with pilot
hole; generates no
drill cuttings; | screens clog easily | Diane Easley
(EPA)
913/551-7797
Randell Ross
(ADA)
405/436-8611 | ## APPENDIX A LIST OF ACRONYMS ### LIST OF ACRONYMS AFB Air Force Base BTEX Benzene, toluene, ethylbenzene, and xylene CERCLA Comprehensive Environmental Response, Compensation, and Liability Act CLP EPA Contract Laboratory Program CLU-IN Clean-Up Information (Internet home page containing clean-up information) CPT Cone penetrometer testing CSCT Consortium for Site Characterization Technologies DDT Dichlorodiphenyltrichloroethane DNAPL Dense nonaqueous phase liquids EPA U.S. Environmental Protection Agency FTIR
Fourier-transformed infrared GC Gas chromatography GC/MS Gas chromatography/mass spectroscopy GPR Ground penetrating radar HMX Cyclotetramethylenetetranitramine The Investigation-derived waste IDW Investigation-derived waste LIF Laser-induced fluorescence LNAPL Light nonaqueous phase liquids MCL Maximum contaminant level mg/kg Milligrams per kilogram NERL-LV EPA National Environmental Research Laboratory-Las Vegas NPL National Priorities List (CERCLA) NRaD Navy Research and Development OB/OD Open burn/open detonation OSC On-scene coordinator OSW EPA Office of Solid Waste PAH Polycyclic aromatic hydrocarbon PCE Pentachloroethane PCP Pentachlorophenol PCB Polychlorinated biphenyl ppb Parts per billion ppm Parts per million QA/QC Quality assurance/quality control RCRA Resource Conservation and Recovery Act RDX Cyclo-1,3,5-trimethylene-2,4,6-trinitramine RPM EPA Remedial Project Manager SCAPS Site Characterization and Analysis Penetrometer System SVE Soil vapor extraction SVOC Semivolatile organic compound TCE Trichlorethylene TIO EPA Technology Innovation Office TNT Trinitrotoluene TPH Total petroleum hydrocarbons USACE U.S. Army Corps of Engineers UST Underground storage tank Vendor FACTS Vendor Field Analytical and Characterization Technologies System VOC Volatile organic compound XRF X-ray fluorescence ## APPENDIX B DATA COLLECTION METHODOLOGY ### DATA COLLECTION METHODOLOGY Two methods were used to compile information for this report: - A network of regional contacts for field analytical and site characterization technologies was used to obtain information from the Environmental Protection Agency remedial project managers (RPM), on-scene coordinators (OSC), site managers, and other project managers who are closely involved in the use of site characterization technologies. - Available files, reports, and other sources, such as the Vendor Field Analytical and Characterization Technologies System (Vendor FACTS) database, that contain information about field analytical and site characterization technology applications at EPA-lead and non-EPA-lead hazardous waste sites were reviewed. To expedite that process, EPA developed a form for gathering relevant information about the use of field analytical and characterization technologies at Superfund, Resource Conservation and Recovery Act, and federal facilities sites. The form, included in this appendix, was distributed to all EPA regions. The data collection form had three parts; generally, 10 to 20 minutes were required for its completion. Part 1 of the collection form requested general information about the individual who completed the form, to provide a reference or contact familiar with the application of the technology at a particular site. Part 2 of the form requested general information about the site. Part 3 of the form requested data about the technology and the application of the technology at the site. Requested specifically in Part 3 were: (1) the type of technology used, (2) the type of data produced and how the data were used at the site, (3) the medium characterized and monitoring targets, and (4) information about costs. In addition, Part 3 of the form inquired about the performance of the technology at the site (advantages and limitations) and the presence of independent verification of performance (such as a comparison of data produced in the field with those obtained by analysis of samples at an off-site laboratory). ### Status Report on Field Analytical Technologies Utilization EPA's Office of Solid Waste and Emergency Response is compiling an inventory of sites where field portable, analytical and site characterization technologies have been used. The purpose of this project is to support a broader use of new monitoring techniques that