United States
Environmental Protection
Agency

Industrial Technology Division WH-1552 Washington, DC 20460

EPA 440/1-86/019 September 1986

Wate

SEPA

Development

Final

Document for

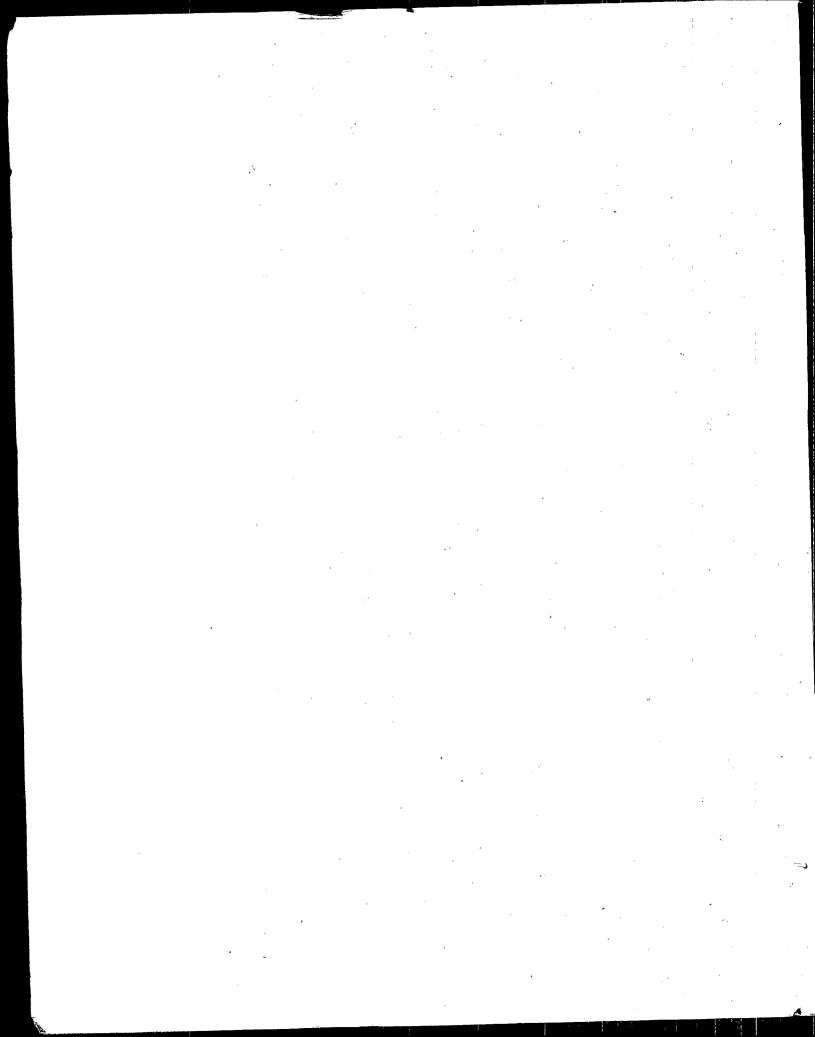
Effluent Limitations

Guidelines and Standards

for the Nonferrous Metals

Forming and Metal Powders

Point Source Category


<u>Volume</u> II

566-1076 202-260-1165 Fax: 202-260-1165 jett.george@epa.gov

George M. Jett

Chemical Engineer
U.S. Environmental Protection Agency
Engineering and Analysis Division (4303)
1200 Pennsylvania Avenue, NW
Washington, D.C. 20460

DEVELOPMENT DOCUMENT

for

EFFLUENT LIMITATIONS GUIDELINES AND STANDARDS

for the

NONFERROUS METALS FORMING AND METAL POWDERS

POINT SOURCE CATEGORY

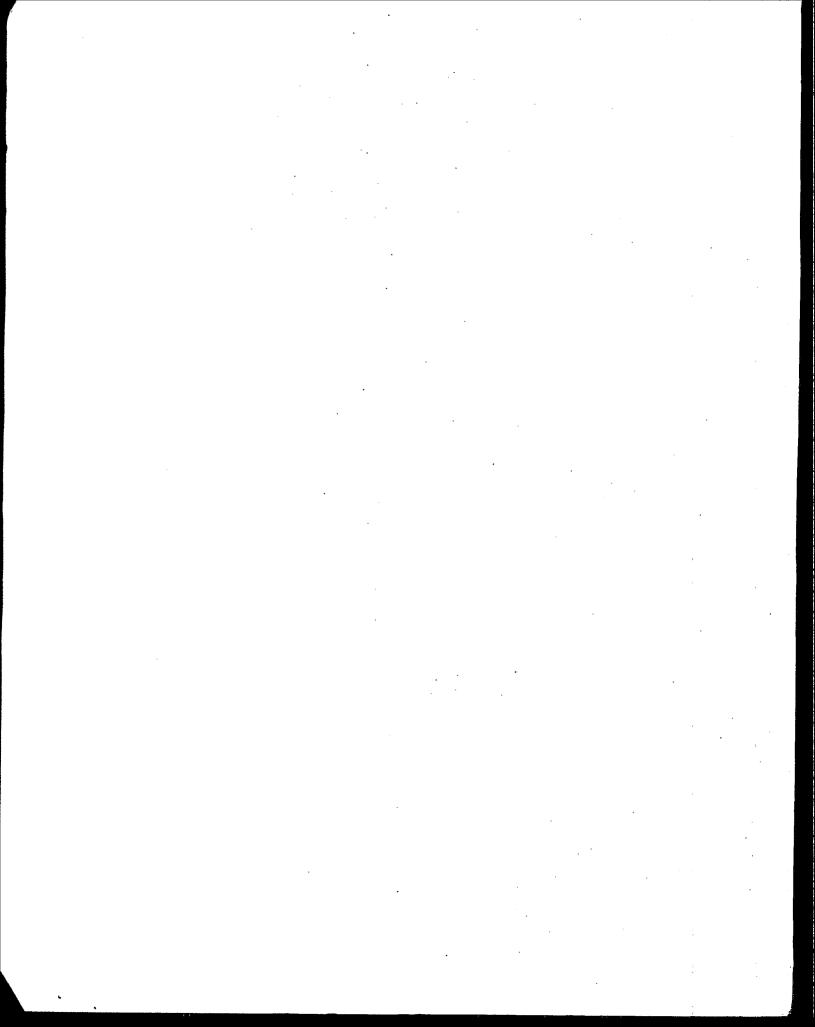
VOLUME II

Lee M. Thomas Administrator

Lawrence J. Jensen
Assistant Administrator for Water

William A. Whittington
Director
Office of Water Regulations and Standards

Devereaux Barnes, Acting Director Industrial Technology Division


Ernst P. Hall, P.E., Chief Metals Industries Branch

Janet K. Goodwin Technical Project Officer

September 1986

U.S. Environmental Protection Agency
Office of Water

Office of Water Regulations and Standards
Industrial Technology Division
Washington, D.C. 20460

This document is divided into three volumes. Volume I contains Sections I through IV. Volume II contains Sections V and VI. Volume III contains Sections VII through XVI.

SECTION I SUMMARY AND CONCLUSIONS

SECTION II RECOMMENDATIONS

SECTION III INTRODUCTION

SECTION IV INDUSTRY SUBCATEGORIZATION

SECTION V WATER USE AND WASTEWATER CHARACTERISTICS

SECTION VI SELECTION OF POLLUTANT PARAMETERS

SECTION VII CONTROL AND TREATMENT TECHNOLOGY

SECTION VIII COST OF WASTEWATER TREATMENT AND CONTROL

SECTION IX BEST PRACTICABLE CONTROL TECHNOLOGY CURRENTLY AVAILABLE

SECTION X BEST AVAILABLE TECHNOLOGY ECONOMICALLY ACHIEVABLE

SECTION XI NEW SOURCE PERFORMANCE STANDARDS

SECTION XII PRETREATMENT STANDARDS

SECTION XIII BEST CONVENTIONAL POLLUTANT CONTROL TECHNOLOGY

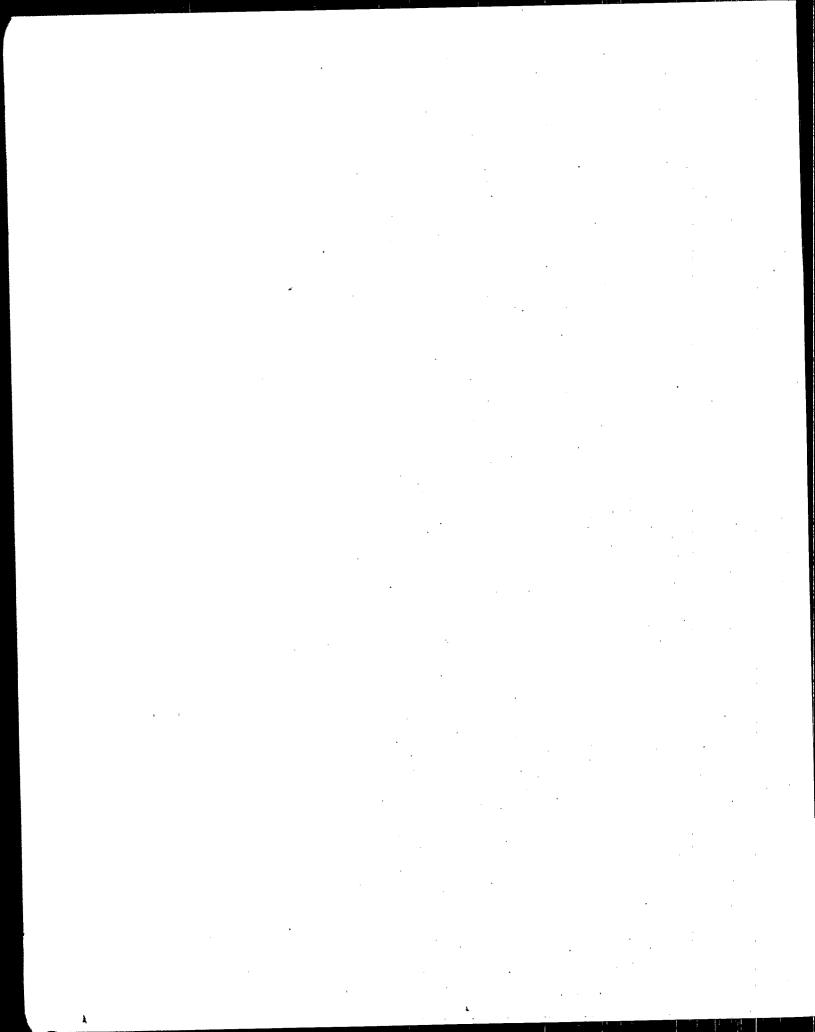
SECTION XIV ACKNOWLEDGMENTS

SECTION XV GLOSSARY

SECTION XVI REFERENCES

,

CONTENTS


Sec	tion		Page
I	•	SUMMARY AND CONCLUSIONS	_
		Methodology	. 1
	ı	Technology Basis for Limitations	
		and Standards	
			•
ΙI		RECOMMENDATIONS	7
	i	BPT and BAT Mass Limitations	7
		New Source Performance Standards	
	1	Pretreatment Standards for Existing	•
	į	and New Sources	
-	, ,		
III		INTRODUCTION	319
		Legal Authority	313
		Data Collection and Utilization	
		Description of the Nonferrous	
		Metals Forming Category	
		Description of Nonferrous Metals	
		Forming Processes	-
IV		TNDUGEDY GURGIER	•
- •	· : .	INDUSTRY SUBCATEGORIZATION	385
		Evaluation and Selection of	
		Subcategorization Factors	
•	:	Production Normalizing Parameter Selection	
		Description of Subcategories	
		besoription of Subcategories	
V	i	WATER USE AND WASTEWATER CHARACTERISTICS	47.2
		Data Sources	413
		Water Use and Wastewater Characteristi	C.C
	1		-5
ΛΊ		SELECTION OF POLLUTANT PARAMETERS	1119
	,	Rationale for Selection of Pollutant	
	f	Parameters	r - 1
		Description of Pollutant Parameters	· ·
	1	Pollutant Selection by Subcategory	
VII		COMBROI AND BREATHER	
,		CONTROL AND TREATMENT TECHNOLOGY	1311
	!	End-of-Pipe Treatment Technologies	
	· · · · · · · · · · · · · · · · · · ·	Major Technologies	
		Major Technology Effectiveness Minor Technologies	
	· :	In-Process Pollution Control m	
	•	In-Process Pollution Control Techniques	, `

CONTENTS (Continued)

Section		<u>Page</u>
VIII	COST OF WASTEWATER TREATMENT AND CONTROL Summary of Cost Estimates Cost Estimation Methodology Cost Estimates for Individual Treatment Technologies Compliance Cost Estimation Nonwater Quality Aspects	1461
IX	BEST PRACTICABLE CONTROL TECHNOLOGY CURRENTLY AVAILABLE Technical Approach to BPT Lead-Tin-Bismuth Forming Subcategory Magnesium Forming Subcategory Nickel-Cobalt Forming Subcategory Precious Metals Forming Subcategory Refractory Metals Forming Subcategory Titanium Forming Subcategory Uranium Forming Subcategory Zinc Forming Subcategory Zinc Forming Subcategory Zirconium Hafnium Forming Subcategory Metal Powders Subcategory Application of Regulation in Permits	1553
X	BEST AVAILABLE TECHNOLOGY ECONOMICALLY ACHIEVABLE Technical Approach to BAT BAT Option Selection Regulated Pollutant Parameters Lead-Tin-Bismuth Forming Subcategory Magnesium Forming Subcategory Nickel-Cobalt Forming Subcategory Precious Metals Forming Subcategory Refractory Metals Forming Subcategory Titanium Forming Subcategory Uranium Forming Subcategory Zinc Forming Subcategory Zirconium-Hafnium Forming Subcategory Metals Powders Subcategory	1757
XI	NEW SOURCE PERFORMANCE STANDARDS Technical Approach to NSPS NSPS Option Selection Regulated Pollutant Parameter New Source Performance Standards	1915

CONTENTS (Continued)

Section		Page
XII	PRETREATMENT STANDARDS Introduction of Nonferrous Metals Forming Wastewater into POTW Technical Approach to Pretreatmen PSES and PSNS Option Selection Regulated Pollutant Parameters Pretreatment Standards	
XIII	BEST CONVENTIONAL POLLUTANT CONTROL TECHNOLOGY	2187
XIV	ACKNOWLEDGEMENTS	2189
ΧV	GLOSSARY	2191
XVI	REFERENCES	2211

LIST OF TABLES

<u>Table</u>	<u>Title</u>	Page
III-1	Metal Types Not Formed on a Commercial Scale, or for which Forming Operations Generate No Wastewater	356
III-2	Metal Types Covered Under the Nonferrous Metals Forming Category	357
III-3	Years Since Nonferrous Forming Operations Began at Plant	358
III-4	Nonferrous Metal Production by Product Formed in 1981	359
IV-1	Number of Plants Discharging Nonferrous Metals Forming Wastewater, By Subcategory	411
V-1	Number of Samples Per Waste Stream, By Subcategory	478
V-2	Sample Analysis Laboratories	483
V-3	Nonpriority Pollutants Analyzed for During Sampling Effort Supporting This Regulation	484
V-4	Results of Chemical Analyses of Sampled Lead and Nickel Extrusion Press and Solution Heat Treatment Contact Cooling Water	486
V-5	Results of Chemical Analyses of Sampled Lead, Nickel, and Precious Metals Rolling Spent Emulsions	487
V-6	Lead-Tin-Bismuth Rolling Spent Emulsions	488
V-7	Lead-Tin-Bismuth Rolling Spent Emulsions Raw Wastewater Sampling Data	489
V-8	Lead-Tin-Bismuth Rolling Spent Soap Solutions	492

<u>Table</u>	<u>Title</u>	Page
V-9	Lead-Tin-Bismuth Rolling Spent Neat Oils	493
V-10	Lead-Tin-Bismuth Drawing Spent Emulsions	494
V-11	Lead-Tin-Bismuth Drawing Spent Soap Solutions	495
V-12	Lead-Tin-Bismuth Drawing Spent Soap Solutions Raw Wastewater Characteristics	496
V-13	Lead-Tin-Bismuth Extrusion Press or Solution Heat Treatment Contact Cooling Water	497
V-14	Lead-Tin-Bismuth Extrusion Press Solution Heat Treatment Contact Cooling Water Raw Wastewater Characteristics	498
V-15	Lead-Tin-Bismuth Extrusion Press Hydraulic Fluid Leakage	501
V-16	Lead-Tin-Bismuth Swaging Spent Emulsions	502
V-17	Lead-Tin-Bismuth Continuous Strip Casting Contact Cooling Water	503
V-18	Lead-Tin-Bismuth Continuous Strip Casting Contact Cooling Water Raw Wastewater Characteristics	504
V-19	Lead-Tin-Bismuth Semi-Continuous Ingot Casting Contact Cooling Water	506
V-20	Lead-Tin-Bismuth Semi-Continuous Ingot Casting Contact Cooling Water Raw Wastewater Characteristic	507 s
V-21	Lead-Tin-Bismuth Shot Casting Con- tact Cooling Water	510

Table	•		<u>Title</u>	<u>Page</u>
V-22			Lead-Tin-Bismuth Shot Casting Contact Cooling Water Raw Wastewater	511
V-23		1 1 •	Lead-Tin-Bismuth Shot Forming Wet Air Pollution Control Blowdown	514
V-24	·	:	Lead-Tin-Bismuth Alkaline Cleaning Spent Baths	515
V-25	•		Lead-Tin-Bismuth Alkaline Cleaning Spent Baths Raw Wastewater Sampling Data	516
V-26		i	Lead-Tin-Bismuth Alkaline Cleaning Rinse	519
V-27		·	Lead-Tin-Bismuth Alkaline Cleaning Rinse Raw Wastewater Sampling Data	520
V-28	•	Ç.	Magnesium Rolling Spent Emulsions	524
V-29			Magnesium Forging Spent Lubricants	525
V-30			Magnesium Forging Contact Cooling Water	526
V-31			Magnesium Forging Equipment Cleaning Wastewater	527
V-32		·	Magnesium Direct Chill Casting Con- tact Cooling Water	528
V-33			Magnesium Surface Treatment Spent Baths	529
V-34			Magnesium Surface Treatment Spent Baths Raw Wastewater Sampling Data	530
V-35			Magnesium Surface Treatment Rinse	535
V-36		•	Magnesium Surface Treatment Rinse Raw Wastewater Sampling Data	536

<u>Table</u>	<u>Title</u>	Page
V-37	Magnesium Sawing or Grinding Spent Emulsions	548
V-38	Magnesium Wet Air Pollution Control Blowdown	549
V-39	Magnesium Wet Air Pollution Control Blowdown Raw Wastewater Sampling Data	550
V-40	Nickel-Cobalt Rolling Spent Neat Oils	552
V-41 .	Nickel-Cobalt Rolling Spent Emulsions	553
V-42	Nickel-Cobalt Rolling Spent Emulsions Raw Wastewater Sampling Data	554
V-43	Nickel-Cobalt Rolling Contact Cooling Water	558
V-44	Nickel-Cobalt Rolling Contact Cooling Water Raw Wastewater Sampling Data	559
V-45	Nickel-Cobalt Tube Reducing Spent Lubricants	566
V-46	Nickel-Cobalt Tube Reducing Spent Lubricants Raw Wastewater Sampling Data	567
V-47	Nickel-Cobalt Drawing Spent Neat Oils	570
V-48	Nickel-Cobalt Drawing Spent Emulsions	571
V-49	Nickel-Cobalt Drawing Spent Emulsions Raw Wastewater Sampling Data	572
V-50	Nickel-Cobalt Extrusion Spent Lubricants	574
V-51	Nickel-Cobalt Extrusion Press and Solution Heat Treatment Contact Cooling Water	575

Table	<u>}</u>	<u>Title</u>	Page
V-52		Nickel-Cobalt Extrusion Press and Solution Heat Treatment Contact Cooling Water Raw Wastewater Sampling Data	576
V-53		Nickel-Cobalt Extrusion Press Hydraulic Fluid Leakage	579
V-54		Nickel-Cobalt Extrusion Press Hydraulic Fluid Leakage Raw Wastewater Sampling Data	580
V-55		Nickel-Cobalt Forging Spent Lubricants	584
V-56		Nickel-Cobalt Forging Contact Cooling Water	585
V-57		Nickel-Cobalt Forging Contact Cooling Water Raw Wastewater Sampling Data	586
V-58		Nickel-Cobalt Forging Equipment Cleaning Wastewater	590
V-59		Nickel-Cobalt Forging Press Hydraulic Fluid Leakage	591
V-60		Nickel-Cobalt Forging Press Hydraulic Fluid Leakage Raw Wastewater Sampling Data	592
V-61		Nickel-Cobalt Metal Powder Production Atomization Wastewater	595
V-62		Nickel-Cobalt Metal Powder Production Atomization	596
		Wastewater Raw Wastewater Sampling Data	
V-63		Nickel-Cobalt Stationary Casting Contact Cooling Water	601
V-64		Nickel-Cobalt Vacuum Melting Steam Condensate	602

<u>Table</u>	<u>Title</u>	Page
V-65	Nickel-Cobalt Vacuum Melting Steam Condensate Raw Wastewater Sampling Data	603
V-66	Nickel-Cobalt Annealing and Solution Heat Treatment Contact Cooling Water	606
V-67	Nickel-Cobalt Annealing and Solution Heat Treatment Contact Cooling Water Raw Wastewater Sampling Data	607
V-68	Nickel-Cobalt Surface Treatment Spent Baths	611
V-69	Nickel-Cobalt Surface Treatment Spent Baths Raw Wastewater Sampling Data	612
V-70	Nickel-Cobalt Surface Treatment Rinse	620
V-71	Nickel-Cobalt Surface Treatment Rinse Raw Wastewater Sampling Data	621
V-72	Nickel-Cobalt Ammonia Rinse	635
V-73	Nickel-Cobalt Ammonia Rinse Raw Wastewater Sampling Data	636
V-74	Nickel-Cobalt Alkaline Cleaning Spent Baths	639
V-75	Nickel-Cobalt Alkaline Cleaning Spent Baths Raw Wastewater Sampling Data	640
V-76	Nickel-Cobalt Alkaline Cleaning Rinse	646
V-77	Nickel-Cobalt Alkaline Cleaning Rinse Raw Wastewater Sampling Data	647
V-78	Nickel-Cobalt Molten Salt Rinse	654
V-79	Nickel-Cobalt Molten Salt Rinse Raw Wastewater Sampling Data	655

<u>Table</u>	•	<u>Title</u>	Page
V-80		Nickel-Cobalt Sawing or Grinding Spent Emulsions	661
V-81		Nickel-Cobalt Sawing or Grinding Spent Emulsions Raw Wastewater Sampling Data	662
V-82		Nickel-Cobalt Sawing or Grinding Rinse	685
V-83		Nickel-Cobalt Steam Cleaning Condensate	686
V-84		Nickel-Cobalt Hydrostatic Tube Testing and Ultrasonic Testing Wastewater	687
V-85		Nickel-Cobalt Dye Penetrant Testing Wastewater	688
V-86,		Nickel-Cobalt Dye Penetrant Testing Wastewater Raw Wastewater Sampling Data	689
V-87		Nickel-Cobalt Wet Air Pollution Control Blowdown	691
V-88		Nickel-Cobalt Wet Air Pollution Control Blowdown Raw Wastewater Sampling Data	692
V-89		Nickel-Cobalt Electrocoating Rinse	,697
V-90		Precious Metals Rolling Spent Neat Oils	698
V-91		Precious Metals Rolling Spent Emulsions	699
V-92		Precious Metals Rolling Spent Emulsions Raw Wastewater Sampling Data	700
V-93		Precious Metals Drawing Spent Neat Oils	705
V-94	(Precious Metals Drawing Spent Emulsions	706

<u>Table</u>	<u>Title</u>	Page
V-95	Precious Metals Drawing Spent Emulsions Raw Wastewater Sampling Data	707
V-96	Precious Metals Drawing Spent Soap Solutions	710
V-97	Precious Metals Metal Powder Production Atomization Wastewater	711
V-98	Precious Metals Direct Chill Casting Contact Cooling	712
V-99	Precious Metals Shot Casting Contact Cooling Water	713
V-100	Precious Metals Shot Casting Contact Cooling Water Raw Wastewater Sampling Data	714
V-101	Precious Metals Stationary Casting Contact Cooling Water	717
V-102	Precious Metals Semi-Continuous and Continuous Casting Contact Cooling Water	718
V-103	Precious Metals Semi-Continuous and Continuous Casting Contact Cooling Water Raw Wastewater Sampling Data	
V-104	Precious Metals Heat Treatment Con- tact Cooling Water	723
V-105	Precious Metals Surface Treatment Spent Baths	724
V-106	Precious Metals Surface Treatment Rinse	725
V-107	Precious Metals Surface Treatment Rinse Raw Wastewater Sampling Data	726
V-108	Precious Metals Alkaline Cleaning Spent Baths	732

Table		<u>Title</u>	Page
V-109		Precious Metals Alkaline Cleaning Rinse	733
V-110		Precious Metals Alkaline Cleaning Prebonding Wastewater	734
V-111	i	Precious Metals Alkaline Cleaning Prebonding Wastewater Raw Wastewater Sampling Data	735
V-112		Precious Metals Tumbling or Burnishing Wastewater	740
V-113		Precious Metals Tumbling or Burnishing Wastewater Raw Wastewater Sampling Data	741
V-114		Precious Metals Sawing or Grinding Spent Neat Oils	745
V-115		Precious Metals Sawing or Grinding Spent Emulsions	746
V-116		Precious Metals Sawing or Grinding Spent Emulsions Raw Wastewater Sampling Data	747
V-117		Precious Metals Pressure Bonding Contact Cooling Water	750
V-118		Precious Metals Pressure Bonding Contact Cooling Water Raw Wastewater Sampling Data	751
V-119		Precious Metals Wet Air Pollution Control Blowdown	754
V-120		Refractory Metals Rolling Spent Neat Oils and Graphite-Based Lubricants	755
V-121		Refractory Metals Rolling Spent Emulsions	756
V-122		Refractory Metals Drawing Spent Lubricants	757
V-123	: : ::	Refractory Metals Extrusion Spent Lubricants	758

<u>Table</u>	<u>Title</u>	Page
V-124	Refractory Metals Extrusion Press Hydraulic Fluid Leakage	759
V-125	Refractory Metals Extrusion Press Hydraulic Fluid Leakage Raw Wastewater Sampling Data	760
V-126	Refractory Metals Forging Spent Lubricants	762
V-127	Refractory Metals Forging Contact Cooling Water	763
V-128	Refractory Metals Metal Powder Production Wastewater	764
V-129	Refractory Metals Metal Powder Production Floor Wash Wastewater	765
V-130	Refractory Metals Metal Powder Pressing Spent Lubricants	766
V-131	Refractory Metals Surface Treatment Spent Baths	767
V-132	Refractory Metals Surface Treatment Spent Baths Raw Wastewater Sampling Data	768
V-133	Refractory Metals Surface Treatment Rinse	771
V-134	Refractory Metals Surface Treatment Rinse Raw Wastewater Sampling Data	772
V-135	Refractory Metals Alkaline Cleaning Spent Baths	778
V-136	Refractory Metals Alkaline Cleaning Spent Baths Raw Wastewater Samplin Data	779 g
V-137	Refractory Metals Alkaline Cleaning Rinse	781
V-138	Refractory Metals Molten Salt Rinse	782
V-139	Refractory Metals Molten Salt Rinse Raw Wastewater Sampling Data	783

<u>Table</u>	<u>Title</u>	Page
V-140	Refractory Metals Tumbling or Burnishing Wastewater	789
V-141	 Refractory Metals Tumbling or Burnishing Wastewater Raw Wastewater Sampling Data	790
V-142	Refractory Metals Sawing or Grinding Spent Neat Oils	796
V-143	Refractory Metals Sawing or Grinding Spent Emulsions	797
V-144	Refractory Metals Sawing or Grinding Spent Emulsions Raw Wastewater Sampling Data	798
V-145	Refractory Metals Sawing or Grinding Contact Cooling Water	800
V-146	Refractory Metals Sawing or Grinding Contact Cooling Water Raw Wastewater Sampling Data	801
V-147	Refractory Metals Sawing or Grinding Rinse	805
V-148	Refractory Metals Dye Penetrant Testing Wastewater	806
V-149	Refractory Metals Dye Penetrant Testing Wastewater Raw Wastewater Sampling Data	807
V-150	Refractory Metals Equipment Cleaning Wastewater	810
V-151	Refractory Metals Equipment Cleaning Wastewater Raw Wastewater Sampling Data	811
V-152	Refractory Metals Miscellaneous Wastewater Sources	813
V-153	Refractory Metals Wet Air Pollution Control Blowdown	814

<u>Table</u>		<u>Title</u>	Page
V-154		Refractory Metals Wet Air Pollution Control Blowdown Raw Wastewater Sampling Data	815
V-155	•	Titanium Rolling Spent Neat Oils	819
V-156		Titanium Rolling Contact Cooling Water	820
V-157		Titanium Drawing Spent Neat Oils	821
V-158		Titanium Extrusion Spent Neat Oils	822
V-159		Titanium Extrusion Spent Emulsions	823
V-160		Titanium Extrusion Press Hydraulic Fluid Leakage	824
V-161		Titanium Extrusion Press Hydraulic Fluid Leakage Raw Wastewater Sampling Data	825
V-162		Titanium Forging Spent Lubricants	826
V-163	·	Titanium Forging Contact Cooling Water	827
V-164		Titanium Forging Equipment Cleaning Wastewater	828
V-165		Titanium Forging Press Hydraulic Fluid Leakage	829
V-166	, , ,	Titanium Tube Reducing Spent Lubricants	8 30
V-167		Titanium Tube Reducing Spent Lubricants Raw Wastewater Sampling Data	831
V-168		Titanium Heat Treatment Contact Cooling Water	832
V-169		Titanium Heat Treatment Contact Cooling Water Raw Wastewater Sampling Data	833
V-170		Titanium Surface Treatment Spent	8 36

<u>Table</u>	· .		<u>Title</u>	<u>Page</u>
V-171	,		Titanium Surface Treatment Spent	837
V 1/1.		1	Baths Raw Wastewater Sampling Data	Ų37
V-172			Titanium Surface Treatment Rinse	841
V-173			Titanium Surface Treatment Rinse Raw Wastewater Sampling Data	842
V-174			Titanium Alkaline Cleaning Spent Baths	847
V-175			Titanium Alkaline Cleaning Spent Baths Raw Wastewater Sampling Data	848
V-176	. '		Titanium Alkaline Cleaning Rinse	850
V-177			Titanium Alkaline Cleaning Rinse Raw Wastewater Sampling Data	851
V-178		• • • • •	Titanium Molten Salt Rinse	853
V-179			Titanium Tumbling Wastewater	854
V-180			Titanium Tumbling Wastewater Raw Wastewater Sampling Data	855
V-181			Titanium Sawing or Grinding Spent Neat Oils	858
V-182			Titanium Sawing or Grinding Spent Emulsions	859
V-183			Titanium Sawing or Grinding Spent Emulsions Raw Wastewater Sampling Data	860
V-184			Titanium Sawing or Grinding Contact Cooling Water	865
V-185	· :		Titanium Sawing or Grinding Contact Cooling Water Raw Wastewater Sampling Data	866
V-186			Titanium Dye Penetrant Testing Wastewater	867

<u>Table</u>	<u>Title</u>	<u>Page</u>
V-187	Titanium Hydrotesting Wastewater	868
V-188	Titanium Wet Air Pollution Control Blowdown	8 69
V-189	Titanium Wet Air Pollution Control Blowdown Raw Wastewater Sampling Data	870
V-190	Uranium Extrusion Spent Lubricants	873
V-191	Uranium Extrusion Tool Contact Cooling Water	874
V-192	Uranium Forging Spent Lubricants	875
V-193	Uranium Heat Treatment Contact Cooling Water	8 76
V-194	Uranium Heat Treatment Contact Cooling Water Raw Wastewater Sampling Data	8 77
V-195	Uranium Surface Treatment Spent Baths	884
V-196	Uranium Surface Treatment Spent Baths Raw Wastewater Sampling Data	88 5
V-197	Uranium Surface Treatment Rinse	888
V-198	Uranium Surface Treatment Rinse Raw Wastewater Sampling Data	889
V-199	Uranium Sawing or Grinding Spent Emulsions	894
V-200	Uranium Sawing or Grinding Spent Emulsions Raw Wastewater Sampling Data	8 95
V-201	Uranium Sawing or Grinding Contact Cooling Water	898
V-202	Uranium Sawing or Grinding Rinse	8 99
V-203	Uranium Area Cleaning Washwater	900

<u>Table</u>			Title	Page
V-204		·	Uranium Area Cleaning Washwater Raw Wastewater Sampling Data	901
V-205			Uranium Wet Air Pollution Control Blowdown	908
V-206			Uranium Wet Air Pollution Control Blowdown Raw Wastewater Sampling Data	909
V-207	,	· !	Uranium Drum Washwater	911
V-208			Uranium Drum Washwater Raw Wastewater Sampling Data	913
V-209		•	Uranium Laundry Washwater	917
V-210			Uranium Laundry Washwater Raw Wastewater Sampling Data	918
V-211			Zinc Rolling Spent Neat Oils	921
V-212			Zinc Rolling Spent Emulsions	922
V-213		§	Zinc Rolling Contact Cooling Water	923
V-214			Zinc Drawing Spent Emulsions	924
V-215			Zinc Direct Chill Casting Contact Cooling Water	925
V-216		1.	Zinc Stationary Casting Contact Cooling Water	926
V-217			Zinc Heat Treatment Contact Cooling Water	927
V-218			Zinc Surface Treatment Spent Baths	928
V-219			Zinc Surface Treatment Rinse	929
V-220			Zinc Surface Treatment Rinse Raw Wastewater Sampling Data	930

<u>Table</u>	<u>Title</u>	Page
V-221	Zinc Alkaline Cleaning Spent Baths	935
V-222	Zinc Alkaline Cleaning Rinse	936
V-223	Zinc Alkaline Cleaning Rinse Raw Wastewater Sampling Data	937
V-224	Zinc Sawing or Grinding Spent Emulsions	942
V-225	Zinc Electrocoating Rinse	943
V-226	Zirconium-Hafnium Rolling Spent Neat Oils	944
V-227	Zirconium-Hafnium Drawing Spent Lubricants	945
V-228	Zirconium-Hafnium Extrusion Spent Lubricants	946
V-229	Zirconium-Hafnium Extrusion Press Hydraulic Fluid Leakage	947
V-230	Zirconium-Hafnium Extrusion Press Hydraulic Fluid Leakage Raw Wastewater Sampling Data	948
V-231	Zirconium-Hafnium Swaging Spent Neat Oils	949
∇-232	Zirconium-Hafnium Tube Reducing Spent Lubricants	950
V-233	Zirconium-Hafnium Heat Treatment Contact Cooling Water	951
V-234	Zirconium-Hafnium Heat Treatment Contact Cooling Water Raw Wastewater Sampling Data	952
V-235	Zirconium-Hafnium Surface Treatment Spent Baths	955
V-236	Zirconium-Hafnium Surface Treatment Spent Baths Raw Wastewater Sampling Data	956

Table	<u>Title</u>	Page
V-237	Zirconium-Hafnium Surface Treatment Rinse	962
V-238	Zirconium-Hafnium Alkaline Cleaning Spent Baths	963
V-239	Zirconium-Hafnium Alkaline Cleaning Rinse	964
V-240	Zirconium-Hafnium Molten Salt Rinse	965
V-241	Zirconium-Hafnium Sawing or Grinding Spent Neat Oils	966
V-242	Zirconium-Hafnium Sawing or Grinding Spent Emulsions	967
V-243	Zirconium-Hafnium Sawing or Grinding Contact Cooling Water	968
V-244	Zirconium-Hafnium Sawing or Grinding Rinse	969
V-245	Zirconium-Hafnium Inspection and Testing Wastewater	970
V-246	Zirconium-Hafnium Inspection and Testing Wastewater Raw Wastewater Sampling Data	971
V-247	Zirconium-Hafnium Degreasing Spent Solvents	974
V-248	Zirconium-Hafnium Degreasing Rinse	975
V-249	Zirconium-Hafnium Wet Air Pollution Control Blowdown	976
V-250	Metal Powders Metal Powder Production Atomization Wastewater	n 977
V-251	Metal Powders Metal Powder Production Atomization Wastewater Raw Wastewater Sampling Data	n 978
V-252	Metal Powders Tumbling, Burnishing of Cleaning Wastewater	.980

<u>Table</u>	Title	Page
V-253	Metal Powders Tumbling, Cleaning Wastewater Ra Sampling Data	
V-254	Metal Powders Sawing or Spent Neat Oils	Grinding 987
V-255	Metal Powders Sawing or Spent Emulsions	Grinding 988
V-256	Metal Powders Sawing or Spent Emulsions Raw Wa Sampling Data	
V-257	Metal Powders Sawing or Contact Cooling Water	Grinding 993
V-258	Metal Powders Sawing or Contact Cooling Water Wastewater Sampling Da	Raw
V-259	Metal Powders Sizing Spe Oils	nt Neat 995
V-260	Metal Powders Sizing Spe	ent Emulsions 996
V-261	Metal Powders Steam Trea Air Pollution Control	
V-262	Metal Powders Steam Trea Air Pollution Control Raw Wastewater Samplin	Blowdown
V-263	Metal Powders Oil-Resin Impregnation Spent Nea	1001 t Oils
V-264	Metal Powders Hot Pressi Cooling Water	ng Contact 1002
V-265	Metal Powders Hot Pressi Cooling Water Raw Wast Sampling Data	
V-266	Metal Powders Mixing Wet Pollution Control Blow	

<u>Table</u>		<u>Title</u>	Page
V-267		Metal Powders Mixing Wet Air Pollution Control Blowdown Raw Wastewater Sampling Data	1005
V-268		Wastewater Treatment Performance Data - Plant A	1006
V-269	:	Wastewater Treatment Performance Data - Plant B	1009
V-270		Wastewater Treatment Performance Data - Plant D	1013
V-271		Wastewater Treatment Performance Data - Plant E	1017
V-272	1	Wastewater Treatment Performance Data - Plant F	1025
V-273	0 1 1 1	Wastewater Treatment Performance Data - Plant I	1032
V-274	1	Wastewater Treatment Performance Data - Plant J	1038
V-275		Wastewater Treatment Performance Data - Plant M	1041
V-276		Wastewater Treatment Performance Data - Plant Q	1051
V-277		Wastewater Treatment Performance Data - Plant R	1060
V-278	1	Wastewater Treatment Performance Data - Plant S	1062
V-279		Wastewater Treatment Performance Data - Plant T	1064
V-280	!	Wastewater Treatment Performance Data - Plant U	1065
V-281		Wastewater Treatment Performance Data - Plant V	1072
V-282		Wastewater Treatment Performance Data - Plant W	1080

<u>Table</u>	<u>Title</u>	<u>Page</u>
V-283	Wastewater Treatment Performance Data - Plant X	1084
V-284	Wastewater Treatment Performance Data - Plant Y	1089
V-285	Wastewater Treatment Performance Data - Plant Z	1094
VI-1	List of 129 Priority Pollutants	1245
VI-2	Analytical Quantification and Treatment Effectiveness Values	1251
VI-3	Priority Pollutant Disposition Lead-Tin-Bismuth Forming Subcategory	1255
VI-4	Priority Pollutant Disposition Magnesium Forming Subcategory	1259
VI-5	Priority Pollutant Disposition Nickel-Cobalt Forming Subcategory	1263
VI-6	Priority Pollutant Disposition Precious Metals Forming Subcategory	1273
VI-7	Priority Pollutant Disposition Refractory Metals Forming Subcategory	1280
VI-8	Priority Pollutant Disposition Titanium Forming Subcategory	1287
VI-9	Priority Pollutant Disposition Uranium Forming Subcategory	1294
VI-10	Priority Pollutant Disposition Zinc Forming Subcategory	1298
VI-11	Priority Pollutant Disposition Zirconium-Hafnium Forming Subcategory	1302
VI-12	Priority Pollutant Disposition Metal Powders Subcategory	1306

Table		<u>Title</u>	Page
VII-1		pH Control Effect on Metals Removal	1400
VII-2	:	Effectiveness of Sodium Hydroxide for Metals Removal	1400
VII-3		Effectiveness of Lime and Sodium Hydroxide for Metals Removal	1401
VII-4		Theoretical Solubilities of Hydroxides and Sulfide of Selected Metals in Pure Water	1401
VII-5		Sampling Data From Sulfide Precipitation-Sedimentation Systems	1402
VIII-6		Sulfide Precipitation-Sedimentation Performance	1403
VII-7		Ferrite Co-Precipitation Performance	1404
VII-8		Concentration of Total Cyanide	1404
VII-9		Multimedia Filter Performance	1405
VII-10		Performance of Selected Settling Systems	1405
VII-11		Skimming Performance	1406
VII-12		Selected Partition Coefficients	1407
VII-13		Trace Organic Removal by Skimming	1408
VII-14		Combined Metals Data Effluent Values	1408
VII-15		L & S Performance Additional Pollutants	1409
VII-16	·	Combined Metals Data Set - Untreated Wastewater	1409
VII-17	·	Maximum Pollutant Level in Untreated Wastewater Additional Pollutants	1410

<u>Table</u>	<u>Title</u>	Page
VII-18	Precipitation-Settling-Filtration (LS&F) Performance Plant A	1411
VII-19	Precipitation-Settling-Filtration (LS&F) Performance Plant B	1412
VII-20	Precipitation-Settling-Filtration (LS&F) Performance Plant C	1413
VII-21	Summary of Treatment Effectiveness	1414
VII-22	Summary of Treatment Effectiveness for Selected Nonconventional Pollutants	1415
VII-23	Treatability Rating of Priority Pollutants	1416
VII-24	Classes of Organic Compounds Adsorbed on Carbon	1417
VII-25	Activated Carbon Performance (Mercury)	1418
VII-26	Ion Exchange Performance	1418
VII-27	Membrane Filtration System Effluent	1.419
VII-28	Peat Adsorption Performance	1419
VII-29	Ultrafiltration Performance	1420
VII-30	Chemical Emulsion Breaking Efficiencies	1421
VIII-1	BPT Costs of Compliance for the Nonferrous Metals Forming Category	1508
VIII-2	BAT Costs of Compliance for the Nonferrous Metals Forming Category	1509
VIII-3	PSES Costs of Compliance for the Nonferrous Metals Forming Category	1510

Table		<u>Title</u>	Page
1			
VIII-4		Nonferrous Metals Forming Category Cost Equations for Recommended Treatment and Control Technologies	1511
VIII-5		Components of Total Capital Investment	1518
VIII-6		Components of Total Annualized Investment	1519
VIII-7		Wastewater Sampling Frequency	1520
VIII-8		Pollutant Parameter Important to Treatment System Design	1521
VIII-9		Sludge to Influent Flow Ratios	1522
VIII-10		Key to Cost Curves and Equations	1523
VIII-11		Cost Equations Used in Cost Curve Method	1524
VIII-12	•	Number of Plants for Which Costs Were Scaled From Similar Plants	1525
VIII-13		Flow Reduction Recycle Ratio and Association Cost Assumptions	1526
VIII-14		Segregation Cost Basis	1528
VIII-15		Nonferrous Metals Forming Solid Waste Generation	1529
VIII-16		Nonferrous Metals Forming Energy Consumption	1530
IX-1		Potential Preliminary Treatment Requirements Lead-Tin-Bismuth Forming Subcategory	1626
IX-2		Potential Preliminary Treatment Requirements Magnesium Forming Subcategory	1627

Table	<u>Title</u>	Page
IX-3	Potential Preliminary Treatment Requirements Nickel-Cobalt Forming Subcategory	1628
IX-4	Potential Preliminary Treatment Requirements Precious Metals Forming Subcategory	1630
IX-5	Potential Preliminary Treatment Requirements Refractory Metals Forming Subcategory	1631
IX-6	Potential Preliminary Treatment Requirements Titanium Forming Subcategory	1633
IX-7	Potential Preliminary Treatment Requirements Uranium Forming Subcategory	1635
IX-8	Potential Preliminary Treatment Requirements Zinc Forming Subcategory	1636
IX-9	Potential Preliminary Treatment Requirements Zirconium-Hafnium Forming Subcategory	1637
IX-10	Potential Preliminary Treatment Requirements Metal Powders Subcategory	1638
IX-11	BPT Regulatory Flows for Production Operations - Lead-Tin-Bismuth Forming Subcategory	1639
IX-12	Lead-Tin-Bismuth Forming Subcategory BPT Effluent Limitations	1641
IX-13	BPT Regulatory Flows for Production Operations - Magnesium Forming Subcategory	1648
IX-14	Magnesium Forming Subcategory BPT	1649

<u>Table</u>		<u>Title</u>	<u>Page</u>
IX-15		BPT Regulatory Flows for Production Operations - Nickel-Cobalt Forming Subcategory	1653
IX-16		Nickel-Cobalt Forming Subcategory BPT Effluent Limitations	1656
IX-17		BPT Regulatory Flows for Production Operations - Precious Metals Forming Subcategory	1670
IX-18		Precious Metals Forming Subcategory BPT Effluent Limitations	1672
IX-19		BPT Regulatory Flows for Production Operations - Refractory Metals Forming Subcategory	1682
IX-20		Refractory Metals Forming Subcate- gory BPT Effluent Limitations	1684
IX-21		BPT Regulatory Flows for Production Operations - Titanium Forming Subcategory	1701
IX-22		Titanium Forming Subcategory BPT Effluent Limitations	1703
IX-23	: 4,	BPT Regulatory Flows for Production Operations - Uranium Forming	1715
IX-24		Uranium Forming Subcategory BPT Effluent Limitations	1717
IX-25		BPT Regulatory Flows for Production Operations - Zinc Forming Subcategory	1724
IX-26		Zinc Forming Subcategory BPT Effluent Limitations	1725
IX-27		BPT Regulatory Flows for Production Operations - Zirconium-Hafnium Forming Subcategory	1731
IX-28		Zirconium-Hafnium Forming Subcate-	1733

<u>Table</u>	<u>Title</u>	Page
IX-29	BPT Regulatory Flows for Production Operations - Metal Powders Subcategory	1741
IX-30	Metal Powders Subcategory BPT Effluent Limitations	1742
IX-31	Allowable Discharge Calculations for Refractory Metals Forming Plant X in Example 1 (Nickel)	1748
IX-32	Allowable Discharge Calculations for Lead-Tin-Bismuth Forming Plant Y in Example 2 (Total Suspended Solids)	1749
IX-33	Allowable Discharge Calculations for Nickel-Cobalt and Titanium Forming Plant Z in Example 3 (Nickel)	1751
IX-34	Allowable Discharge Calculations for Nickel-Cobalt and Titanium Forming Plant Z in Example 3 (Cyanide)	1753
x-1	Capital and Annual Cost Estimates for BAT (PSES) Total Subcategory	1794
X-2	Capital and Annual Cost Estimates for BAT Direct Dischargers	1795
х-3	Nonferrous Metals Forming Pollutant Reduction Benefit Estimates Lead- Tin-Bismuth Forming Subcategory Total Subcategory	1796
X-4	Nonferrous Metals Forming Pollutant Reduction Benefit Estimates Magnesium Forming Subcategory Total Subcategory	1797
x-5	Nonferrous Metals Forming Pollutant Reduction Benefit Estimates Nickel-Cobalt Forming Subcategory Total Subcategory	1798

			m:17-	D
<u>Table</u>		1 • • r	<u>Title</u>	Page
		· ·		
X-6			Nonferrous Metals Forming Pollutant	1799
ï		1 -	Reduction Benefit Estimates Preciou	ıs
		r v	Metals Forming Subcategory Total Subcategory	
•			bubcategory	
x-7	.21	• • • • • • • • • • • • • • • • • • •	Nonferrous Metals Forming Pollutant	1800
			Reduction Benefit Estimates	
			Refractory Metals Forming	
		:	Subcategory Total Subcategory	
X-8			Nonferrous Metals Forming Pollutant	1801
	ē		Reduction Benefit Estimates	
;			Titanium Forming Subcategory Total	•
		•	Subcategory	
x-9			Nonferrous Metals Forming Pollutant	1802
		.1	Reduction Benefit Estimates	
	•		Uranium Forming Subcategory Total	
			Subcategory	
x-10			Nonferrous Metals Forming Pollutant	1803
			Reduction Benefit Estimates Zinc	
			Forming Subcategory Total	-
		i i	Subcategory	
x-11	•		Nonferrous Metals Forming Pollutant	1804
** **		•	Reduction Benefit Estimates	
		* *	Zirconium-Hafnium Forming	•
• • •			Subcategory Total Subcategory	
X-12			Nonferrous Metals Forming Pollutant	1805
<i>a.</i> 1.2		* * * * * * * * * * * * * * * * * * *	Reduction Benefit Estimates Metal	- 0,09
4		*	Powders Subcategory Total	
	,	•	Subcategory	
X-13		,	Nonferrous Metals Forming Pollutant	1806
A 10			Reduction Benefit Estimates Lead-	2000
			Tin-Bismuth Forming Subcategory	•
	,		Direct Dischargers	:
X-14		• •	Nonferrous Metals Forming Pollutant	18 0 7
V TA			Reduction Benefit Estimates	1007
			Magnesium Forming Subcategory	
			Direct Dischargers	•

<u>Table</u>	Title	Page
x-15	Nonferrous Metals Forming Pollutant Reduction Benefit Estimates Nickel- Cobalt Forming Subcategory Direct Dischargers	1808
X-16	Nonferrous Metals Forming Pollutant Reduction Benefit Estimates Precious Metals Forming Subcategory Direct Dischargers	1809
x-17	Nonferrous Metals Forming Pollutant Reduction Benefit Estimates Refractory Metals Forming Subcategory Direct Dischargers	1810
x-18	Nonferrous Metals Forming Pollutant Reduction Benefit Estimates Titanium Forming Subcategory Direct Dischargers	1811
x-19	Nonferrous Metals Forming Pollutant Reduction Benefit Estimates Uranium Forming Subcategory Direct Dischargers	1812 n
X-20	Nonferrous Metals Forming Pollutant Reduction Benefit Estimates Zinc Forming Subcategory	1813
X-21	Nonferrous Metals Forming Pollutant Reduction Estimates Zirconium- Hafnium Forming Direct Dischargers	1814
x-22	Nonferrous Metals Forming Pollutant Reduction Estimates Metal Powders Subcategory Direct Dischargers	1815
X-23	Options Selected as the Technology Basis for BAT	1816
X-24	BAT Regulatory Flows for the Production Operations - Lead-Tin-Bismuth	1817

Table	<u>Title</u>	Page
X-25	Lead-Tin-Bismuth Forming Subcategory BAT Effluent Limitations	1 8 1 ⁹
X-26	BAT Regulatory Flows for the Production Operations - Magnesium Forming Subcategory	
x-27	Magnesium Forming Subcategory BAT Effluent Limitations	1825
x-28	BAT Regulatory Flows for the Produc- tion Operations - Nickel-Cobalt Forming Subcategory	1829
x-29	Nickel-Cobalt Forming Subcategory BAT Effluent Limitations	1832
X-30	BAT Regulatory Flows for the Froduction Operations - Precious Metal Forming Subcategory	1845
x-31	Precious Metals Forming Subcategory BAT Effluent Limitations	1847
x-32	BAT Regulatory Flows for the Production Operations - Refractory Metals Forming Subcategory	1856
X-33	Refractory Metals Forming Subcate- gory BAT Effluent Limitations	1858
X-34	BAT Regulatory Flows for the Production Operations - Titanium Forming Subcategory	1869
X-35	Titanium Forming Subcategory BAT Effluent Limitations	1871
X-36	BAT Regulatory Flows for the Production Operations - Uranium Forming Subcategory	1882

<u>Table</u>	Title	Page
x-37	Uranium Forming Subcategory BAT Effluent Limitations	1884
x-38	BAT Regulatory Flows for the Production Operations - Zinc Forming Subcategory	1889
X-39	Zinc Forming Subcategory BAT Effluent Limitations	1890
X-40	BAT Regulatory Flows for the Production Operations - Zirconium-Hafnium Forming Subcategory	1896
X-41	Zirconium-Hafnium Forming Subcategory BAT Effluent Limitations	1898
X-42	BAT Regulatory Flows for the Production Operations - Metal Powders Subcategory	1906
X-43	Metal Powders Subcategory BAT Effluent Limitations	1907
XI-1	Options Selected as the Bases for NSPS	1919
XI-2	Lead-Tin-Bismuth Forming Subcategory New Source Performance Standards	1920
XI-3	Magnesium Forming Subcategory New Source Performance Standards	1927
XI-4	Nickel-Cobalt Forming Subcategory New Source Performance Standards	1931
XI-5	Precious Metals Forming Subcategory New Source Performance Standards	1946
XI-6	Refractory Metals Forming Subcate- gory New Source Performance Standar	1956 ds
XI-7	Titanium Forming Subcategory New Source Performance Standards	1973

	a de la companya de l		
<u>Table</u>		<u>Title</u>	<u>Page</u>
XI-8		Uranium Forming Subcategory New Source Performance Standards	1986
XI-9		Zinc Forming Subcategory New Source Performance Standards	1993
XI-10		Zirconium-Hafnium Forming Subcate- gory New Source Performance Standar	1999 rds
XI-11	•	Metal Powders Subcategory New Source Performance Standards	2006
XII-1		POTW Removals of the Toxic Pollu- tants Found in Nonferrous Metals Forming Wastewater	2019
XII-2		Pollutant Removal Percentages for BAT or PSES Model Technology By Subcategory	2021
XII-3		Option Selected as the Model Technology Basis for PSES and PSNS	2022
XII-4		Capital and Annual Cost Estimates for PSES Options Indirect Dischargers	2023
XII-5		Nonferrous Metals Forming Pollutant Reduction Benefit Estimates Lead- Tin-Bismuth Forming Subcategory Indirect Dischargers	2025
XII-6		Nonferrous Metals Forming Pollutant Reduction Benefit Estimates Magnes Forming Subcategory Indirect Dischargers	2026 ium
XII-7		Nonferrous Metals Forming Pollutant Reduction Benefit Estimates Nickel- Cobalt Forming Subcategory Indirect Dischargers	

Table	<u>Title</u>	Page
XII-8	Nonferrous Metals Forming Pollutant Reduction Benefit Estimates Precio Metals Forming Subcategory Indirec Dischargers	us
XII-9	Nonferrous Metals Forming Pollutant Reduction Benefit Estimates Refrac Metals Forming Subcategory Indirec Dischargers	tory
XII-10	Nonferrous Metals Forming Pollutant Reduction Benefit Estimates Titani Forming Subcategory Indirect Dischargers	
XII-11	Nonferrous Metals Forming Pollutant Reduction Benefit Estimates Zirconium-Hafnium Forming Subcateg Indirect Dischargers	*
XII-12	Nonferrous Metals Forming Pollutant Reduction Benefit Estimates Metal Powders Subcategory Indirect Dischargers	2032
XII-13	Lead-Tin-Bismuth Forming Subcategory Pretreatment Standards for Existing Sources	2033
XII-14	Magnesium Forming Subcategory Pretreatment Standards for Existing Sources	2038
XII-15	Nickel-Cobalt Forming Subcategory Pretreatment Standards for Existing Sources	2042
XII-16	Precious Metals Forming Subcategory Pretreatment Standards for Existing Sources	2055
XII-17	Refractory Metals Forming Subcate- gory Pretreatment Standards for Existing Sources	2064

xxxvi

<u>Table</u>	•	<u>Title</u>	Page
XII-18		Titanium Forming Subcategory Pretreatment Standards for Existing Sources	2075
XII-19		Uranium Forming Subcategory Pretreatment Standards for Existing Sources	2085
XII-20		Zinc Forming Subcategory Pretreat- ment Standards for Existing Sources	2091
XII-21		Zirconium-Hafnium Forming Subcate- gory Pretreatment Standards for Existing Sources	2097
XII-22		Metal Powders Subcategory Pretreat- ment Standards for Existing Sources	2105
XII-23		Lead-Tin-Bismuth Forming Subcategory Pretreatment Standards for New Sources	2110
XII-24		Magnesium Forming Subcategory Pretreatment Standards for New Sources	2115
XII-25		Nickel-Cobalt Forming Subcategory Pretreatment Standards for New Sources	2119
XII-26		Precious Metals Forming Subcategory Pretreatment Standards for New Sources	2132
XII-27		Refractory Metals Forming Subcate- gory Pretreatment Standards for New Sources	2141
XII-28		Titanium Forming Subcategory Pretreatment Standards for New Sources	2152

<u>Table</u>	<u>Title</u>	Page
XII-29	Uranium Forming Subcategory Pretreatment Standards for New Sources	2162
XII-30	Zinc Forming Subcategory Pretreat- ment Standards for New Sources	2168
XII-31	Zirconium-Hafnium Forming Subcate- gory Pretreatment Standards for Ne Sources	2174 w
XII-32	Metal Powders Subcategory Pretreat- ment Standards for New Sources	2182

LIST OF FIGURES

Figure	<u>Title</u>	Page
III-1	Geographical Distribution of Nonferrous Forming Plants	360
III-2	Sequence of Nonferrous Metals Forming Operations	361
III-3	Common Rolling Mill Configurations	362
III-4	Reversing Hot Strip Mill	363
III-5	4-High Cold Rolling Mill	364
III-6	Tube Drawing	365
III-7	Hydraulic Draw Bench	366
III-8	Direct Extrusion	367
III-9	Extrusion Press	368
III-10	Extrusion Tooling and Setup	369
III-11	Forging	370
III-12	Ring Rolling	371
III-13	Impacting	372
III-14	Some Clad Configurations	373
III-15	Atomization	374
III-16	Powder Metallurgy Die Compaction	375
III-17	Direct Chill Casting	376
III-18	Direct Chill (D.C.) Casting Unit	377
III-19	Continuous Sheet Casting	378
III-20	Continuous Strip Casting	379
III-21	Shot Casting	.380
III-22	Roller Hearth Annealing Furnace	381
III-23	Bulk Pickling Tank	382
III-24	Continuous Pickling Line	383

Figure	<u>Title</u>	Page
III-25	Vapor Degreaser	384
V-1	Wastewater Sources at Plant A	1098
V-2	Wastewater Sources at Plant B	1099
V-3	Wastewater Sources at Plant C	1100
V-4	Wastewater Sources at Plant D	1101
V-5	Wastewater Sources at Plant E	1102
V-6	Wastewater Sources at Plant F	1103
V-7	Wastewater Sources at Plant G	1104
V-8	Wastewater Sources at Plant I	1105
V-9	Wastewater Sources at Plant J	1106
V-10	Wastewater Sources at Plant K	1107
V-11	Wastewater Sources at Plant L	1108
V-12	Wastewater Sources at Plant M	1109
V-13	Wastewater Sources at Plant N	1110
V-14	Wastewater Sources at Plant O	1111
V-15	Wastewater Sources at Plant P	1112
V-16	Wastewater Sources at Plant Q	1113
V-17	Wastewater Sources at Plant R	1114
V-18	Wastewater Sources at Plant S	1115
V-19	Wastewater Sources at Plant T	1116
V-20	Wastewater Sources at Plant V	1117
V-21	Wastewater Sources at Plant Z	1118

Figure	<u>Title</u>	Page
VII-1	Comparative Solubilities of Metal Hydroxides and Sulfide as a Function of pH	1422
VII-2	Lead Solubility in Three Alkalies	1423
VII-3	Effluent Zinc Concentrations vs. Minimum Effluent pH	1424
VII-4	Hydroxide Precipitation Sedimentation Effectiveness - Cadmium	1425
VII-5	Hydroxide Precipitation Sedimentation Effectiveness - Chromium	1426
VII-6	Hydroxide Precipitation Sedimentation Effectiveness - Copper	1427
VII-7	Hydroxide Precipitation Sedimentation Effectiveness - Lead	1428
VII-8	Hydroxide Precipitation Sedimentation Effectiveness - Nickel and Aluminum	1429
VII-9	Hydroxide Precipitation Sedimentation Effectiveness - Zinc	1430
VII-10	Hydroxide Precipitation Sedimentation Effectiveness - Iron	1431
VII-11	Hydroxide Precipitation Sedimentation Effectiveness - Manganese	1432
VII-12	Hydroxide Precipitation Sedimentation Effectiveness - TSS	1433
VII-13	Hexavalent Chromium Reduction with Sulfur Dioxide	1434
VII-14	Granular Bed Filtration	1435
VII-15	Pressure Filtration	1436
VII-16	Representative Types of Sedimentation	1437
VII-17	Activated Carbon Adsorption Column	1438
VII-18	Centrifugation	1439

Figure	<u>Title</u>	Page
VII-19	Treatment of Cyanide Waste by Alkaline Chlorination	1440
VII-20	Typical Ozone Plant for Waste Treatment	1441
VII-21	UV/Ozonation	1442
VII-22	Types of Evaporation Equipment	1443
VII-23	Dissolved Air Flotation	1444
VII-24	Gravity Thickening	1445
VII-25	Ion Exchange with Regeneration	1446
VII-26	Simplified Reverse Osmosis Schematic	1447
VII-27	Reverse Osmosis Membrane Configurations	1448
VII-28	Sludge Drying Bed	1449
VII-29	Simplified Ultrafiltration Flow Schematic	1450
VII-30	Vacuum Filtration	1451
VII-31	Flow Diagram for Emulsion Breaking with Chemicals	1452
VII-32	Filter Configurations	1453
VII-33	Gravity Oil/Water Separator	1454
VII-34	Flow Diagram for a Batch Treatment Ultrafiltration System	1455
VII-35	Flow Diagram of Activated Carbon Adsorption with Regeneration	1456
VII-36	Flow Diagram for Recycling with a Coolint Tower	1457
VII-37	Countercurrent Rinsing (Tanks)	1458
VII-38	Effect of Added Rinse Stages on Water Use	1459

Figure	<u>Title</u>	<u>Page</u>
VIII-I	General Logic Diagram of Computer Cost Model	1531
VIII-2	Logic Diagram of Module Design Procedure	1532
VIII-3	Logic Diagram of the Cost Estimation Routine	1533
VIII-4	Capital Cost of a Spray Rinsing System	1534
VIII-5	Capital and Annual Costs of Aerated Rectangular Fiberglass Tanks	1535
VIII-6	Capital and Annual Costs of Centri- fugal Pumps	1536
VIII-7	Capital and Annual Costs of Cooling Towers and Holding Tank	1537
VIII-8	Capital and Annual Costs of Holding Tanks and Recycle Piping	1538
VIII-9	Capital and Annual Costs of Equalization	1539
VIII-10	Capital and Annual Costs of Cyanide Precipitation	1540
VIII-11	Capital and Annual Costs of Chromium Reduction	1541
VIII-12	Capital Costs of Iron Coprecipitation	1542
VIII-13	Annual Costs of Iron Coprecipitation	1543
VIII-14	Capital and Annual Costs of Chemical Emulsion Breaking	1544
VIII-15	Capital and Annual Costs of Ammonia Steam Stripping	1545
VIII-16	Capital and Annual Costs of Chemical Precipitation	1546
VIII-17	Capital Costs for Carbon Steel Vacuum Filters	1547

Figure	<u>Title</u>	Page
VIII-18	Capital Costs for Stainless Steel Vacuum Filters	1548
VIII-19	Annual Costs for Vacuum Filters	1549
VIII-20	Capital and Annual Costs for Multi- media and Cartridge Filtration	1550
VIII-21	Annual Costs for Contract Hauling	1551
XI-1	BPT Treatment Train for the Non- ferrous Metals Forming Category	1755
X-1	BAT Option 1 and 2 Treatment Train for the Nonferrous Metals Forming Category	1912
X-2	BAT Option 3 Treatment Train for the Nonferrous Metals Forming Category	1913

SECTION V

WATER USE AND WASTEWATER CHARACTERISTICS

This section presents a summary of the analytical data that characterize the raw wastewater in the category. Flow data that serve as the basis for developing regulatory flow allowances in the nonferrous metals forming category are also summarized in this section. The analytical and flow data were obtained from four sources: information obtained during a telephone survey; data collection portfolios (dcps); sampling and analysis programs; and long-term or historical data. Confidential information was handled in accordance with 40 CFR Part 2.

DATA SOURCES

Telephone Survey

As described in Section III of this document, a comprehensive telephone survey was undertaken in order to determine which companies should be included on the dcp mailing list, i.e., whether or not operations within the scope of this category were performed by the companies contacted. In the telephone survey, the contact at the company was asked what metals were formed, the type of forming operations (rolling, drawing, extruding, forging, casting, cladding, powder metallurgy), what surface treatment, cleaning, washing, and rinsing operations were used, the water use associated with all operations, how wastewater was disposed of, and if there was any treatment in place. In addition to the telephone contacts made during the comprehensive survey, many plants were contacted by telephone to clarify dcp responses.

Data Collection Portfolios

Data collection portfolios (dcps) are questionnaires which were developed by the Agency to obtain extensive data from plants in the nonferrous metals forming category. The dcps, sent to all companies known or believed to be engaged in nonferrous metals forming, requested information under the authority of Section 308 of the Clean Water Act. The information requested included plant age, production, number of employees, water usage, manufacturing processes, raw material and process chemical usage, wastewater treatment technologies, and the presence (known or believed) of toxic pollutants in the plant's raw and treated process wastewaters.

Complete dcp responses supplied the following information for each operation present at the responding plant: the total production in 1981, the average production rate (lb/hr), production rate at full capacity, and the quantity and rate of wastewater discharge. As discussed in Section IV, a mass-based regulation must relate water use and raw waste characteristics to some production normalizing parameter. The average production rate is considered to be the parameter most applicable to opera-

tions in this category, and has been used to normalize the water and wastewater flows discussed in this section.

Two production normalized flows (PNF's) were calculated for each operation reported in the dcps. The first PNF is water use, defined as the volume of water or other fluid (e.g., emulsions, lubricants) required per mass of metal processed through the Water use is based on the sum of recycle and make-up The second PNF calculated for flows to a given process. operation is production normalized water discharge, defined as the volume of wastewater discharged from a given process to further treatment, disposal, or discharge per mass of nonferrous metal processed. Differences between the water use and wastewater flows associated with a given stream result from recycle, evaporation, and carryover (or drag-out) on the product. production values in this calculation correspond to the production normalizing parameter, PNP, assigned to each stream, outlined in Section IV.

The wastewater flows reported in the dcps were production normalized and grouped by waste stream. The production normalized flow information for each waste stream is presented in this section. An analysis of factors affecting the wastewater flows is presented in Sections IX and X where representative BPT, BAT, NSPS, and pretreatment discharge flow allowances are selected for use in calculating the effluent limitations and standards.

Sampling and Analysis Program

The sampling and analysis program was undertaken primarily to identify pollutants of concern in the industry, with emphasis on priority pollutants. Wastewater samples were collected at 23 nonferrous metals forming facilities.

This section summarizes the activities undertaken during the sampling trips and identifies the types of sites sampled and the parameters analyzed. It also presents an overview of sample collection, preservation, and transportation techniques. Finally, it describes the pollutant parameters quantified, the methods of analyses and laboratories used, the detectable concentration of each pollutant, and the general approach used to ensure the reliability of the analytical data produced.

Site Selection. Twenty-five sampling episodes were conducted to obtain data to support the development of these regulations. Four of these plants were sampled in data gathering efforts supporting the development of guidelines for other industrial categories (nonferrous metals manufacturing and battery manufacturing). Information on nonferrous metals forming operations was collected incidentally to the major sampling effort at these plants. Twenty-one episodes were carried out specifically to gather data to support limitations and standards for this category. These plants were selected to be representative of the industry, based on information obtained during the telephone

survey. Considerations included how well each facility represented the subcategory as indicated by available data, potential problems in meeting technology-based standards, differences in production processes used, and wastewater treatment-in-place. At least one plant in every subcategory was sampled. Two plants provided data for more than one subcategory.

As indicated in Table V-1, the plants selected for sampling were typically plants with multiple forming operations and associated surface and heat treatment operations. Based on information from the telephone survey and the dcps, the flow rates and pollutant concentrations in the wastewaters discharged from the manufacturing operations at these plants are believed to be representative of the flow rates and pollutant concentrations which would be found in wastewaters generated by similar operations at any plant in the nonferrous metals forming category. The sampled plants have a variety of treatment systems in place, ranging from plants with no treatment to plants using the technologies considered as the basis for regulation.

Field Sampling. After selection of the plants to be sampled, personnel at each plant were contacted by telephone, and notified by letter when a visit would be expected as authorized by Section 308 of the Clean Water Act. In most cases, a preliminary visit was made to the plant to select the sources of wastewater to be sampled. The sample points included, but were not limited to, untreated and treated discharges, process wastewater, partially treated wastewater, and intake water. The actual sampling visit was also scheduled during the preliminary visit.

Sample Collection, Preservation, and Transportation. Collection, preservation, and transportation of samples were accomplished in accordance with procedures outlined in Appendix III of "Sampling and Analysis Procedures for Screening of Industrial Effluents for Priority Pollutants" (published by the Environmental Monitoring and Support Laboratory, Cincinnati, Ohio, March 1977, revised, April 1977), "Sampling Screening Procedure for the Measurement of Priority Pollutants" (published by the EPA Effluent Guidelines Division, Washington, D.C., October 1976), and in the proposed 304(h) methods (44 FR 69464, December 3, 1979). The procedures are summarized in the paragraphs that follow.

Whenever practical, samples were taken from midchannel at middepth in a turbulent, well-mixed portion of the waste stream. Periodically, the temperature and pH of each waste stream sampled were measured on-site.

Each large composite (Type 1) sample was collected in a 9-liter, wide-mouth pickle jar that had been washed with detergent and water, rinsed with tap water, rinsed with distilled water, and air dried at room temperature.

Before collection of Type 1 samples, new Tygon tubing was cut to minimum lengths and installed on the inlet and outlet (suction and discharge) fittings of the automatic sampler. Two liters

(2.1 quarts) of blank water, known to be free of organic compounds and brought to the sampling site from the analytical laboratory, were pumped through the sampler and its attached tubing; the water was then discarded.

A blank (control sample) was produced by pumping an additional 2 liters of blank water through the sampler and into the original blank water bottle. The blank sample was sealed in a Teflon - lined cap, labeled, and packed in ice in a plastic foam-insulated chest. This sample was subsequently analyzed to determine any contamination contributed by the automatic sampler.

During collection of each Type I sample, the pickle jar was packed in ice in a plastic foam-insulated container to cool the sample. After the complete composite sample had been collected, it was mixed and a 1-liter aliquot to be used for metals analysis was dispensed into a plastic bottle. The aliquot was preserved on-site by the addition of nitric acid to pH less than 2. Metals samples were stored at room temperature until the end of the sampling trip at which time they were shipped to the appropriate laboratory for analysis.

After removal of the 1-liter metals aliquot, the balance of the composite sample was divided into aliquots to be used for analysis of nonvolatile organics, conventional parameters, and nonconventional parameters. If a portion of the composite sample was requested by a representative of the sampled plant for independent analysis, an aliquot was placed in a sample container supplied by the representative.

Water samples to be analyzed for cyanide, total phenol, oil and grease, and volatile organics were not obtained from the composite sample. Water samples for these analyses were taken as one-time grab samples during the time that the composite sample was collected.

The cyanide, total phenol, and oil and grease samples were stored in new bottles which had been iced and labeled, 1-liter (33.8 ounce) plastic bottles for the cyanide sample, 0.95-liter (1 quart) amber glass bottles for the total phenol sample, and 0.95-liter (1 quart) wide-mouth glass bottles with a Teflon lid liner for the oil and grease sample. The samples were preserved as described below.

Sodium hydroxide was added to each sample to be analyzed for cyanide, until the pH was elevated to 12 or more (as measured using pH paper). Where the presence of chlorine was suspected, the sample was tested for chlorine (which would decompose most of the cyanide) by using potassium iodide/starch paper. If the paper tuned blue (indicating chlorine was present), ascorbic acid crystals were slowly added and dissolved until a drop of the sample produced no change in the color of the test paper. An additional 0.6 gram (0.021 ounce) of ascorbic acid was added, and the sample bottle was sealed (by a Teflon -lined cap), labeled, iced, and shipped for analysis.

Sulfuric acid was added to each sample to be analyzed for total phenol, until the pH was reduced to 2 or less (as measured using pH paper). The sample bottle was sealed, labeled, iced, and shipped for analysis.

Sulfuric acid was added to each sample to be analyzed for oil and grease, until the pH was reduced to 2 or less (as measured using pH test paper). The sample bottle was sealed (by a Teflon lid liner), labeled, iced, and shipped for analysis.

Each sample to be analyzed for volatile organic pollutants was stored in a new 125-ml (4.2-ounce) glass bottle that had been rinsed with tap water and distilled water, heated to 150C (221F) for one hour, and cooled. This method was also used to prepare the septum and lid for each bottle. When used, each bottle was filled to overflowing, sealed with a Teflon -faced silicone septum (Teflon side down), capped, labeled, and iced. Hermetic sealing was verified by inverting and tapping the sealed container to confirm the absence of air bubbles. (If bubbles were found, the bottle was opened, a few additional drops of sample were added, and a new seal was installed.) Samples were maintained hermetically sealed and iced until analyzed.

Samples were sent by air to one of the labora-Sample Analysis. tories listed in Table V-2. The samples were analyzed for metals, including seven of the priority metal pollutants (beryllium, cadmium, chromium, copper, nickel, lead, and zinc) using inductively-coupled argon plasma emission spectroscopy (ICAP) as proposed in 44 FR 69464, December 3, 1979. The remaining six priority metal pollutants, with the exception of mercury, were analyzed by atomic absorption spectroscopy (AA) as described Mercury analysis was performed by automated 40 CFR Part 136. Analysis for the seven priority cold vapor atomic absorption. metals analyzed by ICAP was also performed by AA on 10 percent of the samples to determine test comparability. Because the results showed no significant differences in detection or quantification levels, ICAP data were used for the seven priority metals. nonconventional metal pollutants (columbium, tantalum, tungsten) were analyzed by X-ray fluorescence and uranium was analyzed by fluorometry.

Metals Analyzed by ICAP

Calcium Iron Magnesium Manganese Sodium Molybdenum Aluminum *Nickel Boron *Lead Barium Tin *Beryllium Titanium *Cadmium Vanadium Cobalt Yttrium *Zinc *Chromium *Copper Zirconium Gold.

Metals Analyzed by AA

*Antimony *Arsenic *Selenium *Thallium *Mercury *Silver

Metals Analyzed by X-Ray Fluorescence

Columbium Tantalum Tungsten

Metals Analyzed by Fluorometry

Uranium

*Priority metals

Analyses for the organic toxic pollutants were performed by Arthur D. Little, ERCO, IT, Radian Sacramento, S-Cubed, and West Coast Technical Service. Analyses for the toxic metal pollutants were performed by CENTEC, Coors, EPA (Region III), EPA-ESD (Region IV), Radian Austin, Versar, and NUS. Analyses for cyanide, and conventional and nonconventional pollutants were performed by ARO, Edison, EPA (Region III), EPA-ESD (Region IV), NUS, and Radian Austin.

EPA did not expect to find any asbestos in nonferrous metals forming wastewaters because this category only includes metals that have already been refined from ores that might contain asbestos. Therefore, analysis for asbestos fibers was not performed.

Pesticide priority pollutants were also not expected to be significant in the nonferrous metals forming industry. Samples from one facility were analyzed for pesticide priority pollutants

by electron capture-gas chromatography by the method specified in 44 FR 69464, December 3, 1979. Pesticides were not detected in these samples, so no other samples were analyzed for these pollutants.

Analyses for the remaining organic priority pollutants (volatile fraction, base/neutral, and acid compounds) were conducted using an isotope dilution method which is a modification of the analytical techniques specified in 44 FR 69464, December 3, 1979. The isotope dilution method has been recently developed to improve the accuracy and reliability of the analysis. A copy of the method is in the record of rulemaking for this final regulation. However, no standard was used in the analysis of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, pollutant 129). Instead, screening for this compound was performed by comparing analytical results to EPA's gas chromatography/mass spectroscopy (GC/MS) computer file.

Analysis for cyanide used methods specified in 40 CFR Part 136 and described in "Methods for Chemical Analysis for Water and Wastes," EPA-600/4-79-020 (March 1979).

Past studies by EPA and others have identified many nonpriority pollutant parameters useful in characterizing industrial wastewaters and in evaluating treatment process removal efficiencies. Some of these pollutants may also be selected as reliable indicators of the presence of specific priority pollutants. For these reasons, a number of nonpriority pollutants were studied in the course of developing this regulation. These pollutants may be divided into two general groups as shown in Table V-3. Analyses for these pollutants were performed by the methods specified in 40 CFR Part 136 and described in EPA-600/4-79-020.

The analytical quantification levels used in evaluation of the sampling data reflect the accuracy of the analytical methods employed. Below these concentrations, the identification of the individual compounds is possible, but quantification is difficult. Pesticides and PCB's can be analytically quantified at concentrations above 0.005 mg/l, and other organic toxic levels above 0.010 mg/l. Levels associated with toxic metals are as follows: 0.010 mg/l for antimony; 0.010 mg/l for arsenic; 0.005 mg/l for beryllium; 0.020 mg/l for cadmium; 0.020 mg/l for chromium; 0.050 mg/l for copper; 0.02 mg/l for cyanide; 0.050 mg/l for lead; 0.0002 mg/l for mercury; 0.050 mg/l for nickel; 0.010 mg/l for selenium; 0.010 mg/l for silver; 0.010 mg/l for thallium; and 0.020 mg/l for zinc.

The detection limits used were reported with the analytical data and hence are the appropriate limits to apply to the data, rather than the method analytical quantification level. Detection limit variation can occur as a result of a number of laboratory-specific, equipment-specific, daily operator-specific, and pollutant-specific factors. These factors can include day-to-day differences in machine calibration and variation in stock solutions, operators, and pollutant sample matrices (i.e., presence

of some chemicals will alter the detection of particular pollutants).

Quality Control. Quality control measures used in performing all analyses conducted for this program complied with the guidelines given in "Handbook for Analytical Quality Control in Water and Wastewater Laboratories" (published by EPA Environmental Monitoring and Support Laboratory, Cincinnati, Ohio, 1976). As part of the daily quality control program, blanks (including sealed samples of blank water carried to each sampling site and returned unopened, as well as samples of blank water used in the field), standards, and spiked samples were routinely analyzed with actual samples. As part of the overall program, all analytical instruments (such as balances, spectrophotometers, and recorders) were routinely maintained and calibrated.

Historical Data

A useful source of long-term or historical data available for nonferrous metals forming plants are the Discharge Monitoring Reports (DMR's) filed to comply with National Pollutant Discharge Elimination System (NPDES) or State Pollutant Discharge Elimination System (SPDES) requirements. DMR's were obtained through the EPA Regional offices and state regulatory agencies for the years 1981 through the most recent date available. The present a summary of the analytical results from a series of samples taken during a given month for the pollutants designated in the plant's permit. In general, minimum, maximum, and average values, in mg/l or lbs/day, are presented for such pollutants as total suspended solids, oil and grease, pH, chromium, and zinc. The samples were collected from the plant outfall(s), represents the discharge(s) from the plant. For facilities with wastewater treatment, the DMR's provide a measure of the performance of the treatment system. In theory, these data could serve as a basis for characterizing treated wastewater from nonferrous metals forming plants. However, there is no information on concentration of pollutants in wastewater prior to treatment and too little information on the performance of the plant at the time the samples were collected to use these data in evaluating the performance of various levels of treatment. reported in DMR's were used to compare the treatment performance of actual plants to the treatment effectiveness concentrations presented in Section VII. The statistical analysis is presented in the Administrative Record for this rulemaking.

WATER USE AND WASTEWATER CHARACTERISTICS

In the following discussion, water use, wastewater discharge, current recycle practices, and analytical sampling data are presented for each waste stream by subcategory. These data were collected from the dcps and during field sampling. Appropriate tubing or background blank and source water concentrations are presented with the summaries of the sampling data. The method by which each sample was collected is indicated by number, as follows, unless otherwise indicated:

- 1 one-time grab
- 2 manual composite during intermittent process operation
- 3 8-hour manual composite
- 4 8-hour automatic composite
- 5 24-hour manual composite
- 6 24-hour automatic composite

To simplify the presentation of the sampling data, the actual analytical data are presented only for those pollutants detected in any sample of that wastewater stream. No analyses were performed on priority pollutants 89-113, unless otherwise indicated.

Figures V-1 through V-25 show the location of wastewater sampling sites at each facility.

As shown in Table V-1, not every waste stream generated by nonferrous metals forming operations was sampled during the screen and verification sampling programs. In order to evaluate the applicability of the various treatment technologies to non-sampled waste streams, the physical and chemical characteristics of these streams were extrapolated from similar sampled streams. This extrapolation was also necessary to estimate the costs of the various treatment technologies, as discussed in Section VIII. Extrapolation of sampling data from sampled to non-sampled waste streams was not used to select pollutants for regulation in this category (see Section VI).

In order to verify the assumption that physical and chemical characteristics for one process wastewater would be similar to another, the Agency asked 49 plants to submit analytical data on specific raw waste streams which had not been sampled during the screening and verification program. Twenty-four plants provided these data directly and 18 plants provided samples to be analyzed. Four plants responded that they were no longer forming the metal for which information was requested, or that their production schedule did not include the metal specified within the time frame of that request. Three plants reported that they did not actually generate the waste stream for which information was requested.

In all the Agency received analytical data for 41 waste streams for which we had not previously had any wastewater characteristics data. Most of these wastewater streams were relatively small volume streams, such as forming lubricants. These data were not used to select pollutants for regulation in this category (see Section VI) or to estimate the pollutant loading currently generated by the category. However, they were used to verify assumptions of wastewater characteristics. All data obtained through the plant self-sampling program may be found in the record supporting this rulemaking.

Waste streams generated by similar physical processes using similar process chemicals will have very similar physical and chemical characteristics. For example, water used to cool extrusions will have low concentrations of all pollutants. This is demonstrated by the results of the chemical analyses of lead and nickel extrusion press and solution heat treatment contact cooling water (Table V-4). The major difference between these two waste streams is that the concentration of lead is higher in the lead cooling water (0.13 mg/l vs. not detected) and the concentration of nickel is higher in the nickel cooling water (0.14 mg/l vs. 0.007 mg/l). This pattern will be repeated whenever water, without additives, is used to cool hot metal.

In contrast, spent rolling emulsions have high concentrations of several pollutants. The results of chemical analyses of lead, nickel, and precious metals rolling spent emulsions are presented in Table V-5. All three waste streams have high concentrations of oil and grease, total suspended and dissolved solids, and several metals. The lead rolling spent emulsion has a high concentration of lead (29.0 mg/l), the nickel rolling spent emulsion has high concentrations of nickel and chrome (8.95 mg/l and 1.27 mg/l, respectively), and the precious metals rolling spent emulsion has high concentrations of copper, silver, and zinc (25.0 mg/l, 0.13 mg/l, and 6.00 mg/l, respectively). It is not surprising to find chromium in nickel rolling spent emulsions and copper and zinc in precious metals rolling spent emulsions because chromium is a common alloy of nickel and copper and zinc are common alloys of precious metals. Thus, the major difference between the three waste streams is the presence of the metals formed in the operation generating the waste stream.

From the discussion above, it follows that lead-tin-bismuth, nickel-cobalt, and zinc drawing spent emulsions will have chemical characteristics similar to precious metals drawing spent emulsions. The major difference between the waste streams will be the concentration of the metal drawn. Similarly, magnesium, zinc, and refractory metals rolling spent emulsions will have chemical characteristics similar to lead, nickel, and precious metals rolling spent emulsions, except for the concentration of the metal rolled.

Arguments analogous to those presented above were used to estimate the physical and chemical characteristics of all non-sampled waste streams. These estimations, and summaries of analytical data, water use, wastewater discharge, and current recycle practices, are presented below.

Lead-Tin-Bismuth Forming Subcategory

Lead-Tin-Bismuth Rolling Spent Emulsions. As discussed in Section III, oil-in-water emulsions are used as coolants and lubricants. Rolling emulsions are typically recycled using inline filtration and periodically batch discharged when spent. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-6.

Table V-7 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. One sample of rolling spent emulsions was collected at one plant. Elevated concentrations of lead (29 mg/l), zinc (1.4 mg/l), oil and grease (270 mg/l), and TSS (480 mg/l) were detected in the sample.

Lead-Tin-Bismuth Rolling Spent Soap Solutions. As discussed in Section III, soap solutions can be used as lubricants and coolants in rolling. Of the plants surveyed, only one plant reported the use of soap solutions in rolling. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-8.

To estimate pollutant loads for this stream, the Agency assumed that this stream would have wastewater characteristics similar to rolling spent emulsions in this subcategory. Spent soap solutions and spent emulsions are both used as lubricants and coolants in rolling. Therefore, the pollutants present and the mass loadings of pollutants present in rolling spent soap solutions and rolling spent emulsions were expected to be similar. However, spent soap solutions were expected to have an oil and grease mass loading similar to alkaline cleaning rinsewater. Spent soap solutions contain the same process chemicals as alkaline cleaning baths and so were expected to have oil and grease loadings similar to the loadings carried out in alkaline cleaning rinsewater.

Lead-Tin-Bismuth Drawing Spent Neat Oils. As discussed in Section III, oil-based lubricants may be used in drawing operations to ensure uniform drawing temperatures and avoid excessive wear on dies and mandrels. Drawing oils are usually recycled until their lubricant properties are exhausted and are then contract hauled. Water use, wastewater discharge, and current recycle operations corresponding to this waste stream are summarized in Table V-9.

Since none of the plants surveyed reported discharging the spent neat oils, no samples were collected.

Lead-Tin-Bismuth Drawing Spent Emulsions. As discussed in Section III, oil-water emulsions can be used as drawing lubricants. The drawing emulsions are frequently recycled and batch discharged periodically after their lubricating properties are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-10.

No samples of drawing spent emulsions were collected during the sampling program. However, to estimate pollutant loads for this stream, the Agency assumed that this stream would have wastewater characteristics similar to rolling spent emulsions in this subcategory. These two waste streams are generated from similar physical processes which use similar process chemicals.

Therefore, the pollutants present in each waste stream and the mass loading (mg/kkg product) at which they are present should be similar.

Lead-Tin-Bismuth Drawing Spent Soap Solutions. As discussed in Section III, soap solutions can be used as drawing lubricants. The drawing soap solutions are frequently recycled and batch discharged periodically after their lubricating properties are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-11.

Table V-12 summarizes the analytical data for priority metal pollutants and selected conventional and nonconventional pollutants. One sample of drawing spent soap solutions was collected at one plant. Elevated concentrations of antimony (21 mg/l), lead (3,100 mg/l), zinc (230 mg/l), tin 1,600 mg/l), oil and grease (353,000 mg/l) and TSS (294,000 mg/l) were detected in the sample.

Lead-Tin-Bismuth Extrusion Press and Solution Heat Treatment Contact Cooling Water. As discussed in Section III, heat treatment of lead-tin-bismuth products frequently involves the use of a water quench in order to achieve desired metallic properties. Fourteen plants reported 17 extrusion press and solution heat treatment processes that involve water quenching either by spraying water on the metal as it emerges from the die or press or by direct quenching into a contact water bath. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-13.

Table V-14 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. One sample of extrusion press and solution heat treatment contact cooling water was collected at one plant. An elevated concentration of chromium (4.6 mg/l) was detected in the sample.

<u>Lead-Tin-Bismuth</u> <u>Extrusion</u> <u>Press Hydraulic</u> <u>Fluid</u> <u>Leakage</u>. As discussed in Section III, due to the large force applied by a hydraulic extrusion press, hydraulic fluid leakage is unavoidable. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-15.

At proposal, the Agency assumed that this stream would have wastewater characteristics similar to press hydraulic fluid leakage in the nickel-cobalt subcategory. After proposal, this assumption was confirmed by plant self-sampling data.

Lead-Tin-Bismuth Swaging Spent Emulsions. As discussed in Section III, oil-water emulsions can be used as swaging lubricants. The swaging emulsions are frequently recycled and batch discharged periodically after their lubricating properties are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summa-

rized in Table V-16.

At proposal, the Agency assumed that this stream would have wastewater characteristics similar to rolling spent emulsions in this subcategory. After proposal, this assumption was confirmed by plant self-sampling data.

Lead-Tin-Bismuth Continuous Strip Casting Contact Cooling Water. As discussed in Section III, in continuous casting, no restrictions are placed on the length of the casting and it is not necessary to interrupt production to remove the cast product. Although the use of continuous casting techniques has been found to significantly reduce or eliminate the use of contact cooling water and oil lubricants, five plants reported the use of continuous strip contact cooling water. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-17.

Table V-18 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. One sample of continuous strip casting contact cooling water was collected at one plant. Elevated concentrations of lead (1.2 mg/l) and zinc (3.1 mg/l) were detected in the sample.

Lead-Tin-Bismuth Semi-Continuous Ingot Casting Contact Cooling Water. As discussed in Section III, semi-continuous ingot casting may require the use of contact cooling water in order to achieve the desired physical properties of the metal. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-19.

Table V-20 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Two samples of semi-continuous ingot casting contact cooling water were collected from one stream at one plant. Elevated concentrations of lead (1.10 mg/l) and TSS (80 mg/l) were detected in the samples.

Lead-Tin-Bismuth Shot Casting Contact Cooling Water. As discussed in Section III, contact cooling water is required to cool the cast lead shot so that it will not reconsolidate as well as to achieve the desired metallic properties. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-21.

Table V-22 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Three samples of shot casting contact cooling water were collected from one stream at one plant. Elevated concentrations of lead (52.2 mg/l), antimony (3.30 mg/l), tin (10.5 mg/l), oil and grease (22 mg/l), and TSS (420 mg/l) were detected in the samples.

<u>Lead-Tin-Bismuth</u> <u>Shot Forming Wet Air Pollution Control Blowdown</u>. As discussed in Section III, shot forming may require wet air

pollution control in order to meet air quality standards. Of the plants surveyed, only one reported the use of wet air pollution control on a shot forming operation. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-23.

At proposal, the Agency assumed that this stream would have wastewater characteristics similar to shot casting contact cooling water in this subcategory. After proposal, this assumption was confirmed by plant self-sampling data.

Lead-Tin-Bismuth Alkaline Cleaning Spent Baths. As discussed in Section III, alkaline cleaning is commonly used to clean lead, tin, and bismuth surfaces. Products can be cleaned with an alkaline solution either by immersion or spray. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-24.

Table V-25 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. One sample of an alkaline cleaning spent bath was collected at one plant. Elevated concentrations of lead (183 mg/l), antimony (7.30 mg/l), oil and grease (600 mg/l), and TSS (560 mg/l) were detected in the sample.

Lead-Tin-Bismuth Alkaline Cleaning Rinse. As discussed in Section III, rinsing, usually with warm water, generally follows the alkaline cleaning process to prevent the solution from drying on the product. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-26.

Table V-27 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Four samples of alkaline cleaning rinsewater were collected from two streams at one plant. Elevated concentrations of lead (40.8 mg/l), antimony (1.10 mg/l), and TSS (260 mg/l) were detected in the samples.

Lead-Tin-Bismuth Degreasing Spent Solvents. As described in Section III, solvent cleaners are used to remove lubricants (oils and greases) applied to the surface of nonferrous metals during mechanical forming operations. Basic solvent cleaning methods include straight vapor degreasing, immersion-vapor degreasing, spray-vapor degreasing, ultrasonic vapor degreasing, emulsified solvent degreasing, and cold cleaning.

Solvents most commonly used for all types of vapor degreasing are trichloroethylene, 1,1,1-trichloroethane, methylene chloride, perchloroethylene, and various chlorofluorocarbons. Solvent selection depends on the required process temperature (solvent boiling point), product dimension, and metal characteristics. Contaminated vapor degreasing solvents are frequently recovered by distillation.

Since none of the plants surveyed reported discharging spent degreasing solvents, no samples were collected.

Lead-Tin-Bismuth Operations Which Do Not Use Process Water. The Agency has established no discharge allowance for operations which do not generate process wastewater. The following operations generate no process wastewater either because they are dry or because they use noncontact cooling water only:

Continuous Wheel Casting Continuous Sheet Casting Stationary Casting Shot Pressing Forging Stamping Pointing Punching Shot Blasting Slug Forming Powder Metallurgy Operations (Pressing, Sintering, Sizing) Powder Tumbling Melting Solder Cream Making Annealing Tumble Cleaning Slitting Sawing Coiling, Spooling Trimming.

Magnesium Forming Subcategory

Magnesium Rolling Spent Emulsions. As discussed in Section III, oil-water emulsions are used in rolling operations as coolants and lubricants. Rolling emulsions are typically recycled using in-line filtration treatment. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-28.

Since none of the plants surveyed reported discharging the rolling spent emulsions, no samples of this waste stream were collected.

Magnesium Forging Spent Lubricants. As discussed in Section III, either water, oil, or granulated carbon can be applied to forging dies for proper lubrication. Water use, wastewater characteristics, and current recycle practices corresponding to this waste stream are summarized in Table V-29.

Since none of the plants surveyed reported discharging the forging spent lubricants, no samples of this waste stream were collected.

Magnesium Forging Contact Cooling Water. As discussed in Section III, forging dies and ring roller parts and tooling may require

cooling to maintain the proper die temperature between forgings or rolling, or to cool the forging dies prior to removal from the forge hammer. The contact cooling water may also be used as a heat treatment to improve mechanical properties of the metal being forged. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-30.

No samples of forging contact cooling water were collected during the sampling program. However, to estimate pollutant loads for this stream, the Agency assumed that this stream would have wastewater characteristics similar to extrusion press and solution heat treatment contact cooling water in the lead-tin-bismuth These two waste streams are generated by using subcategory. water, without additives, to cool hot metal. The only difference between the wastewater characteristics of the two streams should be the metals present. The mass loading (mg/kkg) of magnesium in magnesium forming solution heat treatment contact cooling water should be similar to the mass loading of lead in lead-tin-bismuth extrusion press and solution heat treatment contact cooling water, and vice versa. Also, there should be no significant mass loading of antimony in magnesium forming solution heat treatment contact cooling water because magnesium is not commonly alloyed The other pollutants in each waste stream, and antimonv. the mass loading at which they are present, should be similar.

Magnesium Forging Equipment Cleaning Wastewater. As discussed in Section III, forging equipment may be periodically cleaned in order to prevent the excessive buildup of oil, grease, and cakedon solid lubricants on the forging die. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-31.

samples of forging equipment cleaning wastewater were collected during the sampling program. However, to estimate pollutant loads for this stream, the Agency assumed that this stream would have wastewater characteristics similar to alkaline cleaning rinsewater in the lead-tin-bismuth subcategory. waste streams are generated by cleaning operations which use similar process chemicals. Since granulated coal and graphite suspensions are frequently used to lubricate magnesium forging operations, magnesium forging equipment cleaning wastewater may contain higher mass loadings of total suspended solids. addition, the metals present in the two waste streams should The mass loading (mg/kkg) of magnesium in magnesium differ. forging equipment cleaning wastewater should be similar to the loading of lead in lead-tin-bismuth alkaline cleaning rinsewater, and vice versa. Also, there should be no significant concentration of antimony in magnesium forging equipment cleaning wastewater because magnesium is not commonly alloyed with anti-The other pollutants in each waste stream, and the mass loading at which they are present, should be similar.

Magnesium Direct Chill Casting Contact Cooling Water. As discussed in Section III, contact cooling water is a necessary part

of direct chill casting. The cooling water may be contaminated by lubricants applied to the mold before and during the casting process. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-32.

The one nonferrous metals forming plant reporting the use of direct chill casting contact cooling water discharges no water, therefore, no samples of this waste stream were collected.

Magnesium Surface Treatment Spent Baths. As discussed in Section III, a number of chemical treatments may be applied after the forming of magnesium products. The surface treatment baths must be periodically discharged after their properties are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-33.

Table V-34 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Three samples of surface treatment spent baths were collected from three streams at one plant. Elevated concentrations of magnesium (9,150 mg/l), chromium (28,000 mg/l), zinc (89.0 mg/l), aluminum (64 mg/l), ammonia (97 mg/l), oil and grease (47,000 mg/l), and TSS (160 mg/l) were detected in the samples.

Magnesium Surface Treatment Rinse. As discussed in Section III, rinsing follows the surface treatment process to prevent the solution from affecting the surface of the metal beyond the desired amount. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-35.

Table V-36 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Twelve samples of surface treatment rinsewater were collected from eight streams at one plant. Elevated concentrations of magnesium (148 mg/l), zinc (2.1 mg/l), chromium (516 mg/l), ammonia (81 mg/l), oil and grease (16 mg/l), and TSS (97 mg/l) were detected in the samples.

Magnesium Sawing or Grinding Spent Emulsions. As discussed in Section III, sawing or grinding operations generally require lubrication with an oil-water emulsion in order to minimize friction and to dissipate excess heat from the metal and cutting tool. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-37.

Since none of the plants surveyed reported discharging the sawing or grinding spent emulsions, no samples of this waste stream were collected.

Magnesium Degreasing Spent Solvents. As described in Section III, solvent cleaners are used to remove lubricants (oils and greases) applied to the surface of nonferrous metals during

mechanical forming operations. Basic solvent cleaning methods include straight vapor degreasing, immersion-vapor degreasing, spray-vapor degreasing, ultrasonic vapor degreasing, emulsified solvent degreasing, and cold cleaning.

Solvents most commonly used for all types of vapor degreasing are trichloroethylene, 1,1,1-trichloroethane, methylene chloride, perchloroethylene, and various chlorofluorocarbons. Solvent selection depends on the required process temperature (solvent boiling point), product dimension, and metal characteristics. Contaminated vapor degreasing solvents are frequently recovered by distillation.

Since none of the plants surveyed reported discharging spent degreasing solvents, no samples were collected.

Magnesium Wet Air Pollution Control Blowdown. As discussed in Section III, wet air pollution control devices are needed to control air pollution from some operations. For instance, scrubbers are frequently necessary over sanding and repairing operations where particulates are a problem or scrubbers may be necessary when particulates and smoke are generated from the partial combustion of oil-based lubricants as they contact the hot forging dies. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-38.

Table V-39 summarizes the analytical data for priority metal pollutants and selected conventional and nonconventional pollutants. One sample of extrusion press hydraulic fluid was collected at one plant. Elevated concentrations of lead $(0.877 \, \text{mg/l})$, aluminum $(1.1 \, \text{mg/l})$, and magnesium $(7.51 \, \text{mg/l})$ were detected in the sample.

Magnesium Operations Which Do Not Use Process Water. The Agency has not established a discharge allowance for operations which do not generate process wastewater. The following operations generate no process wastewater, because they use only noncontact cooling water or because they use no water at all:

Extrusion
Shot Blasting
Powder Atomization
Screening
Turning.

Nickel-Cobalt Forming Subcategory

Nickel-Cobalt Rolling Spent Neat Oils. As described in Section III, cold rolling of nickel-cobalt products may require the use of mineral oil lubricants. The oils are usually recycled with in-line filtration and periodically disposed of by sale to an oil reclaimer or by incineration. Because discharge of this stream is not practiced, limited flow data were available for analysis. Water use, wastewater discharge, and current recycle practices

corresponding to this waste stream are summarized in Table V-40.

Since none of the plants surveyed reported discharging the rolling spent neat oils, no samples of this waste stream were collected.

Nickel-Cobalt Rolling Spent Emulsions. As discussed in Section III, oil-water emulsions are used in rolling operations as coolants and lubricants. Rolling emulsions are typically recycled using in-line filtration with periodic batch discharge of the spent emulsion. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-41.

Table V-42 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Four samples of rolling spent emulsions were collected from two streams at two plants. Elevated concentrations of nickel (34.2 mg/l), zinc (6.70 mg/l), oil and grease (7,600 mg/l), and TSS (6,800 mg/l) were detected in the samples.

Nickel-Cobalt Rolling Contact Cooling Water. As discussed in Section III, it is necessary to use contact cooling water during rolling to prevent excessive wear on the rolls, to prevent adhesion of metal to the rolls, and to maintain a suitable and uniform rolling temperature. Water is one type of lubricant-coolant which may be used. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-43.

Table V-44 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Eight samples of rolling contact cooling water were collected from four streams at two plants. Elevated concentrations of nickel (9.4 mg/l), copper (0.78 mg/l), oil and grease (300 mg/l), and TSS (350 mg/l) were detected in the samples.

Nickel-Cobalt Tube Reducing Spent Lubricants. As discussed in Section III, tube reducing, much like rolling, may require a lubricating compound in order to prevent excessive wear of the tube reducing rolls, prevent adhesion of metal to the rolls, and to maintain a suitable and uniform tube reducing temperature. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-45.

Table V-46 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. One sample of tube reducing spent lubricants was collected from one stream at one plant. Elevated concentrations of nickel (58.0 mg/l), copper (43.5 mg/l), lead (47.6 mg/l), zinc (63.1 mg/l), and oil and grease (200,000 mg/l) were detected in the sample. In addition, the sample had elevated concentrations of the toxic organics 1,1,1-trichloroethane (33 mg/l) and N-nitrosodiphenyl-amine (28.2 mg/l).

Nickel-Cobalt Drawing Spent Neat Oils. As discussed in Section III, oil-based lubricants may be required in draws which have a high reduction in diameter. Drawing oils are usually recycled, with in-line filtration, until their lubricating properties are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-47.

Since none of the plants surveyed reported currently discharging the drawing spent neat oils, no samples were collected.

Nickel-Cobalt Drawing Spent Emulsions. As discussed in Section III, oil-water emulsions are often used as coolants and lubricants in drawing. The drawing emulsions are frequently recycled and batch discharged periodically after their lubricant properties are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-48.

Table V-49 summarizes the analytical data for priority metal pollutants and selected conventional and nonconventional pollutants. One sample of drawing spent emulsions was collected at one plant. Elevated concentrations of copper (50 mg/l), nickel (3.0 mg/l), zinc (2.6 mg/l), iron (17.0 mg/l), oil and grease (2,490 mg/l) and TSS (1,300 mg/l) were detected in this sample.

Nickel-Cobalt Extrusion Spent Lubricants. As discussed in Section III, the extrusion process requires the use of a lubricant to prevent adhesion of the metal to the die and ingot container walls. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-50.

Since none of the plants surveyed reported wastewater discharging extrusion spent lubricants, no samples of this waste stream were collected.

Nickel-Cobalt Extrusion Press and Solution Heat Treatment Contact Cooling Water. As discussed in Section III, heat treatment is frequently used after extrusion to attain the desired mechanical properties in the extruded metal. Contact cooling of the extrusion, sometimes called press heat treatment, can be accomplished with a water spray near the die or by immersion in a water tank adjacent to the runout table. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-51.

Table V-52 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. One sample of extrusion press heat treatment contact cooling water was collected at one plant. An elevated concentration of chromium (0.130 mg/l) was detected in the sample.