are capable of streamlining the site assessment and remediation processes. This effort will result in a product which will improve the capability for networking between project managers tasked with site assessment and remediation. The report will be similar to EPA's *Innovative Treatment Technologies: Annual Status Report* that describes applications of new technologies at hazardous waste sites. In order to compile information for this new report on field analytical and characterization technologies, EPA's Technology Innovation Office (TIO) is interviewing site managers who are closely involved in the use of site characterization technologies at contaminated sites. To expedite this process, TIO has developed a data collection form that is included in this package of information. Regional Project Managers (RPMs) and On-Scene Coordinators (OSCs) should use the form to provide relevant information about the demonstration of field analytical technologies at Superfund projects. In addition, TIO will use the form to collect information from other project managers on technologies used at Resource Conservation and Recovery Act (RCRA), underground storage tanks (UST) and federal facility sites and projects. The blank data collection form contains three parts and generally requires 10 to 20 minutes to complete. Part 1 of the collection form requests general information about the individual who is completing the form. Its purpose is to provide a reference or contact concerning the application of the technology at a particular site. Part 2 of the form requests some general data about the site at which the application of the technology occurred. Part 3 of the form requests data about the technology and application of the technology at the site. Specifically, Part 3 of the form identifies: the type of technology used; its vendor; the type of data produced and how it was used at the site; the media characterized and monitoring targets; and cost information. In addition, Part 3 of the form inquires about the performance of the technology at the site, any interferences noted, and references, such as a removal assessment or remedial investigation report, that may describe an independent verification of the technology's performance (such as the comparison of data produced in the field to that obtained by analysis of samples at an off-site laboratory). ### UNITED STATES ENVIRONMENTAL PROTECTION AGENCY # FIELD ANALYTICAL AND CHARACTERIZATION TECHNOLOGIES ANNUAL STATUS REPORT ### **DATA COLLECTION FORM** **JUNE 1996** ### FIELD ANALYTICAL & CHARACTERIZATION TECHNOLOGIES DATA COLLECTION FORM ### **PART 1: GENERAL INFORMATION** | 1. | Name | | | | | | |-----------|--|-----------------------|---|--|--|--| | 2. | Organization | | | | | | | 3. | Phone () Ext | | | | | | | 4. | Fax Number () | | | | | | | 5. | E-mail Address | | | | | | | 6. | Additional Contact(s). Please list any other individuals who may be familiar with the application of the field analytical or characterization technology at this site. | | | | | | | | Name | | Phone () | | | | | | Name | | Phone () | | | | | PART | 2: SITE INFORMATION Site Name | | ;
; | | | | | 2. | Region State | | City | | | | | 3. | 4. | Regulatory Status/Statute/Organization status of the site. For example, is the facility (TSDF) subject to corrective ac | n of Site
site a R | . Please describe the regulatory
CRA treatment, storage, or disposal | | | | | a | CERCLA | 0 | State (specify) | | | | | σ | RCRA Corrective Action (RCRA Subtitle C) | | DoD | | | | | o | UST Corrective Action (RCRA Subtitle I) | 0 | DOE | | | | | o | TSCA | ø | Other (specify) | | | | | | Safe Drinking Water Act | o | Not Applicable | | | | | | Site | e Name/Techno | logy | | |--|---|---------------|--|--| | PART | 3: TECHNOLOGY DESCRIPTION | | | | | 1. | Technology or Trade Name. | | | | | 2. Technology Type. Please check all that apply. Analytical Geophysical | | | | | | | Air Measurement (Weather Measurement Technologies Excluded) | 0 | In situ Physical Sensors | | | ۵ | Analytical Detectors (Stand Alone Only) | 0 | Ground Penetrating Radar Shallow Seismic Reflection/Refraction | | | <u> </u> | Biosensors Chemical Reaction-Based Indicators (Colormetric) | ٥ | Subsurface Resistivity Geophysical Instruments (including cone penetrometer) | | | ۵ | In situ Chemical Sensors | o | Subsurface Conductivity Geophysical Instruments | | | o