Nickel-Cobalt Extrusion Press Hydraulic Fluid Leakage. As

discussed in Section III, due to the large force applied by a hydraulic press, some hydraulic fluid leakage is unavoidable. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-53.

Table V-54 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Three samples of extrusion press hydraulic fluid leakage were collected at one plant. Elevated concentrations of copper (0.75 mg/l), nickel (1.30 mg/l), oil and grease (420 mg/l), and TSS (250 mg/l) were detected in the samples.

Nickel-Cobalt Forging Spent Lubricants. As discussed in Section III, either water, oil, or granulated carbon can be applied to forging dies for proper lubrication. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-55.

Since none of the plants surveyed reported discharging the forging spent lubricants, no samples of this waste stream were collected.

Nickel-Cobalt Forging Contact Cooling Water. As discussed in Section III, forging dies may require cooling to maintain the proper die temperature between forgings, or to cool the dies prior to removal from the forge hammer. The contact cooling water may also be used as a heat treatment to improve mechanical properties of the metal being forged. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-56.

Table V-57 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Two samples of forging contact cooling water were collected at two plants. Elevated concentrations of copper (3.4 mg/l), nickel (16 mg/l), and TSS (1,800 mg/l) were detected in the samples.

Nickel-Cobalt Forging Equipment Cleaning Wastewater. Forging equipment may be periodically cleaned in order to prevent the excessive buildup of oil and grease on the forging die. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-58.

At proposal, the Agency assumed that this stream would have wastewater characteristics similar to forging contact cooling water in this subcategory. These two waste stream are generated from similar physical processes (flushing a forging or forging die with water), so the pollutants present are expected to be similar. However, the water is used for different purposes, in one case to cool a hot forging or forging die, in the other, to remove built-up contaminants. Therefore, the mass loadings of oil and grease are expected to be higher in forging equipment cleaning wastewater than in forging contact cooling water. After proposal, these assumptions were confirmed by plant self-sampling data.

Nickel-Cobalt Forging Press Hydraulic Fluid Leakage. As discussed in Section III, due to the large force applied by a hydraulic press, some hydraulic fluid leakage is unavoidable. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-59.

Table V-60 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. One sample of forging press hydraulic fluid leakage was collected at one plant. Elevated concentrations of nickel (0.64 mg/l), oil and grease (17 mg/l), and TSS (500 mg/l) were detected in the sample.

Nickel-Cobalt Metal Powder Production Atomization Wastewater. As discussed in Section III, metal powder is commonly produced through wet atomization of a molten metal. Of the plants surveyed, three reported the use of water in the atomization of molten nickel. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-61.

Table V-62 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Seven samples of metal powder production wet atomization wastewater were collected at three plants. Elevated concentrations of chromium (54.9 mg/l), copper (45.0 mg/l), nickel (210.0 mg/l), iron (10.3 mg/l), and TSS (317 mg/l) were detected in the samples.

Nickel-Cobalt Stationary Casting Contact Cooling Water. As discussed in Section III, contact cooling water is sometimes used in stationary casting. The cooling water may be contaminated by lubricants applied to the mold before and during the casting process and by the cast metal itself. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-63.

At proposal, the Agency assumed that this stream would have wastewater characteristics similar to rolling contact cooling water in this subcategory. After proposal, this assumption was confirmed by plant self-sampling data.

Nickel-Cobalt Vacuum Melting Steam Condensate. As discussed in Section III, nickel-cobalt may be melted by an operation known as vacuum melting. The high pressure steam used to create the vacuum condenses to an extent as it produces the vacuum. Although this water does not come in contact with the metal product, it may potentially be contaminated with metal fines or components of lubricant compounds volatilized in the furnace if scrap is being melted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-64.

Table V-65 summarizes the analytical sampling data for priority

and selected conventional and nonconventional pollutants. One sample of vacuum melting steam condensate was collected at one plant. No pollutants were detected in the sample at above treatable concentrations.

Nickel-Cobalt Annealing and Solution Heat Treatment Contact Cooling Water. As discussed in Section III, solution heat treatment is implemented after annealing operations to improve mechanical properties by maximizing the concentration of hardening contaminants in the solid metal solution. Solution heat treatment typically involves significant quantities of contact cooling water. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-66.

Table V-67 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Two samples of solution heat treatment contact cooling water were collected from two streams at two plants. Elevated concentrations of nickel (6.80 mg/l), copper (2.92 mg/l), oil and grease (40 mg/l), and TSS (78 mg/l) were detected in the samples.

Nickel-Cobalt Surface Treatment Spent Baths. As discussed in Section III, a number of chemical surface treatments may be applied after the forming of nickel-cobalt products. The surface treatment baths must be periodically discharged after their properties are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-68.

Table V-69 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Samples of four spent surface treatment baths were collected at two plants. Very high concentrations of nickel (193,000 mg/l), copper (4,800 mg/l), cobalt (4,000 mg/l), chromium (3,600 mg/l), fluoride (94,000 mg/l), and TSS (5,800 mg/l) were detected in the samples.

Nickel-Cobalt Surface Treatment Rinsewater. As discussed in Section III, rinsing follows the surface treatment process to prevent the surface treatment solution from affecting the surface of the metal beyond the desired amount. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-70.

Table V-71 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Twenty-five samples of surface treatment rinsewater were collected from nine streams at four plants. Elevated concentrations of nickel (364 mg/l), copper (87.4 mg/l), chromium (18.8 mg/l), cobalt (4.0 mg/l), zinc (2.36 mg/l), fluoride (250 mg/l), titanium (48.0 mg/l), oil and grease (130 mg/l), and TSS (760 mg/l) were detected in the samples.

Nickel-Cobalt Ammonia Rinse. As discussed in Section III, an

ammonia rinse may be used after acid pickling of nickel-cobalt products to neutralize the acid prior to further rinsing. The ammonia rinse is periodically batch discharged when spent. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-72.

Table V-73 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. One sample of ammonia rinse wastewater was collected at one plant. Elevated concentrations of nickel (456 mg/l), copper (54.0 mg/l), chromium (108 mg/l), zinc (32.0 mg/l), and TSS (9,000 mg/l) were detected in the sample.

Nickel-Cobalt Alkaline Cleaning Spent Baths. As discussed in Section III, alkaline cleaners are formulations of alkaline salts, water, and surfactants. Spent solutions are discharged from alkaline cleaning processes. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-74.

Table V-75 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Four samples of alkaline cleaning spent baths were collected from four streams at two plants. Elevated concentrations of nickel (122 mg/l), copper (39.2 mg/l), zinc (3.90 mg/l), chromium (38.0 mg/l), oil and grease (170 mg/l), and TSS (4,000 mg/l) were detected in the samples.

Nickel-Cobalt Alkaline Cleaning Rinse. As discussed in Section III, metal parts are usually rinsed following alkaline cleaning to remove the cleaning solution and any solubilized contaminants. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-76.

Table V-77 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Five samples of alkaline cleaning rinsewater were collected from four streams at two plants. Elevated concentrations of nickel $(5.58 \, \text{mg/l})$, oil and grease $(26 \, \text{mg/l})$, and TSS $(190 \, \text{mg/l})$ were detected in the samples.

Nickel-Cobalt Molten Salt Rinse. As discussed in Section III, when molten salt baths are used to descale nickel and cobalt alloys, they are generally followed by a water quench and rinse step. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-78.

Table V-79 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Eight samples of molten salt rinsewater were collected from four streams at four plants. Elevated concentrations of nickel (54.0 mg/l), copper (8.05 mg/l), cobalt (2.8 mg/l), chromium (1,100 mg/l), and TSS (4,200 mg/l) were detected in the samples.

Nickel-Cobalt Sawing or Grinding Spent Emulsions. As discussed in Section III, sawing or grinding operations generally require lubrication with an oil-water emulsion in order to minimize friction and to dissipate excess heat from the metal and cutting tool. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-80.

Table V-81 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Twelve samples of sawing or grinding spent lubricants were collected from 12 streams at three plants. Elevated concentrations of nickel (116 mg/l), copper (16.5 mg/l), cobalt (3.4 mg/l), chromium (24.0 mg/l), oil and grease (16,000 mg/l), and TSS (2,440 mg/l) were detected in the samples.

Nickel-Cobalt Sawing or Grinding Rinse. As discussed in Section III, a rinsing step may be used following sawing or grinding to remove lubricants dragged out on the product and to wash away sawing or grinding swarf. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-82.

No samples of sawing or grinding rinsewater were collected during the sampling program. However, to estimate pollutant loads for this program, the Agency assumed that this stream would have wastewater characteristics similar to sawing or grinding rinsewater in the zirconium-hafnium subcategory. Because sawing or grinding rinsing operations are similar among subcategories, the pollutants present and the mass loadings of pollutants present are expected to be similar with respect to the major metal formed. That is, the mass loading of nickel and zirconium in nickel sawing or grinding rinsewater is expected to be similar to the mass loading of zirconium and nickel, respectively, in zirconium sawing or grinding rinsewater. Since no process chemicals are added to the rinsewater, mass loadings of all other pollutants are expected to be similar.

Nickel-Cobalt Steam Cleaning Condensate. As discussed in Section III, steam cleaning may be used to remove oil and grease from the surface of metal. Steam is condensed to water as it contacts the surface of the relatively cooler metal. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-83.

At proposal, the Agency assumed that this stream would have wastewater characteristics similar to rolling contact cooling water in this subcategory. After proposal, this assumption was confirmed by plant self-sampling data.

Nickel-Cobalt Hydrostatic Tube Testing and Ultrasonic Testing Wastewater. As discussed in Section III, hydrostatic tube testing and ultrasonic testing operations are used to determine the integrity of tubes and to check metal parts for subsurface imperfections. Water use, wastewater discharge, and current

recycle practices corresponding to this waste stream are summarized in Table V-84.

No samples of hydrostatic tube testing and ultrasonic testing wastewater were collected during the sampling program. However, the Agency assumed that this stream would have wastewater characteristics similar to rolling contact cooling water in this subcategory. These two waste streams are generated in processes in which water, without any added process chemicals, contacts metal. Therefore, the pollutants present in each waste stream and the mass loading (mg/kkg) at which they are present should be similar.

Nickel-Cobalt Dye Penetrant Testing Wastewater. As discussed in Section III, testing operations are used to check nonferrous metals parts for discontinuities that are open to the surface in the part being tested. Dye penetrant testing operations are sources of wastewater because the parts must be rinsed following penetration of the dye so that, upon inspection, dye will only remain in the discontinuities. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-85.

Table V-86 summarizes the analytical data for priority metal pollutants and selected conventional and nonconventional pollutants. Two samples of dye penetrant testing wastewater were collected at two plants.

Nickel-Cobalt Miscellaneous Wastewater Sources. Several low volume sources of wastewater were reported on the dcp and observed during the site and sampling visits. These sources include maintenance and cleanup. The Agency has determined that none of the plants reporting these specific water uses discharge these wastewaters to surface water (directly or indirectly). However, because the Agency believes that this type of low volume periodic discharge occurs at most plants, the Agency is including an allowance for the miscellaneous wastewater sources.

Nickel-Cobalt Degreasing Spent Solvents. As described in Section III, solvent cleaners are used to remove lubricants (oils and greases) applied to the surface of nonferrous metals during mechanical forming operations. Basic solvent cleaning methods include straight vapor degreasing, immersion-vapor degreasing, spray-vapor degreasing, ultrasonic vapor degreasing, emulsified solvent degreasing, and cold cleaning.

Solvents most commonly used for all types of vapor degreasing are trichloroethylene, l,l,l-trichloroethane, methylene chloride, perchloroethylene, and various chlorofluorocarbons. Solvent selection depends on the required process temperature (solvent boiling point), product dimension, and metal characteristics. Contaminated vapor degreasing solvents are frequently recovered by distillation.

Since none of the plants surveyed reported discharging the spent

degreasing solvents, no samples were collected.

Nickel-Cobalt Wet Air Pollution Control Blowdown. As discussed in Section III, wet air pollution control devices are required to control air pollution from some operations. Scrubbers are frequently necessary over surface treatment operations to control fumes and over shot blasting operations to control particulates. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-87.

Table V-88 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Three samples of wet air pollution control blowdown were collected. Blowdown from a scrubber on a surface treatment operation was sampled at two plants and on a shot blasting operation at another plant. Elevated concentrations of nickel, copper (2.85 mg/l), chromium and TSS (190 mg/l) were detected in the samples.

Nickel-Cobalt Electrocoating Rinse. As discussed in Section III, products are usually rinsed following electrocoating before they are subsequently formed. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-89.

No samples of electrocoating rinsewater were collected during the sampling program. However, one commenter provided sufficient information to calculate the mass loadings for three pollutants. Elevated concentrations of nickel (53.2 mg/l), chromium (1.22 mg/l), and copper (34.2 mg/l) were reported. The calculated mass loadings are 179,000 mg/kkg of nickel, 4,110 mg/kkg of chromium, and 115,000 mg/kkg of copper. The loadings of other pollutants are expected to be similar to the loadings for alkaline cleaning rinsewater.

Nickel-Cobalt Operations Which Do Not Use Process Water. The Agency has established no discharge allowance for operations which do not generate process wastewater. The following operations generate no process wastewater, either because they are dry or because they use noncontact cooling water only:

Powder Metallurgy Operations (Compacting, Sintering, Sizing)
Powder Blending
Powder Ball Milling
Powder Attrition
Powder Extrusion
Hot Isostatic Pressing
Grit, Sand and Shot Blasting
Welding
Plasma Torch Cutting
Gas Cleaning
Coil Buildup, Coiling
Straightening
Electroflux Remelting.

Precious Metals Forming Subcategory

Precious Metals Rolling Spent Neat Oils. As discussed in Section III, the rolling of precious metals products may require the use of mineral oil lubricants. The oils are usually recycled with in-line filtration and periodically disposed of by sale to an oil reclaimer or by incineration. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-90.

Since none of the plants surveyed reported discharging the rolling spent neat oils, no samples of this waste stream were collected.

Precious Metals Rolling Spent Emulsions. As discussed in Section III, oil-water emulsions are used in rolling operations as coolants and lubricants. Rolling emulsions are typically recycled using in-line filtration with periodic batch discharge of the recycled emulsion as it loses its lubricating properties. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-91.

Table V-92 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Three samples of rolling spent emulsion were collected from three streams at two plants. Elevated concentrations of copper (25.0 mg/l), zinc (6.00 mg/l), silver (0.130 mg/l), oil and grease (1,500 mg/l), and TSS (500 mg/l) were detected in the samples.

<u>Precious Metals</u> <u>Drawing Spent Neat Oils</u>. As discussed in Section <u>TII</u>, oil-based lubricants may be required in draws which have a high reduction in diameter. Drawing oils are usually recycled until their lubricating properties are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-93.

Since none of the plants surveyed reported discharging the drawing spent neat oils, no samples were collected.

Precious Metals Drawing Spent Emulsions. As discussed in Section III, oil-water emulsions may be used as coolants and lubricants in drawing. The drawing emulsions are frequently recycled and batch discharged periodically after their lubricating properties are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-94.

Table V-95 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. One sample of drawing spent emulsions was collected at one plant. Elevated concentrations of copper (46.4 mg/l), zinc (5.18 mg/l), lead (1.05 mg/l), and oil and grease (33,000 mg/l) were detected in the sample.

<u>Precious</u> <u>Metals Drawing Spent Soap Solutions.</u> As discussed in Section III, soap solutions can be used as drawing lubricants.

The drawing soap solutions may be recycled and batch discharged periodically after their lubricating properties are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-96.

At proposal, the Agency assumed that this stream would have wastewater characteristics similar to rolling spent emulsions in this subcategory. After proposal, this assumption was confirmed by plant self-sampling data.

Precious Metals Metal Powder Production Atomization Wastewater. As discussed in Section III, metal powder is commonly produced through wet atomization of a molten metal. Water is removed after the atomization step, commonly by settling, then discharged. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-97.

No samples of metal powder production atomization wastewater were collected during the sampling program. However, the Agency believes that this stream will have wastewater characteristics similar to shot casting contact cooling water in this subcategory. These two waste streams are generated by using water to cool molten metal. Therefore, the pollutants present in each waste stream and the mass loading (mg/kkg) at which they are present should be similar.

Precious Metals Direct Chill Casting Contact Cooling Water. As discussed in Section III, contact cooling water is a necessary part of direct chill casting. The cooling water may be contaminated by lubricants applied to the mold before and during the casting process. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-98.

Precious Metals Shot Casting Contact Cooling Water. As discussed in Section III, during shot casting, a tank of contact cooling water, either stagnant or circulating, is necessary for quick quenching of cast shot. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-99.

Table V-100 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Two samples of shot casting contact cooling water were collected from one stream at one plant. Elevated concentrations of cadmium (9.88 mg/l), copper (0.600 mg/l), zinc (5.66 mg/l), and oil and grease (54 mg/l) were detected in the samples.

Precious Metals Stationary Casting Contact Cooling Water. As discussed in Section III, stationary casting of metal ingots is practiced at many nonferrous metals forming plants. Lubricants and cooling water are usually not required, however, two of the plants surveyed reported the use and discharge of stationary casting contact cooling water. Water use, wastewater discharge,

and current recycle practices corresponding to this waste stream are summarized in Table V-101.

No samples of stationary casting contact cooling water were collected during the sampling program. However, the Agency assumed that this stream would have wastewater characteristics similar to semi-continuous and continuous casting contact cooling water in this subcategory. These two waste streams are generated by using water, without additives, to cool hot metal. Therefore, the pollutants present in each waste stream and the mass loading at which they are present should be similar.

Precious Metals Semi-Continuous and Continuous Casting Contact Cooling Water. As discussed in Section III, a number of different continuous casting processes are currently being used in the precious metals industry. The use of continuous casting techniques has been found to significantly reduce or eliminate the use of contact cooling water and oil lubricants. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-102.

Table V-103 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Two samples of semi-continuous and continuous casting contact cooling water were collected from two streams at two plants. Elevated concentrations of copper, cyanide (0.50 mg/l), oil and grease and TSS were detected in the samples.

Precious Metals Heat Treatment Contact Cooling Water. As discussed in Section III, contact cooling water is used to obtain a controlled cooling rate following solution heat treatment and annealing. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-104.

Precious Metals Surface Treatment Spent Baths. As discussed in Section III, a number of chemical treatments may be applied after the forming of precious metals products. The surface treatment baths must be periodically discharged after their properties are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-105.

Precious Metals Surface Treatment Rinse. As discussed in Section III, rinsing follows the surface treatment process to prevent the solution from affecting the surface of the metal beyond the desired amount. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-106.

Table V-107 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Seven samples of surface treatment rinsewater were collected from four streams at three plants. Elevated concentrations of cadmium (11.1 mg/l), copper (60.6 mg/l), silver (6.70 mg/l), zinc and TSS

(3,000 mg/l) were detected in the samples.

Precious Metals Alkaline Cleaning Spent Baths. As discussed in Section III, alkaline cleaners are formulations of alkaline salts, water, and surfactants. Spent solutions are discharged from alkaline cleaning processes after their properties are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-108.

Precious Metals Alkaline Cleaning Rinse. As discussed in Section III, following alkaline treating, metal parts are rinsed. Rinses are discharged from alkaline cleaning processes. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-109.

samples of alkaline cleaning rinsewater were collected during the sampling program. However, the Agency assumed that this stream would have wastewater characteristics similar to alkaline cleaning rinsewater in the nickel-cobalt subcategory. These two waste streams are generated by identical physical processes which use similar process chemicals. The only difference should be the The mass loading of precious metals in precious metals present. metals alkaline cleaning rinsewater should be similar to the mass loading of nickel in nickel alkaline cleaning rinsewater, Also, chromium should not be present in significant vice versa. The other pollutants present in each waste stream, and amounts. the mass loading at which they are present, should be similar.

Precious Metals Alkaline Cleaning Prebonding Wastewater. discussed in Section III, prior to bonding (cladding), metal surfaces must be cleaned in order to obtain a good bond. main source of process water in metal cladding operations is in cleaning the metal surfaces prior to bonding. Acid, caustic, or detergent cleaning can be performed depending on the metal type. small batch operations, the cleaning steps can involve dipping the metal into small cleaning bath tanks and hand rinsing the metal in a sink. For larger continuous operations, the metal may be cleaned in a power scrubline. In a typical scrubline, the strip passes through a detergent bath, spray rinse, acid bath, spray rinse, rotating abrasive scrub brushes, and a final rinse. The metal may then pass through a heated drying chamber or may Water use, wastewater discharge, and current recycle air dry. practices corresponding to this waste stream are summarized in Table V-110.

Table V-111 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Eight samples of prebonding cleaning wastewater were collected from three streams at two plants. Elevated concentrations of silver (0.100 mg/l), zinc (2.32 mg/l), copper (5.95 mg/l), cyanide (0.28 mg/l), nickel (3.60 mg/l), oil and grease (16 mg/l), and TSS (400 mg/l) were detected in the samples.

<u>Precious Metals Tumbling or Burnishing Wastewater.</u> As discussed

in Section III, tumbling is a controlled method of processing parts to remove burrs, scale, flash, and oxides as well as to improve surface finish of formed metal parts. Burnishing is the process of finish sizing or smooth finishing a workpiece (previously machined or ground) by displacement rather than removal, of minute surface irregularities. Water is used to facilitate tumbling and burnishing. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-112.

Table V-113 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Four samples of tumbling wastewater were collected from two streams at two plants. Elevated concentrations of silver (0.220 mg/l), lead (1.85 mg/l), zinc (3.16 mg/l), iron (7,850 mg/l), copper (142 mg/l), nickel (3.25 mg/l), chromium (3.18 mg/l), oil and grease (40 mg/l), and TSS (110 mg/l) were detected in the samples.

Precious Metals Sawing or Grinding Spent Neat Oils. As discussed in Section III, sawing or grinding operations may use mineral-based oils or heavy grease as the lubricant required to minimize friction and act as a coolant. Normally, cutting oils are not discharged as a wastewater stream. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-114.

Since none of the plants surveyed reported discharging the sawing or grinding spent neat oils, no samples were collected.

Precious Metals Sawing or Grinding Spent Emulsions. As discussed in Section III, the rolls used in rolling operations obtain surface abrasions after repeated use. The rolls must be surface ground in order to obtain a smooth rolling surface. The rolled product will not be formed properly if the rolls are not adequately smooth. Roll grinding and other sawing and grinding operations generally require a lubricant to minimize friction and act as a coolant. Oil-water emulsions are commonly used for this purpose. The emulsions are typically recycled using in-line filtration and batch discharged periodically after their lubricating properties are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-115.

Table V-116 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. A sample of roll grinding spent emulsions was collected at one plant. Elevated concentrations of zinc (0.920 mg/l), chromium (0.240 mg/l), and oil and grease (500 mg/l) were detected in the sample.

Precious Metals Pressure Bonding Contact Cooling Water. As discussed in Section III, metals can be bonded together through the use of pressure applied onto the desired forms. Cooling water may be applied after the bonding operation to facilitate handling of the bonded product. Water use, wastewater discharge,

and current recycle practices corresponding to this waste stream are summarized in Table V-117.

Table V-118 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. One sample of pressure bonding contact cooling water was collected at one plant. Elevated concentrations of zinc (3.42 mg/l) and copper (7.85 mg/l) were detected in the sample.

Precious Metals Degreasing Spent Solvents. As described in Section III, solvent cleaners are used to remove lubricants (oils and greases) applied to the surface of nonferrous metals during mechanical forming operations. Basic solvent cleaning methods include straight vapor degreasing, immersion-vapor degreasing, spray-vapor degreasing, ultrasonic vapor degreasing, emulsified solvent degreasing, and cold cleaning.

Solvents most commonly used for all types of vapor degreasing are trichloroethylene, 1,1,1-trichloroethane, methylene chloride, perchloroethylene, and various chlorofluorocarbons. Solvent selection depends on the required process temperature (solvent boiling point), product dimension, and metal characteristics. Contaminated vapor degreasing solvents are frequently recovered by distillation.

Since none of the plants surveyed reported discharging spent degreasing solvents, no samples were collected.

Precious Metals Wet Air Pollution Control Blowdown. As discussed in Section III, wet air pollution control devices are needed to control air pollution from some operations. For instance, scrubbers may be required over casting operations. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-119.

No samples of wet air pollution control blowdown were collected during the sampling program. However, the Agency assumed that this stream would have wastewater characteristics similar to shot casting contact cooling water in this subcategory. The tants in each of these waste streams derive from the contact the water with particles of metal, so the pollutants present are expected to be similar. However, because the air pollution control device is designed to capture small particles and gases (dust and fumes) generated during the casting process, the mass loadings of total suspended solids and total dissolved solids are expected to be higher in wet air pollution control blowdown than in shot casting contact cooling water.

Precious Metals Operations Which Do Not Use Process Water. The Agency has not established a discharge allowance for operations which do not generate process wastewater. The following operations generate no process wastewater, either because they use only noncontact cooling water or because they use no water at all:

Forging, Swaging
Punching, Stamping
Welding
Soldering
Melting
Screening
Sawing
Slitting
Metal Powder Production.

Refractory Metals Forming Subcategory

Refractory Metals Rolling Spent Neat Oils and Graphite-Based Lubricants. As discussed in Section III, the rolling of refractory metal products typically requires the use of mineral oil or graphite-based lubricants. The oils are usually recycled with in-line filtration and periodically disposed of by sale to an oil reclaimer or by incineration. Because discharge of this stream is not practiced, flow data were not available for analysis. Only one plant surveyed reported using neat oil rolling lubricants, but this plant did not report the quantity of lubricant used. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-120.

Since none of the plants surveyed reported discharging the rolling spent neat oils or graphite-based lubricants, no samples were collected.

Refractory Metals Rolling Spent Emulsions. As discussed in Section III, oil-water emulsions are used in rolling operations as coolants and lubricants. Rolling emulsions are typically recycled with in-line filtration and batch discharged periodically when the lubricating properties of the emulsions are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-121.

No samples of rolling spent emulsions were collected during the sampling program. However, the Agency assumed that this stream would have wastewater characteristics similar to nickel-cobalt These two waste streams are generated rolling spent emulsions. by identical physical processes which use similar process chemicals. The only difference between the wastewater characteristics of the two streams should be the metals present. The mass (mg/kkg) of refractory metals rolling spent emulsions should be similar to the mass loading of nickel in nickel rolling spent emulsions, and vice versa. In addition, the mass loading of chromium in refractory metals rolling spent emulsions should insignificant because refractory metals are seldom alloyed The other pollutants in each waste stream, with chromium. the mass loading at which they are present, should be similar.

Refractory Metals Drawing Spent Lubricants. As discussed in Section III, a wide variety of drawing lubricants are used in

order to ensure uniform drawing temperatures and avoid excessive wear on the dies and mandrels. Drawing lubricants are usually recycled until no longer effective. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-122.

Since none of the plants surveyed reported discharging the drawing spent lubricants, no samples were collected.

Refractory Metals Extrusion Spent Lubricants. As discussed in Section III, the extrusion process requires the use of a lubricant to prevent adhesion of the metal to the die and ingot container walls. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-123.

Since none of the plants surveyed reported discharging the extrusion spent lubricants, no samples were collected.

Refractory Metals Extrusion Press Hydraulic Fluid Leakage. As discussed in Section III, due to the large force applied by a hydraulic press, some hydraulic fluid leakage is unavoidable. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-124.

Table V-125 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. One sample of extrusion press hydraulic fluid leakage was collected during the sampling program. Elevated concentrations of copper (21 mg/l), molybdenum (20 mg/l), oil and grease (44,000 mg/l), and total suspended solids (19,000 mg/l) were detected in the sample.

Refractory Metals Forging Spent Lubricants. As discussed in Section III, proper lubrication of the dies is essential in forging refractory metals. Of the plants surveyed reporting the use of forging lubricants, all reported total consumption due to evaporation and drag-out. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-126.

Since none of the plants surveyed reported discharging the forging spent lubricants, no samples were collected.

Refractory Metals Forging Contact Cooling Water. As discussed in Section III, heat treatment is frequently used after forging to attain the desired mechanical properties in the forged metal. Contact cooling water may be used to cool the forged metal at a controlled rate after heat treatment. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-127.

At proposal, the Agency assumed that this stream would have wastewater characteristics similar to nickel-cobalt extrusion

press and solution heat treatment contact cooling water. two waste streams are generated by using water, without addi-The only difference between tives, to cool hot metal. wastewater characteristics of the two streams should be the metals present. The mass loading (mg/kkg) of refractory metals in refractory metals forging contact cooling water should be similar to the mass loading of nickel in nickel extrusion press and solution heat treatment contact cooling water, and vice Also, the mass loading of chromium should be insignifiversa. cant because refractory metals are seldom alloyed with chromium. The other pollutants in each waste stream, and the mass loading at which they are present, should be similar. After proposal, these assumptions were confirmed by plant self-sampling data.

Refractory Metals Metal Powder Production Wastewater. As discussed in Section III, refractory metal powders are frequently produced by mechanical reduction. The most common pieces of mechanical reduction equipment are ball mills, vortex mills, hammer mills, disc mills, and roll mills. Water or other liquids may be used to aid in the milling operation or to facilitate handling after powder is produced. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-128.

At proposal, the Agency assumed that this stream would have wastewater characteristics similar to tumbling or burnishing wastewater in this subcategory. After proposal, this assumption was confirmed by plant self-sampling data.

Refractory Metals Metal Powder Production Floor Wash Wastewater. As discussed in Section III, floor washing may be necessary in metal powder production areas to keep to a minimum airborne particles and to keep powder dust off the floor so that it does not become slippery and a safety hazard. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-129.

No samples of metal powder production floor wash water were collected during the sampling program. However, the Agency assumed that this stream would have wastewater characteristics similar to area cleaning wastewater in the uranium forming subcategory. These two waste streams are generated by plant cleanups. The only difference should be the metals present. The mass loading (mg/kkg) of refractory metals in refractory metals metal powder production floor wash water should be similar to the mass loading of uranium in uranium area cleaning wastewater, and vice versa. The other pollutants present in each waste stream, and the mass loading at which they are present, should be similar.

Refractory Metals Metal Powder Pressing Spent Lubricants. As discussed in Section III, a forming medium may be used to lubricate the pressing of green shapes, which are subsequently sintered. Lubricants may be recycled and lost through drag-out. Water use, wastewater discharge, and current recycle practices

corresponding to this waste stream are summarized in Table V-130.

Since none of the plants surveyed reported discharging the metal powder pressing spent lubricants, no samples were collected.

Refractory Metals Surface Treatment Spent Baths. As discussed in Section III, a number of chemical treatments may be applied after the forming of refractory metal products. The surface treatment baths must be periodically discharged after their properties are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-131.

Table V-132 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. One sample of surface treatment spent baths was collected. Elevated concentrations of nickel (12.4 mg/l), copper (6.3 mg/l), silver (6.1 mg/l), and TSS (140 mg/l) were detected in the sample.

Refractory Metals Surface Treatment Rinse. As discussed in Section III, rinsing following the surface treatment process to prevent the solution from affecting the surface of the metal beyond the desired amount. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-133.

Table V-134 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Five samples of surface treatment rinsewater were collected from five streams at five plants. Elevated concentrations of nickel (10.2 mg/l), columbium, tantalum, tungsten and TSS (140 mg/l) were detected in the samples.

Refractory Metals Alkaline Cleaning Spent Baths. As discussed in Section III, alkaline cleaners are formulations of alkaline salts, water, and surfactants. Spent solutions are discharged from alkaline cleaning processes. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-135.

Table V-136 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. One sample of alkaline cleaning spent baths was collected at one plant. Elevated concentrations of lead (9.9 $\,\mathrm{mg/l}$), columbium (865 $\,\mathrm{mg/l}$), and tantalum (585 $\,\mathrm{mg/l}$) were detected in the sample.

Refractory Metals Alkaline Cleaning Rinse. As discussed in Section III, following alkaline treating, metal parts are rinsed. Rinses are discharged from alkaline cleaning processes. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-137.

No samples of alkaline cleaning rinsewater were collected during the sampling program. However, the Agency assumed that this stream would have wastewater characteristics similar to alkaline cleaning rinsewater in the nickel-cobalt subcategory. These two waste streams are generated by using water to remove alkaline cleaning solutions from cleaned metal. The only difference between the wastewater characteristics of the two streams should be the metals present. The mass loading (mg/kkg) of refractory metals in refractory metals alkaline cleaning rinsewater should be similar to the mass loading of nickel in nickel alkaline cleaning rinsewater, and vice versa. Also, the mass loading of chromium should be insignificant because refractory metals are seldom alloyed with chromium. The other pollutants in each waste stream, and the mass loading at which they are present, should be similar.

Refractory Metals Molten Salt Rinsewater. As discussed in Section III, when molten salt baths are used to descale refractory metal alloys, they are generally followed by a water quench and rinse step. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-138.

Table V-139 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Six samples of molten salt rinsewater were collected from four streams at three plants. Elevated concentrations of tantalum (2.5 mg/l), columbium (2.3 mg/l), chromium (0.400 mg/l), and TSS (540 mg/l) were detected in the samples.

Refractory Metals Tumbling or Burnishing Wastewater. As discussed in Section III, tumbling is a controlled method of processing parts to remove burrs, scale, flash, and oxides as well as to improve surface finish. Burnishing is the process of finish sizing or smooth finishing a workpiece (previously machined or ground) by displacement, rather than removal, of minute surface irregularities. Water is used to facilitate tumbling and burnishing. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-140.

Table V-141 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Six samples of tumbling, burnishing wastewater were collected from four streams at two plants. Elevated concentrations of copper lead, nickel (103 mg/l), tungsten and TSS (2,700 mg/l) were detected in the samples.

Refractory Metals Sawing or Grinding Spent Neat Oils. As discussed in Section III, sawing or grinding operations may use mineral-based oils or heavy grease as the lubricant required to minimize friction and act as a coolant. Normally, cutting oils are not discharged as a wastewater stream. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-142.

Since none of the plants surveyed reported discharging spent sawing or grinding neat oils, no samples were collected.

Refractory Metals Sawing or Grinding Spent Emulsions. As discussed in Section III, sawing or grinding operations generally require a lubricant in order to minimize friction and act as a coolant. Oil-water emulsions are frequently used to lubricate sawing and grinding operations. The emulsions are usually recycled with in-line filtration to remove swarf and batch discharged periodically as their lubricating properties are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-143.

Table V-144 summarizes the analytical data for priority metal pollutants and selected conventional and nonconventional pollutants. Six samples of sawing or grinding spent emulsions were collected at five plants.

Refractory Metals Sawing or Grinding Contact Cooling Water. As discussed in Section III, a liquid which functions as lubricant and coolant is frequently needed during sawing and grinding. Water is one type of liquid which may be used. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-145.

Table V-146 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Two samples of sawing or grinding contact cooling water were collected from two streams at two plants. Elevated concentrations of molybdenum (5,470~mg/l), iron (13.0~mg/l), and TSS (310~mg/l) were detected in the samples.

Refractory Metals Sawing or Grinding Rinse. As discussed in Section III, the formed metals may be rinsed following sawing or grinding to remove the lubricants and saw chips for reprocessing. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-147.

At proposal, the Agency assumed that this stream would have wastewater characteristics similar to sawing or grinding contact cooling water in this subcategory. After proposal, this assumption was confirmed by plant self-sampling data.

Refractory Metals Dye Penetrant Testing Wastewater. As described in Section III, testing operations are used to check nonferrous metals parts for discontinuities that are open to the surface in the part being tested. Dye penetrant testing operations are sources of wastewater because the parts must be rinsed following penetration of the dye so that, upon inspection, dye will only remain in the discontinuities. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-148.

Table V-149 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. One sample of dye penetrant testing wastewater was collected during

the sampling program. Elevated concentrations of nickel (1.6 mg/l), oil and grease (72 mg/l), and TSS (22 mg/l) were detected in the sample.

Refractory Metals Equipment Cleaning Wastewater. As discussed in Section III, extrusion and forging equipment may be periodically cleaned in order to prevent the excessive build-up of oil and grease on the dies. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-150.

Table V-151 summarizes the analytical data for priority metal pollutants and selected conventional and nonconventional pollutants. Three samples of equipment cleaning wastewater were collected at two plants.

Refractory Metals Miscellaneous Wastewater Sources. As discussed in Section III, several low volume sources of wastewater were reported on the dcps and observed during the site and sampling visits. These sources include wastewater from a post-oil dip coating rinse, a quench of extrusion tools, and spent roll grinding emulsions. Because they generally represent low volume periodic discharges applicable to most plants, the Agency is including an allowance for all of these streams under the miscellaneous wastewater sources waste stream. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-152.

No samples of miscellaneous wastewater sources were collected during the sampling program. However, the Agency believes that this stream will have wastewater characteristics similar forging contact cooling water in the nickel-cobalt subcategory. However, the mass loading (mg/kkg) of oil and grease is expected to be higher, while the mass loading of TSS is expected to be lower in miscellaneous wastewater sources than in forging contact In addition, the metals present in the two waste cooling water. streams are expected to differ. The mass loading (mg/kkg) of refractory metals in refractory metals miscellaneous wastewater sources should be similar to the mass loading of nickel in nickel forging contact cooling water, and vice versa. Also, loading of chromium should be insignificant because refractory metals are seldom alloyed with chromium. The other pollutants in each waste stream, and the mass loading at which they are preswith the exception of TSS and oil and grease, should be ent, similar.

Refractory Metals Degreasing Spent Solvents. As described in Section III, solvent cleaners are used to remove lubricants (oils and greases) applied to the surface of nonferrous metals during mechanical forming operations. Basic solvent cleaning methods include straight vapor degreasing, immersion-vapor degreasing, spray-vapor degreasing, ultrasonic vapor degreasing, emulsified solvent degreasing, and cold cleaning.

Solvents most commonly used for all types of vapor degreasing are

trichloroethylene, 1,1,1-trichloroethane, methylene chloride, perchloroethylene, and various chlorofluorocarbons. Solvent selection depends on the required process temperature (solvent boiling point), product dimension, and metal characteristics. Contaminated vapor degreasing solvents are frequently recovered by distillation.

Since none of the plants surveyed reported discharging spent degreasing solvents, no samples were collected.

Refractory Metals Wet Air Pollution Control Blowdown. As discussed in Section III, wet air pollution control devices are needed to accompany some operations in order to meet air quality standards. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-153.

Table V-154 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Two samples of wet air pollution control blowdown were collected from two streams at two plants. Elevated concentrations of lead (0.16 mg/l) and TSS (150 mg/l) were detected in the samples.

Refractory Metals Operations Which Do Not Use Process Water. The Agency has not established a discharge allowance for operations which do not generate process wastewater. The following operations generate no process wastewater, because they use only noncontact cooling water or because they use no water at all:

Powder Metallurgy Operations (Pressing, Sintering)
Annealing
Soldering
Welding
Screening
Blending
Straightening
Blasting.

Titanium Forming Subcategory

Titanium Rolling Spent Neat Oils. As discussed in Section III, the rolling of titanium products typically requires the use of mineral oil lubricants. The oils are usually recycled with inline filtration and periodically disposed of by sale to an oil reclaimer or by incineration. Because discharge of this stream is not practiced, limited flow data were available for analysis. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-155.

Since none of the plants surveyed reported discharging the rolling spent neat oils, no samples of this waste stream were collected.

Titanium Rolling Contact Cooling Water. As discussed in Section III, a liquid which functions as a lubricant and coolant is

necessary during rolling to prevent excessive wear on the rolls, to prevent adhesion of metal to the rolls, and to maintain a suitable and uniform rolling temperature. Water is one type of liquid which may be used. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-156.

Titanium Drawing Spent Neat Oils. As discussed in Section III, oil-based lubricants may be required in draws which have a high reduction in diameter. Drawing oils are usually recycled until their lubricating properties are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-157.

Since none of the 'plants surveyed reported discharging the drawing spent neat oils, no samples were collected.

Titanium Extrusion Spent Neat Oils. As discussed in Section III, oil-based lubricants may be required in extrusions which have a high reduction in diameter. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-158.

Since none of the plants surveyed reported discharging spent extrusion neat oils, no samples were collected.

Titanium Extrusion Spent Emulsions. As discussed in Section III, the extrusion process requires the use of a lubricant to prevent adhesion of the metal to the die and ingot container walls. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-159.

No samples of extrusion spent emulsions were collected during the sampling program. However, to estimate pollutant loads for this stream, the Agency assumed that discharged titanium extrusion would have wastewater characteristics similar to rolling spent emulsions in the nickel-cobalt subcategory. two waste streams are generated from operations which use similar process chemicals for similar purposes (lubrication). The only difference between the wastewater characteristics of the two streams should be the metals present. The mass loading (mg/kkg) of titanium in titanium extrusion spent emulsions should be similar to the mass loading of nickel in nickel rolling spent emulsions, and vice versa. However, the mass loading of chromium should be insignificant because titanium is seldom alloyed with chromium. The other pollutants in each waste stream, and the mass loading at which they are present, should be similar.

Titanium Extrusion Press Hydraulic Fluid Leakage. As discussed in Section III, due to the large force applied by a hydraulic press, some hydraulic fluid leakage is unavoidable. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-160.

Table V-161 summarizes the analytical data for priority metal

pollutants and selected conventional and nonconventional pollutants. One sample of extrusion press hydraulic fluid was collected at one plant. No pollutants were detected in the sample above treatable concentrations.

Titanium Forging Spent Lubricants. As discussed in Section III, either a water or oil medium can be sprayed onto forging dies for proper lubrication. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-162.

Since none of the plants surveyed reported wastewater discharge values for forging spent lubricants, no samples were collected.

Titanium Forging Contact Cooling Water. As discussed in Section III, forging dies may require cooling to maintain the proper die temperature between forgings. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-163.

At proposal, the Agency assumed that this stream would have wastewater characteristics similar to forging contact cooling water in the nickel-cobalt subcategory. These two waste streams are generated by using water, without additives, to cool hot forgings and forging dies. The only difference between the wastewater characteristics of the two streams should be the metals present. The mass loading (mg/kkg) of titanium in titanium forging die contact cooling water should be similar to the mass loading of nickel in nickel forging die contact cooling water, and vice versa. However, the mass loading of chromium should be insignificant because titanium is seldom alloyed with chromium. The other pollutants in each waste stream, and the mass loading at which they are present, should be similar. After proposal, these assumptions were confirmed by plant self-sampling data.

Titanium Forging Equipment Cleaning Wastewater. Forging equipment may be periodically cleaned in order to prevent the excessive build-up of oil and grease on the forging die. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-164.

To estimate pollutant loads for this stream, the Agency assumed that this stream would have wastewater characteristics similar to forging contact cooling water in the nickel-cobalt subcategory. These assumptions were confirmed by plant self-sampling data.

Titanium Forging Press Hydraulic Fluid Leakage. As discussed in Section III, due to the large force applied by a hydraulic press, some hydraulic fluid leakage is unavoidable. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-165.

One sample of forging press hydraulic fluid leakage was collected at one plant. An elevated concentration of oil and grease

(370,000 mg/l) was detected in this sample.

Titanium Tube Reducing Spent Lubricants. As discussed in Section III, tube reducing, much like rolling, may require a lubricating compound in order to prevent excessive wear of the tube reducing rolls, and to maintain a suitable and uniform tube reducing temperature. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-166.

Table V-167 summarizes the analytical data for priority metal pollutants and selected conventional and nonconventional pollutants. Three samples of tube reducing lubricant were sampled at three plants.

Titanium Heat Treatment Contact Cooling Water. As discussed in Section III, heat treatment is used by plants in the nonferrous metals forming category to give the metal the desired mechanical properties. After heat treatment, the metals must be cooled at a controlled rate. Contact cooling water may be used for this purpose. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-168.

Table V-169 summarizes the analytical data for priority metal pollutants and selected conventional and nonconventional pollutants. Five samples of heat treatment contact cooling water were sampled at five plants. Elevated concentrations of copper (11.0 mg/l), zinc (6.7 mg/l), aluminum (24.0 mg/l), iron (440 mg/l), titanium (2.0 mg/l) and TSS (390 mg/l) were detected in these samples.

Titanium Surface Treatment Spent Baths. As discussed in Section III, a number of chemical treatments may be applied after the forming of titanium products. The surface treatment baths must be periodically discharged after their properties are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-170.

Table V-171 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Three samples of surface treatment spent baths were collected from three streams at two plants. Elevated concentrations of chromium, titanium (60,300 mg/l), lead (214 mg/l), nickel, zinc (166 mg/l), and TSS (3,360 mg/l) were detected in the samples.

Titanium Surface Treatment Rinse. As discussed in Section III, rinsing follows the surface treatment process to prevent the solution from affecting the surface of the metal beyond the desired amount. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-172.

Table V-173 summarizes the analytical sampling data for priority

and selected conventional and nonconventional pollutants. Nine samples of surface treatment rinsewater were collected from four streams at two plants. Elevated concentrations of chromium, lead (5.9 mg/l), nickel, titanium (186 mg/l), and TSS (66 mg/l) were detected in the samples.

Titanium Alkaline Cleaning Spent Baths. As discussed in Section III, alkaline cleaning is commonly used to clean formed metal parts. Products can be cleaned with an alkaline solution either by immersion or spray. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-174.

Table V-175 summarizes the analytical data for priority metal pollutants and selected conventional and nonconventional pollutants. Five samples of alkaline cleaning baths were collected at four plants. Elevated concentrations of copper (6.3 mg/l), iron (5.4 mg/l), titanium (6.5 mg/l), oil and grease (930 mg/l) and TSS (400 mg/l) were detected in these samples.

Titanium Alkaline Cleaning Rinse. As discussed in Section III, rinsing follows the alkaline cleaning process to prevent the solution from drying on the product. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-176.

Table V-177 summarizes the analytical data for priority metal pollutants and selected conventional and nonconventional pollutants. Four samples of alkaline cleaning rinsewater were collected at four plants. Elevated concentrations of copper (6.3 mg/l), and iron (1.9 mg/l) were detected in these samples.

Titanium Molten Salt Rinse. As discussed in Section III, when molten salt baths are used to descale titanium alloys, they are generally followed by a water quench and rinse step. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-178.

Titanium Tumbling Wastewater. As described in Section III, tumbling is an operation in which forgings are rotated in a barrel with ceramic or metal slugs or abrasives to remove scale, fins, oxides, or burrs. It may be done dry, with water, or an aqueous solution containing cleaning compounds, rust inhibitors, or other additives. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-179.

Table V-180 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. One sample of tumbling wastewater was collected. Elevated concentrations of titanium (156 mg/l), iron (111 mg/l), aluminum (182 mg/l), boron (116 mg/l), fluoride (110 mg/l), ammonia (34 mg/l), cyanide (4.1 mg/l), oil and grease (17 mg/l), and TSS (6,800 mg/l) were detected in the sample.

Titanium Sawing or Grinding Spent Neat Oils. As discussed in Section III, sawing or grinding operations may use mineral-based oils or heavy grease as the lubricant required to minimize friction and act as a coolant. Normally, cutting oils are not discharged as a wastewater stream. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-181.

Since none of the plants surveyed reported discharging the sawing or grinding spent neat oils, no samples were collected.

Titanium Sawing or Grinding Spent Emulsions. As discussed in Section III, sawing or grinding operations generally require a lubricant in order to minimize friction and act as a coolant. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-182.

Table V-183 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Three samples of sawing or grinding emulsions and synthetic coolants were collected from three streams at two plants.

Titanium Sawing or Grinding Contact Cooling Water. As discussed in Section III, a substance which functions as a lubricant and coolant is frequently needed during sawing or grinding. Water is one substance which may be used. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-184.

Table V-185 summarizes the analytical data for priority metal pollutants and selected conventional and nonconventional pollutants. One sample of sawing or grinding contact cooling water was collected at one plant. Elevated concentrations of magnesium (13.5 mg/l) and titanium (7.06 mg/l) were detected in this sample.

Titanium Dye Penetrant Testing Wastewater. As discussed in Section III, testing operations are used to check nonferrous metals parts for discontinuities that are open to the surface in the part being tested. Dye penetrant testing operations are sources of wastewater because the parts must be rinsed following penetration of the dye so that, upon inspection, dye will only remain in the discontinuities. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-186.

Titanium Hydrotesting Wastewater. As discussed in Section III, titanium tubes can be filled with pressurized water for leak-testing. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-187.

No samples of hydrotesting wastewater were taken, but the Agency does not believe that using water, without additives, in contact

with clean metal will contaminate the water with treatable concentrations of pollutants.

Titanium Miscellaneous Wastewater Streams. As discussed in Section III, low volume sources of wastewater were reported on the dcps. These sources are saw spillage and tool cleaning wastewater. Because they generally represent low volume periodic discharges applicable to most plants, the Agency is including an allowance for all of these streams under the miscellaneous wastewater sources waste stream.

No samples of miscellaneous wastewater sources were collected during the sampling program. However, the Agency believes that this stream will have wastewater characteristics similar to forging contact cooling water in the nickel-cobalt subcategory. The only difference between the wastewater characteristics of the two streams should be the metals present. The mass loading (mg/kkg) of titanium in titanium miscellaneous wastewater sources should be similar to the mass loading of nickel in nickel forging contact cooling water, and vice versa. The other pollutants in each waste stream, and the mass loading at which they are present, should be similar.

Titanium Degreasing Spent Solvents. As described in Section III, solvent cleaners are used to remove lubricants (oils and greases) applied to the surface of nonferrous metals during mechanical forming operations. Basic solvent cleaning methods include straight vapor degreasing, immersion-vapor degreasing, sprayvapor degreasing, ultrasonic vapor degreasing, emulsified solvent degreasing, and cold cleaning.

Solvents most commonly used for all types of vapor degreasing are trichloroethylene, l,l,l-trichloroethane, methylene chloride, perchloroethylene, and various chlorofluorocarbons. Solvent selection depends on the required process temperature (solvent boiling point), product dimension, and metal characteristics. Contaminated vapor degreasing solvents are frequently recovered by distillation.

Since none of the plants surveyed reported discharging spent degreasing solvents, no samples were collected.

Titanium Wet Air Pollution Control Blowdown. As discussed in Section III, wet air pollution control devices are needed to accompany some operations in order to meet air quality standards. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-188.

Table V-189 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Two samples of surface treatment wet air pollution control blowdown were collected from two streams at two plants. Elevated concentrations of chromium, nickel, titanium and TSS (40 mg/l) were detected in the samples.

Titanium Operations Which Do Not Use Process Water. The Agency has not established a discharge allowance for operations which do not generate process wastewater. The following operations generate no process wastewater, because they use only noncontact cooling water or because they use no water at all:

Casting
Shot Blasting
Grit Blasting
Machining
Torching
Deoxidizing
Straightening
Trimming
Piercing
Shearing.

Uranium Forming Subcategory

<u>Uranium Extrusion Spent Lubricants</u>. As discussed in Section III, the extrusion process requires the use of a lubricant to prevent adhesion of the metal to the die and ingot container walls. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-190.

Since none of the plants surveyed reported wastewater discharge values for extrusion spent lubricants, no samples were collected.

<u>Uranium</u> <u>Extrusion</u> <u>Tool</u> <u>Contact</u> <u>Cooling</u> <u>Water</u>. As discussed in Section III, following an extrusion, the dummy block drops from the press and is cooled before being used again. Water is sometimes used to quench the extrusion tools. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-191.

At proposal, the Agency assumed that this stream would have wastewater characteristics similar to forging contact cooling water in the nickel-cobalt subcategory. These two waste streams are generated by using water, without added process chemicals, to cool metal forming equipment. The only difference between the wastewater characteristics of the two streams should be the metals present. The mass loading (mg/kkg) of uranium in uranium extrusion tool contact cooling water should be similar to the mass loading of nickel in nickel forging contact cooling water, and vice versa. However, there should be no significant mass loading of chromium in uranium extrusion tool contact cooling water because uranium is not commonly alloyed with chromium. The other pollutants in each waste stream, and the mass loading at which they are present, should be similar. After proposal, these assumptions were confirmed by plant self-sampling data.

<u>Uranium</u> <u>Forging Spent Lubricants</u>. As discussed in Section III, proper lubrication of the dies is essential in forging nonferrous metals. A colloidal graphite lubricant is commonly sprayed onto the dies for this purpose. Water use, wastewater discharge, and

current recycle practices corresponding to this waste stream are summarized in Table V-192.

Since none of the plants surveyed reported wastewater discharge values for forging spent lubricants, no samples were collected.

Uranium Heat Treatment Contact Cooling Water. As discussed in Section III, heat treatment is used by plants in the nonferrous metals forming category to give the metal the desired mechanical properties. After heat treatment, the metals must be cooled at a controlled rate. Contact cooling water may be used for this purpose. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-193.

Table V-194 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Three samples of heat treatment contact cooling water were collected from three streams at one plant. Elevated concentrations of lead $(14.0 \, \text{mg/l})$, nickel $(2.3 \, \text{mg/l})$, uranium $(51.5 \, \text{mg/l})$, oil and grease $(84 \, \text{mg/l})$, and TSS $(100 \, \text{mg/l})$ were detected in the samples.

<u>Uranium</u> <u>Surface</u> <u>Treatment</u> <u>Spent</u> <u>Baths</u>. As discussed in Section III, a number of chemical treatments may be applied after forming uranium products. The surface treatment baths must be periodically discharged after their properties are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-195.

Table V-196 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. One sample of surface treatment spent bath was collected at one plant. Elevated concentrations of copper (16.0 mg/l), lead (860.0 mg/l), and aluminum (430.0 mg/l) were detected in the sample. This sample was not analyzed for uranium but plant personnel reported that its concentration was about 280 g/l.

<u>Uranium</u> <u>Surface Treatment Rinse</u>. As discussed in Section III, rinsing generally follows the surface treatment process to prevent the solution from affecting the surface of the metal beyond the desired amount. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-197.

Table V-198 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Three samples of surface treatment rinse were collected from two streams at one plant. Elevated concentrations of copper (12.0 mg/l), lead (110.0 mg/l), nickel (3.4 mg/l), uranium (2,700 mg/l), and TSS (430 mg/l) were detected in the samples.

<u>Uranium</u> <u>Sawing or Grinding Spent Emulsions</u>. As discussed in Section III, sawing or grinding operations generally require a lubricant in order to minimize friction and act as a coolant.

The emulsions are typically recirculated, with in-line filtration to remove swarf, and periodically batch discharged as the lubricating properties are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-199.

Table V-200 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. One sample of sawing or grinding spent emulsions was collected at one plant. Elevated concentrations of phenanthrene (32.607 mg/l), lead (7.3 mg/l), zinc (7.5 mg/l), uranium (37.5 mg/l), oil and grease (7,500 mg/l), and TSS (510 mg/l) were detected in the sample.

<u>Uranium Sawing or Grinding Contact Cooling Water</u>. As discussed in Section III, a substance which functions as a lubricant and coolant is frequently needed during sawing and grinding. Water is one type of substance which may be used. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-201.

No samples of sawing or grinding contact cooling water were collected during the sampling program. However, to estimate pollutant loads for this stream, the Agency assumed that this stream would have wastewater characteristics similar to sawing or grinding contact cooling water in the refractory metals The only difference between the wastewater characsubcategory. teristics of the two streams should be the metals present. mass loading (mg/kkg) of uranium in uranium sawing or grinding contact cooling water should be similar to the mass loading of refractory metals in refractory metals sawing or grinding contact cooling water, and vice versa. The other pollutants in each waste stream, and the mass loading at which they are present, should be similar.

<u>Uranium Sawing or Grinding Rinse</u>. As discussed in Section III, following the sawing or grinding operations, the lubricant and sawing and grinding fines occasionally need to be rinsed off the formed metal. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-202.

No samples of sawing or grinding rinse were collected during the sampling program. However, to estimate pollutant loads for this stream, the Agency assumed that this stream would have wastewater characteristics similar to sawing or grinding contact cooling water in the refractory metals subcategory. These waste streams are both derived from sawing or grinding operations, so the only difference between the wastewater characteristics of the two streams should be the metals present. The mass loading (mg/kkg) of uranium in uranium sawing or grinding rinse should be similar to the mass loading of refractory metals in refractory metals sawing or grinding contact cooling water, and vice versa. The other pollutants in each waste stream, and the mass loading at which they are present, should be similar.

<u>Uranium Area Cleaning Washwater</u>. As discussed in Section III, <u>OSHA</u> requirements dictate area cleaning or floor washing at uranium forming facilities. Area cleaning helps to minimize airborne uranium particles and hence helps control radiation exposure. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-203.

Table V-204 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Three samples of area cleaning wastewater were collected from three streams at one plant. Elevated concentrations of p-chloro-m-cresol (15.031 mg/l), bis(2-ethylhexyl) phthalate (4.879 mg/l), lead (4.1 mg/l), copper (2.3 mg/l), zinc (11.0 mg/l), uranium (130 mg/l), oil and grease (6,000 mg/l), and TSS (1,600 mg/l) were detected in the samples.

Uranium Degreasing Spent Solvents. As described in Section III, solvent cleaners are used to remove lubricants (oils and greases) applied to the surface of nonferrous metals during mechanical forming operations. Basic solvent cleaning methods include straight vapor degreasing, immersion-vapor degreasing, spray-vapor degreasing, ultrasonic vapor degreasing, emulsified solvent degreasing, and cold cleaning.

Solvents most commonly used for all types of vapor degreasing are trichloroethylene, 1,1,1-trichloroethane, methylene chloride, perchloroethylene, and various chlorofluorocarbons. Solvent selection depends on the required process temperature (solvent boiling point), product dimension, and metal characteristics. Contaminated vapor degreasing solvents are frequently recovered by distillation.

Since none of the plants surveyed reported discharging spent degreasing solvents, no samples were collected.

Uranium Wet Air Pollution Control Blowdown. As discussed in Section III, wet air pollution control devices are needed to control air emissions from some operations in order to meet air quality standards. Scrubbers are frequently needed to control acid fumes from surface treatment operations. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-205.

Table V-206 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. One sample of surface treatment wet air pollution control blowdown was collected at one plant. Elevated concentrations of zinc (1.1 mg/l), uranium (1,000 mg/l), and TSS (650 mg/l) were detected in the sample.

<u>Uranium</u> <u>Drum</u> <u>Washwater</u>. As discussed in Section III, solid waste from uranium forming operations is stored in drums and shipped to a low-level radioactive waste landfill. The drums are required

to be free from external radioactive contamination prior to shipment. Drums are washed with soapy water which may be recycled using in-line filtration prior to discharge. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-207.

Table V-208 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. One sample of drum wash water was collected at one plant. Elevated concentrations of uranium (5.7 mg/l), magnesium (28.6 mg/l), and TSS (23 mg/l) were detected in the sample.

<u>Uranium</u> <u>Laundry Washwater</u>. As discussed in Section III, OSHA requirements dictate employees' clothing must remain on-site. Therefore, laundry service is provided by the plant. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-209.

Table V-210 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. One sample of laundry wash water was collected at one plant. Elevated concentrations of oil and grease (42 mg/l) and TSS (11 mg/l) were detected in the sample.

<u>Uranium</u> <u>Operations</u> <u>Which Do Not</u> <u>Use Process</u> <u>Water</u>. The Agency has not established a discharge allowance for operations which do not generate process wastewater. The following operations generate no process wastewater, because they use only noncontact cooling water or because they use no water at all:

Stationary Casting
Direct Chill Casting
Salt Solution Heat Treatment.

Zinc Forming Subcategory

Zinc Rolling Spent Neat Oils. As described in Section III, mineral oil or kerosene-based lubricants can be used in the rolling of zinc products. The oils are usually recycled with inline filtration and periodically disposed of by sale to an oil reclaimer or by incineration. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-211.

Since none of the plants surveyed reported discharging the rolling spent neat oils, no samples were collected.

Zinc Rolling Spent Emulsions. As discussed in Section III, oilwater emulsions are used in rolling operations as coolants and lubricants. Rolling emulsions are typically recycled using inline filtration treatment, with periodic batch discharge of the recycled emulsion. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-212.

No samples of rolling spent emulsions were collected during the sampling program. However, to estimate pollutant loads for this stream, the Agency assumed that this stream would have wastewater characteristics similar to rolling spent emulsions in the lead-tin-bismuth subcategory. These two waste streams are generated by identical physical processes which use similar process chemicals. The only difference should be the identity of metals present. The mass loading (mg/kkg) of zinc in zinc rolling spent emulsions should be similar to the mass loading of lead in lead rolling spent emulsions, and vice versa. The other pollutants present in each waste stream, and the mass loading at which they are present, should be similar.

Zinc Rolling Contact Cooling Water. As discussed in Section III, it is necessary to use a lubricant-coolant during rolling to prevent excessive wear on the rolls, to prevent adhesion of metal to the rolls, and to maintain a suitable and uniform rolling temperature. Water is one type of lubricant-coolant which may be used. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-213.

At proposal, the Agency assumed that this stream would have wastewater characteristics similar to shot casting contact cooling water in the lead-tin-bismuth subcategory. These two waste streams are generated by using water, without additives, to cool hot metal. The only difference between the wastewater characteristics of the two streams should be the metals present. The mass loading (mg/kkg) of zinc in zinc rolling contact cooling water should be similar to the mass loading of lead in lead shot casting contact cooling water, and vice versa. The other pollutants present in each waste stream, and the mass loading at which they are present, should be similar. After proposal, these assumptions were confirmed by plant self-sampling data.

Zinc Drawing Spent Emulsions. As discussed in Section III, oilwater emulsions are used for many drawing applications in order to ensure uniform drawing temperatures and avoid excessive wear on the dies and mandrels used. The drawing emulsions are frequently recycled and batch discharged periodically after their lubricating properties are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-214.

No samples of drawing spent emulsions were collected during the sampling program. However, to estimate pollutant loads for this stream, the Agency assumed that this stream would have wastewater characteristics similar to rolling spent emulsions in the lead-tin-bismuth subcategory. These waste streams are generated from operations using similar process chemicals (oil-in-water emulsions) for similar purposes (lubrication). The only difference should be the metals present. The mass loading (mg/kkg) of zinc in zinc drawing spent emulsions should be similar to the mass loading of lead in lead rolling spent emulsions, and vice versa. The other pollutants present in each

waste stream, and the mass loading at which they are present, should be similar.

Zinc Direct Chill Casting Contact Cooling Water. As discussed in Section III, contact cooling water is a necessary part of direct chill casting. The cooling water may be contaminated by lubricants applied to the mold before and during the casting process. The cooling water may be recycled. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-215.

At proposal, the Agency assumed that this stream would have wastewater characteristics similar to semi-continuous ingot casting contact cooling water in the lead-tin-bismuth subcategory. After proposal, these assumptions were confirmed by plant self-sampling data. These two waste streams are generated by using water, without additives, to cool cast metal. Since lubricants may be applied to the casting molds in both processes, both streams may be contaminated by these lubricants. The only difference between the waste streams should be the metals present. The mass loading (mg/kkg) of zinc in zinc direct chill casting contact cooling water should be similar to the mass loading of lead in lead semi-continuous ingot casting contact cooling water, and vice versa. The other pollutants present in each waste stream, and the mass loading at which they are present, should be similar.

Zinc Stationary Casting Contact Cooling Water. As discussed in Section III, lubricants and cooling water are usually not required in stationary casting. Since molten metal is poured into the molds, if contact cooling water is used, it is frequently lost due to evaporation. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-216.

Since none of the plants surveyed reported discharging the stationary casting contact cooling water, no samples were collected.

Zinc Heat Treatment Contact Cooling Water. As discussed in Section III, contact cooling water may be used for controlled-rate cooling of heat-treated metals. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-217.

At proposal, the Agency assumed that this stream would have wastewater characteristics similar to continuous strip casting contact cooling water in the lead-tin-bismuth subcategory. After proposal, this assumption was confirmed by plant self-sampling data.

Zinc Surface Treatment Spent Baths. As discussed in Section III, a number of chemical treatments may be applied after the forming of zinc products. The surface treatment baths must be periodically discharged after their properties are exhausted. Water

use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-218.

At proposal, the Agency assumed that this stream would have wastewater characteristics similar to surface treatment spent baths in the magnesium subcategory. After proposal, this assumption was confirmed by plant self-sampling data.

Zinc Surface Treatment Rinse. As discussed in Section III, rinsing follows the surface treatment process to prevent the solution from affecting the surface of the metal beyond the desired amount. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-219.

Table V-220 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. One sample of surface treatment rinse was collected at one plant. Elevated concentrations of zinc (42.3 mg/l), chromium (0.160 mg/l), nickel (8.10 mg/l), and TSS (20 mg/l) were detected in the sample.

Zinc Alkaline Cleaning Spent Baths. As discussed in Section III, alkaline cleaners are formulations of alkaline salts, water, and surfactants. Spent solutions are discharged from alkaline cleaning processes after their properties are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-221.

At proposal, the Agency assumed that this stream would have wastewater characteristics similar to alkaline cleaning rinsewater in this subcategory. After proposal, this assumption was confirmed by plant self-sampling data.

Zinc Alkaline Cleaning Rinse. As discussed in Section III, following alkaline treating, metal parts are rinsed. Rinses are discharged from alkaline cleaning processes. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-222.

Table V-223 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. One sample of alkaline cleaning rinse was collected at one plant. Elevated concentrations of zinc (1.12 mg/l), cyanide (1.3 mg/l), oil and grease (23 mg/l), and TSS (90 mg/l) were detected in the sample.

Zinc Sawing or Grinding Spent Emulsions. As discussed in Section III, sawing or grinding operations generally require a lubricant in order to minimize friction and act as a coolant. Oil-water emulsions are frequently used as lubricants. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-224.

At proposal, the Agency assumed that this stream would have

wastewater characteristics similar to sawing or grinding spent emulsions in the nickel-cobalt subcategory. These two waste streams are generated by identical physical processes which use similar process chemicals. The only difference should be the metals present. The mass loading (mg/kkg) of zinc in zinc sawing or grinding spent emulsions should be similar to the mass loading of nickel in nickel sawing or grinding spent emulsions, and vice versa. The mass loading of chromium in zinc sawing or grinding spent emulsions should be insignificant, since chromium is often alloyed with nickel but not with zinc. The other pollutants present in each waste stream, and the mass loading at which they are present, should be similar. After proposal, these assumptions were confirmed by plant self-sampling data.

Zinc Degreasing Spent Solvents. As described in Section III, solvent cleaners are used to remove lubricants (oils and greases) applied to the surface of nonferrous metals during mechanical forming operations. Basic solvent cleaning methods include straight vapor degreasing, immersion-vapor degreasing, spray-vapor degreasing, ultrasonic vapor degreasing, emulsified solvent degreasing, and cold cleaning.

Solvents most commonly used for all types of vapor degreasing are trichloroethylene, l,l,l-trichloroethane, methylene chloride, perchloroethylene, and various chlorofluorocarbons. Solvent selection depends on the required process temperature (solvent boiling point), product dimension, and metal characteristics. Contaminated vapor degreasing solvents are frequently recovered by distillation.

Since none of the plants surveyed reported discharging spent degreasing solvents, no samples were collected.

 $\overline{\text{Zinc}}$ Electrocoating Rinse. As discussed in Section III, products are usually rinsed following electrocoating before they are subsequently formed. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-225.

No samples of electrocoating rinse were collected during the sampling program. However, the characteristics of the rinse are expected to include the pollutants present in the electrocoating bath solution. Electrocoating of copper onto zinc generates wastewater with significant concentrations of copper and cyanide.

Zinc Operations Which Do Not Use Process Water. The Agency has not established a discharge allowance for operations which do not generate process wastewater. The following operations generate no process wastewater, either because they are dry operations or because they use only noncontact cooling water:

Continuous Casting Melting Slitting

Stamping
Sawing
Homogenizing
Printing
Coating
Drying
Metal Powder Production.

Zirconium-Hafnium Forming Subcategory

Zirconium-Hafnium Rolling Spent Neat Oils. As discussed in Section III, mineral oil or kerosene-based lubricants can be used in the rolling of zirconium-hafnium products. The oils are usually recycled with in-line filtration and periodically disposed of by sale to an oil reclaimer or by incineration. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-226.

Since none of the plants surveyed reported discharging the rolling spent neat oils, no samples were collected.

Zirconium-Hafnium Drawing Spent Lubricants. As discussed in Section III, a suitable lubricant is required to ensure uniform drawing temperatures and avoid excessive wear on the dies and mandrels used. A wide variety of lubricants can be used. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-227.

Since none of the plants surveyed reported discharging the drawing spent lubricants, no samples were collected.

Zirconium-Hafnium Extrusion Spent Lubricants. As discussed in Section III, the extrusion process requires the use of a lubricant to prevent adhesion of the metal to the die and ingot container walls. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-228.

Since none of the plants surveyed reported discharging the extrusion spent lubricants, no samples were collected.

Zirconium-Hafnium Extrusion Press Hydraulic Fluid Leakage. As discussed in Section III, due to the large force applied by a hydraulic press, some hydraulic fluid leakage is unavoidable. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-229.

Table V-230 summarizes the analytical data for priority metal pollutants and selected conventional and nonconventional pollutants. One sample of extrusion press hydraulic fluid leakage was collected at one plant. No pollutants were found in this sample at treatable concentrations.

Zirconium-Hafnium Swaging Spent Neat Oils. As discussed in Section III, mineral oil can be used in the swaging of zirconium-

hafnium products. The oils are usually recycled with in-line filtration and periodically disposed of by sale to an oil reclaimer or by incineration. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-231.

Since none of the plants surveyed reported discharging the swaging spent neat oils, no samples were collected.

Zirconium-Hafnium Tube Reducing Spent Lubricants. As discussed in Section III, tube reducing, much like rolling, may require a lubricating compound in order to prevent excessive wear of the tube reducing equipment, prevent adhesion of metal to the tube reducing equipment, and maintain a suitable and uniform tube reducing temperature. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-232.

Zirconium-Hafnium Heat Treatment Contact Cooling Water. As discussed in Section III, heat treatment is used by plants in the nonferrous metals forming category to give the metal the desired mechanical properties. After heat treatment, the metals must be cooled at a controlled rate. Contact cooling water may be used for this purpose. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-233.

Table V-234 summarizes the analytical data for priority metal pollutants and selected conventional and nonconventional pollutants. Five samples of heat treatment contact cooling water were collected from three plants. Elevated concentrations of aluminum (3.0 mg/l), iron (12 mg/l), magnesium (30 mg/l) and molybdenum (370 mg/l) were detected in this sample.

Zirconium-Hafnium Surface Treatment Spent Baths. As discussed in Section III, a number of chemical treatments may be applied after the forming of zirconium-hafnium products including pickling and coating. The surface treatment baths must be periodically discharged after their properties are exhausted. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-235.

Table V-236 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Three samples of surface treatment spent baths were collected from three streams at two plants. Elevated concentrations of antimony (6 mg/l), zinc (7.5 mg/l), chromium (24 mg/l), nickel (3.6 mg/l), zirconium (3,100 mg/l), and oil and grease (83.9 mg/l) were detected in the samples.

Zirconium-Hafnium Surface Treatment Rinse. As discussed in Section III, rinsing follows the surface treatment process to prevent the solution from affecting the surface of the metal beyond the desired amount. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are

summarized in Table V-237.

Zirconium-Hafnium Alkaline Cleaning Spent Baths. As discussed in Section III, alkaline cleaners are formulations of alkaline salts, water, and surfactants. Spent solutions are discharged from alkaline cleaning processes. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-238.

Zirconium-Hafnium Alkaline Cleaning Rinse. As discussed in Section III, following alkaline cleaning, metal parts are rinsed. Rinses are discharged from alkaline cleaning processes. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-239.

Zirconium-Hafnium Molten Salt Rinse. As discussed in Section III, when molten salt baths are used to descale zirconium-hafnium alloys, they are generally followed by a water quench and rinse step. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-240.

samples of molten salt rinse were collected during the However, to estimate pollutant loads for this sampling program. stream, the Agency assumed that this stream would have wastewater characteristics similar to molten salt rinse in the nickel-cobalt These two waste streams are generated from using water to remove salt solutions from descaled metal. difference between the wastewater characteristics of the two streams should be the metals present. The mass loading (mg/kkg) zirconium-hafnium in zirconium-hafnium molten salt rinse should be similar to the mass loading of nickel in nickel molten salt rinse, and vice versa. However, the mass loading chromium should be insignificant because zirconium-hafnium is seldom alloyed with chromium. The other pollutants in each waste stream, and the mass loading at which they are present, should be similar.

Zirconium-Hafnium Sawing or Grinding Spent Neat Oils. As discussed in Section III, sawing or grinding operations may use mineral-based oils or heavy grease as the lubricant required to minimize friction and act as a coolant. Normally, cutting oils are not discharged as a wastewater stream. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-241.

Since none of the plants surveyed reported discharging the sawing spent neat oils, no samples were collected.

Zirconium-Hafnium Sawing or Grinding Spent Emulsions. As discussed in Section III, sawing or grinding operations generally require a lubricant in order to minimize friction and act as a coolant. Oil-water emulsions are often used as lubricants. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-242.

Zirconium-Hafnium Sawing or Grinding Contact Cooling Water. As discussed in Section III, a lubricant is frequently needed during sawing or grinding. Water, without additives, is one type of lubricant which may be used. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-243.

No samples of sawing or grinding contact cooling water were collected during the sampling program. However, to estimate pollutant loads for this stream, the Agency assumed that this stream would have wastewater characteristics similar to sawing or grinding spent emulsions in this subcategory. These two waste streams are generated from using a lubricant to saw or grind zirconium-hafnium. Therefore, the pollutants present and the mass loadings of pollutants present in these two waste streams are expected to be similar.

Zirconium-Hafnium Sawing or Grinding Rinse. As discussed in Section III, following the sawing and grinding operations, the lubricant and fines from sawing and grinding may need to be rinsed off the formed metal. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-244.

Zirconium-Hafnium Inspection and Testing Wastewater. As discussed in Section III, testing operations are used to check zirconium-hafnium parts for surface defects or subsurface imperfections as well as overall product integrity. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-245.

Table V-246 summarizes the analytical data for priority metal pollutants and selected conventional and nonconventional pollutants. Four samples of inspection and testing wastewater were collected at three plants. No pollutants were found in this sample at treatable concentrations.

Zirconium-Hafnium Degreasing Spent Solvents. As discussed in Section III, immersion-vapor degreasing is used to clean metal parts coated with large quantities of oil, grease, or hard-to-remove soil. Solvents used may be the same as those used in straight vapor degreasing. Solutions of organic solvent in water are also used for degreasing. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-247.

Zirconium-Hafnium Degreasing Rinse. As discussed in Section III, it is sometimes necessary to rinse degreased parts with water to meet certain product specifications. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-248.

Zirconium-Hafnium Wet Air Pollution Control Blowdown. As discussed in Section III, wet air pollution control devices are

needed to accompany some operations in order to meet air quality standards. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-249.

samples of wet air pollution control blowdown were collected during the sampling program. However, to estimate pollutant loads for this stream, the Agency assumed that this stream would have wastewater characteristics similar to wet air pollution control blowdown in the titanium subcategory. The two waste streams derive from air pollution control devices used to collect concentrate airborne particulates. The only difference between the wastewater characteristics of the two streams should The mass loading (mg/kkg) of be the metals present. zirconiumhafnium in zirconium-hafnium wet air pollution control blowdown should be similar to the mass loading of titanium in titanium wet air pollution control blowdown, and vice versa. pollutants in each waste stream, and the mass loading at they are present, should be similar.

Zirconium-Hafnium Operations Which Do Not Use Process Water. The Agency has not established a discharge allowance for operations which do not generate process wastewater. The following operations generate no process wastewater, because they use only noncontact cooling water or because they use no water at all:

Rolling
Casting
Annealing
Shot Blasting
Grit Blasting
Bead Blasting
Polishing
Straightening
Cutting, Trimming
Deburring, Sanding.

Metal Powders Subcategory

Metal Powder Production Atomization Wastewater. As discussed in Section III, wet atomization is a method of producing metal powder in which a stream of water impinges upon a molten metal stream, breaking it into droplets which solidify as powder particles. Water atomization is used to produce irregularly shaped particles required for powder metallurgy applications in which a powder is cold pressed into a compact. Because cooling times play an important role in determining particle configuration, the atomized metal droplets are sometimes rapidly cooled by falling into a water bath. Atomization and quench water are separated from the metal powder by gravity settling or filtration and discharged. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-250.

Table V-251 summarizes the analytical sampling data for priority

and selected conventional and nonconventional pollutants. Nine samples of metal powder production wet atomization wastewater were collected at five plants. Elevated concentrations of chromium (15.0 mg/l), copper (295.0 mg/l), nickel (81.0 mg/l), aluminum (5.3 mg/l), iron (13.3 mg/l) and TSS (2,127 mg/l) were detected in the samples.

Metal Powders Tumbling, Burnishing, or Cleaning Wastewater. As alscussed in Section III, tumbling is an operation in which sintered parts pressed from metal powder are rotated in a barrel with ceramic or metal slugs or abrasives to remove scale, fins, or burrs. It may be done dry or with an aqueous solution. Burnishing is a surface finishing process in which minute surface irregularities are displaced rather than removed. It also can be done dry or in an aqueous solution. Pressed parts can be cleaned in hot soapy water to remove excess oil from oil quenching operations. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-252.

Table V-253 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Nine samples of tumbling, burnishing, and cleaning wastewater were collected from three streams at one plant. Elevated concentrations of copper (253 mg/l), lead (45.1 mg/l), zinc (9.56 mg/l), iron (211 mg/l), oil and grease (2,100 mg/l), and TSS (3,000 mg/l) were detected in the samples.

Metal Powders Sawing or Grinding Spent Neat Oils. As discussed in Section III, sawing or grinding operations may use mineral-based oils or heavy grease as the lubricant required to minimize friction and act as a coolant. Normally, saw oils are not discharged as a wastewater stream. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-254.

Since none of the plants surveyed reported discharging the sawing spent neat oils, no samples were collected.

Metal Powders Sawing or Grinding Spent Emulsions. As discussed in Section III, sawing or grinding operations generally require a lubricant in order to minimize friction and act as a coolant. Oil-in-water emulsions are commonly used as lubricants. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-255.

Table V-256 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Two samples of sawing or grinding emulsions were collected from two streams at one plant. Elevated concentrations of iron (176 mg/l), copper (1.55 mg/l), aluminum (7.00 mg/l), zinc (3.26 mg/l), boron (166 mg/l), cyanide (2.5 mg/l), oil and grease (720 mg/l), and TSS (120 mg/l) were detected in the samples.

Metal Powders Sawing or Grinding Contact Cooling Water. As

discussed in Section III, a lubricant is frequently needed during sawing and grinding. Water, without additives, is one type of lubricant which may be used. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-257.

Table V-258 summarizes the analytical data for priority metal pollutants and selected conventional and nonconventional pollutants. One sample of sawing or grinding contact cooling water was collected at one plant. Elevated concentrations of copper (230 mg/l), aluminum (40 mg/l) and magnesium (11 mg/l) were detected in this sample.

Metal Powders Sizing Spent Neat Oils. As discussed in Section III, sizing operations may use mineral-based oils or heavy grease as the lubricant required to minimize friction and act as a coolant. Normally, sizing oils are not discharged as a wastewater stream. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-259.

Since none of the plants surveyed reported discharging the sizing spent neat oils, no samples were collected.

Metal Powders Sizing Spent Emulsions. As discussed in Section III, sizing operations generally require a lubricant in order to minimize friction and act as a coolant. Oil-in-water emulsions are commonly used as lubricants. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-260.

Since none of the plants surveyed reported discharging the sizing spent emulsions, no samples were collected.

Metal Powders Steam Treatment Wet Air Pollution Control Blowdown. As discussed in Section III, steam treatment operations may require the use of wet air pollution control devices in order to meet air quality standards. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-261.

Table V-262 summarizes the analytical sampling data for priority and selected conventional and nonconventional pollutants. Three samples of steam treatment wet air pollution control blowdown were collected from one stream at one plant. Elevated concentrations of oil and grease (42 mg/l) and TSS (200 mg/l) were detected in the samples.

Metal Powders Oil-Resin Impregnation Spent Neat Oils. As discussed in Section III, porous parts pressed from metal powders may be impregnated with oils or resins. Normally, the oils or resins are not discharged as a wastewater stream. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-263.

Since none of the plants surveyed reported discharging the oils or resins, no samples were collected.

Metal Powders Degreasing Spent Solvents. As described in Section III, solvent cleaners are used to remove lubricants (oils and greases) applied to the surface of nonferrous metals during mechanical forming operations. Basic solvent cleaning methods include straight vapor degreasing, immersion-vapor degreasing, spray-vapor degreasing, ultrasonic vapor degreasing, emulsified solvent degreasing, and cold cleaning.

Solvents most commonly used for all types of vapor degreasing are trichloroethylene, l,l,l-trichloroethane, methylene chloride, perchloroethylene, and various chlorofluorocarbons. Solvent selection depends on the required process temperature (solvent boiling point), product dimension, and metal characteristics. Contaminated vapor degreasing solvents are frequently recovered by distillation.

Since none of the plants surveyed reported discharging spent degreasing solvents, no samples were collected.

Metal Powders Hot Pressing Contact Cooling Water. As discussed in Section III, contact cooling water may be used to cool hot pressed parts in order to facilitate handling. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-264.

Table V-265 summarizes the analytical data for priority metal pollutants and selected conventional and nonconventional pollutants. One sample of hot pressing contact cooling water was collected from one plant. Elevated concentrations of copper (2.2 mg/l), iron (6.3 mg/l), and magnesium (3.5 mg/l) were detected in this sample.

Metal Powders Mixing Wet Air Pollution Control Blowdown. As discussed in Section III, during the mixing of metal powders, particulates may become airborne. The use of wet air pollution control may be necessary in order to meet particulate air quality standards. Water use, wastewater discharge, and current recycle practices corresponding to this waste stream are summarized in Table V-266.

Table V-267 summarizes the analytical data for priority metal pollutants and selected conventional and nonconventional pollutants. One sample of mixing wet air pollution control blowdown was collected from one plant. Elevated concentrations of copper (1.2 mg/l) and magnesium (4.5 mg/l) were detected in this sample.

Metal Powders Operations Which Do Not Use Process Water. The Agency has not established a discharge allowance for operations which do not generate process wastewater. The following operations generate no process wastewater, because they use only noncontact cooling water or because they use no water at all:

Powder Metallurgy Operations (Compacting, Sintering)
Sanding
Rolling
Machining
Screening
Blending
Briquetting
Crushing, Pulverizing.

Treated Wastewater Samples. Tables V-268 through V-282 present the field sampling data for the treated wastewater from 18 of the 25 sampling episodes. Treated wastewater data for some of these plants were incorpo- rated into the larger data base which was used to determine the treatment effectiveness for different control systems. The treatability limits selected for the nonferrous metals forming control options are presented in Section VII (Control and Treatment Technology, Table VII-21 and VII-22, pp. 1474 and 1475).

Table V-1
NUMBER OF SAMPLES PER WASTE STREAM, BY SUBCATEGORY

Waste Stream	, I	1 11	111	liv	l v	l vi	vii viii	x	x xɪ}
Rolling Spent Neat Oils			*	*		*	*	*	0
Rolling Spent Neat Oils and Graphite-Based Lubricants					*				o
Rolling Spent Emulsions	1	*	4	3	*		*		8
Rolling Contact Cooling Water			8			1	2		11
Rolling Spent Soap Solutions	*								D
Drawing Spent Neat Oils	*		*	*		*			0
Drawing Spent Emulsions	*		1	• 1			*		2
Drawing Spent Lubricants					*			*	0
Drawing Spent Soap Solutions	1			1					2
Extrusion Spent Neat Oils						*			D
Extrusion Spent Emulsions						*			0
Extrusion Spent Lubricants			*		*		*	*	0
Extrusions Press and Solution Heat Treatment Contact Cooling Water	1		1						2
Extrusion Press Hydraulic Fluid Leakage	1		3		1	1		1	7
Extrusion Tool Contact Cooling Water							1		1
Swaging Spent Neat Oils								*	٥
Swaging Spent Emulsions	1								1
Forging Spent Lubricants		*	*		*	*	*		0

 $\label{table V-1} Table \ V-1 \ (Continued)$ $\mbox{NUMBER OF SAMPLES PER WASTE STREAM, BY SUBCATEGORY}$

	1										
, Waste Stream) I)	II j	1111	IV)	V I	VI V	II VIII	IX) X]	XI	
Forging Contact Cooling Water		* *	2		1	1		•		4	
Forging Equipment Cleaning Wastewater		*	2			1				2	
Forging Press Hydraulic Fluid Leakage			1			1				2	
Tube Reducing Spent Lubricants			1			3		. 2		6	
Metal Powder Production Wet Atomization Wastewater			7	*	3				9	19	
Metal Powder Production Wastewater			e		*				,	0	
Metal Powder Production Wet Air Pollution Control Blowdown		•							*	0	
Metal Powder Production Floor Wash Wastewater		:	-		*				•	0	
Continuous Strip Casting Contact Cooling Water	1									1	
Semi-Continuous Ingot Casting Contact Cooling Water	2									2 .	
Direct Chill Casting Contact Cooling Water		* .		1			1			2 .	
Shot Casting Contact Cooling Water	3			2						5	
Stationary Casting Contact Cooling Water	•		1	*			*			1	
Semi-Continuous and Continuous Casting Contact Cooling Water			:	2				•	:	2	
Vacuum Melting Steam Condensate			1	-		*		-		1	
Annealing and Solution Heat Treatment Contact Cooling			2			•	- *			2	
Heat Treatment Contact Cooling Water				3		5.	3		5	16	
Surface Treatment Spent Baths		3	4	2	1	3	1 1		3	18	
Surface Treatment Rinsewater		. 12	25	7	5	9	3 1		3	61	
Ammonia Rinsewater			1							1 .	

Table V-1 (Continued)
NUMBER OF SAMPLES PER WASTE STREAM, BY SUBCATEGORY

Waste Stream		III	IV	V	VI	VII	VIII	IX	x	XI
Alkaline Cleaning Spent Baths	1	4	2	1	5		2	3		18
Alkaline Cleaning Rinsewater	4	5	*	*	4		1	1		15
Alkaline Cleaning Prebonding Wastewater			8			in.				8
Molten Salt Rinsewater		8		6	1			*		14
Tumbling Wastewater					1					1
Tumbling, Burnishing Wastewater			4	6	•					10.
Tumbling, Burnishing, and Cleaning Wastewater									9	9
Sawing, Grinding Spent Neat Oils			*	*	*			*	*	0
Sawing, Grinding Spent Emulsions	* 12	1	6		1	1		1	2	22
Sawing, Grinding Spent Emulsions and Synthetic Coolants					3					3
Sawing, Grinding Contact Cooling Water			2	1	*			*	1	4
Sawing, Grinding Rinsewater		*		2		*		1		3
Hydrostatic Tube Testing and Ultrasonic Testing Wastewater		*					•			. 0
Dye Penetrant Testing Wastewater		3		1	1					5
Inspection, Testing Wastewater								4		4
Equipment Cleaning Wastewater				3						3
Shot-Forming Wet Air Pollution Control Blowdown	1									1
Steam Cleaning Condensate		1								1
Area Cleaning Wastewater						3				3

Table V-1 (Continued) NUMBER OF SAMPLES PER WASTE STREAM, BY SUBCATEGORY

	Waste Stream	1 1	II	1111	IV	V) VI	i vii	VII	xI IX	x	XI	
-	Pressure Bonding Contact Cooling Water				<u> </u>						/-	1	
	Sizing Spent Neat Oils										*	0	
	Sizing Spent Emulsions										*	. 0	
	Steam Treatment Wet Air Pollution Control Blowdown										3	3	
	Oil-Resin Impregnation Spent Neat Oils										*	0	
	Miscellaneous Wastewater Sources		:			*	- +					0	
	Degreasing Spent Solvents	*	*	*	*	*	*	*	*	1	*	1	
	Wet Air Pollution Control Blowdown		ť	3.	*	2	2	1		*		8	
	Degreasing Rinsewater								. 1	4		5	
	Drum Wash Water					-		, 1,				1.	
	Laundry Wash Water							1				1	
	Hot Pressing Contact Cooling Water										1	1	
	Mixing Wet Air Pollution Control Blowdown						-			÷	1	1	

^{*}This waste stream was reported in dcp responses for plants in this subcategory, but no raw wastewater samples were analyzed.

^{**}The number of samples by subcategory does not always add to the total number of samples because some sampled streams derive from operations in more than one subcategory.

The Roman numerials used to identify the columns refer to be following

I = Lead-Tin-Bismuth Forming

II = Magnesium Forming

III = Nickel-Cobalt Forming

IV = Precious Metals Forming

V = Refractory Metals Forming

VI = Titanium Forming

VII = Uranium Forming

VIII = 2inc Forming

IX = Zirconium Hafnium Forming

x = Metal Powders

XI = Total

	Laboratory	Organics		lutants Analyze Conventional	d Nonconventio
	ARO, Inc.; Tullahoma, TN			×	×
	Arthur D. Little; Cambridge, MA	×			
	CENTEC; Salem, VA		х		•
	Coors Spectro-Chemical; Golden, CO		X		
	Edison Laboratory; Edison, NJ			x	X
	-EPA, Region III; Wheeling, WV	• .	X	×	X .
); }	EPA-ESD, Region IV; Athens, GA	e e e e e e e e e e e e e e e e e e e	χ.	X ¹	X
	NUS Corp.; Pittsburgh, PA		х	×	x
	Radian Corp.; Austin, TX		· X	×	×
	Radian Corp.; Sacramento, CA	X		•	
	S-Cubed; San Diego, CA	X		- '	
	Versar, Inc.; Springfield, VA		X	•	
	West Coast Technical Service, Inc.; Cerritos, CA	Χ .		•	

483

NONPRIORITY POLLUTANTS ANALYZED FOR DURING SAMPLING EFFORT SUPPORTING THIS REGULATION

Conventional

total suspended solids (TSS) oil and grease pH

Nonconventional

acidity alkalinity aluminum ammonia nitrogen barium biological oxygen demand (BOD) boron calcium chemical oxygen demand (COD) chloride cobalt columbium fluoride gold iron magnesium manganese molybdenum nitrate phenolics phosphate phosphorus sodium sulfate tantalum tin titanium total dissolved solids (TDS) total organic carbon (TOC) total solids (TS) tungsten uranium vanadium yttrium zirconium

Table V-3 (Continued)

NONPRIORITY POLLUTANTS ANALYZED FOR DURING SAMPLING EFFORT SUPPORTING THIS REGULATION

Nonconventional (Cont.)

radium-226 gross alpha gross beta

Table V-4

RESULTS OF CHEMICAL ANALYSES OF SAMPLED LEAD AND NICKEL EXTRUSION PRESS AND SOLUTION HEAT TREATMENT CONTACT COOLING WATER

Parameter	Lead (mg/l)	Nickel (mg/l)	Treatment Effectiveness LS&F Technology (mg/l)*
Oil and Grease	3	7	10
TSS	3 5	3 .	2.6
Hq	7.6	7.4	·
Antimony	**		0.47
Arsenic			0.34
Beryllium	0.001		0.20
Cadmium	0.005		0.049
Chromium	-		0.07
Copper	0.024	0.05	0.39
Lead	0.13		0.08
Nickel	0.007	0.14	0.22
Silver			0.07
Zinc	400 400	0.07	0.23
Cyanide .	0.08		0.047
Acidity			
Alkalinity	170	55	
Aluminum			1.49
Ammonia	0.08	0.13	32.2
Fluoride	0.22	0.83	9.67
Iron	0.023		0.28
Magnesium			
Sulfate			1
Titanium	0.084	00	
Total Dissolved Solids			

^{*}From Table VII-21.

^{**}Not found above analytical quantification level or level detected in source water.

Table V-5

RESULTS OF CHEMICAL ANALYSES OF SAMPLED
LEAD, NICKEL, AND PRECIOUS METALS ROLLING SPENT EMULSIONS

Oil and Grease 270 3,055 587 10 TSS 480 4,870 242 2.6 pH 7.92 5.96 5.48 Antimony ** 0.003 0.049 0.47 Arsenic 0.013 0.011 0.34 Beryllium 0.02 0.06 0.049 Cadmium 0.02 0.06 0.049 Chromium 3.23 0.03 0.07 Copper 0.25 2.93 8.72 0.39 Lead 29 3.13 0.49 0.08 Nickel 0.003 21.9 0.36 0.22 Silver 0.006 0.07 0.07 Tinc 1.4 0.006 0.07 0.07	Parameter	Lead (mg/1)	Nickel (mg/l)	Precious Metals (mg/l)	Effective- ness LS&F Technology (mg/l)*
Cyanide	TSS pH Antimony Arsenic Beryllium Cadmium Chromium Chromium Copper Lead Nickel Silver Zinc Cyanide Acidity Alkalinity Alkalinity Aluminum Ammonia Fluoride Iron Magnesium Sulfate Total Dissolved Solids Chemical Oxygen Demand	480 7.92 ** 0.25 29 0.003 1.4 310 0.35 0.12 0.82 7.3 59 1,020 15,000	4,870 5.96 0.003 0.013 0.02 3.23 2.93 3.13 21.9 0.006 5.55 280 1.28 2.15 4.55 59.6 370 5,400 52,300	242 5.48 0.049 0.011 0.06 0.03 8.72 0.49 0.36 0.07 2.16 3.3 1,170 0.15 0.16 0.96 9.73 3,140 16,000 367	2.6 0.47 0.34 0.20 0.049 0.07 0.39 0.08 0.22 0.07 0.23 0.047

^{*}From Table VII-21. ...

^{**}Not found above analytical quantification level or level detected in source water.

Table V-6

LEAD-TIN-BISMUTH ROLLING SPENT EMULSIONS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1	1,001	240.0	P	0.37	0.09
2	10,170	2,440	P	27.94	6.70
3	10,170	2,440	P	27.94	6.70
4	10,170	2,440	P	27.94	6.70
5	10,170	2,440	P	27.94	6.70
6	10,170	2,440	P	27.94	6.70
7	NR	NR .	NR	NR	NR
Average	8,642	2,073		23.35	5.60

P - Periodic discharge NR - Data not reported

Table V-7

LEAD-TIN-BISMUTH ROLLING SPENT EMULSIONS
RAW WASTEWATER SAMPLING DATA

	Stream	Sample		entration		
<u>Pollutant</u>	Code	Туре	Source	Day 1	Day 2	Day 3
Toxic Pollutants						
6. carbon tetrachloride	A-3	1	* * * * * * * * * * * * * * * * * * * *	0.006		
11. 1,1,1-trichloroethane	A-3	1		0.007		•
15. 1,1,2,2-tetrachloroethane	A-3	1 -		0.019		
23. chloroform	A-3	1		0.006		
38. ethylbenzene	A-3	1		0.012		
114. antimony	A-3	1	<0.003	<0.003		
115. arsenic	A-3	1	<0.003	<0.003	•	
117. beryllium	A-3	1	<0.005	<0.005		
118. cadmium	A-3	1	<0.002	<0.002		:
119. chromium (total)	- A-3	· · 1· · · ·	<0.001	<0:001		
120. copper	A-3	1	<0.001	0.25		
122. lead	A-3	1	<0.084	29		
123. mercury	A-3	1		<0.0002		
124. nickel	A-3	1	<0.003	0.003		
125. selenium	A-3	- 1		<0.003		
126. silver	A-3	. 1		<0.005		
127. thallium	A-3	1		<0.002		
128. zinc	A-3	1	0.72	1.4		* * " .
Nonconventional Pollutants						
Acidity	A-3	1	,	<1		
Alkalinity	A-3	1		310		

Table V-7 (Continued)

LEAD-TIN-BISMUTH ROLLING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	Concentrations (mg/l) Source Day 1 Day 2 Day 3
Nonconventional Pollutants (Continued)		
Aluminum	A-3	1	<0.050 0.35
Ammonia Nitrogen	A~3	1	0.12
Barium	A~3 ·	1	0.15 0.009
Boron	A~3	1	<0.009 <0.009
Calcium	A-3	1	69 67
Chemical Oxygen Demand (COD)	A-3	1	15,000
Chloride	A~3	1	50
Cobalt	A-3	1	<0.006 <0.006
Fluoride	A~3	1	0.82
Iron	A~3	1	<0.08 7.3
Magnesium .	A-3	1	27 16
Manganese	A-3	1	<0.001 0.053
Molybdenum .	A-3	· 1	<0.002 <0.002
Pnosphate	A-3	1	59
Sodium	A-3	. 1	10 88
Sulfate	A-3	1	59
Tin	A-3	1	<0.12 <0.12
Titanium	A-3	1	<0.005 <0.005
Total Dissolved Solids (TDS)	A-3	1	. 1,020
Total Organic Carbon (TOC)	A-3	1	1,700
Total Solids (TS)	- A-3	1 1	3-;800
Vanadium .	A-3	1	<0.003 <0.003

LEAD-TIN-BISMUTH ROLLING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	Con Source	Day 1	s (mg/1) Day 2	Day 3
Nonconventional Pollutants (Continued)				v	-
Yttrium	A-3	1	<0.002	<0.002		
Conventional Pollutants						
Oil and Grease	A-3	1	<1	270		
Total Suspended Solids (TSS)	A-3	1	23	480	÷	
pH (standard units)	A-3	1		7.92		

- 1. The following toxic pollutants were not detected in this waste stream: 1-5, 7-10 12-14, 16-22, 24-37, and 39-88.
- 2. No analyses were performed on the following toxic pollutants: 89-113, 116, 121, and 129.

Table V-8

LEAD-TIN-BISMUTH ROLLING SPENT SOAP SOLUTIONS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1	43.0	10.3	0.0	43.0	10.3
Average	43.0	10.3		43.0	10.3

Table V-9
LEAD-TIN-BISMUTH DRAWING SPENT NEAT OILS

Plant	Water	Use	Percent	Wastewater	Discharge
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1	NR	NR	100	0.00	0.00
2	NR	NR	100	0.00	0.00
3	NR	NR	P	NR	NR
Average	NR	NR		0.00	0.00

P - Periodic discharge NR - Data not reported

Table V-10

LEAD-TIN-BISMUTH DRAWING SPENT EMULSIONS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
3	181.8	43.60	100	0.00	0.00
3	487.9	117.0	100	0.00	0.00
4	24,520	5,880	100	0.00	0.00
5	NR	NR	100	0.00	0.00
6	26.27	6.30	P	26.27	6.30
1	NR	NR	P	NR	NR
1	NR	NR	P	NR	NR
2	NR	NR	P	NR	NR
Average	6,304	1,512		26.27	6.30

P - Periodic discharge NR - Data not reported

Table V-11
LEAD-TIN-BISMUTH DRAWING SPENT SOAP SOLUTIONS

Plant	Water	Use	Percent	Wastewater	Discharge
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1 2	NR	NR	100	0.00	0.00
	7.46	1.79	P	7.46	1.79
Average	7.46	1.79		7.46	1.79

P - Periodic discharge NR - Data not reported

Table V-12

LEAD-TIN-BISMUTH DRAWING SPENT SOAP SOLUTIONS
RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream <u>Code</u>	Sample Type	Concentrations (mg/1) Source Day 1 Day 2 Day 3
Toxic Pollutants			
114. antimony	AZ-1		- 21.0
117. beryllium	AZ-1		- 1.0
118. cadmium	AZ-1		- 1.0
119. chromium (total)	AZ-1		1.0
120. copper	AZ-1		- 11.0
122. lead	AZ-1		- 3,100.0
124. nickel	AZ-1		- 1.0
126. silver	AZ-1		- 1.0
128. zinc	AZ-1		- 230.0
Nonconventional Pollutants Tin	AZ-1		- 1,600.0
Conventional Pollutants			
Oil and Grease	AZ-1		- 353,000.0
Total Suspended Solids (TSS)	AZ-1		- 294,000.0
ρН .	AZ-1		9.2

1. No analyses were performed on the following toxic pollutants: 1 through 113, 115, 116, 121, 123, 125 and 127.

LEAD-TIN-BISMUTH
EXTRUSION PRESS OR SOLUTION HEAT TREATMENT CONTACT
COOLING WATER

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1 1 2 3 4 5 6 7 8 9 8 10 11 4 12 13	92.56 60.05 3.34 78.65 102.5 117.6 200.2 325.3 NR 1,024 NR 1,405 1,784 2,340 7,064 NR	22.20 14.40 0.80 18.86 24.58 28.19 48.00 78.00 NR 245.6 NR 337.0 427.9 561.1 1,694 NR	100 100 100 0.0 0.0 0.0 0.0 0.0 NR 0.0 NR 0.0 0.0	0.00 0.00 78.65 102.5 117.6 200.2 325.3 740.6 1,024 1,111 1,405 1,784 2,340	0.00 0.00 0.00 18.86 24.58 28.19 48.00 78.00 177.6 245.6 266.4 337.0 427.9 561.1
14	2,085	500.0	P	NR	NR
Average	1,192	285.8		1,358	325.6

P - Periodic discharge NR - Data not reported

Table V-14 (Continued)

LEAD-TIN-BISMUTH EXTRUSIONS PRESS AND SOLUTION HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

· Pollutant	Stream Code	Sample -Type	Con Source	centratio	ns (mg/1) Day 2	Day 3
Nonconventional Pollutants (Continued	1)					
Ammonia Nitrogen	C-2	1	0.11	0.08		
Barium	. C-2	1	0.13	0.13		
Boron	C-2	1 -	0.34	0.60		
Calcium	C-2	4 * *	110	110		
Chemical Oxygen Demand (COD)	C-2	1	<5	<5		-
Chloride	C-2	1 ,	120	-660		
Cobalt	C-2	1	<0.006	0.007		
Fluoride	C-2	1	0.17	022	.	
Iron	C-2	` 1	0.025	0.023		•
Magnesium	C-2	1	24	24		
Manganese	C-2	1	0.51	0.22		
Molybdenum	C-2	1	<0.002	0.012		
Phenolics	C-2	1	0.69	<0.005		
Phosphate	C-2	1	<4	10		
Sodium	C-2	1	66	67		
Sulfate	C− <u>.</u> 2	. 1	290	290		
Tin	C-2	. 1	<0.12	<0.12	•	
Titanium	C-2	1 ;	<0.005	0.084		•
Total Dissolved Solids (TDS)	C-2	. 1	800	770		
Total Organic Carbon (TOC)	C-2	1	2	<1		
Total Solids (TS)	C-2	1	810	800		
Vanadium	C-2	1	0.025	0.093		
r and residual 1 Willi		•				

Table V-14 (Continued)

LEAD-TIN-BISMUTH EXTRUSIONS PRESS AND SOLUTION HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	Conce Source	entrations Day 1	s (mg/1) Day 2	Day 3
Nonconventional Pollutants (Continued))					
Yttrium	C-2	1 .	<0.002	0.007		
Conventional Pollutants					•	
Oil	C-2	1	4	3		
Total Suspended Solids (TSS)	C-2	1	9	5		
pH (standard units)	C-2	1	7.30	7.60		

^{1.} The following toxic pollutants were not detected in this waste stream: 1-3, 5-22, 24-43, and 45-88.