o | Fiber Optic Chemical Sensors and Analyzers Gas Chromatography (GC) | o | Subsurface Magnetrometry Geophysical Instruments | | Other Chromatography Ion Mobility Spectroscopy **Immunoassays** Other: ____ Soil Gas Analyzers Other Spectroscopy Techniques X-Ray Fluorescence Analyzers Thermal Desorption Devices **Electrochemical-based Detectors** equipment used at the site. Mass Spectrometry (MS) (May include GC/MS) 0 0 a ٥ 0 O 3. Other Sampling Technology **Extraction** Other: ____ 0 □ Air Sampling Technologies □ Water Sampling Technologies □ Soil Sampling Technologies Supercritical Fluid Extraction Extraction Technologies (Analytical Traps) Vendor Name. Please provide the name of the manufacturer of the technology or (Note: Questions 4 through 9 may be answered by including a vendor or manufacturer's fact sheet or sales brochure with the completed form) ◆ (For PRC only) Check to see if vendor is listed on Vendor FACTS: ☐ Yes | 4. | Vendor Address | | | · |
---|--|--|---|------------| | City | | State | Zip Cod | e | | 5. | Vendor Phone Number (|) | | , | | 6. Technology Description. Provide a brief description of the monitoring/r device or technology, including scientific principles on which the technology key steps; unique or innovative features; whether the full-scale continuous, on demand, or single measurement; and whether the technology transportable, portable, or in situ. | | | | ology is | | | | | | 14. 1 | | | | | | | | | | | | | | 7. | Data Type. What type of data does the technology produce? Please check all that apply. | | | | | σ | Qualitative (yes/no, absence or presence) | | | | | 0 | Quantitative (specific number) | | | • | | 0 | Semi-quantitative (measurement within range) | | | | | 8. | Use of Data Produced By the Technology. At this site, identify how the data produced by the technology was used? | | | | | 0 | Screening | a | Cleanup monitoring or ve
sample analysis | rification | | 0 | Compliance monitoring | | Risk assessment | A | | 5 | Enforcement | | Site characterization | | | כ | Other: | | | 3 v | | 9. | Sample Throughput/Measure throughput (that is, how lon Throughput is measured by total number of data points. | ig it takes to gene
the total time requ | rate a useable data point) | | | <u>Units</u> | | | | | | pe | er hour per ft ²
ut | per linear ft | _ per acre continu | Jous | | J Oth | er specify | | | | Site Name/Technology | | | Site Name/Technology | ygy | | |-------------------|---|---|--|--| | 10. | Time Period Technology Used. Idused at the site. | entify how lon | g the technolog | y or equipment was | | Numb | per of months/days | or | From: | To: | | - | | | | | | 11. | Media Monitored or Characterized monitoring or measurement was | | nedia in which t | he technology for | | 3 | Soil (in situ) | σ | Dense Non-aqueous | Phase Liquids (DNAPLs) | | 3 | Soil (ex situ) | ø | Groundwater | | | 5 | Sludge | o | Soil gas | | | ם
כ | Solid (for example, slag, rock) | 0 | Surface water | | | 0 | Sediment (in-situ) | o | Leachate | | | ø | Sediment (ex situ) | | Air particulates | | | ø | Light Non-aqueous Phase Liquids (NAPLs) | | Other (specify) | | | 12. | Monitoring Targets. Please check all that apply. Identify all the contaminants that have been monitored or measured by the technology at the site. | | | e contaminants that | | Chem | nical Monitoring Target | Physic | eal Monito | oring Target | | 00000000000000000 | Halogenated volatiles Halogenated semivolatiles Nonhalogenated volatiles Nonhalogenated semivolatiles Organic pesticides/herbicides Dioxins/furans PCBs Polynuclear aromatics (PNA) Solvents Benzene-toluene-ethyl benzene- xylene (BTEX) Acetonitrile (organic cyanide) Organic acids Heavy metals Nonmetallic toxic elements Radioactive metals Radionuclides | 000000000000000 | Resistiv Conduct Buried I Buried I Soil Mo Temper Other (s Miscell: Explosi Organo pesticic Radon | tes c Stratigraphy ity tivity Ferrous Materials Non Ferrous Materials isture ature specify) aneous ves/propellants metallic les/herbicides | | 13. | Asbestos Inorganic cyanides Inorganic corrosives Discussion of the Technology. I advantages obtained by using th effectiveness, quick turn-around | □
Describe the be
is technology a | Other (
enefits, accompli