^{2.} No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-15

LEAD-TIN-BISMUTH EXTRUSION PRESS HYDRAULIC FLUID LEAKAGE

Plant	Water	Use	Percent	Wastewater	Discharge
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1 2	NR	NR	100	0.00	0.00
	NR	NR	NR	55.02	13.19
Average	NR	NR		55.02	13.19

NR - Data not reported

Table V-16

LEAD-TIN-BISMUTH SWAGING SPENT EMULSIONS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1 2 3 3	NR NR 2.93 1.77	NR NR 0.70 0.42	100 100 100 P	0.00 0.00 0.00 1.77	0.00 0.00 0.00 0.42
Average	2.35	0.56		1.77	0.42

P - Periodic discharge NR - Data not reported

LEAD-TIN-BISMUTH CONTINUOUS STRIP CASTING CONTACT COOLING WATER

				,	
Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1	5,080	1,218	P	1.00	0.24
2	5,080	1,218	P·	1.00	0.24
3	5,080	1,218	P	1.00	0.24
4	5,080	1,218	P	1.00	0.24
5	5,080	1,218	P	1.00	0.24
Average	5,080	1,218		1.00	0.24

P - Periodic discharge

Table V-18

LEAD-TIN-BISMUTH CONTINUOUS STRIP CASTING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	Concentrati Source Day 1		Day 3
Toxic Pollutants					
117. beryllium	A-2	1	<0.005 <0.005	i	
118. cadmium	A-2	1	<0.002 0.012	!	
119. chromium (total)	A-2	1	<0.001 0.009)	
120. copper	A-2	1	<0.001 0.41		
122. lead	A-2	1	<0.084 1.2		
124. nickel	A-2	1	<0.003 0.13		
128. zinc	A-2	1	0.72 3.1		
Negropostions) Dellutants					
Nonconventional Pollutants Aluminum	A-2	1	< 0.050 0.54		
Barium	A-2	1	0.15 0.00	1	
Boron	A-2	1	<0.009 0.050	ŝ	
Calcium	A-2	1	69 4.6		
Cobalt	A-2	1	<0.006 0.018	8	
Iron	A-2	1	<0.008 3.5		
Magnesium	A-2	1 .	27 0.91		
Manganese-	A-2	1	<0.001 0.05	5	
Molybdenum	A-2	1	<0.002 0.00	6	
Sodium	A-2	1 .	10 160	_	
Tin	A-2	1	<0.12 <0.12		
litanium	A-2	1	<0.005 0.01	0	
Vanadium	A-2	1	<0.003 0.01	1	
			,		

Table V-18 (Continued)

LEAD-TIN-BISMUTH CONTINUOUS STRIP CASTING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

	Stream Sample		Concentrations (mg/l)			
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3
Nonconventional Pollutants (Continu	ed)					
Yttrium .	A-2	1	<0.002	0.002		
Conventional Pollutants						
Oil and Grease	- A-2	1	<1	6		
Total Suspended Solids (TSS)	A-2	1	23	8		
pH (standard units)	A-2	1 -		8		

^{1.} No analyses were performed on the following toxic pollutants: 1-116, 121, and 129.

LEAD-TIN-BISMUTH
SEMI-CONTINUOUS INGOT CASTING CONTACT COOLING WATER

Plant	Water	Use	Percent	Wastewater	Discharge
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1	29.36	7.04	0.0	29.36	7.04
2	NR	NR	0.0	NR	NR
3	NR	NR	NR	NR	NR
Average	29.36	7.04		29.36	7.04

NR - Data not reported

Table V-20

LEAD-TIN-BISMUTH SEMI-CONTINUOUS INGOT CASTING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Conc	Concentrations (mg/l)			
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	
Toxic Pollutants	pr						
11. l,1,1-trichloroethane	в-3	1	0.003	ND	ND	•	
28. 3,3'-dichlorobenzidine	B-3	2	0.039	ND	, ND		
72. benzo(a)anthracene	B-3	2	0.061	ND	ND		
114. antimony	B-3	2	<0.010	0.290	0.180		
115. arsenic	в-3	2	<0.010	0.030	0.020		
117. beryllium	B-3	2	<0.005	<0.005	<0.005		
118, cadmium	B-3	2	<0.020	<0.020	<0.020		
119. chromium (total)	B-3	2 ,	<0.020	<0.020	<0.020	***	
120. copper	B-3	2	<0.0050	<0.050	<0.050	•	
121. cyanide (total)	B-3	1	<0.02	<0.02	<0.02		
122, lead	B-3	2	<0.050	1.10	0.85 0		
123. mercury	B-3	2	<0.0002	<0.0002	<0.0002	-	
124. nickel	B-3	2	<0.050	<0.050	<0.05 0		
125. selenium	В-3	2	<0.010	<0.010	<0.010		
126. silver	В-3.	2	<0.010	<0.010	<0.010		
127. thallium	B-3	2	<0.010	<0.010	<0.010		
128. zinc	B-3	2	<0.020	0.060	0.060		
Nonconventional Pollutants							
Acidity	B-3	2	<1	<1	<1		
Alkalinity	B-3	2	240	220	210		
Aluminum	в-3	2	<0.100	<0.100	<0.100		

Table V-20 (Continued)

LEAD-TIN-BISMUTH SEMI-CONTINUOUS INGOT CASTING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

Dollument	Stream	Sample	Cor	centratio	ons (mg/l)	
Pollurant	Code	Type	Source	Day 1	Day 2	Day 3
Nonconventional Pollutants (Continued))					
Ammonia Nitrogen	B-3	2	<1	<1	<1	
Barium	B- 3	2	<0.050	0.100	0.100	
Boron	B~3	2	<0.100	<0.100	<0.100	
Calcium	B-3	2	62.0	54.8	55.7	
Chemical Oxygen Demand (COD)	B-3	2	< 5	6.5	<5	
Chloride	B-3	2	6	23	23	
Cobalt	B-3	2	<0.050	<0.050	<0.050	
Fluoride	B-3	2	1.2	0.26	0.27	
Iron	B-3	2	1.00	0.800	0.550	ers.
Magnesium	B-3	2	19.7	17.1	17.4	
Manganese	B-3	2	0.100	<0.050	<0.050	
Molybdenum	B-3	2	<0.050	<0.050	<0.050	
Phenolics	B-3	1	0.010	0.007	<0.005	
Phosphate	B-3	2	5 6	<4	<4	
Sodium	B-3	2	6.80	21.7	21.0	
Sulfate	B-3	2	7.8	5.1	.11	
Tin	B-3	2	<0.050	<0.050	<0.050	
Titanium	B -3	2	<0.050	<0.050	<0.050	•
Total Dissolved Solids (TDS)	B-3	2	390	224	370	
Total Organic Carbon (TOC)	B-3	2	12	<1	9	
Total Solids (TS)	B-3	2	490	230	470	
Vanadium	B-3	2	<0.050	<0.050	<0.050	. =

Table V-20 (Continued)

LEAD-TIN-BISMUTH SEMI-CONTINUOUS INGOT CASTING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	Source Source	entration Day 1	ns (mg/1) Day 2	Day 3
Nonconventional Pollutants (Continu	ued)					
Yttrium	B-3	2	<0.050	<0.050	<0.050	
Conventional Pollutants						
Oil and Grease	В-3	1	15	4	- <1° .	
Total Suspended Solids (TSS)	B-3	. 2	110	<1	80	
pH (standard units)	B-3	2	7.43	8.20	7.82	**
				_	. •	

- 1. The following toxic pollutants were not detected in this waste stream: 1-10, 12-27, 29-71, and 73-88.
- 2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-21

LEAD-TIN-BISMUTH SHOT CASTING CONTACT COOLING WATER

Plant	Water	Use	Percent	Wastewater	Discharge
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1	NR	NR	NR	0.00	0.00
2	NR	NR	P	33.82	8.11
3	40.84	9.79	P	40.84	9.79
Average	40.84	9.79		37.33	8.95

P - Periodic discharge NR - Data not reported

Table -V-22

LEAD-TIN-BISMUTH SHOT CASTING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

		C	Co1 o	Conc	entration	s (ma/1)	
	Pollutant	Stream Code	Sample Type	Source	Day 1	Day 2	Day 3
ev			r wa y y	n			
Toxic	Pollutants						
28.	3,3'-dichlorobenzidine	B-2	1	0.039	ΝD	ИD	ND
65.	phenol	B-2	1	ND	ИD	0.026	0.069
114.	antimony	B-2	1	<0.010	2.80	2.80	3.30
-115.	arsenic	B-2	··1 .:	<0.010	0.160	0.060	- 0.080
117.	beryllium	B-2	1	<0.005	<0.005	<0.005	<0.005
118.	cadmium	B-2	1	<0.020	<0.020	<0.020	<0.020
119.	chromium (total)	B-2	1	<0.020	<0.020	<0.020	<0.020
120.	copper	B-2	1	<0.050	<0.050	<0.050	<0.050
121.	cyanide (total)	B-2	1	<0.02	<0.02	<0.02	<0.02
122.	lead	8-2	1	<0.050	52.2	17.0	15.6
123.	mercury	8-2	1	<0.0002	0.0060	0.0062	0.0093
124.	nickel	B-2 ·	· 1	<0.050	<0.050	<0.050	<ก.050
125.	selenium	B-2	1	<0.010	<0.010	<0.010	<0.010
126.	silver	B-2	1	<0.010	<0.010	<0.010	<0.010
127.	thallium	8-2	1	<0.010	<0.010	<0.010	<0.010
128.	zinc	B-2	. 1	<0.020	0.120	0.120	<0.010
	onventional Pollutants			. 1		~1	<1
Acidi	ity	B-2	1	<1	<1	<1	
Alkal	linity	8-2	1	240	400	300	370
Aļumi	inum	B-2	1	<0.100	<0.100	<0.100	<0.100

Table V-22 (Continued)

LEAU-TIN-BISMUTH SHOT CASTING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

Pollutant	Stream <u>Code</u>	Sample Type	Concentrations (mg/1) Source Day 1 Day 2 Day 3
Nonconventional Pollutants (Continued)	ı		
Ammonia Nitrogen	B-2	1	<1 <1 <1 0.36
Barium	B-2	1	<0.050 0.200 0.150 0.150
Boron	B-2	1	<0.100 0.100 0.100 0.100
Calcium	B-2	1	62.0 88.6 73.0 82.5
Chemical Oxygen Demand (COD)	B-2	1	< 5 2, 700 1,560 2,840
Chloride	B−2	1	6 64 47 75
Cobalt	B-2	1	<0.050 <0.050 <0.050 <0.050
Fluoride	B-2	1	1.2 0.40 0.33 0.88
Iron	B-2	1	1.00 2.10 2.50 1.20
Magnesium	B-2	1	19.7 52.2 21.9 24.0
Manganese	B-2	1	0.100 0.050 <0.050 <0.050
Molybdenum	B-2	1	<0.050 <0.050 <0.050 <0.050
Phenolics	B-2	1	0.010 0.115 0.10 0.090
Phosphate	B-2	1	56 <4 <4 <4
Sodium	B- 2	1	6.8 133 90.5 127
Sulfate	B-2	1	7.80 200 180 270
Fin -	B-2	1 -	<0.050 10.5 6.20 10.4
Titanium	B-2	1	<0.050 <0.050 <0.050 <0.050
Total Dissolved Solids (TDS)	B-2	1	390 1,500 920 910
Total Organic Carbon (TOC)	B-2	1	12 530 340 560
Total Solids (TS)	B-2	1	490 . 1,730 1,490 2,100
Vanadium	B-2	1	<0.050 <0.050 <0.050 <0.050

LEAD-TIN-BISMUTH SHOT CASTING CONTACT COOLING WATER

<u>Pollutant</u>	Stream Code	Sample Type	Conc Source	entratio Day 1	ns (mg/l) Day 2	Day 3
Monconventional Pollutants (Continued			· · · · · · · · · · · · · · · · · · ·			
Yttrium .	B-2	1	<0.050	<0.050	<0.050	<0.050
Conventional Pollutants					,	
Oil and Grease	B-2	1	15	14	9	22
Total Suspended Solids (TSS)	B-2	1	110	210	420	230
pH (standard units)	B-2	1	7.43	9.20	8.82	8.93

Table V-22 (Continued)

- 1. No analyses were performed on the following toxic pollutants: 2-4, 6, 7, 10, 11, 13-17, 19, 23, 29, 30, 32, 33, 38, 44-51, 85-113, 116, and 129.
- 2. The following toxic pollutants were not detected in this waste stream: 1, 5, 8, 9, 12, 18, 20, 21, 22, 24, 25-27, 31, 34-37, 39-43, 52-64, and 66-84.

Table V-23

LEAD-TIN-BISMUTH SHOT-FORMING WET AIR POLLUTION CONTROL BLOWDOWN

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1	588	141	0.0	588	141 .
Average	588	141		588	141

Table V-24

LEAD-TIN-BISMUTH ALKALINE CLEANING SPENT BATHS

Plant	Water L/kkg	Discharge gal/ton
1 2 3 3 4 4	17.95 40.55 48.18 120.1 196.0 294.0	4.30 9.72 11.55 28.81 47.00 70.50
Average	119.5	28.65

Table V-25

LEAD-TIN-BISMUTH ALKALINE CLEANING SPENT BATHS
RAW WASTEWATER SAMPLING DATA

	<u>Pollutant</u>	Stream Code	Sample Type	Conc Source	entrations Day 1	(mg/1) Day 2	Day 3
Toxic	Pollutants						
22.	p-chloro-m-cresol	B-4	1	ND	0.040		
28.	3,3'-dichlorobenzidine	B-4	1	0.039	ND		
66.	bis(2-ethylhexyl) phthalate	B-4	1	ND	0.077		
72.	benzo(a)anthracene	B-4	1	0.061	ND		
81.	phenanthrene	B-4	1	ND	0.046		
114.	antimony	B-4	1	<0.010	7.30		
115.	arsenic	B-4	1	<0.010	0.150		
117.	beryllium	B-4	1	<0.005	<0.005		
118.	cadmium	B-4	1	<0.020	<0.020		
119.	chromium (total)	B-4	1	<0.020	<0.020		
120.	copper	B-4	1	<0.050	0.150		
121.	cyanide (total)	B-4	1	<0.02	<0.02		
122.	lead	B-4	. 1	<0.050	183		
123.	mercury	B-4	1	<0.0002	<0.0002		
124.	nickel	B-4	1	<0.050	<0.050		
125.	selenium	B-4	1	<0.010	<0.020		
126.	silver	B-4	1	<0.010	<0.010		
127.	thallium	B-4	1	<0.010	<0.010		
128.	zinc	B4	1	<0.020	0.160	-	

LEAD-TIN-BISMUTH ALKALINE CLEANING SPENT BATHS RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Concentrations (mg/l)				
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	
Nonconventional Pollutants			,				
Acidity	B-4	1	<1	<1			
Alkalinity	B-4	. 1	240	850			
Aluminum	B-4	1	<0.100	0.200	•		
Ammonia Nitrogen	B-4	1	<1	<1			
Barium	B-4	1	<0.050	<0.150			
Bören	B-4	1	<0.100	0.200			
Calcium	B-4	1	62.0	64.1			
Chemical Oxygen Demand (COD)	B-4	1	<5	71			
Chloride	B-4	1	6	39			
Cobalt	B-4	1	<0.050	<0.050			
Fluoride	B-4	1	1.2	0.34			
Iron	B-4	1	1.00	1.15			
Magnesium	B-4	1	19.7	24.8			
Manganese	B-4	1	0.100	0.100			
Molybdenum	B-4	1	<0.050	<0.050			
Phenolics	B-4	1	0.010	0.030			
Phosphate	B-4	. 1	56	580			
Sodium	B-4	. 1	6.80	906			
Sulfate	B-4	1	7.8	60			
Tin	B-4	1	<0.050	<0.050			
Titanium	B-4	1	<0.050	<0.050			
Total Dissolved Solids (TDS)	B-4	1	390 3	.500			

517

518

Table V-25 (Continued)

LEAD-TIN-BISMUTH ALKALINE CLEANING SPENT BATHS RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	Concentrations (mg/l) Source Day 1 Day 2 Day 3
Nonconventional Pollutants (Continued)	i		
Total Organic Carbon (TOC)	B-4	1	12 46 .
Total Solids (TS)	B-4	1	490 4,000
Vanadium	B-4	1	<0.050 <0.050
Yttrium	B-4	1	<0.050 <0.050
Conventional Pollutants			
Oil and Grease	B-4	1 -	15 600
Total Suspended Solids (TSS)	B-4	1	110 560
pH (standard units)	B-4	1	7.43 8.31

- No analyses were performed on the following toxic pollutants: 2-4, 6, 7, 10, 11, 13-17, 19, 23, 29, 30, 32, 33, 38, 44-51, 85-113, 116, and 129.
- 2. The following toxic pollutants were not detected in this waste stream: 1, 5, 8, 9, 12, 18, 20, 21, 24-27, 31, 34-37, 39-43, 52-65, 67-71, 73-80, and 82-84.

Table V-26
LEAD-TIN-BISMUTH ALKALINE CLEANING RINSE

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewat L/kkg	er Discharge gal/ton
1	48.4	11.6	0.0	48.4	11.6
2	371.	89.0	. 0.0	371	89.0
3	4,300	1,030	0.0	4,300	1,030
1	4,710	1,130	0.0	4,710	1,130
Average	2,357	565		2,357	565

Table V-27

LEAD-TIN-BISMUTH ALKALINE CLEANING RINSE RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Type	Conce Source	Day 1	s (mg/1) Day 2	Day 3
Toxic	Pollutants						
TOXIC							
28.	3,3'-dichlorobenzidine	B-5 B-6	2 1	0.039 0.039	ND	ND	ND ND
72.	benzo(a)anthracene	B-5 B-6	2 1	0.061 0.061	ND	ND	ND ND
114.	antimony	B-5 B-6	2 1	<0.010 <0.010	0.440	0.650	0.650 1.10
115.	arsenic	B-5 B-6	2 1	<0.010 <0.010	<0.010	0.010	0.010 0.020
117.	beryllium	B-5 B-6	2 1	<0.005 <0.005	<0.005	<0.005	<0.005 <0.005
118.	cadmium	B-5 B-6	2 1	<0.020 <0.020	<0.020	<0.020	<0.020 <0.020
119.	chromium (total)	8-5 B-6	2 1	<0.020 <0.020	<0.020	<0.020	<0.020 <0.020
120.	copper	B-5 B-6	2	<0.050 <0.050	<0.050	<0.050	<0.050 0.300
121.	cyanide (total)	B-5 B-6	1	<0.02 <0.02	<0.02	<0.02	<0.02 <0.02
122.	lead .	8-5 B-6	2 1	<0.050 <0.050	9.55	8.85	15.8 40.8
123.	mercury	8-5 8-6	2 1	<0.0002 <0.0002	<0.0002	0.005	<0.0002 0.0007
124.	nickel	B-5 B-6	2 1	<0.050 <0.050	<0.050	<0.050	<0.050 <0.050
125.	selenium	B-5 B-6	2	<0.010 <0.010	<0.010	<0.010	<0.010 <0.010
126.	silver	B-5 B-6	2	<0.010 <0.010	<0.010	· <0·.010	<0.010 <0.010

Table V-27 (Continued)

LEAD-TIN-BISMUTH ALKALINE CLEANING RINSE RAW WASTEWATER SAMPLING DATA.

	•			•		
· ·	Stream	Sample		centratio		
Pollutant	_Code	Туре	Source	Day 1	Day 2	Day 3
Toxic Pollutants (Continued)		-				
	D. 5	2	<0.010	<0.010	<0.010	<0.010
127. thallium	B-5 B-6	2 1	<0.010	\0.010	\0.010	<0.010
		•				
128. zinc	B-5	2	<0.020	<0.020	<0.020	<0.020
	B-6	1	<0.020		÷	0.160
Nonconventional Pollutants						
Acidity	B-5	2	<1	<1	<1	<1
The second secon	B-6	1,	. <1			<1
					000	600
Alkalinity	B−5 B−6	2 1	240 240	290	300	630 600
	D -6		240			
Aluminum	B-5	2	<0.100	<0.100	<0.100	<0.100
	B-6	1-	<0.100			0.100
Ammonia Nitrogen	B-5	2	<1	<1	<1	0.44
Allimottia (Viciogen)	B-6	· · · ī · · ·	< 1			0.84
		_	.0.050	0.400	0 400	0.050
Barium	B−5 B−6	2 1	<0.050 <0.050	0.100	0.100	0.050 0.100
·	D., O.	•	10.000			0.100
Boron	B-5	2	<0.100	<0.100	<0.100	<0.100
	B-6	1	<0.100			<0.100
Calcium	B-5	2	62.0	45.9	37.5	27.7
Carcium	B-6	1	62.0			32.1
		,	45	4.0		78
Chemical Oxygen Demand (COD)	B−5 B−6	2 1	<5 <5	48	<5	78 42
	D-0	'	13			·
Chloride	B-5	2	6	48	21	18
•	B-6	1.	6			31
Cobalt	B-5	2	<0.050	<0.050	<0.050	<0.050
CODATE	B-6	1	<0.050			<0.050
				0.00	0.00	0 57
Fluoride	B-5 B-6	2 1	1.2	0.28	0.28	0.57
	0-0	τ	1 - 4			
Iron	B-5	2	1.00	u.600	0.350	0.400
-	B-6	1	1.00			0.650

Table V-27 (Continued)

LEAD-TIN-BISMUTH ALKALINE CLEANING RINSE RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Con	Concentrations (mg/l)		
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3
Nonconventional Pollutants (Continued)					
Magnesium	B-5 B-6	2 1	19.7 19.7	14.1	12.1	10.4
Manganese	B-5 B-6	2 1	0.100 0.100	<0.050	<0.050	<0.050 <0.050
Molybdenum	B-5 B-6	2 1	<0.050 <0.050	<0.050	<0.050	<0.050 <0.050
Phenolics	8-5 B-6	1	0.010 0.010	<0.005	<0.005	<0.005 <0.005
Phosphate	B-5 B-6	2 1	56 56	8.6	13	130 <4
Sodium	B-5 B-6	2 1	6.80 6.80	70.0	95.3	253 221
Sulfate	B-5 B-6	2 1	7.8 7.8	5.7	14	<0.5 <0.5
Tin	B-5 B-6	2 1	<0.050 <0.050	<0.050	<0.050	<0.050 <0.050
Titanium	B-5 B-6	2 1	<0.050 <0.050	<0.050	<0.050	<0.050 <0.050
Total Dissolved Solids (TDS)	B-5 B-6	2 1	390 390	370	520	730 730
Total Organic Carbon (TOC)	B-5 B-6	2 1	12 12	21	22	25 1 25
Total Solids (TS)	B-5 B-6	2 1	490 490	386		,060 ,140
Vanadium	B-5 B-6	2 1	<0.050 <0.050	<0.050	<0.050	<0.050 <0.050
Yttrium ~	B-5 B-6	2 1	<0.050 <0.050	<0.050	<0.050	<0.050 <0.050

Table V-27 (Continued)

LEAD-TIN-BISMUTH ALKALINE CLEANING RINSE RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Conce	ntratio	ns (mg/1)	
<u>Pollutant</u>	Code	Type	Source	Day 1	Day 2	Day 3
				- :	the second second	
Conventional Pollutants	•					
Oil and Grease	B-5 B-6	1 1	15 15	5	9	13 12
Total Suspended Solids (TSS)	B-5 B-6	2 1	110 110	<1 .	160	260 200
pH (standard units)	B-5 B-6	2	7.43 7.43	9.50	9.21	9.82 10.0

- 1. No analyses were performed on the following toxic pollutants: 2-4, 6, 7, 10, 11, 13-17, 19, 23, 29, 30, 32, 33, 38, 44-51, 85-113, 116, and 129.
- 2. The following toxic pollutants were not detected in this waste stream: 1, 5, 8, 9, 12, 18, 20-22, 24-27, 31, 34-37, 39-43, 52-71, and 73-84.

Table V-28 MAGNESIUM ROLLING SPENT EMULSIONS

Plant	Water l/kkg	Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
1	40,000	9,600	(P)	NR (CH)	NR (CH)
	107,000	25,600	(P)	NR (CH)	NR (CH)

CH - Contract hauled P - Periodic discharge NR - Data not reported

Table V-29
MAGNESIUM FORGING SPENT LUBRICANTS

Plant	Water 1/kkg	Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
I,	2.11	0.505	0 (+)	0	0
2	6.80	1.63	0 (+)	0	0
3	105	25.1	0 (+)	0	0
4	NR	NR	0 (+)	0	0

 $^{+\,-\,}$ Loss due to evaporation, consumption, and drag-out NR $-\,$ Data not reported

Table V-30 MAGNESIUM FORGING CONTACT COOLING WATER

Plant	Water 1/kkg	Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
1	NR	NR	100 (+)	0	. 0
2	318	76.2	0	318	76.2
3	6,550	1,570	0 (+)	5,460	1,310

NR - Data not reported + - Loss due to evaporation

Table V-31
MAGNESIUM FORGING EQUIPMENT CLEANING WASTEWATER

Plant	Water 1/kkg	Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
1	13.7	3.28	0	13.7	3.28
	66.1	15.9	0	66.1	15.9

Table V-32

MAGNESIUM DIRECT CHILL CASTING CONTACT COOLING WATER

Plant	Wate: 1/kkg	r Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
1	8,340	2,000	100	0	0
2	3,950	947	0	3,950	947

Table V-33

MAGNESIUM SURFACE TREATMENT SPENT BATHS

	<u> </u>	Wastewater				
Plant		l/kkg	gal/ton			
1,	1 1 - 1 :	NR	NR			
	* 1 * * * * * * * * * * * * * * * * * *	NR .	NR			
-	•	NR	NR			
•	1 1	NR	NR			
2	· . ! .	NR (CH)	NR (CH)			
		NR (CH)	NR (CH)			
3	: : : : : : : : : : : : : : : : : : : :	122	29.3			
•		380	91.1			
	1.1	897	215			

CH - Contract hauled NR - Data not reported

Table V-34°
MAGNESIUM SURFACE TREATMENT SPENT BATHS
RAW WASTEWATER SAMPLING DATA

·		Stream	Sample	Concentrations (mg/l)			
	Pollutant '	Code	Type	Source	Day 1	Day 2	Day 3
- Toxic	Pollutants	•					
114.	antimony	Q-2	1	<0.010			<0.100
		Q-5	i	<0.010			0.050
		Q-18	i	<0.010			<0.020
115.	arsenic	Q-5	1	<0.010			<0.010
		Q-18	1	<0.010			<0.040
117.	beryllium	Q-2	<u>,</u> 1	<0.005			0.010
		Q-5	1	<0.005			0.300
		Q-18	1	<0.005			<0.500
118.	cadmium	Q-2	1	<0.020			<0.050
		Q-5	1	<0.020			<0.20 0
		Q-18	1	<0.020			<0.020
119.	chromium (total)	Q-2	1	<0.020 -			0.350
		Q-5	1	<0.020			1.80
		Q-18	1	<0.020		83,	600
120.	copper	Q-2	1	<0.050			<0.100
		Q-5	1.	<0.050			<0.500
•		Q-18	1	<0.050			<50.0
121.	cyanide (total)	Q-2	1	<0.02			0.06
		Q-5	1	<0.02			0.24
		Q-18	1	<0.02	*		0.03
122.	lead	Q-2	1	<0.050			<0.100
	•	Q-5	1	<0.050			0.500
		Q-18 ·	1 -	<0.050			<50.0
123.	mercury	Q-2	1	<0.0002			0.0002
	*	Q-5	1	<0.0002			<0.0002
		Q-18	1	<0.0002			<0.004
124.	nickel	Q-2	1	<0.050			<0.200
		Q-5	1	<0.050			<0.500
	·	Q-18	1	<0.050			<50.0
125.	selenium	Q-2	, 1	<0.010			<0.050
		Q-5	1	<0.010		•	<0.010
		Q-18	1	<0.010			<0.050

Table V-34 (Continued)

MAGNESIUM SURFACE TREATMENT SPENT BATHS RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	<u>Conc</u> Source	entrations Day 1	(mg/1) Day 2 Day 3
Toxic Pollutants (Continued)					
126. silver	Q-2 Q-5 Q-18	1 1 1	<0.010 <0.010 <0.010	er vi	<0.010 <0.010 0.020
127. thallium	Q-2 Q-5 Q-18	1 1 1	<0.010 <0.010 <0.010		<0.040 <0.020 <0.010
128. zinc	Q−2 Q−5 Q−18	1 1	<0.040 <0.040 <0.040	· · ·	8.00 138 120
Nonconventional Pollutants	**	0	•	9 A 2 L	
Acidity	Q-2 Q-5 Q-18	1 1 1	<1 <1 <1	÷ .	<1 180 15,000
Alkalinity	Q-2 Q-5 Q-18	1 1 1	160 160 160	•• ••	27,000' <1 <1
Aluminum	Q-2 Q-5 Q-18	1 1 1.	<0.100 <0.100 <0.100		6.00 86.0 100
Ammonia Nitrogen	Q-2 Q-5 Q-18	1 1 1	0.4 0.4 0.4		0.3 58 97
Barium	Q-2 Q-5 Q-18	1 1 1	<0.050 <0.050 <0.050		<0.500 <0.500 <50.0
Boron	Q-2 Q-5 Q-18	1 1 1	0.300 0.300 0.300	•	16.0 1.00 <100
Calcium	Q-2 Q-5 Q-18	1 1 1	3.70 3.70 3.70	•	<1.00 27.0 300

Table V-34 (Continued)

MAGNESIUM SURFACE TREATMENT SPENT BATHS RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream _Code	Sample Type	Conc Source	entrations (mg/l) Day 1 Day 2 Day 3
Nonconventional Pollutants (Continued)			
Chemical Oxygen Demand (COD)	Q~2	1	500	2,500
,	Q-5	1	500	>250,000
	Q-18	1	500	<10
Chloride	Q-2	1	7	7
	Q-5	1	7	400
·	Q-18	1	7	<1
Cobalt	Q-2	1	<0.050	· <0.500
	Q~5	1	<0.050	<0.500
	Q-18	1	<0.050	<50.0
Fluoride	Q-2	1	0.3	1.8
•	Q~5 ·	1	0.3	1.6
	Q-18	1	0.3	.126
Iron	Q-2	1	<0.050	<0.500
	Q~5	1	<0.050	3.50
	Q-18	· 1	<0.050	<50.0
Magnesium	Q-2	1	0.900	<1.00
	Q~5	1	0.900	12,700
	Q~18	. 1	0.900	5,600
Manganese	Q-2	1	<0.050	<0.500
	Q~5	1	<0.050	6.00
•	Q-18	1	<0.050	<50.0

Table V-34 (Continued)

MAGNESIUM SURFACE TREATMENT SPENT BATHS RAW WASTEWATER SAMPLING DATA

					•	
	Stream	Sample		entrations (mg		
<u>Pollutant</u>	Code	Туре	Source	Day 1 Day	2 Day 3	
Nonconventional Pollutants (Continue	d)					
Molybdenum	Q-2 Q-5 Q-18	1 1 1	<0.050 <0.050 <0.050		<0.500 <0.500 <50.0	
Phenolics	Q-2 Q-5 Q-18	1 1 1	<0.005 <0.005 <0.005		<0.005 <0.01 <0.01	
Phosphate	Q-2 Q-5 Q-18	1 1 1 1 1 1	<0.5 <0.5 <0.5		2,100 16 410	***
Sodium	Q-2 Q-5 Q-18	1 1	74.6 74.6 74.6		35,700 11,600 10,800	
Sulfate	Q-2 Q-5 Q-18	1 : * 1 : :	480 480 480		12,000 210 9,800	
Tin	Q-2 Q-5 Q-18	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<0.050 <0.050 <0.050		<50.0 <50.0 <5.00	
Titanium	Q-2 Q-5 Q-18	1 1 1	<0.050 <0.050 <0.050		<0.500 <0.500 <30.0	
Total Dissolved Solids (TDS)	Q-2 Q-5 Q-18	1 1	260 260 260		110,000 150,000 95,000	
Vanadium	Q-2 Q-5 Q-18	1 1	<0.050 <0.050 <0.050		<0.500 <0.500 <50.0	
Yttrium	Q-2 Q-5 Q-18	1 1 1	<0.050 <0.050 <0.050		<0.500 <0.500 <50.0	

Table V-34 (Continued)

MAGNESIUM SURFACE TREATMENT SPENT BATHS RAW WASTEWATER SAMPLING DATA

Pollutant	Stream <u>Code</u>	Sample Type	Conce Source	entrations (mg/1) Day 1 Day 2 Day 3
Conventional Pollutants				
0il and Grease	Q-2	1	<1	39
	Q-5	1	<1	>100,000
	Q-18	1	<1	<1
Total Suspended Solids (TSS)	Q-2	1	31	140
	Q-5	1	31	270
	Q-18	1	31	70
pH (standard units)	Q-2	1	7.90	12.60
	Q-5	1	7.90	3.80
	Q-18	1	7.90	0.80

^{1.} No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.

Table V-35
MAGNESIUM SURFACE TREATMENT RINSE

Plant	Water l/kkg	Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
1	3,340	800	0	3,340	008
•	3,340	800	, 0	3,340	800
2	NR	NR	P	1,510	363
	14,700	3,530	*	12,600+	3,030+
3	30,700	7,360	0	30,700	7,360
	30,900	7,420	0	30,900	7,420
	49,600	11,900	*	49,600	11,900

P - Periodic discharge

^{* -} This water use represents the sum of flows from non-cascaded sequential rinsing stages

NR - Data not reported

^{+ -} Loss due to evaporation and drag-out

Table V-36

MAGNESIUM SURFACE TREATMENT RINSE
RAW WASTEWATER SAMPLING DATA

	<u>Pollutant</u>	Stream	Sample	Con	centratio	ns (mg/l)	
		_Code	<u>Type</u>	Source	Day 1	Day 2	Day 3
Toxi	c Pollutants						<u>= u, u</u>
11.	1,1,1-trichloroethane	Q-6		0.0.0			
		Q-7	1	0.018		0.004	
		Q-11	1 1	0.018		0.006	
		4 11	J	0.018	ND		0.008
22.	p-chloro-m-cresol	. Q-6	2	0.011			
		Q-7	4	0.011		ND	
		Q-11	3	0.011	ND	ND	
4.4		7 . ,	Ū	0.011	ND	*	ND
44.	methylene chloride	Q-6	1	0.002		0.00-	
		Q-7	ì	0.002		0.007	
		Q-11	1	0.002	0.004	0.007	
57.	2			0.002	0.004		0.013
57.	2-nitrophenol	Q-6	2	ND		0.001	
		Q-7	4	. ND		0.001 ND	
		Q-11	3	ND	ND	ИП	NO.
65.	phenol				110		ND
05.	phenor	Q-6	2	ND		ND	
		Q-7	4	ND		ND	
		Q-11	3	ND	0.001	ND	ND
114.	antimony						ND
•	arremony	Q-3	2	<0.010		<0.010	<0.010
		Q-4	4	<0.010		<0.010	
		Q-6	2	<0.010		<0.010	<0.010
		Q-7	4	<0.010		<0.010	10.010
		Q-8	2	<0.010		<0.010	<0.010
		Q-9	4	<0.010		<0.010	.0.010
		Q-10	1	<0.010		<0.010	
		Q-11	3	<0.010	<0.010		<0.010
115.	arsenic	0.0	_	•			
		Q-3	2	<0.010		<0.010	<0.010
	The second secon	Q-4	4	<0.010	~	<0.010	
		Q-6	2	<0.010		<0.010	<0.010
	•	Q−7 Q−8	4	<0.010		<0.010	
		Q-9	2	<0.010		<0.010	<0.010
		Q-10	4	<0.010		<0.010	
		Q=10 Q=11	1	<0.010	*	<0.010	
		Q -11	3	<0.010	<0.010		<0.010
						•	-

Table V-36 (Continued)

MAGNESIUM SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Concentrations (mg/l)				
<u>Pollutant</u>		<u>Code</u>	Type	Source	Day 1	Day 2	Day 3
Toxic Pollutants (Continu	ued)						
	-			.0.00			.0.00=
117. beryllium		Q-3	2	<0.005		<0.005	<0.005
•		Q-4 Q-6	4 2	<0.005 <0.005		<0.005 0.005	0.015
•		Q-7	- 4	<0.005		<0.005	0.015
		Q-8	2	<0.005		<0.003	<0.050
		Q-9	. 4	<0.005		<0.005	٠٠.٥٥٥
		Q-10	1	<0.005		<0.005	
•		Q-11	3	<0.005	<0.005	10.000	<0.005
		. AC-2	· ·	<0.001	0.001	*	
				40.000		40.000	40.000
118. cadmium		Q−3 Q−4	2 4	<0.020 <0.020		<0.020 <0.020	<0.020
•	•	Q-6	. 2	<0.020		<0.020	<0.020
		0-7	4	<0.020		<0.020	10.020
,		Q-8	2	<0.020		<0.200	<0.200
	2	Q-9	4	<0.020		<0.020	10.200
		Q-10	· i	<0.020		<0.020	
	• '	Q-11	3	<0.020	<0.020		<0.020
		AC-2		<0.005	<0.005		
119. chromium (total)		Q-3	. 2	<0.020		<0.020	<0.020
		Q-4	4	<0.020		0.040	-
		Q-6	2	<0.020		0.040	0.060
•		Q-7	4	<0.020		<0.020	
	*	Q-8 .	2	<0.020		516	496
		Q-9	: 4	<0.020		1.14	•
•		Q-10	1	<0.020	0.000	2.24	0.000
•		Q-11 AC-2	3	<0,020	0.020		0.020
•		AC-Z		0.005	29.900		
120. copper	*	Q-3	2	<0.050		<0.050	<0.050
		Q-4	4	<0.050		<0.050	
• •		Q-6	2	<0.050		<0.050	<0.050
		Q-7	4	<0.050		<0.050	
		Q-8	2	<0.050		<0.500	<0.500
		Q-9	4	<0.050		<0.050	
		Q-10	1 ·	<0.050	40.050	<0.050	-0 0=0
		Q-11	3	<0.050	<0.050		<0.050
		AC-2		0.0055	0.040	_	

Table V-36 (Continued)

MAGNESIUM SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	Conc Source	entration Day 1	s (mg/l) Day 2	Day 3
Toxic Pollutants (Continued)						
121. cyanide	Q-3 Q-4 Q-6 Q-7	1 1 1	<0.02 <0.02 <0.02 <0.02		<0.02 <0.02 <0.02 <0.02	<0.02
	Q-8 Q-9 Q-10 Q-11	1 1 1	<0.02 <0.02 <0.02 <0.02		<0.02 <0.02 <0.02	<0.02 <0.02
122. lead	Q-3 Q-4	2 4 ·	<0.050 <0.050	•	<0.050 <0.050	<0.050
	^ Q-6 Q-7 Q-8	2 4 2	<0.050 <0.050 <0.050		<0.050 <0.050 <0.500	<0.050 <0.500
·	Q-9 Q-10	. 4	<0.050 <0.050		<0.050 <0.050	
	Q-11 AC-2	3	<0.050 <0.050	<0.050 <0.050		<0.050
123. mercury	Q-3 Q-4	2 4	<0.0002 <0.0002		0.0003 <0.0002	<0.0002
	Q-6 Q-7	2 4 2	<0.0002 <0.0002 <0.0002		<0.0002 <0.0002 <0.0002	<0.0002
	Q-8 Q-9 Q-10	4 1	<0.0002 <0.0002 <0.0002 <0.0002	40.0000	<0.0002 <0.0002 <0.0002	
124. nickel	Q-11 Q-3	3 _. 2	<0.0002	<0.0002	<0.050	<0.0002 <0.050
	Q-4 Q-6	4 · 2	<0.050 <0.050		<0.050 <0.050	<0.050
	Q-7 Q-8 Q-9	4 2 4	<0.050 <0.050 <0.050		<0.050 <0.500 <0.050	<0.500
	Q-10 Q-11 AC-2	1 3	<0.050 <0.050 <0.012	<0.050 0.056	<0.050	<0.050

Table V-36 (Continued)

MAGNESIUM SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

		Stream	Sample	Concentrations (mg/1)			
	<u>Pollutant</u>	Code	Туре	Source	Day 1	Day 2	Day 3
-	Toxic Pollutants (Continued)						
	TOXIC POTTULATES (CONTINUES)					40 O10	<0.010
	125. selenium	Q-3	2	<0.010		<0.010	<0.010
	120. Setelliam	Q-4	4	<0.010		<0.010	<0.010
		Q-6	2	<0.010		<0.010	<0.010
		Q-7	4	<0.010		<0.010	<0.010
		Q-8	2	<0.010		<0.010	<0.010
		Q-9	4	<0.010		<0.010	
-		Q-10	1	<0.010		<0.010	40 010
		Q-11	3	<0.010	<0.010		<0.010
		Q-3	2	<0.010		<0.010	<0.010
	126. silver	Q-3 Q-4	4	<0.010		<0.010	
		Q-4 Q-6	2	<0.010		<0.010	<0.010
	•		4	<0.010		<0.010	
	·	Q-7 Q-8	2	<0.010		<0.010	<0.010
G			4	<0.010		<0.010	
Ü		Q-9	7	<0.010		· <0.010	
3		Q-10	3	<0.010	<0.010		<0.010
_		. Q-11	3	10.010		,	
		. Q-3	2	<0.010		<0.010	<0.020
	127. thallium	Q-4	2 4	<0.010		<0.010	
		Q-6	2	<0.010		<0.010	<0.010
		Q-7	4	<0.010		<0.010	
		Q-7 Q-8	2	<0.010		[:] <0.010	<0.010
	•	Q-9	4	<0.010		<0.010	
		Q−9 Q−10	1	<0.010		<0.020	
		Q-10 Q-11	3	<0.010	<0.010		<0.010
		Q-11					
		Q-3	2	0.040		0.040	0.080
	128. zinc	Q-4	4	0.040		0.020	
	v	Q-6	2	0.040		3.24	8.42
		Q-7	2 4	0.040		0.120	
		Q-8	2	0.040		1.00	1.00
		Q-9	4	0.040		0.080	
	- · · · · · · · · · · · · · · · · · · ·	Q-10	1	0.040	• -	0.020	-
		Q-11	3	0.040	0.320		0.420
	•	AC-2	J	0.123	1.860		•
		AC-Z		J			

Table V-36 (Continued)

MAGNESIUM SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	<u>Cor</u> <u>Source</u>	Day 1	ns (mg/1) Day 2	Day 3
Nonconventional Pollutants						
Acidity	Q-3	2	<1		<1	-1
	Q-4	4	<1		<1	<1
	Q-6	ż	<1		<1	<1
	Q-7	4	<1		<1	\ 1
	Q-8	2	<1		<1	<1
	Q-9	4	<1		<1	\ 1
	Q-10	1	<1		<1	
	Q-11	3	<1	<1	*1	<1
			•	•		• 1
Alkalinity	Q-3	2	160		230	340
	Q-4	4	160		170	040
	Q-6	2	160	1		,800
	Q-7	4	160	•	210	,000
	Q~8	2	160		3.0	21
	Q-9	4	160		160	21
	Q-10	1	160		210	
	Q-11	3	160	240		330
Aluminum	Q-3	2	<0.100		<0.100	<0.100
	Q-4	4	<0.100		<0.100	\U.100
	Q-6	2	<0.100		3.90	10.9
	Q~7	4	<0.100		0.100	.0.5
	Q-8	2	<0.100		<1.00	<1.00
	Q-9	4	<0.100		<0.100	11.00
	Q-10	1	<0.100		<0.100	
	Q-11	3	<0.100	0.400		0.700
•	AC-2		0.129	2.160		0.700
Ammonia Nitrogen	Q-3	2	0.4		0.3	0.2
	Q-4	4	0.4		0.5	0.2
	Q-6	2	0.4		26	81
	Q-7	4	0.4		0.7	O I
	Q~8	2	0.4		1.5	1.8
	Q-9	4	0.4	•	0.1	1.0
	Q-10	1	0.4		0.1	
	Q-11	3	0.4	1.2	0.1	0.8
	•	=	•••			0.0

Table V-36 (Continued)

MAGNESIUM SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

	:	Stream	Sample		centration	ns (mg/l)	
Pollutant		Code	Type	Source	Day 1	Day 2	Day 3
The second of th		Marine Company			war e y a		
Nonconventional Pollutants							
`		0.0	2	<0.0E0		<0.050	<0.050
Barium		Q-3 Q-4	2 4	<0.050 <0.050		<0.050	\U.U5U
				<0.050		<0.050	<0.050
	1	Q∽6 Q~7	2 4	<0.050		<0.050	\0.050
		Q-7 Q-8	2	<0.050		<0.500	<0.500
•		Q-9	4	<0.050		<0.050	VO.500
		Q~10	- i	<0.050	-	<0.050	
		Q-11	3	<0.050	<0.050	10.000	<0.050
The state of the s		AC-2	ŭ	0.020	0.024		.0.000
		AC-2		0.020	0.024		
Boron	-	Q-3	2	0.300		0.200	0.200
1		Q-4	4	0.300		0.100	0.200
•		Q~6	2	0.300		0.200	0.200
1	•	Q-7	2 4	0.300		0.200	0.200
		Q-8	2	0.300		<1.00	<1.00
		Q-9	4	0.300		0.200	11.00
v		Q-10	1	0.300		0.200	
	,	Q-11	3	0.300	0.100	0.200	0.100
		AC-2	•	<0.010	0.023		00
Calcium		. Q~з	2	3.70	0.920	4.70	4.60
careram		Q-4	4	3.70		5.30	
		Q−6	2	3.70		5.70	6,00
		Q-7	4	3.70		5.00	
		ฉ−๋ย	2	3.70		6.00	6.00
•		· Q-9	4	3.70		4.80	
		Q-10	1	3,20		1.30	
		Q-11	3	3,70	5.00		5.00
•		ÃC-2		28,20	30.70		
Chemical Oxygen Demand (COD)		Q-3	2	500		9.3	10
Chemical oxygen bemand (COD)		Q-4	. 4	500		32	
		Q-6	2	500	я		.000
		Q-7	4	500	0,	48	,
		Q-8	2	500		<10	<10
		Q-9	4	500		9.3	· -
		Q-10	1	500		53	
		Q-11	3	500	180		780
		٦	-	-			

)4<u></u>_

Table V-36 (Continued)

MAGNESIUM SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream _Code .	Sample Type	Cone	centratio	ns (mg/l)	
Nonconventional Data		<u>.,,pg</u>	Source	Day 1	Day 2	Day 3
Nonconventional Pollutants (Continued)		-				
Chloride	Q-3	2	_			
	Q-4	2 4	7		<1	7
	Q-6	2	7 7		<1	
	Q-7	4	7		<1	<1
	Q-8	2	7		<1	
	Q-9	4	7		<1	<1
·	Q-10	i	7		<1	
•	Q-11	3	, 7	<1	<1	
Cobalt			•	`'.		<1
CODAIT	Q-3	2	<0.050		<0.050	<0.050
	Q-4	4	<0.050		<0.050	<0.050
	Q-6	2	<0.050		<0.050	<0.050
	Q-7	4	<0.050		<0.050	\0.050
	Q-8	2	<0.050		<0.500	<0.500
	Q-9	4	<0.050		<0.050	VU.500
	Q-10	1	<0.050		<0.050	
	Q-11	3	<0.050	<0.050		<0.050
	AC-2		<0.004	0.005		.0.000
Fluoride	0 0	_			•	
	Q-3	2	0.3		0.67	0.66
	Q-4 Q-6	4 .	0.3		0.27	
	Q-7	2	0.3		0.64	0.56
	Q-8	4	0.3		0.73	
,	Q-9	2 4	0.3		2,1	0.92
•	Q-10	1	0.3		0.72	
	Q-11	3	0.3		1.0	
	AC-2	3	0.3	0.500		1.9
			0.99	0.900		
Iron	Q-3	. 2	<0.050			
· · · · · · · · · · · · · · · · · · ·	Q-4	4	<0.050		0.050	0.050
*	Q-6	2	<0.050		<0.050	
	Q-7	4	<0.050		0.200	0.300
,	Q-8	2	<0.050		0.050	
	Q-9	4	<0.050		<0.500	<0.500
	Q-10	1	<0.050		0.050 <0.050	
	Q-11	3	<0.050	0.500	·0.000	0.100
	AC-2		0.302	5.770		0.100

Table V-36 (Continued)

		Stream	Sample			ns (mg/l)	<u>. </u>	
	<u>Pollutant</u>	Code	Type	Source	Day 1	Day 2	Day 3	
184	Nonconventional Pollutants (Continued)			*** ****			
	Magnesium	Q-3	2	0.900		4.00	2.40	
	magnes ram	Q-4	. 4	0.900		5.30		
		Q-6	2	0.900			, 150	
		Q-7	4	0.900		10.5		
	•	Q-8	2	0.900		57.0	56.0	
	•	Q-9	4	0.900		1.80		
		Q-10	1	0.900		3.00		
٠.		Q-11	··· <u>. 3</u> . ·	0.900	16.0		42.4	
		AC-2		6.880	49.8			
				•				-
	-Manganese-	Q-3	. 2	<0.050		<0.050	<0.050	- ::
	•	Q-4	4	<0.050		<0.050	0.050	
		Q-6	2 ·	<0.050		0.150	0.350	
		Q-7	4	<0.050		<0.050	40 E00	
		Q-8	2	<0.050		<0.500	<0.500	
		Q-9	4 1	<0.050		<0.050 <0.050	•	
		Q-10	3 .	<0.050 <0.050	<0.050	VU.U5U	<0.050	
		Q-11	ъ.	0.007	0.093		\0.030	
	•	AC-2		0.007	0.053			
	Molybdenum	Q-3	2	<0.050		<0.050	<0.050	
		Q-4	4	<0.050		<0.050	.0.050	
		Q-6	2	<0.050		<0.050	<0.050	
		Q-7	4	<0.050		<0.050 <0.500	<0.500	1.1
		Q-8	2	<0.050 <0.050		<0.050	\0.500	*1
	•	Q-9 0-10	4 1	<0.050		<0.050		- 11
	×	Q-10 Q-11	3	<0.050	<0.050	\0.030	<0.050	
•		AC-2	3	<0.020	<0.020		10.000	
	Phenolics	Q-3	1 .	<0.005	10.020	0.29	<0.01	
	Phenotics	Q-4	i	<0.005		<0.005		
		Q-6	1	<0.005		<0.005	<0.01	
		Q-7	· i	<0.005		<0.005		
		ฉื−8	1	<0.005		<0.005	0.010	
		Q-9	1	<0.005		<0.005		
		Q-10	1	<0.005		<0.005	47	
	•	Q-11	1	<0.005			<0.01	

Table V-36 (Continued)

	Stream	Sample	eConcentrations			s (mg/l)	
<u>Pollutant</u>	Code	Type	Source	Day 1			
Necessary Dellutests (Ocations)							
Nonconventional Pollutants (Continued)							
Phosphate	Q-3	2	<0.5		<0.5	5	
	Q-4	4	~0.5		<0.5	J	
	Q-6	2	<0.5		4.8	4.5	
*	Q-7	4	<0.5		<0.5		
•	Q-8	2	<0.5		8.0	10	
	Q-9	4	<0.5		<0.5		
	Q-10	1 .	<0.5		<0.5		
	Q-11	3	<0.5	<0.5		<0.5	
Sodium	Q-3	2	74.0				
30d Fulli	ų-3 0−4	2 4	74.6		95.0	145	
	Q-4 Q-6	4	74.6		62.9		
	Q-7	2 4	74.6		143	284	
	Q−7 Q−8		74.6		79.8	440	
	Q-9	2	74.6		119	119	
•	Q-10	4	74.6		67.8		
	Q-10 Q-11	1	74.6	70.7	101	04 =	
•	AC-2	3	74.6	79.7		81.7	
	AC-2	-	9.65	22.9			
Sulfate	Q-3	2	480		4,500	1,300	
	Q-4	4	480		2,800	,,,,,,	
	Q-6	2	480		2,100	7,500	
	Q-7	4	480		4,000		
	Q-8	2	480			3,000	
	Q-9	4	480		2,700	•	
	Q-10	1	480		1.500		
	Q-11	3	480 - 1,	900		1,800	
Tin	0-2		10.050				
1 111	Q-3 0-4	2	<0.050		<0.050		
	-	4 .	<0.050		<0.050		
	Q-6	2	<0.050		<0.050		
	Q-7	4	<0.050		<0.050		
	Q-8	2	<0.050		<0.500		
	Q-9	4	<0.050		<0.050		
	Q-10	. 1	<0.050	.0 050	<0.050		
• • •	Q-11	3	<0.050	<0.050		<0.050	
	AC-2		0.013	<0.013			

Table V-36 (Continued)

Pollutant	Stream Code	Sample Type	Con Source	centrations (mg Day 1 Day	
Nonconventional Pollutants (Continued)					•
Titanium	Q-3 Q-4 Q-6 Q-7	2 4 2 4	<0.050 <0.050 <0.050 <0.050	<0.0 <0.0 <0.0 <0.0	050 050 <0.050 050
	Q-8 Q-9	2 4	<0.050 - <0.050	<0.5 <0.0	
	Q-10 Q-11 AC-2	3	<0.050 <0.050 0.017	<0.050 0.022	<0.050
Total Dissolved Solids (TDS)	Q-3 Q-4	2 4	260 260	290 230	610
	Q-6 Q-7	2	260 260	3,100 330	8,000
	Q-8 Q-9 Q-10	2 4 1	260 260 260	1,700 270 5	710
	Q-11	3	260	380	580
Total Organic Carbon (TOC)	Q-3 Q-4	2 4	4.2 4.2	<1 <1	<1
	Q-6 Q-7	2 4	4.2 4.2	850 18	2,500
	Q-8 Q-9 Q-10	2 4 1	4.2 4.2 4.2	2 <1 <1	8
	Q-11	3	4.2	4.2	69
Total Solids (TS)	Q-3 Q-4	2 4	200 200	240 110	650
	Q-6. Q-7	2 4	200 200	3,100 240	8,700
	Q-8 Q-9	2 4	200 200	1,600 10,000	1,900
•	Q-10 Q-11	1 · 3	200 200	460 330	760

545

Table V-36 (Continued)

<u>Pollutant</u>	Stream	Sample	Con	centratio		
	Code	Type	Source	Day 1	Day 2	Day 3
Nonconventional Pollutants (Continued)						
Vanadium	Q-3	2	<0.050		<0.050	<0.050
	Q-4	4	<0.050		<0.050	<0.050
a.	Q-6	2	<0.050		<0.050	<0.050
	Q-7	4	<0.050		<0.050	-5.000
	Q-8	2	<0.050		<0.500	<0.500
	Q-9	4	<0.050		<0.050	
	Q-10	1	<0.050		<0.050	
	Q-11 AC-2	. 3	<0.050	<0.050		<0.050
t a	AC-Z		<0.002	<0.002		
Yttrium	Q-3	2	<0.050	2	40.050	40.050
•	Q−4	4	<0.050		<0.050 <0.050	<0.050
	Q-6	2	<0.050		<0.050	<0.050
•	Q-7	4	<0.050		<0.050	VO.050
	Q-8	2	<0.050		<0.500	<0.500
	Q-9	4	<0.050		<0.050	.0.000
	Q-10	1	<0.050		<0.050	
	Q-11	3	<0.050	<0.050		<0.050
	AC-2		<0.010	<2.010	4	
Conventional Pollutants						*
Oil and Grease	Q-3					
	Q-3 Q-4	1	<1 <1		12	7
	Q-6	1	<1		14	_
	Q-7	i.	<1		<1 <1	3
•	Q−8	i	<1		26	15
	Q-9	1	<1		14	15
	Q-10	1	<1		8	
	Q-11	1	<1 .		Ŭ	5
Total Suspended Solids (TSS)	Q-3	2	31			
	Q-4	4	31		31	5 -
•	Q-6	2	31		27 56	
	Q-7	4	31		31	12
	Q-8	2	31		110	130
	Q-9	4	31		10	100
	Q-10.	1	31		210	
	Q-11	3	31	50	-	12

<u>Pollutant</u>	Stream Code	-Sample _Type	Conc Source	entrations Day 1	(mg/1) Day 2	Day 3
Conventional Pollutants (Continued)						
pH (standard units)	Q-3 Q-4	2 4	7.90 7.90	٠	9.60 8.80	10.50
	Q-6 Q-7	2	7.90 7.90		7.80 7.70	6.00
	Q-8 Q-9	2	7.90 7.90		4.60 7.60	5.00
	Q-10 Q-11	3	7.90 7.90	6.80	9.20	7.30

1. The following toxic pollutants were not detected in this waste stream: 1-10, 12-21, 23-43, 45-56, 58-64, and 66-88.

2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-37 MAGNESIUM SAWING OR GRINDING SPENT EMULSIONS

Plant	Water 1/kkg	Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
1	169	40.5	100 (+)	0	0
2	NR	NR	P	19.5 (CH)	4.68 (CH)

NR - Data not reported + - Loss due to evaporation and drag-out CH - Contract hauled P - Periodic discharge

Table V-38

MAGNESIUM WET AIR POLLUTION CONTROL BLOWDOWN

Plant	Water 1/kkg	Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
1	NR	NR	>90	235	56.4
	NR	NR	>90	621	149
2	10,000	2,400	0	10,000	2,400
	NR	NR	90	NR	NR

NR - Data not reported

Table V-39 (Continued)

MAGNESIUM WET AIR POLLUTION CONTROL BLOWDOWN RAW WASTEWATER SAMPLING DATA

	Stream	Sample				
<u>Pollutant</u>	Code	Type	Source	Day 1	Day 2	Day 3
Nonconventional Pollutants (Continued)						
Titanium	ÀC-1		0.017	0.091		4.
Vanadium	AC-1	ř.	<0.002	0.088		•
Yttrjum T	AC-1		<0.010	0.036		1 ₂

No analyses were performed on the following toxic pollutants: 1-116, 121, 123 and 125-127.

Table V-40
NICKEL-COBALT ROLLING SPENT NEAT OILS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1	92.2	22.1	100	0.00	0.00
2	NR	NR	100	0.00	0.00
. 4	85.1	20.4	100	0.00	0.00
4	NR	NR	100	0.00	0.00
3	NR	NR	P	NR	NR
5	NR	NR	NR	NR	NR
Average	88.7	21.3		0.00	0.00

P - Periodic discharge NR - Data not reported

Table V-41
NICKEL-COBALT ROLLING SPENT EMULSIONS

	Wate		Percent	Wastewater	
Plant	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
2	23.17	5.56	0.0	23.17	5.56
3	59 , 730	14,320	P	62.52	14.99
3	100,100	24,000	P	4255.	102.0
1	NR	NR	P	NR	NR
1 .	NR	NR	P	NR	NR
4 .	NR	NR .	NR	NR	NR
5	NR	NR	NR	NR	NR
Average	53,280	12,780		170.4	40.85

P - Periodic discharge NR - Data not reported

Table V-42
NICKEL-COBALT ROLLING SPENT EMULSIONS
RAW WASTEWATER SAMPLING DATA

Pollutant		Stream	Sample	Con	centratio	ns (mg/l)	
	Pollutant	Code	Type	Source	Day 1	Day 2	Day 3
Toxi	<u>Pollutants</u>						
11.	1,1,1-trichloroethane		_				
	i, i, i-tricitiordetnane	D-4 F-5	1 1	0.009	2.860		
		1-5	'	0.014	ND	ND	ND
23.	chloroform	D-4	1	0.144	ND		
		F~5	1	ND	ND	ND	ND
44.	methylene chloride	D-4	1	0.000	.15		
		F-5	1	0.002	ND 1.510	1.670	0.010
			• •	. 0.002	1.510	1.670	0.810
55.	naphthalene	D-4	1	ND	ND		
		F-5	3	0.001	ND	0.977	0.649
64.	pentachiorophenol	D-4	1	ND	ND		
		F-5	3	ND	ND 2.470	2.570	1.530
0.5				112	2.470	2.370	1.550
65.	pheno I	D-4	1	ND	0.607		
		F-5	3	ND	0.468	0.351	0.339
66.	bis(2-ethylhexyl) phthalate	D-4	1	0.009	NO		
		F-5	3	ND	N D ND	ND	NO
		_		ND	ND	ND	, ND
81.	phenanthrene	D-4	1	ND	ND		
		F-5	3	ND	0.885	ND	ND
114.	antimony	D-4	1	<0.003	10.000		
	•	F-5	3	<0.003	<0.003 0.008	0.003	<0.000
			J	10.002		0.003	<0.002
115.	arsenic	D-4	1	<0.003	<0.003		
		F-5	3	<0.005	0.027	. 0.007	0.017
117.	beryllium	D-4	1	<0.0005	<0.005		
		F-5.	з̀	<0.010	<0.005	<0.010	<0.010
110		•			10.010	.0.010	٧٥.0١٥
118.	cadmium	D-4	1	<0.002	0.079		
	-	F-5	3	<0.050	<0.050	<0.050	<0.050
119.	chromium (total)	D-4	1	0.042	1.1	-	
	- -	F-5	3	<0.100	3.80	2.81	5.20
120.					0.00	2.01	
120.	copper	D-4	1	0.068	1.7		•
		F-5	3	0.170	3.11	2.70	4.20
121.	cyanide (total)	F-5	1	<0.02	<0.02	<0.02	40.00
			•	-0.02	\U, UZ	<0.02	<0.02

Table V-42 (Continued)

NICKEL-COBALT ROLLING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

•				-		
Pallutant	Stre Coo			centration Day 1	ns (mg/1) Day 2	Day 3
<u>Pollutant</u>		17,50	300.00	<u> </u>		
Toxic Pollutants (Continued)					-	
ere de la companya d						
122. lead	D-4 F-5		<0.084 <0.100	0.75 3.44	3.05	5.28
123. mercury	D-4 F-5		<0.0002 <0.0020	<0.0002 <0.0020	<0.0020	<0.0020
124. nicke) .	D-4		<0.003 0.200	4.7 28.0	20.6	34.2
125. selenium	D-4		<0.003 <0.010	<0.003 <0.010	<0.010	<0.010
126. silver	D-4		<0.001 <0.002	<0.001 <0.002	0.011	0.014
127. thallium	D-4 F-5		<0.003 <0.005	<0.003 <0.005	<0.005	<0.005
128. zinc	D-4 F-5		0.038 <0.050	5.1 5.58	4.82	6.70
Nonconventional Pollutants						
Acidity	D-4 F-5		< 1 < 1	<1 <1	<1	<1
Alkalinity	D-4 F-5		180 - 61	420 260	250	190
Aluminum.	D-4 F-5	•	<0.050 0.910	0.51 1.13	1.12	2.34
Ammonia Nitrogen	D-4	The state of the s	<1 0.04	<1 6.0	2.6	<0.1
Barium	D-4 F-5		0.12 0.080	0.24 0.110	0.150	0.260
Boron .	D-4		<0.009 <0.100	0.28 <0.100	0.230	0.750
Calcium	D-4		63 4 6. 2	38 11.3	10.9	18.5

<u>Pollutant</u>	Stream Code	Sample Type	Conce Source	Day 1	ns (mg/l) Day 2	Day 3
Nonconventional Pollutants (Continued)					
Chemical Oxygen Demand (COD)	D-4 F-5	1 3	<5 21,1 <1 86,0		,000 26	,000
Chloride	D-4 F-5	1 3	34 3 12	340 35	34	38
Cobalt	D-4 F-5	1 3	<0.006 <0.100	0.41 <0.100	<0.100	<0.100
Fluoride	D-4 F-5	1 3	0.45 0.43	10.2 3.9	2.2	1.9
Iron	D-4 F - 5	1 3	0.066 1.37	18 74.4	58.0	88.0
Magnesium	D-4 F-5	1 3 .	24 12.7	66 5.33	5.05	9.52
Manganese	D-4 F-5	1 3	0.01 2 0.080	3.1 0.580	0.490	0.720
Molybdenum	D-4 F-5	1 3	0.030 <0.200	1.1 <0.200	0.400	1.07
Phenolics	F-5	1	<0.005	0.99	1.13	0.12
Phosphate	D-4 F-5	1 3	<4 <4	30 150	250	230
Sodium	D-4 F-5	1 . 3	9.5 154	28 14.5	12.0	20.2
Sulfate	D-4 F-5	1 3		380 550	220	330
Tin	D-4 F-5	1 3	<0.12 <0.200	<0.12 <0.200	<0.200	<0.200
Titanium	D-4 F-5	1 3	<0.005 <0.020	0.85 0.150	0.080	0.170
						:

556

Table V-42 (Continued)

NICKEL-COBALT ROLLING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

the first of the second	Stream	Sample	Concentrations (mg/l)
<u>Pollutant</u>	Code	Type	Source Day 1 Day 2 Day 3
Nonconventional Pollutants (Continu	ied)		
Total Dissolved Solids (TDS)	D-4	" 1	393 6,000
	F-5	3	320 4,400 5,300 5,900
Total Organic Carbon (TOC)	D-4	1	8 10,300
	F-5	3	2 15,000 11,000 13,000
Total Solids (TS)	D-4	1	395 22,000
	F-5	3.	330 30,000 60,000 30,000
Vanadium	D-4	1	0.016 0.038
	F-5	3	<0.010 <0.010 <0.010 <0.010
Yttrium	D-4	1	<0.002 <0.002
	F-5	3	<0.020 <0.020 <0.020 <0.020
Conventional Pollutants			
Oil and Grease	D-4	1	<1 800
	F-5	1	<1 1,220 2,600 7,600
Total Suspended Solids (TSS)	D-4	1	<1 960
	F-5	3	22 6,800 5,500 6,220
pH (standard units)	D-4	1	7.14 6.17
	F-5	. 3	6.64 5.63 6.08 6.25

^{1.} The following toxic pollutants were not detected in this waste stream: 1-10, 12-22, 24-43, 45-54, 56-63, 67-80, and 82-88.

^{2.} No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-43
NICKEL-COBALT ROLLING CONTACT COOLING WATER

Plant	Wate L/kkg	r Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1.	NR	NR	100	0.00	0.00
1	NR	NR	100	0.00	0.00
2	72.76	17.45	0.0	72.76	17.45
3	434.6	104.2	0.0	434.6	104.2
4	43,370	10,400	98.8	536.8	128.7
5	3,470	832.2	0.0	3,470	832.2
2	4,074	976.9	0.0	4,074	976.9
4	4,583	1,099	0.0	4,583 1	,099
6	NR	NR	P	NR	NR
Average	9,334	2,238		2,195	526.4

P - Periodic discharge NR - Data not reported

Table V-44

NICKEL-COBALT ROLLING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

		Stream	Sample	Concentrations (mg/l)			
Pollutant		Code	Type	Source	Day 1	Day 2	Day 3
Toxic Pollutants			- r met p		*		Ø
11. 1,1,1-trichloroetha	ine	D-2 D-3	1	0.009	0.016	0.008	
		F-3	1	0.014	0.135	0.246 ND	0.087 ND
·	•	F-4	1	0.014	0.015		110
13. l,l-dichloroethane		D-2 D-3	1 1	ND ND	ND	ND	
		F-3	· 1	ND ND	0.006 .ND	0.023 ND	ИD ИD
		F-4		and the same and the same of t		er andre er er de ende andre er	the source of the source
22. p-chloro-m-cresol		D-2 D-3	1	ND ND	ND	ND .	
		F-3	- 3	ND	ND .	0.046	ND
	÷	F-4	3	ND	ND	ND	ND
23. chloroform	•	D-2	1	0.144		ND -	
20. 0110101010	•	D-3	1	0.144 ND	ND ND	ND · ·	ND -
	•	F-3 F-4	1	ND	ND	ND	ND
		D−2	. 1	ND	,	ND	,
29. 1,1-dichloroethyler	ne	D-2 D-3	1	ND	ND		
	*	F-3	1	ND ND	0.005 ND	0.013 ND	ND ND
		F-4	1	ND ·	ND		
34. 2,4-dimethylphenol		D-2	1	ND ND	ND .	ND	•
		Ď−3 F−3	ι 3	ND	ND	0.038	ND ·
·		F-4	3	ND	ND	ND	ND
44. methylene chloride		D-2	1	0.002		ND	
44. Methyrene chronics	•	. D-3	1	0.002	0.002 0.005	0.002	0.017
		F-3 F-4	1 1	0.002 0.002	0.003	0.171	0.015
		D-2	1	ND		ND	
55. naphthalene		D-3	1	. ND	ND		ND
-	*	F-3 F-4	3 3	0.001 0.001	DN ND	ND 0.123	ND 0.007
	•			-		ND	
65. phenol		D-2 D-3	1	ND ND	ND	NU	
	•	F-3	3	ND	0.039	ND 0.070	0.012 0.054
		F-4	3	ND	0.220	0.379	0.054

		Stream	Sample	Concentrations (mg/l)			
	Pollutant	Code	Type	Source	Day 1	Day 2	Day 3
Toxic	Pollutants (Continued)						
66.	bis(2-ethylhexyl) phthalate	D-2 D-3	1 1	0.009 0.009	0.016	ND	
	_	F-3	3	ND	ND	ND	0.002
		F-4 .	3	ND	ND	ND	0.003
67.	butyl benzyl phthalate	D-2	1	ND		ND	
•		D-3	1	ND	ND		
		F-3	3	ND	ND	ND	ND
	•	F-4	3	ND	ИD	ND	0.002
6 8.	di-n-butyl phthalate	D-2	1	ND		ND	
		_ D-3	1	ND	ND		
		F-3	3	ND	ND	ND	0.001
		F-4	3	ND	ND	ND	ND
114.	antimony	D-2	1	<0.003		<0.003	
		D-3	1	<0.003	<0.003		*
		F-3	3	<0.002	0.002	<0.002	<0.002
•		F-4	3	<0.002	<0.002	<0.002	<0.002
115.	arsenic ·	D-2	1	<0.003		<0.003	
•	•	D-3	1	<0.003	<0.003		
		F-3	3	<0.005	<0.005	<0.005	<0.005
		F-4	3	<0.005	0.018	<0.005	<0.005
117.	beryllium .	D-2	1	<0.0005		<0.005	•
		D-3	1	<0.0005	0.001		
		F-3	3	<0.010	<0.010	<0.010	<0.010
		F-4	3	<0.010	<0.010	<0.010	∹0.010
118.	cadmium	D~2	1	<0.002	,	0.084	
		D-3	1	<0.002	0.13		
	•	F-3	3	<0.050	<0.050	<0.050	<0.050
-	e e e	F=4	- 3	<0.050	<0.050	<0.050	<0.050
119.	chromium (total)	D-2 -	1	0.042		1.8	
		D-3	1	0.042	0.52		
	-	F-3	3	<0.100	<0.100	<0.100	<0.100
		F-4	3	<0.100	<0.100	<0.100	<0.100
120.	copper	D-2	. 1	0.068		0.083	
		D-3	1	0.068	0.78		
		· F-3	3	0.170	0.350	0.260	0.140
	•	F-4	3	0.170	0.240	0.320	0.160
		-					

Table V-44 (Continued)

e e e	Pollutant-	* * * * * * * * * * * * * * * * * * * *	Stream Code	Sample Type	Conc Source	entration Day 1	s (mg/l) Day 2	Day 3
Toxic	Pollutants (Continued)	,		-				
121.	cyanide (total)		F-3 F-4	1	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02
122.	lead	·	D-2 D-3 F-3	1 1 3	<0.084 <0.084 <0.100	0.15 <0.100	<0.084	<0.100
			F=4	3_ <u></u>	<0.100	<0.100	<0.100	<0.100
123.	mercury		D-2 D-3 F-3 F-4	1 1 3 3	<0.0002 <0.0002 <0.0020 <0.0020	<0.0002 <0.0020 <0.0020	<0.0002 <0.0020 <0.0020	<0.0020 <0.0020
124.	nickel		D-2 D-3 F-3 F-4	1 1 3 3	<0.003 <0.003 0.200 0.200	9.4 0.560 1.42	6.5 0.600 0.600	0.180 0.580
125.	selenium		D-2 D-3 F-3 F-4	1 1 3 3	<0.003 <0.003 <0.010 <0.010	<0.003 <0.010 <0.010	<0.003 <0.010 <0.010	<0.010 <0.010
126.	silver		D-2 D-3 F-3 F-4	1 1 3 3	<0.001 <0.001 <0.002 <0.002	<0.001 <0.002 <0.002	<0.001 <0.002 <0.002	<0.002 <0.002
127.	thallium		D-2 D-3 F-3 F-4	1 1 3 3	<0.003 <0.003 <0.005 <0.005	<0.003 <0.005 <0.005	<0.003 <0.005 <0.005	<0.005 <0.005
128.	zînc .		D-2 D-3 F-3 F-4	1 1 3 3	0.038 0.038 <0.050 <0.050	0.51 0.060 0.070	0.28 0.050 0.110	0.050 0.070

561

Table V-44 (Continued)

<u>Pollutant</u>	Stream	Sample	Co	Concentrations (mg/l)		
FOTTALAIL	Code	<u>Type</u>	Source	Day 1	Day 2	Day 3
Nonconventional Pollutants						
Acidity	D-2	1	<1		<1	
	D-3	ĺ	< i	<1	` '	
	F-3	3	<1	<1	<1	<1
	F-4	3	<1	<1	<1	<1
Alkalinity	D-2·	1	180		110	
•	D-3	• 1	180	110		
•	F-3	3	61	62	63	46
	F-4	3	61	42	48	46
Aluminum	D-2 D-3	1	<0.050		0.45	
	F-3	· 3	<0.050 0.910	1.1 0.290	0 700	
	F-4	3	0.910	0.290	0.720 0.420	0.390 0.220
Ammonia Nitrogen	D-2	1	<1		0.17	
•	D-3	1	<1	<1	0.17	
	F-3	3	0.04	0.30	0.34	<0.01
	F-4	3	0.04	0.23	0.18	0.09
Barium	D-2					
·	D-3	1	0.12		0.15	
	F-3	3	0.12 0.080	0.0035		
	F-4	3	0.080	0.060 0.040	0.080	0.050
, , , , , , , , , , , , , , , , , , ,		Ü	0.000	0.040	0.060	0.040
Boron.	D-2	1	<0.009		0.059	
	D-3	1	<0.009	0.24	0.000	
	F-3	3	<0.100	_<0.100	0.390	0.130
	F-4	3	<0.100	<0.100	0.260	0.230
Calcium	D-2	1	63		110	
•	D-3 F-3	1	63	47		
	F-3 F-4	3 3	46.2	32.5	36.7	30.2
•	1 4	ა	46.2	30.8	33.0	2 9 .7
Chemical Oxygen Demand (COD)	D-2 D-3	1	< 5		61	
	D-3 F-3	1 3	<5	540		
,	F-4	3 3	<1 <1	310 210	190	33 [,]
	. ,	3	*1	4 i U	350	220

Table V-44 (Continued)

	Stream	Sample				
Pollutant	Code	_Type_	Source	Day 1	Day 2	Day 3
Nonconventional Pollutants (Continued)	· · · · · · · · · · · · · · · · · · ·				
Chloride	D-2 D-3 F-3 F-4	1 1 3 3	34 34 12	81 27 28	64 28 34 1,	31 210
Cobalt	D-2 D-3 F-3 F-4	1 1 3 3	<0.006 <0.006 <0.100 <0.100	0.29 <0.100 <0.100	0.68 <0.100 <0.100	<0.100 <0.100
Fluoride	D-2 D-3 F-3 F-4	1 1 3 3	0.45 0.45 0.43 0.43	1.4 . 1.1 1.1	2.1 4.4 1.7	1.2
Iron	D-2 D-3 F-3 F-4	1 1 3 3 3 3	0.066 0.066 1.37 1.37	3.8 0.990 0.580	3.1 0.820 0.610	1.43 0.290
Magnesium	D-2 D-3 F-3 F-4	1 1 3 3	24 24 12.7 12.7	32 10.8 10.6	35 11.8 10.8	10.2 10.1
Manganese	D-2 D-3 F-3 F-4	1 1 1: 1 1 : 1 3	0.012 0.012 0.080 0.080	0.31 0.080 0.120	0.10 0.160 0.070	0.050 0.070
Molybdenum	D-2 D-3 F-3 F-4	1 1 3 3	0.030 0.030 <0.200 <0.200	18 <0.200 <0.200	1.8 <0.200 <0.200	<0.200 0.380
Phenolics	F-3 F-4	1 1	<0.005 <0.005	0.095 0.29	0.36 <0.005	0.017 6.0
Phosphate	D-2 D-3 F-3	1 1 · .	<4 <4 <4	100 13 12	<4 <4 <4	<4 <4
	F-4	3	<4	1 4	· -	•

. 563

Table V-44 (Continued)

	Stream	Sample	ple Concentrations (mg.			<u> </u>	
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	
Nonconventional Pollutants (Continued)							
Sodium	D-2	1	9.5		26		
	D-3	1	9.5	23			
	F-3	3	154	26.8	13.9	13.4	
	F-4	3	154	26.8	27.8	27.4	
Sulfate	D-2	1	53		240		
	D-3	1	53	93			
	F-3	3	130	160	100	97	
•	F-4	3	130	150	98	110	
Tin	D-2	1	<0.12		<0.12		
•	D-3	1	<0.12	. 1.1			
	F-3	3	<0.200	<0.200	<0.200	<0.200	
	F-4	3	<0.200	<0.200	<0.200	<0.200	
Titanium	D-2	1	<0.005		1.1		
	D-3	1	<0.005	0.15			
	F-3	3	<0.020	<0.020	0.020	<0.020	
	F-4	3	<0.020	<0.020	<0.020	<0.020	
Total Dissolved Solids (TDS)	D-2	1	393	-	560		
	D~3	1	393	580			
	F-3	5	320	260	380	270	
	F-4	3	320	280	290	270	
Total Organic Carbon (TOC)	D-2	1	8		79		
	D-3	1	8	200			
	F-3	3	2	45	38	4	
•	F-4	3	2	.31	120	60 _.	
Total Solids (TS)	D-2	1	395		620		
	D-3	1		,070			
	F-3	3	330	3 60	400	360	
	F-4	3	330	370	380	360	
Vanadium	D-2	1	0.016		0.050		
	D-3	1	0.016	0.057			
	F-3	3	<0.010	<0.010	<0.010	<0.010	
·	F-4	3	<0.010	<0.010	<0.010	<0.010	
Yttrium	D-2	1	<0.002		<0.002		
·	D-3	1	<0.002	<0.002			
	F-3	3	<0.020	<0.020	<0.020	<0.020	
	F-4	.3	<0.020	<0.020	<0.020	<0.020	

Table V-44 (Continued)

	<u>Pollutant</u>	Stream Code	Sample Type	Con Source	Day 1	ns (mg/1) Day 2	Day 3
	Conventional Pollutants		•				
	Oil and Grease	D-2 D-3	1	<1 <1	300 115	38	37.
		F-4 D-2	1	<1	190	74	60
56	Total Suspended Solids (TSS)	D-3 F-3 F-4	1 3 , 3	<1 22 22	350 35 50	25 90	30 42
ហ	pH (standard units)	D-2 D-3 F-3 F-4	1 1 3 3	7.14 7.14 6.64 6.64	6.22 7.73 6.29	6.41 6.14 5.84	6.37 6.14
	· ·			•			

^{1.} The following toxic pollutants were not detected in this waste stream: 1-10, 12, 14-21, 24-28, 30-33, 35-43, 45-54, 56-64, and 69-88.

^{2.} No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-45
NICKEL-COBALT TUBE REDUCING SPENT LUBRICANTS

Plant	Water	Use**	Percent	Wastewater	Discharge
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1*	16.04	3.85	P	16.04	3.85
2	292.0	70.00	P	292.0	70.00
3	NR	NR	NR	NR	NR
Average	154.0	36.93		154.0	36.93

P - Periodic discharge NR - Data not reported

^{*}Nickel forming no longer performed at this plant.

^{**}Waste lubricant per mass of nickel tube reduced.

Table V-46

NICKEL-COBALT TUBE REDUCING SPENT LUBRICANTS
RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	Concentrations (mg/1) Source Day 1 Day 2	Day 3
Toxic Pollutants				
11. 1,1,1-trichloroethane	F-18	1	0.014	33
44. methylene chloride	F-18	. 1	0.002	4.75
55. naphthalene	F-18	1	0.001	ND
62. N-nitrosodiphenylamine	F-18	1	ND .	28.2
114. antimony	F-18	1	<0.002	<0.002
115. arsenic	F-18	1	<0.005	0.017
117. beryllium	F-18			<0010
118. cadmium	F-18	1	<0.050	<0.050
119. chromium (total)	F-18	. 1	<0.100	0.680
120. copper	. F-18	1	0.170	43.5
121. cyanide (total)	F-18	- 1	<0.2	<0.2
122. lead	F-18	1	<0.100	47.6
123. mercury	F-18	1	<0.0020	<0.0020
124. nickel	F-18	1	0.200	58.0
125. selenium	F-18	1	<0.010	<0.010
126. silver	F-18	1	<0.002	0.002
127. thallium	F-18	1	<0.005	<0.005
128 zinc	F-18	j. 1	<0.050	63.1
Nonconventional Pollutants				
Aluminum.	F-18	, 1	0.910	23.4
Ammonia Nitrogen	F-18	1	0.04	<0.01
Barium	F-18	1	0.080	1.98

Table V-46 (Continued)

NICKEL-COBALT TUBE REDUCING SPENT LUBRICANTS RAW WASTEWATER SAMPLING DATA

Pollutant	Stream <u>Code</u>	Sample Type	Conc Source	entrations Day 1	s (mg/1) Day 2 Day 3
Nonconventional Pollutants (Continued))				
Boron	F-18	1	<0.100		17.2
Calcium	F-18	1	46.2		7,010
Cobalt	F-18	1	<0.100		<0.100
Iron .	F-18	1	1.37		21.4
Magnesium	F-18	1	12.7		379
Manganese	F-18	1	0.080		4.01
Molybdenum	F-18	1	<0.200		0.620
Phenalics	F-18	1	<0.005		<0.005
Phosphate	F-18	1 .	<4		<4
Sodium	F-18	1	154	•	. 1,260
Sulfate	F-18	1	130		340
Tin	F-18	1.	<0.200		<0.200
Titanium	F-18	1	<0.020		<0.020
Total Dissolved Solids (TDS)	F-18	1	320		360,000
Total Solids (TS) -	F~18	1	330		370,000
Vanadium	F-18	1	<0.010	,	<0.010
Yttrium	F-18	1	<0.020		<0.020
Conventional Pollutants					-
Oil and Grease	F-18	1	<1 .		200,000
Total Suspended Solids (TSS)	F-18	1	22		<1
pH (standard units)	F-18	1	6.64		6.10

Table V-46 (Continued)

NICKEL-COBALT TUBE REDUCING SPENT LUBRICANTS RAW WASTEWATER SAMPLING DATA

- 1. The following toxic pollutants were not detected in this waste stream: 1-10, 12-43, 45-54, 56-61, and 63-88.
- 2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-47 NICKEL-COBALT DRAWING SPENT NEAT OILS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1	NR	NR	100	0.00	0.00
4	36.0	8.64	100	0.00	0.00
4	158	38.0	100	0.00	0.00
5*	1.16	0.28	0.0	1.16	0.28
5*	2.32	0.56	0.0	2.32	0.56
5*	2.32	0.56	0.0	2.32	0.56
2 3	NR	NR	P	NR	NR
3	20.6	4.95	P	NR	NR
6	NR	NR	NR	NR	NR
7	NR	NR	NR	NR	NR
8	NR	NR	NR	NR	NR
Average	36.73	8.83	•	1.93	0.46

P - Periodic discharge NR - Data not reported

^{*}Nickel forming no longer performed at this plant.

Table V-48
NICKEL-COBALT DRAWING SPENT EMULSIONS

Plant	Water L/kkg	Use* gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1 2 3 4 5 6 7 7 8	NR NR NR NR NR 135 135	NR NR NR NR NR 32.3 32.3	P P P P P P P P	NR NR NR NR NR 135 135	NR NR NR NR NR NR 32.3 4.05
Average	95.4	22.9		95.4	22.9

P - Periodic discharge NR - Data not reported

^{*}Waste emulsion per mass of nickel drawn.

Table V-49
NICKEL-COBALT DRAWING SPENT EMULSIONS
RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u> <u>Toxic Pollutants</u>	Stream <u>Code</u>	Sample Type	<u>Cor</u> Source	ncentration Day 1	s (mg/1) Day 2	Day 3
117. beryllium	AS-1	1	-	<0.02		·
118. cadmium	AS-1	1	_	<0.05		
119. chromium (total)	AS-1	1	_	<0.05		
120. copper	AS-1	1	_	50.0		
122. lead	AS-1	1	-	<0.05		
124. nickel	AS-1	1		3.0		
128. zinc	AS-1	1	-	2.6 :		
Nonconventional Pollutants						
Cobalt	AS-1	1	_	<0.05		
Fluoride	AS-1	1	_	<6.	•	
Iron	AS-1	1		17.0		

Table V-49 (Continued)

NICKEL-COBALT DRAWING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	Concentrations (mg/l) Source Day 1 Day 2 Day	3
Nonconventional Pollutants (Continued)				
Molybdenum	AS-1	1	<0.03 - /	
Titanium	`AS-1	1 .	- <0.06	
Conventional Pollutants				
Oil and Grease	AS-1	1	- 2,490.0	
Total Suspended Solids (TSS)	AS-1		- 1,300.0	*

^{1.} No analyses were performed on the following toxic pollutants: 1-116, 121, 123 and 125-127.

Table V-50
NICKEL-COBALT EXTRUSION SPENT LUBRICANTS

Plant	Water	Use	Percent	Wastewater	Discharge
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1	NR	NR	100	0.00	0.00
2	NR	NR	100	0.00	0.00
3	NR	NR	100	0.00	0.00
4	127	30.5	100	0.00	0.00
Average	127	30.5		0.00	0.00

NR - Data not reported

Table V-51

NICKEL-COBALT EXTRUSION PRESS AND SOLUTION HEAT TREATMENT CONTACT COOLING WATER

Plant	Water	Use*	Percent	Wastewater	Discharge
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1 2	46.3	11.1	0.0	46.3	11.1
	120	28.9	P	120	28.9
Average	83.2	20.0	*	83.2	20.0

P - Periodic discharge

^{*}Wastewater generated per mass of nickel-cobalt.

Table V-52

NICKEL-COBALT EXTRUSION PRESS AND SOLUTION HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

	<u>Pollutant</u> .	Stream Code	Sample Type	Conc Source	entrations (mg/l) Day l Day 2 Day 3
Toxi	Pollutants				227 1 24 2 2dy 3
5.	benzidine	E-3	1	0.762	**
11.	l,1,1-trichloroethane	E-3	1	0.005	ND
23.	chloroform	E-3	1	0.015	ND
28.	3,3'-dichlorobenzidine	E-3	1	0.001	ND
36.	2,6-dinitrotoluene	E-3	1	0.002	0.002
37.	1,2-diphenylhydrazine	E-3	1	0.001	ND
43.	bis(2-choroethoxy)methane	E-3	1	0.001	ND
55.	naphthaílene	E-3	1	0.001	ND .
61.	N-nitrosodimethylamine	E-3	1	0.001	**
63.	N-nitrosodi-n-propylamine	E-3	1	0.024	0.022
66.	bis(2-ethylhexyl) phthalate	E-3	1	0.001	0.001
67.	butyl benzyl phthalate	E-3	1	0.001	ND
6 9.	di-n-octyl phthalate	E-3	1 .	ND	0.004
70.	diethyl phthalate	E-3	1 .	. **	ND
114.	antimony	E-3	1	<0.005	<0.005
115.	arsenic	E-3	1	···<0.005	<0.005
117.	beryllium	E-3	1	<0.010	<0.010
118.	cadmium	E-3	1	<0.050	<0.050
119.	chromium (total)	E-3	1	<0.100	0.130
120.	copper	E-3	1	0.080	0.050
121.	cyanide (total)	E-3	1	<0.02	<0.02
122.	lead	E-3	1	<0.100	<0.100
		• •			

Table V-52 (Continued)

-	Table V-52	(Cont mue			
NICKEL-COBALT EXTRUSION PRES	S AND SOLUTI W WASTEWATER	ON HEAT TE SAMPLING	REATMENT CONTAC DATA	T COOLING WATER	
	Stream	Sample	Concentr	ations (mg/l)	
Pollutant_	Code	Туре	Source Da	y 1 Day 2	Day 3
Toxic Pollutants (Continued)					
123. mercury	E-3	1	<0.0010	<0.0010	
124. nickel	E-3	1	<0.100	0.140	
125. șelenium	E-3	1	<0.010	<0.010	
126. silver	E-3	1	<0.002	<0.002	
127. thallium	E-3	1	<0.002	<0.002	
128. zinc	E-3	1	<0.050	0.070	
Nonconventional Pollutants	emonate of the second of the s		e e una e una mandamentamentamentamentamente de la lac	e el se millo accesto minimo en el secono minimo el secono del secono el secono del secono el secono del secono el sec	the analyses of the late
Acidity	E-3	1	<1	<1	
Alkalinity	E-3	• 1	83	55	
Aluminum	E-3	1	0.300 :	0.080	
Ammonia Nitrogen	E-3	1	0.22	0.13	
Barium	E-3	1 .	0.060	0.050	
Boron	E-3	1	0.170	0.600	
Calcium	. E-3	1 ,	33.0	24.4 33	
Chemical Oxygen Demand	E-3		. 34		·,
Chloride	E-3	1	26	15 <0.100	
Cobalt	E-3	1	<0.100	0.83	
Fluoride	E-3	1	0.44	0.83	
Iron	E-3	1	1.0	10.2	
Magnesium .	E-3	1	15.8	0.014	
Manganese	E-3	1	0.140	<0.200	
Molybdenum	E-3	1	<0.200	, \0.200	

Table V-52 (Continued)

NICKEL-COBALT EXTRUSION PRESS AND SOLUTION HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	Conc Source	entrations (mg/1) Day 1 Day 2 Day 3
Nonconventional Pollutants (Continued)				
Phenolics	E-3	1	0.014	0.021
Phosphate	E-3	1	16	12
Sodium	E-3	1	33.0	26.6
Sulfate	E-3	1	170	150
Tin	E-3	1	<0.200	<0.200
Titanium	E-3	1	<0.020	<0.020
Total Dissolved Solids (TDS)	E-3	1	330	170
Total Organic Carbon (TOC)	E-3	1	<1	<1
Total Solids (TS)	E-3	1	380	230
Vanadium	E-3	1	<0.010	<0.010
Yttrium	E-3	1	<0.020	<0.020
Conventional Pollutants				
Oil and Grease	E-3	1	<1	7
Total Suspended Solids (TSS)	E-3	1	29	3.0
pH (standard units)	E-3	1	6.71	7.39

^{1.} The following toxic pollutants were not detected in this waste stream: 1-4, 6-10, 12-22, 24-27, 29-35, 38-42, 44-54, 56-60, 62, 64, 65, 68, and 71-88.

^{2.} No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-53
NICKEL-COBALT EXTRUSION PRESS HYDRAULIC FLUID LEAKAGE

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1	NR	NR	NR	231.9	55.60
Average	NR	NR.	•	231.9	55.60

NR - Data not reported

Table V-54

NICKEL-COBALT EXTRUSION PRESS HYDRAULIC FLUID LEAKAGE
RAW WASTEWATER SAMPLING DATA

		Stream	Sample		entration		
	<u>Pollutant</u>	Code	Type	Source	Day 1	Day 2	Day 3
Toxic	Pollutants	e.					
5.	benzidine	E-6	3	0.762	0.010	1.159	0.576
11.	1,1,1-trichloroethane	E-6	1	0.005	0.540	0.720	0.820
12.	hexachloroethane	E-6	3	ND	ND	0.006	ND
13.	1,1-dichloroethane	E-6	1	ND	ND	ND	0.005
22.	p-chloro-m-cresol	E-6	3	ND	0.680	ND	**
23.	chloroform	E-6	1	0.015	ND	ND	ND
28.	3,3'-dichlorobenzidine.	E-6	3	0.001	0.810	0.010	0.019
34.	2,4-dimethylphenol	E-6	3	ND	**	**	ND
36.	2,6-dinitrotoluene	E-6	3	0.002	0.001	0.001	0.086
37.	1,2-diphenylhydrazine	E-6	3	0.001	0.001	0.001	0.001
39.	fluoranthene	E-6	3	NĐ	0.001	0.001	0.001
43.	bis(2-choroethoxy)methane	E-6	3	0.001	ND	0.001	0.002
44.	methylene chloride	E-6	1	ND	0.160	ND	ND
55.	naphthalene	E-6	3	0.001	0.002	0.001	0.002
61.	N-nitrosodimethylamine	E-6	3	0.001	0.001	0.001	0.001
63.	N-nitrosodi-n-propylamine	E-6	3 .	0.024	0.018	0.021	0.016
65.	phenol	E-6	3	ND	**	**	**
66.	bis(2-ethylhexyl) phthalate	E-6	. 3	0.001	. **	0.003	**
67.	butyl benzyl phthalate	E-6	3	0.001	0.003	0.002	0.005
70.	diethyl phthalate	E-6	3 -	**	. ND	0.001	NĐ
71.	dimethyl phthalate	E-6	3	ND	ND	0.004	ND
72.	benzo(a)anthracene	E-6	3	ND	ND	ИĎ	**

Table V-54 (Continued)

NICKEL-COBALT EXTRUSION PRESS HYDRAULIC FLUID LEAKAGE RAW WASTEWATER SAMPLING DATA

	• •		Stream	Sample	Conc	entration	s (mq/l)		
	Pollutant		Code	Туре	Source	Day 1	Day 2	Day 3	
Toxic	Pollutants (Continued)								
	•		*		•				
73.	benzo(a)pyrene		E-6	·3	ND	17.40	ND	ND	
75.	benzo(k)fluoranthane		E-6	3	ND	**	ND	ИП	
76.	chrysene		E-6	3	ND	ИD	ND	**	
- 78.	anthracene		E-6	3	ND	0002	ND	0.002	
81.	phenanthrene .	1	E-6	3	ND	- ND	0.001	ND	
83	indeno(1,2,3-c,d)pyrene	· *** * ***	E-6	3	ND	ND .	ND	0.001	
84.	pyrene		E-6	3	ND	0.001	0.001	0.001	
114.	antimony		E-6	.3	<0.005	<0.005	<0.005	<0.005	
115.	arsenic		E-6	3	<0.005	<0.005	<0.005	<0.005	
117.	beryllium		E-6	1 ·	<0.010	. <0.010	<0.010	<0.010	
118.	cadmium		E-6	, " , "3	<0.050	<0.050	<0.050	<0.050	
.119.	chromium (total)	•	E-6	3	<0.100	<0.100	<0.100	<0.100	
120.	copper		E-6	3	0.080	0.620	0.180	0.750	
121.	cyanide (total)		E-6	. ±1	<0.02	<0.02	<0.02	<0.02	
122.	lead		E-6	3	<0.100	0.240	0.220	0.190	
123.	mercury		E-6	. 3	<0.0010	<0.0010	<0.0010	<0.0010	
124.	nickel		E-6	.3	<0.100	0.510	<0.100	1.30	
125.	selenium		E-6	3	<0.010	<0.010	<0.010	<0.010	
126.	silver	•	E-6	. 3	<0.002	<0.002	<0.002	<0.002	
127.	thallium	-	E-6	3	<0.002	<0.002	<0.002	<0.002	

8

Table V-54 (Continued)

NICKEL-COBALT EXTRUSION PRESS HYDRAULIC FLUID LEAKAGE RAW WASTEWATER SAMPLING DATA

Pollutant	Stream <u>Code</u>	Sample Type	Conc Source	entration Day 1	s (mg/l) Day 2	Day 3
Toxic Pollutants (Continued) 128. zinc	E-6	3	<0.050	0.310	0.100	0.240
Nonconventional Pollutants	_		<1	<1	<1	<1
Acidity	E-6.	3		120	150	150
Alkalinity	E-6	3	83			0.500
A l'uminum	E-6	3	0.300	0.800	0.200	
Ammonia Nitrogen	E-6	3	0.22	0.19	0.19	0.37
•	E-6	· 3	0.060	0.120	0.080	0.070
Barium	E-6	. з	0.170	0.400	0.140	0.460
Boron	E-6	3	33.0	34.2	32.8	30.4
Calcium	E-6	3	34	330	.18	890
Chemical Oxygen Demand		3	26	24	24	21 .
Chloride	E-6			<0.100	<0.100	<0.100
Cobalt	E-6	3	<0.100		0.69	0.64
Fluoride	E-6	ż	0.44	0.39		2.4
Iron	E-6	3	1.0	3.5	1.6	
Magnesium	E-6	3	15.8	14.4	15.0	13.3
_	E-6	3	0.140	0.100	0.080	0.110
'Manganese	E-6	3	<0.200	<0.200	<0.200	<0.200
Molybdenum	E6	. 1	0.014	8.5	2.421	9.52
Phenolics		3	16	21	18	30
Phosphate	E-6		33	71	75	80
Sodium	E-6	3	, აა	.,		

Table V-54 (Continued)

NICKEL-COBALT EXTRUSION PRESS HYDRAULIC FLUID LEAKAGE RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	<u>Cor</u> Source	centratio	ns (mg/1) Day 2	Day 3
Nonconventional Pollutants (Continued)			-	<u> </u>	<u> </u>	<u>54y 5</u>
Sulfate	-E-6	3	170	170	190	190
Tin	E-6	3	<0.200	<0.200	<0.200	<0.200
Titanium	E-6	3	<0.020	<0.020	<0.020	<0.020
Total Dissolved Solids (TDS)	E-6	3	330	470	360	580
Total Organic Carbon (TOC)	E-6	3	<1	68	89	110
Total Solids (TS)	E-6 ·	3	380	590	470	800
Vanadium	E-6	3	<0.010	<0.010	<0.010	<0.010
Yttrium	E-6	3 ·	<0.020	≺0.020	<0.020	<0.020
Conventional Pollutants						·
Oil and Grease	E-6	1	<1	350	340	420
Total Suspended Solids (TSS)	E-6	3	29	220	33.0	250
pH (standard units)	E-6	3	6.71	6.12	6.56	6.91

**Present, but not quantifiable.

- 1. Toxic pollutants 89-113 were analyzed in this waste stream.
- 2. The following toxic pollutants were not detected in this waste stream: 1-4, 6-10, 14-21, 24-27, 29-33, 35, 38, 40-42, 45-54, 56-60, 62, 64, 68, 69, 74, 77, 79, 80, 82, and 85-113.
- 3. No analyses were performed on the following toxic pollutants: 116 and 129.

Table V-55
NICKEL-COBALT FORGING SPENT LUBRICANTS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1	2.10	0.50	100	0.00	0.00
1	6.80	1.63	100	0.00	0.00
5	NR	NR	100	0.00	0.00
3	NR	NR	NR	0.00	0.00
2*	NR	NR	P	2.55	0.61
4	NR	NR	NR	NR	NR
Average	4.45	1.07		2.55	0.61

P - Periodic discharge NR - Data not reported

^{*}This plant no longer forms nickel.

Table V-56
NICKEL-COBALT FORGING CONTACT COOLING WATER

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1 2 3 4	1,197 208.2 225.3 417.0	287.0 49.94 54.02 100.0	95.5 0.0 0.0 0.0	53.52 208.2 225.3 417.0	12.83 49.94 54.02 100.0
5 · · · 6	323.4 NR	77.56 NR	0.0 NR	323.4 NR	77.56 NR
Average	474.1	113.7	* .	245.5	58.9

NR - Data not reported

Table V-57

	Pollutant	Stream Code	Sample Type	Conce Source	ntrations (mg/l) Day 1 Day 2	Day 3
Toxic	Pollutants					
11.	1,1,1-trich1oroethane	D-6	1	0.009	0.030	
13.	1,1-dichloroethane	D-6	1	ND	0.012	
23.	chloroform	D-6	1	0.144	0.022	
44.	methylene chloride	D-6	1 .	ND	0.071	
66.	bis(2-ethylhexyl) phthalate	D-6	1	0.009	0.002	
86.	toluene	D-6	1	ND	0.005	
114.	antimony	D-6	1	<0.003	<0.003	
115.	arsenic	D-6	1	<0.003	<0.003	
117.	beryllium	D-6	1	<0.0005	0.077	
118.	cadmium	D-6	1	<0.002	0.26	,
119.	chromium (total)	D-6	1	0.042	0.69	
120.	copper	D-6	1	0.068	3.4	
122.	lead	D-6	1	<0.084	<0.084	
123.	mercury	D-6	- 1	<0.0002	<0.002	
124.	nickel	D-6	1 .	<0.003	16	
125.	selenium	D-6	1	<0.003	. <0.003	

Table V-57 (Continued)

Pollutant	Stream Code	Sample Type	Source	entratio Day 1	ns (mg/1) Day 2	Day 3
Toxic Pollutants (Continued)				· 201		
126. silver	D-6	1	<0.001		<0.001	
127. thallium	D-6	1	<0.003		<0.003	
128. zinc	D-6	1	0.038		0.054	
Nonconventional Pollutants					·	•
Acidity	D-6	1	<1		<1	
Alkalinity	D-6.	1	180	Managana arang	250	matematical of the second
Aluminum	D-6	1	<0.050		0.93	==
Ammonia Nitrogen	D-6	1	< 1		0.30	
Barium	D-6	1	0.12		0.066	$x_{i}(x) = \frac{1}{\lambda} \left(\frac{1}{\lambda} \left(\frac{x_{i}(x)}{\lambda} \right) \right)$
Boron	Ď~6	1	<0.009		0.91	
Calcium	D-6	<u>_1</u>	63		. 66	
Chemical Oxygen Demand	D-6	· 1	<5		<5	
Chloride	D-6	1 .	34		37	
Cobalt	D-6	1	<0.006		0.61	**************************************
Fluoride	D-6	1	0.45		0.81	
Iron	D~6	1 .	0.066		4.0	
η.		**				

Table V-57 (Continued)

Pollutant	Stream Code	Sample Type	Conce Source	ntrations (mg/1) Day 1 Day 2 D	ay 3
Nonconventional Pollutants (Continued	1)				
Magnesium	D- 6	1	24	24	
Manganese	D-6	1	0.012	0.24	
Molybdenum	D-6	1	0.030	4.9	
Phosphate	D-6	1	<4	<4	
Sodium	D-6	1	9.5	9.4	
Sulfate	D-6	1	53	37	
Tin	D-6	1	<0.12	<0.12	
Titanium .	D-6	1	<0.005	0.62	
Total Dissolved Solids (TDS)	D-6	1	393	310	
Total Organic Carbon (TOC)	D-6	1	8	30	
Total Solids (TS)	D-6	1	395	2,300	
Vanadium	D-6	1	0.016	0.33	
Yttrium	D-6	1	<0.002	0.002	

588

<u>Pollutant</u>	Stream Code	Sample Type	Conc Source	centrations (mg/l) Day 1 Day 2	Day 3
Conventional Pollutants					
Oil and Grease	D-6	1	<1	<1	
Total Suspended Solids (TSS)	D-6	1	<1	1,800	
pH (standard units)	D-6	1	7.14	7.63	

1. The following toxic pollutants were not detected in this waste stream: 1-10, 12, 14-22, 24-43, 45-65, 67-85, 87, and 88.

2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-58

NICKEL-COBALT FORGING EQUIPMENT CLEANING WASTEWATER

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1	13.9 66.1	3.33 15.8	0.0	13.9 66.1	3.33 15.8
Average	40.0	9.57		40.0	9.57

Table V-59
NICKEL-COBALT FORGING PRESS HYDRAULIC FLUID LEAKAGE

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1	NR	NR	NR	187.0	44.84
Average	NR	NR		187.0	44.84

NR - Data not reported

Table V-60
•NICKEL-COBALT FORGING PRESS HYDRAULIC FLUID LEAKAGE
RAW WASTEWATER SAMPLING DATA

		Stream	Sample	Concentra	
	<u>Pollutant</u>	Code	Type	Source Day	1 089 2 047
Toxic	Pollutants				- 0
11.	1,1,1-trichloroethane	D-7	1	0.009	2.050
13.	1,1-dichloroethane	D-7	1	ND	0.374
23.	chloroform	. D-7	1	0.144	ND
44.	methylene chloride	D-7	1	0.002	0.012
66.	bis(2-ethylhexyl) phthalate	D-7	1	0.009	. 0.175
81.	phenanthrene	D-7	1	ND	0.087
	antimony "	D-7	1	<0.003	<0.003
114.	•	D ~ 7	1	<0.003	<0.003
115.	arsenic	D-7	1	<0.0005	<0.0005
117.	beryllium	D-7	1	0.002	0.012
118.	cadmium	D-7	1	D.042	0.19
119.	chromium (total)			0.068	1.0
120.	copper	D-7	. 1		0.40
122.	lead	D-7	1	<0.084	
123.	mercury	D-7	. 1 .	<0.0002	<0.0002
124.	nickel	D-7	. 1	<0.003	0.64
125.	selenium	·D~7	1	<0.003	<0.003
126.	silver .	D-7	1	<0.001	<0.001
127.	thallium	D-7	1	<0.003	<0.003

Table V-60 (Continued)

NICKEL-COBALT FORGING PRESS HYDRAULIC FLUID LEAKAGE RAW WASTEWATER SAMPLING DATA

Pollutan	<u>t</u> .	-	Stream Code	Sample Type	Conc Source	entrations (mg/1) Day 1 Day 2	Day 3
Toxic Pollutants (C	ontinued)		•	• •			
128. zinc	· · · · · · · · · · · · · · · · · · ·		D-7	. 1	0.038	0.26_	
Nonconventional Pol	lutants	·					
Acidity		•	D-7	1	<1	<1	
Alkalinity	,		D-7	1	180	220	
Aluminum			D-7	1	<0.050	<0.050	
Ammonia Nitrogen			D-7	. 1	<1	0.25	
Barium			D-7	1	0.12	0.23	ene aproving provides a transference conserva-
Boron			D-7	1	<0.009	0.12	
Calcium	* * * * * * * * * * * * * * * * * * *		D-7	1	63	75	# \$ ** - **
Chemical Oxygen Dem	and ***	1	D-7	11111	<5	4,110	dit are
Chloride			D-7	1	34	47	:
Cobalt	. J.		D-7	1	<0.006	0.099	
Fluoride			D-7	1	0.45	0.97	
Iron		•	D-7	, 11	0.066	2.1	
Magnesium	•		D-7	1	24	. 26	·
Manganese			D-7	1	0.012	0.083	
Molybdenum			D-7	1	0.030	0.24	
Phosphate		•	D-7	1.4	<4	<4	- 1
Sodium	* * * * * * * * * * * * * * * * * * * *		D-7	1	9.5	27	
Sulfate			D-7	1	.53	110	- "

Table V-60 (Continued)

NICKEL-COBALT FORGING PRESS HYDRAULIC FLUID LEAKAGE RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	Source	entrations (mg/l) Day 1 Day 2	Day 3
Nonconventional Pollutants (Continued)		1		
Tin	D~7	1	<0.12	<0.12	
Titanium	D-7	1	<0.005	0.11	
Total Dissolved Solids (TDS)	D-7	1	393	1,480	•
Total Organic Carbon (TOC)	D-7	1	8	470	
Total Solids (TS)	D-7	1	395	2,000	
Vanadium	D-7	, 1	0.016	<0.002	
Yttrium	D-7	1	<0.002	0.26	
Conventional Pollutants				•	
Oil and Grease	D-7	1	<1	17 .	ē
Total Suspended Solids (TSS)	D-7	1	<1	500	
pH (standard units)	D-7 ·	1	7.14	6.81	

^{1.} The following toxic pollutants were not detected in this waste stream: 1-10, 12, 14-22, 24-43, 45-65, 67-80, and 82-88.

^{2.} No analyses were performed on the following toxic pollutants: 89-113, 116, 121, and 129.

Table V-61

NICKEL-COBALT METAL POWDER PRODUCTION ATOMIZATION WASTEWATER

	Wate:	r Use	Percent	Wastewa	ter Discharge
Plant	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1	2,594	622.0	0.0	1,277	306.3
2	2,020	484.0	0.0	2,020	484.4
3	NR	NR	NR	2,429	582.5
4	2,623	628.9	0.0	2,623	628.9
. 1	8,840	2,120	0.0	5,291	1,269
5	16,960	4,066	0.0	16,960	4,066
6	75,270 ·	18,050	0.0	75,270	18,050
Average	18,050	4,329	•	15,120	3,627

NR - Data not reported

Table V-62

NICKEL-COBALT METAL POWDER PRODUCTION ATOMIZATION WASTEWATER RAW WASTEWATER SAMPLING DATA

*	Pollutant	Stream <u>Code</u>	Sample Type	Conc Source	entration Day 1	s (mg/1) Day 2	Day 3
Toxic	Pollutants						
114.	antimony	D-19	1	<0.003	<0.003		
115.	arsenic	D-19 S-3	1 2	<0.003 <0.01	<0.003 <0.01		
117.	beryllium	D-19 BJ-1	1 2	<0.0005	<0.0005 <0.05		
118.	cadmium	D-19 S-3	1 · 2	<0.002 <0.05	0.008		
		BJ-1	2	~0.05	<0.05 0.004		
119.	chromium (total)	D-19 S-3 T-1 BJ-1	1 2 6 2	0.042 <0.05 <0.01	1.0 54.9 8.3 0.38	0.22	0.026
120.	copper	D-19 S-3	1 2	0.068 <0.05	<0.031 2.080		
•		T-1 BJ-1	6 2	0.048	45.000 3.200	5.400	0.0044
121.	cyanide (total)	S-3 T-1	1 1	<0.01 <0.01	<0.01	<0.01	<0.01
122.	lead	D-19 S-3 T-1 BJ-1	1 2 6 2	<0.084 <0.1 <0.005	<0.084 <0.1 <0.005 0.240	<0.005	<0.0054
123.	mercury	D-19 S-3	1 2	<0.0002 <0.0002	<0.0002 <0.0002	-	
124.	nickel	D-19 S-3 T-1 BJ-1	1 2 6 2	0.075	0.42 180.0 81.0 210.0	1.600	1.100

Table V-62 (Continued)

NICKEL-COBALT METAL POWDER PRODUCTION ATOMIZATION WASTEWATER . RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Conc	entration	s (mg/1)	
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3
	•					
Toxic Pollutants (Continued)					. /	
125. selenium	D-19	11	<0.003	<0.003		
126. silver	D-19	1	<0.001	0.006		
127. thallium	D-19	1	<0.003	0.006		
128. zinc	D-19 S-3.	1 2	0.038 <0.05	0.22	• •	
	BJ-1	2	······································	0.330	ar anningaren et en fre en fre anningaren e	reconstruction from the type ==
Nonconventional Pollutants						
Acidity	D-19 T-1	1 6	<1 · 0	<1	. 0	.0.
Alkalinity	.D1.8	1	180	4.1		ŧ
Aluminum	D-19 S-3 T-1	1 2 6	<0.050 <0.2 0.14	<0.050 0.292 0.630	0.110	0.041

Table V-62 (Continued)

NICKEL-COBALT METAL POWDER PRODUCTION ATOMIZATION WASTEWATER RAW WASTEWATER SAMPLING DATA

Pollutant	Stream <u>Code</u>	Sample Type	Cor Source	ocentration Day 1	s (mg/1) Day 2	Day 3
Nonconventional Pollutants (Continued)					
Ammonia Nitrogen	D-19	1	<1	<1		
Barium	D-19	1	0.12	<0.001		
Boron	D-19	1	<0.009	0.15		
Calcium .	D-19	1	63	1.4		
Chemical Oxygen Demand	D-19	1 "	<5	<5		
Ch1oride 5	D-19	1	34	<0.01		
Cobalt	D-19 S-3 T-1 BJ-1	1 2 6 2	<0.006 <0.1 <0.01	5.2 0.270 11.000 .0.100	0.250	0.240
Fluoride	D-19 S-3 T-1 BJ-1	1 2 6 2	0.45 <0.1 1.01	11 <0.1 <0.1	0.89	0.95
Iron	D-19 S-3 T-1 BJ-1	1 2 6 2	0.066 0.122 0.27	0.29 142.0 40.0 10.3	0.46	0.280
Magnesium	D-19	. 1	24	0.51		
Manganese	D-19	1	0.012	0.22		
Molybdenum ·	D-19 BJ-1	1 2	0.030	3.1		
Phosphate	. D-19	. 1	<4	<4		-
Sodium .	D-19	1	9.5	1.3		
Sulfate	D-19	1	53	8.7		

Table V-62 (Continued)

NICKEL-COBALT METAL POWDER PRODUCTION ATOMIZATION WASTEWATER RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	Conc Source	entrations Day 1	mg/1) Day 2	Day 3
Nonconventional Pollutants (Continued)				•		
Tin	D-19	1	<0.12	<0.12		-
Titanium	D-19 BJ-1	1 2	<0.005	0.031 0.210		
Total-Dissolved-Solids-(TDS)	D=19		3939.,	000	A TOTAL SECURITY AND SECURITY ASSESSMENT OF THE	and the state of t
Total Organic Carbon (TOC)	D-19	1	8	2		
Total Solids (TS)	D-19	1	395 10,	000		
Vanadium	D-19	1	0.016	0.017	•	
Vttrium	D-19	1	<0.002	0.002 -	•	

Table V-62 (Continued)

NIGKEL-COBALT METAL POWDER PRODUCTION ATOMIZATION WASTEWATER RAW WASTEWATER SAMPLING DATA

Pollutant	Stream <u>Code</u>	Sample Type	Concentrations (mg/1) Source Day 1 Day 2 Day 3
Conventional Pollutants			
Oil and Grease	D-19 S-3 T-1	1 1 1	<1 <1 <1 <1 <1 <0.1;0.4 0.1;1.1 0.1;6.1 0.3;5.1
Total Suspended Solids (TSS)	D-19 S-3 T-1	1 2 6	<1 <1 <1 <0.1 317 1.0 10.0 12.0
pH (standard units)	D-19 S-1 T-1	1 2 6	7.14 5.54 7.2-8.3 7.7 7.76

- 1. No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.
- 2. Note that stream code T-1 also appears on the metal powders metal powder production wet atomization wastewater raw wastewater sampling data table. The wastewater is derived from an operation in both subcategories.

Table V-63
NICKEL-COBALT STATIONARY CASTING CONTACT COOLING WATER

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1 2	7,193 17,030	1,725 4,084	100	0.00 16,755 4	0.00 ,018
Average	12,112	2,904	•	16,755 4	,018

Table V-64
NICKEL-COBALT VACUUM MELTING STEAM CONDENSATE

Plant	.Water	Use	Percent	Wastewater	Discharge
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1	NR	NR	NR	0.00	0.00
2	6,955	1,665	98.0	139.0	33.33
Average	6,955	1,665	•	139.0	33.33

NR - Data not reported

Table V-65
NICKEL-COBALT VACUUM MELTING STEAM CONDENSATE
RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	Conce Source	entration Day 1	s (mg/l) Day 2	Day 3
Toxic Pollutants			e e e		•	
5. benzidine	E-4	· 1	0.762		**	
11. 1,1,1-trichloroethane	E-4	1	0.005		0.001	
12. hexachloroethane	E-4	1	ND	• .	0.004	
23. chloroform	E-4	1	0,015		ND	
283,3'-dichlorobenzidine	E-4	. 11	_ 0.001		ND	
36. 2,6-dinitrotoluene	E-4	1	ND	=	0.002	7.
~37.: 1,2-diphenylhydrazine	E-4	··· ; 1···	0.001		ND	
43. bis(2-choroethoxy)methane	E-4	1	0.001		ND	
55. naphthalene	E-4	. 1	0.001	* *****	0.001	• • • • • • • • • • • • • • • • • • • •
61. N-nitrosodimethylamine	i E-4	1	0.001	•	· ND ·	
63. N-nitrosodi-n-propylamine	E-4	1 1	0.024		0.018	· · · · · · · · · · · · · · · · · · ·
66. bis(2-ethylhexyl) phthalate	E-4	1	0.001	*	0.001	14
67. butyl benzyl phthalate	E-4	1	0.001		ND	
70. diethyl phthalate	E-4	1 .	- **		**	· 7,
114. antimony	E-4	1	<0.005		<0.005	• •
115. 'arsenic	E-4	1	<0.005	5	<0.005	
117. beryllium	E-4	1	<0.010		<0.010	•
118. cadmium	E-4	. 1	<0.050	- :	<0.050	1
119. chromium (total)	E-4	, , 1	<0.100	'	<0.100	
120. copper	E-4	. 1	0.080		0.060	
121. cyanide (total)	E-4	1	<0.02		<0.02	•
122. lead	E-4	1	<0.100	-	<0.100	•.

Table V-65 (Continued)

NICKEL-COBALT VACUUM MELTING STEAM CONDENSATE RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	Concent Source Da	rations (mg/l) ay 1 Day 2	Day 3
Toxic Pollutants (Continued)					
123. mercury	E-4	1	<0.0010	<0.0010	
124. nickel	E-4	1	<0.100	<0.100	
125. selenium	E-4	1	<0.010	<0.010	
126. silver	E-4	1	<0.002	<0.002	
127. thallium	E-4	1	<0.002	<0.002	
128. zinc	E-4	1	<0.050	0.050	
Nonconventional Pollutants					
Acidity	E-4	1	<1	<1	
Alkalinity	E-4	1	83 .	16	
Aluminum	E-4	1	0.300	0.140	
Ammonia Nitrogen	E-4	1	0.22	0.23	
Barium	E-4	1	0.060	<0.020	
Boron	E-4	1	0.170	<0.100	
Calcium	E-4	1	33.0	10.3	
Chemical Oxygen Demand	E-4	1	34	<0.02	
Chloride	E-4	1	26	6.3	
Cobalt	E-4	1	<0.100	<0.100	
Fluoride	E-4	1	0.44	1.7	-
Iron	E-4	1	1.00	0.05	
Magnesium	E-4	1	15.8	3.4	

Table V-65 (Continued)

NICKEL-COBALT VACUUM MELTING STEAM CONDENSATE RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Conce	Doy 2	
Pollutant	<u>Code</u>	Туре	Source	Day 1 Day 2	Day 3
Nonconventional Pollutants (Continued					
Manganese	E-4	. 1	0.140	0.280	
Molybdenum	E-4	1	<0.200	<0.200	
Phenolics	. E-4	1	0.014	0.006	
Phosphate	E-4	1	16	11	
Sodium	E-4	1	33.0	10.2	
Sulfate	E-4		170	58	
Tin	E-4	1	<0.200	<0.200	
Titanium : .	E-4	. 1	<0.020	<0.020	
Total Dissolved Solids (TDS)	E-4	1 .	330	32	•
Total Organic Carbon (TOC)	E-4	1	<1	<1	
Total Solids (TS)	E-4	. 1	380	46	
Vanadium	E-4,	1	<0.010	<0.010	
Yttrium	E-4	, 1	<0.020	<0.020	
Conventional Pollutants					
Oil and Grease	E-4	1	<1	6	
Total Suspended Solids (TSS)	E-4	1	29	4.3	
pH (standard units) -	E-4	1	6.71	6.20	en en en gran d'a

^{1.} The following toxic pollutants were not detected in this waste stream: 1-4, 6-10, 13-22, 24-27, 29-35, 38-42, 44-54, 56-60, 62, 64, 65, 68, 69, and 71-88.

^{2.} No analyses were performed on the following toxic'pollutants: 89-113, 116, and 129.

NICKEL-COBALT ANNEALING AND SOLUTION HEAT TREATMENT CONTACT COOLING WATER

Table V-66

Plant	Wate: L/kkg	r Use gal/ton	Percent Recycle	Wastewato L/kkg	er Discharge gal/ton
1	NR	NR	100	0.00	0.00
12	NR	NR	100	0.00	0.00
2	133.4	32.00	0.0	0.00	0.00
1	7,028	1,685	100	0.00	0.00
3	19,060	4,571	<100	0.00	0.00
1	2,002	480.1	100	0.00	0.00
2 13 1 13 4 5 6 7 8 9	0.27	0.06	0.0	0.27	0.06
1.	NR	NR	NR	2.82	0.68
3	111,000	26,560	99.99	13.56	3.25
4	NR	NR	NR	45.00	10.79
5	444.6	106.6	0.0	222.3	53.31
6	697.6	167.3	0.0	697.6	167.3
7	NR	NR	P	760.6	182.4
8	1,334	319.9	0.0	1,334	319.9
9	3,236	776.1	0.0	3,236	776.1
10	3,470	832.2	0.0	3,470	832.2
11	171,500	41,120	95.6	7,621	1,828
13	178,900	42,910	0.0	178,900	42,910
14	NR	NR	NR	NR	NR
15	NR	NR	0.0	NR	NR
16	NR	NR	NR	NR	NR
17	NR	NR	NR	NR	NR
Average	38,370	9,197	:	16,360	3,924

P - Periodic discharge NR - Data not reported

Table V-67

NICKEL-COBALT ANNEALING AND SOLUTION HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Conc	entration	ns (mg/l)	
Pollutant	_Code	Type	Source	Day 1	Day 2	Day 3
Toxic Pollutants						٠
11. 1,1,1-trichloroethane	F-17	1	0.014		ND	
44. methylene chloride	F-17	1	0.002		0.267	-
55. naphthalene	F-17	1	0.001		ND	
66. bis(2-ethylhexyl) phthalate	F-17	1	ND		0.005	
114. antimony	D-8 F-17	1	<0.003 <0.002		<0.003 <0.002	
115. arsenic	D-8 F-17	. 1	<0.003 <0.005	. u.v	<0.003 <0.005	a naggan almana ini ani almana garagagay (
117. beryllium	D-8 F-17	1 1	<0.0005 <0.010	,	<0.0005 <0.010	
118. cadmium	D-8 F-17	1 :	<0.002 <0.050		<0.002 <0.050	•
119. chromium (total)	D-8 F-1 7	1 1	0.042 <0.100		0.10 <0.100	
120. copper	D-8 F-17	1 1	0.068 0.170		0.028 2.92	
121. cyanide	F-1.7	1.	<0.02	· <u>-</u>	<0.02	
122. lead	D-8 F-17	1 1	<0.084 <0.100	* * * * * * * * * * * * * * * * * * *	<0.084 <0.100	
123. mercury	D-8 F-17	1 1	<0.0002 <0.0020		<0.0002 <0.0020	
124. nickel	D-8 F-17	· - 1	<0.003 0.200		0.49 6.80	
125: selenium	D-8	1 1	<0.003 <0.010		<0.003 <0.010	

Table V~67 (Continued)

NICKEL-COBALT ANNEALING AND SOLUTION HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

	Stream			entrations (mg/1)	
Pollutant	Code	Type	Source	Day 1 Day 2 Day 3	
Toxic Pollutants (Continued)					
126. silver	D-8 F-17	1 1	<0.001 <0.002	<0.001 0.003	
127. thallium	D-8 F-17	1 1	<0.003 <0.005	<0.003 0.006	
128. zinc	D-8 F-17	1 1	<0.038 <0.050	0.018 0.760	
Nonconventional Pollutants					
Acidity	D-8 F-17	1	<1 <1	<1 <1	
Alkalinity	D-8 . F-17	† 1	180 61	170 98	
Aluminum	D-8 F-17	1 1	<0.050 0.910	<0.050 0.840	
Ammonia Nitrogen	D-8 F-17	1	<1 0.04	0.14 0.04	
Barium	D-8 F-17	1 1	0.12 0.080	0.14 0.020	
Boron	D-8 F-17	1 1	<0.009 <0.100	<0.009 4.11	
Calcium	D-8 F-17	1	63 46.2	60 41.3	
Chemical Oxygen Demand	D-8 F-17	1 1	<5 <1	<5 4,000	
Chloride	D-8 F-17	1 1	34 12	45 23	
Cobalt	D-8 F-17	1	<0.006 <0.100	0.046 <0.100	

Table V-67 (Continued)

NIGKEL-COBALT ANNEALING AND SOLUTION HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	Conc Source	entrations (mg/l) Day 1 Day 2	Day 3
Nonconventional Pollutants (Continued))				•
Fluoride	D-8 F-17	1 1	0.45 0.43	1.8 9.6	
Iron	D-8 F-17	1 1	0.066 1.37	0.17 19.2	
Magnesium	D-8 F-17	1 1	24 12.7	26 9.30	
Manganese	D=8- F-17	.1	0.012	0.050 5.50	www.go.go.krakaka w.a.kadaka +11 99999
Molybdenum	D-8 F-17	. 1 1	0.030 <0.200	1.5	
Phenolics	F-17	1	<0.005	<0.005	•
Phosphate	D-8 F-17	1	<4 <4	<4 29,000	
Sodium	D-8 F-17	1 1	9.5 154	12 26.8	-
Sulfate	D-8 F-17	1 1	53 130	60 81	
Tin	D-8 F-17	1 1	<0.12 <0.200	<0.12 <0.200	
Titanium	D-8 F-17	1 1	<0.005 <0.020	<0.005 0.040	
Total Dissolved Solids (TDS);	D-8 F-17	1 1	393 320	510 430	
Total Organic Carbon (TOC)	D-8 F-17	1 1	8 2	13 1,340	
Total Solids (TS)	D-8 F-17	1 1	395 330	570 3,500	
Vanadium .	D-8 F-17	1 - 1	0.016 <0.010	<0.003 <0.010	

Table V-67 (Continued)

NICKEL-COBALT ANNEALING AND SOLUTION HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Sample Conce			centrations (mg/l) Day 1 Day 2 Day 3		
FOLIOCATIC	Code	Type.	3001 CE	Day I	Day 2	Day 0
Nonconventional Pollutants (Continued)						
Yttrium	D-8 F-17	1	<0.002 <0.020		<0.002 <0.020	
Conventional Pollutants		·				•
Oil and Grease	D-8 F-1 7	1 1	<1 <1		40 7	
Total Suspended Solids (TSS)	D-8 F-17	1 .	<1 22		33 78	
pH (standard units)	D-8 F-17	1	7.14 6.64		7.00 7.37	

- 1. The following toxic pollutants were not detected in this waste stream: 1-10, 12-43, 45-54, 56-65, and 67-88.
- 2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-68
NICKEL-COBALT SURFACE TREATMENT SPENT BATHS

	. ,	* * * * * * * * * * * * * * * * * * *
Plant	Wastewater L/kkg	Discharge** gal/ton
Plant 1 2 3 4 5 6 7 8 9 10 11 10 12 10 13 14 10 10 15 16 10 17 18 19 20 21 22 23 24 8 25 26 22 27 28 29 30	L/kkg 0.00 0.00 0.00 0.00 0.00 0.00 0.00	
Average	934.9	224.2

NR - Data not reported **Volume of spent bath per mass of nickel surface treated.

Table V-69

NICKEL-COBALT SURFACE TREATMENT SPENT BATHS
RAW WASTEWATER SAMPLING DATA

		Stream	Sample		Concentratio	ations (mg/l)			
	Pollutant	<u>Code</u>	Type	Source	Day 1	Day 2	Day 3		
Toude	: Pollutants								
IUXIC	Portucants								
114.	antimony	D-13	1	<0.003	<0.003				
		F-28	1	<0.003			0.480		
		F-29	1	<0.002			0.040		
		F-30	1	<0.002			0.066		
115.	arsenic	D-13	1	<0.003	<0.003				
.,	u, 556	F-28	1	<0.005			1.40		
		F-29	i	<0.005			0.070		
		F-30	i	0.005			0.280		
		D 10	•	<0.000E					
117.	beryllium	D-13	1	<0.0005	0.45		40.010		
	•	F-28	1	<0.010			<0.010		
		F-29	1	<0.010			<0.010		
		F-30	1	<0.010			<0.010		
118.	cadmium	D-13	1	<0.002	600				
		F-28 .	1	<0.050			<0.050		
		F-29	1	<0.050			<0.050		
		F-30	1	<0.050			0.970		
119.	chromium (total)	D-13	1	0.042	3,600				
	· · · · · · · · · · · · · · · · · · ·	F-28	i	<0.100	.,		23.8		
		F-29	1	<0.100		,	312		
		F-30	1	<0.100			940		
120.	copper	D-13	1	0.068	130				
120.	copper	F-28	i	0.170	. 100		20.4		
		F-29	1	0.170			1.89		
	•	F-30	i	0.170		Δ	.800		
		1 30	•	0.170		_			
121.	cyanide	F-28	1	<0.02		* •	<0.02		
		F-29	1	<0.02	•		<0.02		
		F-30	1	<0.02			<0.02		
122.	lead	D~13	1	<0.084	17				
		F-28	i	<0.100			0.360		
	•	F-29	i	<0.100	*		0.360		
		F-30	i .	<0.100			<0.100		
123.	mercury	D-13	1	<0.0002	0.0014				
120.	mer cur y	F-28	1	<0.0020	0.0014		<0.0020		
		F-29	1	<0.0020			<0.0020		
		F-30	í	<0.0020			<0.0020		
		1-30	1	NO.0020			\U.UUZU		

51.

Table V-69 (Continued)

NICKEL-COBALT SURFACE TREATMENT SPENT BATHS RAW WASTEWATER SAMPLING DATA

	Stream	Sample	٠	Concentrations (mg/l)				
Pollutant	<u>Code</u>	Туре	Source	. <u>Day 1</u>	Day 2 Day 3			
Toxic Pollutants (Continued)		* •						
and the second s					The second of the second			
124. nickel	D-13	'n	<0.003	39,000	*			
*.	F-28	1	0.200		124			
	F-29	1	0,200		272			
•	F-30	1	0.200		193,000			
125. selenium	D-13	1	<0.003	<0.003				
	F-28	1	<0.010		<0.010			
	F-29	1 ,	<0.010		0.080			
	F-30	. 1	<0.010		<0.010			

NICKEL-COBALT SURFACE TREATMENT SPENT BATHS RAW WASTEWATER SAMPLING DATA

	Stream	Sample		Concentrations (mg/1)			
<u>Pollutant</u>	Code	Туре	Source	Day 1	Day 2	Day 3	
Toxic Pollutants (Continued)							
126. silver	D-13	1	<0.001	0.016			
120. STIVET	F-28	i	<0.002	0.010		0.008	
	F-29	i	<0.002			0.002	
· · · · · · · · · · · · · · · · · · ·	F-30	1	<0.002			0.096	
127. thallium	D-13	1	<0.005	0.088			
	F-28	1	<0.005			<0.005	
•	F-29	1	<0.005			<0.005	
•	F-30	1	<0.005			0.050	
128. zinc	D-13	1	0.038	. 3 9			
	F-28	1	<0.050			1.86	
•	F-29	11	<0.050		* '	0.240	
· · · · · · · · · · · · · · · · · · ·	F-30	1	<0.050		•	83.2	
Nonconventional Pollutants			- t _a			*	
Acidity	D-13	1	<1	185			
Actuatty	F-28	i	<1	105		< 1	
	F-29	i	<1	_	1	,500	
•	F-30	i	<1			,000	
Alkalinity	D-13	1	180	<1		•	
	F-28	1	61		>8	,000	
· ·	F-29	1	61			· <1	
	F-3 0	1	61			<1	
Aluminum	D-13	1	<0.050	190		- F - π	
	F-28	1	0.910			73.5	
	F-29	1	0.910			312	
	F-30	1 .	0.910			2.31	
Ammonia Nitrogen	D - 13	1	·<1	<1			
_	F-28	1	0.04			0.03	
	F-29	1	0.04			8.5	
	F-30	1	0.04			0.48	
Barium	D-13	1	0.12	2.7			
	F-28	1	0.080			0.510	
	F-29	1	0.080			0.680	
	F-30	1	0.080			0.270	

614

Table V-69 (Continued)

Pollutant	Stream Code	Sample Type	Concentrations (mg/l) Source Day 1 Day 2 Day					
		- 1700	3001 08	Day 1	Day 2 Day 3			
Nonconventional Pollutants	(Continued)			•				
Boron	D-13	1	<0.009	1,700	я.			
and the second of the second o	F-28	1	<0.100°		5,100			
	F-29	1	<0.100	•	3,890			
	F-30	. 1	<0.100		53.3			
Calcium	D-13	1	63	. 54				
	F-28	1	46.2	,	359			
	F-29	1	46.2		42.8			
	F-30	1	46.2		412			
Chemical Oxygen Demand	D-13	1 .	<5	<5	•			
	F-28	_ 1 .	<1	-	620			
arigi, ar arisinggi garganggab pahambahan agapa dipahambah ar ian-arabi anasanah ag-dar di arabihadan dapah	F-29		<1	n an annual statement of the statement o	15,000			
	F-30	1.	<1		390			

Table V-69 (Continued)

	Stream	Sample		Concentrations (mg/1)		
Pollutant	Code	Туре	Source	Day 1	Day 2 Day 3	
Nonconventional Polluta	nts (Continued)					
	D-13	1	34	260		
Chloride	F-28	i	12		330	
	F-29	i	12		6.5	
	F-30	i	12		10,000	
Cabalt	D-13	1	<0.006	4,000		
Cobalt	F-28	i	<0.100	•	<0.100	
	F-29	1	<0.100	*	0.180	
	F-30	i	<0.100		4.00	
Fluoride	D-13	1	0.45	94,000		
Flooride	· F-28	1	0.43		14	
	F- 2 9	1	0.43		33	
	F-30	1	0.43		3,400	
Iron	D-13	1	0.066	4,000		
11011	F-28	1	1.37		180	
	F-29	1	1.37		300	
	F-30	1	1.37		2,500	
Magnesium	D-13	1	24	6.8		
Magnesian	F-28	1	12.7		192	
	F-29	1	12.7		164	
	F-30	1	12.7		178	
Manganese	D-13	1	0.012	240		
mariganicoe	F-28	1	0.080		6.50	
	F-29	1	0.080		6.62	
	F-30	1	0.080		174	
Molybdenum	D-13	1	0.030	910		
mo i y baoilam	F-28	1	<0.200		0.810	
•	F-29	1	<0,200		9.25	
•	F-30	1	<0.200		130	
Phenolics	F-28	1	<0.005		<0.005	
, ,,,,,,,,	F-29	1	<0.005	-	<0.005	
	F-30	1	<0.005		<0.005	
Phosphate	D-13	1	<4	<4	40	
	F-28	1	<4	•	40	
•	F-29	. 1	<4		150	
	F-30	1	<4		<4	

9.19

Table V-69 (Continued)

•	Stream	Sample		Concentratio	ons (mg/l)		
<u>Pollutant</u>	_Code_	Туре	Source	Day 1	Day 2 Day 3		
Nonconventional Pollutants (Continued)				** - • •		
Sodium	D-13 F-28	1	9.5 154	1,600	5,800		
	F-29 F-30	1 .	154 154		5,500 7,700		
Sulfate	D-13 F-28 F-29 F-30	1 1 1	53 130 130 130	<0.5	3,100 4,700 46,000		

Table V-69 (Continued)

	Stream	Sample		Concentrations (mg/1)			
Pollutant	Code	Type	Source	Day 1	Day 2 Day 3		
Nonconventional Pollutants (Con	tinued)						
RONCONVENCTORAL FORTALES (CO.)							
Tin	D-13	1	<0.12	<0.12	<0.200		
	F-28	1	<0.200		<0.200		
	F-29	1	<0.200		<0.200		
	F-30	1	<0.200		\0.200		
Titanium	D-13	1	<0.005	3,300			
, tearriam	F-28	1	<0.020	,	2.06		
	F-29	1	<0.020	•	36.5		
	F-30	1	<0.020	*	104		
(TDC)	D-13	1	393	200,000			
Total Dissolved Solids (TDS)	F-28	i	320	200,000	36,000		
	F-29 ·	. 1	320		59,000		
	F-30	1	320		180,000		
•	1-30	'	320		,		
Total Organic Carbon (TOC)	D-13	1	8	130			
10(4) 0,94,10 04, (1)	F-28	1	2	5	27		
	F-29	1	2		24,000		
	F-30	1	2		89		
Total Solids (TS)	D-13	1	395	350,000			
10tal 3011d5 (13)	F-28	i	330	,	38,000		
•	F-29	i	330		75,000		
	F-30	1	330		190,000		
	D-13	1	<0.005	260	•		
Vanadium	F-28	i	<0.010		0.110		
	F-29	i	<0.010		0.540		
	F-30	i	<0.010		0.031		
	130	ı	10.010				
Yttrium	D-13	1	<0.005				
	F-28 ·	1	<0.020		<0.020		
	F-29	1	<0.020		<0.020		
	F-30	. 1	<0.020	• •	<0.020		
Conventional Pollutants							
Oil and Grease	D-13	1	<1	<1			
Oli and drease	F-28	i	<1	•	120		
	F-29	i	<1		66		
	F-30	i 1	<1		<1		
	, 50	•	• •				

Table V-69 (Continued)

	Stream	Sample		Concentrations (mg/l)			
Pollutant	<u>Code</u>	Type	Source	Day 1	Day 2 Day 3		
Conventional Pollutants (Cont	inued)						
Total Suspended Solids (TSS).	D-13 F-28	1	<1 22	<1	5,800 ~		
	F-29 F-30	1 1	22 22 22		2,700 340		
pH (standard units)	D-13 F-28 F-29 F-30	1 1 1	7.14 6.64 6.64 6.64	1.72	7.87 1.21 0.89		

1. No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.

Table V-70
NICKEL-COBALT SURFACE TREATMENT RINSE

Plant	Wate L/kkg	r Use gal/ton	Percent Recycle	Wastewat L/kkg	er Discharge gal/ton
1 9 10 * 112 114 115 113 114 115 115 115 115 115 115 115 115 115	168.4 11.06 28.82 67.83 100.1 186.3 459.9 513.2 806.5 835 1,051 1,390 2,503 3,260 4,141 4,689 19,540 27,730 34,010 46,240 80,360 127,000 209,300 NR NR NR NR NR NR NR NR NR NR	40.38 2.65 6.91 16.27 24.00 44.67 110.3 123.1 193.4 200 247.0 252.0 333.3 600.3 781.8 993.1 1,124 4,687 6,649 8,157 11,090 19,270 30,460 50,200 NR NR NR NR NR NR NR NR NR NR	<100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.00 11.06 28.82 67.83 100.1 186.3 459.9 513.2 806.5 835 1,030 1,051 1,390 2,503 3,260 4,141 4,689 19,540 27,730 34,010 46,240 79,830 127,000 209,300 NR NR NR NR NR NR NR NR NR NR NR NR	0.00 2.65 6.91 16.27 24.00 44.67 110.3 123.1 193.4 200 247.0 252.0 333.3 600.3 781.8 993.1 1,124 4,687 6,649 8,157 11,090 19,140 30,460 50,200 NR NR NR NR NR NR NR NR NR NR
Average	23,560	5,650		24,550	5,889

NR - Data not reported.

^{*}Nickel forming no longer performed by this plant.

Table V-71 NICKEL-COBALT SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

Stream Sample

<u>Pollutant</u>	Code	Salip re		entration:	s (mg/l)	
	<u>Code</u>	Type	Source	Day 1	Day 2	Day 3
Toxic Pollutants						
5. benzidine	E-8	.1	0.762	er kr		0.965
11. 1,1,1-trichloroethane	E-8	1	0.005			0.020
12. hexachloroethane	E8	1	ND			0.006
23. chloroform	E-8	1	0,015	÷		ND
28. 3,3'-dichlorobenzidine	E-8	1	0.001	-		ND
36. 2,6-dinit-rotoluene	E-8		0.002	and the second s		
37. 1,2-diphenylhydrazine	E-8	1	0.001			. 0.002 ND
43. bis(2-chloroethoxy)methane	E-8	1	0.001	=	-	**
55. naphthalene	E-8	1 .	0.001			0.001
61. N-nitrosodimethylamine	E-8	1	0.001			0.001
62. N-nitrosodiphenylamine	E-8	. 1	ND			0.196
63. N-nitrosodi-n-propylamine	E-8	1	0.024	* -		0.023
66. bis(2-ethylhexyl) phthalate	E-8	. 1	0.001			0.002
67. butyl benzyl phthalate	. E-8	į	0.001			0.001
70. diethyl phthalate	E-8	1	**			**
71. dimethyl phthalate	E-8	1	ND .	. 1		0.003
81. phenanthrene	E-8	1	mann.			

0.001

Table V-71 (Continued)

•	Stream	Sample	Conc	entration	s (mg/l)	
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3
Toxic Pollutants (Continued)						
114. antimony	D-10 E-2 E-8 F-7 F-8	6 2 . 1 4 4	<0.003 <0.005 <0.005 <0.002 <0.002	<0.003 <0.005 <0.005 0.002 0.002	<0.003 <0.005 <0.002 0.002	<0.003 <0.005 <0.005 0.019 <0.002
	F-9 F-10 F-11	3 3 · 3	<0.002 <0.002 <0.002	0.160 0.011 0.050	0.016 0.013 0.013	<0.002 <0.002 <0.002
115. arsenic	D-10 E-2 E-8 F-7 F-8 F-9 F-10	6 2 1 4 4 3 3	<0.003 <0.005 <0.005 <0.005 <0.002 <0.005 <0.005 <0.005	<0.003 <0.005 <0.005 <0.005 0.002 0.030 <0.005 0.050	<0.003 <0.005 <0.005 0.002 <0.005 <0.005 0.013	<0.003 <0.005 <0.005 <0.012 <0.002 <0.005 <0.005 <0.005 <0.005
117. beryllium	D-10 E-2 E-8 F-7 F-8 F-9 F-10	6 2 1 4 4 3 3	<0.0005 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010	0.002 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010	<0.0005 <0.010 <0.010 <0.020 <0.010 <0.010 <0.010	0.0005 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010

Table V-71 (Continued)

		Stream	Sample	Cond	entration	ns (mg/l)	
Pollutant		Code	Туре	Source	Day 1	Day 2	Day 3
Toxic Pollutants (Continued)		•					
	•		- ter			:	* •
118. cadmium		D-10	6	<0.002	1.2	0.28	0.39
		E-2	2	<0.050	<0.050	<0.050	<0.050
		E-8	1	<0.050	<0.050		<0.050
•	*	F-7	4	<0.050	. <0.050	<0.050	<0.050
		` F−8	4	<0.050	<0.050	<0.020	<0.050
		F-9	3	<0.050	<0.050	<0.050	<0.050
•	-	F-10	3	<0.050	<0.050	<0.050	<0.050
	• .	F-11	[*] 3	<0.050	<0.050	<0.050	<0050
-119. chromium (total)		D1-0	6	0.042	11	26	3.6.
Tro. Ciriomram (coracy		E-2	2	<0.100	<0.100	0.180	<0.100
		E-8	1	<0.100	2.15		7.90
		F-7	4	<0.100	9.31	5.31	18.8
		F-8	4	<0.100	8,15	7.20	8.40
	•	F-9	3	<0.100	9.18	1.98	2.72
		F-10	3	<0.100	2.86	3.76	1.76
	. !	F-11	3	<0.100	1.33	1.46	6.20
120. copper		D-10	6	0.068	0.38	0.18	0.22
120. Copper		E-2	2	0.080	0.080	0.800	0.590
		Ē-8	1	0.080	14.0	0.000	87.4
		F-7.	4	0.170	37.6	20.0	53.5
•		F-8	4	0.170	2,21	3.80	4.08
·	1	F-9	3	0.170	22.4	11.5	16.5
	-	F-10	3 .	0.170	29.6	40.5	21.5
:		F-11	3 -	0.170	14.0	14.1	52.5
121. cyanide (total)		E-2	2	<0.02	<0.02	<0.02	<0.02
1211 Cyairide (total)		E-8	. 1	<0.02	<0.02	-0.02	<0.02
		F-7	4	<0.02	<0.02	<0.02	<0.02
		F-8	4	<0.02	<0.02	<0.02	<0.02
		F 9	3	<0.02	<0.02	<0.02	<002
		F-10	3 .	<0.02	<0.02	<0.02	<0.02
·	•	F-11	3	<0.02	<0.02	<0.02	<0.02
			ų.	·U.U.	.0.02	.0.02	-0.02

Table V-71 (Continued)

		Stream	Sample	Conc	entration	is (mg/1)	
	<u>Pollutant</u>	Code	Type	Source	Day 1	Day 2	Day 3
	- 11 · · · · · · · · · · · · · · · · · ·						
Toxic	Pollutants (Continued)						
122.	lead ·	D-10	6	<0.084	0.26	0,10	<0.084
		E-2	2	<0.100	<0.100	<0.100	<0.100
		E-8	1	<0.100	<0.100		<0.100
		F-7	4	<0.100	0.180	<0.100	0.180
		F-8	4	<0.100	<0.100	<0.200	<0.100
	•	F-9	3	<0.100	0.340	<0.100	<0.100
		F-10	3	<0.100	<0.100	0.120	<0.100
		F-11	3	<0.100	<0.100	<0.100	<0.100
123.	mercury .	D-10	6	<0.0002	0.0002	<0.0002	0.0004
		E-2	2	<0.0010	<0.0010	<0.0010	<0.0010
		E-8	1	<0.0010	<0.0010		<0.0010
		F-7	4	<0.0020	<0.0020	<0.0020	<0.0020
	,	F-8	4	<0.0020	<0:0020	<0.0020	<0.0020
		F-9	3	<0.0020	<0.0020	<0.0020	<0.0020
		F-10	3	<0.0020	<0.0020	<0.0020	<0.0020
		F−11	3	<0.0020	<0.0020	<0.0020	<0.0020
124.	nickel	D-10	6	<0.003	76	18	25
		E-2	2	<0.100	0.300	2.20	1.30
		E-8	1	<0.100	24.6		183
		F-7	4	0.200	174	124	364
	•	F-8	4	0.200	7.04	12.0	19.4
	·	F-9	3	0.200	105	51.2	96.8
		F-10	3	0.200	107	159	97.0
		F-11	3	0.200	4.59	57.6	196
125.	selenium	D-10	6	<0.003	<0.003	<0.003	<0.003
		E-2	2	<0.010	<0.010	<0.010	<0.010
		E-8	1	<0.010	<0.010		<0.010
		F-7	4	<0.010	<0.010	<0.010	.0.010
		F-8	4	<0.010	<0.010	<0.010	<0.010
		F-9	3	<0.010	<0.010	<0.010	<0.010
		F-10	. 3	<0.010	<0.010	<0.010	<0.010
		F-11	3	<0.010	<0.010	<0.010	<0.010

Table V-71 (Continued)

Pollutant	Stream Code	Sample Type	Conc Source	entration Day 1	ns (mg/1) Day 2	Day 3
			554.00	<u> </u>	Day 2	<u>Day 3</u>
Toxic Pollutants (Continued)						
106	5.40	0	.0.004			
126. silver	D-10	6	<0.001	<0.001	0.003	0.002
	E-2	2	<0.002	<0.002	<0.002	<0.002
	E-8	1	<0.002	<0.002		<0.002
	F-7	4	<0.002	<0.002	<0.002	<0.002
	F-8	4	<0.002	0.012	<0.002	<0.002
	F-9	3	<0.002	<0.002	<0.002	<0.002
	F-10	3	<0.002	<0.002	<0.002	<0.002
	F-11	3	<0.002	<0.002	<0.002	<0.002
307						
127thallium	D-10	6	<0.003	-<0003	<0.003	<0.003
	E-2	2	<0.002	<0.002	<0.002	0.003
	E-8	1	<0.002	<0.002		<0.002
	F-7.	4	<0.005	<0.005	<0.005	0.019
	F-8	4	<0.005	<0.005	<0.002	<0.005
÷	F-9	3	<0.005	<0.005	<0.005	<0.005
1	F-10	3	<0.005	<0.005	<0.005	<0.005
	F-11	3	<0.005	<0.005	<0.005	<0.005
128. zinc	D 10	0		0.40		
120. ZINC	D-10	6	0.038	0.16	0.071	0.065
•	E-2	2	<0.050	<0.050	<0.050	<0.050
	E-8	1.	<0.050	0.370		1.400
	F-7	4	<0.050	1.01	0.670	2.36
	F-8	4	<0.050	0.200	0.220	0.270
•	F-9	3	<0.050	0.810	0,400	0.230
	F-10	3	<0.050	1.70	1.38	0.790
÷	F-11	3	<0.050	0.310	0.370	1.44

Table V-71 (Continued)

P <u>ollutant</u>	Stream Code	Sample Type	Con Source	centration Day 1	ns (mg/1) Day 2	Day 3
Nonconventional Pollutants						
Acidity	D-10	6	<1	15	49	85
	E-2	2	<1	<1	<1	<1
	E-8	1	<1	130		198
•	F-7	4	<1	300	140	390
	F-8	4	<1	<1	<1	<1
•	F-9	3	<1	10	140	140
	F-10	3	<1	130	130	190
	F-11	3	<1	<1	<1	87
Alkalinity	D-10	6	180	<1	<1	<1
•	E-2	2	83	47	50	51
•	E-8	1	83	<1		<1
	F-7	4	61	<1	< 1	<1
	F-8	4	61	170	76	79
	F-9	3	61.	<1	<1	<1
	F-10	3	61	<1	<1	<1
	F-11	3	61	29	15	<1
				•		
Aluminum	D-10	6	<0.050	1.5	0.58	0.78
	E-2	2	0.300	0.100	0.120	0.060
	E-8	1	0.300	0.960		<0.020
	F-7	4	0.910	<0.020	<0.020	<0.020
	F-8	4	0.910	0.240		0.160
	F-9	3	0.910	2.76	0.220	0.020
	F-10	3	0.910	0.360	0.180	<0.020
•	F-11	- 3	0.910	0.220	0.770	<0.020

Table V-71 (Continued)

		Stream	Sample			ns (mg/l)	
<u>Pollutant</u>		Code	Туре	Source	Day 1	Day 2	Day 3
Nonconventional Pollutants	(Continued)					:	
Ammonia Nitrogen		D-10	. 6	<1 .	0.24	0.53	0.47
		E-2	· 2	0.22	3.3	25	6.2
		E-8	1	0.22	0.55	•	130
		F-7	4	0.04	0.26	0.18	. 0.16
		F-8	. 4	0.04	0.89	3.2	1.4
		F-9 '	. 3	0.04	14 .	13	14
	•	F-10	´ 3	0.04	50	15 .	6.7
·		F-11	. 3	0.04	0.31	0.35	1.5
Barium .		D-10 ·	6	0.12	0.15	0.23	0.10
		E-2	2	0.060	0.040	0.040	0.030
en a disputamenta consideramenta accomplicación agrapar de la material establicación de la electricación de la construcción de		E-8.	<u> </u>	0.060	0.030_		0.040
		F-7	4	0.080	0.060	0.060	0.080
		F-8	4	0.080	0.060		0.070
	1	F-9	3 -	0.080	0.720	0.080	0.060
•		F-10	3.	0.080 .	0.060	0.040	0.040
		F:-11	3	0.080	0.030	0.060	0.070
Boron	4	D-10	6	<0.009	0.97	<0.009	<0.009
•		E-2	2	0.170	0.110	<0.100	<0.100
		E-8	. 1	0.170	0.200		0.470
		F-7 .	4	<0.100	0.440	0.220	1.34
		F-8	4	<0.100	0.550		0.830
	•	F-9	3	<0.100	0.680	0.420	0.240
		F-10	. 3	<0.100	1.32	8.82	0.510
		F-11	3	<0.100	0.110	0.460	0.840
Calcium	*	D-10	6	63	98	940	660
•	,	E-2	. 1.	33.0	24.0	25.9	24.5
		E-8	1	33.0	18.4		18.9
		F-7	4	46.2	32.0	32.1	37.0
•	-	F-8	4	46.2	31.9		30.2
•		F-9	3	46.2	38.2	32.7	32.1
		F-10	3	46.2	29.5	26.5	210
		F-11	3	46.2	13.8	21.2	30.9

Table V-71 (Continued)

	Stream	Sample	Con	centratio		
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3
)	1					
Nonconventional Pollutants (Continued	,					
Chemical Oxygen Demand (COD)	D-10	6	<5	12	72	50
	E-2	2	34	10	18	57
	E-8	1	34	50		52
	F-7	4	≮1	13	59	13
	F-8	4	< 1	<1	71	27
	F-9	4	<1	97	50	24
	F-10	3	<1	36	77	19
•	F-11	3	<1	110	230	82
Chloride	D-10	6	34	49	175	130
	E-2	2	26	<0.05	22	20
•	E-8	1	26	35		78
	F-7	4	12	26	89	26
	F-8	4	12	81	37	37
	F-9	3	12	47	88	52
	F-10	3	12	130	190	65
	F-11	3	12	10	38	24
Cobalt	D-10	6	<0.006	4.0	1.2	1.7
3332	E-2	2	<0.100	<0.100	<0.100	<0.100
	E-8	1	<0.100	<0.100		<0.100
	F-7	4	<0.100	<0.100	<0.100	0.360
	F-8	4	<0.100	<0.100		<0.100
	F-9	3	<0.100	0.180	<0.100	0.140
-	F-10	3	<0.100	<0.100	<0.100	<0.100
•	F-11	3	<0.100	<0.100	.<0.100	<0.100
Fluoride	D-10	6	0.45	0.91	1.1	210
	E-2	2	0.44	0.26	0.32	0.27
•	E-8	1	0.44	0.40		0.52
•	F-7	4	0.43	42	35	41 -
	F-8	4	0.43	3.2	5.7	7.4
	F-9	3	0.43	1.1	1.6	2.0
•	F~10	3	0.43	0.85	1.2	0.74
	F-11	3	0.43	9.6	2.9	91

Table V-71 (Continued)

			Stream	Sample			entration		
<u>Po</u>	llutant		Code	Туре	-	Source	Day 1	Day 2	Day 3
Nonconvention	al Pollutants	(Continued)		-					
Iron			D-10	6		0.066	27	5.6	7.4
			E-2	2		1.00	0.696	0.750	0.380
•			E-8	1		1.00	31.0		32.5
•			F-7	4		1.37	37.6	35.0	117
	•		F-8	4		1.37	3.37	-	8.12
			F_9	3		1.37	22.4	13.1	<u> 17.1 </u>
			F-10	3		1.37	29.6	84.5	37.3
	•		F-11	3		1.37	8.30	11.3	26.4
Magnesium		,= ·	D-10	- 6	-	24	25	18	17
			E-2	2		15.8	11.1	12.4	11.8
			E-8 :	1		15.8	6.0		6.20
			F-7	4		12.7	10.2	10.4	11.2
			F-8	4		12.7	9.54	_	8.35
	*		F-9	3		12.7	11.2	10.4	9.40
			F-10	. 3		12.7	7.66	6.33	6.23
			F-11	3		12.7	4.36	5.05	8.55

Pollutant	Stream Code	Sample Type	Conc Source	entration Day 1	ns (mg/1) Day 2	Day 3
Nonconventional Pollutants (Continued)					
Manganese	D-10 E-2 E-8 F-7 F-8 F-9 F-10 F-11	6 2 1 4 4 3 3 3	0.012 0.140 0.140 0.080 0.080 0.080 0.080	0.50 0.050 0.630 1.46 0.620 1.99 1.90 34.0	0.14 0.020 0.740 0.570 2.28 9.93	0.16 <0.010 2.00 2.62 0.710 0.920 1.65 27.5
Molybdenum	D-10 E-2 E-8 F-7 F-8 F-9 F-10 F-11	6 2 1 4 4 3 3 3	0.030 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200	9.6 <0.200 <0.200 1.50 <0.200 1.20 <0.200 <0.200	17 <0.200 0.670 0.250 <0.200 <0.200	13 <0.200 <0.200 2.96 0.270 <0.200 <0.200 <0.200
Phenolics	E-2 E-8 F-7 F-8 F-9 F-10	1 1 1 1 1. 1	0.014 0.014 <0.005 <0.005 <0.005 <0.005	<0.005 0.016 0.025 <0.005 <0.005 0.045 <0.005	0.082 <0.005 0.009 <0.005 0.025 0.019	0.008 0.015 <0.005 <0.005 <0.005 <0.005 <0.005
Phosphate	D-10 E-2 E-8 F-7 F-8 F-9 F-10	6 2 1 4 4 3 3 3	<4 16 16 <4 <4 <4 <4 <4	<4 8 <4 <4 10 <4 <4	9 . 6.6 <4 <4 <4 <4 <4	<4 16 <4 <4 <4 <4 <4

Table V-71 (Continued)

Dell'ideat	Stream	Sample		centratio		
Pollutant	Code	_Type_	Source	Day 1	Day 2	Day 3
Nonconventional Pollutants (Continued)	•	•		•		
Sodium	D-10 ·	6	9.5	30	520	330
	E-2	2	33.0	20.0	26.6	27.0
•	E-8	1	33.0	58.0		133
	F-7	. 4	154	28.0	28.6	43.0
	F-8	4	154	175		115
•	F-9	3	154	35.0	49.0	61.0
	F-10	3	154	157	184	82.0
	F,-,11	3 .	154	107	134	184
	man, son, administrationary for tubes him medians.	The second second	and advantages.			
Sulfate	D-10 ·	6	53 .	140 2	,400 2	2,200
	E2	2 -	170	140	-260	210
	E-8	1 .	170	700	•	1,300
	F-7	4	130	250	200	260
	F-:8	4	130	170 .	150	130
	F-9	3	130	290	220	320
·	F-10	· 3	130	520 ·	770	400
	F-11	3	130	57	93	130
Tin	D-10	6	<0.12	1.7	1.1	1.6
	E-2	2	<0.200	<0.200	<0.200	<0.200
•	E-8	1	<0.200	<0.200	•	<0.200
•	F-7	4	<0.200	<0.200	<0.200	<0.200
	F-8	4	<0.200	<0.200		<0.200
	F-9	3	<0.200	<0.200	<0.200	<0.200
	F~10	3	<0.200	<0.200	<0.200	<d.20d< td=""></d.20d<>
•	F-11	3 ,	. <0.200	<0.200	<0.200	<0.200
Titanium	D-10	. 6	<0.005	12	3.6	12
•	E-2	2	<0.020	<0.020	0.020	<0.020
anna an ing naning naning naning naning and an ang anna and an ing naning and an ang naning and an ang and ind The	E-8	1	<0.020	0.090		0.150
	. F−7	4	<0.020	0.970	0.500	1.54
·	F-8	4	<0.020	0.160		0.290
	F-9	3	<0.020	3.31	0.290	0.290
	F-10	3	<0.020	0.370	0.290	0.120
	F-11	3	<0.020	0.090	0.140	0.290

Table V-71 (Continued)

	Pollutant	Stream Code	Sample Type	Sour	Concentrat ce Day		
	Nonconventional Pollutants (Continued)	ŀ					
	Total Dissolved Solids (TDS)	D-10	6	393	800	4,900	3,800
		E-2	2	330	270	180	330
		E-8	1	330	920		2,000
		F-7	4	320	1,240	860	2,100
		F-8	4	320	670 🕟	490	560
		F-9	3	320	700	670	800
		F-10	3	320	1,300	1,800	870
		F-11	3	320	610	730	1,400
						Č	
	Total Organic Carbon (TOC)	D-10	6	8	38	46.	13
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	E-2	2	<1	<1	< 1	<1
١.		E-8	1	<1	10		3.9
,		F-7	4	2	3.8	2.	4
)	·	F-8	4	2	10	3	4
		F-9	3	2	3	4	4
		F-10	. 3	2	9 .	23	5
		F-11	2	2	45	35	-
					,-		

Table V-71 (Continued)

Pollutant		Stream Code'	Sample Type	Con Source	centratio	ons (mg/l) Day 2	Day 3
Nonconventional Polluta	nts (Continued	1)					
Total Solids (TS)		D-10	6	395			, 200
	•	E-2	2	380	250	240	330
		E-8	1	380	930		,070
		F-7	4		,300		,200
		F-8	4	330	820	530	570
		F-9	3		,510		,03 0
		F∸10	3				,110
And the second section of the second second second second section of the second	The second secon		3	-330	860	950 1	,600
Vanadium ·		D-10	. 6	0.016	0.52	0.12	0.26
		E-2	2	<0.010	<0.010	<0.010	<0.010
		E-8	1	<0.010	<0.010		<0.010
	4	F-7	4	<0.010	<0.010	<0.010	0.015
	And the second	F-8	4	<0.010	<0.010		0.022
		F-9	3	<0.010	0.020	<0.020	<0.020
		F-10	3	<0.020	<0.010	<0.010	<0.010
	,	F-11	3	<0.010	<0.010	<0.010	<0.010
Yttrium		D-10	6	<0.002	0.015	0.004	0.009
•		E-2	2	<0.020	<0.020	<0.020	<0.020
		E-8	1 .	<0.020	<0.020		<0.020
		F-7	4	<0.020	<0.020	<0.020	<0.020
	i.	F8	. 4	<0.020	<0.020		<0.020
		F-9	3	<0.020	<0.020	<0.020	<0.020
	+ 41 +	F-10	3	<0.020	<0.020	<0.020	<0.020
		F-11	3	<0.020	<0.020	<0.020	<0.020
Conventional Pollutants							
Oiland Grease	against a see a see on the see of the see	D~10		<-1		5	3
		E-2	1	<1	<1	3	<1
		E-8	1	< 1	3		<1
		F-7	1	< 1	7.8	. 3	3
		F-8	1	<1	7.0	5	<1
		F-9	i	<1	17	<1	< 1
	•	F-10	4.	< 1	55	14	<1
	;	F-11	1	<1	130	43	<1

5 ω ω

Table V-71 (Continued)

<u>Pollutant</u>	Stream Code	Sample Type	Cor Source	Day 1	ons (mg/1) Day 2	Day 3
Conventional Pollutants (Continued)						
Total Suspended Solids (TSS)	D-10 E-2 E-8 F-7 F-8 F-9 F-10	6 2 1 4 4 3 3 3	<1 29 29 22 22 22 22 22	100 4 7.4 200 110 670 80 140	760 11 33 40 35 12 90	150 3.3 7.3 100 96 19 6
ρΗ (standard units)	D-10 E-2 E-8 F-7 F-8 F-9 F-10	6 2 1 4 4 3 3 3	7.14 6.71 6.71 6.64 6.64 6.64 6.64	3.90 6.39 2.71 2.79 8.70 3.39 2.85 5.69	3.40 7.35 3.36 7.21 3.28 2.33 5.24	3.40 7 16 2.74 2.41 7.78 2.75 2.59 3.03

**Present, but not quantifiable.

- 1. The following toxic pollutants were not detected in this waste stream: 1-4, 6-10, 13-22, 24-27, 29-35, 38-42, 44-54, 56-60, 64, 65, 68, 69, 72-80, and 82-88.
- 2. Note that stream code Y-4 also appers on the titanium surface treatment rinsewater raw wastewater sampling data table. The wastewater is derived from an operation in both subcategories.
- 3. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-72
NICKEL-COBALT AMMONIA RINSE

Plant	Wastewater L/kkg	Discharge* gal/ton
2 1 2	11.66 12.84 19.76	2.80 3.08 4.74
Average	14.75	3.54

^{*}Volume of spent rinse per mass of nickel-cobalt.

Table V-73 NICKEL-COBALT AMMONIA RINSE RAW WASTEWATER SAMPLING DATA

		Stream	Sample	Concentrations (mg/l)
	Pollutant	_Code	Туре	Source Day 1 Day 2 Day 3
Toxic	Pollutants			
11.	1,1,1-trichloroethane	F-19	1	0.014 ND
44.	methylene chloride	F-19	1	0.002 0.950
55.	naphthalene	F-19	1	0.001 ND
68.	di-n-butyl phthalate	F-19	1	ND 0.028
114.	antimony	F-19	1	<0.002 0.020
115.	arsenic	F-19	1	<0.005 0.160
117.	beryllium	F-19	1	<0.010 <0.010
118.	cadmium	F-19	1	<0.050 <0.050
119.	chromium (total)	F-19	1 .	<0.100 108
120.	copper	F-19	. 1	0.170 54.0
121.	cyanide	F-19	- 1	<0.02 <0.02
122.	lead	F-19	1	<0.100 0.540
123.	mercury	F-19	1	<0.0020 <0.0020
124.	nickel	F-19	1	0.200 456
125.	selenium	F-19	1	<0.010 0.070
126.	silver	F-19	1	<0.002 0.020
127.	thallium	F-19	1	<0.005 <0.005
128.	zinc	F-19	- 1	<0.050 32.0
Nonco	nventional Pollutants	-		•
Acidi	ty .	F-19	1	<1 <1
Alkai	inity	F-19	1	61 1,500
A 1 um	inum	F-19	1	0.910 160

Table V-73 (Continued) .

NICKEL-COBALT AMMONIA RINSE RAW WASTEWATER SAMPLING DATA

·	Stream	Sample	(
Pollutant	Code	Type	Concentrations (mg/1) Source Day 1 Day 2 Day 3
Nonconventional Pollutants (Continued	a)	•	
Ammonia Nitrogen	F-19	1	0.040 <0.01
Barium	F-19	1	0.080 <0.020
Boron	F-19	1	<0.100 5.74
Calcium	F-19	. 1	46.2 94.4
Chemical Oxygen Demand (COD)	F-19	1	<1 840
Chloride	. F-19	1 .	12 6,500
Cobalt	F-19	1	<0.100 <0.100
Fluoride	F-19	1	0.43 1.5
Iron	F-19	1	1.37 592
Magnesium	F-19	1	12.7 17.4
Manganese	F-19	1	0.080 50.7
Molybdenum	F-19	. 1	<0.200 11.8
Phenolics	F-19	1	<0.005 0.011
Phosphate	F-19	1	<4 <4
Sodium	F-19	. 1	154 770
Sulfate	F-19	1	130 33,000
Tin	F-19	1	<0.200 <0.200
Titanium	F-19	1 .	<0.020 0.540
Total Dissolved Solids (TDS)	F-19	1	320 32,000
Total Organic Carbon (TOC)	F-19	1	2 16 ·

Table V-73 (Continued)

NICKEL-COBALT AMMONIA RINSE RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	Concentrations (mg/l) Source Day 1 Day 2 In, 3
Nonconventional Pollutants (Continued)	•		
Total Solids (TS)	F-19	1	330 100,000
Vanadium	F-19	1	<0.010 0.070
Yttrium	F-19	1	<0.020 <0.020
Conventional Pollutants			
Oil and Grease	F-19	1	<1 <1 .
Total Suspended Solids (TSS)	F-19	1	22 9,000
pH (standard units)	F-19	1	6.64 7.90

- 1. The following toxic pollutants were not detected in this waste stream: 1-10, 12-43, 45-54, 56-67, and 69-88.
- 2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-74
NICKEL-COBALT ALKALINE CLEANING SPENT BATHS

1		
Plant	Wastewater L/kkg	Discharge** gal/ton
•	, ,	5
1.*	1.20	0.29
1*	2.00	0.48
2	2.64	0.63
2 3	4.00	0.96
4 .	4.08	0.98
5	10.7	2.56
. 4	12.84	3.08
4	33.91	8.13
6	37.91	9.09
4	56.68	13.59
7	90.61	21.73
· 4	114.8	27.52
8	131.0	31.40
4	196.7	47.17
9	213.3	51.15
10	NR	NR
11	NR	NR
12	NR	NR
13	NR	NR
14	NR	NR
15	NR	NR
16	NR	NR
17	NR	NR
Average	60.00	14 50
Trverage '	60.82	14.58

NR - Data not reported

^{*}Nickel forming no longer performed at this plant. **Volume of spent bath per mass of nickel cleaned.

Table V-75

NICKEL-COBALT ALKALINE CLEANING SPENT BATHS RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>		Stream Code	Sample _Type_	Com Source	muntrations (mg/1) Day 1 Day 2 Day 3		
	TOTTOCATE	_ code	Туре	<u> 3001 Ce</u>	Day 1	Day 2	Day 3
Toxic	Pollutants				•		
11.	1,1,1-trichloroethane	F-12	'n	0.014	ND		
44.	methylene chloride	F-12	1 .	0.002	3.550		
55.	naphthalene	D-14 F-12	1 1	ND 0.001	ND	ND	
		F-14 F-27	1	0.001 0.001		ND ND	
66.	bis(2-ethylhexyl) phthalate	D-14 F-12	1	0.009 DN	ND.	ND	
		F-14 F-27	. 1	ND ND	,	ND ND	
114.	antimony	D-14	1	<0.003	0.010	<0.003	
		F-12 F-14 F-27	1 1 1	<0.002 <0.002 <0.002	0.043	0.200 0.020	
115.	arsenic	D-14	1	<0.003		<0.003	•
		F-12 F-14 F-27	1 1 1	<0.005 · <0.005	0.180	<0.005	
117.	beryllium	D-14	1	<0.005 <0.0005		0.070 <0.0005	
	501 y 1 1 1 dill	F-12 F-14	1 1	<0.010 <0.010	<0.010	<0.010	-
	•	F-27	i	<0.010	-	<0.010	
118.	cadmium	D-14 F-12	1 1	<0.002 <0.050	<0.050	0.084	-
	•	F-14 F-27	1 1	<0.050 <0.050	٠	<0.050 <0.050	- - -
119.	chromium (total)	D-14 F-12	1 1	0.042 <0.100	3 50	1.0	•
	•	F-14 F-27	1	<0.100 <0.100 <0.100	3.59	0.410 38.0	
						-,	

Table V-75 (Continued)

NICKEL-COBALT ALKALINE CLEANING SPENT BATHS RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type		trations Day 1	mg/1) Day 2	Day 3
Toxic Pollutants (Continued)	•					
120. copper	D-14 F-12 F-14 F-27	1 1 1	0.068 0.170 39 0.170 0.170	9.2	0.12 4.51 0.210	
121. cyanide (total)	F-12 F-14 F-27	1 1 1	<0.02 <0.02 <0.02	0.02	<0.02 <0.02	
122. lead	D-14 - F-12	1	<0.084 <0.100	0_560	<0.084	
	F-14 F-27	1	<0.100 <0.100		<0.100 <0.100	•
123. mercury	D-14 F-12 F-14 F-27	1 1 1	<0.0002 <0.0020 <0.0020 <0.0020	0.0020	<0.0002 <0.0020 <0.0020	
124. nickel	D-14 F-12 F-14 F-27	1 1 1 1	<0.003 0.200 123 0.200 0.200	2	4.8 16.6 0.100	
125. selenium	D-14 F-12 F-14 F-27	1 1 1 1	<0.003 <0.010 <0.010 <0.010	0.080	<0.003 <0.010 0.220	
126. silver	D-14 F-12 F-14 F-27	1 1 1 1	<0.001 <0.002 <0.002 <0.002	0.005	<0.001 <0.002 <0.002	
127. thallium	D-14 F-12 F-14 F-27	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<0.003 <0.005 <0.005 <0.005	0.005	0.006 <0.005 <0.005	
128. zinc	D-14 F-12 F-14 F-27	1 1 1	0.038 <0.050 <0.050 <0.050	3.90	0.85 0.870 0.050	

Table V-75 (Continued)

NICKEL-COBALT ALKALINE CLEANING SPENT BATHS RAW WASTEWATER SAMPLING DATA

Pollutant	Stream <u>Code</u>	Sample Type	Concentrations (mg/l) Source Day 1 Day 2 Day 3
Nonconventional Pollutants			
a mil mil a.v.	D~14	1	<1 190
Acidity	F~12	1	<1 <1
	F-14	1	<1 <1
	F-27	1	<1 <1
Alkalinity	D-14	1	180 <1
Alkaimity	F-12	1	61 3,800
	F-14	1	61 29,000
	F-27	1	61 150,000
Aluminum	D-14	1	<0.050 1.1
ATUIRTHUIR	F-12	1	0. 9 10 5.90
	F-14	1	0.910 1.38
	F-27	1	0.910 11.9
Ammonia Nitrogen	D-14	1	<1 0.33
Anniottia ittii ogan	F-12	1	0.04 1.4
	F-14	1	0.04 <0.01
·	F-27	1	0.04 <0.01
Barium	D-14	1 ·	0.12 0.22
Bar ram	F-12	. 1	0.080 0.470
•	F-14	1	0.080 0.280
	F-27	. 1	0.080 <0.010
Boron	D-14	1	<0.009 1.4
501 011	F-12	1	<0.100 112
	F-14	1	<0.100 88.0
	F-27	1	<0.100 131

Table V-75 (Continued)

NICKEL-COBALT ALKALINE CLEANING SPENT BATHS RAW WASTEWATER SAMPLING DATA

	<u>Pollutant</u>		Stream Code	Sample Type	. Concentrat	ions (mg/l) 1 . Day 2	Day 3
	Nonconventional Pollutants (Co.	ntinued)					÷
	Calcium		D-14 F-12	1 1	63 46.2 206	270	-
			F-14 F-27	1	46.2 46.2	37.3 0.980	
-	Chemical Oxygen Demand (COD)		D-14. F-12	1	<5 <1 63,000	250	
			F-14 F-27	1	<1 <1	3,200 <1	
	Chloride		D-14	1	34 -12 930	66	
		: ,	F-14 F-27	1	12 12	58 1,160	
· . ·	Cobalt		D-14 F-12	1 1	<0.006 <0.100 0.120	1.0	
; ;		÷	F-14 F-27	1 · ·	<0.100 <0.100	<0.100 <0.100	
	Fluoride		D-14 F-12	1	0.45 0.43 7.7	1.3	
			F-14 F-27	. 1	0.43 0.43	2.1 1.9	
	Iron	:	D-14 F-12 F-14	1 1 1	0.066 1.37 304 1.37	8.3 3.42	
	· ·	-	F-27	ĺ	-1.37	0.100	
	Magnesium	: - •-	D-14 F-12 F-14	. 1	24 12.7 106 12.7	10.2	•
	Manganese		F-27 · · · · · · · · · · · · · · · · · · ·	1	0.012	0.62	and the second s
			F-12 F-14 F-27	1 1	0.080 11.0 0.080	1.67 7,440	•
•	Molybdenum		D-14. F-13		0.030 <0.200 0.940		-
			F-14 F-27	1	<0.200 <0.200	<0.200 0.970	

ς 2 3

Pollutant	Stream Code	Sample Type	Concentrations (mg/1) Source Day 1 Day 2 Day 3
Nonconventional Pollutants (Continued	1)		
Phenolics	F-12 F-14 F-27	1 1 1	<0.005
Phosphate	D-14 F-12 F-14 F-27	1 1 1	<4 7,000 <4 1,800 <4 <4 <4
Sodium	D-14 F-13 F-14	1 1 1	9.5 270 154 3,200 154 1,640
•	F-27	1	154 49,000
Sulfate	D-14 F-12 F-14 F-27	1 1 1	53 400 130 2,100 130 7,900 130 2,500
Tin	D-14 F-13 · F-14 F-27	1 1 1	<0.12 <0.12 <0.200 <0.200 <0.200 <0.200 <0.200 <0.200
Titanium	D-14 F-12 F-14	1 1 1	<0.005
4 () () () () () () () () () (F-27	1	<0.020 <0.020
Total Dissolved Solids (TDS)	D-14 F-12 F-14 F-27	1 1 1	393 7,000 320 36,000 320 590,000 320 150,000
Total Organic Carbon (TOC)	D-14 F-12 F-14	1 1 1	8 76 2 15,000 2 770
	F-27	1	2 26
Total Solids (TS)	D-14 F-12 F-14 F-27	1 1 1 1	395 7,600 330 43,000 330 630,000 330 260,000

	Stream	Stream Sample	Concentrations (mg/I)			
Pollutant	_Code_	Туре	Source	Day 1	Day 2	Day 3
Nonconventional Pollutants (Continued)	** *					
Vanadium	D-14	1	0.016		0.050	
•	F-12	1	< 0.010	<0.010	0.000	
	F-14	1	<0.010		<0.010	
•	F-27	1	<0.010		<0.010	
Yttrium	D-14	1	<0.002		<0.002	
	F-12	i	<0.020	<0.020	10.002	
	F-14	1	<0.020	.0.020	<0.020	
en de la composiçõe de la La composiçõe de la compo	F-27	1	<0.020		<0.020	
Conventional Pollutants						
Oil and Grease	D-14.	. 1	<1		22	
	F-14	1	< 1	4	. 49	
•	F-27	1	<1		170	
Total Suspended Solids (TSS)	D-14	. 1	<1	, .	640	: :
	F-12	1		000	. 040	
	F-14	1	22	.000	780	
•	F-27	1	22		920	
pH (standard units)	D-14		7.14		0.00	
E. Canadian C. Citi (CO)	F-12	. 1	6.64	8.45	2.30	
	F-14	1	6.64	6.45	0 50	
•	F-27	1	6.64		9.52 12.80	
	· -·		0.07		14.00	

^{1.} The following toxic pollutants were not detected in this waste stream: 1-10, 12-43, 45-54, 56-65, and 67-88.

^{2.} No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-76
NICKEL-COBALT ALKALINE CLEANING RINSE

		r Use	Percent	Wastewa	
Plant	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
3	168.4	40.38	<100	0.00	0.00
10*	6.95	1.67	0.0	6.95	1.67
4	30.29	7.26	0.0	30.29	7.26
10*	96.23	23.08	0.0	96.23	23.08
11	976.7	234.2	0.0	977	234.2
5	2,140	514 (0.0	2,140	514
12	2,325	557.7	0.0	2,325	557.7
13	2,778	666.1	0.0	2,778	666.1
14	2,843	681.8	0.0	2,843	681.8
12	7,107	1,704	0.0	7,107	1,704
11	7,149	1,714	0.0	7,149	1,714
15	55,180	13,230	0.0	55,180	13,230
16	NR	NR	0.0	NR	NR
16	NR	NR	0.0	NR	NR
17	NR	NR	0.0	NR	NR
	NR	NR	NR	NR	NR
2	NR	NR	NR	NR	NR
1 2 6 7	NR	NR	NR	NR	NR
7	NR	NR	NR	NR	NR
8 9	NR	NR	NR	NR	NR
9	NR	NR	NR	NR	NR
18	NR	NR	NR	NR	NR
Average	6,733	1,615	•	7,330	1,758

NR - Data not reported

^{*}Nickel forming no longer performed by this plant.

NICKEL-COBALT ALKALINE CLEANING RINSE RAW WASTEWATER SAMPLING DATA

Table V-77

٠	<u>Pollutant</u>	Stream <u>Code</u>	Sample Type	Con Source	centration Day 1	ns (mg/1) Day 2	Day 3
	Toxic Pollutants	•					
	11. 1,1,1-trichloroethane	F-13	· 1.	0.014	ND		
	44. methylene chloride	F-13	1	0.002	0.027		
	55. naphthalene	D-12	1	ND	ND	w.	. •
		D-15 F-13 F-15	1 3 3	ND 0.001 0.001	ND .	NÐ ND	ND
-	58. 4-nitrophenol	D-12	ندر براوند	ND.	ND		
		D-15 F-13 F-15	1 3 3	ND ND ND	0.003	ND ND ND	ND
647	65. phenol	D-12 D-15 F-13	1 1 3	ND ND ND	0.004	0,002	0.012
	66. bis(2-ethylhexyl)phthalate	D-12 D-15 F-13 F-15	1 1 3 3	0.009 0.009 ND ND	0.007 ND	ND .	ND
	114. antimony	D-12 D-15 F-13 F-15	1 1 3 3	<0.003 <0.003 <0.002 0.0002	<0.003 0.002	0.0021	<0.003 <0.002
	115. arsenic	D-12 D-15 F-13 F-15	1 1 3 3	<0.003 <0.003 <0.005 <0.005	<0.003 0.0015	0.003	<0.005 <0.005
	117. beryllium	D-12 D-15 F-13	1 1 3	<0.0005 <0.0005 <0.010	0.001	<0.0005	<0.010
:	118. cadmium	F-15 D-12 D-15 F-13 F-15	3 1 1 3 3	<0.010 <0.002 <0.002 <0.050 <0.050	0.002	<0.010	<0.050 <0.050

Table V-77 (Continued)

NICKEL-COBALT ALKALINE CLEANING RINSE RAW WASTEWATER SAMPLING DATA

		Stream	Sample	Conc	entration	s (mg/l)	
	<u>Pollutant</u>	Code	Туре	Source	Day 1	Day 2	Day 3
Toxic	Pollutants (Continued)						
119.	chromium (total)	D-12 D-15 F-13 F-15	1 1 3 3	0.040 -<0.068 <0.100 <0.100	0.10	0.17	0.270
120.	copper	D-12 D-15 F-13 F-15	1 1 3 3	0.068 0.068 0.170 0.170	0.036	0.023	1.50
121.	cyanide (total)	F-13 F-15	1	<0.02 <0.02	<0.02	<0.02	<0.02
122.	l ead	D-12 D-15 F-13 F-15	1 1 3 3	<0.084 <0.084 <0.100 <0.100	0.16	<0.084	<0.100
123.	mercury	D-12 D-15 F-13 F-15	1 1 3 3	<0.0020 <0.0002 <0.0020 <0.0020	<0.0020 <0.0020	<0.0002	<0.0020 <0.0020

Table V-77 (Continued)

NICKEL-COBALT ALKALINE CLEANING RINSE RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Concentrations (mg/l)			
Pollutant	<u>Code</u>	Туре	Source	Day 1	Day 2	Day 3
Toxic Pollutants (Continued)						
•		-			•	
124. nickel	D-12	1	<0.003	0.24		
124. Hoker	D-15	i	<0.003	0.2	0.050	
	F-13	3 .	0.200	0.280		5.58
	F-16	3	0.200			1.08
125. selenium	D-12	6 .	<0.003	<0.003	0.003	
	D-1	1	<0.003		0.003	
	F-13	. 3	<0.010	<0.01.0		<0.010
	F-15	3	<0.010		<0.010	
126. silver	D <u>~</u> 12		<0-001	<000-1		de-recognition dermone accompanies on a second
	D-15	1	<0.001		<0.001	
	F-13	3	<0.002	<0.002		<0.002
	F-15	. 3	<0.002	-	<0.002	
127. thallium	D-12	1	<0.003	<0.003		
	D-15	, i	<0.003		<0.003	•
	F-13	3	<0.005	<0.005		<0.005
	F-15	3	<0.005		<0.005	
128. zinc	D-12	. 1	0.038	0.071		
	D-15	i	0.038		0.13	
	F-13	3	<0.050	0.050		0.110
	F-15	3	<0.050		0.240	
Nonconventional Pollutants						
		•				
Acidity	D-12	1	<1	< 1		•
•	D-15	1	< 1	-	<1	
	F-13 F-15	∞ 3 ·	<1	<1	. •	<1.
	L-12	* 3	<1	•	<1	•
Alkalinity	D-12		18.0.	1 1.0	and the second second second	
	D-15	1	180		170	
	F-13	3	61	46		52
	F-15	. 3	61	1.	170	
Aluminum	D-12	1 47	<0.050	0.052	-	
•	D-15	. 1	<0.050		<0.050	
	F-13	3	0.910	0.420		0.480
	F-15	3	0.910			0.100

	Stream	Sample	Concentrations (mg/1)			
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3
	,					
Nonconventional Pollutants (Continued	,				•	
Ammonia Nitrogen	D-12	<1	<1		0.19	
	0-15	1		0.00	0.19	0.03
•	F-13	3	0.04	0.62	<0.01	0.03
	F-15	3	0.04		\0.01	
Barium	D-12	1	0.12	0.13	0.15	
par ruii	D-15	1	0.12		0.12	
	F-13	3	0.080	0.030		0.070
	F-15	3	0.080		0.040	
	D19	1 -	<0.009	0.094		
Boron	D-12 D-15	1	<0.009	0.054	0.12	
	F-13	3	<0.100	<0.100	• • • • • • • • • • • • • • • • • • • •	0.260
	F-15	3	<0.1002	10.100		4.07
	, ,5	J				
Calcium	D-12	1	40			
	D-15	1	63		61	20.0
· ·	F-13	3	46.2	22.7		32.8
	F-15	3	46.2			29.9
Chemical Oxygen Demand	D-12	1	<5 ·	<5 ·		
Chemical Oxygen Demand	D-15	1	< 5		<5	
	F-13	3	<1	160		160
	F-15	3	<1		540	
	D-12	1	34	50		
Chloride	D-15	i	34		54	
•	F-13	3	12	34		31
•	F-15	3	12		32	•
	5 10		<0.006	0.16		-
Cobalt	D-12 D-15	1	<0.006	0.16	0.021	
••	F-13	3	<0.100	<0.100		<0.100
·	F15	3	<0.100	10.100		<0.100
	, 13	3	.0			
Fluoride	D-12	1 *	0.45	0.61	•	
	D-15	1 '	0.45		- 1.8	
	F-13	3	0.43	1.0		1.0
·	F-15	3	0.43		1.2	•
Iron	D-12	1	0.066	0.38		
11 (11)	D-15	1	0.066	=	0.47	_
	F-13	3 .	1,37	0.980		3.24
	F-15	3	1.37	-		0.260
	-	•				

Table V-77 (Continued)

			Stream	Sample		centratio	ns (mg/l)	
	Pollutant	•	Code	Туре	Source	<u>Day 1</u>	Day 2	Day 3
		(0111)		•		•		•
Nonconvent	ional Pollutants	(Continued)			-			
			* · ·			. •		
Magnesium			D-12	1	24	30.		
magnes ram			D-15	1	24		23	
		*	.F=13	3	12.7	8.04		11.1
•	•		F-15.	3	12.7		8.45	* •
	*				•			
Manganese	e e e	•	D-12	, 1	0.012	0.034		
			D-15	1	0.012		0.023	0 100
		2	F-13 F-15	3	0.080	0.030		0.130 0.200
			F=15	, .3	<0.080			0.200
Molybdenum	refere annualmentalment and public in ordered that it is a more arrown approximation on a	and an extension of agentines of the	D-12	1	0.030	0.093		
mo i y baerian	1	.*	D-15	i	0.030	0.000	0.098	
			F-13	3	<0.200	<0.200		<0.200
	-		F-15	· 3	<0.200	•	<0.200	•
	•			•				
Phenolics			F-13 .	1	<0.005	<0.005		0.095
÷			F-6	1 .	<0.005	0.012	0.012	<0.005
			0.40.		- 4			•
Phosphate	-		D-12 . D-15	1	<4 <4	<4	<4	
			F-13	3	<4	12	\4	<4
	•		F-15	3	<4		, 200	\ -1
			, 13	Ü	14		, 200	
Sodium			D-12 `	1 ·	9.5	14		
			D-15 %	1	9.5		13	
			F-13	3	154	27.6		32.8
		•	F-15 :	3	154		840	•
			_ 1_					
Sulfate	•		D-12	1	53	5 9	5 0	•
			D-15 F-13	3	53 130	190	53	110
			F-15	. 3 3	130	190	340	110
	e commercial commercial actions of			0				., .,
Tin			D-12	1	<0.12	0.17		
			D-15	i	<0.12	,	<0.12	
			F-13	3	<0.200	•		<0.200
	•		F-15	3	<0.200		<0.200	•
						٠		
Titanium			D-12	.1	<0.005	0.11		
			D-15	-1	<0.005	*	0.360	
			- F-13	3	<0.020	0.020		0.040
	•		. F−15	3	<0.020		0.090	

Table V-77 (Continued)

<u>Pollutant</u>	Stream Code	Sample Type	Con Source	Centrations Day 1	5 (mg/1) Day 2	Day 3
Nonconventional Pollutants (Continued)					
		ř.				
Total Dissolved Solids (TDS)	D-12	1	393	400		
(Utal Dissurved Suries (150)	D-15	i	393		300	
	F-13	3	320	320		315
· ·	F-15	3	320		60 0	
Total Organic Carbon (TOC)	D-12	1	8	3		
•	D-15	1	8 8 2 2		5	
	F-13	3	2	25		34
•	F-15	3	2		82	
	- 40	-	205	200		
Total Solids (IS)	D-12	1	395	390		E70
	D-15	1	395	000		570
	F-13	3	330	830	700	460
	F-15	3	330	2,	70 0	
Vanadium .	D-12	1	0.016	0.062		
Variau i uiii	D-15	i	0.010		0.028	
**	F-13	3	<0.010	<0.010		<0.010
	F-15	3	<0.010		0.010	
Yttrium	D-12	1	<0.002	0.008		
	D-15	1	<0.020		0.006	
	F-13	3	<0.020	<0.020		<0.020
•	F-15	3	<0.020			<0.020

Table V-77 (Continued)

<u>Pollutant</u>	Stream Code	Sample Type	Source	entratio Day 1	ns (mg/l Day 2	Day 3
Conventional Pollutants		-	-			
Oil and Grease	D-12 D-15 F-13 F-15	1 1 1 1	<1 <1 <1 <1	3	< 1 2	26
Total Suspended Solid (TSS)	D-12 	1	<1	5 .	`	
	F-13 F-15	3	22 22	8.6	61	190 .
pH (standard units)	D-12 D-15 F-13 F-15	1 1 3 3	7.14 7.14 6.64 6.64	8.14 7.48	7.00	6.65 13

1. No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.

653

 Note that stream code Y-6 also appears on the titanium molten salt rinsewater raw wastewater sampling data table. The wastewater is derived from an operation in both subcategories.

Table V-78
NICKEL-COBALT MOLTEN SALT RINSE

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewate: L/kkg	Discharge gal/ton
1	33.40	8.01	P	33.40	8.01
2	198.1	47.50	P	198.1	47.50
3	513.2	123.1	0.0	513.2	123.1
4	1,465	351.2	0.0	1,465	351.2
5	2,535	607.8	0.0	2,535	607.8
4	6,379	1,530	0.0	6,379	L,530
4	23,620	5,664	0.0	23,620	5,664
б	16,120	3,865	0.0	16,120	3,865
Average	6,358	1,525		6,358	L,525

P - Periodic discharge

Table V-79

NICKEL-COBALT MOLTEN SALT RINSE
RAW WASTEWATER SAMPLING DATA

			Stream	Sample	Conic	entration	s (mg/l)	
		Pollutant	_Code	Туре	Source	Day 1	Day 2	Day 3
	Toxic	: Pollutants						
~	114.	antimony	· D-9	6	<0.003	<0.003	<0.003	<0.003
			E-5	1	<0.005	0.000	3.500	0.050
			F-6	3	<0.002	<0.002	0.002	<0.002
	115.	arsenic	D-9	6	<0.003	<0.003	<0.003	<0.003
			E-5	6	<0.005			0.260
		-	F-6	3	<0.005	<0.005	<0.005	<0.005
	117.	beryllium	D-9	6	<0.0005	0.001	0.001	0.001
			E-5	1	<0.010			<0.010
			F-6	3	<0.010	<0.010	<0.010	<0.010
	118.	cadmium	D-9	6 ·	<0.002	0.14	0.075	0.22
			E-5	1	<0.050	~		<0.050
		•	F-6	. 3	<0.050	<0.050	<0.050	-0,050
i	119.	chromium (total)	D-9	. 6	0.042	49	66	36
			E-5	1	<0.100			100
			F-6	3	<0.100	11.9	10.4	36.3
	120.	copper	D-9	6	0.068	0.35	0.26	0.32
			E-5	1	0.080			8.05
			F-6	3	0.170	0.650	0.080	0.220
	121.	cyanide (total)	E-5	. 1	<0.02			<0.02
			F-6	1	<0.02	<0.02	<0.02	<0.02
	122.	lead	D-9	6	<0.084	<0.084	0.089	<0.084
			E-5	1	<0.100			<0.100
			F-6	3	<0.100	<0.100	<0.100	<0.100
	123.	mercury	D-9	. 6	<0.0002	<0.0002	<0.0002	<0.0002
		garante de la composition de l	E-5	1	<0.0010			<0.0010
			. F-6	3	<0.0020	<0.0020	<0.0020	<0.0020

Table V-79 (Continued)

	Stream	Sample		centration		
<u>Pollutant</u>	Code	Туре	Source	Day 1	Day 2	Day 3
<u>Toxic Pollutants</u> (Continued)						
124. nickel	0-9	6	<0.003	10	5.3	14
	E-5 F-6	1 3	<0.100 0.200	0.500	0.380	<0.100 1.64
125. selenium	D-9	6	<0.003	<0.003	<0.003	<0.003
	E-5 F-6	1 3	<0.010 <0.010	<0.010	D.012	0.090 <0.01 0
126. silver	D-9	6	<0.001	0.008	0.010	0.005
	E-5 F-6	1 3	<0.002 <0.002	<0.002	<0.002	<0.002 <0.002
127. thallium	D-9	6	<0.003	0.013	0.006	0.004
	E-5 F-6	1 3	<0.002 <0.005	<0.005	<0.005	0.019 <0.005
128. zinc	D-9	6	0.038	0.26	0.40	0.21
	E-5 F-6	- 1 3	<0.050 <0.050	0.050	<0.050	0.390 0.020
Nonconventional Pollutant's		•				
Acidity	D-9	6	<1	<1 .	< 1	<1
. •	E-5 F-6	1 . 3	<1 <1	<1.	<1	<1 <1
Alkalinity	D-9	6		,600 1		, 140
	E-5 F-6	1 3	83 61	550		,000 ,340
Aluminum	D-9	6	<0.050	0.37	0.37	0.30
	E-5 F-6	1 3	0.300 0.910	0.420	0.220	5.90 0.3 0 0

Table V-79 (Continued)

<u>Pollutant</u>	Stream Code	Sample Type	Cor Source	Day 1	ns (mg/l) Day 2	Day 3
Nonconventional Pollutants (Continued)	<u> </u>	-				
Ammonia Nitrogen	D-9 E-5 F-6	6 1 3	<1 0.22 0.04	0.44	0.52 0.05	0.63 5.2 <0.01
Barium	D-9 E-5	6 1	0.12 0.060	0.21	0.12	0.15 0.780
Boron	F-6 D-9 E-5	3 6	0.080 <0.009 0.170	0.040 <0.009	0.030	0.030 <0:.009 340
Calcium	F-6 D-9 E-5	3 6	<0.100	<0.100	<0.100 830	0.210 810 1.60
Chemical Oxygen Demand	F-6 D-9 E-5	3 6 1	46.2 <5 34	18.2 100	14.2	9.63 56 650
	F-6	3	<1	<1		5
Chloride	D-9 E-5 F-6	6 1 3	34 26 12	360 . 74	390 14 92	280 ,000 130
Cobalt	D-9 E-5 F-6	6 1 3	<0.006 <0.100 <0.100	2.5 <0.100	0.72 <0.100	2.8 0.400 <0.100
Fluoride	D-9 E-5	6	0.45 0.44	1.1	0.49	740 65
Iron	F-6 D-9 E-5 F-6	3 6 1 3	0.43 0.066 1.00	0.66 6.1	5.5 3.6	8.2 0.220
	10	S	1.37	0.590	0.430	0.010

Table V-79 (Continued)

Pollutant	Stream Code	Sample Type	Conc Source	entration Day 1	ns (mg/1) Day 2	Day 3
Nonconventional Pollutants (Continued)					
Magnesium	D-9 E-5	6 1	24	18	13	12
	F-6	3	15.8 12.7	4.20	3.01	<0.100 1.19
Manganese	D-9 E-5	6 1	0.012 0.140	1.2	1,1	0.99 <0.010
	F-6	3	0.080	0.100	0.050	0.230
Molybdenum	D-9 E-5	6 1	0.030 <0.200	23	25	16 15.5
	F-6	3	<0.200	<0.200	0.260	0.380
Phenolics	E-5 F-6	1	0.014 <0.005	0.012	0.012	0.053 <0.005
Phosphate	D-9	6	<4	14	<4	<4
	E-5 F-6	1 3	16 <4	<4	<4	<4 <4
Sodium	D-9	6	9.5 1,	,400 1,	700 .1	,000
Sodium	E-5 F-6	1 3	33.0 154.0	380	380 380	, 4 00 880
Sulfate	Ď-9	6 ·		,700 3,8	300 2	,900
	E-5 F-6	1 3	170 130	100	98	,800 120
Tin	D-9	6	<0.12	3.1	1.9	2.7
	E-5 F-6	1 3	<0.200 <0.200	<0.200	<0.200	<0.200 <0.200

Table V-79 (Continued)

<u>Pollutant</u>	Stream Code	Sample Type	Concentrations (mg/l) Source Day 1 Day 2 Day 3
Nonconventional Pollutants (Continued	d)		
Titanium	D-9 E-5 F-6	6 1 3	<pre><0.005 2.0 0.61 1.6 <0.020</pre>
Total Dissolved Solids (TDS)	D-9 E-5 F-6	6 1 3	393 7,700 8,350 6,000 330 230,000 320 1,100 1,100 2,700
Total Organic Carbon (TOC)	D-9 E-5	6	8 42 42 29 <1 7.2 2 2.0 <1 <1
Total Solids (TS)	F-6 D-9 E-5 F-6	3 6 1 3	395 9,000 10,000 7,100
Vanadium	D-9 E-5 F-6	6°- 1 3	0.016 0.46 0.59 0.36 <0.010 1.88 <0.010 0.020 0.030 0.050
Yttrium	D-9 E-5 F-6	6 1 3	<pre><0.002 0.010 0.011 <0.002 <0.020</pre>
Conventional Pollutants		·	
Oil and Grease	D-9 E-5 F-6	1 1 1	<1 38 4 <1 <1 <1 <1 5.0 3 <1
Total Suspended Solids (TSS)	D-9 E-5	6 1	<1 790 770 550 29 4,200 22 80 39 21
pH (standard units)	D-9 E-5 F-6	6 1 3	7.14 10.40 11.80 11.50 6.71 12.84 6.64 10.19 10.70 11.60

Table V-79 (Continued)

NICKEL-COBALT MOLTEN SALT RINSE RAW WASTEWATER SAMPLING DATA

- 1. No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.
- Note that stream code Y-6 also appears on the titanium molten salt rinsewater raw wastewater sampling data table. The wastewater is derived from an operation in both subcategories.

Table V-80 NICKEL-COBALT SAWING OR GRINDING SPENT EMULSIONS

	Wa⊬	er Use**	Percent		ewater narge***
Plant	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
Flanc	n/ kvà	gai/con	Keclere	п/кку	gai/ con
1	NR	NR	100	0.00	0.00
, 2	NR	NR	100	0.00	0.00
3*	NR	NR	NR	0.00	0.00
4	38.37	9.20	100	0.00	0.00
5	39.53	9.48	100	0.00	0.00
5 .	164.2	39.38	100	0.00	0.00
6	1,960	470	99.9	0.00	0.00
4 5 5 6 7	2,480	594	100	0.00	0.00
8	476,600	114,300	100	0.00	0.00
8 9	500,400	120,000	NR	4.29	1.03
10 9 9	NR	NR	NR	11.60	2.78
9	NR	NR	NR	16.26	3.90
9	0.00	0.00	<99.9	67.25	16.13
11	97.64	23.42	0.0	97.64	23.42
12	NR	NR	NR	NR	NR
13	NR	NR	NR	NR	NR
14	NR	NR	NR	NR	NR
15	NR	NR	NR	NR	NR
16	NR	NR	NR	NR	NR
17	NR	NR	NR	NR	NR
18	NR	NR	NR	NR	NR
19	NR	NR	100	NR	NR
20	NR	NR	NR	NR	NR
17	NR	NR	NR	NR	NR
21	NR	NR	NR	NR	NR
Average	122,700	29,430		39.41	9.45

NR - Data not reported

^{*}Nickel forming no longer performed at this plant. **Application rate.

^{***}Volume of spent lubricant generated per mass of nickel-cobalt.