at the site. (For | example, cost | | | | | | | | | | | | | | | Site Name/Technology | |------|--| | 14. | Cost of Using The Technology. | | | a. Who operated the equipment/technology? | | □ Ve | ndor | | | b. Are there any cost data available? (For example, can you explain the cost of using the technology in terms of the purchase of equipment, rental costs, or cost per sample). | | | | | | | | | | | | c. At this site or project, were there any specific factors affecting the cost of using the equipment or technology (such as, labor rates, calibration time, other equipment needed, depth to contamination, interferences, or access to power)? | | | | | | | | | | | | | | | | | 15. | Independent Verification of Technology Performance. During this project, was there independent verification of the results produced by this technology? | | | ☐ Yes ☐ No ☐ Unknown | | | a. If the answer to question 13 is yes, is there a report(s) that documents the verification of the results and how may the report be obtained? | | | | | | | | | | | | | | | | | 16. | use or per
limitations | formance of so, site condition | lease provide any other general comments concerning the the technology (such as, discussion of any technical ons, contaminants, or other interferences encountered when | | | |------------------|---|--|---|--|--| | | at this site | using the technology at this site, or lessons learned from applying the technology at this site). Please also indicate if you were satisfied or dissatisfied with the performance of the technology and technical support of the vendor. | • | | | | | | | 17. | Status Re technolog | port summari
ies, but may
evaluate or a | The following information will not be included the Annual izing information on field analytical and characterization provide important additional information concerning future assess the use of field analytical and characterization | | | | from | additional s | e Detailed Ca
tudy or evalu
tailed case st | se Study. Indicate whether the technology would benefit lation to verify its performance (such as that which may be tudy). | | | | | ☐ Yes | □ No | Comments: | | | | Partic
intere | ipation in F | further Analysticipating or c | sis of The Technology. Please indicate if you would be contributing to further evaluation of the technology. | | | | ☐ Ye | s 🗆 1 | No | | | | | addit | tional Data (
ional field a
ning useful | nalytical and | ytical and Characterization Technologies. Identify any characterization technologies on which you are interested in | | | | | | | | | | | | | | | | | Site Name/Technology #### APPENDIX C VENDOR FIELD ANALYTICAL AND CHARACTERIZATION TECHNOLOGIES SYSTEM DATABASE ### **VENDOR FACTS** The Vendor Field Analytical and Characterization Technologies System (Vendor FACTS) is a WindowsTM-based database of innovative measuring and monitoring technologies for site characterization. It is a searchable database that allows users to: (1) obtain information about innovative measurement and monitoring technologies for use in the field; (2) search the database to identify technologies that measure or monitor specific types of contaminants or specific media; (3) identify technologies that are used for analytical measurement, physical characterization, site mapping, or health and safety monitoring; (4) identify vendors by technology or trade name; (5) view cost and performance data for a technology, reported by project; (6) scroll through a vendor's information record page by page, using menu selections; and (7) print or download to a file the results of custom searches and system reports. To access Vendor FACTS, the user first must select one of the following search categories: **General Vendor Information Project Data** Vendor Name Site Name Technology Type Site Location Trade Name Regulation/Statute Project Type Media **Monitoring Targets Equipment Scale** Waste Source Contaminant Type **Technology Maturity** Intended Use Data Quality Use A menu of vendor information will appear. The user then can select one of the following information options: - Company Profile - Technology Profile - Technical References - Technology Description - Operation and Maintenance - Cost and Licensing - Monitoring Targets - Conditions Affecting Performance - Data Collected - Representative Projects To become a registered user, mail or fax your name, organization, address, and telephone number to the address below. Please indicate whether you wish to order the Vendor FACTS software or to register as a Vendor FACTS user. U.S. EPA/NCEPI PO Box 42419 Cincinnati, OH 45242-0419 Facsimile: (513) 489-8695