Table V-81

NICKEL-COBALT SAWING OR GRINDING SPENT EMULSIONS
RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Concentrations (mg/1)				
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	
luxic Pollutants							
1. acenaphthene	D-5	1	ND		ND		
. accrepitations	D-16	- 1	ND	ND			
	D-17	1	ND		ИD		
	D-18	1	ND		1.450		
	F-20	1	ND		ND		
•	F-22	1	מא	ND			
	F-23	1	ND	ND			
	F-24	1	ND	ND			
•	F-25	1	ND	ND			
	F-26	1	МÐ		ND		
4. benzene	D-5	1	ND		ND		
	D-16	1	ND	0.026			
	D-17	1	ND		ND		
	D-18	1	ND		ND		
•	F-20	1.	ND		ND		
	F-22	1	ND	ND.			
	F-23	1	ND	0.003		•	
•	F-24	1	ND	ND			
	F-25	1	ND	ND			
• •	F-26	1	ND		ND		
11. 1,1,1-trichloroethane	D-5	1	0.009		0.019		
	D-16	1	₽.009	0.001			
	0-17	1	0.009	•	0.029		
	D-18	1	0.009		0.030		
	F-20	1	0.014	-	ND		
	F-22	1	0.014	0.034			
	F-23	1	0.014	0.012			
	F-24	1	0.014	ND			
	F-25	1	0.014	ND	_		
	F-26	1	0.014		ND		

Table V-81 (Continued)

·	Stream	Sample	Conc	entration		
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3
Toxic Pollutants (Continued)						
13. 1,1-dichloroethane	D-5	1	ND		0.007	
	D-16	1	ND	ND		
	D-17	i	ND	4	ND	
•	D-18	1	ИD		ND	
	F-20	1	ND		ND	
	F-22	1	ND	0.015		
	F-23	1	ND	ND		
the second secon	F-24	1_	ND	ND	_	
The states of the conjugation and company particles from the definition beaution day desiration. The confer of the confer of the state of the state of the state of the confer of the co	F-25	T	ND	ND	and the second of the second of the second	
	F-26	1	, ND		ИD	•
•				*		
· · · · · · · · · · · · · · · · · · ·					•	
22. p-chloro-m-cresol	0-5	1	ЙD		ND	
	D-16	1	ИD	0.116	_	
•	D-17	1	, ND		ИD	
	· D-18	. 1	ND		ND	
	F-20	1	ND		ND .	
	F-22	1	· ND	,ND		
•	F-23	1	ND	ND		
	F-24	1	ND	ND	•	
	F-25	1	ND	ИD		
•	F-26	1	ND		- ND	

Table V-81 (Continued)

Pollutant	Stream Code	Sample Type	Conc. Source	entration Day 1	s (mg/1) Day 2	Day 3
<u>loxic Pollutants</u> (Continued)						
23. chloroform	D-5 D-16 D-17 D-18	1 1 1	0.144 0.144 0.144 0.144	ND	ND ND ND	
	F-20 F-22 F-23 F-24	1 1 1	ND ND ND ND	ND ND ND	ND	
	F-25 F-26	1 1	ND ND	ND	ЙD	
34. 2,4-dimethylphenol	D-5 D-16 D-17	1 1 1	ND ND ND	0.168	ND ND	
	D-18 F-20 F-22 F-23	1 1 1	ИО ИО ИО ИО	ND 0.105	ND ND	
	F-24 F-25 F-26	1 1 1	ND ND ND	ND ND	ND	
37. 1,2-diphenylhydrazine	D-5 D-16 D-17	1 1 1	ND ND ND	ND .	ND ND	
	D-18 F-20 F-22 F-23	1 1 1	ND ND ND ND	ND 0.009	ND ND	
· · · · · · · · · · · · · · · · · · ·	F-24 F-25 F-26	1 1 1	ND ND ND	ND · ND	ND	
. 39. fluorantheme	D-5 D-16 D-17	1 1 1	ND ND ND	ΝĎ	ND ND	
	D-18 F-20 F-22	1 1 1	ND ND ND	ND	3.850 .ND	-
•	F-23 F-24 F-25 F-26	1 1 1	ND ND ND ND	ND ND ND	ND	

Table V-81 (Continued)

	-	Pollutant		Stream Code	Sample Type	Conc Source	entration Day 1	s (mg/l) Day 2	Day 3
					.,,,,,	<u> 3001 CE</u>	Day .	. Day Z	Day 3
	luxic	: Pollutants (Continue	ed)						
	•								
	44.	methylene chloride		D-5	•	0.002	*	0.001	
	-,	me criy rene cirror rae		D~16	1	0.002	0.017	0.001	
				D-17	i	0.002	0.017	ND	
		•		D-18	ì	0.002	•	ND	
		•	٠,	F-20	ì	0.002	•	1,110	
				F-22	1	0.002	0.006		
		and the second section of the second second second second second second section section second secon		F-23	1	0.002	0.003		
				F-24	1	0.002	1.210		
				F-25	1 .	0.002	0.133		
				F-26	1	0.002		0.039	
		•							
	55.	naphthalene		D-5	. 1	ND	•	ND	-
				D-16	1	ND	0.027		
				.D-17	1.	ND		ND	
				D-18	1,	ND		ND	•
		:		F-20	1	0.001		ND	
		· .		F-22	1	0.001	ND		
		•		F-23	1	0.001	ND		
				F-24	1	0.001	ND	•	
				F-25	1	0.001	1.240		
				F <u></u> ~26	1	0.001		- ND	
	57.	2-nitrophenol	-	D-5	1	ND	•	ND	
	57.	2-m (tropheno)		D~5 D~16	1 .	ND	0 105	· ND	
				D-17	1	. ND	0.105		
		•		D-17	1	ND		ND	•
				F-20	1	ND ND		ND DD	•
		است د استادار د الم ایر ساید این د د		F-22		ND	ND	עאו	
•		4		F-23	1	ND	ND .		
				F-24	1	ND	ND .		
				F-25	1	ND	ND		
				F-26	1	ND	112	ND	
					'	110		NP	

Table V-81 (Continued)

<u>Pollutant</u>	Stream Code	Sample Type	Con Source	centration Day 1	s (mg/1) Day 2	Day 3
Toxic Pollutants (Continued)						
58. 4-nitrophenol	D-5	1 .	ND		ND	
•	D-16	1	ND	0.446		
	D-17	1	ND		ND	
	D-18	1	ND		ND	
	F-20	1	ND		ND	
•	F-22	1	ND	ND		
	F-23	1	ND	ND		
	F-24	1	ND	ND		
	F-25	1 .	ND	ИD		
	F-26	1	ND	•	ND	
60. 4.6 dinitro-o-cresol	D-5	1	ND		ND	
•	D-16	1	ND	0.593		
	D-17	1	ND		ND	
	D-18	1	ND		ND	
	F-20	1	ND		ND	
	F-22	1	ND	ND		
	F-23	1	ND	ND		
	F-24	1	ND	ND		
	F-25	1	ND	ND		
	F-26	1	ND		ND	
64. pentachlorophenol	D-5	1	ND		ND	
	D-16	1	ND	ND		
	D-17	1	ND		ND	
	. D-18	1	. ND		ND	
	F-20	1	ND		1.950	
	F-22	1	ND	ND		
	F-23	1	ND	ND		
	F-24	1	ND	ND		
•	F-25	1	ND	145 .		
	F-26	1	ND		ND	

Table V-81 (Continued)

		Stream	Sample	Concentrations (mg/l)					
	Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3		
 Toric	Pollutants (Continued)			r		e			
TOXIC	Fortutaits (continued)				•				
65.	pheno l	D-5	1	ND .		ND			
		บ-16	1	ND .	ND .				
•		D-17	1 .	ND .	and the same of th	0.547	a cere		
-		D-18 °	1	ND	***	ND			
	•	F-20	1	ND	-	0.090			
	•	F-22	1	ND	. ND				
		F-23	1	ND	0.195				
		F-24 ·	1	ND	ND				
		F-25	. 1	ND	. ND				
		F-26	1	ND		ND			
b6.	bis(2-ethylhexyl) phthalate	D-5	1 ·	0.009		0.010			
		D-16	1	. 0.009 .	NÐ				
		D-17	1	0.009		ND			
	•	D-18	1	0.009		ND			
		. F-20	1	ND		0.015			
	•	F-22	1	ND	ND				
		F-23	1	ND	0.007				
		F-24	i	ND	ND				
		F-25	1	. ND	0.381				
		F-26	1	ND		ND			
. 68.	di-n-butyl phthalate	D-5	1 .	ND		ND			
		D-16	1	· ND	ND .				
	·	D-17	1 '	ND		ND			
		D-18	1	. ND		ND			
		F-20	1	ND		ND			
		F-22	1	ND	ND				
		·F-23	1.	ND .	0.004				
	Ta Carlo	F-24	1 ,	ND	ND				
	•	F-25	1 *	ND	ND				
		F-26	1	ND		ND			
69.	di-n-octyl phthalate	D-5	1	ND		ND			
		D-16	· 1	ND :	ND		· ·		
		D-17	1	· ND		ND			
	•	D-18	1	ND		ND			
		F-20	i	ND		0.001			
		F-22	1 -	ND .	ND				
		F-23	1	ND	ND				
		F-24	1	ND	ND				
		F-25	i	ND	ND				
		F-26	i	ND		ND			
				.,_					

	Stream	Sample	Concentrations (mg/l)			
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3
luxic Pollutants (Continued)						
77, acenaphthylene	D-5	1	ND		ND	
	D-16	1	ND	0.007		
	D-17	1	ND		ND	
	D-18	1	ND		ИD	
	F-20	1	ND		ND	
	F-22	1	ND	ND		
	F-23	1	ND	ND		
	F-24	1	ND	ND		
	F-25	1	ND	ND		
	F-26	1	ND		ND	
: Ri. fluorene	D-5	1	ND		ND	
	D-16	1	ND	ND		
!	D-17	1	ND		ND	
	D-18	1	ND		1.730	
	F-20	1	ND		ND	•
1	F-22	1	ИD	ND		
	F-23	1 - 2	ND	ND		
	F-24	1	ND	ИD		
	F-25	1	ИD	ND	4	
i ·	F-26	1	ND		ND	
	5.5		ND		ND	
81. phenanthrene	D-5	1	МD	0.002	עט	
	D-16	1 1	ND ND	0.002	0.804	
	D-17 D-18	ι 1	ND		7.420	
•		1	ND		0.286	
	F-20, F-22	7	. ND	ND	0.200	
-	· F-23	1	ND	ND .		
	F-24	1	ND	8.550		
· ·	F-25	1	ИD	0.354		
	F-26	1	ND	0.054	ND	
	•					
84. pyrene	D-5	. 1	ND		ND	
	D-16	1.	NĐ	ND		
i.	D-17	Ţ	ND ·		ND	
	D-18	1	ND		1.800	
1	F-20	1	ND		ND	
	F-22	1	ND	ND		
	F-23	1	ИD	ND		
•	F-24	1	ИD .	ND		
	F-25	1	ND	ND		
•	F-26	1	ND		ND	

Table V-81 (Continued)

to.	Pollutant	Stream -Code	Sample Type	Conc Source	entration Day 1	s (mg/l) Day 2	Day 3
	Toxic Pollutants (Continued)						
	114. antimony	D~5	1	<0.003		<0.003	
		D-16	1 '	<0.003	<0:003		
		D-17	1	<0.003		<0.003	
	•	D-18	1	<0.003		<0.003	
		F-20	1	<0.002		<0.002	
		F-22	1	<0.002	0.002		
:	en e	F-23	<u></u>	<0.002	0.003		
	•	F-24	1	<0.002	0.006		
		F-25	1	<0.002	0.004		
		F-26	1	<0.002		0.003	
		Y-7	1	0.0002			0.0625
ע		V-8	1	0.0002			0.0022
0							
	115. arsènic	D-5	1	<0.003		<0.003	
		D-16	1	<0.003	<0.003		
		D-17	i	<0.003		<0.003	
		D-18	1	<0.003		<0.003	
		F~20	1 :	<0.005		0.007	
		F-22	1	<0.005	0.012		
		F-23	1	<0.005	0.023		
		F-24	1	<0.005	0.017		
		F-25	1	<0.005	0:008		
	•	F-26	1	<0.005		<0.005	
		Y-7	. 1	0.002			0.26
		Y-8	. 1	0.002			0.024
	and the second of the second o						
	117. beryllium	D-5	1	<0.0005		<0.0005	
		D-16	1 -	<0.0005	<0.0005		
		D-17	1	<0.0005		<0.0005	
		D-18	. 1	<0.0005		0.001	
	1	F-20	1	<0.010		<0.010	
	•	F-22	-1	<0.010	<0.010		
	•	F-23	1	<0.010	<0.010	÷	
	. •	. F-24	1	<0.010	<0.010		
		F-25	1	<0.010	<0.010		
	•	F-26	1	<0.010		<0.010	.0.00
	4	Y-7	1 .	<0.02			<0.02
		Y-8	1	<0.02			<0.02

Table V-81 (Continued)

Pollutant	Stream Code	Sample Type	Conc Source	centration Day 1	ns (mg/1) Day 2	Day 3
Tuxic Pollutants (Continued)						
	•					
118. cadmium	D-5	1	<0.002		0.010	
	D-16	1	<0.002	0.066		
	D-17	1	<0.002		0.035	
•	D-18	1	<0.002		0.072	
	F-20	1	<0.050		<0.05 0	
	F-22	1	<0.050	<0.050		
	F-23	1	<0.050	<0.050		
	F-24 F-25	1	<0.050	<0.050		
	F-26	1 1	<0.050	<0.050	<0.0E0	
	Y-7	1	<0.050 <0.03		<0.050	<0.03
•	Y-8	1	<0.03			<0.03
	7 0	ı	\0.03			\0. 03
119. chromium (total)	D-5	1	0.042		0.19	
175. CHI OMITAM (EDEAT)	D-16	i	0.042	2.5	0.15	
•	D-17	1	0.042	2.5	1.9	
	D-18	i	0.042		1.2	
	F-20	i	<0.100		<0.100	
	F-22	i	<0.100	<0.100	10.100	
	F-23	1	<0.100	24.0		
•	F-24	i	<0.100	11.2		
•	F-25	1	<0.100	<0.100		
	F-26	1	.<0.100		0.670	
	Y-7	1	<0.02			0.7
	A-8	1	<0.02			0.2
120. copper	D-5 .	, 1	0.068	•	0.10	
	D-16	1	0.068	0.28		
	D-17	1	0.068		0.26	
•	D-18	1	0.068		0.76	
	F-20	1	0.170		0.790	
•	F-22	1	0.170	0.120		
	F-23	. 1	0.170	1.20		
	F-24	1	0.170	16.5	-	
	F-25	1	0.170	1.42		
	F-26	1	0.170		0.390	
	Y-7	1	<0.02			0.5
	8~Y	1	<0.02			0.4

Table V-81 (Continued)

<u>Pollutant</u>	Stream Code	Sample Type	Conc Source	entration Day 1	s (mg/1) Day 2	Day 3
Toxic Pollutants (Continued)		e i la Maria di Salaharan di Sa				*
p to the same plant plant and the same same same same same same same sam						
•						
121. cvanide (total)	E . 20	•			40.00	
121. cyanide (total)	F-20 F-22	1	<0.02 <0.02	<0.02	<0.02	
	F-23	1	<0.02	<0.02		
· ·	F-24		<0.02	<0.02		
•	F-25		<0.02	<0.02		
	F-26	i	<0.02	10.02	<0.02	
			0.03		-0.02	-31
*	Y-8	1	0.03			<0.02
		·				0.01
122. lead	D-5	1	<0.084		<0.084	•
	D-16	1	<0.084	<0.084	7	
	D-17	1	<0.084		<0.084	
	D-18	1	<0.084		<0.084	
	F-20	1	<0.100		<0.100	
	F-22	1 ,	: <0.100	<0.100	-	
	F-23	1	<0.100	1.00 '		
	F-24	1	<0.100	0.250		
	. F-25	1	<0.100	0.240		
	F-26	1	<0.100		<0.100	
	Y-7	1	0.067	•		0.25
	Y-8	1	0.067			0.13
123. mercury	D-5	1	<0.0002		<0.002	
	D-16	1	<0.0002	<0.0002		
	D-17	1 .	<0.0002		<0.0002	
	D-18	1	<0.0002		<0.0002	
•	F-20	1	<0.0020		<0.0020	
	F-22	1	<0.0020	<0.0020		
	F-23	1		<0.0020		
	F-24	1	<0.0020	<0.0020		
	F-25	1	<0.0020	<0.0020		
	F-26	1	<0.0020		<0.0020	.0.005
	Y-7	1	<0.005			<0.005
	Y-8	1.	<0.005			<0.005

	Stream	Sample	Concentrations (mg/l)			
<u>Pollutant</u>	Code	Type	Source	Day 1	Day 2	Day 3
Towin Dellutests (Costisued)						
Tuxic Pollutants (Continued)						
124. nickel	D-5	1	<0.003		1.4	
129. Hickor	D-16	i	<0.003	4.8	14	
	D-17	i	<0.003	4.0	2.8	
	D-18	i	<0.003		4.0	
	F-20	i	0.200		4.10	
	F-22	i	0.200	0.100	4.10	
	F-23	i	0.200	116		
	F-24	i	0.200	26.0		
	F-25	i	0.200	2.54		
	F-26	i	0.200	2.0.	0.870	
	Y-7	i	0.1			66.0
	Ÿ-8	1	0.1			3.7
			- • •			- • -
125, selenium	D-5	1	<0.003		<0.003	
· · · · · · · · · · · · · · · · · · ·	D-16	1	<0.003	<0.003		
	D-17	1	<0.003		<0.003	
	0-18	ì	<0.003		<0.003	
	F-20	1	<0.010		<0.010	
	F-22	1	<0.010	<0.010		
	F-23	1	<0.010	<0.010		
•	F-24	1	<0.010	<0.010		
•	F-25	1	<0.010	<0.010		
	F-26	1	<0.010		<0.010	
	Y-7	1	<0.001			0.7
.*	Y-8	. 1	<0.001			0.002
			•			
126. silver	D~5	1	<0.001		<0.001	
	D-16	1	<0.001	<0.001		
· ·	D-17	1	<0.001		<0.001	
	D-18	1	<0.001		<0.001	
	F-20	1	<0.002		<0.002	
-	F-22	1 .	<0.002	<0.002		
	F-23	1	<0.002	<0.002		
	F-24	1	<0.002	0.003		
	F-25	1	<0.002	<0.002		
	F-26 .	1	<0.002		0.005	-
•	Y-7	1	<0.0005			0.0053
	Y-8	1	<0.0005			<0.0005

Table V-81 (Continued)

	0.11		Stream	Sample	Cond	Concentrations (mg/l)			
•	Pollutant		Code	Туре	Source	Day 1	Day 2	Day 3	
	Toxic Pollutants (Continued)								
		•			-	•		* *	
	127. thallium		5 -		`				
	127. that i rum		D-5 D-16	1	<0.003 <0.003	<0.003	0.007		
-			D-17	1	<0.003	\U.003	<0.003		
			D-18	i	<0.003		0.006		
			. F-20	1	<0.005		<0.005		
			F-22	1	<0.005	<0.005		*	
			F-23	1	<0.005	<0.005			
			F~24	1	<0.005	<0.005			
			F-25 	1	<0.005	<0.005			
	the or objects the state of the		Y-7). 1	<0.005 <0.001		<0.005	0.002	
	·		у-в	i	<0.001	•	· ·	0.002	
				•	3.33,			0.002	
	to the control of the				,				
)	128 .zinc		D-5 ·	1	0.038		0.32		
, 1	in the second se		D-16	1	0.038	0.12		*	
•			D-17	1	0.038		0.42		
			D-18 F-20	1	0.038 <0.050		0.87 0.280		
	•		F-22	1 .	<0.050	<0.050	0.280	•	
			F-23	ì	<0.050	0.730			
			F-24	1	<0.050	0.900			
	•		F-25	1	<0.050	0.970			
	•	a a	F-26	1	<0.050		0.590		
			Y-7	1	0.08			0.06	
	*	•	Y-8	1	0.08			0.43	
	Nonconventional Pollutants								
	THE THE STATE OF T								
	Acidity		D-5 ·	1	< 1		<1		
			D-1,6	1	< 1	<1	17		
	. I grand and a second of the		D−1-7	 			` <1		
		-	D-18 F-20	. 1.	<1 · <1		< 1		
			F-22	1	<1	<1	<1		
		•	F-23	1	<1	<1			
			F-24	1	<1	<1			
		*	F-25	1	<1	<1.			
			F-26	1	< 1	•	<1		
			Y-7	1	11.0			200.0	
	•		Y-8	1	11.0	-		230.0	

Table V-81 (Continued)

	Stream	Sample	Con	centratio	ns (mg/1)	
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3
Noncenventional Pollutants (Continued)						
Alkalinity	D-5	1	180	1	,870	
,	D-16	1	180	550		
	D-17	ì	180		930	
	D~18	1	180		940	
	F-20	1	61		360	
	F-22	1	61 6	,700		
	F-23	1	61	37		
	F-24	1	61	810		
*	F-25	1	61	300		
	F-26	1	61		510	
	Y-7	1	31.0			860.0
	Y-8	1	31.0			370.0
Aluniinum	D-5	1	<0.050		0.19	-
A MILLION	D-16	1	<0.050	7.2	-	
	D-17	i	<0.050		1.6	
	D-18	i	<0.050		19	
	F-20	i	0.910		0.760	
•	F-22	i	0.910	0.150		•
	F-23	1	0.910	12.4		
	F-24	i	0.910	2.53		
	F-25	i	0.910	0.260		
	F-26	i	0.910		0.740	
	Y-7	i	0.03			12.0
	Ÿ-8	1	0.03			1.5

Table V-81 (Continued)

* ×		Stream	Sample	Concentrations (mg/l)			
	<u>Pollutant</u>	Code	Туре	Source	Day 1	Day 2	Day 3
	Nungaryantianal Dallytanta (Continued)						
	Nunconventional Pollutants (Continued)						
					-		
	Ammonia Nitrogen	D-5	1 ,	<1		7.8	
	The state of the s	D-16	1	<1	5		
		D-17	1	<1		0.40	
	•	D~18	1	<1		0.91	
		F-20	1	0.04		<0.01	
		,F-22	1	0.04	0.25	and the company of the comment of the comment	
	control reprophing and control of the strip. The strip is the strip of the strip is	F-23	1	0.04	27		
,		F-24	· 1	0.04	1.44		
		F-25	1	0.04	0.10		
	$= \frac{1}{2} \left(\frac{1}{2} \right) \right) \right) \right) \right)}{1} \right) \right) \right)} \right) \right)} \right)} \right)} \right)} \right)} \right)} \right$.F-26	1	0.04		<0.01	
'nΩ.				2.40	-	o	
~1	Bariom :	D-5	1	0.12	0.000	0.028	
S		D-16	1	0.12	0.020	0.000	
	· · · · ·	D-17	1 .	0.12 0.12	•	0.006 0.33	
		D-18 F-20	<u>'</u> .	0.080		<0.010	•
	,	· F-22	1 -	0.080	0.020	.0.010	Hr. T
		F-23		0.080	0.030		
		F-24	i	0.080	0.110		•
	:	F-25	i	0.080	0.050		w
	0.0	F-26	i	0.080		0.090	
	•	Y-7	i	<0.02			0.04
	y.	Y-8	1	<0.02			<0.02
	ne n	*				,	
	Boron	D-5	1	<0.009		0.023	
		D-16	1	<0.009	0.31	•	
		D-17	1	<0.009		0.73	
		D-18	1	<0.009		0.19	
	The state of the second control of the secon	F-20	1	<0.100		0.130	
		F-22	1	<0.100	0.570		*
	•	F-23	1	<0.100	5.74		
	·	F-24	1	<0.100	1.26		
		F-25	. 1	<0.100	0.270	0.700	
		F-26	1	<0.100		0.760	0 1
		Y-7		2.2 2.2			9.1 9.9
		Y-8	ı	2.4			9.9

Table V-81 (Continued)

Pollutant	Stream Code	Sample Type	Concentrations (mg/1) Source Day 1 Day 2 Day 3	3
Nonconventional Pollutants (Continued))		•	
Calcium	D-5	1	63 42	
	D~16	1	63 51	
	D-17	1	63 38	
	D-18	1	63 85	
	F-20	1	46.2 5.26	
	F-22	1	46.2 1.14	
	F-23	1	46.2 2.43	
	F-24	1	46.2 5.33	
	F-25	1	46.2 35.2	
	F-26	1	46.2 37.0	
	Y-7	1	12.0 7.7	
	Y-8	1	12.0)
Chemical Oxygen Demand (COD)	D-5	1	<5 5,240	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	D-16	1	<5 1,280	
	D-17	1	<5 9,150	
	D-18	1	<5 3,230	
•	F-20	1	<1 34,000	
	F-22	1	<1 290	
	F-23	1	<1 340	
	F-24	1	<1 230,000	
	F-25	1	<1 2,800	
	F-26	1	<1 17,000	
Chloride	D-5	1	34 52	
	D-16	1	34 54	
	D-17	1	34 190	
	D-18	1	34 160	
	F-20	1	12 95	
T.	F-22	1	12 42	
	F-23	1	12 140	
	F-24	1	12 740	
	F-25	i	12 58	
	F-26	i	12 47	-
· ·			•	

Table V-81 (Continued)

<u>Pollutant</u>	Stream Code	Sample Type	Con Source	centratio	ns (mg/1) Day 2	Day 3
Nanconventional Pollutants (Continued)		-				
			· ·			
Cobalt	D~5	. 1	<0.006		0.049	
•	D-16	1.	<0.006	0.067	0.040	•
•	D-17	i	<0.006	0.00.	0.19	
	D-18	1	<0.006		3.3	
·	F-20	1	<0.100	•	<0.100	
	F-22	1	<0.100	<0.100		
	F-23	1	<0.100	1.72		
	F-24	1	<0.100	<0.100		
•	F-25	1	<0.100	0.140		
er carra anno en	F-26		<0.100		0.740	
	Y-7	1	<0.03	4.5		3.4
	Y-8	1.	<0.03			0.3
**				•		
Fluoride .	D-5	1	0.45	No.	0.47	
	D-16	1 ·	0.45	110		
·	D-17	1	0.45		1.7	
•	D-18	1	0.45	~	2.2	
1	F-20	1	0.43		1.2	
•	F-22	1	0.43	0.42		
	F-23	1	0.43	720		
	F-24	1	0.43	220		
•	F-25	1 ·	0.43	2.7		
*	F-26	1	0.43		2.0	
,	Y-7	1	290.0			100.0
	Y-8	1.	290.0	•		10.0

Table V-81 (Continued)

NICKEL-COBALT SAWING OR GRINDING SPENT EMULSIONS
RAW WASTEWATER SAMPLING DATA

Nonconventional Pollutants (Continued) Ir on	<u>Pollutant</u>	Stream Code	Sample Type	Conc Source	entration Day 1	s (mg/l) Day 2	Day 3
Magnesium	Nonconventional Pollutants (Conti	nued)					
Magnesium D-16		n-5	1	0.066		30	
Magnesium D-17 D-18 D-17 D-16 D-17 D-18 D-16 D-17 D-18 D-17 D-18 D	lion		•		11		
D-18			•			1.9	
F=20 1 1.37 1.66 F=22 1 1.37 2.12 F=23 1 1.37 47.3 F=24 1 1.37 8.46 F=25 1 1.37 2.20 F=26 1 1.37 2.20 F=26 1 1.37 94.2 F=26 1 0.061 11.0 F=26 1 0.061 5.4 Magnesium D=5 1 24 26 D=16 1 24 26 D=17 1 24 64 D=18 1 24 22 F=20 1 12.7 2.53 F=22 1 12.7 7.05 F=24 1 12.7 7.05 F=24 1 12.7 16.1 F=25 1 12.7 11.8 F=26 1 0.012 0.52 D=16 1 0.012 0.93 F=20 1 0.012 0.93 F=20 1 0.012 0.93 F=20 1 0.000 0.000 F=20 1 0.000 0.000 F=21 0.000 0.990 F=22 1 0.000 0.990 F=23 1 0.000 0.990 F=24 1 0.000 0.990 F=25 1 0.000 0.990 F=26 1 0.000 0.990 F=26 1 0.000 0.990 F=27 1 0.000 0.990 F=26 1 0.000 0.990 F=27 1 0.000 0.990 F=28 1 0.000 0.990 F=29 1 0.000 0.990 F=20 1 0.000 0.990 F=21 0.000 0.990 F=22 1 0.000 0.990 F=25 1 0.000 0.990 F=26 1 0.000 0.990 F=27 1 0.000 0.990 F=28 1 0.000 0.990 F=29 1 0.000 0.990			1				
F=22 1 1.37 2.12 F=23 1 1.37 47.3 F=24 1 1.37 8.46 F=25 1 1.37 2.20 F=26 1 1.37 2.20 F=26 1 1.37 94.2 V=7 1 0.061 94.2 V=8 1 0.061 5.4 Magnesium D=5 1 24 26 D=16 1 24 26 D=18 1 24 22 F=20 1 12.7 2.53 F=22 1 12.7 2.53 F=23 1 12.7 7.05 F=24 1 12.7 7.05 F=24 1 12.7 16.1 F=25 1 12.7 11.8 F=26 1 12.7 10.012 0.52 D=16 1 0.012 0.28 D=17 1 0.012 0.28 D=18 1 0.012 0.93 F=20 1 0.080 0.080 F=22 1 0.080 0.080 F=23 1 0.080 0.090 F=24 1 0.080 0.990 F=25 1 0.080 0.990 F=26 1 0.080 0.990 F=27 1 0.080 0.990 F=28 1 0.080 0.990 F=28 1 0.080 0.990 F=29 1 0.080 0.990 F=21 0.080 0.990 F=25 1 0.080 0.990 F=26 1 0.080 0.990 F=27 1 0.080 0.990 F=28 1 0.080 0.990 F=29 1 0.080 0.990			1			1.66	
F-23			i		2.12		
F-24 1 1,37 8.46 F-25 1 1.37 2.20 F-26 1 1.37 2.20 F-26 1 1.37 2.20 F-26 1 1.37 2.20 F-26 1 1.37 94.2 F-26 1 0.061 5.4 11.0 5.4 11.0 5.4 11.0 5.4 11.0 5.4 11.0 5.4 11.0 6.5 6.4 11.0 6.5			1	1.37	47.3		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1		8.46		
Magnesium D-5			1	1.37	2.20		
Magnesium D-5	•	F-26	1 .	1.37		94.2	
Magnesium D-5		Y-7	1	0.061			
Magnesium D-16			1	0.061			5.4
Manganese D-16 D-17 1 24 C-18 D-18 1 24 C-20 F-20 D-18 D-18 D-18 D-18 D-18 D-18 D-18 D-18	Matium	D-5	1	24		21	
Manganese D-17	Magnesium		1	24	26		
Manganese D-18	,		1	24	*		
F-20			1	24 .			
F-22	•		1	12.7		2.07	
Hanganese F-23			1	12.7		*	
Manganese $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	12.7	7.05		
Manganese $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	•		1	12.7	16.1	•	
Manganese $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	•		1	12.7	11.8		
V-7 1 1.8 6.5 7.9 Manganese D-5 1 0.012 0.52 D-16 1 0.012 0.28 D-17 1 0.012 0.43 D-18 1 0.012 0.93 F-20 1 0.080 0.080 F-22 1 0.080 0.080 F-23 1 0.080 0.990 F-24 1 0.080 0.990 F-25 1 0.080 0.400 F-26 1 0.080 0.400 F-26 1 0.080 0.400 F-27 1 <0.01 0.36			1	12.7		.11.8	_
Manganese D-5 1 0.012 0.52 D-16 1 0.012 0.28 D-17 1 0.012 0.93 D-18 1 0.012 0.93 F-20 1 0.080 0.080 F-22 1 0.080 0.080 F-23 1 0.080 4.10 F-24 1 0.080 0.990 F-25 1 0.080 0.400 F-26 1 0.080 1.25 Y-7 1 <0.01 0.36	•	Y-7	1	1.8			
Manganese D-16 1 0.012 0.28 D-17 1 0.012 0.93 D-18 1 0.012 0.93 F-20 1 0.080 0.080 F-22 1 0.080 0.080 F-23 1 0.080 4.10 F-24 1 0.080 0.990 F-25 1 0.080 0.400 F-26 1 0.080 1.25 Y-7 1 <0.01 0.36			1	1.8			7.9
Manganese D-16 1 0.012 0.28 D-17 1 0.012 0.93 D-18 1 0.012 0.93 F-20 1 0.080 0.080 F-22 1 0.080 0.080 F-23 1 0.080 0.990 F-24 1 0.080 0.990 F-25 1 0.080 0.400 F-26 1 0.080 1.25 Y-7 1 <0.01 0.36		D-E	1	0.012		0.52	
D-17	Manganese				0.28		
D-18 1 0.012 0.93 F-20 1 0.080 0.200 F-22 1 0.080 0.080 F-23 1 0.080 4.10 F-24 1 0.080 0.990 F-25 1 0.080 0.400 F-26 1 0.080 1.25 Y-7 1 <0.01 0.36						0.43	
F-20 1 0.080 0.200 F-22 1 0.080 0.080 F-23 1 0.080 4.10 F-24 1 0.080 0.990 F-25 1 0.080 0.400 F-26 1 0.080 1.25 Y-7 1 <0.01 0.36							
F-22 1 0.080 0.080 F-23 1 0.080 4.10 F-24 1 0.080 0.990 F-25 1 0.080 0.400 F-26 1 0.080 1.25 Y-7 1 <0.01 0.36	•		•				
F-23 1 0.080 4.10 F-24 1 0.080 0.990 F-25 1 0.080 0.400 F-26 1 0.080 1.25 Y-7 1 <0.01 0.36	•		•		0.080		
F-24 1 0.080 0.990 F-25 1 0.080 0.400 F-26 1 0.080 1.25 Y-7 1 <0.01 0.36			,				
F-25 1 0.080 0.400 F-26 1 0.080 1.25 Y-7 1 <0.01 0.36			•				
F-26 1 0.080 1.25 Y-7 1 <0.01 0.36			-				
y-7 1 <0.01 0.36					35	1.25	
Y-/			· · · · · · · · · · · · · · · · · · ·				0,36
V=9 1		Y-7 Y-8	1	<0.01		- 1	0.38

Table V-81 (Continued)

Pollutant	Stream <u>Code</u>	Sample Type	Conc Source	centration Day 1	ns (mg/1) Day 2	Day 3
Nonconventional Pollutants (Continue	ed)		•	-		
Molýbdenum	D-5 D-16 D-17 D-18 F-20 F-22 F-23 F-24 F-25	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.030 0.030 0.030 0.030 <0.200 <0.200 <0.200 <0.200 <0.200	0.360 5.40 10.0 0.680	0.95 22 30 <0.200	
	F-26 Y-7	1	<0.200 0.056		2.32	
	Y-8	1	0.056			52.0
Phenolics	F-20 F-22 F-23 F-24 F-25 F-26	1 1 1 1 1	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005	0.009 0.83 1.42 0.11	0.14	

	Stream	Sample	Concentrations (mg/l			;/1)
Pollutant_	Code	Type	Source		Day 2	Day 3

Nonconventional Pollutants (Continued))					
						•
			<4		<4	
Phosphate	D-5	1	<4	<4	~~	
	D-16	1		\4	<4	
	D-17	1	<4		<4	
	D-18	- 1	<4		<4	
	F-20	1	<4	<4	7-1	
	F-22	1	<4			
•	F-23	1	<4	10		
	F-24	1	<4	<4		
	F-25	1	<4	<4		
	F-26	1	<4		<4	
Sodium	D-5	1	9.5		1,200	
TOCI TOTI	D-16	1	9.5	290	-10	
	D-1 7	1	9.5		510	
	D-18	1	9.5		540	
•	F-20	1	154		12.6	
	F-22	1	154	3,050		
·	F-23	1	154	16.5		
	F-24	1	154	328		
	F-25	1	154	130		
	F-26	1	154		154	
	Y-7	1	14.0	•		7,000.0
·	 Y~8	ì	14.0			360.0
			•			
	D-5	1	53		58	
Sulfate	D-16	1	53	95		
i .	D-17	1	53		360	
	. D-18	1	53		370	
	F-20	1	130		160	
	F-22	i ´	130	66		
•	F-23	i	130	140		
:	F-24	i	130	6,400		
Terror	F-25	1 .	130	150		
		1	130		490	
i.	F-26	• 1	130			

Table V-81 (Continued)

	0-11		Strèam	Sample	Conc	centratio	ns (mg/l)	
	Pollutant		Code	Туре	Source	Day 1	Day 2	Day 3
	Nonconventional Pollutants	(Continued)						
	. To recurred	(continued)						
								•
	lin		D-5	. 1	<0.12		<0.12	
			D-16	1	<0.12	0.30	VU.12 .	
			D-17	1	<0.12	0.00	1.1	
			D-18	1	<0.12		2.0	
			F-20	1	<0.200		<0.200	
			F-22	1	<0.200	<0.200	0.200	
	•		F-23	1	<0.200	<0.200		
	·		F-24	1	<0.200	<0.200		
			F-25	. 1	<0.200	<0.200		
			F-26	.1	<0.200		<0.200	
		•	Y-7	1	<1.0	,		<1.0
	*		Y-8	1	<1.0			<1.0
١	litanium		D-5	4	10.00=			•
			D-5 D-16	1	<0.005		0.60	
•			D-17		<0.005	0.B1		
	the second second		D-18	,	<0.005		0.13	
			F-20	1	<0.005		0.068	
	•		F-22	3	<0.020 <0.020	. 000	<0.020	
			F-23	. 1	<0.020	<0.020		
			F-24	, 1	<0.020	<0.020 0.120		
			F-25	i	<0.020	0.120		•
			F-26	1	<0.020	0.030	<0.020	
			Y-7	1	0.5		. 10.020	72.0
			Y-8	1	0.5			1.6
			-					1.0
	Total Dissolved Solids (TDS)		D-5	1	393	. 3	,900	
			D-16	1	393 1,	500	,	
	A STATE OF THE STA		D-17 .	1	393	2	, 186	
	*		D-18		393	. 8	,700	
	* *	•	F-20		320		,600	
	The second secon	-	F-22			200		
			F-23			220 .		
	\$ 100 miles		F-24		320 40,			
		•	F-25			400		
			F-26 Y-7		320 .	5,	,800	
	•				120.0			490.0
			Y−8	1	120.0		2,	100.0

Pollutant	Stream Code	Sample Type	Concentrations (mg/l) Source Day 1 Day 2 Day 3
Nunconventional Pollutants (Continued))		
Total Organic Carbon (TOC)	D-5	1	8 1,670
	D-16	1	8 480
	D-17	1	8 6,500
· ·	D-18	1	8 990
	F-20	1	8 990 2 5,600 2 38 2 17 2 41,000 2 280
	F-22	1	2 38
	F-23	1	2 17
	F-24	1	2 41,000
	F-25	1	2 280
	F-26	1	2 4,700
lotal Solids (TS)	D-5	1	395 7,300
	D-16	1	395 2,400
	D-17	1	395 5,700
•	. D∽18	1	395 12,000
	F-20	1	330 12,000
	F-22	1	330 8,400
•	F-23	1	330 2,600
	F-24	1	330 40,000
	F-25	1	330 3,800
	F-26	1	330 9,400
•	Y-7	1	1,400.0
	Y-8	1	120.0 3,400.0
Vanadium	D-5	1	0.016 0.13
	D-16	1	0.016 0.060
	D-17	1	0.016 0.025
	D-18	1	0.016 0.033
	F-20	1	<0.010 0.020
	F-22	1	<0.010 <0.010
·	F-23	1	<0.010 <0.010
	F-24	1	<0.010 <0.010
	F-25	1	<0.010 <0.010
	F-26	1	<0.010 0.370
	Y-7	1	<0.1 11.0
	Y-8	1	<0.1 5.1

Table V-81 (Continued)

•		Stream Sample		Concentrations (mg/l)			
	<u>Pollutant</u>	Code	Туре	Source Day	<u>/ 1 Day</u>	2 Day 3	
	Nonconventional Pollutants (Continued)						
						•	
	Yttrium	D-5	1	<0.002	<0.0	02	
		D-16	1 .	<0.002 <0.0	002		
		D-17	1 .	<0.002	<0.00		
	•	D-18	1	<0.002	<0.0		
		F-20	1	<0.020	<0.0	20	
		F-22 F-23	1	<0.020 <0.0 <0.020 <0.0)20)20 ·		
	•	F-24	1	<0.020 <0.0			
	÷	F-25	i	<0.020 <0.0			
		F-26		<0.020	<0.0		
	•	Y-7	1	<0.1	•	<0.1	
		8-Y	_. 1	<0.1		<0.1	
עַ	anna tana tana tana tana tana tana tana				•		
ע	conventional Pollutants						
-							
	Oil and Grease	D-5 .	1	. <1	12		
		D-16	. 1	· <1 3			
	•	D-17	· 1	<1	1,500		
		D-18	1	<1	16,000		
	•	F-20 F-22	•	<1 <1 120	160		
		F-23	1	<1 7.5	;		
		F-24	i	<1 660	,	•	
		F-25	i	<1 3,200			
	•	F-26	1	<1	800	-	
	•	V-7	1	1.0		250.0	
		. Y-8	1	1.0		12,000.0	
	Total Suspended Solids (TSS)	D-5	1	√<1	820		
	Total Suspended Sullus (133)	D-16	i .	<1 46	020		
	the second control of the property of the second control of the se	D-17		·<1	2,180	entre a a company	
	•	D-18	1	<1	1,070		
		F-20	· 1	.22	390		
		F-22	1	22 100	-		
		F-23 F-24	1	22 1,900 22 2,440			
		F-25	1	22 2,440 22 440			
		F-26	i	22 440	300		
		Y-7	1	54.0		360.0	
		Y-8	1,	54.0		1,100.0	

Table V-81 (Continued)

	Stream	Sample	Cond	entration	s (mg/l)	
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3
Continued)						
pH (standard units)	D-5	1	7.14		8.63	
(M) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B	D-16	1	7.14	8.04		
	D-17	1	7.14		8.31	
	D-18	1	7.14		8.54	
•	F-20	1	6.64		7.23	
	F-22	1	6.64	10.33		
	F-23	1	6.64	6.42		
	F-24	1	6.64	7.64		
*	F-25	1	6.64	7.20		
•	F-26	1	6.64		8.19	
	Y-7	1	6			8
	Y-8	1	6	•		7

- 1. The following toxic pollutants were not detected in this waste stream: 2, 3, 5-10, 12, 14-21, 24-33, 35, 36, 38, 40-43, 45-54, 56, 59, 61-63, 67, 70-76, 78, 79, 82, 83, and 85-88.
- Note that stream codes Y-7 and Y-8 also appear on the titanium sawing or grinding spent emulsions and synthetic coolants raw wastewater sampling data table. The wastewater is derived from an operation in both subcategories.
- 3. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-82
NICKEL-COBALT SAWING OR GRINDING RINSE

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1	NR	NR	>0.0	1,814	434.9
Average	NR	NR	•	1,814	434.9

NR - Data not reported

Table V-83
NICKEL-COBALT STEAM CLEANING CONDENSATE

Plant	Water	Use	Percent	Wastewater	Discharge
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1*	30.11	7.22	0.0	30.11	7.22
2	NR	· NR	0.0	NR	NR
Average	30.11	7.22		30.11	7.22

NR - Data not reported

^{*}Nickel forming no longer performed at this plant.

Table V-84

NICKEL-COBALT HYDROSTATIC TUBE TESTING AND ULTRASONIC TESTING WASTEWATER

Plant	Water	Use	Percent	Wastewate	r Discharge
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1*	1,355	324.9	0.0	1,355	324.9
2	NR	NR	NR	NR	NR
Average	1,355	324.9		1,355	324.9

NR - Data not reported

^{*}Nickel forming no longer performed at this plant.

Table V-85

NICKEL-COBALT DYE PENETRANT TESTING WASTEWATER

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1	40	9.5	0.0	40	9.5
2	385	92.2	0.0	385	92.2
3	NR	NR	NR	NR	NR
4	NR	NR	0.0	NR	NR
3	NR	NR	0.0	NR	NR
3	NR	NR	NR	NR	NR
Average	213	50.9		213	50.9

NR - Data not reported

Table V-86

NICKEL-COBALT DYE PENETRANT TESTING WASTEWATER RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Conc	entration	s (mg/l)
Pollutant	_Code_	Type	Source	Day 1	Day 2 Day 3
Toxic Pollutants	er v		74 D. 4	;	
117. beryllium	BK=1			<0.100	,
118. cadmium	BK-1		-	<0.500	
119. chromium (total)	BK-1		-	<0.300	
120. copper	BK-1		- .	<0.200	
122_lead	BK-1			<5.000	n de si martinosiro. E ser lamposamente supramo de esclamatique de monte.
124. nickel	8K-1		-	<1.200	
128. zinc	BK-1		-	<0.200	
Nonconventional Pollutants					
Aluminum	BK-1.		·	<1.2	•
Barium	BK-1		- .	<0.100	
Boron	BK-1		-	1.8	
Calcium	BK-1	, .	- '	3.6	
Cobalt	BK-1		_	<0.400	
Iron	BK-1 .	•	_	1.400	
Magnesium	BK-1		~	0.300	<i>*</i>
Manganese	BK-1			0.120	view transfer a few view of the statement of the state of
Molybdenum	BK-1		_	<2.000	
Sodium	BK-1		_	8.600	
Tin	BK-1	* .		1.700	
Titanium .	BK-1	•	-	<1.000	

Table V-86 (Continued)

NICKEL-COBALT DYE PENETRANT TESTING WASTEWATER RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Conc	entrations	s (mg/1)	
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3
Nonconventional Pollutants (Continued)					
Vanadium	BK-1 -		-	<0.200		
Yttrium	BK-1		-	<1.000		

1. No analyses were performed on the following toxic pollutants: 1-116, 121, 123, 125-127 and 129.

Table V-87
NICKEL-COBALT WET AIR POLLUTION CONTROL BLOWDOWN

					ewater
	Wate	r Use	Percent	Disch	narge*
Plant	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1	NR	NR	96.0	0.00	0.00
. 2	26.9	112	<100	0.00	0.00
3	8.30	1.99	0.0	8.30	1.99
<u>4</u> 5	25.59	6.14	0.0	25.59	6.14
5	, NR	NR	100	25.66	6.15
- 6	NR	NR	NR	124.5	29.85
7	571.0	137.0	25.0	428.0	102.6
8	488.2	117.1	0.0	488.2	117.1
9	46,940	11,260	98.0	938.7	225.1
10	NR	NR	92.0	NR	NR
11	NR	NR	100	NR	NR
12	NR	NR	>0.00	NR	NR
13	NR	NR	NR	NR	NR
Average	8,010	1,939		291.3	69.85

NR - Data not reported

^{*}Discharge to surface waters.

Table V-88

NICKEL-COBALT WET AIR POLLUTION CONTROL BLOWDOWN RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Type	Conc Source	entration Day 1		0
	Address Section Control of the Contr		<u>., ype</u>	3001 CE	Day ,	Day 2	Day 3
1 ox i c	Pollutants						
114.	antimony	D-11	. 1	<0.003	<0.003		
		F-21	3	<0.002		0.003	
115.	arsenic	D-11	1	<0.003	<0.003		
		F-21	3	<0.005		0.003	
117.	beryllium	D-11	1	<0.0005	<0.0005		
		F-21	3 .	<0.010		<0. 0 20	
118.	cadmium	D-11	1	<0.002	0.011		
		F-21	3	<0,050		<0. 0 20	•
+19	chromium (total)	D-11	1	0.042	0.14		
		F-21	3	<0.100		1.75	
120.	copper	D-11	1	0.068	<0.001		
		F-21	3	0,170		2.85	
121.	cyanide (total)	F-21	1 .	<0.02		<0.02	
122.	lead	D-11	1	<0.084	<0.084		
	•	F~21	3	<0.100		<0.200	
123.	mercury	D-11	1	<0.0002	<0.0002		
		F-21	3	<0.0020		<0.0020	
124.	nickel	D-11	1	<0.003	0.86	*	
	•	F-21	3	0.200		20.0	•
125.	selenium	D-11	1	<0.003	<0.003		
		F-21	3 .	<0.010		<0.010	

Table V-88 (Continued)

NICKEL-COBALT WET AIR POLLUTION CONTROL BLOWDOWN RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	Con Source	centration Day 1	ns (mg/1) Day 2	Day 3
Toxic Pollutants (Continued)	-					
126. silver	D-11 F-21	1 3	<0.001 <0.002	<0.001	<0.002	
127. thallium	D-11 F-21	1 3	<0.003 <0.005	<0.003	<0.002	
128. Zinc	D-11 F-21	3	0.038 <0.050	0.18	0.060	
Nonconventional Pollutants			•			٠.
Acidity	D-11 F-21	1 3	<1 <1	120	<1	•
Alkalinity	D-11 F-21	1 3	180 61	<1	47	
Aluminum	D-11	1	<0.050	5.8		
Ammonia Nitrogen	D-11 F-21	1 3	<1 0.04	<1	0.39	
Barium	D-11	1	0.12	0.22		
Boron	D-11	1	<0.009	16		
Calcium	D-11	1	63	29		
Chemical Oxygen Demand	D-1-1 F-21	3 .	<5	- <5 ·· ·	44	
Chloride	D-11 F-21	1 3	34 12	41	55	

Pollutant	Stream Code	Sample Type	Con Source	centration Day 1	ns (mg/1) Day 2	Day 3
Munconventional Pollutants	(Continued)					
cobalt	D-11	1	<0.006	0.079		
Fluoride	D-11 F-21	. 1	0.45 0.43	700	1.2	
from	D-11	1	0.066	0.53		
Magnesium	D-11	1	24	. 22		
Manganese	D-11	1	0,012	0.029		
₩olýbdenum	D-11	1	0.030	0.23		
Phenolics	F-21	1	<0.005		<0.005	
Phosphate	D-11 F-21	. 1 3	<4 <4	<4	<4	
Sodium	D-11	1	9.5	240		

Table V-88 (Continued)

NICKEL-COBALT WET AIR POLLUTION CONTROL BLOWDOWN RAW WASTEWATER SAMPLING DATA

	Stream	Sample			ns (mg/l)	- David
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3
Nonconventional Pollutants (Continued	j	•	-	* **	•	
Sulfate	D-11 F-21	1 3	53 130	41	94	
fin	D-11	1 .	<0.12	<0.12	٠.	
Titanium	D-11 '	1	<0.005	0.11		
Total Dissolved Solids (TDS)	D-11 F-21	1 3	393 320	7.80	230	o positivo de la constitución de
Total Organic Carbon (TOC)	D-11 F-21	1 3	8 2	13	<1	
Iotal Solids (TS)	D-11 F-21	1 3	395 330	860	460	,
vanadium	D-11	1	0.016	0.016		
Yttiium *	D-11	1	<0.002	0.003		
Conventional Pollutants	•					
Oil and Grease	D-11 F-21	1	<1 <1	<1	11	
Total Suspended Solids (TSS)	D-11 F-21	1 3	< 1 22	15	190	
pH (standard units)	D-11 F-21	. 1 . 3	7.14 6.64	2.63	7.47	

Table V-88 (Continued)

NICKEL-COBALT WET AIR POLLUTION CONTROL BLOWDOWN RAW WASTEWATER SAMPLING DATA

- 1. No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.
- Note that stream code Y-5 also appears on the titanium wet air pollution control blowdown raw wastewater sampling data table. The wastewater is derived from an operation in both subcategories.

Table V-89
NICKEL-COBALT ELECTROCOATING RINSE

Plant		Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1	3,367	807.4	0.0	3,367	807.4
Average	3,367	807.4		3,367	807.4

Table V-90
PRECIOUS METALS ROLLING SPENT NEAT OILS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1 2	NR NR	NR NR	NR 100	0.00	0.00
Average	NR	NR		0.00	0.00

NR - Data not reported

Table V-91
PRECIOUS METALS ROLLING SPENT EMULSIONS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1	NR	NR	P .	25.00	6.00
2	NR	NR	P	46.47	11.14
3	NR	ΝR	P ·	160.1	38.40
4	67.6	16.2	NR	NR	NR
4	NR	NR	P	NR	NR
5	NR	NR	P	NR	NR
Average	67.60	16.20	•	77.20	18.51

P - Periodic discharge NR - Data not reported

Table V-92

PRECIOUS METALS ROLLING SPENT EMULSIONS
RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Type	Conce Source	ntrations (mg/l) Day 1 Day 2 Day 3
				<u> </u>	
Toxic	Pollutants				
4.	benzene	I - 5	1	ND	0.319
11.	1,1,1-trichloroethane	1-5	1	.0.022	ND
44.	methylene chloride	1-5	1	0.003	1.330
87.	trichloroethylene	I-5	1	ND	1.380
114.	antimony	I-5	1	<0.010	<0.010
115.	arsenic	I-5	1	<0.010	<0.010
117.	beryllium	1-5	1	<0.005	<0.050
118,	cadmium	1-5	1	<0.020	<0.200
119.	chromium (total)	I-5	1	<0.020	<0.200
120.	copper	I-5	1	0.200	25.0
121.	cyanide (total)	1-5	1	<0.02	<0.02
122.	lead ,	I-5	1	<0.050	1.00
123.	mercury	I-5	1	<0.0002	. 0.0006

Table V-92 (Continued)

PRECIOUS METALS ROLLING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

Pollutant	Stream <u>Code</u>	. Sample Type	Conc Source	centrations (mg/l) Day 1 Day 2	Day 3
Toxic Pollutants (Continued)					
124, nickel	I-5	1	<0.050	1.00	
125, selenium	I-5	1	<0.010	<0.010	
126. silver	I -5	1	<0.010	0.130	é
127, thallium	I -5	1	<0.010	<0.010	
128. zinc	I -5	1	0.040	6.00	
Nonconventional Pollutants			-		
Acidity	I-5	. 1 .	<1	<1	
Alkalinity	I-5	1	40	2,100	
Aluminum	1-5	. 1° °	<0.100	<1.00	in the second
Ammonia Nitrogen	I-5	1 ,	0.06	0.4	4.
Barium	I-5	1	<0.050	<0.500	1

Table V-92 (Continued)

PRECIOUS METALS ROLLING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Conc	entrations (mg/l)	
<u>Pollutant</u>	Code	Type	Source	Day 1 Day 2 Day	_3
Nonconventional Pollutants (Continued)				
Boron	I-5	1	<0.100	<1.00	
Calcium	I-5	1	13.8	7.00	
Chemical Oxygen Demand (COD)	° I-5 .	1	150	900	
Chloride	I-5	1	30	42	
Cobalt	1-5	1	<0.050	<0.500	
Fluoride	I-5	1	0.32	.0.29	
Iron	I-5	1	0.100	26.5	
Magnesium	I-5	1	2.70	3.00	
Manganese	1-5	. 1	0.100	<0.5 0 0	
Molybdenum	1-5	1	<0.050	<0.500	
Phenolics	I-5	1	<0.005	<0.005	

Table V-92 (Continued)

PRECIOUS METALS ROLLING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream _Code	Sample Type	Conce Source	ntrations (mg/l) Day 1 Day 2	Day 3
Nonconventional Pollutants (Continued)				•	
Phosphate	I-5	1	2.7	570	
Sodium	I-5	1	28.0	585	,
Sulfate	I-5	1	740	8,500	
Tin	I-5	1 .	<0.050	<0.500	
Titanium	I =5	<u>- 1</u>	<0.050	<0500	
Total Dissolved Solids (TDS)	I-5	1.	850	32,000	. A
Total Organic Carbon (TOC)	I-5	.1	63	43	
Total Solids (TS)	I-5	1 11	,500	33,000	

Table V-92 (Continued)

PRECIOUS METALS ROLLING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	<u>Conc</u>	entrations (mg/L) Day 1 Day 2 Da	y 3
Nonconventional Pollutants (Continued)					
Vanadium	1-5	1	<0.050	<0.500	
Yttrium	I-5	1	<0.050	<0.500	
Conventional Pollutants				•	
Oil and Grease	· I-5	1	<1	1,500	
Total Suspended Solids (TSS)	I-5	1	300	500	
pH (standard units)	I-5	1	6.10	8.70 •	

A - Sample would not evaporate at 180C.

1. The following toxic pollutants were not detected in this waste stream: 1-3, 5-10, 12-43, 45-86, and 88.

2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-93
PRECIOUS METALS DRAWING SPENT NEAT OILS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1	NR	NŖ	NR	0.00	0.00
Average	NR	NR		0.00	0.00

NR - Data not reported

Table V-94
.
PRECIOUS METALS DRAWING SPENT EMULSIONS

Plant	Water	Use	Percent	Wastewater	Discharge
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1	NR	NR	100	0.00	0.00
1	NR	NR	100	0.00	0.00
2	NR	NR	100	0.00	0.00
3 4 5 5 6	35,500 NR NR	8,520 NR NR	P P	9.47 14.77 32.90	2.27 3.54 7.89
5 6 2 3	NR NR 148.4	NR NR 35.60	P P 0.0	38.63 141.8 142.4	9.26 33.99 34.15
3	NR	NR	P	NR	NR
7	NR	NR	P	NR	NR
8	NR	NR	NR	NR	NR
Average	17,820	4,278		63.32	15.18

P - Periodic discharge NR - Data not reported

Table V-95

PRECIOUS METALS DRAWING SPENT EMULSIONS
RAW WASTEWATER SAMPLING DATA

	Stream	Sample		entrations (mg/l)	
<u>Pollutant</u> ·	_Code_	Type	Source	Day 2 Day 3 Day 4	
Toxic Pollutants					
<pre>11. 1,1,1-trichloroethane</pre>	I-7	1	0.022	3.040	
44. methylene chloride	I-7	1	0.003	0.879	
114. antimony	I-7	. 1	<0.010	<0.010	
115. arsenic	I-7	1	<0.010	<0.010	
117. beryllium	I-7	1	<0.005	<0.005	
118. cadmium		· · · · · · · · · · · · · · · · · · ·	√ 0.020 ~~	<0.020	
119. chromium (total)	I-7	1	<0.020	<0.020	
120. copper	I-7	1	0.200	46.4	
121. cyanide (total)	I-7	, 1	<0.02	<0.02	
122. lead	I-7	1	<0.050	1.05	
123. mercury	I-7	1	<0.0002	<0.0002	
124. mickel	I-7	1	<0.050	0.750	
125. selenium	I-7	1	<0.010	<0.010	
126. silver	I-7	1	<0.010	0.090	
127. thallium	I-7	1	<0.010	<0.010	
128. zinc	I-7	1	0.040	5.18	
Nonconventional-Pollutants	 ,			en e	
Acidity	I - 7	1	<1	<1	
Alkalinity	I-7 ·	. 1	40	1,300	
Aluminum	I-7 :	1	<0.100	0.100	
Ammonia Nitrogen	I-7 .	1	0.06	0.4	
Barium .	I-7	1	<0.050	<0.050	

Table V-95 (Continued)

PRECIOUS METALS DRAWING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

	Stream Samp			entrations (mg/1)
<u>Pollutant</u>	Code	Туре	Source	Day 2 Day 3 Day 4
Nonconventional Pollutants (Continued)			
Boron	I-7	1	<0.100	0.100
Calcium	I-7	1	13.8	5.70
Chemical Oxygen Demand (COD)	I-7	1	150	1,600
Chloride	I-7	1	30	57
Cobalt	I-7	1	<0.050	0.050
Fluoride	1-7	1	0.32	0.14
Iron	I-7	1	0.100	7.10
Magnesium	I-7	1	2.70	. 1.90 -
Manganese	I-7	1	<0.050	.0.150
Molybdenum	I-7	1	<0.050	<0.050
Phenolics	I-7	1	<0.005	<0.005
Phosphate	I-7	1	2.7	1,000
Sodium	1-7	1	28.0	109 .
Sulfate	I-7	1	740	1,600
Tin	I-7	1	<0.050	0.150
Titanium	1-7	1	<0.050	<0.050
Total Dissolved Solids (TDS)	I-7	1	850	420
Total Organic Carbon (TOC)	I-7	. 1	63	18
Total Solids (TS)	I-7	1 1	1,500	1,430
Vanadium	I-7	1	<0.050	<0.050
Yttrium	I-7	1	<0.050	<0.050

Table V-95 (Continued)

PRECIOUS METALS DRAWING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	Conc Source	entrations (mg/l) Day 2 Day 3	Day 4
Conventional Pollutants		-			-
Oil and Grease	1-7	1	<1	33,000	
Total Suspended Solids (TSS)	1-7	1	300	<1 .	
pH (standard units)	1-7	1	6.10	8.20	

- 1. The following toxic pollutants were not detected in this waste stream: 1-10, 12-43, and 45-88.
- 2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-96
PRECIOUS METALS DRAWING SPENT SOAP SOLUTIONS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1 2	NR NR	NR NR	P NR	3.12 NR	0.748 NR
Average	NR	NR		3.12	0.748

P - Periodic discharge NR - Data not reported

Table V-97

PRECIOUS METALS METAL POWDER PRODUCTION ATOMIZATION WASTEWATER

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1	6,922	1,660	0.0	6,683 1	,603
Average	6,922	1,660		6,683 1	,603

Table V-98 PRECIOUS METALS DIRECT CHILL CASTING

CONTACT COOLING WATER

Plant	Wate	r Use	Percent	Wastewate	er Discharge.
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1	64,200	15,400	100	0.00	0.00
2	2,590	622.0	0.0	2,590	622.0
2	19,000	4,550	0.0	19,000	4,550
3	145,000	34,700	NR	NR	NR
Average	57,700	13,820		10,800	2,590

NR - Data not reported

Table V-99

PRECIOUS METALS SHOT CASTING CONTACT COOLING WATER

Plant	Water L/kkg	Use gal/ton	Percent Recycle			Discharge gal/ton
1	3,670	880.2	0.0	3,670	:	880.2
Average	3,670	880.2		3,670	:	880.2

Table V-100
PRECIOUS METALS SHOT CASTING CONTACT COOLING WATER
RAW WASTEWATER SAMPLING DATA

н		Stream	Sample		Concentrations (mg/l) Source Day I Day 2 Day			
	Pollutant	Code	Туре	Source	Day I	Day L	<u> </u>	
Toxic	Pollutants							
11.	1,1,1-trichloroethane	1-3	1	0.022	0.018			
44.	methylene chloride	1-3	1	0.003	0.004			
86.	toluene	1-3	1	ИD	0.003			
87.	trichloroethylene	1-3.	1	ИD	0.002			
114.	antimony	1-3	1	<0.010	0.050	<0.010		
115.	arsenic	1-3	1	<0.010	<0.010	<0.010		
117.	beryllium	1-3	1	<0.005	<0.005	<0.005		
118.	cadmium	1-3	1	<0.020	0.040	9.88		
119.	chromium (total)	I-3	1	<0.020	<0.020	<0.020		
120.	copper	1-3	1	0.200	0.600	0.500		
121.	cyanide (total)	1-3	- 1	<0.02	<0.02	<0.02		
122.	lead	1-3	1	<0.050	0.050	<0.050		
123.	mercury	I-3	1	<0.0002	<0.0002	<0.0002		
124.	nickel .	1-3	1	<0.050	<0.050	0.100		
125.	selenium	1-3	1	<0.010	<0.010	<0.010		
126.	silver	1-3	1	<0.010	0.050	0.040		
127.	thallium	. I-3	1	<0.010	<0.010	<0.010		
128.	zinc	1-3	1	0,040	0.520	5.66	-	
Nonce	onventional Pollutants							
Acid	i ty	I-3	1	<1	<1	<1		
Alka	linity	1-3	1	40	47	5 6		
Alum	inum	·I-3	1	<0.100	<0.100	<0.100		

Table V-100 (Continued)

PRECIOUS METALS SHOT CASTING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

<u>Po</u> llutant	Stream Code	Sample			ons (mg/1)	
·		Туре	Source	Day 1	Day 2	Day 3
Nonconventional Pollutants (Continued)		•				
Ammonia Nitrogen	I-3	1	0.06	0.04	0.03	
Barium	1-3	1	<0.050	<0.050	<0.050	
Boron	I-3	1	<0.100	1.70	9.00	
Calcium	I-3	1	13.8	11,1.	11,1	
Chemical Oxygen Demand (COD)	I-3	1 .	150	35 1	,500	-
Chloride	1-3	1	30	28	29	
Cobalt	I-3	-1.	<0.050	<0. 050	<0.050	
fluoride	1-3	1	0.32	0.03	0.19	
Iron	I-3	1 ·	0.100	0.350	0.100	
Magnesium	1-3	1	2.70	2.40	2.40	
Manganese	I-3.	1	0.100	0.100	0.050	
Molybdenum	I-3	1	<0.050	<0.050	<0.050	
Phenolics	I-3	1	<0.005	<0.005	<0.005	
Phosphate	1-3	1	2.7	8.2	12	
Sodium	1-3	1	28.0	28.7	28.4	
Sulfate	I-3	1	740	400	330	
Tin	I-3 ·	1	<0.050	<0.050	<0.050	
Titanium	1-3	1	<0.050	<0.050	<0.050	
Total Dissolved Solids (TDS)	1-3	1	850	150	580	
Total Organic Carbon (TOC)	I-3 ·	1	63	< 1	38	•
Total Solids (TS)	1-3	1 11	,500	230	590	
Vanadium	1-3	1	<0.050	<0.050	<0.050	
Yttrium	1-3	1 ·	<0.050	<0.050	<0.050	

Table V~100 (Continued)

PRECIOUS METALS SHOT CASTING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Concentrations (mg/l)			
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3
unventional Pollutants						
0il and Grease	I-3	1	<1	<1	54	
Total Suspended Solids (TSS)	1-3	1	300	91	<1	
pH (standard units)	1-3	1	- 6.10	6.34	6.70	

- 1. The following toxic pollutants were not detected in this waste stream: 1-10, 12-43, 45-85, and 88.
- 2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-101

PRECIOUS METALS STATIONARY CASTING CONTACT COOLING WATER

	Wat	er Use	Percent	Wastewater	Discharge
Plant	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
i	NR	NR	100	0.00	0.00
2	NR	NR	P	61.30	14.70
3	52,120	12,500	99.8	110.2	26.43
4	NR	NR	NR	NR '	NR
5	NR	NR	NR	NR	NR
Average	52,120	12,500		85.76	20.57

P - Periodic discharge NR - Data not reported

Table V-102

PRECIOUS METALS SEMI-CONTINUOUS AND CONTINUOUS CASTING
CONTACT COOLING WATER:

Plant	Wate L/kkg	er Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1	255,500	61,270	100	0.00	0.00
2	402,000	96,400	100	0.00	0.00
3	10,349	2,482	0.0	10,349	2,482
4	NR	NR	0.0	NR	NR
5	NR	NR	NR	NR	NR
Average	222,600	53,380		10,349	2,482

NR - Data not reported

Table V-103

PRECIOUS METALS SEMI-CONTINUOUS AND CONTINUOUS CASTING CONTACT COOLING WATER RAW WASTEWATER-SAMPLING DATA

		Stream	Sample		Concent	rations (mg/L)	-
	Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Day 4
Toxic	Pollutants				*.			
114.	antimony	1-2	2	<0.010	• m			<0.010
115.	arsenic	I-2	2	<0.010				<0.010
117.	beryllium	I-2	2	<0.005		•		<0.005
118.	cadmium	1-2	2	<0.020				<0.020
119.	chromium (total)	I - 2	Ż	<0.020			•	<0.020
120.	copper	I-2	2	0.200			And 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.100
121.	cyanide (total)	I-2	. 1	<0.02				0.50
122.	lead	1-2	2	<0.050		•		<0.050
123.	mercury	I-2	2	<0.0002			-	0.0002
124.	nickel	I-2	2	<0.050				<0.050
125.	selenium	I-2	2	<0.010		•		<0.010
126.	silver	I-2	2	<0.010				<0.010
127.	thallium	I-2	2 ,	<0.010				<0.010
128.	zinc	I-2	2	0.040			•	<0.020

Table V-103 (Continued)

PRECIOUS METALS SEMI-CONTINUOUS AND CONTINUOUS CASTING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Concentrations (mg/L)				
Pollutant	Code	Type	Source	Day 1	Day 2 Day 3	Day 4	
Nonconventional Pollutants							
Acidity	I-2	2	<1			<1	
Alkalinity	I-2	2	40			43	
Aluminum	I-2	2	<0.100			<0.100	
Ammonia Nitrogen	I-2	2	0.06			0.13	
Barium	I-2	2	<0.050			<0.050	
Boron	1-2	2	<0.100			<0.100	
Calcium	I-2	2	13.8			11.8	
Chemical Oxygen Demand (COD)	I-2	2	150			91	
Chloride	1-2	2	3 0			28	
Cobalt	I-2	2	<0.050			<0.050	
Fluori de	I-2	2	0.32			0.32	
Iron	I-2	2	0.100			0.200	
Magnesium	I-2	2	2.70			2.40	
Manganese	I-2	2	0.100			0.100	

Table V-103 (Continued)

PRECIOUS METALS SEMI-CONTINUOUS AND CONTINUOUS CASTING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

	Stream	Sample	rations (ons (mg/L)			
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Day 4
Nonconventional Pollutants	(Continued)						
Molybdenum	I-2	2	<0.050				<0.050
Phenolics	I-2	1	<0.005				<0.005
Phosphate	1-2	2	2.7				1.9
Sodium	I-2	2	28.0			•	28.2
Sulfate	I-2	2	740				780
. Tio	1-2	2	<0.050			حص رئیس دیایا	<0.050

Table V-103 (Continued)

PRECIOUS METALS SEMI-CONTINUOUS AND CONTINUOUS CASTING CONTACT COOLING WATER
RAW WASTEWATER SAMPLING DATA

	Stream	Sample			rations (
<u>Pollutant</u>	<u>Code</u>	Type	Source	Day 1	Day 2	Day 3	Day 4
Nonconventional Pollutants (Cor	ntinued)						
Titanium	1-2	2	<0.050				<0.05 0
Total Dissolved Solids (TDS)	1-2	2	850				110
Total Organic Carbon (TOC)	1-2	2	63				<1
Total Solids (TS)	1-2	2 11	,500				110
Vanadium	1-2	2	<0.050				<0.05
Yttrium	1-2	2	<0.050				<0.050
Conventional Pollutants							
Oil and Grease	1-2	1	<1				6
Total Suspended Solids (TSS)	- I-2	2	300				43
pH (standard units)	1-2	2	6.10				6.50

1. No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.

Table V-104

PRECIOUS METALS HEAT TREATMENT CONTACT COOLING WATER

				i	
	Wate	r Use	Percent	Wastewa	ter Discharge
Plant -	L/kkg	gal/ton	Recycle	L/kkg :	gal/ton
			_	i	,
1	NR	NŖ	100	0.00	0.00
2	4,170	1,000	100	0.00	0.00
3	NR	NR	100	0.00	0.00
4	NR	NR	P	1.01	0.24
4	658.7	158.0	0.0	658.8	158.0
2	.938.0	225.0	0.0	938.0	225.0
4 2 1 5	NR	NR	P	1,318	316.1
5	1,377	330.2	0.0	i,377	330.2
5	2,616	627.4	0.0	2,616	627.4
4	3,065	735.0	0.0	3,065	735.0
4	4,170	1,000	0.0	4,170	1,000
4 2 2 2	9,260	2,220	0.0	9,260	2,220
2	9,380	2,250	0.0	9,380	2,250
2	147,000	35,200	63.0	54,200	13,000
6 7	69,830	16,750	0.0	69,830	16,750
7	NR	NR	P	NR	NR
8	NR	NR	NR	NR	NR
9	18,200	4,360	NR	NR	NR
10	NR	NR	0.0	NR	NR
11.	NR	NR	NR	NR ,	NR
		1 1			
Average	22,560	5,404		13,070	3,134

P - Periodic discharge NR - Data not reported

Table V-105

PRECIOUS METALS SURFACE TREATMENT SPENT BATHS

Plant	Wastewater L/kkg	Discharge gal/ton
1 2 1 3 4 5 6 7 8 9 10 11 12 13 14 5 15 16 17	0.00 0.00 0.00 7.59 54.03 139.5 182.9 NR NR NR NR NR NR NR NR NR NR	0.00 0.00 0.00 1.82 12.96 33.45 43.85 NR NR NR NR NR NR NR NR NR NR NR NR NR
Average	96.3	23.1

NR - Data not reported

Table V-106 PRECIOUS METALS SURFACE TREATMENT RINSEWATER

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewa L/kkg	ter Discharge gal/ton
1	123.00	29.40	100	0.00	0.00
2	231.40	55.49	0.0	231.40	55.49
1 2 3	NR	NR	P	350.60	84.07
4	1,390	333.0	0.0	1,390	333.0
5	5,365	1,287	0.0	5,365	1,287
4 5 6 7	NR	NR	CCR3	5 , 920	1,420
7 .	6,192	1,485	0.0	6,192	1,485
8 9	6,933	1,663	0.0	6,933	1,663
9	22,880	5,488	0.0	22,880	5,4 88
10	NR	NR	CCR2	60,630	14,540
11	NR	NR	NR	NR .	NR
7	NR	NR	0.0	NR	NR
12.	NR	NR ,	NR	NR	NR
13	NR	NR	NR	NR .	NR
14	NR	NR	P	NR	NR
15	NR	NR	0.0	NR	NR
16	NR	NR	P	NR	NR NR
13	NR	NR	NR	NR	NR
17	NR	NR	NR	NR	NR
Average	6,160	1,477		12,210	2,928

P - Periodic discharge NR - Data not reported

CCR2 - Two-stage countercurrent cascade rinse.
CCR3 - Two-stage countercurrent cascade rinse followed by a single stage rinse.

Table V-107 (Continued)

PRECIOUS METALS SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

	Stream	Sample	e Concentrations (mg/L)				
Pollutant	Code	Type	Source	Day 1 Day 2	Day 3	Day 4	
Nonconventional Pollutants (Cor	ntinued)						
Анинопіа Nitrogen	I-10 M-5	2 1	0.06 <0.1	0.2	0.04	0.21	
Bar Yum	I-10 M-5	2 1	<0.050 <0.050	<0.050	<0.050 <0.050	<0.05 0	
Bar on	I-10 M-5	2 1	.<0.100 <0.100	<0.100	<0.100 <0.100	<0.100	
valcium	I-10 M-5	2	13.8 36.5	14.1	9.10 36.5	13.2	
Chemical Oxygen Demand (COD)	I-10 M-5	2 1	150 <5	1,800 1	,800 <5	100	
interide	I-10 M-5	2 1	30 10	18	28 <0:1	28	
Cobalt	I-10 M-5	2	<0.050 <0.050	<0.050	<0.050 <0.050	<0.050	
Finoride	I-10 M-5	2 1	0.32 0.85	0.10	0.07 0.94	0.20	

728

Table V-107 (Continued)

PRECIOUS METALS SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

	Stream	Sample		Conce	entrations	(mg/L)	
<u>Pollutant</u>	Code	Туре	Source	Day	Day 2	Day 3	Day 4
Nonconventional Pollutants (C	Continued)						•
tron	I-10 M-5	2 1	0.100 <0.050		0.650	0.250 0.150	0.300
Magnesium	I-10 M-5	2 1	2.70 11.3		2.70	1.80 11.4	2.60
Manganese	I-10 M-5	. 1	0.100 <0.050		0.100	0.050 <0.050	0.050
Molyhdenum	I-10 M-5	2	<0.050 <0.050		<0.050	<0.050 <0.050	<0.050
Phenolics	I-10 M-5	1	0.005 <0.005	ne managama di si see	<0.005	<0.005 <0.005	<0.005
Hosphate	I-10 M-5	2 1	2.7 <4		39	44 <4	33
Sodium	I-10 M-5	2 1	28.0 5.20		28.2	19.0 5.40	28.6
Sulfate	I-10 M-5	1	740 43	•	1,700	630 54	800
Tin	I-10 M-5	2 ,1	<0.050 <0.050	,	<0.500	<0.050 <0.050	<0.500

Table V-107 (Continued)

PRECIOUS METALS SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

	Stream	Sampl	e	Concentrations	(mg/L)	
Pollutant	Code	Туре		Day 1 Day 2	Day 3	Day 4
Nonconventional Pollutants (Con	itinued)					
litanium	I-10 M-5	2 1	<0.050 <0.050	<0.050	<0.050 <0.050	<0.050
Tural Dissolved Solids (TDS)	I-10 M-5	2	850 270.0	900	950 510.0	360
lotal Organic Carbon (TOC)	I-10 M-5	2	63 <1	57	28 10	<1
total Solids (TS)	I-10 M-5	2 1	11,500 280.0	4,000	930 800	390
\anadium	I-10 M-5	2	<0.050 <0.050	<0.050	<0.050 <0.050	<0.050
vitrium	I-10 M-5	2 1	<0.050 <0.050	<0.050	<0.050 <0.050	<0.050
Conventional Pollutants						
Oil and Grease	I-10 M-5	1	<1 3.0	4	3 <1	8

Table V-107 (Continued)

PRECIOUS METALS SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	Source	Concentrations Day 1 Day 2	(mg/L) Day 3	Day 4
Conventional Pollutants (Contin	ued)					
Total Suspended Solids (TSS)	I-10 M-5	2 1	300 14.0	3,000	<1 310	11
pH (standard units)	I-10 M-5	2 · 1	6.10 7.30	1.90	2.20 2.50	1.30

^{1.} No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.

Table V-108

PRECIOUS METALS ALKALINE CLEANING SPENT BATHS

Plant	Wastewater L/kkg	Discharge gal/ton
1 2 3 4 5 6 7 8	60.00 NR NR NR NR NR NR NR	14.40 NR NR NR NR NR NR
Average	60.00	14.40

NR - Data not reported

Table V-109

PRECIOUS METALS ALKALINE CLEANING RINSE

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewat L/kkg	er Discharge gal/ton
1	3,149	755.1	0.0	3,149	755.1
2	6,933	1,663	0.0	6,933	1,663
. 1	15,840	3,800	0.0	15,840	3,800
1	18,890	4,530	0.0	18,890	4,530
3	NR	NR	NR	NR	NR
4	NR	NR	NR	NR :	NR
5	NR	NR	NR	NR	NR
Average	11,200.00	2,687.00		11,200.00	2,687.00

NR - Data not reported

PRECIOUS METALS ALKALINE CLEANING PREBONDING WASTEWATER

Table V-110

Plant	Wate L/kkg	r Use gal/ton	Percent Recycle		ater Discharge gal/ton
3	10.20	2.45	0.0	10.20	2.45
1	10.20	22,500	P	126.0	30.20
2	93,800	•			
3	173.8	41.67	0.0	173.8	41.67
4	873.7	209.5	0.0	873.7	209.5
4	6,635	1,591	0.0	6,635	1,591
5	16,480	3,951	NR	16,480	3,951
6	20,030	4,804	0.0	20,030	4,804
7	83,400	20,000	0.0	83,400	20,000
Average	27,680	6,637		15,970	3,829

P - Periodic discharge NR - Data not reported

Table V-111

PRECIOUS METALS ALKALINE CLEANING PREBONDING WASTEWATER
RAW WASTEWATER SAMPLING DATA

		Stream	Sample		Concen	trations	(mg/L)	
	<u>Pollutant</u>	Code	Туре	Source	Day 1	Day 2	Day 3	Day 4
Toxic	Pollutants				-			
11.	1,1,1-trichloroethane	1-9	1	0.022	-	0.008	0.007	0.007
	,,,,	K-4	i	ND	0.010.	0.011	0.015	0.007
44.	methylene chloride	1-9	1	0.003		0.012	0.016	0.006
	·	K-4	1	0.003	0.133	0.006	0.005	•
45.	methyl chloride	1-9	1	ИD		0.070	ND	ND .
	(chloromethane)	K-4	1	ND	ND	. ND	ND	•
65.	pheno l	I-9	2	ND		ND	ND	0.001
		K-4	6	ND	ND	ND	ND	and the same of the same of the same of
6 6 .	bis(2-ethylhexyl)	I-9	2	ND		ND	ND	ND
	phthalate	K-4	6	ND	ND	0.005	ND	
86.	toluene	1-9	1	ND		ND	ND	ND
		K-4	1	0.002	0.818	0.006	0.003	
87.	trichloroethylene	1-9	1	ND	•	ND	ND	0.025
	·	K-4	1	ND	ND	ND	ND	
114.	antimony	I-8	2	<0.010		<0.020	<0.010	
		I-9	2	<0.010		<0.010	<0.010	<0.010
		K-4	6	<0.010	<0.010	<0.010	<0.010	
115.	arsenic	1-8	2	<0.010		<0.010	<0.010	-
		I-9	2	<0.010		<0.010	<0.010	<0.010
		K-4	6	<0.010	<0.010	<0.010	<0.010	
117.	beryllium	1-8	2	<0.005		<0.005	<0.005	
	-	I-9	2	<0.005		<0.005	<0.005	<0.005
	•	K-4	6	<0.005	<0.005	<0.005	<0.005	
1.18.	-cadmium	- I. - 8	- 2	<0.020	-	<0.020	<0.020	
		I-9	2	<0.020		0.420	0.040	0.060
	•	K-4	6	<0.020	0.120	0.080	0.060	
119.	chromium (total)	I-8	2	<0.020		<0.020	<0.020	
		I-9	2	<0.020		<0.020	<0.020	<0.020
		, K-4	6	<0.020	0.140	0.200	0.180	
120.	copper	1-8	2	0.200		2.25	0.750	
		1-9	2	0.200		0.600	2.55	1.25
		K-4	6	0.100	4.95	5.95	3.80	

Pollutants (Continued) Toxic Pollutants (Continued) 1-8		Stream	Sample		Concent	trations ((mg/L)	
121.	<u>Pollutant</u>	Code	Type	Source		Day 2	Day 3	Day 4
1-9	Toxic Pollutants (Continued)							
1-9	121. cvanide (total)	1-8	1	<0.02		<0.02	<0.02	
122. lead	, , , , , , , , , , , , , , , , , , ,	1-9	1				<0.02	<0.02
T-9			1		0.28			
R-4 6 <0.050 0.250 0.050 <0.050 <0.050	122. lead							
123. mercury		1-9	2					0.200
1-9		K-4	6	<0.050	0.250	0.050	<0.050	
124. nickel I-8 2 <0.050 3.60 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0	123. mercury							
124. nicke I-8 2 <0.050 0.600 0.200 0.150 0.150 0.250 0.300 0.250 0.350 0.150 0.150 0.250 0.300 0.350 0.150 0.250 0.300 0.350 0.150 0.250 0.300 0.350 0.150 0.250 0.300 0.350 0.150 0.250 0.300 0.350 0.150 0.250 0.300 0.350 0.250 0.300 0.350 0.250 0.300 0.350 0.250 0.300 0.350 0.250 0.300 0.350 0.250 0.300 0.350 0.250 0.300 0.350 0.250 0.300 0.350 0.2								<0.0002
I-9		K-4	6	<0.0002	<0.0002	<0.0002	<0.0002	
125. selenium	124. nickel							
125. selenium								0.150
I-9		K-4	6	<0.050	0.250	0.300	0.350	
Nonconventional Pollutants Nonconventiona	125. selenium	1-8		<0.010				
126. silver	•					<0.010		<0.010
I-9		K-4	6	<0.010	<0.010	<0.010	<0.010	
Nonconventional Pollutants I-8 2 <0.010	126. silver							
127. thallium	•							0.040
I-9		K-4	6	<0.010	0.060	0.020	0. 0 10	
Nonconventional Pollutants I-8 2 0.040 0.010 0.010 0.280 0.280 0.040 0.060 0.100 0.120 0.060 0.100 0.120 0.060 0.100 0.120 0.060 0.100 0.120 0.060 0.100 0.120 0.060 0.100 0.120 0.060 0.100 0.120 0.060 0.100 0.120 0.060 0.100 0.120 0.120 0.060 0.100 0.120	127. thallium							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		I-9	- 2	<0.010		<0.010	<0.010	<0.010
I-9		K-4	6	<0.010	<0.010	<0.010	<0.010	
Nonconventional Pollutants Acidity I-8 2 <1	128. zinc	I-8	2	0.040		0.980	0.280	
Nonconventional Pollutants Acidity I-8 2 <1 180 120 I-9 2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1		I-9	2	0.040		0.060	0.100	0 120
Acidity $ \begin{array}{ccccccccccccccccccccccccccccccccccc$		K-4	6	<0.020	0.400	2.32	0.780	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Nonconventional Pollutants							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Acidity	I -8	. 2	< 1		180	120	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								<1
Aluminum I-8 2 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <					<1			
Aluminum I-8 2 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <0.100 <	Alkalinity	1-8	2	40		<1	<1	
K-4 6 43 10 1.2 15 Aluminum I-8 2 <0.100 <0.100 <0.100 <0.100 I-9 2 <0.100 <0.100 <0.100 <0.100						45	48	37
I-9 2 <0.100 <0.100 <0.100 <0.100	,				10			
I-9 2 <0.100 <0.100 <0.100 <0.100	Aluminum	I-8	2	<0.100	•	<0.100	<0.100	
		I-9	2	<0.100		<0.100	<0.100	<0.100
	•	K-4		<0.100	10.7	26.1	43.9	

736

Table V-111 (Continued)

PRECIOUS METALS ALKALINE CLEANING PREBONDING WASTEWATER RAW WASTEWATER SAMPLING DATA

	Stream	Sample		Concen	trations ((mg/L)	
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3	Day 4
Nonconventional Pollutants (Cor	itinued)					-	•
Ammonia Nitrogen	I-8 I-9 K-4	2 2 6	0.06 0.06 0.17	0.32	0.08 0.1 0.07	0.04 0.05 0.07	0.03
Barium	I-8 I-9 K-4	2 2 6	<0.050 <0.050 <0.050	1.40	<0.050 <0.050 0.250	<0.050 <0.050 0.650	<0.050
Boron	I-8 I-9 K-4	2 2 6	<0.100 <0.100 <0.100	<0.100	22.1 <0.100 <0.100	9.70 <0.100 0.200	<0.100
Calcium	I-8 I-9 K-4	.2 2 6	13.8 13.8 8.70	10.2	14.7 13.6 10.3	15.1 12.8 10.8	12.3
Chemical Oxygen Demand (COD)	I-8 I-9 K-4	2 2 6	150 150 34	200	320 1, 18 87	900 150 160	78
Chloride	I-8 I-9 K-4	2 2 6	30 30 35	5 5	30 <1 70	3.1 26 62	30 -
Cobalt	I -8 I -9 K-4	2 2 6	<0.050 <0.050 <0.050	<0.050	<0.050 <0.050 <0.050	<0.050 <0.050 <0.050	<0.050
Fluoride	I-8 I-9 K-4	2 2 6	0.32 0.32 1.31	7.7	0.51 0.08 1.6	0.17 0.07 1.7	0.68
Iron.	I-8 I-9 K-4	2 2 6	<0.050 <0.050 <0.050	4.75	1.00 0.650 6.15	0.250 0.400 4.85	0.400
Magnesium	I-8 I-9 K-4	2 2 6	<0.050 <0.050 2.10	2,20	2.80 2.70 2.20	2.80 2.50 2.20	2.50
Manganese	I-8 I-9 K-4	2 2 6	<0.050 <0.050 <0.050	0.150	0.150 0.100 0.150	0.100 0.050 0.150	0.050

Table V-111 (Continued)

PRECIOUS METALS ALKALINE CLEANING PREBONDING WASTEWATER RAW WASTEWATER SAMPLING DATA

	Stream	Sample	a	Concent	rations ((mg/L)	
Pollutant	Code	Type		Day 1	Day 2	Day 3	Day 4
Nonconventional Pollutants (Cor	itinued)						
Moneonvent fond To fietante						10.050	
Molybdenum	1-8	2	<0.050 <0.050		<0.050 <0.050	<0.050 <0.050	<0.050
	I-9 K-4	2 6	<0.050	<0.050	<0.050	<0.050	
	N-7	J	10,000				
Phenolics	1-8	1	<0.005		<0.005	<0.005	.0.005
,	1-9	1	<0.005	40 005	<0.005	<0.005	<0.005
	K-4	1	<0.005	<0.005	<0.005	<0.005	
Bl b-b-	1-8	2	2.7		35	15	
Phosphate	I-9	2	2.7		16	30	18
	K-4	6	4.8	100	100	58	
					400		
Sodium	1-8	2	28.0		436 37,1	77.1 35.4	30.2
	I-9	2 6	28.0 32.9	50.3	53.8	60.3	00.2
	K-4	0	32.9	50.0	55.5	0010,	
Sulfate	1-8	2 .	7 40	1	,50 0	450	
3011 410	1-9	2	740		300	480	630
	K-4	6	400	410	630	840	
Tie	I-8	2	<0.050		<0.050	<0.050	
Tin	I-9	2	<0.050		<0.050	<0.050	<0.050
	K-4	6	<0.050	<0.050	<0.050	<0.050	
		_	40.050	•	<0.050	<0.05 0	
Titanium	I-8 I-8	2	<0.050 <0.050		<0.050	<0.050	<0.050
	1-9 K-4	2 6	<0.050	0.450	<0.050	0.150	
•	Λ 7	Ü					
Total Dissolved Solids (TDS)	1-8	2	850	2	,500	650	
	I -9	2	850			,850	116
	K-4	6	140	225	200	240	
Total Organic Carbon (TOC)	I-8	2	63		15	17	
Intal organic carbon (100)	I-9	2	63		4	18	5
	K-4	6	<1	19	14	22	
		2	11,500	-	.900	680	
Total Solids (TS)	I-8	2 2	11,500	-		,900	130
	1 Э K−4	6	160	300 -	450	•	
	••						÷
Vanadium	. I-8	2	<0.050		<0.050	<0.050	40 DE 0
	1-9	2	<0.050	<0.0E0	<0.050 <0.050	<0.050 <0.050	<0.050
	K-4	6	<0.050	<0.050	\u.usu	\U.U0U	

738

Table V-111 (Continued)

PRECIOUS METALS ALKALINE CLEANING PREBONDING WASTEWATER RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Concentrations (mg/L)				
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	Day 4
Nonconventional Pollutants (Con	ntinued)		•				
Yttrium	I-8 I-9 K-4	2 2 6	<0.050 <0.050 <0.050	<0.050	<0.050 <0.050 <0.050	<0.050 <0.050 <0.050	<0.050
Conventional Pollutants		•					
Oil and Grease	I-8 I-9 K-4	1 1	<1 _<1 _<1	16	5 5	15 ; <1	<1
Total Suspended Solids (TSS)	I-8. I-9 K-4	2 2 6	300 300 16	47	400 50 68	<1 <1 180	19
pH (standard units)	I-8 I-9 K-4	2 2 6	6.10 6.10 6. 7 0	5.40	2.30 6.40 4.60	3.70 6.10 7 .90	6.10

- 1. The following toxic pollutants were not detected in this waste stream: 1-10, 12-43, 46-64, 67-85, and 88.
- 2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-112

PRECIOUS METALS TUMBLING OR BURNISHING WASTEWATER

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewate L/kkg	r Discharge gal/ton
1	992.6	238.0	0.0	992.6	238.0
2	1,053	252.5	0.0	1,053	252.5
1	5,745	1,378	0.0	5,745	1,378
3	40,700	9,760	0.0	40,700	9,760
4	NR	NR	0.0	NR	NR
Average	12,120	2,907		12,120	2,907

NR - Data not reported

Table V-113

PRECIOUS METALS TUMBLING OR BURNISHING WASTEWATER
RAW WASTEWATER SAMPLING DATA

		Stream					
	Pollutant	Code	Type	Source	Day 1	Day 2	Day 3
Toxic	Pollutants						
11.	1,1,1-trichloroethane	I-4	1	0.022	0.017		
		Ř−3	i	ND	ND	ИD	ND
16.	chloroethane	I-4	1	ND	0.001		
		к-з	1	ND	ND	ИD	ND
44.	methylene chloride	I-4	1	0.003	0.004		
	•	K-3	1	0.003	0.041	0.031	0.007
49.	trichlorofluoromethane	I-4	1	ND	0.001		
: .:.			1	ND	_ ND	ND	ND
86.	toluene .	1-4	1	ND	ND		
		K-3	1	0.002	0.028	0.088	0.005
114.	antimony	I-4	2	<0.010	0.050		
		K-3	. 6	<0.010	<0.010	<0.010	<0.010
115.	arsenic	I-4	2	<0.010	<0.020		
		K-3	6	<0.010	<0.010	<0.010	<0.010
117.	beryllium	I-4	2	<0.005	<0.005	-	
	•	K-3	6	<0.005	<0.005	<0.005	<0.005
118.	cadmium	I-4	2	<0.020	0.060		
		к-з	6	<0.020	0.720	0.700	0.600
119.	chromium (total)	I-4	- 2	<0.020	<0.020		,
		K-3	6	<0.020	3.18	0.500	0.120
120.	соррег	I-4	2	0.200	142		
	•	K-3	6	0.100	5.50	5.10	6.25
121.	cyanide (total)	I-4	1	<0.02	<0.02		
	-	к-з	1	0.09	<0.02	<0.02	0.08
122.	lead	I-4	2	<0.050	1.85		
		K-3	6	<0.050	<0.050	<0.050	<0.050
123.	mercury	I-4	2	<0.0002	<0.0002		
		K-3	6	<0.0002	0.0005	0.0004	<0.0002
124.	nickel	I-4	2	<0.050	0.100		
		K−3	6	<0.050	1.35	3.25	2.10

Table V-113 (Continued)

PRECIOUS METALS TUMBLING OR BURNISHING WASTEWATER RAW WASTEWATER SAMPLING DATA

	Stream	Sample		centration	ns (mg/1)	
<u>Pollutant</u>	Code	Туре	Source	Day 1	Day 2	Day 3
Toxic Pollutants (Continued)						
125. selenium	I-4 K-3	2 6	<0.010 <0.010	<0.010 <0.010	<0.010	<0.010
126. silver	I-4 K-3	2 6	<0.010 <0.010	0.070 0.080	0.220	0.080
127. thallium	I-4 қ-3	2 6	<0.010 <0.010	<0.010 <0.010	<0.010	<0.010
128. zinc	I-4 К-3	2 6	0.040 <0.020	3.16 0.160	0.180	0.140
Nonconventional Pollutants						
Acidity	I-4 K-3	2 6	<1 <1	190 <1	<1	<1
Alkalinity	I-4 K-3	2 6.	40 43	<1 130	120	96
Aluminum	I-4 K-3	2 6	<0.100 <0.100	0.400 0.300	0.300	0.100
Ammonia Nitrogen	I-4 K-3	2 6	0.06 0.17	0.03 0.09	0.08	1.1
Barium	I-4 K-3	2 6	<0.050 <0.050	<0.050 <0.050	<0.050	·<0.050
Boron	I-4 K-3	2 6	<0.100 <0.100	0.400 0.700	0.300	10.7
Calcium	I-4 K-3	2 6	13.8 8.70	11.1 9.30	9.70	9.90
Chemical Oxygen Demand (COD)	I-4 K-3	2 6	150 34	51 250	190	160
Chloride	I-4 K-3	2 6	30 35	24 42	47	40
Cobalt	I-4 K-3	2 6	<0.050 <0.050	<0.050 <0.050	<0.050	<0.050
				*	•	

.

Table V-113 (Continued)

PRECIOUS METALS TUMBLING OR BURNISHING WASTEWATER RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	Source	ncentratio Day 1	ons (mg/l) Day 2	Day 3
Nonconventional Pollutants (Continued)					-	<u> </u>
Fluoride	I4			0.05		
	K-3	2 6	0.32 1.31	0.25 1.6	1.1	1.3
Iron	I-4	2	0.100	0.750		
	K-3	. 6	<0.050	3.05	7.85	5.30
Magnesium	I-4	. 2	2.70	2.40		
	K-3	6	2.10	2.20	2.10	2.10
Manganese		2	0.100	0.100		
	K-3	. 6	<0.050	1.05	0.450	1.00
Molybdenum	I4 K-3	2 6	<0.050	<0.050		
Disc. 11		О	<0.050	<0.050	<0.050	<0.050
Phenolics	I-4 K-3	1 1	<0.005 <0.005	<0.005 <0.005	٠٥ ٥٥٣	40.005
Phosphate					<0.005	<0.005
Priosphale	I-4 K-3	2 6	2.7 2 4.8	2,800 130	110	130
Sodium	I -4				110	130
	K-3	6	28.0 32.9	371 89.5	58.2	68.3
Sulfate .	I-4	2	740 8	3,300		00.0
	K-3	6	400	680	600	760
Tin	I-4	2 .	<0.050	<0.050		
	K-3	6	<0.050	<0.050	<0.050	<0.050
Titanium	I-4	2	<0.050	<0.050		
The control of the co	K-3-	. 6	<0.050		<0.050	<0.050
Total Dissolved Solids (TDS)	I-4	2	850. 9	,700		
	K-3	6	140	290	280	280
Total Organic Carbon (TOC)	I-4	2	63	27		
	K-3	6	<1	49	46	57
Total Solids (TS)	I-4			,000		•
	K-3	6	160	410	410	380

Table V-113 (Continued)

PRECIOUS METALS TUMBLING OR BURNISHING WASTEWATER RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Concentrations (mg/l)				
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	
Nonconventional Pollutants (Continued)						
	I-4	2	<0.050	<0.050			
Vanadium	K-3	6	<0.050	<0.050	<0.050	<0.050	
•	I-4	2	<0.050	<0.050			
Yttrium	Ŕ−3	2 6	<0.050	<0.050	<0.050	<0.050	
Conventional Pollutants							
	I-4	1	<1	< 1			
Oil and Grease	ĸ-3	1	<1	40	38	<1	
;	I-4	2	300	10			
Total Suspended Solids (TSS)	r-3	_ 6	16	100	110	62	
	I-4	2	6.10	2.52	,		
pH (standard units)	K-3	6	6.70	8.70	7.30	6.50	

^{1.} The following toxic pollutants were not detected in this waste stream: 1-10, 12-15, 17-43, 45-48, 50-85, 87, and 88.

^{2.} No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-114

PRECIOUS METALS SAWING OR GRINDING SPENT NEAT OILS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1	NR	NR	100	0.00	0.00
Average	NR	NR,		0.00	0.00

NR - Data not reported

Table V-115

PRECIOUS METALS SAWING OR GRINDING SPENT EMULSIONS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1 1 2 2	2,220 2,270 NR NR	533.0 545.0 NR NR	P P P	3.17 8.92 177.6 2,775	0.76 2.14 42.60 665.4
Average	2,245	539.0		741.1	177.7

p - Periodic discharge
NR - Data not reported

Table V-116

PRECIOUS METALS SAWING OR GRINDING SPENT EMULSIONS
RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	Source	entrations (mg/l) Day 2 Day 3 Day 4
Toxic Pollutants				
11. 1,1,1-trichloroethane	1-6	1	0.022	, ND
44. methylene chloride	I-6 .	1	0.003	0.110
65. phenol	1-6	1	ND	0.038
114. antimony	1-6	1	<0.010	<0.010
115. arsenic	I-6 .	1	<0.010	<0.010
117. beryllium	I-6	1	. <0.005	<0.,005
118. cadmium	I-6	1	<0.020	<0.020
119. chromium (total)	1-6	1	<0.020	<0.240
120. copper	1-6	1	0.200	0.550
121. cyanide (total)	I-6	1 -	<0.02	<0.02
122. lead	I-6 ·	1	<0.050	0.100
123. mercury	1-6	1	<0.0002	<0.0002
124. nickel	I-6	1 .	<0.050	0.150
125. selenium	1-6	1	<0.010	<0.010
126. silver	1-6	1	<0.010	<0.010
127. thallium	I-6	1	<0.010	<0.010
128. zinc	I-6	1	_0.040	
Nonconventional Pollutants				
Acidity	I-6	· 1	<1	<1
Alkalinity	I-6	1	40	81
Aluminum	I-6	1	<0.100	0.100
Ammonia Nitrogen	I-6	1	0.06	0.02

Table V-116 (Continued)

PRECIOUS METALS SAWING OR GRINDING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	Conce Source	entrations (mg/1) Day 2 Day 3 Day 4
Nonconventional Pollutants (Continued)			
Barium	1-6	1	<0.050	<0.050
Boron	1-6	1	<0.100	5.10
Calcium	1-6	1	13.8	15.7
Chemical Oxygen Demand (COD)	1-6	1	150	2700
Chloride	I-6	1	30	40
Cobalt	1-6	1	<0.050	<0.050
Fluoride	1-6	1	0.32	0.09
Iron	1-6	1	0.100	16.7
Magnesium	1-6	1	2.70	3.50
Manganese	I-6	1	0.100	0.500
Molybdenum	1-6	1	<0.050	<0.050
Phenolics	1-6	1	<0.005	<0.005
Phosphate	1-6	. 1	2.7	11 -

748

Table V-116 (Continued)

PRECIOUS METALS SAWING OR GRINDING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

Pollutant Nonconventional Pollutants (Continued)	Stream Code	Sample Type	<u>Conce</u> <u>Source</u>	entrations (mg/l) Day 2 Day 3	Day 4
Sodium	I-6	1	28.0		
Sulfate	I-6	1	740	720	
Tin	I-6	1	<0.050	<0.050	
Titanium	I-6	1	<0.050	<0.050	•
Total Dissolved Solids (TDS)	I-6	1	850	1,480	
Total Organic Carbon (TOC)			-63 ·	25	
Total Solids	I-6	1 11	,500 ·	1,500	
Vanadium	I-6	1	<0.050	<0.050	
Yttrium	I-6 .	1	<0.050	<0.050	
Conventional Pollutants					
011 and Grease	I-6	1	<1	500	,
Total Suspended Solids (TSS)	I-6	1.	300	<1	
pH (standard units)	I-6	1 -	6.10	7.50	

^{1.} The following toxic pollutants were not detected in this waste stream: 1-10, 12-43, 45-64, and 66-88.

^{2.} No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-117

PRECIOUS METALS PRESSURE BONDING CONTACT COOLING WATER

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge gal/ton
1	83.50	20.00	0.0	83.50	20.00
Average	83.50	20.00		83.50	20.00

Table V-118

PRECIOUS METALS PRESSURE BONDING CONTACT COOLING WATER
RAW WASTEWATER SAMPLING DATA

Pollutant	Stream	Sample	Conce	entrations (mg/l)	
	Code	Туре	Source	Day 1 Day 2	Day 3
Toxic Pollutants					
114. antimony	K-2	1	<0.010		<0.010
115. arsenic	K-2	1	<0.010		<0.010
117. beryllium	K-2	1	<0.005		<d.005< td=""></d.005<>
118. cadmium	K-2	1	<0.020		0.060
119. chromium	K-2	1	<0.020		0.060
120. copper	K-2	1	0.100		7.85
121. cyanide (total)	K-2	1	0.09		<0.02
122. lead	K-2	1	<0.050	•	0.250
123. mercury	K-2	1	<0.0002	•	<0.0002
124. nickel	K-2	1	<0.050		0.400
125. selenium	K-2	1 .	<0.010		<0.010
126. silver	K-2	1 ,	<0.010		0.050
127. thallium	K-2	1	<0.010		<0.010
128. zinc	K-2	1	<0.020		3.42
Nonconventional Pollutants				•	
Acidity	K-2	1	<1	•	<1
Alkalinity	K-2	1	43		52
Aluminum	K-2	1	<0.100		56.3
Ammonia Nitrogen	K~2 .	1	0.17		0.08
Barium	K-2	1	<0.050		0.100
Boron	K-2	1	<0.100		0.100
Calcium	K-2	1 .	8.70		15.4

Table V-118 (Continued)

PRECIOUS METALS PRESSURE BONDING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

	Stream Sample			Concentrations (mg/1)		
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3
Nonconventional Pollutants (Continued)					
Chemical Oxygen Demand (COD)	K-2	1	34			42
Chloride	K-2	1	35			38
Cobalt	K-2	1	<0.050			<0.050
Fluoride	K-2	1	1.31			1.4
Iron	K-2	1	<0.050			29.4
Magnesium	K-2	1	2.10			55.4
Manganese	K-2	1	<0.050			1.00
Molybdenum	K-2	1 .	<0.050			<0.050
Phenoli cs	K-2	1	<0.005			<0.005
Phosphate .	K-2	1	4.8	•		11.
Sodium	K-2	1	32.9			36.6
Sulfate	. K-2	1 .	400			780
Tin	K-2	1	<0.050			0.100
Titanium	`K−2	1	<0.050			0.100
Total Dissolved Solids (TDS)	K-2	1	140			140
Total Organic Carbon (TOC)	K-2	1	<1			<1 .
Total Solids (TS)	K-2	. 1	160			150
Vanadium	K-2	1	<0.050			<0.050
Yttrium .	K-2 .	· 1	<0.050			<0.050

Table V-118 (Continued)

PRECIOUS METALS PRESSURE BONDING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream <u>Code</u>	Sample Type	Conc Source	entrations (mg/l) Day 1 Day 2	Day 3
Conventional Pollutants					
Oil and Grease	K-2	1	<1		10
Total Suspended Solids (TSS)	K-2	1	16		4
pH (standard units)	K-2	1 .	6.70		7.90

^{1.} No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.

Table V-119

PRECIOUS METALS WET AIR POLLUTION CONTROL BLOWDOWN

		er Use	Percent	Wastewater	
Plant	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1	47,500	11,400	100	0.00	0.00
2	NR	NR	100	0.00	0.00
3	NR	NR	P	NR	NR
4	NR	NR	NR	NR	NR
2	NR	NR	NR	NR	NR
Average	47,500	11,400		0.00	0.00

P - Periodic discharge NR - Data not reported

Table V-120

REFRACTORY METALS ROLLING SPENT NEAT OILS AND GRAPHITE-BASED LUBRICANTS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1 2	NR NR	NR NR	100 100	0.00	0.00
Average	NR	NR		0.00	0.00

NR - Data not reported

^{*}Discharge from operation.

Table V-121
REFRACTORY METALS ROLLING SPENT EMULSIONS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1	NR	NR	P	428.8	102.8
Average	NR	NR		428.8	102.8

P - Periodic discharge NR - Data not reported

^{*}Discharge from operation.

Table V-122
REFRACTORY METALS DRAWING SPENT LUBRICANTS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1	NR	NR	100	0.00	0.00
2	NR	NR	100	0.00	0.00
3	NR	NR	NR	0.00	0.00
4	NR	NR	NR	0.00	0.00
5	NR	NR	100	0.00	0.00
5	NR	NR	100	0.00	0.00
6	NR	NR	NR	NR	NR
Average	NR	NR		0.00	0.00

NR - Data not reported

^{*}Discharge from operation.

Table V-123
REFRACTORY METALS EXTRUSION SPENT LUBRICANTS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
ı	NR	NR	0.0	0.00	0.09
2	NR	NR	0.0	0.00	0.00
3	NR	NR	0.0	0.00	0.00
Average	NR	NR		0.00	0.00

NR - Data not reported

^{*}Discharge from operation.

Table V-124

REFRACTORY METALS EXTRUSION PRESS HYDRAULIC FLUID LEAKAGE

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
.1	1,190	285.4	0.0	1,190	285.4
Average	1,190	285.4		1,190	285.4

^{*}Discharge from operation.

REFRACTORY METALS EXTRUSION PRESS HYDRAULIC FLUID LEAKAGE RAW WASTEWATER SAMPLING DATA

Table V-125

	Stream	Sample		ntration	
Pollutant	Code	Туре	Source	Day 1	Day 2 Day 3
Toxic Pollutants					
11. 1,1,1-trichloroethane	N-2	1	ND		0.745
23. chloroform	N-2	1	0.015		ND
24. 2-chlorophenol	N-2	1	ИD		<0.010
44. methylene chloride	N-2	1	ND		0.980
58. 4-nitrophenol	N-2	1	0.010		ND
65. phenol	N-2	1	ND		0.418
66. bis(2-ethylhexyl) phthalate	N-2	1	<0.010		286
67. butyl benzyl phthalate	N-2	. 1	ND .		1,040
68. di-n-butyl phthalate	N-2	1	ND		1.683
69. di-n-octyl phthalate	N-2	1	ND		265
70. diethyl phthalate	N-2	1	ND		2.340
72. benzo(a)anthracene (a)	N-2	1	ND		455
76. chrysene(a)	N-2	1 .	ND		455
85. tetrachloroethylene	N-2	1	ND		26.3
86. toluene	N-2	1	ND		0.110
114. antimony	N-2	1	<0.002	. •	0.060
115. arsenic	N-2	1 1	<0.001		<0.001
117. beryllium	N-2	1	<0.0005		0.003
118. cadmium	N-2	1	<0.001		.0.32
119. chromium (total)	N-2	1	0.10		0.60
120. copper	N-2	1	0.030		21
122. lead	N-2	. 1	0.084		. 18

Table V-125 (Continued)

REFRACTORY METALS EXTRUSION PRESS HYDRAULIC FLUID LEAKAGE RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	Conce Source	entrations (mg/l) Day 1 Day 2	Day 3
Toxic Pollutants (Continued)	•				•
123. mercury	N-2	1	<0.0002	•	<0.0002
124. nickel	N-2	1	- 0-11		0.44
125. selenium	N-2	1	<0.008		<0.008
126. silver	N-2	1	<0.002		0.32
127. thallium	N-2	1	<0.001		<0.001
128. zinc	N-2	1 1	0.20		18
Nonconventional Pollutants		•			
Molybdenum	N-2	1	0.10		20
Total Dissolved Solids (TDS)	N-2	1	360	350	,000
Conventional Pollutants					
Oil and Grease	N-2	, 1	14	44	,000
Total Suspended Solids (TSS)	N-2	1	< 1	. 19	,000
pH(standard units)	N-2	1	7.4		8.5

(a) Reported together

- 1. The following toxic pollutants were not detected in this waste stream: 1-10, 12-22, 25-43, 45-57, 59-64, 71, 73-75, 77-84, 87, and 88.
- 2. No analyses were performed on the following toxic pollutants: 89-113, 116, 121, and 129.

Table V-126
REFRACTORY METALS FORGING SPENT LUBRICANTS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1 1 2 3	2.23 6.75 NR NR	0.54 1.62 NR NR	0.0 0.0 0.0	0.00 0.00 0.00	0.00 0.00 0.00
Average	4.49	1.08		0.00	0.00

NR - Data not reported

^{*}Discharge from operation.

Table V-127

REFRACTORY METALS FORGING CONTACT COOLING WATER

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1	323 NR	77.5 NR	0.0	323 NR	77.5 NR
Average	323	77.5	4 - 4	323	77.5

NR - Data not reported

^{*}Discharge from operation.

Table V-128

REFRACTORY METALS METAL POWDER PRODUCTION WASTEWATER

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1 1 2 1 3	1,183 280.6 37.11 151.9 34,450	283.7 67.29 8.90 36.43 8,262	0.0 0.0 0.0 0.0	0.00 0.00 36.02 151.9 34,450	0.00 0.00 8.64 36.43 8,262
Average	7,221	1,732		11,550	2,769

^{*}Discharge from operation.

Table V-129

REFRACTORY METALS METAL POWDER PRODUCTION FLOOR WASHWATER

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1	183.4	43.99	100	0.00	0.00
2	35.83	8.59	0.0	35.83	8.59
Average	109.6	26.29		35.83	8.59

^{*}Discharge from operation.

Table V-130

REFRACTORY METALS METAL POWDER PRESSING SPENT LUBRICANTS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1	NR	NR	100	0.00	0.00
Average	NR	NR		0.00	0.00

NR - Data not reported

^{*}Discharge from operation.

Table V-131

REFRACTORY METALS SURFACE TREATMENT SPENT BATHS

Plant	Wastewater L/kkg	Discharge* gal/ton
1 2 3 4 2 5 6 7 8 6 7 2 6	13.09 94.12 232.3 343.9 469.8 1,180 NR NR NR NR	3.14 22.57 55.71 82.47 112.7 282.9 NR NR NR NR NR
9 10	NR NR	NR NR
Average	388.8	93.25

NR - Data not reported

^{*}Discharge from operation.

Table V-132

REFRACTORY METALS SURFACE TREATMENT SPENT BATHS
RAW WASTEWATER SAMPLING DATA

Stream Sample Concentrat				rations (mg/l)
Pollutant	Code	Type	Source D	ay 1 Day 2 Day 3
Toxic Pollutants				
114. antimony	M-6	1	<0.010	<0.050
115. arsenic	M-6	1	<0.010	<0.010
117. beryllium	M-6	1	<0.005	<0.005
118. cadmium	M-6,	1	<0.020	0.500
119. chromium (total)	M-6	1	<0.020	0.100
120. copper	. M-6	1	<0.050	6.30
121. cyanide (total)	M-6	1	<0.02	<0.02
122. lead	M-6	1	<0.050	<0.100
123. mercury	M-6	1	<0.0002	0.0002
124. nickel	M-6	, 1	<0.050	12.4
125. selenium	M-6	1	<0.010	<0.010
126. silver	M-6	. 1	<0.010	6.10
127. thallium	M-6	1	<0.010	<0.100
128. zinc	M-6	1	0.080	1.75
Nonconventional Pollutants			-	
Acidity	M-6	1	. ≺1	1,900
Alkalinity	M-6	1	100	- <1
Aluminum	M-6	1	0.200	0.400
Ammonia Nitrogen	M-6	1	.<0.1	<0.1
Barium	M-6	1	<0.050	<0.050
Boron	M-6	1	<0.100	9.00
Calcium	M-6	1	36.5	39.1

Table V-132 (Continued)

REFRACTORY METALS SURFACE TREATMENT SPENT BATHS RAW WASTEWATER SAMPLING DATA

•	Stream	Sample		entrations (mg/l)	
<u>Pollutant</u>	Code	Туре	Source	Day 1 Day 2	Day 3
Nonconventional Pollutants (Continued)					
Chemical Oxygen Demand (COD)	M-6	. 1	_. <5	1,800	
Chloride .	M-6	1	10	100	
Cobalt	M-6	1	<0.050	<0.050	
Fluoride	M-6	1	0.85	0.27	
Iron	M-6	· · · · · · · · · · · · · · · · · · ·	<0.050	14.7	
Magnesium	M-6	. 1	11.3	13.2	
Manganese	M-6	1	<0.050	0.150	
Molybdenum	M-6	1 .	<0.050	0.050	
Phenolics	M-6	1	<0.005	<0.005	
Phosphate	M-6	. 1	<4 .	<4	
Sodium	M-6	1	5.20	60.1	•
Sulfate	M-6	1 ,	43	61	
Tin	M-6	1	<0.050	<0.050	
Titanium	M-6 ·	1.	<0.050	0.050	
Total Dissolved Solids (TDS)	M-6	1	270	660	
Total Organic Carbon (TOC)	M-6	1	<1	12	-
Total Solids (TS)	M-6	: 1	280	1,300	e e
Vanadium	M-6	1	<0.050	<0.050	
Yttrium	M-6	1	<0.050	<0.050	

REFRACTORY METALS SURFACE TREATMENT SPENT BATHS RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	Conc Source	Day 1 Day 2 Day 3
Conventional Pollutants				
Oil and Grease	M-6	1	. 3	<1
Total Suspended Solids (TSS)	M-6	1 .	14	140
pH (standard units)	М-6	1	7.30	0.80

1. No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.

770

Table V-133 REFRACTORY METALS SURFACE TREATMENT RINSE

Plant	Wat L/kkg	er Use gal/ton	Percent Recycle	Wastewa L/kko	ater Discharge* g gal/ton
1	5,949	1,427	0.0	5,949	1,427
	NR	NR	CCR	9,381	2,250
2 3	9,673	2,320	0.0	9,673	2,320
4	24,570	5,893	0.0	24,570	5,893
2 ⁻ 5	NR	NR	CCR	27,970	6,707
5	444,800	106,700	0.0	444,800	106,700
6	NR	NR	NR	NR	NR
6	NR	NR	NR	NR	NR
7	NR	NR	P	NR	NR
6	NR	NR	0.0	NR	NR
8	NR	NR	NR	NR	NR
9	NR	NR	0.0	NR	NR
10	NR	NR	NR	NR	NR
2	NR	NR	NR	NR	NR
Average	121,200	29,090		87,060	20,880

P - Periodic discharge NR - Data not reported CCR - Two stage countercurrent rinsing in-place

^{*}Discharge from operation.

Table V-134

REFRACTORY METALS SUPPACE THEATMENT RINSE RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Conc	entration	s (mg/l)	
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3
Tauda Dallumanta						
Toxic Pollutants						
114. antimony	M-7	1	<0.010		<0.010	
.,.,	M-10	1	<0.010		<0.100	
	0~2	2	<0.10			<0.1
	Z-1	1	0.0004	0.00025		
115. arsenic	M-7 '	1	<0.010		<0.010	
115. arsenic	M-10	i	<0.010		<0.010	
	0-2	2	<0.01			<0.01
	Z-1	1	<0.001	0.0018		
	N-7	1	<0.005		<0.005	
117. beryllium	M−7 M−10	1 1	<0.005		<0.200	
•	0-2	2	<0.003		10.200	0.004
	U-2 Z-1	1	<0.01	<0.01		0.004
	2-1	•	١٥.٥١	10.01		•
118. cadmium	M-7	1	<0.020		<0.020	
(10, 0==	M-10	1	<0.020		<0.040	
	0-2	2	<0.002			0.040
	Z-1	1	<0.01	0.03		
119. chromium (total)	M-7	1	<0.020		<0.020	•
(19. Citi omitum (total)	M-10	i	<0.020		0.440	
	0-2	2	<0.005		•	0.100
	Z-1	ī	0.038	0.11		
120. copper	M-7	1	<0.050		0.050	
	M-10	1	<0.050		0.400	
	0-2	2	0.030			0.200
	Z-1	1	0.013	0.12	-	
121. cyanide (total)	M-7	1	<0.02		<0.02	
121. Cyanido (Cotar)	M-10	1	<0.02		<0.02	
	M-7	•	<0.050		<0.050	
122. lead	M-10	1	<0.050		0.500	
	M-10 0-2	2	<0.030		0.500	0.060
	Z-1	1	0.097	0.16		3.300
1.1 4	£ 1	•	0.007	0.10		

72

Table V-134 (Continued)

REFRACTORY METALS SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Concentrations (mg/1)			
Pollutant	_Code_	Туре	Source	Day 1	Day 2	Day 3
Toxic Pollutants (Continued)		* .*				
(0.000)	•	-			•	
123. mercury		_			× ·	
120. Moredry	M-7	1	<0.0002		<0.0002	
*	M-10	1	<0.0002		<0.0002	
	0-2	2	<0.0001	_		0.0001
	Z-1	1	<0.005	<0.005		•
124. nickel	M7	1	<0.050		0.600	
	M-10	i	<0.050		10.2	
the second of th	0-2	2	<0.005		10.2	0.070
•	Z~1	1	0.038	0.086		0.070
125. selenium	M−7	•	40.010			
,	M−10	1	<0.010		<0.010	
	₩-10 0-2	1 2	<0.010		<0.010	
	Z-1	1	<0.01	10 0001		<0.01
	2 1	•	0.0004	<0.0004		
126. silver	M-7	1	<0.010		0.050	
	M-10	1	<0.010		<0.010	
	0-2	2	<0.02		.0.0.0	<0.02
	Z-1	1	0.0005	0.0005	•	10.02
127. thallium	M-7	1	<0.010			
	₩-10	ή,	<0.010		<0.050	
	0-2	2	<0.1		<0.010	
	Z-1	1	<0.001	<0.001		<0.2
120		· ·		3.001	•	
128. zinc	M-7	1	0.080		0.040	
	M-10	1	0.080		0.080	
	0-2	2	<0.060			0.200
•	Z-1	1	<0.25	0.034		0.200

Table V-134 (Continued)

REFRACTORY METALS SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

	Stream	Sample		centration		Dan 3
<u>Pollutant</u>	Code	Туре	Source	Day 1	Day 2	Day 3
Nonconventional Pollutants						
Acidity	M-7	1	<1	1.	,500	
Actuatey	M-10	1	_<1		890	
	Z-1	1	<10 1	,200		
Alkalinity	M-7	1	100		<1	
· · · · · · · · · · · · · · · · · · ·	M-10	1	100	_	<1	
	Z-1	1	69	<10		
Aluminum	M-7	1	0.200		0.200	
777 4017 774 501	M-10	1	0.200		19.6	
	0-2	2	<0.050			<0.500
•	Z-1	1	0.11	0.46		
Ammonia Nitrogen	M-7	1	<0.1		<0.1	
Barium	M-7	1	<0.050		<0.050	
bai idii	M-10	1	<0.050		0.100	
	0-2	2	0.020			0.040
	Z-1	1	0.04	0.012		
, Boron	M-7	1	<0.100		0.100	
20.0,	M~10	. 1	<0.100		46.4	
	Z-1	1	0.5	0.97		
Calcium	M-7	1	36.5		33.8	
Ga / C / Gill	M-10	1	36.5		37.6	
	0-2	2	<5.0	-		<5.0
	Z-1	1	79	5		
Chemical Oxygen Demand (COD)	M-7	1	<5		<5	
· ·	0-2	2	8			114
Chloride			- 10			
	M-10	1	10		12	
	0-2	2				12

774

Table V-134 (Continued)

REFRACTORY METALS SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream _Code	Sample Type	Con Source	centration Day 1	ns (mg/l) Day 2	Day 3
Nonconventional Pollutants (Continued)					
Cobalt	М-7	1	<0.050		<0.050	
000011	M-10	. 1	<0.050		<1.00	
•	Z-1	1	<0.01	<0.01	VI.00	
Columbium	Z-1	1	ND	4.4		
Fluoride	M-7 .	1 -	0.85		1.1	
	M-10	1	0.85	. 3	,000	
•	0-2	2 .		•		5.2
	2-1	1	0.2	82		
Iron	M-7	1	<0.050	-	0.300	•
	M-10	1	<0.050	-	2.00	
*	0-2	2	<0.200			5.00
•	Z-1	1	0.24	0.72		
Magnesium	M-7	1	11.3		10.7	
	M-10	1	11.3		11.8	
•	0-2	. 2	0.7			0.9
	Z-1	1	8.0	0.034		
Manganese	M-7	1.	<0.050		<0.050	
	M-10	1	<0.050		<0.100	
•	0-2	2	<0.005			0.080
	Z-1	· 1	0.012	0.03		
Molybdenum	M-7	1	<0.050		<0.050	
	M-10	1	<0.050	•	0.700	
المراجع والمراجع	0-2	, 2	<0.005			0.400
	Z-1	1	<0.03	<0.03		_

REFRACTORY METALS SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

	Stream Sample Concentrations (mg/1)							
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3		
Cantinued	1							
Nonconventional Pollutants (Continued	,							
Phenolics	M-7	1	<0.005		<0.005			
Phosphate	M-7	1	<4		<4			
- · · ·	M-7	1	5.20		7.60			
Sodium	M-10	i	5.20		36.8			
. •	0-2	2	<15			27		
	Z-1	1	27	43				
0.16-4-	M-7	1	43		44			
Sulfate	M-10	1	43		380			
Tantalum	Z-1	1	ЙD	9.2				
	M-7	1	<0.050		<0.100			
Tin	M-10	i	<0.050		<1.00			
	0-2	2	<0.005			0.010		
	Z-1	1	<0.28	<0.28				
Therefore	M-7 .	1 .	<0.050		<0.050			
Titanium	M-10	1	<0.050		<0.100			
	0-2	2	<0.020			0.020		
	Z-1	1	<0.25	2				
Total Dissolved Solids (TDS)	M-7	1	270	•	270			
Total Dissulved Sullds (103)	M-10	1	270		770			
•	Z-1	1	110	87				
Total Organic Carbon (TOC)	M-7	1	<1		9			
lotal organic carbon (100)	0-2	2	6			46		
m v) Calida (TC)	M-7	1	280		330			
Total Solids (TS)	M-10	i	280		980			
	Z-1	1	390	390				

//

Table V-134 (Continued)

REFRACTORY METALS SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Con	centratio	ns (mg/l)	
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3
Nonconventional Pollutants (Continued)						
Monconventional Politicants (Continued)						
			•		•	
Vanadium	M-7	1	<0.050	*	<0.050	
,	M-10	1	<0.050		<0.100	•
	0-2	. 2	<0.010		VO. 100	0.020
	7 Z-1	1	<0.02	0.031		0.020
Yttrium						
Y CCC (GIII	M-7	1 .	<0.050		<0.050	
	M-10	1	<0.050	•	<0.100	
	0 . 2	2	<0.020			<0.020
	Z-1	٠ ١	<0.25	<0.25		
Zirconium	Z-1	1	0.26	0.64		
·						
Conventional Pollutants						
·						
Oil and Grease	M-7	1	3		~1	
	0-2	i	J		<1	6
		·				6
Total Suspended Solids (TSS)	M-7 ·	1	14		120	
	M-10	1	14		140	•
	0-2	2	<1			52
V 20	Z-1	1	100	15		02
pH (standard units)	M-7	1	7 00	•		
· · · · · · · · · · · · · · · · · · ·	M-10	. 1	7.30		1.50	
	Z-1	1	7.30 6	0	2.10	
·	- 1.		·	2	* -	

^{1.} No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.

Table V-135

REFRACTORY METALS ALKALINE CLEANING SPENT BATHS

Plant	Wastewater L/kkg	Discharge* gal/ton
1	95.00	22.80
2	435.6	104.5
3	472.0	113.2
4	NR	NR
5	NR	NR
6	NR	NR
7	NR	NR
8	NR	NR
9	NR	NR
10	NR	NR
11	NR .	NR
10	NR	NR
12	NR	NR
13	NR	NR
Average	334.2	80.15

NR - Data not reported

^{*}Discharge from operation.

Table V-136

REFRACTORY METALS ALKALINE CLEANING SPENT BATHS RAW WASTEWATER SAMPLING DATA

0.11	Stream	Sample	Conc	ncentrations (mg/l)			
Pollutant ·	_Code_	<u>Type</u>	Source	Day 1	Day 2	Day 3	
Toxic Pollutants					•		
114, antimony	Z-3	1	0.0004	0.00028	al.		
115. arsenic	Z-3	1 1 .	<0.001	0.016			
117. beryllium	Z-3	1 .	<0.01	0.036			
118. cadmium	Z-3	1	<0.01	0.02			
119. chromium (total)	Z-3	1	0.038	0.75			
120. copper	Z-3	1 .	0.013	0.96	_		
122. lead	Z-3	. 1	0.097	9.9		•	
123. mercury	Z-3	1	<0.005	<0.005			
124. nickel	Z-3	1	0.038	0.65			
125. selenium	Z-3	1	0.0004	0.0011			
126. silver	Z-3	1	0.0005	0.0055			
127. thallium	Z-3	1	<0.001	0.0028			
12B. zinc	Z-3	1	<0.25	<1.6			
Nonconventional Pollutants				,		•	
Acidity	Z-3	1	<10	<10			
Alkalinity	Z-3	1	69 >9,	500			
Aluminum	Z-3	1	0.11	17			
Barium	Z-3	1	0.04	0.35	· • • -		
Boron	Z-3	1		170			
Calcium	Z-3	- 1		180			
Cobalt	z-3	1	<0.01	0.036			
Columbium	Z-3	1		365			

Table V-136 (Continued)

REFRACTORY METALS ALKALINE CLEANING SPENT BATHS RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Concentrations (mg/l)			
Pollutant	Code	Туре	Source Day 1 Day 2 Day 3			
Monconventional Pollutants (Continued)					
Fluoride	Z-3	1	0.2 41			
Iron	z-3	1	0.24 8.5			
Magnesium	Z-3	1	8.0 4.1			
Manganese	z-3	1	0,012 0,18			
Molybdenum	Z-3	1	<0.03 0.7			
Sodium	Z-3	1	27 31,000			
Tantalum	Z -3	1	ND 585			
Tin ·	z-3	1	<0.28 <0.28			
Titanium	Z-3	1	<0.25 6.5			
Total Dissolved Solids (TDS)	Z-3	1	110 200.0			
Total Solids (TS)	Z-3	1	390 295.0			
Vanadium	Z-3	1	<0.02 0.37			
Yttrium	Z-3	1	<0.25 <0.25			
Zirconium	Z-3	1	0.26 8.5			
Conventional Pollutants						
Oil and Grease	Z-3	1	<1 13			
Total Suspended Soliids (TSS)	Z-3	1	100 54.0			
pH (standard units),	Z-3	1	6 14			

.

^{1.} No analyses were performed on the following toxic pollutants: 1-113, 116, 121, and 129.

Table V-137

REFRACTORY METALS ALKALINE CLEANING RINSE

5 1		ater Use			r Discharge*
Plant	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1	9,874	2,368	0.0 9,	874	2,368
	20,910	5,014		910	5,014
1 2 3 4 5	33,860	8,119	-	860	8,119
3	36,730	8,807	0.0 36,	730	8,807
4	43,220	10,370	0.0 43,	220	10,370
5	103,000	24,700	0.0 103,	000	24,700
6	226,100	54,210	0.0 226,	100	54,210
· 7	240,200	57,600	0.0 240,	200	57,600
6	909,400	218,100	0.0 909,	400 2	18,100
7 2	,102,000	504,000	0.0 2,102,	000 5	04,000
7 5	,254,000	1,260,000	0.0 5,254,	000 1,2	60,000
8 9	NR	NR	NR ·	NR	NR
	NR	NR	P	NR	NR ·
10	NR	NR	0.0	NR	NR
11	NR	NR	NR	NR	NR
12	NR	NR	0.0	NR	NR
13 :	NR	NR	0.0	NR	NR
14	NR	NR	NR	NR	NR
Average	816,300	195,800	816,	300 1	95,800

P - Periodic discharge NR - Data not reported

^{*}Discharge from operation.

Table V-138

REFRACTORY METALS MOLTEN SALT RINSE

Plant	Water	Use	Percent	Wastewate	r Discharge*
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1	52.13	12.50	0.0	52.13	12.50
2	1,830	438.8	0.0	1,830	438.8
3	3,739	896.7	0.0	3,739	896.7
3	5,594	1,341	0.0	5,594	1,341
4	20,416	4,896	0.0	20,416	4,896
5	NR	NR	NR	NR	NR
Average	6,326	1,517		6,326	1,517

NR - Data not reported

^{*}Discharge from operation.

Table V-139

REFRACTORY METALS MOLTEN SALT RINSE
RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	<u>Čonc</u> Source	entration Day 1	s (mg/1) Day 2	Day 3
Toxic Pollutants			-			_
11. 1,1,1-trichloroethane	N-3	· 1	ND		<0.010	
23. chloroform	N−3	1	0.015		<0.010	•
44. methylene chloride	N-3	1 .	ND		<0.010	-
58. 4-nitrophenol	N-3	3	0.010		ND	·
66. bis(2-ethylnexyl) phthalate	N-3	. з	<0.010		ND	
85. tetrachloroethylene	N-3	-1	ND		0.017	
104. gamma-BHC	N−3	· 3	<0.005	•	ND	
114. antimony	M-4 M-9 N-3 Z-4	1 1 3 1	<0.010 <0.010 <0.002 0.0004	<0.050 <0.00025	<0.040 0.003	<0.050 <0.010
115. arsenic	M-4 M-9 N-3 Z-4	1 1 3 1	<0.010 <0.010 <0.001 <0.001	<0.020	<0.020 <0.001	<0.020 <0.020
117. beryllium	M-4 M-9 N-3 Z-4	1 1 3	<0.005 <0.005 <0.0005 <0.01	<0.010	<0.010 <0.0005	<0.010 <0.005
118. cadmium	M-4 M-9 N-3 Z-4	1 1 3 1	<0.020 <0.020 <0.001 <0.01	<0.050	<0.050 <0.001	<0.050 <0.020
119. chromium (total)	M-4. M-9 N-3 Z-4	1 1 3 1	<0.020 <0.020 0.10 0.038	<0.050	0.400	0.400 0.020
120. copper	M-4 M-9 N-3 Z-4	1 1 1	<0.050 <0.050 0.030 0.013	<0.050	0.050	0.050 <0.050

Table V-139 (Continued)

REFRACTORY METALS MOLTEN SALT RINSE RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Concentrations (mg/l)			
m 13 kaak	Code	Type	Source	Day 1	Day 2	Day 3
Pollutant						
Toxic Pollutants (Continued)						
TOXIC POTTUCATION (CONT.						
•			<0.02	<0.02	<0.02	<0.02
121. cyanide (total)	M-4	1	<0.02	10.02		<0.02
•	M-9	1	0.003		<0.001	
	N−З	ı	0.003			
•	M-4	1	<0.050	<0.100	<0.100	<0.100
122. lead	M-9	1	<0.050			0.050
	N-3	3	0.084		0.070	
	Z-4	1	0.097	0.21		
	2. 4	•				
	M-4	1	<0.0002	<0.0002	<0.0002	<0.0002
123. mercury	M-9	1	<0.0002			<0.0002
	N-3	3	<0.0002		<0.0002	
	Z-4	1	<0.005	<0.005		
•	2 7	-				
	M-4	1	<0. 0 50	<0.200	<0.200	<0.200
124. nickel	M-9	1	<0.050			<0.050
	N-3	3	0.11		0.016	
	Z-4	1	0.038	0.43		
	- -	-				
	M-4	1	<0.010	<0.020	<0.020	<0.020
125. selenium	M-9	1	<0.010			<0.020
	N-3	3	<0.008		<0.008	
•	Z-4	1	0.0004	<0.0004		
	_ `	•				
	M-4	1	<0.010	0.040	0.020	0.026
126. silver	M-9	1	<0.010			<0.020
	N-3	3	<0.002		<0.002	
•	Z-4	1	0.0005	<0.0005		
	·					40.050
-07 - 11 -13 i.m.	M-4	1	<0.010	<0.010	<0.010	<0.050
127. thallium	N-3	. 3	<0.001		<0. 0 01	
	Z-4	1	<0.001	<0.001	•	
•	-				40 500	<1.00
100 ming	M-4	1	0.080	0.150	<0,500	<1.00
128. zinc	M-9	1	0.080			0.020
	N-3	3	0.20		0.10	
	Z-4	1	<0.25	0.034		
	_					

REFRACTORY METALS MOLTEN SALT RINSE RAW WASTEWATER SAMPLING DATA

		•				
•	Stream	Sample	Con		ons (mg/l)	
Pollutant	Code	Type	Source	Day 1	<u>Day 2</u>	Day 3
	•					
Nonconventional Pollutants		•				
Nonconventional Forsulaits					•	
Acidity	M-4	1	<1	<1	< 1	<1
	M-9	1 -	·<1 ,	*		<1
•	Z-4	1	<10	27		
* 11 - 12 - 2 +	M-4	` 1	100 2	1,900	26,000	690
Alkalinity	M-9	1	100	1,900		,940
·	Z-4	· i	69	- 3	•	, 0 - 10
	· ·					
Aluminum	M-4	1	0.200	<10.0	2.00	3.00
	M-9	1	0.200		,	0.100
	Z-4	1	0.11	0.23		
Ammonia Nitrogen	M-4	1 .	<0.1	<0.1	<0.1	0.22
Animorra Rici ogen	M-9	i	<0.1	.0.1	.0.1	<0.1
Barium	M-4	1 .	<0.050	<5.00	<0.500	
	M-9	1	<0.050			<0.050
	Z-4	`1	0.04	0.052	2	
Boron	M-4	1 .	<0.100	10.0	5.00	6.00
301.011	M-9	i	<0.100	10.0	0.00	<0.100
	Z-4	i	0.5	0.3		10.,00
Calcium	M-4	1	36.5	<10.0	1.00	1.00
	M-9	1	36.5			20.7
•	Z-4	. 1	79	8.6		
Chemical Oxygen Demand (COD)	M-4	1 .	<5	120	110	100
memilia (305)	M-9	i	<5			<5
					•	
Chloride	M-4	1	10	110	21	120
•	M- 9	1	10			14
Cobalt	M-4	1	<0.050	<5.00	<0.500	<0.500
JUDATE	M-9	1	<0.050	·0.00	10.500	<0.050
	Z-4	i	<0.01	<0.01		2.230
,			-			
Columbium	. Z-4	1 •	ND	2.3	•	
************	M-4		0.85	1.7	0.65	0.67
Fluoride	M-9	1	0.85	1.7	0.03	0.82
	Z-4	1	0.2	18		0.02

85

Table V-139 (Continued)

REFRACTORY METALS MOLTEN SALT RINSE RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Concentrations (mg/1)			
<u>Pollutant</u>	Code	Туре	Source Day 1 Day	2 <u>Day 3</u>		
Nonconventional Pollutants (Continued)					
1100	•					
_		1	<0.050 <5.00 <0.50	0 <0.500		
Iron	M-4 M-9	1	<0.050 \3.00 \0.50	0.550		
	M-9 Z-4	1	0.24 1	0.550		
•	2 7	•	3.2.			
Magnesium	M-4	1	11.3 <10.0 <1.00			
	M-9	1	11.3	5.10		
·	Z-4	1	8.0 0.39			
	M−4	1	<0.050 <5.00 <0.50	0 <0.500		
Manganese	M-9	i	<0.050	<0.050		
	W-9 Z-4	1	0.012 0.12	.0.000		
•	2-4	1 .	0.012 0.12			
Molybdenum	M-4	1	<0.050 <5.00 <1.00	0.500		
mo rybacham	M-9	i	<0.050	<0.050		
•	N-3	3	0.10 5.2			
	Z~4	1	<0.03 <0.03			
	-	•	•	:		
Phenolics	M-4	1	<0.005 0.007 0.00			
	M~9	1	<0.005	<0.005		
	N-3	1	0.0017 0.00	0062		
Phosphate	M-4	1	<4 21 <4	24		
rnosphace	M-9	í	<4	<4		
•	0		*:			
Sodium	M-4	1	5.20 9,340 8,010	9,400		
	M-9	1	5.20	806		
	Z-4	1	27 300			
Sulfate	M-4	. 1	43 46 43	57		
Surrace	M-9	. 1	43	36		
·	5	. •				
Tantalum	Z-4	- 1	ND 2.5			
•			•			
Tin	M-4	1	<0.050 <5.00 <2.00			
	M-9	1	<0.050	<0.200		
	Z-4	1	<0.28 <0.28			
***	N-4 ·	1	<0.050 <5.00 <0.50	00 <0.500		
Titanium	M-4 M-9	1	<0.050 <5.00 <0.50	<0.050 <0.050		
•	W-9 Z-4	1	<0.25 <0.25	0.000		
	£, 1		0.20			

Table V-139 (Continued)

REFRACTORY METALS MOLTEN SALT RINSE RAW WASTEWATER SAMPLING DATA

<u>.</u>	Stream	Sample		ncentrat		
Pollutant	Code	Туре	Source	Day	1 Day	2 <u>Day 3</u>
Nonconventional Pollutants (Contin	ued)					•
Total Dissolved Solids (TDS)	M-4 M-9 N-3 Z-4	1 1 3 1	270 2 270 360 110	0,000	19,000 490	22,000 2,500
Total Organic Carbon (TOC)	M-4 M-9	1 · 1	<1 <1	-50	22	18 70
Total Solids (TS)	M-4 M-9 Z-4	1 1 1	280 280 390	3,000 178.0	24,000	33,000 2,500
Vanadium	M-4 M-9 Z-4	1 1 1	<0.050 <0.050 <0.02			0 <0.500 <0.050
Yttrium	M-4 M-9 Z-4	1 1 1	<0.050 <0.050 <0.25			0 <0.500 <0.050
Zirconium	Z-4	1	0.26	<0.13		

REFRACTORY METALS MOLTEN SALT RINSE RAW WASTEWATER SAMPLING DATA

Pollutant	Stream <u>Code</u>	Sample Type	Con Source	centratio Day 1	ns (mg/l) Day 2	Day 3
Conventional Pollutants						
Oil and Grease	M-4 M-9	1 1	3	<1	<1	<1 <1
Total Suspended Solids (TSS)	M-4 M-9 N-3 Z-4	1 1 1 1	14 14 14 100	80.0	240 <1	130 230
pH (standard units)	M-4 M-9 N-3 Z-4	1 1 3 1	7.30 7.30 <1 6	11.80	11.90	11.80 11.80

1. Toxic pollutants 89-113 were analyzed in this waste stream.

788

2. The following toxic pollutants were not detected in this waste stream: 1-10, 12-22, 24-43, 45-57, 59-65, 67-84, 86-103, and 105-113.

3. No analyses were performed on the following toxic pollutants: 116 and 129.

Table V-140

REFRACTORY METALS TUMBLING OR BURNISHING WASTEWATER

		er Use	Percent		ter Discharge*
Plant	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1	952.7	228.5	0.0	952.7	228.5
2	992.8	238.1	0.0	992.8	238.1
3	1,359	325.9	0.0	1,359	325.9
2	5,745	1,378	0.0	5,745	1,378
4	19,300	4,628	0.0	19,300	4,628
. 2	65,010	15,590	0.0	65,010	15,590
5	599,300	143,700	0.0	599,300	143,700
5	666,100	159,700	0.0	666,100	159,700
6	NR	NR	NR	NR	NR
7	NR	NR	NR	NR	NR
Average	169,800	40,720		169,800	40,720

NR - Data not reported

^{*}Discharge from operation.

Table V-141

REFRACTORY METALS TUMBLING OR BURNISHING WASTEWATER RAW WASTEWATER SAMPLING DATA

Delluteet	Stream	Sample		centration		
<u>Pollutant</u>	Code	Туре	Source	Day 1	Day 2	Day 3
Toxic Pollutants						
11. 1,1,1-trichloroethane	M-2	1	0.011	0.011	0.011	0.015
•	M-3	1	0.011			0.017
	M-13	1	0.011			0.018
23. chloroform	M-2	1	0.016	ND	ND	ND
	M-3	1	·0.016			0.007
	M-13	1	0.016			0.006
44. methylene chloride	M-2	1	0.001	0.002	0,002	0.002
	M-3	1	0.001			0.008
•	M-13	1	0.001			0.004
55. naphthalene	M-2	1	ND	ND	0.002	ND
	M-3	2	ND			ИD
	M-13	1	ND			ИD
66. bis(2-ethylhexyl) phthalate	M-2	1	ND	ND	0.001	0.002
•	M-3	2	ND		•	ИD
	M-13	1	ND		-	0.014
114. antimony	M-2	1	<0.010	<0.010	<0,.010	<0.010
	M-3	1	<0.010			<0.010
	M-13	1	<0.010			<0.010
115. arsenic	M-2	1	<0.010	·<0.010	<0.010	<0.010
	M-3	2	<0.010			<0.010
	M-13	1	<0.010			<0.010
117. beryllium	M-2	1	<0.005	<0.005	<0.005	<0.005
·	M-3		<0.005			<0.005
***************************************	M-13	1	<0.005		***	<0.010
118. cadmium	M-2	1	<0.020	<0.020	0.120	0.060
	M-3	2	<0.020			0.140
	M-13	1	<0.020			0.040
119. chromium (total)	M-2	. 1	<0.030	0.020	0.780	0.380
•	M-3	2	<0.020			0.060
	M-13	1	<0.020			0.520

Table V-141 (Continued)

Dallutant	Stream Code	Sample Type	· Conc	entration Day 1	ns (mg/l) Day 2	Day 3
Pollutant	code	Type.	3001 00	<u> </u>	<u> </u>	
Toxic Pollutants (Continued)		•			*	
•						
120. copper	M-2	1	<0.050	1.90	8.65	3.95
120. copper	M-3	2	<0.050			2.15
·	M-13	1	<0.050			<0.100
121. cyanide (total)	M-2	1 .	<0.02	<0.02	<0.02	<0.02
	M-3	1	<0.02			<0.02
	M∵13	1	<0.02			<0.02
122. lead	M-2 .	1	<0.050	<0.500	<10.0	<5.00
	M-3 ·	2	<0.050		•	<1.00
	M~13	1	<0.050			<10.0
123. mercury	M~2	1	<0.0002	<0.0002	<0.0002	<0.0002
0, ,	M~3	2	<0.0002			<0.0002
	M-13	· 1	<0.0002		*	<0.0002
124. nickel	M-2	1	<0.050	0.750	23.7	16.0
	M-3	2	<0.050		,	103
	M-13	1 .	<0.050			<0.100
125. selenium	M-2	. 1	<0.010	<0.010	<0.010	<0.010
	M-3	2	<0.010			<0.010
	M-13	1 .	<0.010			<0.010
126. silver	M-2	1	<0.010	0.140	0.220	0.150
	M-3	. 2	<0.010			0.140
	M-13	1	<0.010			<0.010
127. thallium	M-2	. 1	<0.010	<0.010	<0.010	<0.010
•	ͺM−3	2	<0.010			<0.010
	M~13	1	<0.010			<0.010
128. zinc	M-2	· 1	0.080	0.060	<0.500	<0.500
	M-3	2	0.080			0.520
,	M-13	1	0.080			<0.500

Table V-141 (Continued)

	Stream	Sample	Con	centration	ns (mg/1)	
Pollutant	_Code	Туре	Source	<u>Day 1</u>	Day 2	Day 3
Nonconventional Pollutants						
Acidity	M-2	1	<1	<1	<1	<1
	M-3	2	<1			<1
	M-13	1	<1			<1
Alkalinity	M-2	1	100	100	41	85
•	M-3	2	100			,260
	M-13	1	100			190
Aluminum	M-2	1	0.200	0.500	23,4	16.7
	M-3	2	0.200	0.000	20.4	3.10
	M-13	1	0.200			21.6
Ammonia Nitrogen	M-2	1	<0.1	<0.1	1.6	0.41
	M-3	2	<0.1		1.0	0.3
	· M-13	1	<0.1			<0.1
Barium	M-2	1	<0.050	<0.050	0.400	0.200
,	M-3	2	<0.050	\U.U3U	0.400	0.200
	M-13	ī	<0.050			0.100
Boron	M-2	1	<0.100	<0.100	1.70	8.20
	M-3	ż	<0.100	10.100	1.70	1.60
•	M-13	1	<0.100			0.500
Calcium	M-2	1	36.5	35.3	43.5	41.2
	M-3	2	36.5		40.5	36.5
	M-13	ī	.36.5			41.0
Chemical Oxygen Demand (COD)	M-2	1	<5	<5	11	< 5
	M-3	2	<5	.0		120
	M-13	1	<5			<5
Chloride	M-2	1	10	7.1	17	14
•	M-3	2	10		• •	13
	M-13	. 1	10			28
						-3

Table V-141 (Continued)

Nonconventional Pollutants (Continued)		Stream	Sample	Cone	centration	ns (mg/1))			
Cobalt M-2 1 <0.050 <0.050 0.100 0.050 0.050 M-13 1 co.050 0.050 0.100 0.050 M-13 1 co.050 0.100 0.050 0.100 0.100 Fluoride M-2 1 0.85 2.2 0.86 0.79 1.0 m-3 2 0.85 M-13 1 0.85 0.050 0.78 Iron M-2 1 <0.050 0.800 15.1 8.05 17.6 M-3 2 co.050 0.800 15.1 8.05 17.6 M-3 1 co.050 0.800 0.800 15.1 8.05 17.6 M-3 1 co.050 0.05	Pollutant	Code					Day 3			
Cobalt M-2 1 <0.050 <0.050 0.100 0.050 0.050 M-13 1 co.050 0.050 0.100 0.050 M-13 1 co.050 0.100 0.050 0.100 0.100 Fluoride M-2 1 0.85 2.2 0.86 0.79 1.0 m-3 2 0.85 M-13 1 0.85 0.050 0.78 Iron M-2 1 <0.050 0.800 15.1 8.05 17.6 M-3 2 co.050 0.800 15.1 8.05 17.6 M-3 1 co.050 0.800 0.800 15.1 8.05 17.6 M-3 1 co.050 0.05		und)				,				
M-3 2 <0.050 0.050 M-13 1 <0.050 0.100 Fluoride	Nonconventional Polititants (Contin	ded) .					•			
M-3	Cobalt		1		<0.050	0.100				
Fluoride M-2 1 0.85 2.2 0.86 0.79 M-3 2 0.85										
M-3 2 0.85 1.0 0.78 Iron M-2 1 <0.050 0.800 15.1 8.05 17.6 M-3 2 <0.050 M-13 1 11.1 13.6 12.7 M-3 2 11.3 11.1 13.6 12.7 M-3 2 11.3 11.3 11.4 Manganese M-2 1 <0.050 0.050 0.350 M-13 1 <0.050 0.050 0.350 M-13 1 <0.050 0.050 0.050 0.350 M-13 1 <0.050 0.050 0.050 0.300 M-13 1 <0.050 0.050 0.200 Molybdenum M-2 1 <0.050 0.400 4.45 0.950 M-3 2 <0.050 M-3 2 <0.050 C0.050 C0.050 C0.050 C0.050 C0.050 M-13 1 <0.050 C0.050 C0.050 C0.050 C0.050 C0.050 C0.050 C0.050 M-13 1 <0.050 C0.050 C0.050 C0.050 C0.050 C0.050 C0.050 M-13 1 <0.050 C0.050 C0.050 C0.050 C0.005 C0.005 C0.005 M-13 1 <0.005 C0.005 C0.005 C0.005 C0.005 C0.005 C0.005 C0.005 M-13 1 <0.005 C0.005 C0.00		M-13	1	<0.050			0.100			
M-3	Fluoride		1		2.2	0.86				
Iron M-13 1 0.85 0.78 Magnesium M-2 1 <0.050			2							
Magnesium M-3 2 <0.050 17.6 4.60 Magnesium M-2 1 11.3 11.1 13.6 12.7 M-3 2 11.3 11.1 13.6 12.7 M-3 2 11.3 11.6 M-13 1 11.3 13.4 Manganese M-2 1 <0.050 0.050 0.750 0.350 M-3 2 <0.050 0.050 0.200 Molybdenum M-2 1 <0.050 0.400 4.45 0.950 0.200 M-3 2 <0.050 0.200 M-3 2 <0.050 0.400 4.45 0.950 <0.050 0.500 Phenolics M-2 1 <0.050 0.400 4.45 0.950 <0.050 0.500 Phenolics M-2 1 <0.005 <0.005 <0.050 <0.050 Phosphate M-2 1 <0.005 <0.005 <0.005 <0.005 M-3 1 <0.005 <0.005 <0.005 M-3 1 <0.005 <0.005 Phosphate		M-13	1	0.85	-	*	0.78			
Magnesium M-3 2 <0.050 17.6 4.60 Magnesium M-2 1 11.3 11.1 13.6 12.7	Loop	M-2	1	<0.050	0.800	15,1	8.05			
Magnesium M-13 1 <0.050	11 011	M-3	2	<0.050			17.6			
Manganese M-3 M-13 Manganese M-2 M-3 M-3 M-3 M-3 M-3 M-3 M-3 M-3 M-3 M-13 M-3 M-2 M-3			1	<0.050			4.60			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Magaasium	M-2	1	11.3	11.1	13.6	12.7			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	magnes run		2				11.6			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	11.3			13.4			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Managanosa	M−2	1	<0.050	0.050	0.750	0.350			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	manganese		2	<0.050			0.300			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•			<0.050			0.200			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Malubdacum	M-2	1	<0.050	0.400	4,45	0:950			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Wo i ybderidiii						<0.050			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1		*		<0.500			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Dharalina	M 2	1	<0.005	<0.005	0.007	<0.005			
Phosphate $M-13$ 1 <0.005 <0.005 M-13 1 <0.005 <0.005 M-2 1 <4 12 29 23 M-3 2 <4 120	Phenotics		1				<0.005			
M-3 2 <4 120			· i							
M-3 2 <4 120	Phocphato	M-2	1	<4	12	29	23			
· · · · · · · · · · · · · · · · · · ·	Luophuaca									
		M-13	. 1				17			

Table V-141 (Continued)

	Stream	Sample	Соп	centration	າຣ (mg/l))
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3
Nonconventional Pollutants (Continued))				-	
Sodium	M-2 M-3 M-13	1 2 1	5.20 5.20 5.20	6.80	18.5	19.3 561 65.6
Sulfate	M-2 M-3 M-13	1 2 1	4 3 43 43	45	62	49 130 65
Tin	M-2 M-3 M-13	1 2 1	<0.050 <0.050 <0.050	<0.100	<0.500	<0.500 <0.500 <0.500
Titanium	M-2 M-3 M-13	1 2 1	<0.050 <0.050 <0.050	0.050	0.950	0.550 1.55 3.80
Total Dissolved Solids (TDS)	M-2 M-3 M-13	1 2 1	270 270 270	200 1,		,600 ,900 530
Total Organic Carbon (TOC)	M-2 M-3 M-13	1 2 1	<1 <1 <1	17	15	4 75 22
Total Solids (TS)	M-2 M-3 M-13	1 2 1	280 280 280	390 3,	3	3,500 3,000 3,200
Vanadium .	M-2 M-3 M-13	1 2 1	<0.050 <0.050 <0.050	<0.050	0.800	0.350 <0.050 <0.100

Table V-141 (Continued)

	Stream Sample Concentrations (mg/l)					
Pollutant	Code	Туре	Source	Day 1	Day 2	Day'3
Nonconventional Pollutants (Continued	d)					
Yttrium	M-2 M-3 M-13	1 2 1	<0.050 <0.050 <0.050	<0.050	<0.050	<0.050 <0.050 <0.100
Conventional Pollutants		•				
Oil and Grease	M-2 M-3 M-13	1 1 - 1	3 3 3	<1	<1	<1 13 1.3
Total Suspended Solids (TSS)	M-2 M-3 M-13	1 2 1	14 14 14	200 2	1	,700 ,300 ,400
pH (standard units)	M-2 M-3 M-13	1 · · · 2 · · 1	7.30 7.30 7.30	8.30	5.30	6.40 10.00 6.60

^{1.} The following toxic pollutants were not detected in this waste stream: 1-10, 12-22, 24-43, 45-54, 56-65, and 67-88.

^{2.} No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-142

REFRACTORY METALS SAWING OR GRINDING SPENT NEAT OILS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1	NR	NR	P	17.07	4.09
2	NR	NR	P	564.4	135.4
3	NR	NR	NR	NR	NR
Average	NR	NR		290.7	69.72

P - Periodic discharge NR - Data not reported

^{*}Discharge from operation.

Table V-143

REFRACTORY METALS SAWING OR GRINDING SPENT EMULSIONS

•					
Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
	, ,	<i>5</i> ,	-		<i>J</i> ,
1	NR	NR	NR	0.00	0.00
2	168.8	40.47	100	0.00	0.00
	NR	NR	NR	0.00	0.00
1	NR	NR	NR	0.00	0.00
3	NR	NR	P	2.17	0.52
1 1 3 3	NR	NR	P	20.85	5.00
4	136.6	32.75	0.0	136.6	32.75
1	NR	NR	P	1,027	246.3
5	N R	NR	P	NR	NR
6	NR	NR ·	P	NR	NR
7	NR	NR	NR	NR .	NR
. 7	NR	NR	NR	NR	NR
7	NR	NR	NR	NR ·	NR
5	NR	NR	P	NR .	NR
5	NR	NR	P	NR	NR
8	NR	NR	NR	NR	NR
Average	152.7	36.6		296.6	71.14

P - Periodic discharge NR - Data not reported

^{*}Discharge from operation.

Table V-144

REFRACTORY METALS SAWING OR GRINDING SPENT EMULSIONS
RAW WASTEWATER SAMPLING DATA

Pollutant	Stream <u>Code</u>	Sample Type	Conc Source	entrations Day 1	mg/1) Day 2	Day 3
Toxic Pollutants			•			
117. beryllium	BG- 1 BQ- 1	1	-	<0.002 <0.010		
118. cadmium	BG-1 BQ-1	1	- -	<0.001 <0.010		
119. chromium (total)	BG-1 BQ-1	1	. -	0.030 <0.010		
120. copper	BG-1 BQ-1	1	-	<0.100 1.5		*
121. cyanide	BG~1 BQ~1	1	-	0.020 0.38		
122, lead	BG-1 BQ-1	1	- -	<0.010 <0.010		
124. nickel	BG~ 1 BQ− 1	1	- -	0.200 2.000		
128. zinc	BG~ 1 BQ~ 1	1	- -	0.030 0.400		
Nonconventional Pollutants						
Fluoride	BG-1 BQ-1	1	- · ·	2.60 11.50	-	*
Molybdenum	BG-1	_ 1	-	<0.03		

Table V-144 (Continued)

REFRACTORY METALS SAWING OR GRINDING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	Conc Source	entrations Day 1	0 (mg/1) Day 2	Day 3
Nonconventional Pollutants (Continued)	ì	,				
Tungsten	BQ-1 BG-1	<u>,</u> 1	- - -	<1.0 390.0		•
Conventional Pollutants	•					
Dil and Grease	BQ-1		· 	47.000	•	
Total Suspended Solids (TSS)	BQ-1 BG-1		<u></u>	486.000 5.000		
ρН	BQ-1		-	8.67		

^{1.} No analyses were performed on the following toxic pollutants: 1-116, 123 and 125-127.

Table V-145
REFRACTORY METALS SAWING OR CRINDING

REFRACTORY METALS SAWING OR GRINDING CONTACT COOLING WATER

Plant	Wate L/kkg	r Use gal/ton	Percent Recycle	Wastewate L/kkg	er Discharge* gal/ton
1	NR	NR	100	0.00	0.00
1	NR	NR	100	0.00.	0.00
1	NR	NR .	100	0.00	0.00
2	NR	NR	P	135.5	32,49
3	6,255	1,500	0.0	6,255	1,500
4	9,621	2,307	0.0	9,621	2,307
5	56,890	13,640	80.0	11,380	2,729
2	24,390	5,848	0.0	24,390	5,848
6	119,100	28 , 570	0.0	119,100	28,570
Average	43,250	10,370		28,480	6,831

P - Periodic discharge NR - Data not reported

^{*}Discharge from operation.

Table V-146

REFRACTORY METALS SAWING OR GRINDING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

	•	Stream	Sample	Cance	entration	s (ma/1)	
	<u>Pollutant</u>	Code	Type	Source	Day 1	Day 2	Day 3
				909.00	<u> </u>	<u> </u>	<u> </u>
Toxic	Pollutants						
11.	1,1,1-trichlor o ethane	M-12	1	0.011			0.017
		N-4	1	ND		0.177	
15.	1,1,2,2-tetrachloroethane	M-12	- 1	ND			ND
		N-4	1	ND .		<0.010	
			-	•			
23.	chloroform	M-12	1	0.016			ND
		N-4	1	0.015		ND	
	•						
29.	1,1-dichloroethylene	M-12	1	ND			ND
		N-4	: 1	ND .	:	<0.010	-
34.	2,4-dimethylphenol	M-12	1	ND	•		0.013
		N-4	1.	ND		ИD	
							-
39.	fluoranthene	M-12	· 1	ND			ND
		N-4	1	ND		<0.010	
		•					
44.	methylene chloride	M-12	. 1	0.002			0.005
	•	N-4	* , 1	ND		<0.010	
	`			2			
55.	naphthalene	.M-12	1	ND			0.005
		N-4	. 1	ND		ЙΦ	
			* _ +				
57.	2-nitrophenol	M-12	1	ND			ND
		N-4	1	ND		0.071	
E0.	4	M-12		ND			
58.	4-nitrophenol		1	. ND			ND
	•	N-4	, j 1	0.010		ИD	
63.	N-nitrosodi-n-propylamine	M-12	1	ND			ND
03.	N III Closud I - II - propyram me	N-4	1	.ND ND		0 010	ND
		N-4	ı	טא		0.213	
65.	phenol	M-12	1	ND			0.058
03.	prierio	N-4	į	ND .		0.034	0.056
	•	,	· ' ·	110		0.004	
66	bis(2-ethylhexyl) phthalate	M-12	. 1	ND	•		0.001
00.	, bio(2 cenyinekyi) phenarace	N-4	1	<0.010		<0.010	. 0.001
		11 -	'	·0.010		-0010	
68.	di-n-butyl phthalate	M-12	1	ND		•	ND
٠٠.	and the management of the second of the seco	N-4	i	ND ·	-	<0.010	110
		•• •	•	110		.5,0,0	•
69.	di-n-octyl phthalate	M-12	1	ND		•	ND
	a	N-4	i	ND		<0.010	110
			•			0.010	

Table V-146 (Continued)

REFRACTORY METALS SAWING OR GRINDING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	<u>Concer</u> Source	trations (mg/l) Day 1 Day 2	Day 3
Toxic Pollutants (Continued)					
78. anthracene	M-12 N-4	1 1	ND ND	<0.010	ND
84. pyrene	M-12 N-4	· 1	ND ND	<0.010	ND
104. gamma-BHC	N-4	1	<0.005	ND	
114. antimony	M-12 N-4	1 1	<0.010 <0.002	0.040	<0.010
115. arsenic	M-12 N-4	1 1	<0.010 <0.001	0.016	<0.010
117. beryllium	M-12 N-4	1 1	<0.005 <0.0005	<0.0005	<0.005
118. cadmium	M-12 N-4	1 1	<0.020 <0.001	0.040	0.020
119. chromium (total)	M-12 N-4	1 1	<0.020 0.10	0.86	0.080
120. copper	M-12 N-4	1 1	<0.050 0.030	0.21	0.050
121. cyanide (total)	M-12 N-4	1	<0.02 0.003	2.0	<0.02
122. lead	M-12 N-4	1 1	<0.050 0.084	0.35	<1.00
123. mercury .	M-12 N-4	1 1	<0.0002 <0.0002	0.0003	<0.0002
124. nickel	M-12 N-4	1 1	<0.050 <0.11	1.0	<0.050
125. selenium	M-12 N-4	1 -	<0.010 <0.008	<0.008	. <0.010
126. silver	M-12 N-4	1 .	<0.010	<0.002	<0.010

Table V-146 (Continued)

REFRACTORY METALS SAWING OR GRINDING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

·							
Stream	Sample	Conc					
Code	Туре	Source	Day 1 Day 2	Day 3			
			2	•			
			v				
M-12	1	<0.010	0 007	<0.010			
N-4	1		0.007				
M-12 N-4	1 1		0.90	0.240			
	•	•••					
M-12	. 1	<1		<1			
M-12	1	100		56			
M-12	1	0.200	•	1.20			
M-12	1	<0.1		0.50			
M-12	1	<0.050		,<0.050			
M-12	1	<0.100		<0.100			
M-12	1	36.5		78.2			
M-12	1	<5	•	58			
M-12	1	10		35			
M-12	1	<0.050	•	<0.050			
M-12	1	0.85	•	1.5			
M-12	- 1	<0.050	· · · · · · · · · · · · · · · · · · ·	1.31.0			
M-12	1	11.3		12.1			
M-12	1	<0.050		0.050			
M-12	1	<0.050		<0.100			
N-4	1	0.10	5,470				
M-12 N-4	1 1	<0.005 0.0017	0.019	<0.005			
	M-12 N-4 M-12 N-4 M-12 M-12 M-12 M-12 M-12 M-12 M-12 M-12	Code Type M-12 N-4 1 M-12 1 1	Code Type Source M-12 1 <0.010	Code Type Source Day 1 Day 2 M-12			

Table V-146 (Costinues)

REFRACTORY METALS SAWING OR GRINDING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Concentrations (mg/1)		
Pollutant	Code	Туре	Source	Day 1 Day 2 Day 3	
Nonconventional Pollutants (Continued)		•		
Phosphate	M-12	1	<4	<4	
Sodium	M-12	1	5.20	. 6.00	
Sulfate	M~12	1	43	200	
Tin	M-12	1	<0.050	<0.200	
Titanium	M-12	1	<0.050	0.050	
Total Dissolved Solids (TDS)	M-12 N-4	1 1	270 360	580 25,000	
Total Organic Carbon (TOC)	M-12	1	<1	4	
Total Solids (TS)	M-12	1	280	1,200	
Vanadium	M-12	1	<0.050	<0.050	
Yttrium	M-12	1	<0.050	<0.050	
Conventional Pollutants					
Oil and Grease	M-12 N-4	1 1	3 14	7.3	
Total Suspended Solids (TSS)	M-12 N-4	1 1	14 <1	380 2 40	
pH (standard units)	M=12 N-4	1	7.30 7.4	5.7	

1. Toxic pollutants 89-113 were analyzed in this waste stream.

2. The following toxic pollutants were not detected in this waste stream: 1-10, 12-14, 16-22, 24-28, 30-33, 35-38, 40-43, 45-54, 56, 59-62, 64, 67, 70-77, 79-83, 85-103, and 105-113.

3. No analyses were performed on the following toxic pollutants: 116 and 129.

Table V-147
REFRACTORY METALS SAWING OR GRINDING RINSE

Plant	. Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1	135	32.5	0.0	135	32.5
1	NR	NR	0.0	NR .	NR
Average	135	32.5		135	32.5

NR - Data not reported

^{*}Discharge from operation.

Table V-148

REFRACTORY METALS DYE PENETRANT TESTING WASTEWATER

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1	77.6	18.6	0.0	77.6	18.6
Average	77.6	18.6		77.6	18.6

^{*}Discharge from operation.

Table V-149

REFRACTORY METALS DYE PENETRANT TESTING WASTEWATER RAW WASTEWATER SAMPLING DATA

N	Pollutant	Stream Code	Sample Type	Conc Source	entrations (mg/l) Day 1 Day 2	Day 3
Toxic	Pollutants					
11.	1,1,1-trichloroethane	N-5	1	ÑĎ	0.170	
13.	1,1-dichloroethane	N-5	1	ND	<0.010	
23.	chloroform	N-5	1	0.015	<0.010	
29.	1,1-dichloroethylene	N-5	1	ND	<0.010	
35.	2,4-dinitrotoluene	N-5	1	ND .	0.143	
39.	fluoranthene	N-5	1	, ND	0.284	••
44.	methylene chloride	N-5	1	ND -	<0.010	
55.	naphthalene	N-5	1	ND .	0.134	
56.	nitrobenzene	N-5	1	· ND	0.019	-
58.	4-nitrophenol	N-5°	1	0.010	ND	•
60.	4,6-dinitro-o-cresol	N-5	1	ND	0.039	•
62.	N-nitrosodiphenylamine	N-5	1	ND	0.039	
65.	pheno1	N-5	i	ND	0.049	
66.	bis(2-ethylhexyl) phthalate	N-5	1	<0.010	0.019	
69.	di-n-octyl phthalate	N-5	1	ND	<0.010	
77.	acenaphthylene	N-5	1	ND	0.021	
78.	anthracene · (a)	N-5	. 1	ND	0.049	
80.	fluorene	N-5	1	· ND·	0.021	
81.	phenanthrene (a)	N-5	1	ND .	0.049	
85.	tetrachloroethylene	N-5	1	ND .	<0.010	
95.	alpha-endosulfan .	N-5	. 1	ND .	**	-
104.	gamma-BHC	N-5	1	<0.005	<0.005	

Table V-149 (Continued)

REFRACTORY METALS DYE PENETRANT TESTING WASTEWATER RAW WASTEWATER SAMPLING DATA

<u>Po 1 1</u>	utant	Stream Code	Sample Type	Conce Source	ntrations (mg/1) Day 1 Day 2 Day 3	
Toxic Pollutant	<u>s</u> (Continued)		•			
114. antimony		N-5	1	<0.002	<0.002	
115. arsenic		N-5	1	<0.001	<0.001	
117. beryllium	n ·	N-5	1	<0.0005	<0.0005	
118. cadmium		N-5	1	<0.001	<0.001	
119. chromium	(total)	N-5	1	0.10	3.7	
120. copper		N-5	1	0.030	0.28	
121. cyanide ((total)	N-5	1 .	0.003	<0.001	
122. lead	*	N-5	- 1	0.084	0.055	
123. mercury		N-5	1 -	<0.0002	<0.0002	
124. nickel		N-5	1	0.11	1.6	
125. selenium		N-5	1	<0008	<0.008	
126. silver		N~5	1	<0.002	<0.002	
127. thallium		N-5	1	<0.001	<0.001	
128. zinc		N-5	1	0.20	1.2	
Nonconventional	Pollutants		• • • •			
Molybdenum	=	N-5	1	0.10	0.50	
Phenolics		N-5	1	0.0017	0.025	
Total Dissolved	d Solids (TDS)	N-5	1	360	440	

Table V-149 (Continued)

REFRACTORY METALS DYE PENETRANT TESTING WASTEWATER RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Concentrations (mg/l)			
Pollutant	_Code	Туре	Source	Day 1	Day 2	Day 3
Conventional Pollutants		,		-		
Oil and Grease	N-5	1	14	٠.	72	•
Total Suspended Solids (TSS)	N-5	. 1	<1		22	
pH (standard units)	N-5	1	7.4		7.5	•

(a) Reported together.

**Present, but not quantifiable.

- 1. Toxic pollutants 89-113 were analyzed in this waste stream.
- 2. The following toxic pollutants were not detected in this waste stream: 1-10, 12, 14-22, 24-28, 30-34, 36-38, 40-43, 45-54, 57, 59, 61, 63, 64, 67, 68, 70-76, 79, 82-84, 86-94, 96-103, and 105-113.
- 3. No analyses were performed on the following toxic pollutants: 116 and 129.

Table V-150

REFRACTORY METALS EQUIPMENT CLEANING WASTEWATER

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1 1 2 2 3	32.36 13.9 66.1 2,673 2,687 21,140	7.76 3.34 15.8 641.0 644.2 5,070	100 0.0 0.0 0.0 0.0 0.0	0.0 13.9 66.1 2,673 2,687 21,140	0.0 3.34 15.8 641.0 644.3 5,070
Average	4,435	1,064		5,316	1,275

^{*}Discharge from operation.

REFRACTORY METALS EQUIPMENT CLEANING WASTEWATER RAW WASTEWATER SAMPLING DATA

Table V-151

<u>Pollutant</u>	Stream Code	Sample: Type	Conc Source	entrations Day 1	mg/l) Day 2 Day 3
Toxic Pollutants				•	•
117. beryllium	BG-2	1		<0.002	
118. cadmium	BG-2	1	-	0.001	
119. chromium (total)	BG-2	1	-	0.070	
120. copper	BG-2	1		1.400	
121. cyanide	BG-2	. 1 .		0.340	
122. lead	BG-2	1		0.600	
124. nickel	BG-2	1	-	0.050	
128. Zinc	BG-2	1 .	_	0.500	
Nonconventional Pollutants					
Fluoride	BG-2	1		2.600	-
Molybdenum	BG-2	1		<0.03	

Pollutant Pollutant	Stream Code	Sample Type	Conc Source	Day 1	s (mg/1) Day 2	Day 3
Nonconventional Pollutants (Continued)						
Tungsten	BG-2	1	-	2.40		
Conventional Pollutants						
Oil and Grease	BG-2	1	-	5.00		
Total Suspended Solids (TSS)	BG-2	1	-	64.00		

^{1.} No analyses were performed on the following toxic pollutants: 1-116, 123 and 125-127.

Table V-152 REFRACTORY METALS MISCELLANEOUS WASTEWATER SOURCES

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1 2 3	NR 3,459 NR	NR 829.6 NR	100 0 NR	0.00 3,459 NR	0.00 829.6 NR
Average	3,459	8296		3,459	829.6

NR - Data not reported

^{*}Discharge from operation.

Table V-153

REFRACTORY METALS WET AIR POLLUTION CONTROL BLOWDOWN

Plant		er Use gal/ton	Percent Recycle	Wastewate L/kkg	r Discharge* gal/ton
1 2 1 3 4 5 6 7 8	NR NR 14,330 2,622 6,672 2,502,000 NR NR NR	NR NR 3,436 628.8 1,600 600,000 NR NR	100 P 93.2 0.0 0.0 0.0 2,50 0.0 0.0	0.00 8.32 977.8 2,622 6,672 02,000 NR NR NR	0.00 2.00 234.5 628.8 1,600 00,000 NR NR NR
Averag	e 631,400	151,400	· 50	02,500	20,500

P - Periodic discharge NR - Data not reported

^{*}Discharge from operation.

Table V-154

REFRACTORY METALS WET AIR POLLUTION CONTROL BLOWDOWN RAW WASTEWATER SAMPLING DATA

•	•				*	
<u>:</u>	Stream	Sample	Conc	entration	s (ma/1)	
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3
			<u> </u>	<u> </u>	==1=	247_3_
Toxic Pollutants	•		-	-		
·						• •
11. 1,1,1-trichloroethane	M~11	1	0.011		0.010	•
						-
23. chloroform	M-11	1	0.016	•	ND	
					•	
44. methylene chloride	M-11	• 1 .	0.002		0.003	
,						
114. antimoný	M-11	1	<0.010		0.020	
•	Z-2	1	0.0004	0.0005		
			•			
115. arsenic	M-11	1	<0.010	1 - 1 - 1 - 1 - 1	<0.010	
	Z-2	1	<0.001	0.0061		
447 6 - 222 0		;	.0.00=			• •
117. beryllium	M-11	1	<0.005		<0.005	
:	Z-2	1	<0.01	<0.01		
118. cadmium	M 1 1	,	<0.020		<0.020	•
ira, cadirum .	M-11 Z-2	1	<0.020	<0.01	<0.020	
	2-2	1	<0.01	<0.01	•	
119, chromium (total)	M-11	1	<0.020		<0.020	
175; cm om am (totat)	Z-2	i	0.038	0.044	10.020	
	 ,		0.000	0.044	•	
120. copper	M~11	1	<0.050		0.050	
, 20. copper	Z-2	. 1	0.013	0.024	0.030	
·		•	0.010	0.024		
121. cyanide (total)	M-11	1	<0.02		<0.02	
(======	***	·	0.02		.0.02	
122. lead	M-11	1	<0.050		<0.050	
	Z-2	1.	0.097	0.16		
		•				
123. mercury	M-11	1	<0.0002		<0.0002	
•	Z-2	1	<0.005	<0.005		
124. nickel	M-11	1	<0.050		<0.050	
	Z-2	· 1 ,	0.038	0.042		
125. selenium	M-11	1	<0.010		<0.010	
	Ž-2	1	0.0004	0.0058	•	
		_				
126. silver	M-11	1	<0.010		<0.010	
• •	Z-2	1	0.0005	0.0073		
127. thallium	A4_ 1 1	•	<0.010		40 O 10	
127. CHATTIUM	M-11	1	<0.010	0.0071	<0.010	
•	Z-2	1	<0.001	0.0071		-

Table V-154 (Continued)

REFRACTORY METALS WET AIR POLLUTION CONTROL BLOWDOWN RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Concentration	(mg/1)	
n 11. bank	Code_	Type	Source Day 1	Day 2 Day 3	
Pollutant Pollutant					
Toxic Pollutants (Continued)					
	M-11	1	0.080	0.120	
128. zinc	", ,	1	<0.25 0.046		
Nonconventional Pollutants					
	M-11	1	<1	<1	
Acidity	Z-2	1	<10 <10		
		1	100	80	
Alkalinity	M-11 Z-2	i	69 4,400	·	
•	2 2	•			
A Normal more	M-11	1	0.200	0.300	
Aluminum .	Z-2	1	0.11 5.7		
	M-11	1	<0.1	0.67	
Ammonia Nitrogen	M-11	·			
	M-11	1	<0. 0 50	<0.050	
Barium	Z-2	1	0.04 0.02		
	M-11	1	<0.100	0.200	
Boron	M-11 Z-2	· i	0.5 18		
	Z Z	·	•	00.0	
Calcium	M-11	1	36.5 79 3.5	29.9	
Carcium	Z2	1	79 3.5		
	M-11	- 1	<5	47	
Chemical Oxygen Demand (COD)	M-11	•			
Chloride	M-11	1	10		
Childride .			<0.050	<0.050	
Cobalt	M-11 Z-2	. 1	<0.01 <0.01		
	2-2	•		•	
O = 1 · · · · · lo À · · · · ·	Z-2	1	ND ND		
Columbium			0.85	130	
Fluoride	M-11	1	0.85	100	
	Z-2	1	0.2 .,000		
	M-11	1	<0.050	0.150	
Iron	Z-2	1	0.24 0.8		
		1	11.3	14.6	
Magnesium	M-11 Z-2	1	8.0 0.35		
	2 2				

REFRACTORY METALS WET AIR POLLUTION CONTROL BLOWDOWN RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream <u>Code</u>	Sample Type	Con Source	centratio Day 1	ons (mg/l) Day 2	Day 3
Nonconventional Pollutants (Continued)						
Manganese	M-11 Z-2	1	<0.050 0.012	0.11	<0.050	
Molybdenum .	M-11 Z-2	1 1	<0.050 <0.03	<0.03	<0.050	
Phenolics	M-11	1 .	<0.005		<0.005	
Phosphate	M-31	1	<4		<4	
Sodium	M-11 Z-2	1.	5.20 27 7	,600	154	
Sulfate	M-11	1	43		41	
Tantalum	Z-2	1	ND	ND		•
Tin	M-11 Z-2	1	<0.050 <0.28	<0.28	<0.100	
Titanium	M-11 Z-2	. 1	<0.050 <0.25	<0.25	<0.050	
Total Dissolved Solids (TDS)	M-11 Z-2	. 1	270 110	170	540	
Total Organic Carbon (TOC)	M-11	1	<1	,	50	
Total Solids (TS)	M-11 Z-2	1	280 390	200	780	
Vanadium .	M-11 Z-2	1 1	<0.050 <0.02	<0.02	<0.050	
Yttrium	M-11 Z-2	1	<0.050 <0.25	<0.25	<0.050	, ., .,
Zirconium	Z-2	1 -	0.26	1.1		

Table V-154 (Continued)

REFRACTORY METALS WET AIR POLLUTION CONTROL BLOWDOWN RAW WASTEWATER SAMPLING DATA

D. 11. 1.	Stream	Sample		entrations		- Davi 2
Pollutant	Code	<u>Type</u>	Source	Day 1	Day 2	Day 3
Conventional Pollutants						
Oil and Grease	M-11	1	. 3		<1	
Total Suspended Solids (TSS)	M-11 Z-2	1	14 10 0	20	150	ü
pH (standard units)	M-11 Z-2	1	7.30 6	12 .	6.60	

- 1. The following toxic pollutants were not detected in this waste stream: 1-10, 12-22, 24-43, and 45-88.
- 2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-155
TITANIUM ROLLING SPENT NEAT OILS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1 2	NR NR	NR NR	100 NR	0.00	0.00
Average	NR	NR.		0.00	0.00

NR - Data not reported
*Discharge from operation.

Table V-156
TITANIUM ROLLING CONTACT COOLING WATER

Plant	Water	Use	Percent	Wastewater	Discharge*
	L/ kkg	gal/ton	Recycle	L/kkg	gal/ton
1.	NR	NR	0.0	NR	NR
2	4,884	1,171	0.0	4,884	1,171
3	NR	NR	P	NR	NR
4	NR	NR	100	NR	NR
Average	4,884	1,171		4,884	1,171

P - Periodic discharge NR - Data not reported

^{*}Discharge from operation.

Table V-157
TITANIUM DRAWING SPENT NEAT OILS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1	NR	NR	NR	NR	NR
2	NR	NR	NR	NR	NR
Average	NR	NR	•	NR	NR

NR - Data not reported

^{*}Discharge from operation.

Table V-158
TITANIUM EXTRUSION SPENT NEAT OILS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1 2 3 4 5	NR NR NR 3.56 NR	NR NR NR 0.85 NR	NR 0.0 0.0 0.0 NR	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
Average	3.56	0.85		0.00	0.00

NR - Data not reported

^{*}Discharge from operation.

Table V-159
TITANIUM EXTRUSION SPENT EMULSIONS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1	71.90	17.20	0.0	71.90	17.20
Average	71.90	17.20		71.90	17.20

^{*}Discharge from operation.

Table V-160
TITANIUM EXTRUSION PRESS HYDRAULIC FLUID LEAKAGE

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1	178.3	42.77	0.0	178.3	42.77
Average	178.3	42.77		178.3	42.77

^{*}Discharge from operation.

Table V-161

TITANIUM EXTRUSION PRESS HYDRAULIC FLUID LEAKAGE RAW WASTEWATER SAMPLING DATA

	Stream	Samp1e		entration		
Pollutant	<u>Code</u>	Type	Source	Day 1	Day 2	Day 3
Nonconventional Pollutants	•					
Fluoride	AK-1	3	-	2.30		
Conventional Pollutants						
Oil and Grease	AK-1	3	-	10.0		
Total Suspended Solids (TSS)	AK-1	3	-	7.0		
рн	AK-1	3	<u> </u>	6.8		

Table V-162
TITANIUM FORGING SPENT LUBRICANTS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1	2.10	0.50	0.0	0.00	0.00
2	NR	NR	0.0	0.00	0.00
l	6.80	1.63	0.0	0.00	0.00
3	NR	NR	0.0	0.00	0.00
4	NR	NR	NR	0.00	0.00
5	NR	NR	0.0	0.00	0.00
6	339.4	81.37	0.0	0.00	0.00
7	NR	NR	NR	NR	NR
Average	116.1	27.83		0.00	0.00

NR - Data not reported

^{*}Discharge from operation.

Table V-163
TITANIUM FORGING CONTACT COOLING WATER

Plant	Water	Use	Percent	Wastewater	Discharge*
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1	5,252	1,259	95.0	245.1	58.77
2	417.0	100.0	0.0	417.0	100.0
3	323	77.5	0.0	323	77.5
4	NR	NR	NR	NR	NR
Average	1,997	479.0		328.4	78.76

NR - Data not reported

^{*}Discharge from operation.

Table V-164

TITANIUM FORGING EQUIPMENT CLEANING WASTEWATER

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1 1	13.92 66.10	3.34 15.86	0.0 0.0	13.92 66.10	3.34 15.86
Average	40.01	9.60		40.01	9.60

^{*}Discharge from operation.

Table V-165
TITANIUM FORGING PRESS HYDRAULIC FLUID LEAKAGE

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1 2	1,010 NR	242.3 NR	0.0 NR	1,010 NR	242.3 NR
Average	1,010	242.3		1,010	242.3

NR - Data not reported

^{*}Discharge from operation.

Table V-166
TITANIUM TUBE REDUCING SPENT LUBRICANTS

Plant	Water	Use	Percent	Wastewater	Discharge*
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1	2,356	565.0	0.0	294.3	70.57
2	1,050	251.9	0.0	1,050	251.9
3	7,359	1,765	0.0	7,359	1,765
2	NR	NR	NR	NR	NR
Average	3,588	860.6		2,901	695.7

NR - Data not reported

^{*}Discharge from operation.

Table V-167
TITANIUM TUBE REDUCING SPENT LUBRICANT
RAW WASTEWATER SAMPLING DATA

Pollutsot	Stream Code	Sample	<u>Conc</u> Source	entrations Day 1	(mg/l) Day 2	Day 3
Pollutant	_code	Туре	3001.08	Day I	Day Z	Day 3
Toxic Pollutants						
117. Beryllium	AX-1	1	- ·	<0.1		
118. Cadmium	AX-1	1 ·	<u>-</u>	<0.1		
119. Chromium (total)	AX-1	1	-	<0.5		
120. Copper	AX-1	1		4.800		
121. Cyanide	AX-1	1	-	<0.800	e	
122. Eead	AX-1	4-		<0.5		= .:::
124. Nickel	AX-1	1	-	<0.5		
128. Zinc	AX-1	. 1	-	10.000		
				,		
Nonconventional Pollutants						
Aluminum	AX-1	1 .		<2.000		
Ammonia (as N)	AX-1	. 1	-	<0.5		
Flouride	AX-1	1	-	1.570		
Iron .	AX-1	1	-	46.800		
Titanium	AX-1	. 1	-	65.400		
√anadium	AX-1	1	_	2.500		
Conventional Pollutants						
Oil and Grease	AX-1	1	- 4,	937.0		
Total Suspended Solids (TSS)	AX-1	1	- 14,	150.0	•	
Ho	AX-1	. 1	:	7.8		

1. No analyses were performed for the following toxic pollutants: 1-116, 123 and 125-127.

Table V-168
TITANIUM HEAT TREATMENT CONTACT COOLING WATER

Plant	Wate L/kkg	r Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1 2 3 4 5 6 7 8 9 10	110,840 NR 214.3 1,747 2,067 3,233 12,530 23,070 NR NR	26,580 NR 51.40 418.9 495.7 775.4 3,006 5,531 NR NR	99.9 NR 0.0 0.0 0.0 0.0 0.0 0.0	13.58 19.25 214.3 1,747 2,067 3,233 12,530 23,070 NR	3.26 4.62 51.40 418.9 495.7 775.4 3,006 5,531 NR
Average	21,957	5,265		5,362	1,286

NR - Data not reported

^{*}Discharge from operation.

Table V-169

TITANIUM HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

	Stream	Sample		centration		
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3
Toxic Pollutants	•					
117. beryllium	AK-2	3	· -	<0.020		
	AW-1	1	_	<0.100		
	BW-2		-	0.006		
	BK-2		-	<0.001		
118. cadmium	AK-2	. з		<0.010		
$\frac{1}{2} \left(\frac{1}{2} \right) \right) \right) \right) \right)}{1} \right) \right) \right)} \right) \right) \right) \right) \right) \right) \right) \right) \right)} \right) \right) \right) \right)}$	AW-1		· . - .	<0 _. .050		
	BW-2	-	_	0.033		
	BK-2		-	<0.005		
119. chromium (total)	AK-2	- 3	_	<0.020		•
	AW-1	.1	-	<0.010		
	B₩-2		_	0.460		
	BK-2		-	0.010		
120. copper	AK-2	3	-	0.420		
	AW-1	1	-	<0.050		
	BW-2		-	11.000	•	
	. BK-2		-,	0.033		
121. cyanide	AW-1	1	-	0.036		
122. lead	AK-2	3	-	<0.020		
	AW-1	1		<0.100		
	BW-2		-	0.510		
	BK-2			<0.050		
124. nickel	AK-2	3	-	<0.020		
	AW-1	1	_	0.100		
	BW-2		_	1.300		
	BK-2		-	0.360	•	
128. zinc	AK-2	3 .	_	0.170		
	AW-1	1		<0.050		
	BW-2	•	-	6.700		
•	BK−2		· -	0.008		

Table V-169 (Continued)

TITANIUM HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

Pollutant	Stream <u>Code</u>	Sample Type	Con Source	centration: Day i	s (mg/l) Day 2	Day 3
Nonconventional Pollutants						
aluminum	AW-1 BW-2 BK-2	1	- - -	<1.00 24.00 0.096		
ammonia	AW-1	1	-	<0.100	e	•
cobalt	BW-2 BK-2		-	0.330		
flouride	AW-1	1	-	1.200		
iron	AW-1 BW-2 BK-2	1	- <u>-</u>	0.340 440.0 0.960		
magnesium	BW-2 BK-2		-	14.00 7.80	r	
manganese	BW-2 BK-2		· <u>-</u>	6.400 0.017		
molybdenum	BW-2 BK-2			0.450 0.069		
titanium	AK-2 AW-1 BW-2 BK-2	3 1	- - -	<0.050 2.000 0.810 0.012		
vanadium	AW-1 BW-2 BK-2	1	- - -	<0.200 0.600 0.061		
zirconium	AK-2	3	-	<0.100		

Table V-169 (Continued)

TITANIUM HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

D	Stream	Sample	Con	centration	s (mg/1)	•
Pollutant	<u>Code</u>	Туре	Source	Day 1	Day 2	Day 3
	÷		•			
Conventional Pollutants				•		
oil and Grease	- AW-1	. 1 .	· _	1.10		
total Suspended Solids (TSS)	AW-1	1 .		390.0		
рн	-AW-1	1	-	7.4		

1. No analyses were performed on the following toxic pollutants: 1-116, 123 and 125-127.

Table V-170
TITANIUM SURFACE TREATMENT SPENT BATHS

Plant	Wastewater L/kkg	Discharge* gal/ton
1 2 3 4 5 6 7 8 9 10 5 11 12 10 13 14 11 10 14 15 16 14 11 17 18 11 19 11 20 21 22 21	1,187 2,502	0.00 1.71 2.19 6.65 8.93 9.57 12.17 12.54 24.00 24.78 26.67 49.88 52.62 57.47 61.25 118.1 120.1 166.6 211.5 284.6 600.0 ,311 NR NR NR NR NR NR NR NR NR NR NR NR NR
Average	333.4	T43•\

NR - Data not reported

^{*}Discharge from operation.

Table V-171
TITANIUM SURFACE TREATMENT SPENT BATHS
RAW WASTEWATER SAMPLING DATA*

		Stream	Sample	Conce	ntrations (mg/l)	
	Pollutant	<u>Code</u>	Туре	Source .	Day 1 Day 2	Day 3
Toxic	Pollutants					
114.	antimony .	L-2 L-4	1 1	<0.010 <0.010	<0.10	0.30
115.	arsenic	L-2 L-4	1 1	<0.010 <0.010	1.60	1.80
117.	beryllium	L-2 L-4	1 1	<0.005 <0.005	<5.00	<5.00
118.	cadmium	L-2 L-4	1 1	<0.020 <0.020	<2.00	<0.20
119.	chromium (total)	L-2 L-4	1 1	<0.020 <0.020	18.0	12.8
120.	copper	L-2 L-4	1 1	<0.050 <0.050	5.00	4.00
122.	lead	L-2 L-4	1 1	<0.050 <0.050	65.0	214
123.	mercury	L-2 L-4	1	<0.0002 <0.0002	<0.002	<0.002
124.	nickel	L-2 L-4	1 1	<0.050 <0.050	5.00	10.0
125.	selenium	L-2 L-4	1 1	<0.100 <0.100	<1.00	<1.00
126.	silver	L-2	1 1	<0.010 <0.010	<0.10	<0.10

Table V-171 (Continued)

TITANIUM SURFACE TREATMENT SPENT BATHS RAW WASTEWATER SAMPLING DATA*

	Stream	Sample	Concentrations (mg/l)		
<u>Pollutant</u>	Code	Type	Source	Day 1 Day 2 Day 3	
Toxic Pollutants (Continued)					
12 7. thallium	L-2 L-4	1	<0.010 <0.010	<0.40 0.20	
128. zinc	L-2 L-4	· 1	<0.020 <0.020	166 <2.00	
Nonconventional Pollutants			,		
Acidity .	L-2 L-4	1	<1 <1	4,700 9,000	
Alkalinity · .	L-2 L-4	1 1	250 250	<10 <10	
Aluminum	L-2 L-4	· 1 1	0.200 0.200	5,850 2,490	
Barium	L-2 L-4	1 1	0.100 0.100	5.00 1.50	
Boron	L-2 L-4	1 1	<0.100 <0.100	40.0	
Calcium	L-2 L-4 ,	1 1	77.6 77.6	240 48.0	
Chloride	L-2 L-4	1 1	50 50	3,300 <10	
Cobalt	L-2 L-4	1 1	<0.050 <0.050	41.0	
Fluoride	L-2 L-4	. 1	1.1	98,000 74,000	

Table V-171 (Continued)

TITANIUM SURFACE TREATMENT SPENT BATHS RAW WASTEWATER SAMPLING DATA*

<u>Pollutant</u>	Stream Code	Sample Type		entrations (mg/l Day 1 Day 2)
				Day 1	Day 3
Nonconventional Pollutants (Continued)	÷				
Iron	L-2				
21 011	L-2 L-4	. !	<0.050 <0.050	31,200	0 040
4 4	-		0.050		2,840
Magnesium	L-2	1	34.0	270	
	L-4	: 1	34.0		20.0
Manganese					
manganese .	L-2 L-4	1	<0.050	50.0	
	L-4 .		<0.050		16.0
Molybdenum	L-2	1	<0.050	495	
	L-4	1	<0.050		126
Sodium					**
30d i diii	L-2 L-4	1	19.6	140	
	L-4	į.	19.6	÷	753
Sulfate	L-2 .	. 1	21,000	430,000	
*	L-4	i	21,000	400,000	150
Tin					
1111	L-2	1	<0.050	<50.0	
	L-4	1	<0.050		<50.0
Titanium	L∸2	1	<0.050	. 60,300	
	L-4	i	<0.050		7,900
T. () 1 0 1 () 1 () 1 () 1					.,
Total Dissolved Solids (TDS)	L-2	. 1	. 390	280,000	
	L-4	1	390	15	0,000
Total Solids (TS)	L-2	1	400	302,000	
	L-4	1	400		1,000
		•		15	.,000

Table V-171 (Continued)

TITANIUM SURFACE TREATMENT SPENT BATHS RAW WASTEWATER SAMPLING DATA*

Pollutant	Stream <u>Code</u>	Sample Type	Conc Source	entrations (mg/l) Day 1 Day 2	Day 3
Nonconventional Pollutants (Continued)				
Vanadium .	L-2 L-4	1	<0.050 <0.050	1,150	757
Yttrium	L-2 L-4	1	<0.050 <0.050	<5. 00 .	<0.50
Conventional Pollutants					
Total Suspended Solids (TSS)	L-2 L-4	1 1	7 7	3,360	480
pH (standard units)	L-2 L-4	1 1	7.61 7.61	2.20	1.80

*Sample concentrations for Streams L-2 (Day 2) and L-4 (Day 3) have been adjusted to account for the ten-fold dilution of the sample which was performed on-site at the time of collection.

NA - Not analyzed.

1. No analyses were performed on the following toxic pollutants: 1-113, 116, 121, and 129.

Table V-172
TITANIUM SURFACE TREATMENT RINSE

Plant	Water L/kkg		Percent Recycle	Wastewat L/kkg	er Discharge* gal/ton
11 12 8 13 7 1 14 7 15 4 14 4,9	50,040 1 10,505 2 81,740 1 83,686 2 44,391 10	NR	0.0	662,562	24.00 53.44 83.99 349.2 424.2 706.5 809.5 1,379 1,731 1,881 2,046 2,609 4,271 4,706 8,151 12,000 12,000 15,916 19,070 20,069 106,569 158,888 232,941 NR NR NR NR NR NR
Average 3	60,633 8	36,483		109,993	26,377

P - Periodic discharge NR - Data not reported

^{*}Discharge from operation.

Table V-173

TITANIUM SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

		Stream	Sample	Conce	entrations		
	<u>Pollutant</u>	Code	Type	Source	Day 1	Day 2	Day 3
Toxic	Pollutants						
114.	antimony	L-3 L- 5 L-6	6 6 1	<0.010 <0.010 <0.010	<0.010 <0.010 <0.010	<0.010 <0.010	<0.010 <0.010
115.	arsenic	L-3 L-5 L-6	6 6 1	<0.010 <0.010 <0.010	<0.010 <0.010 <0.010	<0.010 <0.010	<0.010 <0.010
117.	beryllium	L-3 L-5 L-6	6 6 1	<0.005 <0.005 <0.005	<0.050 <0.005 <0.005	<0.005 <0.005	<0.050 <0.005
118.	cadmium	L-3 L-5 L-6	6 6 1	<0.020 <0.020 <0.020	<0.020 <0.020 <0.020	<0.020 <0.020	<0.020 <0.020
119.	chromium (total)	L-3 L-5 L-6	6 6 1	<0.020 <0.020 <0.020	0.060 <0.020 0.380	0.020 <0.020	0.040
120.	copper	L-3 L-5 L-6	6 6 1	<0.050 <0.050 <0.050	0.150 <0.050 0.450	0.050 <0.050	0.050 <0.050
121.	cyanide (total)	∟-7	1	<0.03	<0.02		-
122.	lead	L-3 L-5 L-6	6 6 1	<0.050 <0.050 <0.050	0.550 0.050 5.90	0.400 0.200	0.400 0.300
123.	mercury	L-3 L-5 L-6	6 6 1	<0.0002 <0.0002 <0.0002	<0.0002 <0.0002 <0.0002	<0.0002 <0.0002	<0.0002 <0.0002

Table V-173 (Continued)

TITANIUM SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	Cor Source		ns (mg/1) Day 2	Day 3
Toxic Pollutants (Continued)		-				
124. nickel	L~3 L~5 L~6	6 6 1	<0.050 <0.050 <0.050	<0.050 <0.050 0.950	<0.050 <0.050	<0.050 <0.050
125. selenium	L-3 L-5 L-6	6 6 1	<0.100 <0.100 <0.100	<0.100 <0.100 <0.100	<0.100 <0.100	<0.100 <0.100
126. silver	L-3 L-5 L-6	6 6 1	<0.010 <0.010 <0.010	<0.010 <0.010 <0.010	<0.010 <0.010	<0.010 <0.010
127. thallium	L-3 L-5 L-6	6 6 1	<0.010 <0.010 <0.010	<0.010 <0.010 <0.040	<0.020 <0.010	<0.020 <0.010
128. zinc	L-3 L-5 L-6	6 6 1	<0.020 <0.020 <0.020	0.400 0.020 0.660	0.120 <0.020	0.180 <0.020
Nonconventional Pollutants			•.			Ť
Acidity	L-3 L-5 L-6	6 6 1	<1 <1 <1	460 <1 190		400 500
Alkalinity	L-3 L-5 L-6	6 6 1	250 250 250	<1 170 <1	<1 <1	<1 <1
Aluminum	L-3 L-5 L-6	6 6 1	0.200 0.200 0.200	17.0 0.500 13.8	4.30 1.90	6.90 2.90

Table V-173 (Continued)

TITANIUM SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

	Stream	Sample					
Pollutant .	Code	Type	Source	Day 1	Day 2	Day 3	
	_						
Nonconventional Pollutants (Continued)						
Ammonia Nitrogen	L-3	6	0.08	18	19	18	
Anniotta Willogen	L-5	6	0.08	1.7	13	20	
	L-6	1	0.08	52			
	L∸3	6	0.100	0.100	0.100	0.100	
Barium	L-5	6	0.100	0.100	0.100	0.100	
	L-6	1	0.100	0.200			
	2 0	•					
Boron	L-3	6	<0.100	0.400	0.200	0.400	
501 6.1	L-5	6	<0.100	<0.100	<0.100	0.100	
	L-6	1	<0.100	0.700			
	L-3	6	77.6	71.1	74.6	72.5	
Calcium	L-5	6	77.6	71.6	74.3	73.2	
	L-6	1 .	77.6	162			
		•					
Chemical Oxygen Demand (COD)	. L-3	6	<1	3.1	43	25	
Strong Control of the	L-5	6	<1	<1	3 1	17	
1	L-6	1	<1	34			
	L=3	6	50	47	45	40	
Chloride	L-5	6	50	45	46	45	
,	L-6	1	50	94	•		
• • • •				1 111		00	
Cobalt	L-3	6	<0.050	0.350	0.100	0.150	
	L-5	6	<0.050	<0.050	<0.050	0.050	
•	L−6	1	<0.050	0.100			
F-luoride	L-3.	6	1.1	170	130	1.1	
r-ruoriae	L-5	6	1.1	12	46	1.3	
	L-6	1	1.7	215			
			40, 050	75.3	20.4	36.6	
Iron	L-3	6	<0.050 <0.050	75.3 0.550	2.35	6.15	
	L-5 L-6	6 1	<0.050	119	4.00	5.15	
	F-0	•	10.000				

Table V-173 (Continued)

TITANIUM SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	<u>Co</u> Source	ncentrati Day 1	ons (mg/1) Day 2	Day 3
Nonconventional Pollutants (Continued)					
Magnesium	L-3 L-5 · L-6	6 6 1	34.0 34.0 34.0	32.4 32.7 72.1	33.6 33.4	32.1 32.5
Manganese	L-3 L-5 L-6	6 6 1	<0.050 <0.050 <0.050	<0.050		0.100 - 0.050
Molybdenum	L-3 L-5 L-6	6 6 1	<0.050 <0.050 <0.050	<0.050	0.200 0.200	0.550 0.200
Phosphate	L-3 L-5 L-6	6 6 1	1 1 1	3 1 1.9	2.2 0.5	<0.5 <0.5
Sodium	L-3 L-5 L-6	6 6 1	19.6 19.6 19.6	55.9 20.1 50.2	20.1 19.9	17.9 17.9
Sulfate	L-3 L-5 L-6	6 21,			1,000 3,000	460 760
Tin	L-3 L-5 L-6	6 6 1	<0.050 <0.050 <0.050	0.050 0.650 0.050	<0.050 <0.050	<0.050 <0.050
··Titanium · · · · · · · · · · · · · · · · · · ·	L-3 L-5 L-6	6 6 1	<0.050 <0.050 <0.050	186 3.55 15.1	47.9 20.3	79.7 34.4
Total Dissolved Solids (TDS)	L-3 L-5 L-6	6 ;	390 390 390 1	300 440 ,400	900 900	660 640

Table V-173 (Continued)

TITANIUM SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type .	Con Source	centratio Day 1	ns (mg/1) Day 2	Day 3
Nonconventional Pollutants (Continued)	ı					
Total Organic Carbon (TOC)	L-3 L-5 L-6	6 6 1	2 2 . 2	4 4 15	6 5	4 5
Total Solids (TS)	L~3 L~5 L~6	6 6 1	400 400 400 1		,200 ,011	740 530
Vanadium	L-3 L-5 L-6	6 6 . 1	<0.050 <0.050 <0.050	3.85 0.100 0.350	1.65 0.650	2.30 1.10
Yttrium	L-3 L-5 L-6	6 6 1	<0.050 <0.050 <0.050	<0.050 <0.050 <0.050	<0.050 <0.050	<0.050 <0.050
Conventional Pollutants						
Total Suspended Solids (TSS)	L-3 L-5 L-6	6 6 1	.7 7 7	40 32 <1	66 39	34 28
pH (standard units)	L-3 L-5 L-6	6 6 . 1	7.61 7.61 7.61	2.73 6.90 3.80	2.70 1.30	0.53 0.58

^{1.} No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.

^{2.} Note that stream code Y-4 also appears on the nickel-cobalt surface treatment rinsewater raw wastewter sampling data table. The wastewater is derived from an operation in both subcategories.

Table V-174
TITANIUM ALKALINE CLEANING SPENT BATHS

Plant	Wastewater L/kkg	Discharge* gal/ton
1 2 3 4 5 3 5 6	52.10 57.08 229.9 239.6 1,962 3,679 9,812 2 NR	12.50 13.69 55.14 57.46 470.6 882.4 ,353
Average	2,290	549.2

NR - Data not reported

^{*}Discharge from operation.

Table V-175
TITANIUM ALKALINE CLEANING SPENT BATHS
RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Conc	entration	s (mg/1)	
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3
Toxic Pollutants						
117. beryllium	AQ-1		_	<0.001		
117. beryllium	AX-2			<0.100		
	AX-5		-	<0.100		
118. cadmium	1-QA		-	<0.005	,	
116. Cadin din	AX-2			<0.100		
	AX-5		-	<0.100		
(4-4-1)	AQ-1		_	0.011		
119. chromium (total)	AX-2		-	<0.500		
· ·	AX-5		-	<0.500		
100	AQ-1		-	0.77 0		
120. copper	AX-2		-	4.300		
	AX-5		-	6.300		
121. cyanide	AX-2		-	0.700		
121. Cyanide	AX-5		-	<0.500		
122. lead	AQ-1		_	<0.050		
122. Teau	AX-2			<0.500		
	AX-5		-	<0.500		
124. nickel	AQ-1		-	<0.012		
124. HICKet	AX-2		-	<0.500		
	AX-5		-	< 0. 500		
128. zinc	AQ-1		_	0.491		
120. 21110	AX-2		-	< 0 .100		
	AX-5		-	<0.100	•	

Table V-175 (Continued)

TITANIUM ALKALINE CLEANING SPENT BATHS RAW WASTEWATER SAMPLING DATA

	Stream	Sample		centration:		
<u>Pollutant</u>	_Code	Туре	. <u>Source</u>	Day 1	Day 2	Day 3
Negaciyantiana) Pallutants			. •			
Nonconventional Pollutants						
Aluminum	AQ-1		_	0.123		
	AX-2			<2.00		
	· AX-5		 .	<2.00		
Ammonia (as N)	AX-2		-	<0.500		
	AX-5	-	-	<0.500		
Cobalt	AQ-1		-	0.021		
Fluoride	AX-2			1.070		
1 Tuoi Tuo	AX-5		_	0.780		. *
Iron	AQ-1			1.530		
-11-011	AX-2		_	5.400		
	AX-5		-	1.900		•
Titanium	AQ-1		_	6.500		
i tanium	AX-2		_	4.800	•	-
•	AX-5		-	<1.100		
Vanadium	AQ-1		_	0.0026		•
variad rum	AX-2		_	<0.100		
	AX-3		-	<1.00		
Conventional Pollutants					-	
Convenier Torracants						
Oil and Grease	AQ-1			720.00		
Off and drease	AQ-1 AX-2		_	930.00		
	, AX-5		-	<2.0.		
Total Suspended Solids (TSS)	AV::0			400 00		
Total Suspended Solids (155)	AX-2 AX-5		- <u>-</u>	400.00 9.00		
		, Ф				
На	- AX-2		. —	9.5		
	AX-5		-	2.7		

1. No analyses were performed on the following toxic pollutants: 1-116, 123, 125-127 and 129.

Table V-176
TITANIUM ALKALINE CLEANING RINSE

Plant	Wate L/kkg	r Use gal/ton	Percent Recycle	Wastewat L/kkg	er Discharge* gal/ton
1	348.0	83.40	0.0	348.0	83.40
2	350.3	84.00	0.0	350.3	84.00
3	5,177	1,241	0.0	5,177	1,241
4	82,320	19,740	0.0	79,290	19,010
5	166,800	40,000	0.0	166,800	40,000
5	314,000	75,290	0.0	314,000	75 , 290
6	NR	NR	NR	NR	NR
Average	94,830	22,740		94,330	22,620

NR - Data not reported

^{*}Discharge from operation.

Table V-177
.
TITANIUM ALKALINE CLEANING RINSE
RAW WASTEWATER SAMPLING DATA

•	-	Stream	Sample	Cone	centration	s (ma/1)	
Pollutant		Code	Type	Source	Day 1	Day 2	Day 3
Toxic Pollutants		•					··
•			**				
117. beryllium		AQ-2 AX-3	1	<u>-</u>	<0.001 <0.100		
118. cadmium		AQ-2 AX-3	1	- -	0.0120 <0.100		•
119. chromium (Total)		AQ-2 AX-3	1 .	- -	<0.003 <0.500		•
120. copper		AQ-2 AX-3	1	15 15 1 - -	0.270 6.300	. ***	, 2: -
121. cyanide		AX-3	1	_	<0.500		
122. lead	;	AQ-2 AX-3	1	<u>-</u> -	0.072 ND		
124. nickel		AQ-2 AX-3	1	· _	<0.012 <0.500		
128. zinc		AQ-2 AX-3	1	· -	0.309 ND		P
Nonconventional Pollutants		t.					
Aluminum		AQ÷2 AX-3	1	- -	0.113	•	
Ammonia		AX-3	. 1	_	<0.500		
Fluoride		AX-3	··· • • • ··	• •	0.990		
Iron		AQ-2 AX-3	1	-	0.536 1.900		
Titanium		AQ-2 AX-3	1	Ŀ	0.825 <1.10		

Table V-177 (Continued)

TITANIUM ALKALINE CLEANING RINSE RAW WASTEWATER SAMPLING DATA

	Stream	Sample	. Conc	entrations	(mg/l)	
<u>Pollutant</u>	<u>Code</u>	Туре	Source	Day 1	Day 2	Day 3
Conventional Pollutants						
Oil and Grease	E-XA	1	-	<2.0		
Total Suspended Solids (TSS)	ΑX-3·	1	-	9.00		
pH	AX-3	1	-	7.4		

1. No analyses were performed on the following toxic pollutants: 1-116, 123, 125-127 and 129.

Table V-178
TITANIUM MOLTEN SALT RINSE

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1	954.9	229.0	0.0	954.9	229.0
Average	954.9	229.0		954.9	229.0

^{*}Discharge from operation.

Table V-179
TITANIUM TUMBLING WASTEWATER

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1	790.0	189.4	0.0	790.0	189.4
Average	790.0	189.4		790.0	189.4

^{*}Discharge from operation.

TITANIUM TUMBLING WASTEWATER RAW WASTEWATER SAMPLING DATA

	Stream	Sample		entrations (mg/l)	
<u>Pollutant</u>	Code	Type	Source	Day 1 Day 2	Day 3
Toxic Pollutants					
114. antimony	L-9	. 1	<0.010	0.020	
115. arsenic	L-9	1 .	<0.010	<0.010	
117. beryllium	L-9	1	<0.005	<0.050	
118. cadmium	L-9	1	<0.020	<0.200	
119. chromium (total)	L-9	1	<0.020	0.400	
120. copper	L~9	1 .	<0.050	<0.500	
121. cyanide (total)	L-9	1	0.03	4.1	
122. lead	L~9	1	<0.050	22.0	
123. mercury	L-9	1 -	<0.0002	0.016	
124. nickel	L-9	1	<0.050	1.00	
125. selenium	L-9	1	<0.100	<0.100	
126. silver	L-9	. 1	<0.010	<0.010	
127. thallium	L-9	1	<0.010	<0.010	
128. zinc	L-9	1	<0.020	0.800	
Nonconventional Pollutants					
Acidity	L-9	1	<1	<1	
Alkalinity	L-9	. 1	250	2,600	
Aluminum	L-9	1	0.200	182	
Ammonia Nitrogen	L-9	1	0.08	34	
Barium	L-9	1	0.100	1.00	
Boron	L-9	1	<0.100	116	
Calcium	L-9	हैं - 1	77.6	192	

Table V-180 (Continued)

TITANIUM TUMBLING WASTEWATER RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	Conc Source	entrations (mg/l) Day 1 Day 2	Day 3
Nonconventional Pollutants (Continued)				
Chemical Oxygen Demand (COD)	L-9	1	<1	21,000	
Chloride	L-9	1	50	120	
Cobalt	L-9	1	<0.050	<0.500	
Fluoride	L-9	1	1.1	110	
Iron	L-9	1	<0.050	111	
Magnesium ·	L-9	1	34.0	13.0	
Manganese	L-9	1	<0.050	1.50	
Molybdenum	L-9	1	<0.050	8.00	
Phosphate	L-9	1 .	1	<1	
Sodium	L-9	1	19.6	2,730	
Sulfate	L~9	1	21,000	900	
Tin	L-9	1	<0.050	12.0	
Titanium	L-9	1	<0.050	156	
Total Dissolved Solids (TDS)	L~9	1	390	18,000	
Total Organic Carbon (TOC)	L~9	1	2	380	
Total Solids (TS)	L-9	. 1	400	18,000	
Vanadium	L~9	1	<0.050	1.50	
Yttrium	L~9	1	<0.050	<0.500	

Table V-180 (Continued)

TITANIUM TUMBLING WASTEWATER RAW WASTEWATER SAMPLING DATA

•	Stream	Sample	Conc	entrations (mg/l)	
<u>Pollutant</u>	Code	Туре	Source	Day 1 Day 2	Day 3
	-			* •	
Conventional Pollutants			v	· ·	
0il and Grease	L-9	1	<1	17	
Total Suspended Solids (TSS)	L-9	1	7	6,800	
pH (standard units)	L-9	1.	7.61	10.50	

1. No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.

Table V-181
TITANIUM SAWING OR GRINDING SPENT NEAT OILS

Plant	Water	Use	Percent	Wastewater	Discharge*
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1	2.36	0.57	0.0	0.00	0.00
2	NR	NR	NR	NR	NR ·
Average	2.36	0.57	,	0.00	0.00

NR - Data not reported

^{*}Discharge from operation.

Table V-182
TITANIUM SAWING OR GRINDING SPENT EMULSIONS

	Water		Percent	Wastewater	
Plant	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
п	39.60	9.50	NR	0.00	0.00
ī	164.5	39.46	NR	0.00	0.00
2	NR	NR	100	0.00	0.00
3	15,040	3,606	100	0.00	0.00
3	15,030	3,603	100	0.00	0.00
2 .	NR	NR	100	0.00	0.00
4	NR	NR	NR	0.00	0.00
5	NR	NR	NR	0.00	0.00
4 5 6	35,400	8,490	100	21.25	5.10
7 ·	NR	NR	100	27.02	6.48
.8	NR	ŊŖ	100	75.47	18.10
9	NR	NR	0.0	97.87	23.47
10.	NR	ΝŖ	100	352.4	84.51
10	NR	NR	0.0	521.3	125.0
11	NR	NR	100	NR	NR
11	NR	NR	100	NR	NR
6	NR	NR	NR.	NR .	NR
6	NR	ŊŖ	NR .	NR	NR .
11	NR	NR	100	NR ;	NR
Average	13,140	3,150		182.5	43.78

NR - Data not reported

^{*}Discharge from operation.

Table V-183
TITANIUM SAWING OR GRINDING SPENT EMULSIONS
RAW WASTEWATER SAMPLING DATA

		Stream	Sample		entrations (mg/l)
	Pollutant	Code	Type	Source	Day 1 Day 2 Day 3
Toxic	Pollutants				
6.	carbon tetrachloride	L-10	1	0.004	0.002
23.	chloroform	L~10	1	0.123	ND
44.	methylene chloride	L-10	1	ND	0.005
48.	dichlorobromomethane	L-10	1	0.023	ND
51.	chlorodibromomethane	L-10	1	0.002	ND
114.	antimony	L-10	1	<0.010	0.010
115.	arsenic	L-10	1	<0.010	<0.010
117.	beryllium	L-10	1	<0.005	<0.050
118.	cadmium	L-10	1	<0.020	<0.200
119.	chromium (total)	L-10 .	1	<0.020	1.20
120.	copper	L-10	Ì	<0.050	<0.500
121.	cyanide (total)	L-10	. 1	0.03	3.8
122.	lead	L-10	1	<0.050	<0.500

98

Table V-183 (Continued)

TITANIUM SAWING OR GRINDING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

	Stream	Sample		entrations (mg/l)	
<u>Pollutant</u>	Code	Туре	Source	Day 1 Day 2 Day 3	<u>3</u>
Toxic Pollutants (Continued)			i .		
123. mercury	L-10	1	<0.0002	<0.0004	
124. nickel	L-10	1	<0.050	9.50	
125 seleกจีนเกิ	11 - 11 L - 10	.41	<0.100		
126. silver	L-10	1	<0.010	<0.010	
127. thallium	L-10	1	<0.010	<0.010	
128. zinc	L-10	1	<0.020	0.40	
Nonconventional Pollutants				. •	
Acidity	. L-10	1	<1	<1	
Alkalinity	L-10	. 1	250	2,000	
Aluminum	L-10	. 1	0.200	33.0	
Ammonia Nitrogen	L-10	. 1	0.08	3.8	
Barium	L-10	. 1	0,100	<0.500	

Table V-183 (Continued)

TITANIUM SAWING OR GRINDING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

0-22-44	Stream	Sample		entrations (mg/1)	
Pollutant	<u>Code</u>	Type	Source	Day 1 Day 2	Day 3
Nonconventional Pollutants (Continued	4)				
_					
Boron	L-10	1	<0.100	<1.00	
Calcium	L-10	1	77.6	64.0	
Chemical Oxygen Demand (COD)	L-10	1	<1	24,000	
Chloride	L-10	1	50	130	
Cobalt	L-10	1	<0.050	<0.500	
Fluoride	L-10	1	1.1	110	•
Iron	L-10	1	<0.050	17.5	-
Magnesium	L-10	1.	34.0	44.0	
Manganese	L-10·.	1	<0.050	<0.500	
Molybdenum	L-10	1	<0.050	18.0	
Phosphate	Ļ-10	1	1	. 9	
Sodium	L-10	. 1	19.6	3,130	

Table V~183 (Continued)

TITANIUM SAWING OR GRINDING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

		•			
Pollutant	Stream Code	Sample . Type		trations (mg/l) Day 1 Day 2 Day	3
Nonconventional Pollutants (Continued)					
Sulfate	L-10	1 21	,000	20,000	-
Tin	L-10	1	<0.050	<0.500	
Titanium	L-10	1 '	<0.050	6.00	
Total Dissolved Solids (TDS)	L-10	1	3,90 , ,,,,,	11,500	
Total Organic Carbon (TOC)	L= 1,0	1	2	1,400	
Total Solids (TS)	L-10	1	400	14,000	
Vanadium	L-10	1.	<0.050	2.50	
Yttrium	L-10		<0.050	<0.500	
Conventional Pollutants	•				
Oil and Grease	L-10	, 1	<1	34	
Total Suspended Solids (TSS)	L-10	1	7	244	

TITANIUM SAWING OR GRINDING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Conc	entration	s (mg/1)	
<u>Pollutant</u>	Code	Type	Source	Day 1	Day 2	Day 3
Conventional Pollutants (Continued)						
pH (standard units)	L-10	· 1	7.61		10.30	

- 1. The following toxic pollutants were not detected in this waste stream: 1-5, 7-22, 24-43, 45-47, 49, 50, and 52-88.
- 2. Note that stream codes Y-7 and Y-8 also appear on the nickel-cobalt sawing or grinding spent emulsions raw wastewater sampling data table. The wastewater is derived from an operation in both subcategories.
- 3. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-184
TITANIUM SAWING OR GRINDING CONTACT COOLING WATER

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge*
1	4,760	1,141	0.0	4,760	1,141
Average	4,760	1,141		4,760	1,141

^{*}Discharge from operation.

TITANIUM SAWING OR GRINDING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

Table V-185

<u>Pollutaht</u>		mple Concentrations (mg/l) Type Source Day 1 Day 2 Day 3
Toxic Pollutants		
117. beryllium	8 S- 1	<0.001
118. cadmium	BS-1	<0.005
119. chromium (total)	BS-1	0.0034
120. copper	BS-1	0.093
122. lead	BS-1	<0.050
124. nickel	BS-1	<0.012
128. zinc	BS-1	0.009
Nonconventional Pollutants		
Aluminum	BS-1	1.190
Cobalt	BS-1	0.0066
Iron	BS-1	. 1.340
Magnesium	BS-1	13.50
Manganese	BS-1	0.224
Molybäenum	BS-1	<0.020
Titanium	BS-1	7.060
Tin	BS-1 ·	0.222
Vanadium	BS-1	0.4560

1. No analyses were performed for the following toxic pollutants: 1-116, 121, 123, 125-127 and 129.

Table V-186
TITANIUM DYE PENETRANT TESTING WASTEWATER

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge*
٦	3.84.6	92.23	0.0	384.6	92.23
2	1,848	443.1	0.0	1,848	443.1
3	NR	NR	NR	NR	NR
· 3	NR	NR	0.0	NR	NR ´
3	NR	NR	NR	NR ,	NR
4	NR	NR	NR	NR	NR
Average	1,116	267.7		1,116	267.7

NR - Data not reported

^{*}Discharge from operation.

Table V-187
TITANIUM HYDROTESTING WASTEWATER

Plant	Wate L/kkg	er Use gal/ton	Percent Recycle	Wastewat L/ k kg	er Discharge* gal/ton
1	56,240	13,490	0.0	56,240	13,490
Average	56,240	13,490		56,240	13,490

^{*}Discharge from operation.

Table V-188

TITANIUM WET AIR POLLUTION CONTROL BLOWDOWN

Plant	Wate L/kkg	r Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1 2 2 3 4 2 5 2 6 7 8 9 10	175.2 88.13 273.5 25,020 7,660 892.8 1,459 2,146 53,740 85,320 554,300 NR	42.01 21.14 65.60 6,000 1,837 214.1 349.9 514.5 12,890 20,460 132,900 NR NR	91.0 0.0 0.0 P 95.0 0.0 0.0 90.0 92.0 95.0 NR		3.60 21.14 65.60 68.57 96.71 214.1 349.9 514.5 859.2 1,648 1,662 NR
11	NR	NR	NR	NR	NR
Average	66,460	15,940	•	2,086	500.3

P - Periodic discharge NR - Data not reported

^{*}Discharge from operation.

Table V-189

TITANIUM WET AIR POLLUTION CONTROL BLOWDOWN RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Type	Concer Source	trations (mg/l) Day 1 Day 2	Day 3
Toxic	Pollutants					
114.	antímony	L-8	1	<0.010	<0.010	
115.	arsenic	L-8	1	<0.010-	<0.010	
117.	beryllium	L-8	1	<0.005	<0.005	
118.	cadmium	L-8	1	<0.020	. <0.020	
119.	chromium (total)	L-8	1	<0.020	<0.020	
120.	copper	L-8	1	<0.050	<0.050	
122.	l ead	L-8	1	<0.050	0.100	
123.	mercury	L-8	1	<0.0002	<0.0002	
124.	nickel	L-8	1	<0.050	<0.050	
125.	selenium	L-8	1	<0.100	<0.100	
126.	silver	L-8	1	<0.010	<0.010	
127.	thallium .	L-8	1	<0.010	<0.010	
128.	zinc	Ľ-8	1	<0.020	0.300	,

Table V-189 (Continued)

TITANIUM WET AIR POLLUTION CONTROL BLOWDOWN RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	Conc Source	entrations (mg/l) Day 1 Day 2 Day 3
Nonconventional Pollutants				<u> </u>
Acidity	L-8	1	<1	· <1
Alkalinity	L-8	1	250	390
Aluminum	L-8	1	0.200	0.400
Ammonia Nitrogen	L-8	1	0.08	0.15
Barium	L-8	. 1	0.100	<0.050
Boron	. L-8	1	<0.100	<0.100
Calcium	L-8	1	77.6	19.8
Chemical Oxygen Demand (COD)	L-8	1	<1	220
Chloride	L-8	1	50	55
Cobalt	L-8	1	<0.050	0.050
Fluoride	L-8	1	1.1	33
Iron	L-8 .	1	<0.050	1.80
Magnesium	L-8	1	34.0	30.0
Manganese	L-8	1	<0.050	<0.050
Molybdenum	L-8	1	<0.050	<0.050

8/

Table V-189 (Continued)

TITANIUM WET AIR POLLUTION CONTROL BLOWDOWN RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	Conc Source	entrations (mg/1) Day 1 Day 2	Day 3
Nonconventional Pollutants (Continued)				
Phosphate	L-8	1	1	<2	
Sodium	L-8	1	19.6	253	
Sulfate	L-8	1 21	,000	6,000	
Tin	L-8	1	<0.050	<0.050	
Titanium	L-8	1	<0.050	2.75	
Total Dissolved Solids (TDS)	L-8	1	390	720	
Total Organic Carbon (TOC)	L-8	1	2	40	
Total Solids (TS)	L-8	1	400	870	
Vanadium	L-8	1	<0.050	0.100	
Yttrium	L-8	1	<0.050	<0.050	
Conventional Pollutants					
Total Suspended Solids (TSS)	L-8	1	7	40	
pH (standard units)	L-8	1 _	7.61	9.81	

- 1. No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.
- Note that stream code Y-5 also appears on the nickel-cobalt wet air pollution control blowdown raw wastewater sampling data table. The wastewater is derived from an operation in both subcategories.

Table V-190

URANIUM EXTRUSION SPENT LUBRICANTS

Plant	Water	Use	Percent	Wastewater Discharge
	1/kkg	gal/ton	Recycle	l/kkg gal/ton
1	NR	NR	NR	0 (+)

^{+ -} Loss due to evaporation and drag-out

Table V-191
URANIUM EXTRUSION TOOL CONTACT COOLING WATER

Plant	Water	Use	Percent	Wastewater	Discharge
	1/kkg	gal/ton	Recycle	1/kkg	gal/ton
1	344	82.5	0	344	82.5

^{+ -} Loss due to evaporation and drag-out

Table V-192

URANIUM FORGING SPENT LUBRICANTS

Plant	Water	Use	Percent	Wastewater	Discharge
	l/kkg	gal/ton	Recycle	1/kkg	gal/ton
1	NR	NR '	. NR	0 (+)	0 (+)

^{+ -} Loss due to evaporation and drag-out

Table V-193

URANIUM HEAT TREATMENT CONTACT COOLING WATER

Plant	Water l/kkg	Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
1	NR	NR	P	6.21	1.49
	NR	NR	P	18.6	4.47
	NR	NR	P	69.2	16.6
2	948	227	0	948	227
	2,846	682	0	2,846	682

P - Periodic discharge

Table V-194

URANIUM HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Concentrations (Type Source Day 1 D	mg/1) ay 2 Day 3
Toxic Pollutants			
114. antimony	V-14 1	<0.0006	0.0023
	V-15 1	<0.0006	<0.0006
	V-16 1	<0.0006	<0.0006
115. arsenic	V-14 1	<0.001	<0.001
	V-15 1	<0.001	<0.001
	V-16 1	<0.001	<0.001
117. beryllium	V-14 1	0.012	0.017
	V-15 1	0.012	0.014
	V-16 1	0.012	0.013
118. cadmium	V-14 1	<0.03	<0.03
	V-15 1	<0.03	<0.03
	V-16 1	<0.03	<0.03
119. chromium (total)	V-14 1	0.061	0.099
	V-15 1	0.061	<0.03
	V-16 1	0.061	0.051
120. copper	V-14 1	0.088	0.14
	V-15 1	0.088	0.8
	V-16 1	0.088	0.095
121. cyanide (total)	V-14 1	<0.01	<0.01
	V-15 1	<0.01	<0.01
	V-16 1	<0.01	<0.01
122. lead	V-14 1	0.036	14.0
	V-15 1	0.036	0.15
	V-16 1	0.036	4.9
123. mercury	V-14 1	<0.005	<0.005
	V-15 1	<0.005	<0.005
	V-16 1	<0.005	<0.005
124. nickel	V-14 1	0.055	2.3
	V-15 1	0.055	0.055
	V-16 1	0.055	<0.03
125. selenium	V-14 1	<0.001	<0.001
	V-15 1	<0.001	<0.001
	V-16 1	<0.001	<0.001

Table V-194 (Continued)

	Pollutant	Stream <u>Code</u>		Sample Type S	Conce Source	entrations Day 1	(mg/l) Day 2	Day 3
Toxic	Pollutants							
126.	silver	V-14 V-15 V-16	1 1 1	<0.000 <0.000 <0.000	05		<0	.001 .0005 .0005
127.	thallium	V-14 V-15 V-16	1 1 1	<0.001 <0.001 <0.001	1		<0	.0168 .001 .001
128.	zinc	V-14 V-15 V-16	1 1 1	0.10 0.10 0.10	1		0	.23 .06 .081

Table V-194 (Continued)

<u>Pollutant</u>	Stream <u>Code</u>	Sample Control Source	centrations (mg/l) Day 1 Day 2 Day 3
Nonconventional Pollutants			
Acidity	V-14 1	<10.0	270
	V-15 1	<10.0	<10
	V-16 1	<10.0	<10
Alkalinity	V-14 1	33.0	<1
	V-15 1	33.0	62
	V-16 1	33.0	77
Aluminum	V-14 1 V-15 1 V-16 1	0.131	0.5 0.14 0.3
Ammonia Nitrogen	V-14 1	0.07	27
	V-15 1	0.07	<0.1
	V-16 /1	0.07	0.21
Barium	V-14 1	0.2	987.0
	V-15 1	0.2	1.3
	V-16 1	0.2	0.8
Boron	V-14 1	<0.2	0.16
	V-15 1	<0.2	0.077
	V-16 1	<0.2	<0.03
Calcium	V-14 1	0.045	477.0
	V-15 1	0.045	110.0
	V-16 1	0.045	9.8
Chemical Oxygen Demand (COD)	V-14 1 V-15 1 V-16 1	<50.0 <50.0 <50.0	
Chloride	V-14 1	36.0	5,300
	V-15 1	36.0	12
	V-16 1	36.0	30
Cobalt	V-14 1	0.044	0.24
	V-15 1	0.044	0.06
	V-16 1	0.044	0.053

Table V-194 (Continued)

Pollutant	Stream Code		Sample Conce Type Source	entrations (mg/l) Day 1 Day 2 Day 3
Nonconventional Pollutants (Continu	ed)			
Fluoride	V-14	1	0.41	1.8
	V-15	1	0.41	0.35
	V-16	1	0.41	0.9
Iron	V-14	1	0.16	77.0
	V-15	1	0.16	0.4
	V-16	1	0.16	1.6
Magnesium	V-14	1	8.0	8.4
	V-15	1	8.0	0.8
	V-16	1	8.0	10.0
Manganese	V-14	1	0.058	7.2
	V-15	1	0.058	0.2
	V-16	1	0.058	0.2
Molybdenum	V-14 V-15 V-16	1 1 1	<0.03 <0.03 <0.03	0.15 0.05 <0.03

Table V-194 (Continued)

Pollutant	Stre _Cod		Sample Type	Concentration Source Day 1		<u>ıy 3</u>
Nonconventional Pollutants (Continu	ued)					
Nitrate	V-14	1	<0.09		<0.09	
	V-15	1	<0.09		7.9	
	V-16	1	<0.09		0.46	
Phosphorus	V-14	11	0.5		2.0	
•	V-15	1	0.5		1.0	
	V-16	1	0.5		1.7	- '-
Sodium	V-14	1	74.0		45.0	
•	V-15	1	74.0		120.0	
	V-16	1	74.0	•	183.0	•
Sulfate	V-14	1	2.8		4.9	
	V-15	1.	2.8		7.9	
	V-16	1	2.8		8.2	
Tin	V-14	1	<0.25		0.25	
	V-15	1	<0.25		<0.25	
	V-16	1	<0.25		<0.25	
Titanium	V-14	1	<0.2		0.2	
	V-15	1	<0.2		<0.2	
	V-16	1	<0.2		<0.2	
Total Dissolved Solids (TDS)	V-14	1	300.0		7,800	
	V-15	1	300.0		140	
	V-16	1	300.0		4,000	
 Total Organic Carbon (TOC)	V-14	1	<10.0		<1_	
	V-15	1	<10.0		<1	
•	V-16	1	<10.0		3	
Total Solids (TS)	V-14	1	330.0		7,900	
	V~15	1	330.0		[*] 86	
	V-16	1	330.0		2,000	
Uranium	V~14	1.	0.89		51.5	
	V-15	1	0.89		9.6	
	V-16	1	0.89		10.0	

Table V-194 (Continued)

Pollutant	Strea _Code		Sample Conc Type Source	centrations (mg/l) Day 1 Day 2 Day 3
Nonconventional Pollutants (Contin	ued)			
Vanadium	V-14	1	<0.03	0.15
	V-15	1	<0.03	0.05
	V-16	1	<0.03	0.045
Yttrium	V-14	1	<0.1	<0.1
	V-15	1	<0.1	<0.1
	V-16	1	<0.1	<0.1
		•	Concentra	tions (nCi/L)
Gross Alpha	V-14	1	0.014	33.5
	V-15	1	0.014	6.7
	V-16	1	0.014	7.8
Gross Beta	V-14 V-15 V-16	1 1	<0.013 <0.013 <0.013	66.7 10.2 10.3
Radium-226	V-14	1	<0.0008	<0.0017
	V-15	1	<0.0008	0.04
	V-16	1	<0.0008	0.0118

Table V-194 (Continued)

	Stre		Sample		ntration		
<u>Pollutant</u>	Cod	e	Туре	Source	Day 1	Day 2	Day 3
Conventional Pollutants							
Oil and Grease	V-14	. 1	. <1.0			71	
	V-15	1	<1.0			<1	
	V-16	1	<1.0			84	
Total Suspended Solids (TSS)	V-14	1	<1.0			100	
,	V−15	1	<1.0			1	
	V-16	1	<1.0			25	
pH (standard units)	V-14	- 1	6				
p., (3:11.11.11)	V-15	1	6			7	
	V-16	1	6			7	

^{1.} No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.

Table V-195
URANIUM SURFACE TREATMENT SPENT BATHS

Plant	Wastewater 1/kkg	Discharge gal/ton
1	27.2	6.52
. 2	NR	NR
3.	NR	NR

URANIUM SURFACE TREATMENT SPENT BATHS RAW WASTEWATER SAMPLING DATA

Table V-196

	Stream	Sample	e Co	ncentration	s (mg/1)	
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3
Toxic Pollutants						
114. antimony	. V-2	1	<0.0006	0.0038		
115. arsenic	V-2	1.	<0.001	<0.004		
117. beryllium	V-2	1	0.012	0.7		
118. cadmium	V-2	1	<0.03	0.5		
119. chromium (total)	V-2	1	0.061	0.8		
120. copper	V-2	1	0.088	16.0		
122. lead	V-2	· 1	0.036	860.0		
123. mercury	V-2	1	<0.005	0.0325		
124. nickel	V-2	1 .	0.055	3.9		
125. selenium	V-2	1	<0.001	<0.001		
126. silver	V-2	1	<0.0005	0.002	•	
127. thallium	V-2	1	<0.001	0.0022		
128. zinc	V-2	1	0.101	0.6		
Nonconventional Pollutants						
Aluminum	V-2	1	0.131	430.0		
Barium	V-2	1	0.2	5.8		*** * *
Boron	V-2	1	<0.2	3.6		
Calcium	V-2	1	0.045	0.17		
Cobalt	V-2	1	0.044	4.6		
Iron	V-2	1	0.16	17.0		•
Magnesium	V-2	، 1	8.0	0.56		

Table V-196 (Continued)

URANIUM SURFACE TREATMENT SPENT BATHS RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type		entration: Day 1	s (mg/1) Day 2	Day 3
Nonconventional Pollutants (Continue	d)					
Manganese	V-2	1	0.058	2.8		
Molybdenum	V-2	1	<0.03	2.1		
Sodium	V-2	1	74.0	4.5		
Tin	V-2	1	<0.25	0.9		
Titanium	V-2	1	<0.2	7.3		
Vanadium	V-2	1	<0.03	1.8	-	
Yttrium	V-2	1	<0.1	6.0		

URANIUM SURFACE TREATMENT SPENT BATHS RAW WASTEWATER SAMPLING DATA

Day 1 Day 2 Day 3

1. No analyses were performed for the following toxic pollutants: 1-113, 116, 121, and

Table V-197
URANIUM SURFACE TREATMENT RINSE

Plant	Water l/kkg	Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
1	268	64.3	0	268	64.3
2	406	97.5	0	406	97.5

Table V-198

URANIUM SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

•					umple Con	centrations	
	<u>Pollutant</u>			Code T	ype Source	Day 1	Day 2 Day 3
Toxic	Pollutants						
114.	antimony .	V-3 V-4	1 2	<0.0006 <0.0006	<0.0006	<0.0006	<0.0006
115.	arsenic	V-3 V-4	1 2	<0.001 <0.001	<0.001	<0.001	<0.001
117.	bery11ium	V-3 V-4	1 2	0.012	0.7	0.2	0.3
118.	cadmium	V-3 V-4	1 2	<0.03 <0.03	0.4	0.13	0.25
119.	chromium (total)	V-3 V-4	1 2	0.061 0.061	0.6	0.17	0.4
120.	copper	V-3 V-4	1 2	0.088 0.088	12.0	3.0	4.7
121.	cyanide (total)	V-3 V-4	1 1	<0.01 <0.01	<0.1		0.05
122.	lead	V-3 V-4	1 - 2	0.036 0.036	110.0	6.0	14.0
123.	mercury	V-3 V-4	1 2	<0.005 <0.005	<0.005	<0.005	<0.005
124.	nickel	V-3 ∀-4	1 2	0.055 0.055	3.4	- 0-8-	11.7 · · · · · · · · · · · · · · · · · · ·
125.	selenium	V-3 V-4	1 2	<0.001 <0.001	<0.001	<0.1	0.0015
126.	silver	V-3 V-4	1 2	<0.0005 <0.0005	0.0009	<0.0005	<0.0005
127.	thallium	V-3 V-4	1 2	<0.001 <0.001	<0.001	<0.001	<0.001
128.	zinc	V-3 V-4	1 2	0.101 0.101	0.6	0.8	0.6

Table V-198 (Continued)

URANIUM SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>			Stream Code	Sample Type Sour	Concentration ce Day 1	s (mg/1) Day 2 Day 3
Nonconventioal Pollu	tants_					
Acidity	V-4	2	<10.0		1,200	3,500
Alkalinity	V-4	2	33.0		<1	<1
Aluminum	V-3 V-4	1 2	0.131 0.131		9.4	2.1
Ammonia Nitrogen	V−3 V−4	1 2	0.07 0.07	<0.3	0.68	0.24
Barium	V-3 V-4	1 2	0.2 0.2	195.0	3.7	39.0

Table V-198 (Continued)

URANIUM SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

Ď-314+	•		Stream	Sample	Concentrations (mg/1)		
Pollutant		•	_Code_	Type Sour	ce Day 1	Day 2 Day 3	
Nonconventional Polluta	ints (Co	ntinued)) -		•		
Boron	V-3	1	<0.2	3.2		•	
	V-4	2	<0.2		0.7	1.5	
Calcium	V-3	1 -	0.045	120.0			
•	V-4	2 .	0.045		69.0	48.0	
Chemical Oxygen Demand	V-3	.1	<50.0	50			
(COD)	V-4	2	<50.0		<50	50	
Chloride	V-4	2	36.0		33	160	
Cobalt	V-3	· 1	0.044	4.1		•	
	V-4	2	0.044	•	1.1	2.3	
=luoride	V-4	2	0.41		0.73	1.5	
Iron	V-3	1	0.16	19.0			
	V-4	2	0.16		2.9	20.0	
Magnesium	V-3	. 1	8.0	1.2		•	
	V-4	. 2	8.0		110.0	2.4	
Manganese	V-3	1	0.058	3.3			
-	V-4	. 2	0.058		1.4	0.073	
Molybdenum	V-3	1	<0.03	1.5			
	V-4	2	<0.03		0.6	1.4	
Nitrate	.V-4	2	<0.09		2,200	4,600	
Phosphorus	V-3	, 1	0.5	3.4			
	V-4	2	0.5		25	. 60	
Sodium	V-3	1	74.0	68.0			
	V-4	2	74.0		21.0	33.0	
Sulfate	V-4	.2	2.8		17	28	
Γin	V-3	1	<0.25	0.8			
•	V-4	2	<0.25		<0.2	0.4	

Table V-198 (Continued)

URANIUM SURFACE TREATMENT RINSEWATER RAW WASTEWATER SAMPLING DATA

Poliutant		Stream Code	Sample Source	Concentration ce Day 1	s (mg/1) Day 2 Day 3
Nonconventional Polluta	<u>ints</u> (Contin	nued)			
Titanium	V-3 V-4	1 <0.2 2 <0.2	21.0	1.5	7.6
Total Dissolved Solids TDS	V-4	2 300.0		5,600	9,800
Total Organic Carbon (TOC)	V-3 V-4	1 <10.0 2 <10.0	180	30	<1
Total Solids (TS)	V-4	2 330.0		6,000	11,000

Table V-198 (Continued)

URANIUM SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>			Stream Code	Sample Type So	Concentrations urce Day 1	s (mg/l)` Day 2 Day 3
Nonconventional (Contin	ued)					<u> </u>
Uranium	V-3 V-4	í 2	0.89 0.89	2,700	900	760
Vanadium	v-3	1	<0.03	140.0	,	
Yttrium	V−4 V−3	2 1	<0.03 <0.1	2.4	2.9	5.8
	V-4	2	<0.1		0.5	0.7
				Concent	rations (nCi/L)	
Gross Alpha	V-3 V-4	1 2	0.014 0.014	9,920	794	1,960
Gross Beta	V-3 V-4	1 2	<0.013 <0.013	22,727	1,150	2,700
Radium-226	V-3 V-4	1 2	<0.0008 <0.0008		5 0.018	0.00813
				Concent	rations (mg/1)	
Conventional Pollutants						
Oil and Grease	V-3 V-4	1 1	<1.0 <1.0	<1		10
Total Suspended Solids (TSS)	V-4	2	<1.0		52	430
pH (standard units)	V-3 V-4	1 2	6 6	<1	4	4

^{1.} No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.

Table V-199
URANIUM SAWING OR GRINDING SPENT EMULSIONS

Plant	Water 1/kkg	Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
1	NR	NR	P	3.23	0.774
2	NR	NR	P	8.14	1.95
3	. NR	NR	P	NR	NR

P - Periodic batch discharge

lable V-200

URANIUM SAWING OR GRINDING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream _Code_	Sample <u>Co</u>	ncentrations (mg/l) Day 1 Day 2 Da	y 3
				
Toxic Pollutants				
23. chloroform	V-6	1 0.103	, ND	
81. phenanthrene	V-6	1 ND	32.607	
114. antimony	V-6	1 <0.0006	0.0014	
115. arsenic	V-6	1 <0.001	<0.001	
117. beryllium	Ÿ−6	1 0.012	0.028	
118. cadmium	V-6	1 <0.03	0.07	
119. chromium (total)	V - 6	1 0.061	0.1	
120. copper	V-6	1 0.088	0.9	
121. cyanide (total)	V-6	1 <0.01	0.03	
122. lead	V-6	1 0.036	7.3	
123. mercury	V-6	1 <0.005	<0.005	
124. nickel	V-6	1 0.055	0.2	
125. selenium	V-6	1 <0.001	0.001	
126. silver	V-6	1 <0.0005	0.0013	
127. thallium	V-6	1 <0.001	0.0018	
128. zinc	V-6	0.101	7.5	
Nonconventional Pollutants			•	
Acidity	V-6	1 <10.0	130	
Alkalinity	V-6	1 33.0	210	•
Aluminum	V-6	1 0.131	2.4	
Ammonia Nitrogen	V-6	1 .0.07	<0.02	
Barium	V-6	1 0.2	0.2	

Table V-200 (Continued)

URANIUM SAWING OR GRINDING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

3
-

8

Table V-200 (Continued)

URANIUM SAWING OR GRINDING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

Pollutant			Sample <u>Co</u> Type Source	ncentrations (mg/l) Day 1 Day 2 Day 3	,
Nonconventional Pollutants (Contin	ued)				
Gross Alpha	V-6	1	0.014*	70.3*	
Gross Beta	V-6	1	<0.013*	176*	
Radium-226	V-6	1	*8000.0>	0.0212*	
Conventional Pollutants					
Oil and Grease	·V-6	1	<1.0	7,500	
Total Suspended Solids (TSS)	V -6	1	<1.0	510	
pH (standard units)	V -6	1	6	7-8	

^{*}concentrations are reported in nanocuries/liter

The following toxic pollutants were not detected in this waste stream: 1-22, 24-80, and 82-88.

^{2.} No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-201

URANIUM SAWING OR GRINDING CONTACT COOLING WATER

Plant	Water	Use	Percent	Wastewater	Discharge
	l/kkg	gal/ton	Recycle	1/kkg	gal/ton
1.	NR	NR	NR	1,647	395

Table V-202

URANIUM SAWING OR GRINDING RINSE

Plant	Water 1/kkg	Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
1	NR	NR	Р.	4.65	1.12

P - Periodic batch discharge

Table V-203
URANIUM AREA CLEANING WASHWATER

Plant	Water l/kķg	Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
1	NR	NR	Р.	1.37	0.33
	NR	NR ·	P	30.1	7.28
	NR	NR	P	97.2	23.3

Table V-204

URANIUM AREA CLEANING WASTEWATER RAW WASTEWATER SAMPLING DATA

	-	Pollutant		Stream Code	Sample	Conc	entrations	
			-	Code	Type	Source	Day 1	Day 2 Day 3
	Toxio	Pollutants						
	22.	p-chioro-m-cresol	V-8	1	ND		15.031	
			V-18	1	ND	-	15.001	ND
		-	V-19	1	ND		-	, ND
	23.	chloroform	v n					
	20.	CITOTOTOT	V-8	. 1.	0.103		ND -	
	66.	bis(2-ethy1hexy1)	V-8	1	ND		4.879	
		phthalate	V-18	1	ND			0.085
10			V-19	1	ND			0.989
106	114.	antimony		_				0.005
\vdash	114.	antimony	V-8	1	<0.0006		<0.0006	
			V-18	1	<0.0006			0.0006
			V-19	1	<0.0006			<0.0006
	115.	arsenic	V-8	1	<0.001		0.0013	
	,		V-18	i	<0.001		0.0013	0.00==
			V-19	i	<0.001			0.0055
-							:	0.0028
	117.	beryllium	V-8	1	0.012		0.025	
			V-18	1	0.012		0.020	0.051
			V-19	1	0.012			0.051
	118.	cadmium	V 0	_				
		Cadin rum	V-8	1	<0.03.		0.063	
			V-18	1	<0.03			0. 049
			V-19	1	<0.03			0.064
	119.	chromium (total)	V-8	1	0.061		1.5	
		tiger of the graph of the time of	V-18	··· i ··· ·· .	0.061			0.3
	•		V-19	1	0.061			0.6
					0.00			0.6
	120.	copper	V-8	1	0.088		2.2	
		*	V-18	- 1	0.088			1.9
		-	V~19	1	0.088	•		2.3
•	121.	cyanide (total)	V-8		10.01			
			V-18	1	<0.01		0.10	•
			V-19	1 1	<0.01			<0.01
			V-19	1	<0.01			<0.01

Table V-204 (Continued)

URANIUM AREA CLEANING WASTEWATER RAW WASTEWATER SAMPLING DATA

<u>Toxic</u>	Pollutant Pollutants (Continued)		Stream Code	Sample Type	Concentration Source Day 1	ns (mg/1) Day 2 Day 3
122.	1 ead	V-8 V-18 V-19	1 1 . 1	0.036 0.036 0.036	3.4	3.07 4.1
123.	mercury	V-8 V-18 V-19	1 1 1	<0.005 <0.005 <0.005	<0.005	<0.0005 <0.0005
124.	nickel	V-8 V-18 V-19	1 1 1	0.055 0.055 0.055	0.3	0.5
125.	selenium	V−8 V−18 V−19	1 1 1	<0.001 <0.001 <0.001	0.001	8 <0.001 0.0033

902

Table V-204 (Continued)

URANIUM AREA CLEANING WASTEWATER RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>		Stream Code	Sample Type	Conc Source	entrations Day 1	(mg/1) Day 2 Day 3
Toxic Pollutants (Continued)						·
126. silver	V-8 V-18 V-19	1 1 1	<0.0005 <0.0005 <0.0005	:	0.0011	0.001 0.0008
127. thallium	V-8 V-18 V-19	1 1 1	<0.001 <0.001 <0.001		<0.001	<0.001 <0.001
128. zinc	V-8 V-18 V-19	1 1 1.	0.101 0.101 0.101	· · · · · · · · · · · · · · · · · · ·	11.0	5.2 4.0
Nonconventional Pollutants						
Acidity	V-8 V-18 V-19	1 1 · .	<10.0 <10.0 <10.0		<10	<10 <10
Alkalinity	V-8 V-18 V-19	1 1 1	33.0 33.0 33.0		634	1,060 618
Aluminum	V-8 V-18 V-19	1 1 1	0.131 0.131 0.131		54.0	23.0 34.0
Ammonia Nitrogen	V-18 V-19	1	0.07 0.07	-		1.2 2.1
Barium	V-8 V-18 V-19	1 1 1	0.2 0.2 0.2	, ee	1.0	36.0 8.7
Boron	V-8 V-18 V-19	1 1	<0.2 <0.2 <0.2		0.4	0.6
Calcium	V-8 V-18 V-19	1 1 .	0.045 0.045 0.045	:	416.0	320.0 739.0
Chemical Oxygen Demand (COD)	V-8 V-18 V-19	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<50.0 <50.0 <50.0	•	<50	10 15

Table V-204 (Continued)

URANIUM AREA CLEANING WASTEWATER RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>		Stream Code	Sample Type	Concentration Source Day 1	s (mg/1) Day 2 Day 3
Nonconventional Pollutants	(Continued)				
Chloride	V-8 V-18 V-19	1 1 1	36.0 36.0 36.0	97	445 74
Cobalt	V-8 . V-18 V-19	1 1 1	0.044 0.044 0.044	0.23	0.4
Fluoride	V-8 V-18 V-19	1 1 1	0.41 0.41 0.41	6.4	1.6 1.8

Table V-204 (Continued)

URANIUM AREA CLEANING WASTEWATER RAW WASTEWATER SAMPLING DATA

Pollutant		Stream <u>Code</u>	Sample Type	Concentration Source Day 1	s (mg/1) Day 2 Day	3
Nonconventional Pollutant	<u>s</u> (Continued	1)				
Iron	V-8	1	0.16	50.0		
	V-18	['] 1	0.16		66.0	
	V-19	1	0.16		48.0	
Magnesium	V-8	1	8.0	151.0		
	V-18	1	8.0		330.0	
	V-19	1	8.0		1,499.0	
Manganese	V-8	1	0.058	1.6		
	V-18	1	0.058		1.8	
	V-19	1	0.058		2.3	
Molybdenum	V-8	1 .	<0.03	0.5		
	V−18	1	<0.03		0.5	
	V-19	1.	<0.03		0.6	-
Nitrate	V-8	1 ,	<0.09	- 790		
	V-18	1	<0.09		77	
3	V-19	1	<0.09		75	
Phosphorus	-V-8	1	0.5	2.5	•	
	V-18	1	0.5		39	
e e e e	V19-		0.5	term in the second of the seco	2.6	
Sodium	V-8	•	74.0	1,769.0		
•	V-18	1	74.0		3,145.0	
• •	V-19	1	74.0		10,298.0	
Sulfate	V-8	.1.	2.8	21	*	. 1
•	V-18	- 1	2.8		2.4	
	V-19	1	2.8	·	8.8	
Tin	V-8	1	<0.25	<0.25		
	V-18	1	<0.25		<0.25	
	V-19	, 1	<0.25		<0.25	-
Titanium	V-8	1 .	<0.2	3.7		
	V-18	1	<0.2		2.8	
	V-19	1	<0.2		1.8	

Table V-204 (Continued)

URANIUM AREA CLEANING WASTEWATER RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>		Stream Code	Sample Type	Concentration Source Day 1	ns (mg/1) Day 2	Day 3
Nonconventional Pollutants (C	Continued	1)				
Total Dissolved Solids (TDS)	V-8 V-18 V-19	1 1 1	300.0 300.0 300.0	6,600	3,400 680	
Total Organic Carbon (TOC)	V-8 V-18 V-19	1 1 1	<10.0 <10.0 <10.0	. 2,700	. 2	
Total Solids (TS)	V-8 V-18 V-19	1 1 1	330.0 330.0 330.0	9,500	4,400 3,100	
Uranium	V-8 V-18 V-19	1 1 1	0.89 0.89 0.89	49 .	130 79	

Table V-204 (Continued)

URANIUM AREA CLEANING WASTEWATER RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>		Stream Code	Sample Type	Concentrations Source Day 1	(mg/1) Day 2 Day 3
Nonconventional Pollutants (Continued)			
Vanadium	V-8 V-18 V-19	1 1 1	<0.03 <0.03 <0.03	<0.3	0.8 0.8
Yttrium	V-8 V-18 V-19	1 1 1	<0.1 <0.1 <0.1	2.0	11.0 14.0
				Concentrations (nCi/	(L)
Gross Alpha	V-8 V-18 V-19	1 1 1	0.014 0.014 0.014	76.4	227 315
Gross Beta	V-8 V-18 V-19	1 1 1	<0.013 <0.013 <0.013	109	314 479
Radium-226	V-8 V-18 V-19	1 1 1	<0.0008 <0.0008 <0.0008	0.03	0.143 0.183
Conventional Pollutants	•				
Oil and Grease	V-8 V-18 V-19	1 1 1	<1.0 <1.0 <1.0	6,000	17 · 25
Total Suspended Solids (TSS)	V-8 V-18 V-19	1 1 1	<1.0 <1.0 <1.0	775	60 1,600
pH (standard units)	V-8 V-18 V-19	1	6 - 6 6	10 ·	10'

The following toxic pollutants were not detected in this waste stream: 1-21, 24-65, and 67-88.

^{2.} No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-205

URANIUM WET AIR POLLUTION CONTROL BLOWDOWN

Plant	Wate 1/kkg	r Use gal/ton	Percent Recycle	Wastewater 1,kkg	Discharge gal/ton
l	NR	NR	NR	0	0
2	NR	NR	P	3.49	0.836

Table V-206

URANIUM WET AIR POLLUTION CONTROL BLOWDOWN RAW WASTEWATER SAMPLING DATA

		<u>Pol</u> lutant			Stream	Sample	Canc	entrations	(mg/1)	
					Code	Туре	Source	Day 1	Day 2	Day 3
	Toxio	Pollutants							•	-
	114.	antimony	V-5	1	<0.0006	; <c< td=""><td>0.0006</td><td></td><td></td><td></td></c<>	0.0006			
	115.	arsenic	V-5	1	<0.001		.001			
	117.	beryllium	V-5	1	0.012		.02			
	118.	cadmium	V-5	1	<0.03	<0	.03			
	119.	chromium (total)	V-5	1	0.061		.03			•
0	120.	copper	V-5	1	0.088		.15		·	
D	121.	cyanide (total)	V-5	1	<0.01	<0	. 1			
		lead	···V-5	. 1	0.036		.6			
	123.	mercury	V-5	1	<0.005	<0	.005			
	124.	nickel	V-5	1	0.055		.081		•	
	125.	selenium	V-5	1	<0.001		.001	-		
	126.	silver	.V-5	· 1 · · ·	<0.0005	······ · o.	0007	and the second	** -	
	127.	thallium	V-5	1	<0.001		0078			
	128.	zinc	V-5	1	0.101	1.	1			
	Noncon	ventional Polluta	nts							
	Acidit	у .	V-5	1	<10.0	<10				
	Alkali	nity	V-5	1	33.0	>2,000				
	Alumin	um	V-5	1	0,131	0.				
	Ammoni	a Nitrogen	V-5	1	0.07	2.				
	Barium		V-5	 1	0.2	<0.				
						٠٠.	•			

Table V-206 (Continued)

URANIUM WET AIR POLLUTION CONTROL BLOWDOWN RAW WASTEWATER SAMPLING DATA

	<u>Pollutant</u>			Stream Code	Sample Cor Type Source	ncentrations (mg/l) Day 1 Day 2	Day 3
	Nonconventional Polluta	<u>nts</u> (Conti	nued)				
	Boron	V-5	1	<0.2	0.6		
	Calcium	V-5	1	0.045	0.8		
	Chemical Oxygen Demand (COD)	V-5	1	<50.0	120 ·		
	Chloride	V-5	1	36.0	4,100		
,	Cobalt	V-5	1	0.044	0.088		
,	Fluoride	V-5	1	0.41	31		
	Iron	V-5	1	0.16	0.4		
	Magnesium	V-5	1 -	8.0	0.78	•	
	Manganese	V-5	. 1	0.058	0.1		
	Molybdenum	V-5	1	<0.03	0.23		
	Phosphorue	V-5	1	0.5	3.4		
	Sodium	V-5 .	· 1	74.0	141.0		
	Sulfate	V-5	1	2.8	5.3		
	Tin	V-5	1	<0.25	<0.2		

Table V-206 (Continued)

URANIUM WET AIR POLLUTION CONTROL BLOWDOWN RAW WASTEWATER SAMPLING DATA

٠	<u>Pollutant</u>			Stream Code	Sample Type Sour	Concentrations (mg/ ce Day 1 Day		
-	Nonconventional Polluta	ants (Cor	ntinued)					
	Titanium	V-5	1	<0.2	1.2			
	Total Dissolved Solids (TDS)	V-5	1	300.0	510,000			·
	Total Organic Carbon (TOC)	V-5	1	<10.0	280			. :
	Total Solids (TS)	V-5	1	330.0	510,000	•		
911	Uranium	V-5	1	0.89	1,000			
	Vanadium	V-5	· 1	<0.03	0.16			•
	Yttrium	V-5	1	<0.1	0.2			
	Nonconventional Polluta	ints (Con	tinued)		Concentrat	ions (nCi/L)		
	Gross Alpha	V-5	1	0.014	134			
•	Gross Beta	V-5	1	<0.013	1,970			
trans addition on the second	Radium-226	· V-5	1	<0.0008	0.011	and the second of the second o		and the contract resource design, which have reading an executive or
					Concentrat	ions (mg/l)		
	Conventional Pollutants					•	•	•
	Oil and Grease	V-5 -	. 1	<1.0	· · · · · · · · · · · · · · · · · · ·			
-	Total Süspended Solids (TSS)	V-5	2	<1.0	650			
	pH (standard units)	V-5	1	6	9			

^{1.} No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.

Table V-207
URANIUM DRUM WASHWATER

Plant	Water	Use	Percent	Wastewater	Discharge
	1/kkg	gal/ton	Recycle	1/kkg	gal/ton
٦	NR	NR	>0	44.3	10.6

Table V-208

URANIUM DRUM WASH WATER RAW WASTEWATER SAMPLING DATA

		Pollutant -	Stre _Coc		Sample Con Type Source	centrations (mg		3
	Toxio	<u>Pollutants</u>						
	114.	antimony	V-9	1 .	<0.0006		-<0.0006	
	115.	arsenic	V-9	1	<0.001		<0.001	
	117.	beryllium	V-9	1	0.012		0.013	
	118.	cadmium	V-9.	1	<0.03		<0.03	
	119.	chromium (total)	V-9	, 1	0.061		0.06	
	120.	copper	V-9	1	0.088		0.6	
	121.	cyanide (total)	V-9	1	<0.01		<0.1	
9	122.	lead	V-9	1	0.036		0.22	
13	123.	mercury	V-9	1	<0.005		<0.005	
	124.	nickel	V-9	1	0.055		<0.03	
	125.	selenium	V-9	1	<0.001		<0.001	
	126.	silver	V-9	1	<0.0005		<0.0005	
	127.	thallium	V-9	1	<0.001		<0.001	
	128.	zinc	V-9	1	0.101		0.8	
· · · - ·	Nonco	nventional Pollutants	# 1		tal elitaten i kan in naturan igi sayan kirila ya sanan ila aki k			
	Acidi	ty	V-9	1	<10.0		<10	
,	Alkal	inity	V-9	1	33.0		779	
	Alumi	num	· · · · · · · · · · · · · · · · · · ·	1.			2.2	
	Ammon	nia Nitrogen	V-9	1	0.07		0.30	
	Bariu	ım	V-9	1	0.2		0.3	
	Boron	1	V-9	1	<0.2		0.04	
•	Calci	um	V-9	1	0.045		56.0	

Table V-208 (Continued)

URANIUM DRUM WASH WATER RAW WASTEWATER SAMPLING DATA

Pollutant	Stream <u>Code</u>		Sample Type	Conce Source	Day 1	mg/1) Day 2	Day 3
Nonconventional Pollutants (Continu	ıed)						
Chemical Oxygen Demand (COD)	V-9	1	<50.0)		10	
Chloride	V-9	1	- 36.0)		850	
Cobalt	V-9	1	0.0)44		0	.041
Fluoride	V-9	1	0.4	11		. 3	.5
Iron	V-9	1	0.	16		4	.3
Magnesium	V-9	1	8.0)		28	. 6

Table V-208 (Continued)

URANIUM DRUM WASH WATER RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>		Stream Code	Sample C	oncentration e Day 1	
Nonconventional Pollutant	<u>s</u> (Continued)			<u>5 549 1</u>	Day 2 Day 3
Manganese	٧-	-9 1	0.058		0.2
Molybdenum	٠٨-	-9 1	<0.03		<0.03
Nitrate	V-	-9 1	<0.09		4.3
Phosphorus .	: V-	-9 1	0.5		310
Sodium	V-	-9 1	74.0		678.0
Sulfate	V-	-9 1	2.8		5.4
Tin .	٧-	9 1	<0.25		<0.2
Titanium	V-	9 . 1	<0.2		<0.2
Total Dissolved Solids (TD)S) - V-	·9 1	300.0		2,100
Total Organic Carbon (TOC)		9 1	<10.0		2,100
Total Solids (TS)	v-	9 1	330.0		2,300
Uranium	V-	9 1	0.89		
Vanadium	V-		<0.03		5.7
Yttrium	, V-		e complete de la comp		0.03
		,	.0.7		0.1
Gross Alpha	V-	0 1		entrations (
			0.014		3.7
Gross Beta	V-	9 1	<0.013		4.5
Radium-226	` V-	9 1	<0.0008	· .	0.0019

Table V-208 (Continued)

URANIUM DRUM WASH WATER RAW WASTEWATER SAMPLING DATA

Pollutant	Stre <u>Cod</u>		Sample Type	Conc Source	entrations Day 1	s (mg/1) Day 2	Day 3			
Nonconventional Pollutants (Continued)										
Conventional Pollutants				Concen	trations	(mg/1)				
Oil and Grease	V-9	1	<1.0)		12				
Total Suspended Solids (TSS)	V-9	1	<1.0)		. 23				
pH (standard units)	V-9	1	6			9-1	10			

1. No analyses were performed for the following toxic pollutants: 1-113, 116, and 129.

Table V-209

URANIUM LAUNDRY WASHWATER

Plant		Water liters/ employee- day	Use gallons/ employee- day	Percent Recycle	Water liters/ employee- day	Use gallons/ employee- day
1	i	52.4	12.6	0	52.4 .	12.6

Table V-210

URANIUM LAUNDRY WASH WATER
RAW WASTEWATER SAMPLING DATA

		Stream	Sample	Concentration	s (mg/1)	
Pollutant		Code	Type So	ource Day 1	Day 2	Day 3
Toxic Pollutants		the second of the second of	en an including the second	-		ter -
114. antimony	V-7	1	<0.0006	<0.0006		
115. arsenic	V~7	1	<0.001	0.028		•
117. beryllium	V~7	1	0.012	0.015		
118. cadmium	V~7	1	<0.03	<0.03		
119. chromium (total)	V-7	1	0.061	<0.03		
t20. copper	V-7	1	0.088	0.25		
121. cyanide (total)	V-7	1	<0.01	<0.1		
122. lead	V-7	1 .	0.036	0.042		
123. mercury	V-7	1	<0.005	<0.005		
124. nickel	V-7	1	0.055	<0.03		
125. selenium	V-7	1	<0.001	<0.001		
126. silver	V-7	1	<0.0005	0.0048		
127. thallium	V-7	1	<0.001	<0.001		•
128. zinc	V-7	1	0.101	0.7		
Nonconventional Pollutants						
Acidity	V-7	1	<10.0	<10		
Alkalinity	V-7	1	33.0	59		
Aluminum	V-7	1	0.131	0.9		
Ammonia Nitrogen	V-7	1	0.07	2.3		
Barium	V-7	į 1	0.2	0.2		
Boron	V-7	1	<0.2	0.3		-

Table V-210 (Continued)

URANIUM LAUNDRY WASH WATER RAW-WASTEWATER-SAMPLING DATA-

<u>Pollutant</u>		Stream Code	Sample Type	Concentration Source Day 1	s (mg/1) Day 2	Day 3
Nonconventional Pollutants (Con	ntinued)			· ·		<u>-2, </u>
Calcium	V-7	1	0.045	17.0		•
Chemical Oxygen Demand (COD)	, V−.7	, 1	<50.0	<50		
Chloride	V-7	1	36.0	210		
Cobalt	! V-7	1	0.044	0.25		
Fluoride	V-7	. 1	0.41	0.79		
Iron	V-7	. 1	0.16	0.16		
Magnesium	· v-7	1	8.0	5.3	•	•
Manganese	V-7	1 .	0.058	0.2		
- >						

Table V-210 (Continued)

URANIUM LAUNDRY WASH WATER RAW WASTEWATER SAMPLING DATA

Pollutant	e e e	Stream Code	Sample Type So	Concentrati urce Day 1	ons (mg/1) Day 2	Day 3
Nonconventional Pollutants (Cor	ntinued)					
Molybdenum	V-7	1	<0.03	<0.03		
Nitrate	V-7	1	<0.09	<0.09		
Phosphorus	V-7	1	0.5	12		
Sodium	V-7	1	74.0	133.0		
Sulfate	V-7	. 1	2.8	14		
Tin	V-7	1	<0.25	<0.2		
Titanium	V-7	1	<0.2	<0.2		
Total Dissolved Solids (TDS)	V-7	1	300.0	590		
Total Organic Carbon (TOC)	V-7	1	<10.0	46		
Total Solids (TS)	V~7	1	330.0	630		
Uranium	V-7	1	0.89	0.51		
Vanadium	V-7	1	<0.03	<0.03		
Yttrium	V-7	1	<0.1	7.3		
•			C	oncentrations	(nCi/L)	
Gross Alpha	V-7	1	0.014	13.7		
Gross Beta	V-7	1 1	<0.013	18.5		
Radium-226	V-7	1	<0.0008	3.6		
			c	oncentrations	(mg/1)	
Conventional Pollutants						
Oil and Grease	V-7	1	<1.0	42	•	
Total Suspended Solids (TSS)	V-7	. 1	<1.0	-11		
pH (standard units)	V-7	1	6	6		

^{1.} No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.

Table V-211

ZINC ROLLING SPENT NEAT OILS

Plant	Wate	er Use	Percent	Wastewate	r Discharge
	1/kkg	gal/ton	Recycle	1/kkg	gal/ton
1	NR	NR	100	0	0

NR - Data not reported

Table V-212 ZINC ROLLING SPENT EMULSIONS

Plant	Water 1/kkg	Use gal/ton	Percent Recycle	Wastewater D 1/kkg	ischarge gal/ton
1	NR	NR	100	0	0
2	NR	NR	P	1.39 (CH)	0.334 (CH)
3	NR	NR	NR	NR (LA)	NR (LA)

NR - Data not reported
CH - Contract hauled
LA - Land application
P - Periodically discharged

Table V-213

ZINC ROLLING CONTACT COOLING WATER

Plant	n w	Water l/kkg	Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
1	:	471	113	0	471	113
1		600	144	0	600	144
2		NR	NR	P	NR	NR

NR - Data not reported
P - Periodically discharged

Table V-214 ZINC DRAWING SPENT EMULSIONS

Plant	Water l/kkg	Use gal/ton	Percent Recycle	Wastewater l/kkg	Discharge gal/ton
1	NR	NR	P	5.80 (CH)	1.39 (CH)
2	NR	NR	P	NR (CH)	NR (CH)
3	NR	NR	P	NR	NR
4	NR	NR	P	NR	NR

NR - Data not reported
CH - Contract hauled
P - Periodically discharged

Table V-215
ZINC DIRECT CHILL CASTING CONTACT COOLING WATER

Plant	Water l/kkg	: Use gal/ton	Percent Recycle	Wastewater l/kkg	Discharge gal/ton
1.	NR	NR	100	0	0
2	505	121	0	505	121

NR - Data not reported

Table V-216 ZINC STATIONARY CASTING CONTACT COOLING WATER

Plant	Wate	r Use	Percent	Wastewater	Discharge
	1/kkg	gal/ton	Recycle	1/kkg	gal/ton
1	NR	NR	100	0 (+)	0 (+)

NR - Data not reported + - Loss due to evaporation

Table V-217

ZINC HEAT TREATMENT CONTACT COOLING WATER

	 Wat	er Use	Percent	Wastewater	Discharge
Plant	1/kkg	gal/ton	Recycle	l/kkg	gal/ton
1.	NR	NR	P	763	183

NR - Data not reported P - Periodically discharged

Table V-218
ZINC SURFACE TREATMENT SPENT BATHS

Plant	Wastewater 1/kkg	Discharge gal/ton
1	65.1	15.6
	70.9	17.0
	130	31.2
2	NR	NR

NR - Data not reported

Table V-219

ZINC SURFACE TREATMENT RINSE

Plant	Wate 1/kkg	er Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
1	4,170	1,000	0	4,170	1,000
	5,000	1,200	0	5,000	1,200
2	1,570	376	0	1,570	376

NR - Data not reported

Table V-220

ZINC SURFACE TREATMENT RINSE
RAW WASTEWATER SAMPLING DATA

		Stream	Samp1e	Concentrations (mg/l)			
	Pollutant	Code	Туре	<u>Source</u>	Day 1	Day 2	Day 3
Toxic	Pollutants						. =
3.	acrylonitrile	G -3	1	0.002	0.001		
4.	benzene ⁻	G-3	1	9.017	0.015		
6.	carbon tetrachloride	G -3	1	0.004	0.003		
7.	chlorobenzene	G-3	1	**	**		•
10.	1,2-dichloroethane	G-3	1	**	**.		
11.	1,1,1-trichloroethane	G-3	1	0.003	ND		•
13.	1,1-dichloroethane	G-3	1	0.001	0.001		
14.	1,1,2-trichloroethane	G-3	1	**	**		
15.	1,1,2,2-tetrachloroethane	G-3	1	0.001	0.001		
18.	bis(2-chloroethyl)ether	G-3	1	ND	0.001		
23.	chloroform	G-3	1	0.051	0.015		
29.	1,1-dichloroethylene	G-3	1	0.002	0.002		
30.	1,2- <u>trans</u> -dichloroethylene	G-3	1	0.002	0.002		
32.	1,2-dichloropropane	G-3	1	0.002	**		
33.	1,3-dichloropropene	G-3	1	**	**		
34.	2,4-dimethylphenol	G-3	. 1	ND	0.005		
36.	2,6-dinitrotoluene	G-3	1	0.002	0.002		٠
37,	1,2-diphenylhydrazine	G-3	1	**	**		
38.	ethylbenzene	G-3	1	0.011	0.011		
39.	fluoranthene	G-3	1	0.001	ND		
43.	bis(2-chloroethoxy)methane	G-3	1	**	0.001		
44.	methylene chloride	G-3	1	0.003	0.008		•

Table V-220 (Continued)

ZINC SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

	Dall to 1	Stream	Sample		entration		
	<u>Pollutant</u>	Code	Туре	Source	Day 1	Day 2	Day 3
Toxi	c Pollutants (Continued)		e w 1	,			
46.	methyl bromide (bromomethane)	G-3	. 1	**	ND		
47.	bromoform (tribromomethane)	G-3	1	0.002	0.002		
48.	dichlorobromomethane	G-3	1	0.005	0.001		
51.	chlorodibromomethane	G-3	1	0.031	0.140		
55.	naphthalene	G-3	1	**	0.001		
66.	bis(2-ethylhexyl) phthalate	G-3	· • 1	0.003	**	-	
67.	butyl benzyl phthalate	G-3	1	0.001	0.002		
68.	di-n-butyl phthalate	G-3	1	0.017	0.037		
69.	di-n-octyl phthalate	G-3	· 1	**	NĎ		
70.	diethyl phthalate	G-3	1	0.009	0.016		
72.	benzo(a)anthracene	G-3 .	1	0.001	0.001		
74.	benzo(b)fluoranthene	G-3	11	0.002	ND .	-	
<u>7</u> 5.	benzo(k)fluoranthane	G=3		0.002	ND	and the second second	
76.	chrysene	G~3	1	0.001	0.001		·
78.	anthracene	G-3	1	0.001	**		- 1 - c
79.	benzo(ghi)perylene	G-3	1:	0.007	ND		*
80.	fluorene	G-3	. 1	0.001	ND		-
81.	phenanthrene	G-3	∵ 1	-0.001	**		
83.	indeno(1,2,3-c,d)pyrene	G-3	1	0.016	ND		
84.	: pyrene	G-3	, <u>1</u>	0.001	ND		
85.	tetrachloroethylene	G-3	·	0.009	0.009		i
86.	toluene	G-3	1	0.007	0.002		* 1
			17				t .

Table V=220 (Continued)

ZINC SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

e in the e	Pollutant	Stream Code	Sample Type	Source	entrations Day 1	(mg/1) Day 2	Day 3
Toxic	Pollutants (Continued)						
87.	trichloroethylene	G-3	1	0.009	0.008		
114.	antimony	G-3	1	<0.010	<0.010		
115.	arsenic	G-3 [′]	1	<0.010	<0.010		
117.	beryllium	G-3	1	<0.005	<0.005		• "
118.	cadmium	G-3	1	<0.020	<0.020		
119.	chromium (total)	G-3	1	<0.020	0.160		
120.	соррег	G-3	1	<0.050	<0.050		
121.	cyanide (total)	G-3	1	<0.07	<0.03		
122.	lead	G-3	. 1	<0.050	<0.050		
123.	mercury	G-3	1	<0.0002	<0.0002		•
124.	nickel	G-3	1	<0.050	8.10		
125.	selenium	G-3	1	<0.010	<0.010		
126.	silver .	G-3	1	<0.010	<0.010		
127.	thallium:	G-3	1	<0.010	<0.050		
128.	zinc	G-3 .	1	0.100	42.3		
Nonco	nventional Pollutants						
Acidi	ty	G-3	1	<1	<1		
Alkal	inity	G-3	1	67	26		
Alumi	num .	G-3	1	0.100	0.500		
Ammon	ia Nitrogen	G-3	1	<0.02	<0.02		
Bariu	ım	G-3	. 1	<0.050	<0.050		

Table V-220 (Continued)

-ZING-SURFACE TREATMENT RINSE RAW WASTEWATER SAMPLING DATA

	<u>Pollutant</u>	Stream Code	Sample Type	Con Source	centrations Day 1	mg/1) Day 2	Day 3
	Nonconventional Pollutants (Continued)			•			
•	Boron	G-3	1	0.100	0.100		
	Calcium	G-3	1	29.1	30.0		
	Chemical Oxygen Demand (COD)	G-3	1	560	<1		
-	Chloride	G-3	1	36	<1		
	Cobalt	G-3	1	<0.050	<0.050	•	
ω	Fluoride	G-3	1	96	108		•
ũ	Iron	G-3	1	< 0.050	0.150		
	Magnesium	G-3	1	4.10	4.30		
•	Manganese	G-3	- 1	< 0.050	< 0.050		
	Molybdenum	G-3	1	< 0.050	< 0.050		_
	Phenolics	G-3	. 1	< 0.005	< 0.005		
	Phosphate	G-3	. 1	1.6	300		
	Sodium	G-3		600	8.10		a na constante o popular anos
	Sulfate	G∸3	1	47	49	: : :	F
	Tin	G-3	1	< 0.050	< 0.050		
	Titanium	G-3	_1	< 0.050	< 0.050	. بد میر	
	Total Dissolved Solids (TDS)	G-3	1	160	380	- 1	
	Total Organic Carbon (TOC)	G-3	1	< 1	· < 1	;	
	Total Solids (TS)	G-3	1	92	400		
	Vanadium	G-3	1	< 0.050	< 0.050	-	
	Yttrium	G-3	1	< 0.050	< 0.050		

Pollutant	Stream Code	Sample Type	Concentrations (mg/1) Source Day 1 Day 2 Day 3
Conventional Pollutants			
Oil and Grease	G-3	1	4 < 1
Total Suspended Solids (TSS)	G-3	1	10 20
pH (standard units)	G-3	1 ·	7.98 5.72

**Present, but not quantifiable.

1. The following toxic pollutants were not detected in this waste stream: 1, 2, 5, 8, 9, 12, 16, 17, 19-22, 24-28, 31, 35, 40-42, 45, 49, 50, 52-54, 56-65, 71, 73, 77, 82, and 88.

2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-221
ZINC ALKALINE CLEANING SPENT BATHS

Plant	wastewater 1/kkg	gal/ton		
1	1.67	0.400		
2	5,.42	1.30		

Table V-222 ZINC ALKALINE CLEANING RINSE

Plant	Water l/kkg	Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
1	2,290	549	CCR2	2,290	549
2	1,080	260	0 (S)	1,080	260

CCR2 - Two-stage countercurrent cascade rinsing
S - Spray rinsing

Table V-223
ZINC ALKALINE CLEANING RINSE
RAW WASTEWATER SAMPLING DATA

Pollutant		Stream	Sample	Concentrations (mg/l)			
	Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3
Toxi	c Pollutants						
1.	acenaphthene	G-2	· 1	ND	**		
··· 3 .	acrylonitrile	G-2	1	0.002	0.001		÷
4.	benzene	G-2	1	0.017	0.004	•	-
6.	carbon tetrachloride	G-2	5 1	0.004	0.003		
7.	chlorobenzene	G-2	1	**	**		
10.	1,2-dichloroethane	G-2	_ 1	**	**		
1,1.	1,1,1-trichloroethane	G-2	1	0.003	0.003		
13.	1,1-dichloroethane	G-2	. 1	0.001	0.001		
14.	1,1,2-trichloroethane	G-2	. 1	**	**		
15.	1,1,2,2-tetrachloroethane	G-2	· 1	0.001	0.001		
18.	bis(2-chloroethyl)ether	G-2	. 1	ND	**		
23.	chloroform	G-2	1	0.051	0.013		- ,
29.	1,1-dichloroethylene	G-2 .	1	0.002	0.002		
30.	1,2- <u>trans</u> -dichloroethylene	G-2	1	0.002	0.002		
32.	1,2-dichluropropane	G-2	1	0.002	0.002		
33.	1,3-dichloropropene	G-2	1	**	0.001		* :
36.	2,6-dinitrotoluene	G~2	- 1	. 0.002	0.003		
37.	1,2-diphenylhydrazine	G-2	1	**	**		:
38.	ethylbenzene	G-2	1	0.011	0.011		
39.	fluoranthene	G-2 ···	11	0.001	0.001		
43.	bis(2-chloroethoxy)methane	G-2	1	**	0.001		*
44.	methylene chloride	G-2		0.003	0.008		

Table V-223 (Continued)

ZINC ALKALINE CLEANING RINSE RAW WASTEWATER SAMPLING DATA

	Stream	Sample		entrations		
Pollutant	_Code	<u>Type</u>	Source	Day 1	Day 2	Day 3
Toxic Pollutants (Continued)						
46. methyl bromide (bromomethane)	G-2	1	**	**		
47. bromoform (tribromomethane)	G-2	1	0.002	0,002		
48. dichlorobromomethane	G-2	1	0.005	0.002		
51. chlorodibromomethane	G-2	1	0.031	0.090		
55. naphthalene	G-2	1	**	0.002		
66. bis(2-ethylhexyl) phthalate	G-2	1	0,003	0.075		
67. butyl benzyl phthalate	G-2	1	0.001	0.001		
68. di-n-butyl phthalate	G-2	1	0.017	ND		
69. di-n-octyl phthalate	G-2	1	**	ND .		
70. diethyl phthalate	G-2	1	0.009	0.011	·	
72. benzo(a)anthracene	G-2	. 1	0.001	0.005		
74. benzo(b)fluoranthene	G-2	1	0.002	ND		
75. benzo(k)fluoranthene	G-2	1	0.002	ND		
76. chrysene	G-2	1	0.001	ND		
78. anthracene	G-2	1	0.001	0.001		
79. benzo(ghi)peryl e ne	G-2	1	0.007	ND		
80. fluorene	G-2	1	0.001	ND		
81. phenanthrene	G-2	1	0.001	0.003		
83. indeno(1,2,3-c,d)pyrene	G-2	1	0.016	0.016		
84. pyrene	G-2	1	0.001	. ND :		
85. tetrachloroethylene	G-2	1	0.009	0.009		-
86. toluene	G-2	1.	0.007	0.004		

Ų

Table V-223 (Continued)

ZINC ALKALINE CLEANING RINSE RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	-	Stream	Sample		centration		
		Code	Туре	Source	Day 1	Day 2	Day 3
Toxic Pollutants (Continued)				t e e	· · · · · · · · · · · · · · ·		
87. trichloroethylene		G-2	1	0.009	0.006		
114. antimony		G-2	1	<0.010	<0.010		•
115. arsenic	•	G-2	1	<0.010	<0.010		
117. beryllium		G-2	1	<0.005	<0.005		
118. cadmium		G-2	1	<0.020	<0.020		
119. chromium (total)		G-2	1	<0.020	<0.020		
120. copper		G-2	1	<0.050	<0.050	•	
121. cyanide (total)		G-2	1	0.07	1.3		:
122. lead		G-2	1	<0.050	<0.050		
. 123. mercury		G-2	1	<0.0002	<0.0002		
124. nickel		G-2	ĺ	<0.050	<0.050		
125. selenium		G-2	1	<0.010	<0.010		
126. silver		G-2	1	<0.010	<0.010		
thallium		G-2		<0010	~0.0 10		Character relations are not consider the
128. zinc		G-2	1	0.100	1.12		
Nonconventional Pollutants							
Acidity		G-2	1	<1	<1		
' Alkalinity		G-2	1	67	84		
Aluminum		G-2	1	0.100	0.100	•	,
Ammonia Nitrogen		G-2					
			· 1	<0.02	<0.02		
Barium		G-2	1	<0.050	<0.050		•
Boran		G-2	1	0.100	0.100		

Table V-223 (Continued)

ZINC ALKALINE CLEANING RINSE RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	Conc Source	entrations Day 1	(mg/1) Day 2	Day 3
Nonconventional Pollutants (Continued)					
Calcium	G-2	1	29.1	29.0		
Chemical Oxygen Demand (COD)	G-2	1	560	<1		
Chloride	G-2	1	36	<1		
Cobalt	G-2	1	<0.050	<0.050		
Fluoride	G-2	1	96	95		
: Iron :	G-2	1	<0.050	0.550		
Magnesium	G-2	1	4.10	4.10	•	
Manganese	G-2	1	<0.050	<0.050		
- Molybdenum	G-2	1	<0.050	<0.050		
Phenolics	G-2	1	<0.005	<0.005		
Phosphate	G-2	1	1.6	3. 5		
Sodium	G-2	1	6.00	14.2		
Sulfate	G-2	1	47	53	-	
Tin	G-2	1	<0.050	<0.050		
Titanium	G-2	1	<0.050	<0.050		
Total Dissolved Solids (TDS)	G-2	1	160	190		
Total Organic Carbon (TOC)	G-2	1	<1	54		
Total Solids (TS)	G-2	1	92	280		
Vanadium	G~2	1	<0.050	<0.050		•
	G-2	1	<0.050	<0.050		
Yttrium						

ZINC ALKALINE CLEANING RINSE RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Cone	centration	s (mg/1)	
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3
Conventional Pollutants						
Oil and Grease	G-2	1	4	23		
Total Suspended Solids (TSS)	G-2	1	10	90		
pH (standard units)	G-2	1	7.98	7.55		

**Present, but not quantifiable.

- 1. The following toxic pollutants were not detected in this waste stream: 2, 5, 8, 9, 12, 16, 17, 19-22, 24-28, 31, 34, 35, 40-42, 45, 49, 50, 52-54, 56-65, 71, 73, 77, 82, and 88
- 2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-224 ZINC SAWING OR GRINDING SPENT EMULSIONS

Plant	Water	Use	Percent	Wastewater	Discharge
	1/kkg	gal/ton	Recycle	1/kkg	gal/ton
1	NR	NR	100 (P)	23.8	3 5.71

NR - Data not reported P - Periodically discharged

Table V-225

ZINC ELECTROCOATING RINSE

Plant	Water	Use	Percent	Wastewater	Discharge
	1/kkg	gal/ton	Recycle	1/kkg	gal/ton
1	2,294	550	0	2,294	550

Table V-226
ZIRCONIUM-HAFNIUM ROLLING SPENT NEAT OILS

Plant	Water L/kkg	Use ' gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1	NR	NR	0.0	0.00	0.00
Average	NR	NR		0.00	0.00

NR - Data not reported

^{*}Discharge from operation.

Table V-227
ZIRCONIUM-HAFNIUM DRAWING SPENT LUBRICANTS

Plant	Water	Use	Percent	Wastewater	Discharge*
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1	NR	NR	0.0	0.00	0.00
2	NR	NR	NR	NR	NR
3	NR	NR	NR	NR	NR
Average	NR	NR		0.00	0.00

NR - Data not reported

^{*}Discharge from operation.

Table V-228
ZIRCONIUM-HAFNIUM EXTRUSION SPENT LUBRICANTS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1 2 3 3 4	NR 4.74 NR NR NR	NR 1.14 NR NR NR	0.0 0.0 0.0 0.0	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
Average	4.74	1.14		0.00	0.00

NR - Data not reported

^{*}Discharge from operation.

Table V-229
ZIRCONIUM-HAFNIUM EXTRUSION PRESS HYDRAULIC FLUID LEAKAGE

Plant		Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1		237.4	56.94	0.0	237.4	56.94
Average	•	237.4	56.94		237.4	56.94

^{*}Discharge from operation.

Table V-230

ZIRCONIUM-HAFNIUM EXTRUSION PRESS HYDRAULIC FLUID LEAKAGE
RAW WASTEWATER SAMPLING DATA

Pollutant	Stream Code	Sample Type	Source Source	entration Day 1	s (mg/l) Day 2	Day 3
Nonconventional Pollutants Fluoride	А К-З	3	-	2.3		
Conventional Pollutants Oil and Grease Total Suspended Solids (TSS) pH	АК-З АК-З АК-З	3 3 3	- - -	10.0 7.0 6.8		

Table V-231
ZIRCONIUM-HAFNIUM SWAGING SPENT NEAT OILS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1	NR	NR	0.0	0.00	0.00
Average	NR	NR	•	0.00	0.00

NR - Data not reported

^{*}Discharge from operation.

Table V-232
ZIRCONIUM-HAFNIUM TUBE REDUCING SPENT LUBRICANTS

Plant	Water	Use	Percent	Wastewater	Discharge*
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1	NR	NR	0.0	0.00	0.00
2	2,364	566.9	0.0	298.3	71.52
3	1,051	252.0	0.0	1,051	252.0
4	3,315	794.9	0.0	3,315	794.9
5	7,359	1,765	0.0	7,359	1,765
3	NR	NR	NR	NR	NR
Average	3,522	844.6		3,006	720.8

NR - Data not reported

^{*}Discharge from operation.

Table V-233
ZIRCONIUM-HAFNIUM HEAT TREATMENT CONTACT COOLING WATER

Plant	Water	Use	Percent	Wastewate	r Discharge*
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1 2	135.2	32.43	P	135.2	32.43
	285.4	68.43	P	285.4	68.43
1	400.7	96.10	0.0	400.7	96.10
3	6,005	1,440	0.0	6,005	1,440
	NR	NR	NR	NR	NR
3	NR	NR	NR	NR	NR
Average	1,707	409.2	i i	1,707	409.2

P - Periodic discharge NR - Data not reported

^{*}Discharge from operation.

Table V-234

ZIRCONIUM-HAFNIUM HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

		Stream	Sample	Cond	entration	s (mg/l)	
	Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3
Toxic	Pollutants	•					
117.	beryllium	- BV−1		-	<0.010		
117.	Der y i i i diii	BV-2		-	<0.001		
		BV-3		-	<0.001		
		AK-4	3	-	<0.020		
118.	cadmium	в∨-i		_	0.061		
110.	Caamiam	BV-2		-	<0.005		
		BV-3		-	<0.005		
		AK-4	3	-	<0.010		
119.	chromium (total)	BV-1		_	0.670		
115.	Citi om ram (1912)	BV-2		-	0.110		
		BV-3			0.280		
	:	AK-4	3	-	<0.020		
120.	copper	BV-1		-	0.180		
120.	соррег	BV-2			0.012		
		BV-3			0.080		
		AK-4	3	-	0.420		
122.	lead	BV-1	*	-	3.500		
		BV-2		_	<0.050		
		BV−3		-	<0.050		
•		AK-4	3		<0.020		
124.	nickel	BV-1			0.490		
		BV-2		-	0.031		
:	•	BV-3		_	<0.012		
		AK-4	3	-	<0.020		
128.	zinc	BV-1		_	0.035		
		BV-2		-	0.024		
		BV-3			0.040		
•		AK-4	3	_	0.170		

Table V-234 (Continued)

ZIRCONIUM-HAFNIUM HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	Source	centration Day 1	ns (mg/1 ⁻) Day 2	Day 3
Toxic Pollutants				÷		
				*		
Aluminum	. BV-1		-	3.000		
	BV-2		_	0.170		
	BV-3		-	0.045		
	AK-4	3	_	<0.050		
Hafnium	BV-1		_	9.600		
	BV-2		_	2.100		
	BV-3		-	ND		
	BV-1			12.000		
•	BV-2			2.500	•	
) . 1	BV-3		_	0.730		
٠	AK-4	3	-	3.755		
Magnesium	BV-1			22.000		
	BV-2		-	0.140	•	
	BV-3		-	30.000		
	AK-4	3	-	ND		
Molybdenum	- BV-1		_	370,0		
	BV-2		_	0,270		
Note these subtractions accounts to the control of	BV-3			0.280		
	AK-4	3	-	ND		
Titanium	BV-1-		_	<0.100		
	BV−2		_	0.015		
	BV-3		_	<0.010		
	AK-4	.3		<0.050		•

ZIRCONIUM-HAFNIUM HEAT TREATMENT CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Concentrations (mg/1)				
<u>Pollutant</u>	_Code	Type	Source	Day 1	Day 2	Day 3	
Toxic Pollutants							
Zirconium	BV-1 BV-2 BV-3 AK-4	3	- - - -	1.600 87.000 0.052 <0.100			

1. No analyses were performed for the following toxic pollutants: 1-116, 121, 123, 125-127 and 129.

Table V-235
ZIRCONIUM-HAFNIUM SURFACE TREATMENT SPENT BATHS

Plant	Wastewate L/kkg	r Discharge* gal/ton
1 2 1 3 4 5 6 1 6 3 7 8 4 8 4	101.8 235.6 239.2 282.7 340.0 375.9 493.4 693.9 883.7 64,260 NR NR NR	24 40 56 49 57 36 67 78 81 54 90 14 118 3 166 4 211 9 15,410 NR NR NR NR
Average	6,791	1,628

NR - Data not reported

^{*}Discharge from operation.

Table V-236

	Pollutant	Stream Code	Sample Type	Conc Source	entrations Day 1	(mg/1) Day 2	Day 3
<u>Toxi</u>	<u>c Pollutants</u>						
2.	acrolein	P-2 P-3	1 1	ND ND	ND 0.021		
4.	benzene	P-2 P-3	1 1	ND ND	<0.010 <0.010		
7.	chlorobenzene	P-2 P-3	1 1	ND ND	<0.010 <0.010		•
11.	1,1,1-trichloroethane	P-2 P-3	1 1	ND ND	0.023 0. 3 90		•
13.	1,1-dichloroethane	P-2 P-3	1 1	ND ND	ND <0.010		
23.	chloroform	P-2 P-3	1	0.023 0.023	<0.010 <0.010		
38.	ethylbenzene	P-2 P-3	1	ND ND	<0.010 0.018		
44.	methylene chloride	P-2 P-3	1	ND ND	0.480 0.016		
48.	dichlorobromomethane	P-2 P-3	1 1	0.002	ND ND		
57.	2-nitrophenol	P-2 P-3	1	ND ND	ND <0.010		
66.	bis(2-ethylhexyl) phthalate	P-2	1	,,,,	<0.010		

Table V-236 (Continued)

	Sample Type	Stream <u>Code</u>	Pollutant
	-		<u>Toxic</u> <u>Pollutants</u> (Continued)
<0.010 <0.010	1 1	P-2 P-3	68. di-n-butyl phthalate
<0.010 <0.010	1	P-2 P-3	70. diethyl phthalate
<0.010 ND	1 1	P-2 P-3	78. anthracene (a)
<0.010 ND	1 1	P-2 P-3	81. phenanthrene (a)
ND ND ND <0.010	1 1·	P-2 P-3	85. tetrachloroethylene
ND <0.010	1 1	P-2	86. toluene
ND <0.010 ND <0.010	1 1	P-2 P-3	87. trichloroethylene
ND	1 1 1 1 1 1 1	P-3 P-2 P-3 P-2 P-3 P-2 P-3	81. phenanthrene (a)85. tetrachloroethylene86. toluene

Table V-236 (Continued)

	Stream	Sample	Conc	entrations	(mg/1)	
<u>Pollutant</u>	Code	Type	Source	Day 1	Day 2	Day 3
Toxic Pollutants (Continued)						
114. antimony	P-2 P-3	1 1	ND ND	5 6		
115. arsenic	P-2 P-3	1 1	ND ND	3 0.6		
117. beryllium	P-2 P-3	1 1	ND ND	<0.2 <0.2		
118. cadmium	P-2 P-3	1 1	0.010 0.010	0.09 <0.07		
119. chromium (total)	P-2 P-3	1 1	ND ND	24 12		
120. copper	P-2 P-3	1 1	0.008 0.008	1.2		
121. cyanide (total)	P-2 P-3	1 1		0.118 0.356		
122. lead	P-2 P-3	1 1	ND ND	1.4 0.53		

Table V-236 (Continued)

	_	<u>Pollutant</u>	Stream Code	Sample Type	Conc Source	entrations (m Day 1 Da	Day 3
	Toxic	Pollutants (Continued)					
	123.	mercury	P-2 P-3	1 1		0.0056 <0.0022	
	124.	nickel	P-2 P-3	1	ND ND	3.6 0.64	
	125.	selenium	P-2 P-3	1 1	0.013 0.013	<0.02 <0.02	,
o .	126.	silver	P-2 P-3	1 1	ND ND	<0.02 <0.02	
,)	127.	thallium	P-2 P-3	1 1	ND ND	0.57 <0.5	
		zinc	P-2 P-3	1 1	ND ND	7.5 0.17	

Table V-236 (Continued)

Pollutant	Stream Code	Sample Type	Concentrations (mg/1) Source Day 1 Day 2 Day 3
Nonconventional Pollutants			
Alkalinity	P-2 P-3	. 1	0.0 8,910
Ammonia Nitrogen	P-2 P-3	1	<0.1 6.81 <0.1 104
Calcium	P-2 P-3	1	208 5.60
Fluoride	P-2 P-3	.1	<0.10 17,100 <0.10 6,500
Magnesium	P-2 P-3	1	11.7 2.90
Phenalics	P-2 P-3	1 1	0.026 0.053
Sulfate	P-2 P-3	1	1,080 · 142

Table V-236 (Continued)

<u>Pollutant</u>	Stream Code	Sample Type	Conce Source	ntrations Day 1	(mg/1) Day 2	Day 3
Nonconventional Pollutants (Continued)			٠.			
Total Dissolved Solids (TDS)	P-2 P-3	1 1		,000 ,400		
Conventional Pollutants					•	
Oil and Grease	P-2 P-3	1 1	1.1	83.9 1.87		
Total Suspended Solids (TSS)	P-2 P-3	1 1	<0.5 <0.5	8.70 12.6		
pH (standard units)	P-2 P-3	1 .1		. <1 3.7		

- (a) Reported together
- 1. Toxic pollutants 89-113 were analyzed in this waste stream.
- --2. The following toxic pollutants were not detected in this waste stream: 1, 3, 5, 6, 8-10, 12, 14-22, 24-37, 39-43, 45-47, 49-56, 58-65, 67, 69, 71, 77, 79, 80, 82-84.
 - 3. No analyses were performed on the following toxic pollutants: 116 and 129.

Table V-237

ZIRCONIUM-HAFNIUM SURFACE TREATMENT RINSE

Plant	Wate L/kkg	er Use gal/ton	Percent Recycle		ter Discharge* gal/ton
1	296.7	71.14	0.0	296.7	71.14
2	1,302	312.2	0.0	1,302	312.2
1	2,057	493.3	0.0	2,057	493.3
2	2,266	543.5	0.0	2,266	543.5
2 3	5,738	1,376	0.0	5,738	1,376
4	12,020	2,881	0.0	12,020	2,881
5	18,110	4,343	0.0	18,110	4,343
5 3 6	50,040	12,000	0.0	50,040	12,000
6	79,740	19,120	0.0	79,530	19,070
7	971,500	233,000	0.0	971,500	233,000
8	NR	NR	NR	NR	NR
8	NR	NR	NR	NR	NR
Average	114,300	27,410		114,300	27,410

NR - Data not reported

^{*}Discharge from operation.

Table V-238
ZIRCONIUM-HAFNIUM ALKALINE CLEANING SPENT BATHS

	Wastewater	Discharge*
Plant	L/kkg	gal/ton
	1	
1	12.44	2¦98
2	37.16	8¦91
2	64.96	15,58
3	232.0	55.63
4	239.8	57.50
2	321.1	77.00
2 5	632.0	151.3
1	955.2	229.1
1	1,244	298.3
6	1,962	470.6
3	3,689	884.8
6	9,812	2,353
5	NR	NR
Average	1,600	383.7
3	•	

NR - Data not reported

^{*}Discharge from operation.

Table V-239
ZIRCONIUM-HAFNIUM ALKALINE CLEANING RINSE

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewate L/kkg	r Discharge* gal/ton
1	321.1	77.00	0.0	321.1	77.00
2	597.0	143.2	0.0	597.0	143.2
1	815.0	195.5	0.0	815.0	195.5
	5,176	1,241	0.0	5,176	1,241
3 2	7,589	1,820	0.0	7,589	1,820
2	8,955	2,148	0.0	8,955	2,148
	80,150	19,220	0.0	79,410	19,040
4 5	166,800	40,000	0.0	166,800	40,000
6	181,600	43,560	0.0	181,600	43,560
ნ 5	313,900	75,280	0.0	313,900	75,280
7	NR	NR	NR	NR	NR
Average	31,390	7,530		31,390	7,530

NR - Data not reported

^{*}Discharge from operation.

Table V-240
ZIRCONIUM-HAFNIUM MOLTEN SALT RINSE

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1 2	20.86 15,090	5.00 3,619	0.0	20.86 15,090	5.00 3,619
Average	7,556	1,812		7,556	1,812

^{*}Discharge from operation.

Table V-241 ZIRCONIUM-HAFNIUM SAWING OR GRINDING SPENT NEAT OILS

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1	NR	NR	0.0	0.00	0.00
Average	NR	. NR		0.00	0.00

966

NR - Data not reported

Table V-242
ZIRCONIUM-HAFNIUM SAWING OR GRINDING SPENT EMULSIONS

Plant		Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1 2	:	39.62	9.50	0.0	0.00	0.00
2	•	NR NR	NR NR	NR 0.0	0.00	0.00 0.00
3		NR NR	NR NR	P NR	281.1 NR	67.42 NR
3		NR NR	NR NR	NR NR	NR NR	NR NR
Average		39.62	9.50		281.1	

P - Periodic discharge NR - Data not reported

^{*}Discharge from operation.

Table V-243
ZIRCONIUM-HAFNIUM SAWING OR GRINDING CONTACT COOLING WATER

Plant	Water	Use	Percent	Wastewater	Discharge*
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1	321.1	77.00	0.0	321.1	77.00 NR
2	NR	NR	NR	NR	
Average	321.1	77.00		321.1	77.00

NR - Data not reported

^{*}Discharge from operation.

Table V-244
ZIRCONIUM-HAFNIUM SAWING OR GRINDING RINSE

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1 (122.9	29.46	0.0	122.9	29.46
2 .	592.0	142.0	0.0	592.0	142.0
1	3,002	720.0	0.0	3,002	720.0
2 (19)	19,620	4,706	0.0	19,620	4,706
Average	5,835	1,399	:	5,835	1,399

^{*}Discharge from operation.

Table V-245
ZIRCONIUM-HAFNIUM INSPECTION AND TESTING WASTEWATER

Plant	Wate	r Use	Percent	Wastewat	er Discharge*
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1	15.43	3.70	0.0	15.43	3.70
2	56,270	13,490	0.0	56,270	13,490
3	NR	NR	NR	NR	NR
3	NR	NR	NR	NR	NR
Average	28,140	6,749		28,140	6,749

NR - Data not reported

^{*}Discharge from operation.

ZIRCONIUM-HAFNIUM INSPECTION AND TESTING WASTEWATER
RAW WASTEWATER SAMPLING DATA

Table V-246

		-					· •		
		D-11		Stream	Sample	Con	centration	s (mg/l)	
		Pollutant		Code	Туре	Source	Day 1	Day 2	Day 3
	Toxic	Pollutants			•				
	117.	beryllium		DV 0		•			
		ber y i i i alli		BV-8 AX-4		-	<0.001		
				AA-4	•	-	<0.100		
		•							
	118.	cadmium		8V-8			<0.005		
		•		AX-4	- 1		<0.500		
	119.	chromium (total)		BV-8			_		
		emonifon (total)		AX-4	1		0.003		
				77. 4	1 .	_	<0.050		
								~	
9	120.	copper	*	BV-8		_	0.018		•
71		* -		AX-4	1		0.050		
_	121.	cyanide .		A.V. A					
	121.	cyaninge .		AX-4	1	_	<0.500		
	122	lead		8~v8			<0.050	-	
				AX-4	1	-	<0.100		i .
	124.								
	124.	nickel		BV~8		-	<0.012		
	•			AX-4	1	-	<0.100		
	128.	zinc		BV-8	•		0.160		
			-	AX-4	1	_	1.000		
					. '		1.000		

Table V-246 (Continued)

ZIRCONIUM-HAFNIUM INSPECTION AND TESTING WASTEWATER RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	Source	entrations Day 1	(mg/1) Day 2	Day 3
Nonconventional Pollutants						
Aluminum	BV-8		-	0.030		
Ammonia (as N)	AX-4	1	_	<0.05		
Cobalt	8 ∨ ~8		_	<0.004		
	AX-4	1	_	1.150		
Fluoride		•	_	ND		
Hạfnium	BV-8					
Iron	BV-8 AX-8	1		0.040 <0.100		
		•	_	0.077		
Molybdenum	BV~8			u.o//		
Titanium	BV-8		-	<0.010		
	AX-4	1	-	<0.500		
				• j		

ZIRCONIUM-HAFNIUM INSPECTION AND TESTING WASTEWATER RAW WASTEWATER SAMPLING DATA

Pollutant Nonconventional Pollutants (Continued)	Stream Code	Sample Type	<u>Conc</u> Source	centrations Day 1	(mg/l) Day 2	Day 3
Honconventional Fortutants (Continued)	•					
· Vanadium	BV-8 AX-4	1	<u>-</u>	<0.002 <1.00		-
Zirconium	BV-8 AX-4	1	-	<0.020 <2.5		
Conventional Pollutants						•
Oil and Grease	BV-8 AX-4	1	-	<1 <2.00		
Total Suspended Solids (TSS)	AX-4	1	_	4.000		
_Т рН	AX-4	1,	-	7.3		

^{1.} No analyses were performed on the following toxic pollutants: 1-116, 123, 125-127 and 129.

Table V-247
ZIRCONIUM-HAFNIUM DEGREASING SPENT SOLVENTS

Plant	Water	Use	Percent	Wastewater	Discharge*
	L/kkg	gal/ton	Recycle	L/kkg	gal/ton
1	NR	NR	100.0	0.00	0.00
2	85.57	20.52	P	85.57	20.52
3	NR	NR	P	NR	NR
Average	85.57	20.52		85.57	20.52

P - Periodic discharge NR - Data not reported

^{*}Discharge from operation.

Table V-248
ZIRCONIUM-HAFNIUM DEGREASING RINSE

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1	4,054	972.3	0.0	4,054	972.3
Average	4,054	972.3		4,054	972.3

^{*}Discharge from operation.

Table V-249
ZIRCONIUM-HAFNIUM WET AIR POLLUTION CONTROL BLOWDOWN

Plant	Water L/kkg	Use gal/ton	Percent Recycle	Wastewater L/kkg	Discharge* gal/ton
1 2	2,650 NR	636.0 NR	100.0 P	0.00 8.17	0.00 1.96
3	558.9	134.0	83.3	93.16	22.34
4	10,200	2,446	94.7	536.9	128.8
3	NR	NR	80.0	NR	NR
5	NR	NR	0.0	NR	NR
5	NR	NR	.0.0	NR	NR
5	NR	NR	0.0	NR	NR
Average	4,470	1,072		212.7	51.03

P - Periodic discharge NR - Data not reported

^{*}Discharge from operation.

Table V-250

METAL POWDERS METAL POWDER PRODUCTION ATOMIZATION WASTEWATER

Plant	Water 1/kkg	Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
1	125	30.0	0	125	30.0
2	1,450	348	0	1,450	348
	2,240	538	0	2,240	538
3	2,740	656	0	2,740	656
4	6,670	1,600	0	6,670	1,600
5	17,000	4,080	0	17,000	4,080
6	NR	NR	NR	NR	NR

NR - Data not reported

Table V-251

METAL POWDERS METAL POWDER PRODUCTION ATOMIZATION WASTEWATER RAW WASTEWATER SAMPLING DATA

Pollutant		Stream <u>Code</u>	Sample Type	Conce Source	ntrations (mg Day 1 Day	/1) 2 Day 3
Toxic Pollutants						
115. arsenic	S-1	2	<0.01	<0.01		
118. cadmium	S~1	2	<0.05	<07.05		
119. chromium (total)	S-1 T-1	2 6	<0.005 <0.01	1.95 8.3	0.022	0.026
120. copper	S-1 T-1	2 6	<0.05 0.048	1.090 45.000	5.400	0.0044
121. cyanide (total)	S~1 T~1	1 1	<0.01 <0.01	0.026	<0.01	<0.01
122. lead	S~1 T~1	2 6	<0.1 <0.005	0.523 <0.005	<0.005	0.0054
123. mercury	S-1	2	<0.0002	<0.0002		
124. nickel	S-1 T-1	2 6	<0.200 0.075	9.200 81.0	1.600	1.100
128. zinc	S-1	2	<0.05	0.607		
Nonconventional Pollutants						
Acidity	T-1	6	**	**	**	**
Aluminum	S-1 T-1	2 6	<0.2 0.14	0.407 0.630	0.110	0.041
Cobalt	S-1 T-1	2 6	<0.1 <0.01	<0.1 11.000	0.250	0.240
Fluoride	S-1 T-1	2 6	<0.1 1.01	0.14	0.89	0.95
Iron	S-1 T-1	2 6	0.122 0.27	1,210 40.000	0.46	0.280
Conventional Pollutants						
Oil and Grease	S-1 T-1	7 1	<1 <0.1;0.4	3.1 4 0.1;1.	1 0.1;6.1	0.3;5.1

9/0

METAL POWDERS METAL POWDER PRODUCTION ATOMIZATION WASTEWATER RAW WASTEWATER SAMPLING DATA

Pollutant		Stream Code	Sample Type	Conce Source	ntrations Day 1	(mg/1) Day 2 Day 3
Conventional Pollutants) (Contin	ued)			.,		
Total Suspended Solids (TSS)	S-1 T-1	2 6	<0.1 1.0	2,127	10.0	12.0
pH (standard units)	S-1 T-1	1 6	7.7	8.1-8.2	7.7	7.76

**Less than detection limit. Detection limit not known.

- 1. No analyses were performed on the following toxic pollutants: 1-114, 116, 125, 126, 127, and 129.
- 2. Note that stream code T-1 also appears on the nickel-cobalt metal powder production wet atomization wastewater raw wastewater sampling data table. The wastewater is derived from an operation in both subcategories:

979

Table V-252

METAL POWDERS TUMBLING, BURNISHING OR CLEANING WASTEWATER

Plant	Water 1/kkg	Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
1	NR	NR	100	0	0
	NR	NR	0	NR	NR
2	27.8	6.67	0	27.8	6.67
3	59.2	14.2	0	59.2	14.2
	173	41.6	0	173	41.6
	446	107	0	446	107
4	83.4	20.0	0	83.4	20.0
5	125	30.0	0	125	30.0
6	174	41.7	0 (+)	156	37.5
7	4,380	1,050	90.9	397	95.2
8	NR	NR	P	397	95.2
	1,660	398	0	1,660	399
9	653	158	0	659	158
10	1,660	397	0 (+)	663	159
11	834	200	0	834	200
12	1,010	243	0	1,010	243
13	1,040	250	0	1,040	250
14	1,240	297	Ō	1,240	297
	11,400	2,730	0	11,400	2,730
15	1,540	370	0	1,540	370
16	3,270	783	0	3,270	783

Table V-252 (Continued)
METAL POWDERS TUMBLING, BURNISHING

METAL POWDERS TUMBLING, BURNISHING OR CLEANING WASTEWATER

Plant	Water 1/kkg	Use gal/ton	Percent Recycle	Wastewat 1/kkg	er Discharge gal/ton
17	4,300	1,030	0 (+)	3,840	922
18	6,380	1,530	0	6,380	1,530
) :	6,960	1,670	0	6,960	1,670
	15,600	3,750	0	15,600	3,750
19	7,760	1,860	0	7,760	1,860
20	16,300	3,920	0	16,300	3,920
21	22,800	5,460	0	22,800	5,460
22	NR	NR	0	NR	NR
:	NR	NR	0	NR	NR
	NR	NR	NR	NR	NR
23	NR	NR	0	NR	NR
24	NR	NR	0	NR	NR
25	NR	NR	0	NR.	NR
26	NR	NR	NR	NR	NR
! !	NR	NR	NR	NR	NR
. :	NR	NR	NR	NR	NR
27	NR	NR	NR	NR	NR
28	NR	NR	NR	NR	NR
29	NR	NR	NR	NR .	NR
1	the state of the s		·	4	

NR - Data not reported + - Loss due to drag-out

Table V-253

METAL POWDERS TUMBLING, BURNISHING, OR CLEANING WASTEWATER RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Type	Conc Source	entration Day 1	s (mg/1) Day 2	Day 3
Toxic	Pollutants						
4.	benzene	J-2 J-3 J-4	1 1 1	ND ND ND	0.033 ND ND	ND ND ND	ND 0.002 ND
6.	carbon tetrachloride	J-2 J-3 J-4	1 1 1	ND ND ND	0.005 0.012 0.011	ND ND 0.008	ND 0.016 0.010
11.	1,1,1-trichloroethane	J-2 J-3 J-4	1 1 1	ND ND ND	0.003 0.034 0.030	ND ND 0.024	ND 0.071 0.033
23.	chloroform	J-2 J-3 J-4	1 1 1	0.027 0.027 0.027	ND ND ND	ND ND ND	ND ND ND
44.	methylene chloride	J-2 J-3 J-4	1 1 1	ND ND ND	0.010 ND 0.018	ND ND ND	ND ND 0.008
48.	dichlorobromomethane	J-2 J-3 J-4	1 1 3	0.004 0.004 0.004	ND ND ND	ND ND ND	ND ND ND
86.	toluene	J-2 J-3 J-4	1 1 1	ND ND ND	0.013 ND ND	ND ND ND	ND ND ND
114.	antimony	J-2 J-3 J-4	1 2 6	<0.010 <0.010 <0.010	<0.010 0.010 <0.010	<0.010 0.060 <0.010	<0.010 <0.010 <0.010
115.	arsenic	J-2 J-3 J-4	1 2 6	<0.010 <0.010 <0.010	<0.010 0.010 <0.010	<0.010 0.100 <0.010	<0.010 <0.010 -1) ()10
117.	beryllium	J-2 J-3 J-4	1 2 6	<0.005 <0.005 <0.005	<0.005 <0.005 <0.005	<0.005 <0.050 <0.005	<0.005 <0.005 <0.005
118.	cadmium	J-2 J-3 J-4	1 2 6	<0.020 <0.020 <0.020	<0.020 <0.020 <0.020	<0.020 <0.200 <0.020	<0.020 <0.020 <0.020

Table V-253 (Continued)

			Stream	Sample	Concentrations (mg/l)			
		Pollutant	Code	Type	Source	Day 1	Day 2	Day 3
-	Toxic	Pollutants (Continued)			÷ .			
	119.	chromium (total)	J-2	1	<0.020	<0.020	<0.020	<0.020
		•	J-3	.2	<0.020	0.080	0.200	0.060
			J-4	6	<0.020	0.160	0.180	0.060
	120.	copper	J-2	1	<0.050	<0.050	<0.050	<0.050
			J-3	2	<0.050	253	16.5	5.50
	•		J-4	6	<0.050	34.0	21.2	10.5
	121.	cyanide (total)	J-2	1	<0.02	0.11	<0.02	<0.02
		•	J-3	1.	<0.02	0.04	0.39	· 0.15
			J-4	1	<0.02	1.8	1.6	0.10
)	122.	lead	J-2	1	<0.050	<0.050	<0.050	<0.050
0			J-3	2	<0.050	45.1	2.00	1.00
J			J-4	6	<0.050	5.20	3.15	7.50
	123.	mercury	J-2	· 1	<0.0002	<0.0002	<0.0002	<0.0002
		,	J-3	2	<0.0002	<0.0002	<0.0002	<0.0002
			J-3	6	<0.0002	<0.0002	<0.0002	<0.0002
	124.	nickel	J-2	1	<0.050	<0.050	<0.050	<0.050
	•		J-3	2	<0.050	0.500	3.00	2.65
			J-4	6	<0.050	0.600	0.550	0.400
	1-25	selenium	J 2		<0.010	<00-10	····<0·0·1-0	<00-1-0
		•	J-3	2	<0.010	<0.010	<0.020	<0.010
	٠		J-4	6		<0.010		<0.010
	126 -	silver	J−2	1	<0.010	<0.010	<0.010	<0.010
			J-3	. 2	<0.010	<0.010	<0.010	<0.010
		en de la companya de La companya de la co	J-4	6	<0.010	<0.010		<0.010
	127.	thallium	J-2	1	<0.010	<0.010	<0.010	<0.010
	12		J-3	2	<0.010	<0.010	<0.010	<0.010
	*		J-4	6	<0.010	<0.010	<0.010	<0.010
	128.	zinc	J-2	1	0.080	0.100	0.080	<0.060
	120.	21110	J-3	2	<0.050	1.18	9.56	0.890
	•		J-4	6	<0.080	0.600	0.620	0.480
			.	•		0.000	0.0-0	00

<u>Pollutant</u>	Stream Code	Sample Type	Con Source	centration Day 1	s (mg/1) Day 2	Day 3
Nonconventional Pollutants						
Acidity	J-2	1	<1	<1	<1	<1
	J-3	2	<1	<1	<1	<1
	J-4	6	<1	<1	<1	<1
Alkalinity	J-2 J-3 J-4	1 2 6	1 3 13 13		43 500 1 730	11 ,300 880
Aluminum	J-2	1	0.300	0.200	0.300	0.300
	J-3	2	0.300	34.3	33.0	11.9
	J-4	6	0.300	18.5	28.0	19.6
Ammonia Nitrogen	J-2	1	0.16	0.06	0.07	0.7
	J-3	2	0.16	0.90	0.74	0.18
	J-4	6	0.16	1.9	1.5	1.1
Barium	J-2	1	0.050	0.050	0.050	0.050
	J-3	2	0.050	0.200	0.500	0.100
	J-4	6	0.050	0.150	0.200	0.150
Boron	J-2	1	<0.100	<0.100	<0.100	<0.100
	J-3	2	<0.100	58.7	440	4.00
	J-4	6	<0.100	61.7	35.4	56.1
Calcium	J−2	1	10.4	9.80	9.40	10.0
	J−3	2	10.4	17.9	13.0	12.0
	J−4	6	10.4	11.6	11.0	11.3
Chemical Oxygen Demand (COD)	J-2 J-3 J-4	1 2 6	70 70 70	450 7,	900	2,500 19.0 6,600
Chloride	J-2	1	<1	<1	<1	<1
	J-3	2	<1	14	44	<1
	J-4	6	<1	11	9	<1
Cobalt	J-2	1	<0.050	<0.050	<0.050	<0.050
	J-3	2	<0.050	<0.050	<0.500	<0.050
	J-4	6	<0.050	<0.050	<0.050	<0.050
Fluoride	J-2	1	1.2	1.0	1.1	1.2
	J-3	2	1.2	1.1	1.1	1.1
	J-4	6	1.2	2.1	1.1	1.2

Table V-253 (Continued)

				•			
		Stream	Sample			ns (mg/l)	
	<u>Pollutant</u>	_Code_	Туре	Source	Day 1	Day 2	Day 3
	Name of the second seco						
	Nonconventional Pollutants (Continued)					•	
	Iron	J-2	. 1	0.100	0.100	0.300	0.100
	21 011	J-3	2	0.100	49.2	211	50.1
	•	J-4	6	0.100	94.2	115	68.8
		· .	J	000	01.2	113	00.0
	Magnesium	J-2	1	1.40	1.40	1.30	1,40
		J-3	2	1.40	3.20	4.00	1.80
	•	J-4	6	1.40	9.30	8.30	5.20
			*				•
	Manganese	J-2	1	0 200	<0.050	<0.050	0 100
		J-3	2	0.200	0.450	0.500	0.300
		J-4	6	0.200	1.00	0.650	0.600
	Molyhdon	J-2		.0.050	.0 050	.0.000	.0.000
	Molybdenum	J-2 J-3	1	<0.050	<0.050	<0.050	<0.050
		J=3 J=4	2 6	<0.050	<0.050	0.100	<0.050
		J- 4	0	<0.050	0.400	0.500	0.600
	Phenolics	J-2	1	<0.005	3.6	. 33	3.9
		J-3	i	<0.005	2.1	0.33	<0.005
		J-4	i	<0.005	0.96	0.56	0.56
	•		•		0.00	0.00	0.00
٠,	Phosphate	J-`2	1	<0.5	< 1	· <1	<0.4
		J-3	2		200	<1	45
		J-4	6	<0.5	130	80	120
	tender tanner i inder var var var var var var var var var va				-		
	Sodium	J-2	1	111	2.30		2.30
		J-3	2	111			670
		J-4	6	111	278	390	440
	Sulfate	J-2	1	90	600 1	.500 1.	350
		J-3	2			,500 1,	
		J-4	6				500
;			. •	3 0 , 2 ,	, -00 -	,500 1,	300
	Tin	J~2	1	<0.050	<0.050	<0.050	0.100
	•	J-3	· 2	<0.050	15.8	4.50	0.150
		. J~4	. 6	<0.050	3.40	1.75	0.350
	Titanium	J-2	1	<0.050	<0.050	<0.050	<0.050
		J-3	, 2 .	<0.050	1.90	2.50	1.30
		J-4	6	<0.050	1.20	1.40	0.900
	Total Dissolved Solids (TDS)	1-2		70 1	500 -		
	TOTAL DISSUIVED SULIDS (IDS)	J−2 J ~3	1 . 2 .			,050	52
		J-4	6				800
		J 4	U	10 2,	500 2	,000 2,	900

Table V-253 (Continued)

Stream SampleConcentrations (ons (mg/1)	<u> </u>
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3
Nonconventional Pollutants (Continued)					
The Course Copper (TOC)	J-2	1	3	50	600	98
Total Organic Carbon (TOC)	J-3		3	300		1,850
	J-4	2 6	3 2	,600	3,600	3,620
Total Solids (TS)	J-2	1	123 1	,600	3,940	410
	J-2	1	<0.050	<0.050	<0.050	<0.050
Vanadium	J-3	2	<0.050	0.100		<0.050
	J-4	6	<0.050	<0.050		<0.050
	3-4	· ·				
	J-2	1	<0.050	<0.050	<0.050	
Yttrium	J-3	2	<0.050	<0.050	<0.500	<0.050
	J-4	6	<0.050	<0.050	<0.050	<0.050
	J-4	J			•	
Conventional Pollutants						ı
	J-2	,	<1	850	2,100	520
Oil and Grease	J-3	1	<1	88	22	4
	J-4	;	<1		27	6 ·
	J-4	'	• •			
(TCC)	J-2	1	42	99	144	390
Total Suspended Solids (TSS)	J-3	2		1,300	874	3,000
	J-3 J-4	6	42	260	1,370	900
i	5~4	Ü	• ••		,,	
.i. ()	J-2	1	2.71	6.50	7.60	
pH (standard units)	J-3	2	2.71	9.41	8.93	9.10
1	J-4 .	6	2.71	9.60		9.10
	U -		- • • •			!

^{1.} The following toxic pollutants were not detected in this waste stream: 1-3, 5, 7-10, 12-22, 24-43, 45-47, 49-85, 87, and 88.

^{2.} No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-254

METAL POWDERS SAWING OR GRINDING SPENT NEAT OILS

Plant	:	Water 1/kkg	Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
1	:	NR	NR	NR	6.17 (CH)	1.48 (CH)

NR - Data not reported CH - Contract haul

Table V-255 METAL POWDERS SAWING OR GRINDING SPENT EMULSIONS

Plant	Water 1/kkg	Use gal/ton	Percent Recycle	Wastewater l/kkg	Discharge gal/ton
1	4,590	1,100	0 (+)	0	0
2	NR	NR	P.	4.63	1.11
3	NR	. NR	P	6.13	1.47
	NR	NR	P	26.7	6.40
4	NR	NR	P	11.8	2.83
	59,200	14,200	P	41.1	9.85
5	550	132	0 (+)	221	52.9

NR - Data not reported + - Loss due to drag-out P - Periodic discharge

Table V-256

METAL POWDERS SAWING OR GRINDING SPENT EMULSIONS
RAW WASTEWATER SAMPLING DATA

		Pollutant		Stream	Sample		centration		
				Code	Туре	Source	Day 1	Day 2	Day 3
	Toxic	Pollutants							
	6.	carbon tetrachlorid	е	J-5 J-6	1	ND ND	0.015 ND		
	11.	1,1,1-trichloroetha	ne	J-5 J-6	1 1	ND ND	0.055 0.019		
	23.	chloroform		J-5 J-6	1 1	0.027 0.027	ND ND		
	48.	dichlorobromomethan	e	J-5 J-6	1 1	0.004 0.004	" ND ND		•
	86.	toluene		J-5 J-6	1 1	ND ND	0.007 0.002		
989	114.	antimony		J-5 J-6	1 .	<0.010 <0.010	<0.010 <0.010		
	115.	arsenic		J-5 J-6	1 1	<0.010 <0.010	<0.010 <0.200		-
	117.	beryllium		J-5 J-6	1 .	<0.005 <0.005	<0.005 <0.050		
	118.	cadmium		J-5 J-6	1 1	<0.020 <0.020	<0.020 <0.200		
··	119.	chromium (total)	3	J-5 J-6	to the second section of the second s	<0.020 <0.020	0.080 <0.200	16	
* 1	1.20.	copper	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	J-5 J-6	1 1	<0.050 <0.050	1.55 <0.500	*	
- wh.	121.	cyanide (total)		J−5 J~6	1 1	<0.02 <0.02	2.5 <0.02	' a Table a	i
,	122.	lead	i · .	J-5 J-6	1. 1.	<0.050 <0.050	0.200 <0.500		
	123.	mercury		J-5 J-6	1 1	<0.0002 <0.0002	<0.002 <0.002		
	124.	nickel	v	J-5 J-6	1 1	<0.050 <0.050	0.150 <0.500		

Table V-256 (Continued)

METAL POWDERS SAWING OR GRINDING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

	Stream	Sample	Concentrations (mg/1)			
Pollutant Pollutant	Code	Туре	Source Day 1 Day 2 Day 3			
Toxic Pollutants (Continued)						
125. selenium	J-5 J-6	1 1	<0.010 <0.010 <0.010 <0.100			
126. silver	J-5 J-6	1	<0.010 <0.010 <0.010 <0.010			
127. thallium	J-5 J-6	. 1	<0.010 <0.010 <0.010 0.010 ·			
128. z.inc	J-5 J-6	1	0.080 3.26 0.080 1.56			
Nonconventional Pollutants						
Acidity	J-5 J-6	1 1	<1 <1 <1 <.1 4.30			
Alkalinity	J-5 J-6	1 1	13 1,920 13 <1			
.Aļuminum	J-5 J-6	1 1	0.300 1.60 0.300 7.00			
Ammonia Nitrogen	J-5 J-6	1 1	0.16 0.16 0.16 5.5			
Barium	J-5 J-6	1	0.050 0.050 0.050 0.500			
Boron	J-5 J-6	1 1	<0.100 0.400 <0.100 166			
Calcium	J-5 J-6	. 1	10.4 15.7 10.4 22.0			
Chemical Oxygen Demand (COD)	J-5 J-6	1 1	70 7,000 70 24,000			
Chloride	J-5 J-6	1 1	<1 <1 <1 <1			

Table V-256 (Continued)

METAL POWDERS SAWING OR GRINDING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample Type	Concentration Source Day 1	ns (mg/l) Day 2 Day 3
	Nonconventional Pollutants (Continued)				
	Cobalt	J-5 J-6	1 1	<0.050 0.100 <0.050 <0.500	
	Fluoride	J-5 J-6	1 1 .	1.2 2.2 1.2 8.3	
	Iron	J-5 J-6	1	0.100 16.2 0.100 176	
	Magnesium	J-5 J-6	1 1	1.40 2.70 1.40 3.00	
2	Manganese	J~5 J-6	1 1 .	0.200 0.800 0.200 4.00	
	Molybdenum	J~5 J-6	1 1	<0.050 <0.050 <0.050 <0.500	
	Phenolics	J-5 J-6	1	<0.005 45 <0.005 120	
	Phosphate	J-5 J-6	1 1	<0.5 10 <0.5 15	
	Sodium	J-5 J-6		111 1,010 111 2,150	
and the second	Sulfate	J-5 J-6	1 1	90 6,000 90 12,000	
	Tin	J-5 J-6	1 1	<0.050 <0.050 <0.050 <0.500	
* =	Titanium	J-5 J-6	1. 1	<0.050 <0.050 <0.050 <0.500	
	Total Dissolved Solids (TDS)	J-5 J-6	1	76 3,400 76 9,900	
	Total Organic Carbon (TOC)	J-5 J-6	. 1 1	3 2,600 3 9,300	
	Total Solids (TS)	J-5 J-6		125 5,000 125 10.000	

Table V-256 (Continued)

METAL POWDERS SAWING OR GRINDING SPENT EMULSIONS RAW WASTEWATER SAMPLING DATA

Pollutant	Stream <u>Code</u>	Sample Type	Cor Source	ncentration Day 1	s (mg/l) Day 2	Day 3
Nonconventional Pollutants (Continued))					
Vanadium	J-5 J-6	1 1	<0.050 <0.050	<0.050 <0.500		
Yttrium	J-5 J-6	1	<0.050 <0.050	<0.050 <0.500		
Conventional Pollutants						
Oil and Grease	J-5 J-6	1 1	<1 <1	720 2		. •
Total Suspended Solids (TSS)	J-5 J-6	1 1	42 42	92 120		
pH (standard units)	J-5 J-6	1 1	2.71 2.71	9.13 2.80	F	

^{1.} The following toxic pollutants were not detected in this waste stream: 1-5, 7-10, 12-22, 24-47, 49-85, 87, and 88.

^{2.} No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-257

METAL POWDERS SAWING OR GRINDING CONTACT COOLING WATER

Plant	Water 1/kkg	Use gal/ton	Percent Recycle	Wastewater 1/kkg	r Discharge gal/ton
1	162,000	38,900	0 .1	62,000	38,900
2	NR	NR	NR	NR	NR
	NR	NR	NR	NR	NR
!	NR	NR	NR	NR	NR

NR - Data not reported

Table V-258

METAL POWDERS SAWING OR GRINDING CONTACT COOLING WATER RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	Con Source	Day 1	(mg/1) Day 2	Day 3
Toxic Pollutants						
117. beryllium	AH-3		-	0.028		
118. cadmium	AH-3		-	<0.050		
119. chromium (total)	AH-3		-	<0.030		
120. copper	AH-3		-	230.000		
122. lead	AH-3		-	<0.500		
124 nickel	AH-3		-	0.310		
128. zinc	AH-3		- .	0.910		
Nonconventional Pollutants						
Aluminum	ан-з		-	40.00		
Iron	AH-3		-	0.800		
Magnesium	AH-3		-	11.00		
Manganese	AH-3			0.320		
Tin	AH-3			0.360		

^{1.} No analyses were performed for the following toxic pollutants: 1-116, 121, 123, 125, 127 and 129.

Table V-259 METAL POWDERS SIZING SPENT NEAT OILS

Plant		Water 1/kkg	Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
1	1	NR	NR	100	0 (+)	0 (+)
2	s 1	NR	NR	100	0 (+)	0 (+)

NR - Data not reported + - Loss due to evaporation and drag-out

Table V-260
METAL POWDERS SIZING SPENT EMULSIONS

Plant	Water	Use	Percent	Wastewater	Discharge
	1/kkg	gal/ton	Recycle	l/kkg	gal/ton
1	14.6	350	100	0 (+)	0 (+)

^{+ -} Loss due to evaporation and drag-out

Table V-261

METAL POWDERS STEAM TREATMENT WET AIR POLLUTION CONTROL BLOWDOWN

Plant	Water	Use	Percent	Wastewater	Discharge
	1/kkg	gal/ton	Recycle	1/kkg	gal/ton
1	792	190	0	792	190

Table V-262

METAL POWDERS STEAM TREATMENT WET AIR POLLUTION CONTROL BLOWDOWN RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>	Stream Code	Sample Type	Conce Source	ntrations Day 1	(mg/l) Day 2	Day 3
Toxic Pollutants						
4. benzene	J-1	1	ND	0.004	ND	0.003
6. carbon tetrachloride	J-1	1	ND	ND	0.005	0.006
11. 1,1,1-trichloroethane	J-1	1	ND	0.007	0.005	0.006
23. chloroform	J-1	1	0.027	ND	ND	ND
	J-1	1	ND	0.008	0.005	ND
	J1	1	0.004	ND	ND	ND
	J-1	1	14D	0.002	0.004	o 1602
86. toluene	J-1	6	<0.010	<0.010	<0.010	<0.010
114. antimony	J−1	6	<0.010	<0.010	<0.010	<0.010
115. arsenic	J-1	6	<0.005	<0.005	<0.005	<0.005
117. beryllium		. 6	<0.020	<0.020	<0.020	<0.020
118. cadmium	J-1		<0.020	<0.020	<0.020	<0.020
119. chromium (total)	J-1	6		<0.020	<0.050	<0.050
120. copper	J-1	6	<0.050	-		
121. cyanide (total	J-1	1	<0.02	0.13	<0.02	0.03
122. lead	J-1	6	<0.050	<0.050	<0.050	<0.050
123. mercury	J-1	6	<0.0002	<0.0002	<0.0002	<0.0002
124. nickel	J-1	6	<0.050	<0.050	<0.050	<0.050
125. selenium	J-1	6	<0.010	<0.010	<0.010	<0.010
126. silver	J-1	6	<0.010	<0.010	<0.010	<0.010
127. thallium	J-1	6	<0.010	<0.010	<0.010	<0.010
128. zinc	J-1	6	0.080	0.040	0.030	0.020

998

Table V-262 (Continued)

METAL POWDERS STEAM TREATMENT WET AIR POLLUTION CONTROL BLOWDOWN RAW WASTEWATER SAMPLING DATA

<u>Pollutant</u>			Stream Sample Code Type		Cor	Concentrations (mg/l)			
		code		Туре	Source	Day 1	Day 2	Day 3	
	Nonconventional Pollutants							,	
	Acidity	J-1		6	<1	<1	<1	<1	
	Alkalinity	J-1		6	13	10	10	8.6	
	Aluminum	J~1		6	0.300	0.200	0.300	0.300	
	Ammonia Nitrogen	J-1		6	0.16	0.64	0.47		
	Barium	J-1	i	6	0.050	0.050	0.050	0.7	
	Boron	J~1		. 6	<0.100	<0.100	<0.100	0.050	
	Calcium	J-1	1	6	10.4	10.7		<0.100	
	Chemical Oxygen Demand (COD)	J-1		6 :	70	380	11.2	10.9	
9	Chloride	J-1		6	· <1		84	540	
99	Cobalt	J-1		6		110	8	8	
	.Fluoride	. J-1			<0.050	<0.050	<0.050	<0.050	
	Iron	*		6	1.2	1.0	1.3	1.2	
	Magnesium	J1		6		0.100	0 .150	0.050	
	Manganese	J-1	F	6	1.40	1.50	1.50	1.50	
	Molybdenum	J-1		6	0.200 /	<0.050	<0.050	0.100	
	Phenolics			6	<0.050	<0.050	<0.050	<0.050	
		J-1		1	0.005	23	33	30	
,	Phosphate	. J-1		6	0.5	8	<1	NU.5	
-	Sodium	J-1	ar and	6 .	1.11	2.40	2.60	2.40	
	Sulfate	J-1	5	6	90 1,	500 2,	700	75	
	Tin	J~1	e .	6	<0.050	<0.050	<0.050	<0.050	
	Titanium	J-1	-	6	<0.050	<0.050	<0.050	<0.050	
	Total Dissolved Solids (TDS)	J. - 1	1	6	76	170	65	99	

Table V-262 (Continued)

METAL POWDERS STEAM TREATMENT WET AIR POLLUTION CONTROL BLOWDOWN RAW WASTEWATER SAMPLING DATA

	Stream Sample Concentrations (mg/					
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3
				•		
Nonconventional Pollutants (Continued)					
Total Organic Carbon (TOC)	J-1	6	3	15	27	16
Total Solids (TS)	J-1	6	1 25	180	134	350
	J-1 .	6	<0.050	<0.050	<0.050	<0.050
Vanadium			-0.050	<0.050	<0.050	<0.050
Yttrium	J-1	6	<0.050	\0.030	10.000	• • • • • • • • • • • • • • • • • • • •
			*			
Conventional Pollutants					*	
Oil and Grease	J-1	1	<1	35	42	31
	J~1	6	42	15	80	200
Total Suspended Solids (TSS)	•	_	0.71	5.81	6.21	6.00
ρΗ (standard units)	J-1	6	2.71	5.01	0.21	0.00

- 1. The following toxic pollutants were not detected in this waste stream: 1-3, 5, 7-10, 12-22, 24-43, 45-47, 49-85, 87, and 88.
- 2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-263 METAL POWDERS OIL-RESIN IMPREGNATION SPENT NEAT OILS

Plant	Wate 1/kkg	er Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton
1	NR	NR	100	0 (+)	0 (+)
2	NR	NR	100	0 (+)	0 (+)
3	NR	NR	NR	10.9 (CH)	2.61 (CH)
4	36.8	8,83	0	36.8 (CH)	8.83 (CH)
5	NR	NR	NR	NR (CH)	NR (CH)
6	NR	NR	NR	NR	NR
7	NR	NR	NR	NR	NR
				1	

NR - Data not reported + - Loss due to evaporation and drag-out CH - Contract hauled

Table V-264

METAL POWDERS HOT PRESSING CONTACT COOLING WATER

73	Water 1/kkg	Use gal/ton	Percent Recycle	Wastewater 1/kkg	Discharge gal/ton	
Plant	±/ 1616 9	, ,	2	8,800	2,110	
1	8,800	2,110	0	0,000	_, _	

Table V-265

METAL POWDERS HOT PRESSING CONTACT COOLING WATER
RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream Code	Sample	Conc	entration		·
Toxic	Pollutants	code	Туре	Source	Day 1	Day 2	Day 3
117.	beryllium	AH-2 .			0.002		
118.	cadmium	AH-2		-	<0.005		
119.	chromium (total)	AH-2		-	0.010		
120.	copper	AH-2		-	2,200		
122.	1 ead	AH-2	•	_	<0.050		
124.	nickel	AH-2		-	0.043		
128.	zinc	AH-2		-	0.079		

Nonconventional Pollutants			
Aluminum	AH-2	_	0.490
Cobalt	AH-2	_	0.008
Iron	AH-2	_	5.300
Magnesium	AH-2		. 3. 500
Tin	AH-2	-	0.046
Titanium	AH-2	·	0.011
Vanadium	AH-2	<u></u>	0.006

1. No analyses were performed for the following toxic pollutant: 1-116, 121, 123, 125-127 and 129.

Table V-266

METAL POWDERS MIXING WET AIR POLLUTION CONTROL BLOWDOWN

Plant	Water	Use	Percent	Wastewater	Discharge
	1/kkg	gal/ton	Recycle	1/kkg	gal/ton
1	79,000	18,900	90	7,900	1,890

METAL POWDERS MIXING WET AIR POLLUTION CONTROL BLOWDOWN
RAW WASTEWATER SAMPLING DATA

	Pollutant	Stream	Sample	Corn.	entration	s (mg/1)	
	Toxic Pollutants	_Code	Туре	Source	Day 1	Day 2	Day 3
mer is					;		
	117. beryllium	AH-1		_	<0.001		•
	118. cadmium	AH~1			<0.005		
	119. chromium (total)	AH~ 1		_	<0.003		
	120. copper	AH-1		,	1.200		
-	122. lead	AH~ 1		-	<0.050		
	124. nickel	AH-1.		-	<0.012	٠.	÷
	128. zinc	AH-1	•	-	0.031		
	Nonconventional Pollutants	4					
	-Aluminum	AH 1		_	0.058		
	Iron	AH 1		_	0.570		
	Magnesium	AH~1	-	-	4.500		
	Manganese .	AH-1		_	0.300		
	Molybdenum	AH=1			<0.020		Microsoft and the contract of
	Titanium	AH- 1	- - -		<0.010		

1. No analyses were performed for the following toxic pollutants: 1-116, 121, 123, 125-127, and 129.

Table V-268
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT A

		C+	Sample	Concentrations (mg/1)			
Pollutant		Stream Code	Type	Source Da	ay 1 Day 2	Day 3	
Toxic Pollutants					0.017		
114. antimony ·	A-4	3	<0,003	0.021	0.017 0.060		
The contraction of the contracti	A-5	4	<0.003	0.044			
115. arsenic	A-4	3	<0.003	0.017	0.006		
115. arsenic	A-5	4	<0.003	0.043	0.037		
117. beryllium	A-4	3	<0.0005	<0.0005	<0.0005		
117. beryllium	A-5	4	<0.0005	<0.0005	<0.0005		
	A-4	3	<0.002	0.009	<0.002		
118. cadmium	A-5	4	<0.002	0.007	0.003		
	A-4	3	<0.001	0.66	0.51		
119. chromium (total)	A-5	4	<0.001	<0.001	<0.001		
		2	<0.001	0.2	0.089		
120. copper	A-4 A-5	3 4	<0.001	0.023	0.012		
			<0.084	4.8	4.3		
122. lead	A-4 A-5	3 4	<0.084	<0.084	<0.084		
•		_		0,47	0.39		
124. nickel	A-4	3 · 4	<0.003 <0.003	0.47	0.35		
	A-5	4			- 04	•	
128. zinc	A-4	3	0.72	2.8	0.34 <0.003		
120.	A~5	4	0.72	0.15	٧٥.٥٥٥		
Nonconventional Pollutants		-					
-	A-4	3	<0.050	0.87	0.54		
Aluminum	A-5	4	<0.050	<0.050	<0.050		
		3	0.15	0.060	0.055		
Barium	A-4 A-5	4	0.15	0.029	0.049		
			<0.009	1,7	1.2		
Boron	A-4 A-5	3 4	<0.009	1.8	1.4		
•			*	91	62		
Calcium	A-4 A-5	3 4	69 6 9	73	75		
	G-W	-	_		-0 DOG		
Cobalt	A-4	3	<0.006 <0.006	<0.006 0.009	<0.006 <0.006		
· · · · · · · · · · · · · · · · · · ·	A~5	4	<0.000	0.003	-:		

Table-V-268 (Cont-inued)-

WASTEWATER TREATMENT PERFORMANCE DATA - PLANT A

<u>Pollutant</u>	Stream Code	Sample Type	Concent Source D	Day 3		
Nonconventional Pollutants	(Continued)			-		
Iron	A-4	3	<0.008	23	18	
	A-5	4	<0.008	<0.008	<0.008	•
Magnesium	A-4	3	27	34	24	
•	A-5	4	27	29	30	
Manganese	A-4	3	<0.001	0.23	0.17	
	A-5	4	<0.001	0.10	0.13	-
Molybdenum	A-4	3	<0.002	0.011	<0.002	
	A-5	4	<0.002	0.037	0.015	
Sodium	A-4	3	10	540	330	
	A-5	4	10	3,000	2,700	
Tin.	A-4	3	<0.12	<0.12	<0.12	
	A-5	4	<0.12	<0.12	<0.12	

Table V-268 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT A

Pollutant		Stream Code	Sample Type	Concentration Day	tions (mg/1) 1 Day 2	Day 3
Nonconventional Pollutants (Cont	inued)					
Titanium	A-4 A-5	3 4	<0.005 <0.005	<0.005 0.013	<0.005 <0.005	
Vanadium	A-4 A-5	3 4	<0.003 <0.003	<0.003 0.028	<0.003 <0.003	
Yttrium	A-4 A-5	3 4	<0.002 <0.002	<0.002 0.003	<0.002 <0.002	
Conventional Pollutants			-	•	w.	
Oil and Grease	A-4 A-5	1	<1 <1	<1 <1	<1 <1	
Total Suspended Solids (TSS)	A-4 A-5	3 4	23 23	26 33	26 25	
pH (standard units)	A-4 A-5		6.5 6.5	1.40 NA	1.31 7.11	

NA - Not Analyzed.

Footnote: No analyses were performed on the following toxic pollutants: 1 - 113, 116, 121, 123, 125-127, and 129.

Table V-269
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT B

	Pollutant		Stream _Code	Sample	Con	centratio			
			code	Type .	Source	<u>Day 1</u>	Day 2	Day 3	
Toxi	c Pollutants								
6.	carbon tetrachloride		B-7	. 1	ND	ND			
			B-8	i	ND	ND ND	ND ND	0.013 0.012	
11.	1,1,1-trichloroethane		B-7	1	0.003				-
•	1	1	B-8	i	0.003	ND 0.004	0.003 ND	0.045 0.037	
23.	chloroform		B-7	1					
			B-8	1	. ND ND	ND 0.005	0.005 0.005	0.005 0.006	
26.	1,3-dichlorobenzene		B-7	,				0.006	
	· , o d · ci i i o o o o o o o o o o o o o o o o		B-7 B-8	6 6	0.039	ND ND	ND ND	ND	
38.	ethylbenzene			•			יטאו	ND	
00.	· ·		B−7 B−8	· 1	ND	0.054	0.027	0.032	
4.4	matter 1			'	ND	0.018	0.015	0.039	
44.	methylene chloride		B-7 B-8	1	ND	0.105	0.017	0.017	
2.0			D6	ı	ND	0.027	0.014	0.021	
62.	N-nitrosodiphenylamine		B-7	6	ND	ND	ND	0.013	
			B~8	6	ND	ND	ND	ND	
65.	pheno1 -		B-7	6	ND	0.014	ND	מא	
			B-8	6	ND	ND	ND	ND	
66.	bis(2-ethylhexyl) phtha	late	B-7	6	ND	0.021	.ND	0.023	
			B-8	6 .	ND	ND	0.015	ND	
72.	benzo(a)anthracene	•	B~7	6	0.061	ND	ND	ND	
			B-8	6	0.061	ND	ND	ND	
86.	toluene		B-7	. 1	ND .	0.046	0.040		-
			B-8	1	ND	0.020	0.046 0.025	0.084 0.096	
114.	antimony		B-7	6	<0.010	0 040 :			
	-		B-8	6	<0.010	0.040 0.010	0.090 0.030	0.040 0.050	
· 1:15.	farsenic	rigidan iy	<u></u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				4	-
		Y .	B-7 B-8	6 6	<0.010 <0.010	0.020 <0.010	0.020 <0.010	0.030	
117.	beryllium						٠٠.٠١٥	0.010	
	~~, y i i i um		B-7 B-8	6	<0.005 <0.005	<0.005	<0.005	<0.005	
118.	cadmium		_ ,			<0.005	<0.005	<0.005	-
110.	Caum I UIII	- 1. Îi .	B−7 B−8	6	<0.020	<0.020	<0.020	<0.020	
-			5 0	O	<0.020	<0.020	<0.020	<0.020	

Table V-269 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT B

	Stream	Sample		Co	oncentratio	ns (mg/l)	
Pollutant	Code	Type		Source	Day 1	Day 2	Day 3
Toxic Pollutants (Continued)							
TEXT POTTULARES (CONTINUES)							
119. chromium (total)		B-7 B-8	6 6	<0.0 <0.0			0.780 0.100
120. copper		8-7 B- 8	6 6	<0.0 <0.0			3.35 0.600
121. cyanide (total)		B-7 B-8	1	<0. <0.			0.34 0.82
122. lead	B−7 B−8	6 6		<0.050 <0.050	1.85 0.450	3.45 0.450	2.70 0.300
123. mercury	B-7 B-8	6 6		<0.0002 <0.0002	<0.0002 <0.0002	<0.0002 <0.0002	<0.0002 <0.0002
124. nickel	B-7 B-8	6 6		<0.050 <0.050	0.200 0.050	0.100 0.050	0.100 0.100
125. selenium	B-7 B-8	6 6		<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010
126. silver	B-7 B-8	6 6		<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010
127. thailium	B-7 B-8	6 6		<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.020
128. zinc	B-7 B-8	6 6		<0.020 <0.020	2.22 0.460	2.88 0.440	3.88 0.400
Nonconventional Pollutants							
Acidity	B-7 B-8	6 6		<1 <1	< 1 < 1	<1 <1	<1 <1
Alkalinity	B-7 B-8	6 6		240 240	230 200	250 200	190 200
Aluminum	B-7 B-8	6 6		<0.100 <0.100	1.20 0.200	0.800 0.200	0.500 0.100
Ammonia Nitrogen	B-7 B-8	6 6		< 1 < 1	۰, 6	6.3 7	6.3 5.8

Table V-269 (Continued)

WASTEWATER TREATMENT PERFORMANCE DATA - PLANT B

	Stream	Sample	pleConcentrations (mg/l)					
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3		
Nonconventional Pollutants (Con	tinued)				2			
Barium	B-7 B-8	6	<0.050 <0.050	1.85 0.300	3.20	2.70 0.300		
Boron	B~7 B~8	6 6	<0.100 <0.100	0.700 0.600	0.800 0.700	1.00 0.900		
Calcium	B-7 B-8	6 6	62.0 62.0	47.1 71.5	55.4 64.2	57.1 57.8		
Chemical Oxygen Demand (COD)	B-7 B-8	6 6	<5 <5	490 330	280 310	440 460		
Çhloride	B-7 B-8	6	6 6	67 62	8 1 70	91 79		
Cobalt	B-7 B-8	6	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050		
Fluoride	B-7 B-8	6	1.2	2.6	5.1 3.3	0.47 0.97		
Iron	B-7 B-8	6	1.00 1.00	4.50 0.850	3.90 0.750	4.15 0.650		
Magnesium	B-7 B-8	6 6	19.7 19.7	15.5 14.7	17.2 13.9	18.5 13.2		
Manganese	B-7 B-8	6	0.100 0.100	0.200 <0.050	0.150 <0.050	0.150 <0.050		
Molybdenum	8-7 B-8	6	<0.050 <0.050	0.150 0.100	0.200 0.150	0.300 0.250		
Phenolics	B-7 B-8	1 1 .	0.010	0.021 0.031	0.020 0.034	0.030 0.030		
Phosphate	B-7 B-8	6 6	56 56	92 19	130 <4	9.6		
Sodium	B-7 B-8	6 6	6.80 6.80	108 98.5	127 119	149 134		
Sulfate	B-7 B-8	. 6 6	7.8 7.8	67 180	72 160	72 120		

T 0 T

Table V-269 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT B

	Stream	Sample	Concentrations (mg/l)			
Pollutant	Code	Type	Source	Day 1	Day 2	Duy 1
Nonconventional Pollutants (Continued)						
Tin	B~7	6	<0.050	<0.050	<0.050	<0.050 <0.050
	B-8	6	<0.050	<0.050	<0.050	<0.050
Titanium	B~7	6	<0.050	0.100	0.050	<0.050
Traffian	B~8	6	<0.050	<0.050	<0.050	<0.050
(TDS)	B~7	`6	390	320	730	700
Total Dissolved Solids (TDS)	B~8	6	390	300	730	620
		^	1.2	150	120	110
Total Organic Carbon (TOC)	B~7 B~8	6 6	12 12	110	130	130
	БЗ	Ü				
Total Solids (TS)	B-7	6	490	790	1,100 1,000	1,030 860
	8-8	6	490	660	1,000	0,00
Vanadium	B~7	6	<0.050	<0.050	<0.050	<0.050
variacioni	8-8	6	<0.050	<0.050	<0.050	<0.050
****	B-7	6	<0.050	<0.050	<0.050	<0.050
Yttrium .	B-8	. 6	<0.050	<0.050	<0.050	<0.050
Conventional Pollutants						
Oil and Grease	B-7	1	15	36	40	36
	B-8	1	15	10	10	13
Total Suspended Solids (TSS)	B-7	6	110	490	210	210
	B-8	6	110	340	48	200
	D7	6	7.43	6.70	6.53	6.53
pH (Standard Units)	B−7 B−8	6	7.43	6.80	6.63	6.81
	_ 0	_				

Footnote:

- 1. The following toxic pollutants were not detected at this plant: 1-5, 7-10, 12-22, 24, 25, 27-37, 39-43, 45-61, 63, 64, 67-71, 73-85, 87, and 88.
- 2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-270
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT D

		Stream	Sample	Concentrations (mg/l)			
	<u>Pollutant</u>	Code _	Type		<u>Day 1</u>		Day 3
Toxio	C Pollutants						
TOXIC	·		* · · · · · · · · · · · · · · · · · · ·				
11.	1,1,1-trichloroethane	D-20	1	0.009	0.007	0.006	0.008
		D-21	1 ,	0.009	0.013	0.008	0.014
22.	p-chloro-m-cresol	D-20	6	ND	ND	ND	ND
		D-21	6 .	ND	ND	ND	0.375
23.	chloroform	D-20	1	0.144	0.001	ND	0.002
		D-21	i	0.144	0.013	0.012	0.002
2.4	2.4. dimabbalakana	5 00					
34.	2,4-dimethylphenol	D-20 D-21	. 6: : 6	ND ND	ND 0.048	ND ND	0.028 ND
		B 21	Ü	ND	0.040	ND	ND
44.	methylene chloride	D-20	1	0.002	0.001	0.002	0.007
		D-21	· 1;	0.002	0.002	0.003	0.012
66.	bis(2-ethylhexyl) phthalate:	D-20	6	0.009	1.260	ND	ND .
		D-21	6	0.009	ND	ND	ND .
81.	phenanthrene	- D-20	6	. ND	ИБ		0 000
01.	phenanth ene	D-21	6	ND ND	ND - ND	ND ND	0.002 ND
					.,_		
86.	toluene	D-20	1 1	ND	ND	ND	0.002
		D-21	1,	ND .	ND	ND	ND
114.	antimony	D-20	6 .	<0.003	<0.003	<0.003	<0.003
		D-21 ·	6	<0.003	<0.003	<0.003	<0.003
115.	arsenic	D-20	6	<0.003	<0.003	<0.003	<0.003
	The control of the co	D-21	- 6 ;	<0.003		<0.003	
117	B						
117,	beryllium	D-20 D-21	6	<0.0005 <0.0005	<0.0005 <0.005	<0.0005 0.002	<0.0005 <0.0005
		D 21.	.0	\0.0003	\0.00 5	0.002	<0.0005
118.	cadmium	D-20		<0.002	7.3	5.3	7.6
	ر شاري وفرطت معطا بدايت مي الحيد ا	D-21	نَـٰ ـ 6	<0.002	0.051	0.017	0.002
119.	chromium (total)	D-20	. · - ·6·	0.042	718	120	1.60
		D-21	6	0.042	0.83	0.20	0.18
120.	00000	D-20		. 0. 000	4.0		
120.	copper	D-20 D-21	6	0.068	4.8 0.40	3.5 0.050	5.1 0.029
			J	3.000	0.40		0.029
121.	cyanide (total)	D-20	1 .	<0.02	0.41	1.5	1.6
		D-21	1 .	<0.02	0.11	0.51	0.33

Table V-270 (Continued)

WASTEWATER TREATMENT PERFORMANCE DATA - PLANT D

Po!lutant	Stream <u>Code</u>	Sample Type	Source	Concentrations (mg/1) Day 1 Day 2 Day 3
Toxic Pollutants (Continued)				
122. lead		D-20 D-21		.084 0.72 0.66 0.80 .084 <0.084 0.19 <0.084
123. mercury		D-20 D-21		.0002 <0.0002 <0.0002 <0.0002 .0002 <0.0002 <0.0002 <0.0002
124. nickel		D-20 D-21		.003 340 300 340 .003 3.5 0.82 0.83
125. selenium	D-20	6	<0.003	<0.003 <0.003 <0.003
	D-21	6	<0.003	<0.003 <0.003 <0.003
126. silver	D-20	6	<0.001	0.013 0.012 0.020
	D-21	6	<0.001	0.008 0.008 0.008
127. thallium	D-20	6	<0.003	<0.003 <0.003 0.020
	D-21	6	<0.003	<0.003 <0.003 <0.003
128. zinc	D-20 D-21	6 6	0.038	1.9 1.4 2.0 0.021 0.007 0.014
Nonconventional Pollutants				
Acidity	D-20	6	<1	80 <1 <1
	D-21	6	<1	<1 <1 <1
Alkalinity	D-20	- 6	180	<1 1,600 1,360
	D-21	6	180	96 111 110
Aluminum	D-20	6	<0.050	32 37 44
	D-21	6	<0.050	0.14 0.15 <0.050
Ammonia Nitrogen	D-20	6	< 1	0.15 0.35 0.423
	D-21	6	< 1	0.35 1.2 0.44
Barium	D-20	6	0.12	0.83 0.72 0.91
	D-21	6	0.12	0.23 0.22 0.17
Boron	D-20	6	<0.009	14 9.7 14
	D-21	6	<0.009	<0.009 <0.009 <0.009
Calcium	D~20	6	63	1,900 1,600 1,900
	D~21	6	63	960 900 850

Table V-270 (Continued)

WASTEWATER TREATMENT PERFORMANCE DATA - PLANT D

	<u>Pollutant</u>	Stream _Code	Sample Type	Source		tions (mg/ Day 2	Day 3
	Nonconventional Pollutants (Con	ntinued)			a.		
	Chemical Oxygen Demand (COD)	D-20 D-21	6	<5 <5	130 80	190 110	170 100
	Chloride	D-20 D-21	6 6	34 34	200 1 7 0	195 165	160 160
	Cobalt	D-20 D-21	6	<0.006 <0.006	55 0.34	38 0.092	55 0.077
	Fluoride	D-20 D-21	6 6	0.45 0.45	2.1 2.7	0.47 0.63	500 59
	Iron	D-20 D-21	6 6	0.066 0.066	190 1.2	140 0.25	210 0.27
1015	Magnesium	D-20 D-21	6	24 24	43 20	36 11	51 11
	Manganese	D-20 D-21	6 6	0.012 0.012	5.2 0.087	3.8 0.040	5.4 0.041
	Molybdenum	D-20 D-21	6 6	0.030 0.030	44 1 9	35 10	44 10
	Phosphate	D-20 D-21	6 6	<4 <4	21 <4	<4 <4	<4 <4
	Sodium	D-20 D-21	6	9.5 9.5	770 600	590 340	540 320
	Sulfate	D-20 D-21	6 6	53 53	2,200 3,600	2,400 3,300	2,300 4,000
. :	-Tin	D-20 D-21	6	<0.12 <0.12	<0.12 1.5	<0.12 1.4	<0.12~ - 0.90
	Titanium	D-20 D-21	6	<0.005 <0.005	62 0.53	19 0.22	85 0.11
	Total Dissolved Solids (TDS)	D-20 D-21	6 6	393 393	4,000 5,800	5,600 5,600	3,900 5,400
	Total Organic Carbon (TOC)	D-20 D-21	6	8 8	5 4 7	46 22	29 34

Table V-270 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT D

Pollutant	Stream Code	Sample Type	Source		tions (mg/ Day 2	Day 3					
Nonconventional Pollutants (Cor	Nonconventional Pollutants (Continued)										
Total Solids (TS)	D-20 D-21	6 6	395 395	12,000 6,200	10,000 6,000	5,700 5,600					
Vanadium	D-20 D-21	6 6	0.016 0.016	4.3 0.056	3.1 0.11	4.6 0.035					
Yttrium	D-20 D-21	6 6	<0.002 <0.002	0.099 0.006		0.051 0.007					
Conventional Pollutants											
0il and Grease	D-20 D-21	1	<1 <1	91 5	120 5	790 10					
Total Suspended Solids (TSS)	D-20 D-21	6 6	< 1 < 1	8,300 53	5,200 30	770 23					
pH (Standard Units)	D-20 D-21	6 6	7.14 7.14	3.90 6.73	9.02 6.43	7.81 6.47					

^{1.} The following toxic pollutants were not detected at this plant: 1-10, 12-21, 24-33, 35-43, 45-65, 67-80, 82-85, 87, and 88.

^{2.} No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

WASTEWATER TREATMENT PERFORMANCE DATA - PLANT E

Table V-271

							÷
D - 1.1		Stream	Sample	C	oncentrati	ons (mg/1)	
POTT	utant	Code	Type	Source	Day 1	Day 2	Day 3
Toxi	c Pollutants	· · · · · · · · · · · · · · · · · · ·					
5.	benzidine	E-6	3 ·	0.762	0.010	1 150	
		E-7	3	0.762	0.010 **	1.159 **	0.576
		E~8	1	0.762	**	* *	0.033 0.965
				0.702			0.965
11.	1,1,1-trichloroethane	E-6	1	0.005	0.540	0.720	0.820
		E-7	1	0.005	0.490	0.490	0.960
	÷.	E-8	1 -	0.005			0.020
12.	hexachloroethane	E-6					
	nexaction betilane	E-7	3 3	ND	ND	0.006	ND
		E-8	1	ND	0.006	0.006	ND
		_ 0	,	ND			0.006
13.	1,1-dichloroethane	E-6	1	ND	ND	ND	0.005
		E-7	1	ND	0.040	0.035	0.005
		E-8	1	ND	0.0.0	0.005	ND
22.	p-chloro-m-cresol	5 0	•				
	b citioto in cleso!	E-6 E-7	3	. ND	0.680	ND	* *
	. •	E-8	3 1	ND	**	ND	ND
	1	L 0		ND			ИD
23.	chloroform	E-6	1	0.015	ND	ND	ND
		E~7	i	0.015	ND	0.015	ND .
		E-8	. 1	0.015	.,_	0.015	ND
27.	1,4-dichlorobenzene	E-6					
	1,4 dictirol openzene	E-7	3	ND	. ND	ND	ND
		E-8	1	ND ND	ND	ND	0.005
		_ 0		ַ אַט	-		ND .
28.	3,3′-dichlorobenzidine	E-6	3	0.001	0.810	0.010	0.019
		E-7	3	0.001	0.001	0.001	0.519
	•	E-8	1 -	0.001			ND
34.	2,4-dimethylphenol	E-6					ه . -
	= i a time stry i priction	E-7	.3 ,3	ND	**	**	ND
		E-8 '	,3 1	ND ND	0.046	0.053	0.046
			• •	-ND			ND
36.	2,6-dinitrotoluene	E-6	3 '	0.002	0.001	0.001	0.001
	•	E-7	3	0.002	0.002	0.003	0.001
		E-8	1	0.002		3.335	0.002
37,	1,2-diphenylhydrazine	E-6					
•	., = e ipneny mydraz me	E-7	3	0.001	0.001	0.001	0.001
		E-8	3 1	0.001	0.001	0.001	0.001
		L 0	1 .	0.001			ND

Table V-271 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT E

		Stream	Sample	C	oncentratio	ons (mg/l)	
<u>Pollu</u>	tant	Code	Type	Source	Day 1	Day 2	Day 3
Toxic	Pollutants (Continued)						
39.	fluoranthene	E-6	3	ND	0.001	0.001	0.001
		E-7	3	ND	ND	0.001	ND
		E-8	1	ND			ND
43.	bis(2-choroethoxy)methane	E-6	3	0.001	ND	0.001	0.002
		E-7 E-8	3 1	0.001 0.001	0.001	0.0002	0.0003 0.0001
44.	methylene chloride	E-6 E-7	1 1	ND	0.160 ND	ND	ИD
		E-8	1	ND ND	מא	ND	ŅD NĎ
55.	naphthalene	E-6 E-7	3 3	0.001 0.001	0.002 0.001	0.001 0.001	0.002 0.001
		E-8	1	0.001	. 0.001	0.001	0.001
0.4	N - t I dt I Y t	5 0		0.004	0.001	0.00.	
61.	N-nitrosodimethylamine	E-6 E-7	· 3	0.001 0.001	0.001 ND	0.001 ND	0,001 ND
		E-8	1	0.001	ND	ND	0.001
62.	N-nitrosodiphenylamine	E-6	3	ND	ND	ND	ИD
02.	it it is a sample by tall the	E-7	3	ND	ND	ND	ND
	-	E-8	1	ND		-	0.196
63.	N-nitrosodi-n-propylamine	E-6	3	0.024	0.018	0.021	0.016
		E-7	3	0.024	0.016	0.020	0.032
		E-8	1	0.024			0.023
65.	phenol	E-6	3	ND	**	**	**
		E-7	3	ND	**	**	**
		E-8	1	ND			ИD
66.	bis(2-ethylhexyl)	E-6	3	0.001	**	0.003	**
	phthalate	E-7	3	0.001	0.030	0.002	0.001
	•	E-8	. 1	0.001			0.002
67.	butyl benzyl phthałate	E-6	3	0.001	0.003	0.002	0.005
		E-7	3	0.001	0.004	0.002	0.003
		E-8	1	0.001			0.001
70.	diethyl phthalate	E-6	3	<0.00001	ND	0.001	ИD
		E-7	3	<0.00001	0.0001	0.0001	ND 0 0001
		E-8	1	<0.00001			0.0001-

			Stream		Samp			oncentratio		
	Pol1c	itant	Code		Тур	<u>e</u>	Source	Day 1	Day 2	Day 3
	Toxic	Pollutants (Continued)								
	71.	dimethyl phthalate	E-6		3		ND	ND	0.004	- ND
			E-7	1	3		ND	ND	0.001	ND
	•		E-8 ·		1		ND	~- ~		0.003
	72.	benzo(a)anthracene	E-6		3		ND	ND	ND	**
			E-7		3		ND	0.0002	0.0001	ND
			E-8		1		ND			ND
	73.	benzo(a)pyrene	E-6		3		ND	17.40	ND	ND.
	75.	benzo(a)pyr ene	E-7		3		ND .	ND	ND	-ND
			E-8		ĭ		ND	.,_	110	ND
			5 0				um	**		5
	75.	benzo(k)fluoranthene	E-6 E-7		3 3		ND ND	ND	ND **	ND **
			E-8		1		ND	ĬΛΩ	**	ŃD
					•		ND.			ND
	76.	chrysene	. E−6		3		ND .	ND	ND	**
1	٠.		E-7		3		ND	ND	ND	* *
			E-8		1		· ND	•		ИD
	78.	anthracene	E-6		3	-	ND	0.002	ND	0.002
			E-7		3		ND	ND	0.001	0.001
			E-8	-	1		ND			ND
	81.	phenanthrene	E-6	. :	3	:	ND	ND	0.001	" ND
		,	E-7		3 .		ND	0.001	0.001	ND
t Name to		and the same of th	E-8		_ 1_		ND			000.1
	83.	indeno(1,2,3-c,d)pyrene	E-6		. 3	-	ND	ND	· · ND	0.001
		· · · · · · · · · · · · · · · · · · ·	E-7		3		ND	ND	ND	ND
	-	1	E-8		. 1		ND:		, .,–	ND
	0.4	,	E-6	100	3		· ND	0.001	. 0.001	0.001
	84.	pyrene	E-6		3		ND ND	0.001	0.001	0.001
	•	•	E-8		1	-	ND :	0.001	0.001	ND
			i			-				
	86.	toluene	E-6	7	1	2	ND	ND	ND	ND
			E-7		1	:	ND	ND	ND	0.015
			E-8		. 1		ND	_		ND
	114.	antimony	E-6	٠.	3	1	<0.005	<0.005	<0.005	<0.005
		•	· E-7		3		<0.005	<0.005	<0.005	<0.005
			E-8		1		<0.005	<0.005		<0.005
			E-9		_ 3	4	<0.005		<0.005	

Table V-271 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT E

		Stream Sample Concentrations (mg/l)							
<u>Pollu</u>	tant	Code	Туре	Source	Day 1	Day 2	Day 3		
Toxic	Pollutants (Continued)								
115.	arsenic	E-6	3	<0.005	<0.005	<0.005	<0.005		
		E-7 E-8 E-9	3 √1 3	<0.005 <0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005		
117.	beryllium	E-6 E-7	3 3	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010	<0.010 <0.010		
		E-8 E-9	1 3	<0.010 <0.010	<0.010	<0.010	<0.010		
118.	cadmium	E-6 E-7	3 3	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050		
		E-8 E-9	1 3	<0.050 <0.050	<0.050	<0.050	<0.050		
119.	chromium (total)	E-6 E-7 E-8	3 3 1	<0.100 <0.100 <0.100	<0.100 <0.100 2.15	<0.100 <0.100	<0.100 <0.100 7.90		
		E-9	3	<0.100		<0.100			
120.	copper	E-6 E-7 E-8	3 3 1	0.080 0.080 0.080	0.620 0.100 14.0	0.180 0.110	0.750 0.080 87.4		
		E-9	3	0.080		0.140			
121.	cyanide (total)	E-6 E-7 E-8	1 1 1	<0.02 <0.02 <0.02	<0.02 <0.02 <0.02	<0.02 <0.0 2	<0.02 <0.02 <0.02		
		E-9	1	<0.02	10.02	<0.02	0.02		
122.	lead	E−6 E−7 E−8	3 3 1	<0.100 <0.100 <0.100	0.240 0.100 <0.100	0.220 <0.100	0.190 0.100 <0.100		
		E-9	3	<0.100		<0.100			
123.	mercury	E-6 E-7 E-8	3 . 3 1	<0.0010 <0.0010 <0.0010	<0.0010 <0.0010 <0.0010	<0.0010 <0.0010	<0.0010 <0.0010 <0.0010		
		E-9	3	<0.0010	0.0010	<0.0010			

Table V-271 (Continued)

WASTEWATER TREATMENT PERFORMANCE DATA - PLANT E

		Samp.) e	<u></u>	Concentrati	ions (mg/l)
Pollutant	Code	_Type	Source	Day 1	Day 2	Day 3
Toxic Pollutants (Continued)			a . and			
124. nickel	E-6 E-7 E-8	3 3	<0.100 <0.100 <0.100	0.510 <0.100	<0.100 <0.100	1.30 0.100
	E-9	3	<0.100		<0.100	
125. selenium	E-6 E-7 E-8 E-9	3 3 1 3	<0.010 <0.010 <0.010 <0.010	<0.010 <0.010 <0.010	<0.010 <0.010 <0.010	<0.010 <0.010 <0.010
126. silver	E-6 E-7 E-8 E-9	3 3 1 3	<0.002 <0.002 <0.002 <0.002	<0.002 <0.002 <0.002	<0.002 <0.002 <0.002	<0.002 <0.002 <0.002
127. thallium	E-6 E-7 E-8 E-9	3 3 1 3	<0.002 <0.002 <0.002 <0.002	<0.002 <0.002 <0.002	<0.002 <0.002 <0.002	<0.002 <0.002 <0.002
128. zinc	E-6 E-7 E-8 E-9	3 3 1 3	<0.050 <0.050 <0.050 <0.050	0.310 0.080 0.370	0.100 0.110 <0.050	0.240 0.080 1.40
Nonconventional Pollutants		-	,			
Acidity	E-6 E-7 E-8	3 3 1	.<1 <1 <1	<1 <1 130	<1 <1	<1 <1 198
	E-9	3	<1		1<1	
Alkalinity	E-6 E-7 E-8 E-9	3 3 1 3	83 83 83 83	120 230 <1	150 160 250	150 160 <1
Aluminum	E-6 E-7 E-8 E-9	3 3 1 3	0.300 0.300 0.300 0.300	0.800. 0.140 0.960	0.200 0.160 0.040	0.500 0.150 <0.020
Ammonia Nitrogen	E-6 E-7 E-8 E-9	3 3 1 3	0.22 0.22 0.22 0.22	0.19 0.14 0.55	0.19 0.14 30	0.37 9.3 130

Table V-271 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT E

<u>Pollutant</u>	Stream Code	Sample Type	Source	oncentrati Day 1	ons (mg/1) <u>Day 2</u>	Day 3
Nonconventional Pollutants (Cor	itinued)					
Barium	E-6 E-7 E-8 E-9	3 3 1 3	0.060 0.060 0.060 0.060	0.120 0.110 0.030	0.080 0.100 <0.020	0.070 0.080 0.040
Boron	E-6 E-7 E-8 E-9	3 3 1 3	0.170 0.170 0.170 0.170	0.400 0.590 0.200	0.140 0.480 0.100	0.460 0.510 0.470
Calcium	E-6 E-7 E-8 E-9	3 3 1 3	33.0 33.0 33.0 33.0	34.2 34.6 18.4	32.8 36.5 9.70	30.4 32.5 18.9
Chemical Oxygen Demand (COD)	E-6 E-7 E-8 E-9	3 3 1 3	34 · 34 34 34	330 470 50	18 460 <0.05	890 460 52 .
Chloride	E-6 E-7 E-8 E-9	3 3 1 3	26 26 26 26	24 31 35	24 29 40	21 28 78
Cobalt	E-6 E-7 E-8 E-9	3 3 1 3	<0.100 <0.100 <0.100 <0.100	<0.100 <0.100 <0.100	<0.100 <0.100 <0.100	<0.100 <0.100 <0.100
Fluoride	E-6 E-7 E-8 E-9	3 3 1 3	0.44 0.44 0.44 0.44	0.39 0.44 0.40	0.69 0.30 0.39	0.64 0.75 0.52
Iron	E-6 E-7 E-8 E-9	3 3 1 3	1.00 1.00 1.00 1.00	3.50 2.50 31.0	1.60 2.60 0.120	2.40 4.40 32.5
Magnesium	E-6 E-7 E-8 E-9	3 3 1 3	15.8 15.8 15.8 15.8	14.4 15.6 6.00	15.0 15.8 3.00	13.3 13.8 6.20

Table V-271 (Continued)

WASTEWATER TREATMENT PERFORMANCE DATA - PLANT E

	•								0.00	
a series we	Pollutant	g we come to be a		Stream Code		ample Type	Source Source	Oncentrati Day 1	ons (mg/1) Day 2	Day 3
	Nonconventional	Pollutants	(Cont	inued)						
	Manganese	eren en en en en		E-6 E-7 E-8	~- ·-	3 · · · · · · · · · · · · · · · · · · ·	0.140 0.140 0.140	0.100 0.170 0.630	0:080 0.160	0.110 0.140 2.00
		-		E-9		3	0.140	0.000	0.018	2.00
	Molybdenum			E-6 E-7 E-8		3 1	<0.200 <0.200 <0.200	<0.200 <0.200 <0.200	<0.200 <0.200	<0.200 <0.200 <0.200
				E-9		3	<0.200		<0.200	- #
	Phenolics			E-6 E-7 E-8		1 1 1	0.014 0.014 0.014	8.5 13 0.016	2.4	9.52 13 0.015
_		:		E-9		ı	0.014		0.032	4
1023	Phosphate			E-6 E-7 E-8 E-9		3 3 1 3	16 16 16 16	21 23 <4	18 28 13	30 27 <4
	Sodium			E-6 E-7 E-8 E-9		3 3 1 3	33.0 33.0 33.0 33.0	71.0 83.0 58.0	75.0 80.0 292	80.0 73.0 133
	Sulfate			E-6 E-7 E-8	-	3 3 1	170 170 170	170 120 700	190 150	190 130 _1300
	termination of the proof. He was a select that the select the select the selection of the s	F	, ,	E-9		3	170		. 580	
	Tin			E-6 E-7 E-8		3 3 1	<0.200 <0.200 <0.200	<0.200 <0.200 <0.200	<0.200 <0.200	<0.200 <0.200 <0.200
				E-9		3	<0.200		<0.200	
	Titanium			E-6 E-7 E-8 E-9		3 3 1 3	<0.020 <0.020 <0.020 <0.020	<0.020 <0.020 0.090	<0.020 <0.020 <0.020	<0.020 <0.020 0.150
	Total Dissolved	Solids (TD	S)	E-6 E-7 E-8 E-9	;	3 3 1 3	330 330 330 330	470 720 920	360 420 860	580 590 2000

Table V-271 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT E

	Stream	Sample	Concentrations (mg/l)				
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3	
Nonconventional Pollutants (Con	ntinued)				,		
Total Organic Carbon	E-6 E-7 E-8 E-9	3 3 1 3	<1 <1 <1 <1	68 110 10	89 150 <1	110 67 3.9	
Total Solids (TS)	E-6 E-7 E-8 E-9	3 3 1 3	380 380 380 380	590 830 930	470 600 900	800 690 2070	
Vanadium	E-6 E-7 E-8 E-9	3 3 1 3	<0.010 <0.010 <0.010 <0.010	<0.010 <0.010 <0.010	<0.010 <0.010 <0.010	<0.010 <0.010 <0.010	
Yttrium	E-6 E-7 E-8 E-9	3 3 1 3	<0.020 <0.020 <0.020 <0.020	<0.020 <0.020 <0.020	<0.020 <0.020 <0.020	<0.020 <0.020 <0.020	
Conventional Pollutants						- 1 	
Oil and Grease	E-6 E-7 E-8 E-9	1 1 1	<1 <1 <1 <1	350 76 3	340 32 5	420 45 <1	
Total Suspended Solids	E-6 E-7 E-8 E-9	3 3 1 3	29 29 29 29	220 13 7.4	33 16 2.3	250 74 7.3	
рН (standard units)	E-6 E-7 E-8 E-9	3 3 1 3	6.71 6.71 6.71 6.71	6.12 6.01 2.71	6.56 6.24 8.50	6.91 6.10 2.74	

- 1. The following toxic pollutants were not detected at this plant: 1-4, 6-10, 14-21, 24-26, 29-33, 35, 38, 40-42, 45-54, 56-60, 64, 68, 69, 74, 77, 79, 80, 82, 85, 87, and 88.
- 2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

**Present, but not quantifiable.

Table V-272

		W 1	Stream	Sample		entration		
	Pollutant		Code	Туре	Source	Day 1	Day 2	Day 3
	Toxic Pollutants	-						
	11. 1,1,1-trichloroethane	: · ·	F-31	1	0.014	ND	ND	ND
			F-32	i	0.014	,,_	ND.	ND
			F-33	1	0.014		ND	0.011
-			F-34	1 .	0.014		0.012	ND .
	23. chloroform		F-31	1	ND	ND	ND	ND
	•		F-32	1	. ND		ND	ND
			F~33	1	ND		ND	ND
			F-34	1	ND		0.006	ND
	44. methylene chloride		F-31	1	0.002	1.170	4.940	0.494
			F-32	1	0.002		1.150	0.095
			F-33	1	0.002		0.040	0.002
			F-34	1	0.002		0.005	ИĎ
102	55. naphthalene		F-31	1	0.001	ND	0.398	0.744
<u> </u>			F-32	1	0.001		ND	0.353
5 1			F-33	4	0.001		0.001	ND
			F~34	4 .	0.001	:	0.001	ND
	58. 4-nitrophenol		F-31	1 .	ND	ND	0.250	ND
	·		F-32	1	ND		ND	ND
			F-33	4	ND		ND	ND
•			F-34	4	ND		ND	ND
	64. pentachlorophenol	*	F-31	1	ND	0.818	0.981	1.080
		_	F-32	1:	ND		ND	ND
			`F-33	4	ND .		· ND .	ND.
			F-34	4	ND.		ND	ND
	66. bis(2-ethylhexyl) phthala	ate ;	F-31	1.	ND	ND.	ND :	. ND
,			F-32	1 1	ND		ND	ND
			F-33	4	ND		0:.004	0.004
			F-34	4	ND .		ND	. ND
	68. di-n-butyl phthalate		F-31	1 -	· ND	, ND ·	. ND	. ND
			F-32	1 .	ND	2.1	0.105	ND .
			F-33	· `4	ND	* **	0.001	ND
			F-34	4	ND		ND	ND
	81. phenanthrene		F-31	1	ND	0.364	0.896	0.947
	·		F-32	1 .	ND	. :	ND	ИD
	•		F-33	4	ND		ND	ND
	*	Ē.	F-34	. 4	ND		ND	: ND

Table V-272 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT F

	Stream	Sample	Conc	entrat <u>ion</u>	s (mg/l)	
Pollutant	Code	Туре_	Source	Day 1	Day 2	Day 3
POTTOCATI		ــــــــــــــــــــــــــــــــــــــ				
Toxic Pollutants (Continued)						
	- 01	1	ND	ND	ND	ND
86. toluene	F-3 1 F-32	1	ND	ND	ND	ND
	F-32	i	ND		0.047	ND
	F-34	1	ND		ND	ND
	F-34	•	ND.			
114	F-31	1	<0.002	0.015	0.015	<0.002
114. antimony	F-32	1	<0.002		0.015	<0.002
	F-3 3	4	<0.002	<0.002	0.003	<0.002
	F-34	4	<0.002	0.005	0.004	<0.002
•						
115, arsenic	F-31	1	<0.005	0.025	0.016	<0.005
110, 4100	F-32	1	<0.005		<0.005	0.005
	F-33	4	<0.005	<0.005	0.021	0.009
	F-34	4	<0.005	<0.005	0.020	0.010
				40.010	<0.010	<0.010
117. beryllium	F-31	1	<0.010	<0.010	<0.010	<0.010
•	. F-32	1	<0.010	<0.010	<0.010	<0.010
	F-33	4	<0.010	<0.010	<0.010	<0.010
	F-34	. 4	<0.010	VO.010	VO.010	10.010
	F-31	. 1	<0.050	<0.050	<0.050	<0.050
118. cadmium	F-32	i	<0.050		<0.050	<0.050
	F-33	4	<0.050	<0.050	<0.050	<0.050
	F-34	4	<0.050	<0.050	<0.050	<0.050
	, , ,					
119. chromium (total)	F-31	1	<0.100	<0.100	4.15	0.940
119. Cili dili tali (coca.)	F-32	1	<0.100		0.870	0.980
	F-33	4	<0.100	3.16	3.82	7.78
	F-34	4	<0.100	0.170	0.110	0.100
		_	0 170	4 10	5.17	1.10
120. copper	F-34	1	0.170	4.10	0.590	0.280
	F-34	1	0.170	21.2	26.5	52.0
	F-34	4 4	0.170 0.170	0.630	0.450	0.360
	F-34	4	0.170	0.000	0.430	0.000
101 (F-31	î	<0.02	<0.02	<0.02	<0.02
121. cyanide (total)	F-32	i	<0.02		<0.02	<0.02
	F-33	i	<0.02	<0.02	<0.02	<0.02
	F-34	,	<0.02	<0.02	<0.02	<0.02
	. 5	•	- •			
122. lead	F-31	1	<0.100	2.40	2.69	0.530
122. Teau	F-32	1	<0.100		1.73	1.46
	F-33	4	<0.100	<0.100	0.110	0.190
	F-34	4	<0.100	<0.100	<0.100	<0.100
•						

Table V-272 (Continued)

-WASTEWATER TREATMENT PERFORMANCE DATA - PLANT F

	Pollutant	Stream	Sample		centration		
	Portutant	Code	Туре	Source	Day 1	Day 2	Day 3
Toxio	<u> Pollutants</u> (Continued)						
, -					- 46.		
123.	mercury	F-31	1	<0.0020	<0.0020	<0.0020	<0.0020
		F-32	1	<0.0020		<0.0020	<0.0020
	•	F-33	4	<0.0020	<0.0020	<0.0020	<0.0020
		F-34	4	<0.0020	<0.0020	<0.0020	<0.0020
124.	nickel	F-31	1	0.200	23.6	39.0	7.10
		F-32	1 -	0.200		18.4	25.8
	•	F-33	4	0.200	113	190	9.50
		F-34	4	0.200	3.79	2.72	3.93
125.	selenium	F-31	1	<0.010	<0.010	<0.010	<0.010
	•	F-32	1	<0.010		<0.010	<0.010
		F-33	4	<0.010	0.011	<0.010	0.021
-		F-34	4	<0.010	0.019	<0.010	0:032
126.	silver	F-3,1	1 .	<0.002	0.003	0.006	<0.002
		F-32	1	<0.002		<0.002	<0.002
5:		. F-33 ···	4	<0.002	<0.002	0.002	0.002
		F-34	4	<0.002	<0.002	<0.002	<0.002

Table V-272 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT F

<u>Pollutant</u>		Stream Code	Sample Type So	Concentra ource Day	tions (mg/ 1 Day	(1) 2 <u>Day 3</u>
Toxic Pollutants (Continued)						
127. thallium	F-31 F-32 F-33 F-34	1 1 4 4	<0.005 <0.005 <0.005 <0.005	<0.005 <0.005 0.005	<0.005 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005 <0.005
128. zinc	F-31 F-32 F-33 F-34	1 1 4 4	<0.050 <0.050 <0.050 <0.050	8.50 0.700 0.060	17.4 6.20 1.13 0.050	3.40 10.2 1.41 0.050
Nonconventional Pollutants			-			
Acidity	F-31 F-32 F-33 F-34	1 1 4 4	<1 <1 <1 <1	<1 <1 <1	<1 110 <1 <1	<1 110 <1 <1
Alkalinity	F-31 F-32 F-33 F-34	1 1 4 4	. 61 61 61 61	61 <1 470	35 <1 130 790	22 <1 390 1240
Aluminum	F-31 F-32 F-33 F-34	1 1 4 4	0.910 0.910 0.910 0.910	2.30 <0.020 0.100	5.20 1.48 0.020 0.200	0.950 0.380 0.020 0.380
Ammonia Nitrogen	F-31 F-32 F-33 F-34	1 1 4 4	0.04 0.04 0.04 0.04	7.6 2.2 1.5	<0.01 1.4 6.1	5.5 5.8 2.7 5.2
Bacium	F-31 F-32 F-33 F-34	4	0.080 0.080 0.080 0.080	0.110 0.050 0.020	0.220 0.080 0.050 0.030	0.210 0.110 0.080 0.060
Boron	F-31 F-32 F-33 F-34	. 1	<0.100 <0.100 <0.100 <0.100	0.320 <0.100 0.190	0.440 0.310 <0.100 0.350	0.110 0.360 0.760 0.720

5		Stream Sa	ample	Concen	trations (ma (1)	
Pollutant			Туре	Source [Day 1 Day	ay 2 Day	3
Nonconventional Pollutants (Cont	inued)						
Calcium	F-31 F-32 F-33 F-34	1 1 4 4	46.2 46.2 46.2 46.2	34.9 22.2	34.7 34.7 25.0 21.9	9.30 44.5 31.4	0 TB
Chemical Oxygen Demand (COD)	F-31 F-32	1 1	<1 <1	46,000	18,000	36.8 23,000	
	F-33 F-34	4 4	<1 <1	8 <1	7,900 55 43	4,900 93 8	
Chloride	F-31 F-32 F-33	1 1 4	12 12 12	30	61 20	34 22	
Cobalt	F-34	4	12	130 120	180 170	330 310	
	F-32 F-33 F-34	1 4 4	<0.100 <0.100 <0.100 <0.100	0.130 <0.100 <0.100	0.120 <0.100	0.140 <0.100	
Fluoride	F-31 F-32 F-33	1 1 4	0.43 0.43 0.43	37	13 19 40	<0.100 16 12	
	F-34 F-31	1	. 0.43 1.37	24 58.4	27	108 160 16.6	_
	F-32 F-33 F-34	1 4 4	1.37 1.37 1.37	25.2 1.33	49.0 50.0 0.790	48.1 85.1 0.180	
	F-31 F-32 F-33 F-34	1 1 4 4	12.7 12.7 12.7 12.7	6.44 10.5 7.02	9.29 6.80 8.03	1.46 7.63 9.03	
	F-31 F-32 F-33 F-34	1 1 4 4	0.080 0.080 0.080	0.980	7.83 1.40 0.860 5.34	0.260 1.02 5.20	
Molybdenum	F-31 F-32 F-33 F-34	1 1 4 4	0.080 <0.200 <0.200 <0.200	0.120 0.420 0.440	0.070 0.830 <0.200 0.610	0.230 <0.200 <0.200 1.99	
			<0.200	<0.200	<0.200	1.51	

Table V-272 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT F

		Stream	Sample	Concentr	ations (mg	/1)
Dollarant		Code		ource Da	ay 1 Day	2 Day 3
Pollutant						
Nonconventional Pollutants (Cor	ntinued)					
 -	F-31	1	<0.005	0.49	1.2	0.15
Phenolics	F-32	1	<0.005		0.12	0.12 <0.005
	F-33	1	<0.005	<0.005	<0.005	<0.005
	F-34	1	<0.005	<0.005	<0.005	٧٥.005
	F-31	1	<4	53	23	39
Pho sp hat e	F-32	1	<4		40	34 <4
	F-33	4	<4	<4	<4	<4
	F-34	4	<4	<4	<4	~4
	F-31	1	154	31.2	14.2	5 50
Sodium	F-32	i	154		26.4	27.8
	F-33	4	154	640	820	1,580
	F-34	4	154	1,010	1,200	4,200
			130	330	230	370
Sulfate	F-31	1	130	000	930	750
	F-32	4	130	640	850	1,400
	F-33 F-34	4	130	610	940	1,400
		_	<0.200	<0.200	<0.200	<0.200
Tin	F-31	1	<0.200 <0.200	10.20	<0.200	
• • • • • • • • • • • • • • • • • • • •	F-32	1	<0.200	<0.200		<0.200
•	F-33 F-34	4 4	<0.200	<0.20		<0.200
	F~34	-4				0.040
	F-31	1	<0.020	0.10		
Titanium	F-32	1	<0.020	0.01	0.020 0.440	_
	F-33	4	<0.020	0.31 0.02		
	F-34	4	<0.020	0.02	0 .0.020	,
Dissalued Colide (TDS)	F-31	1	320	5,070	130,000	3,040
Total Dissolved Solids (TDS)	F-32		320		8,110	1,700 6,100
	F-33	_	320	2,500	3,400	6,800
	F-34	. 4	320	3,000	3,900	0,800
(700)	F-31	1	2	4,600	3,800	3,600
Total Organic Carbon (TOC)	F-32		2		1,600	25
	F-33		2	. 8	4	11
	F~34	_	2	4	4	5
	F-31	. 1	330	41,800	340,000	70,000
Total Solids (TS)	F-31		330	-	8,200	4,000
	F-32	•		2,700	3,900	6,600
	F-34			3,140	3,900	6,800
	, 0	•				

Table V-272 (Continued)

WASTEWATER TREATMENT PERFORMANCE DATA - PLANT F

Poll	utant		Stream	Sample	Concer	trations	(mg/1)
			Code	Туре		Day 1	Day 2 Day 3
Nonconventional	Pollutants	(Continued)					
Vanadium							
		F-31	1	<0.010	0.03	0 <0.0	0.010
		F-32	1 .	<0.010		<0.0	0.0.0
		F-33	4	<0.010	<0.01		0.010
		F-34	4	<0.010			9.010
Yttrium							10.010
. cer ram		F-31	1	<0.020	<0.02	0 <0.0	20 <0.020
		F-32	1	<0.020		<0.0	
		F-33	4	<0.020	<0.02		0.010
		F-34	4	<0.020	<0.02		
Conventional Pol	lutants						
Oil and Grease		F~31		_			
	=	F-32	-1	<1	4,700	12,000	59,000
			. 1	<1		310	380
•	*	F-33	1	<1	17	- 18	10
		F-34	1	< 1	4	< 1	· <1
Total Suspended	Solids (TSS) F∸31	-		•		
		F-32		_ 22	8,400	2,400	16,500
		F-33		22		144	260
			4	22	100	240	700
•		F-34	4	22	30	27	58
pH (standard .uni	ts)	F-31	1				
		F-32	;	6.64	5.14	4.8	8 4.78
		F-33	. 1	6.64		2.3	
		F-34	4	6.64	4.29	7.10	
enter allustrania serie funcionale en el el meso de encommente comincione el	an name new terminal between all administrations and new	1 34	4	6.64	8.89	9.4	

- 1. The following toxic pollutants were not detected at this plant: 1-10, 12-22, 24-43, 45-54, 56, 57, 59-63, 65, 67, 69-80, 82-85, 87, and 88.
- 2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-273
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT I

		Stream	Sample	Conce	entrations	(mg/1)	
		Code	Type	Source	Day 2	Day 3	Day 4
	<u>Pollutant</u>	_code					
	5 11 tanks						
Toxic	Pollutants					0.058	0.057
	1,1,1-trichloroethane	I-11	1	0.022		0.007	0.010
11.	1, 1, 1-tracitto decirano	I-12	1	0.022	0.010	0.024	0.023
		I-13	1	0.022	0.012	0.024	0.020
						0.004	0.004
1.4	1,1,2-trichloroethane	I-11	1	ND		ND .	ND
14.	1,1,2 11 10/1/07 00 1/10/10	I-12	1	ND	ND	0.001	ND
		I-13	1	ND	ND	0.001	
				MB		ND	0.015
00	1,1-dichloroethylene	I-11	1	ND		ND	ND
29.	1, 1 dicital occily con-	I-12	1	ND	ND	ND	0.007
	•	I-13	1	ND	עא		••••
				ND		0.096	0.139
3 0 .	1,2- <u>trans</u> -dichloroethylene	I-11	1	ND		ND	ND
30.	1,2 trans	I-12	1	ND .	0.022	0.051	0.037
		I-13	1	ND	0.022	0.00	
		•	_	0.003		0.082	0.101
44.	methylene chloride	I-11	1			0.003	0.005
44.	methy tene on a	I-12	1	0.003	0.028	0.026	0.030
		I-13	1	0.003	0.020	0.020	
			_	· ND		0.011	0.024
65.	phenol	I-11	4	ND		ND	ND
φ5.	phenoi	I-12	1,3	ND	0.004	ND	0.007
		I-13	4	ND	0.00-		
		•	_	ND		**	ND
66.	bis(2-ethylhexyl) phthalate	I-11	4	ND		ND	0.002
00.	515(= 511)	I-12	1,3	ND	ND	ND	ND
		I-13	4	NU	110		
	· ·		1	ND		0.015	0.020
85.	tetrachloroethylene	I-11	1	ND		ND	ND
05.		I-12	1	ND ·	ND	0.005	0.004
		1-13	1	ND.			
			1	ND		ND	ND
86.	toluene	I-11		ND		0.001	0.001
50.		I-12	1	ND	ND	0.001	0.001
	•	1-13	1	ND.			
		~ 4.4	1	NÖ		0.972	1.250
87.	trichlaraethylene	I-11		ND		ND	0.018
٠.٠		I-12	1.	ND	0.252	0.346	0.391
		I-13	ı	,,,,	-		
		T 1 1	4	<0.010		<0.010	<0.010
114.	antimony	I-11 I-12	3	<0.010			<0.010
	. ,	I-12 I-13	4	<0.010	<0.010	<0.010	<0.010
		1-13	~				

Table V-273 (Continued)

MASIEWAIER TREATME	NT PERFORMANCE	DATA	-	PLANT	Ι	
	THE THE PARTY OF T	אואם		PLANI	T	

		<u>Pollutant</u>		Stream _Code	Sample	Cor	centratio	ns (mg/l)	* j*
				code_	Туре	Source	Day 2	Day 3	Day 4
	<u>Toxi</u>	c Pollutants (Continu	ied)						
	115.	arsenic -			•				
	4-10.	-arsenic -		I-11	4	<0.010		<0.010	<0.010
				I-12	, з	<0.010		10.010	0.030
				I-13	` 4	<0.010	<0.010	<0.010	0.020
	117.	beryllium	•	T-11			•		0.020
		,		I-11	4	<0.005		<0.005	<0.005
				I-12	3	<0.005	*		<0.005
				I-13	4	<0.005	<0.005	<0.005	<0.005
	118.	cadmium		I-11					
				I-12	. 4	<0.020		0.050	0.020
					3	<0.020			<0.020
	119.	chromium (total)		I-13	4	<0.020	0.120	0.080	0.020
	,	om om (cocar)		I-11	4	<0.020		<0.020	<0.020
				I-12	3	<0.020		.0.020	0.040
 1			*	I-13	.4	<0.020	<0.020	<0.020	<0.020
03	120.	copper		_				.0.020	10.020
ω		Соррег		[I-11	4	0.200		, 0.700	0.450
, w				I - 1 2	3	0.200		, 0.700	1.10
				I-13	4	0.200	1.70	0.750	0.450
	121,	cyanide (total)						0.700	0.450
		Sydiffed (total)		I-11	1	<0.02		<0.02	<0.02
			-	I-12	1	<0.02		<0.02	<0.02
				I-13	1	<0.02	<0.02	<0.02	<0.02
	122.	lead					0.01	10.02	\0.02
	•	. 546		I-11	. 4	<0.050	*	0.050	0.050
				I-12	3	<0.050		0.000	
				I-13	4	<0.050	0.200	0.150	0.300
	123	mercury						0.150	0.100
	`≅Z±.		and an in the communication between the communications of	I-1-1	4	<0.0002		<0.0002	<0.0002
			100	I-12	3	<0.0002		.0.0002	<0.0002
			*	I-13	4	<0.0002	<0.0002	<0.0002	<0.0002
	124.	nickel						10.0002	\0.0002
	· · •		. 1	I-11	4	<0.050		0.050	<0.050
				I-12	3	<0.050		3.000	
شو د د ۰۰۰۰		· - · · · · · · · · · · · · · · · · · ·		I_1-13	.: 4	<0.050	0.200	0.050	0.100
	125	'selenium					3.200	0.000	<0.050
!	. 40.	seren rum	* :	I-11	- 4	<0.010		<0.010	<0.010
		the second second second		1-12	3	<0.010		\U.U IU	<0.010
			: .	I-13	4	<0.010	<0.010	<0.010	<0.010
						0.0.0	-5.010	,U.U.U	<0.010

Table V-273 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT I

	Stream	Sample	Conc	entration	s (mg/1)	
Pollutant	Code	Type	Source	Day 2	Day 3	Day 4
Toxic Pollutants (Continued)						
126. silver	I-11	4	<0.010		0.020	0.060
120. STIVE	I-12 I-13	3 4	<0.010 <0.010	0.110	<0.010	0.030 0.030
127. thallium	I-11	4	<0.010		<0.010	<0.010
127. thallium	I-12 I-1 3	3 4	<0.010 <0.010	<0.010	<0.010	<0.010 <0.010
	I-11	4	0.040		0.140	0.320
128. zinc	I-12 I-13	3 4	0.040 0.040	1.42	0.340	0.620 0.320
No						
Nonconventional Pollutants	I-11	4	<1		<1	<1
Acidity	I-12 I-13	3 4	<1 <1	<1	<1	140 <1
	I-11	4	40		44	3 9
Alkalinity	I-12 I-13	3 4	40 40	32	59	<1 70
	I-11	. 4	<0.100		<0.100	<0.100
Aluminum	I-12 I-13	3	<0.100 <0.100	0.400	0.200	0.100 0.200

Table V-273 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT I

Nonconventional Ballutint (a						<u>3</u> Day
Nonconventional Pollutants (C	ontinued)					
Ammonia Nitrogen	I-11	4	0.06		0.06	0.37
•	I-12	3	0.06		0.00	0.37
	1-13	4	0.06	1.1	0.05	<0.07
Barium	I-11	4				
	I-12	4	<0.050		<0.050	<0.050
	I-13	3 4	<0.050			<0.050
•	1 10	- 4	<0.050	<0.050	<0.050	<0.050
Boron	I-11	4	<0,100		1.50	0.400
	I-12	3	<0.100		1.50	0.500
	I-13	4	<0.100	0.170	1.70	0.800
Calcium	7 1.	_				0,000
, and the second	I-11	: 4	13.8		11.8	11.9
	I-12 I-13	3	13.8			13.1
	1-13	4	13.8	15.1	12.6	12.4
Chemical Oxygen Demand (COD)	I-11	4	150		1,800	7.0
	I-12	3	150		1,800	76
	.I-13	4 .	150	180	1,500	72 <10
Chloride	7 11					
	I-11	4	30		26	35
	I-12 I-13	` 3	30			27
	1-13	4	30	<1	27	32
Cobalt	I-11	4	<0.050		<0.050	10.050
	I-12	3	<0.050		VU.U5U	<0.050
	I-13	4	<0.050	<0.050	<0050	<0.050 <0.050-
Fluoride						
, radi tae	I-11	4	0.32		0.08	0.17
	I-12	3	0.32	-		0.35
	I-13	. 4	0.32	0.29	0.08	0.22
Iron	I-11	. 4	0.100	=	0 500	0.00=
القيف المناب والأنجاب الأخالي بالماسات	I-12	-å, ⊧ - 3	0.100		0.500	0.300
	I-13	4	0.100	1.45	0.800	0.850 0.500
Magnosium					0.000	0.500
Magnesium :	I-11	4	2.70		2.40	2.40
	I-12	3	2.70			2.50
· ·	I-13	4	2.70	2.90	2.40	2.30
Manganese	T-11	1	0 100			
Manganese	I-11 I-12	4 3	0.100 0.100		0.050	0.050 0.100

Table V-273 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT I

	Stream Code	Sample Type Sou	Concentra urce Day	tions (mg/ 2 Day	1) 3 Day 4
<u>Pollutant</u>					_
Nonconventional Pollutants (Continue	ed)				
tiolybdenum I-		<0.050		<0.050	<0.050 <0.050
I- I-		<0.050 <0.050	<0.050	<0.050	<0.050
Phenolics I-		<0.005 <0.005		0.25 <0.005	<0.005 <0.005
I- I-	• -	<0.005	<0.005	<0.005	<0.005
Phosphate I-	11 4 12 3	2.7 2.7	*	13	12 17
	13 4	2.7	30	17	9.8
Sodium I-	-11 4	28.0		34.9	33.6 29.2
I-	·12 3 ·13 4	28.0 28.0	68.3	84.8	84.6
	·11 4	740 740		480	570 580
	-12 3 -13 4	740	460	390	760
	-11 4 -12 3	<0.050 <0.050		<0.050	<0.050 <0.050
	-13 4	<0.050	<0.050	<0.050	<0.050
	-11 4 -12 3	<0.050 <0.050		<0.050	<0.050 <0.050
	-13 4	<0.050	<0.050	<0.050	<0.050 134
	-11 4 -12 3	850 850		850	180 250
	-13 4	850	300	440 36	250
	-11 4 -12 3	63			4 5
I	-13 4	63	20	17	150
101A1 3011US (13)	-11 4 -12 3	11,500		900	240
	-13 4	11,500	500	450	290

1036

Table V-273 (Continued)

WASTEWATER TREATMENT PERFORMANCE DATA - PLANT I

		-					
		Stream	-Sample-		Concentrati		
	Pollutant	Code	Туре	Source	Day 2	Day 3	Day 4
	Nonconventional Pollutants (Co	ntinued)					
	and the second control of the second control						* *
	Vanadium	I-11	4	<0.050		<0.050	<0.050
		I-12	- 3	<0.050		-,	<0.050
		I-13	4	<0.050	<0.050	<0.050	<0.050
	Yttrium	I-11	4	<0.050		<0.050	<0.050
		I-12	3	<0.050			<0.050
		I-13	4	<0.050	<0.050	<0.050	<0.050
	Conventional Pollutants	!					
	Oil and Grease	I-11	1	< 1		59	<1
		I-12	1	<1		66	<1
	·	I-13	1	<1	3	49	<1
ב כ	Total Suspended Solids (TSS)	I-11	4	300		48	16
٤	,	I-12	3	300 -			16
1		I-13	4	300	200	<1	4
	pH (Standard Units)	I-11	· ₄	6.10		6.10	6.20
		I-12	3	6.10		2	2.80
		I-13	4	6.10	6.10	6.80	8.40

- 1. The following toxic pollutants were not detected at this plant: 1-10, 12, 13, 15-28, 31-43, 45-64, 67-84, and 88.
- 2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

^{**}Present, but not quantifiable.

Table V-274
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT J

<u>Pollutant</u>	Stream Code	Sample Type	Conce Source	entrations (mg/1) Day 1 Day 2 Day 3
Toxic Pollutants				
114. antimony	J-7	1	<0.010	<0.010
115. arseni c	J-7	1	<0.010	<0.010
117. beryllium	J-7	1	<0.005	<0.005
118. cadmium	J-7	1	<0.020	<0.020
119. chromium (total)	J-7	1	<0.020	<0.020
120. co p per	J-7	1	<0.050	0.950
121. cyanide (total)	J-7	1	<0.02	<0.02
122. lead	J-7	1	<0.050	0.200
123. mercury	J-7	1	<0.0002	<0.0002
124. nickel	J-7	1	<0.050	<0050
125. śelenium	J-7	1	<0.010	<0.010
126. silver	J7	1	<0.010	<0.010
127. thallium	J-7	1	<0.010	<0.010
128. zinc	J-7	1	0.080	0.100
Nonconventional Pollutants				
Acidity	J-7	1	<1	<1
Alkalinity	J-7	1	13	44
Aluminum	J-7	1	0.300	0.300
Ammonia Nitrogen	J −7	1	0.16	0.40
Barium	J-7	1	0.050	0.050
Boron	J-7	. 1	<0.100	<0.100
Calcium	J-7	. 1	10.4	9.30
Chemical Oxygen Demand (COD)	J~7	1	70	740
				· ·

Table V-274 (Continued)

WASTEWATER TREATMENT PERFORMANCE DATA - PLANT J

	Pollutant	Stream Code	Sample Type	<u>Conce</u>	entrations (mg/l) Day 1 Day 2 Day 3
	Nonconventional Pollutants (Continued)	ı			·
	Chloride	J-7	1	<1	7 .
	Cobalt	J-7	1	<0.050	<0.050
	Fluoride	J-7	1	1.2	1.1
	Iron	J-7	1	0.100	0.400
	Magnesium	J-7	1 .	1.40	1.30
	Manganese	J-7	1	0.200	<0.050
	Molybdenum	J-7	1.	<0.050	0.050
10	Phenolics	J-7	1	<0.005	32
39	Phosphate	J - 7	1	<0.5	. 4
	Šodium	J7	1	.111	9.50
	Sulfate	J~7	1	90	1,800
	Tin	J-7	1	<0.050	<0.050
	Titanium	J-7	1	<0.050	<0.050
	Total Dissolved Solids (TDS)	J-7:	1	76	260
	Total Organic Carbon (TOC)	J-7	1	3	600
	Total Solids (TS)	J-7	·: • • • • • • • • • • • • • • • • • • •	125	950
	Vanadium	J-7	1 1	<0.050	<0.050
••	Yttrium	J-7	1	<0.050	<0.050
					a -

Table V-274 (Continued)

WASTEWATER TREATMENT PERFORMANCE DATA - PLANT J

<u>Pollutant</u>	Stream <u>Code</u>	Sample Type	Conc Source	entrations (mg/l) Day 1 Day 2 Day	<u>y 3</u>
Conventional Pollutants					
Oil and Grease .	J-7	1	<1	200	
Total Suspended Solids (TSS)	J-7	1	42	500	
pH (standard units)	J-7	1	2.71	7.90	

- 1. No analyses were performed on the following toxic pollutants: 2-4, 6, 7, 10, 11, 13-17, 19, 23, 29, 30, 32, 33, 38, 44-51, 85-113, 116, and 129.
- 2. The following toxic pollutants were not detected at this plant: 1, 5, 8, 9, 12, 18, 20-22, 24-28, 31, 34-37, 39-43, and 52-84.

		Stream	Sample	Concentrations (mg/1)			
	<u>Pollutant</u>	_Code_	Туре	Source	Day 1	Day 2	Day 3
	Toxic Pollutants						
	11. acrylonitrile	M-14	1	0.011		0.008	n an interest of
	•	M-15	1	0.011			0.017
		M-16	1	0.011	0.010	0.008	0.015
	'	M-17	1	0.011	0.011	0.010	0.013
		M-18	1	0.011	0.016	0,010	0.019
		M-19	1	0.011	0.011	0.009	0.018
	14. 1,1,2-trichloroethane	M-14	1	ND		ND .	
		M-15	1	ИÐ			ИD
		M-16	1	ND	ND	ND	ND
		M-17	1	ND	0.001	ND	ND
		M-18	1	ND	0.001	0.001	ND
11	·	M-19	1	ND	ND	ND	ND
1041	23. chloroform	M-14	1	0.016		0.005	
4.		M-15	1	0.016	•		0.005
		M-16	1	0.016	ND	ND	ND
		M-17 .	,1	0.016	ND	ИĎ	ND
		- M~18	1	0.016	ND	ND	- ND
		M-1'9	1	0.016	ND	ND	ND
	26. 1,3-dichlorobenzene	M-14	1	ND		ND	
		M-15	1	ND			ND
		M-16	3	ND	0.001	ND	ND
	•	M-17	3	ND	ND.	ND	ND
		M-18	. 1	ND	ND	ND	ND
-	=	M=19		ND	ND	ND	ND
r ·	44. methylene chloride	M-14	1	0.002	** :	20.002	
	•	M-15	້ 1	0.002	à ;	1	0.004
,		M-16	1	0.002	0.003	0.003	0.002
		M-17	1	0.002	0.003	0.003	0.001
		M-18	1	0.002	0.003	0.003	0.003
	•	M-19	1	0.002	0.003	0.002	0.005
	55. naphthalene	. M-14	1	ND	-	ND	
	•	M-15	, 1	ND			N.D
	•	. M-16	. 3	ND	ND	ND	ND
		M-17	· 3	ND	ND	ND	0.003
		M-18	1	ND	ND	ND	ИD
-		M-19 ,	1	ND.	ND	ND	ND :

Table V-275 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT M

		Stream	Sample		Concentrations (mg/1) Source Day 1 Day 2 Day 3			
Pollu	tant	Code	_Type		3001 CE D	uy i	<u> </u>	<u> </u>
Toxic	Pollutants (Continued)							
66.	bis(2-ethylhexyl) phthala	te	M-14	1	ND		ND	
			M-15	1	ND			ND
			M-16	3	ND	ND	0.002	0.005
			M-17	3	ND	ND	ND	0.001
			M-18	1	ND	ND	ND	ND
			M-19	1	ND	ND	ND	ND
86.	toluene		M-14	1	ND		ND	
80.	tordene		M-15	1	, ND			ND
			M-16	1	ND	ND	ND	ND
			M-17	1	ND	ΝĐ	ND	ND
			M-18	1	ND	· ND	ND	0.001
			M-19	1	ND	ND	ND	0.003
			M-14	1	<0.010		0,010	
114.	antimony		M-15	i	<0.010			<0.010
			M-16	3	<0.010	<0.010	<0.010	<0.010
			M-17	3	<0.010	<0.010		<0.010
			M-18	1	<0.010	0.040		<0.010
			M-19	i	<0.010	<0.100		<0.050
			M-14	1	<0.010		<0.010	
115.	arsenic		M-15	1	<0.010			<0.010
			M-16	3	<0.010	<0.010	0.050	0.080
			M-17	3	<0.010	<0.010		0.020
			M-18	1	<0.010	<0.010		<0.010
			M-19	i	<0.010	<0.020		<0.020
	h 5 m (2 2 4 mm		M-14	1	<0.005		<0.005	•
117,	beryllium		M-15	i	<0.005			<0.005
			M-16	3	<0.005	<0.005	<0.010	<0.005
	•		M-17	3	<0.005	<0.005		<0.005
			M-18	1	<0.005	<0.005		<0.005
			M-19	1	<0.005	<0.050		<0.010
			M-14	1	<0.020		0.060	
118.	cadmium		M-15	1	<0.020		. 0.000	0.020
			M-16	3	<0.020	0.300	1.80	2.10
	'		M-17	3	<0.020	0.080		0.020
			M-18	1	<0.020	<0.020		<0.020
			M-19	1	<0.020			<0.050
*		•			*	•		

.042

Table V-275 (Continued)

WASTEWATER TREATMENT PERFORMANCE DATA ~ PLANT M

Pollu	tant · · · · · · · · · · · · · · · · · · ·	Stream Code	Sample Type	Sour		ntrations ay 1	(mg/1) Day 2	Day 3
Toxic	Pollutants (Continued)							
119.	chromium (total)	M M M	-14 -15 -16 -17 -18 -19	1 1 3 3 1	<0.020 <0.020 <0.020 <0.020 <0.020 <0.020	0.020 <0.020 0.060 <0.200	0.220 0.200 0.020 0.240 <0.200	0.220 0.240 0.040 0.040 <0.050
120.	copper	M M M	-14 -15 -16 -17 -18 -19	1 1 3 3 1	<0.050 <0.050 <0.050 <0.050 <0.050 <0.050	1.20 0.200 <0.050 <0.500	9.25 25.6 0.300 0.300 <0.500	<0.050 29.0 0.400 0.050 0.100

Table V-275 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT M

		Stream	Sample	ole Concentrations (mg/l)					
Pollu	tant	Code	Туре	Source	Day 1	Day 2	Day 3		
TOXIC	Pollutants (Continued)								
121.	cyanide (total)	M-14	1	<0.02		<0.02			
	•	M-15	1	<0.02		.0.00	<0.02		
		. M−16	1	<0.02	<0.02	<0.02	<0.02		
		M-17	1	<0.02	<0.02	<0.02	<0.02		
		M-18	1	<0.02	<0.02	<0.02	<0.02		
		M-19	1	<0.02	<0.02	<0.02	<0.02		
122.	lead	M-14	1	<0.050		<5.00			
		M-15	1	<0.050			<5.00		
	•	M-16	3	<0.050	<0.100	<1.00	<1.00		
		M-17	3	<0.050	<0.050	<0.500	<0.500		
		M-18	1	<0.050	<0.500	0.200	<0.500		
		M-19	1	<0.050	<0.500	<0.500	<0.100		
123.	mercury '	M-14	1 :	<0.0002		<0.0002			
	mor our y	M-15	i	<0.0002		.0.0002	<0.0002		
		M-16	3	<0.0002	<0.0002	0.0004	0.0004		
		M-17	3	<0.0002	<0.0002	<0.0002	<0.0004		
	5	M-18	1	<0.0002	0.0008	0.0018	0.0002		
		M-19	i	<0.0002	0.0032	<0.0002	0.0002		
		, 0	,	0.0002	0.0002	.0.0002	0.0002		
124.	nickel	M-14	. 1	<0.050		3.95			
		M-15	1	<0.050			<0.050		
	0	M-16	3	<0.050	28.4	585	693		
		M-17	3	<0.050	2.80	5.10	5.85		
		M-18	1	<0.050	0.750	8.20	0.900		
		M-19	1	<0.050	<0.500	<0.500	<0.200		
125.	selenium	M-14	1	<0.010		<0.010			
		M-15	1	<0.010			<0.010		
	·	M~16	3	<0.010	<0.010	<0.010	<0.010		
		M-17	3	<0.010	<0.010	<0.010	<0.010		
		M-18	1	<0.010	<0.010	<0.010	<0.010		
		M-19	i	<0.010	<0.010	<0.040	<0.020		
		117	'	10.010	10.010	10.040	\0.020		
126.	silver	M-14	1	<0.010		0.160			
		M-15	1	<0.010			<0.010		
		M-16	3	<0.010	0.040	0.080	0.090		
		M-17	3	<0.010	0.040	0.060	0.160		
	-	M-18	1	<0.010	<0.010	0.170	<0.010		
		M-19	1	<0.010	0.040	0.030	0.030		

Table V-275 (Continued)

WASTEWATER TREATMENT PERFORMANCE DATA - PLANT M

	Stream	- Sample		Concentrat	ions (mg/l)
Pollutant	Code	Туре	Source		Day 2	Day 3
Toxic Pollutants (Continued)		;				
TOXIC POTTULATES (CONTINUES)	,	naja a sa				0
			<0.010	M	<0.010	
127. thallium	M-14 M-15	1 · · · 1	<0.010		\0.010	<0.010
	M-16	3	<0.010	<0.010	<0.050	<0.050
	M-17	3	<0.010	<0.010	<0.010	<0.100
	M-18	1	<0.010	<0.010	<0.010	<0.010
	M-19	i	<0.010	<0.050	<0.050	<0.050
			0.000		40.050	
128. zinc	M-14	1	0.080		<0.050	<0.500
•	M-15	. 1	0.080	0 240	5.16	6.06
	M-16	3 3	0.080 0.080	0.240 0.020	0.040	<0.020
	M−17 M−18	3	0.080	0.020	0.040	0.060
	M-19	1	0.080	<0.200	<0.200	<0.050
	WI-19	i	0.000	10.200	10.200	10.000
Nonconventional Pollutants			¥.			
Acidity	M-14	1	<1		<1	
	. M <u>~</u> 15	1	<1			<u><1</u>
	M-16	3	<1	<1	<1	<1
_	M-17	3	< 1	<1	<1	<1
•	M-18	1	<1	580	1,200	430
	M-19	1	<1	<1	<1	<1
Alkalinity	M-14	1	100		150	
717100177	M-15	. 1	100			300
	M-16	3 .	100	190	1,950	2,050
Construct Address and the state of the	M-17	3,	100	800	т,330	830
	M-18	1	100	<1	<1 86	<1 160
	M-19	· I,	100	5,740	00	100
Aluminum	M-14	1	0.200		2.20	
ATUMITION	. M-15	1	0.200		2120	5.00
	M-16		0.200	0.500	7.40	8.20
	: M-17	3	0.200	0,100	0.100	0.100
	M-18	1	0.200	1.40	15.4	1.20
	M-19	1	0.200	<1.00	<1.00	<1.00
A formation Nichardson	M-14	3	<0.1		<0.1	
Ammonia Nitrogen	M-15	1	<0.1		٠٠.١	<0.1
	M-16	. 3	<0.1	0.18	<0.1	2.0
	M-17	3	<0.1	<0.1	<0.1	1.3
	M-18	. 1	<0.1	<0.1	<0.1	<0.1
en e	M-19	i	<0.1	0.2	<0.1	0.80
		•	- - -			

04

Table V-275 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT M

Pollutant	Stream Code	Sample Type	Source	oncentrati Day 1	ons (mg/1) Day 2	Day 3
Nonconventional Pollutants (Con	tinued)					
Barium	M-14 M-15 M-16 M-17 M-18 M-19	1 1 3 3 1 1	<0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.050 <0.050 <0.050 <0.500	0.050 0.300 <0.050 0.100 <0.500	<0.050 0.350 <0.050 <0.050 <0.500
Boron	M-14 M-15 M-16 M-17 M-18 M-19	1 1 3 3 1	<0.100 <0.100 <0.100 <0.100 <0.100 <0.100	2.10 1.60 1.60 <1.00	5.50 3.00 2.50 38.8 <1.00	<0.100 4.20 2.90 1.30 <1.00
Calcium	M-14 M-15 M-16 M-17 M-18 M-19	1 1 3 3 1	36.5 36.5 36.5 36.5 36.5 36.5	37.3 26.6 3u.1 390	36.9 236 15.3 34.2 425	38.7 286 13.1 31.5 63.0
Chemical Oxygen Demand (COD)	M-14 M-15 M-16 M-17 M-18 M-19	1 1 3 3 1	<5 <5 <5 <5 <5 <5	62 10 20 98	60 110 58 <5 32	150 240 97 <5 40
Chloride	M-14 M-15 M-16 · M-17 M-18 M-19	1 1 3 3 1 1	10 10 10 10 10 10	187 130 14	13 540 400 14 120	<0.1 620 490 14 93
Cobalt	M-14 M-15 M-16 M-17 M-18 M-19	1 1 3 3 1	<0.050 <0.050 <0.050 <0.050 <0.050 <0.050	<0.050 <0.050 <0.050 <0.500	<0.050 0.100 <0.050 <1.00 <0.500	0.050 0.150 <0.050 <0.050 <0.500

Table V-275 (Continued)

WASTEWATER TREATMENT PERFORMANCE DATA - PLANT M

	Stream	Sample		Concentrations (mg/1)			
Pollutant	_Code_	Туре	Source	Day 1	Day 2	Day 3	
Nonconventional Pollut	ants (Continued)	•	•				
	-, -,			-			
Fluoride	. M-14	1	0.85		1.3		
	M-15	1	0.85			1.1	
	M-16	3	0.85	4.8	0.83	0.66	
	M-17	3	0.85	1.3	0.91	0.96	
•	M-18	1	0.85	340	2,000	1,980	
	M-19	1	0.85	9.6	23	63	
Iron	M-14	1	<0.050		3.85		
	M-15	1	<0.050			2.60	
	. M−16	3	<0.050	6.80	84.5	110	
	M-17	3	<0.050	0.650	0.850	1.50	
	M-18	1	<0.050	0.700	1.70	0.650	
	M-19	1	<0.050	<0.500	<0.500	<0.500	
Magnesium	M-14	1	11.3		11.8		
· ·	M-15	. 1	11.3			10.9	
	M-16	. 3	11.3	12.1	146	173	
	M17	3	11.3	4.00	1.70	1.80	
	M-18	1	11.3	12.5	12.4	11.6	
	M-19	1	11.3	<1.00	16.0	1.00	
Manganese	M-14	1	<0.050		0.100		
-	M-15	1	<0.050			0.100	
	M-16 °	3	<0.050	0.200	2.50	3.10	
	M-17	3.	<0.050	<0.050	<0.050	<0.050	
emerikasi dalam sami dalam dalam sami dalam d T			<0.050	<0.050	<0.100	<0.050	
the state of the state of	M-19	1	<0.050	<0.500	<0.500	, <0.500	
Molybdenum	M-14	. 1	<0.050		7.15		
	M-15	1	<0.050			<0.500	
	M-16	3	<0.050	0.200	1.10	1.00	
ina i i i i i i i i i i i i i i i i i i		. 3	<0.050	0.200	0.400	0.650	
•	M-18	1	<0.050	0.050	0.600	0.050	
	M-19	1	<0.050	<0.500	<0.500	<0.500	
Phenolics	M-14	1	<0.005		0.007		
•	.M−15	1	<0.005			<0.005	
	M-16	1 -	<0.005	<0.005	<0.005	<0.005	
	M-17	. 1	<0.005	<0.005	0.005	<0.005	
	M-18	1	<0.005	<0.005	<0.005	<0.005	
	M-19	1 .	<0.005	<0.005	<0.005	<0.005	

Table V-275 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT M

	Stream	Sample	Concentrations (mg/l)			
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3
Nonconventional Pollutants (C	Continued)					
Phosphate	M-14	- 1	<4		31	
, ,,oop.,aco	M-15	1	<4			44
	M-16	3	<4	24	20	<4
	M-17	3	<4	17	<4	21 2 7
	M-18 M-19	1 1	<4 <4	17 17	120 17	12
		'	14	• •		
Sodium	M-14	1	5.20 49.4			
	M-15	1	5.20			124
	M-16	3	5.20	178	534	543 680
	M-17	3	5.20	441	818 96.8	213
	M-18	1 1	5.20 5.20	61.1 5,570	5,040	3,540
	M-19	'	5,20	3,370	5,040	0,070
Sulfate	M-14	1	43		68	
	M-15	1	43			120
	M-16	3	43	100	110	150 140
	M-17	3	43	75 230	110 290	110
	M-18 M-19	1 1	43 43		290 15,000	9,000
·	W-19	'	40	0,700	13,000	0,000
Tin	M-14	1	<0.050		<0.500	
	M-15	1	<0.050			<0.500
	M~16	3	<0.050	<0.050	1.20	1.45
	M~17	3	<0.050	<0.050	<0.500	
	M-18	1	<0.050 <0.050	<0.200 <5.00	<0.500 <5.00	<5.00
	M-19	1	<0.050	\5.00	15.00	13.00
Titanium	M-14	1	<0.050		0.150	
T t carrion	M-15	1	<0.050		÷	0.800
	M-16	3	<0.050	<0.050	0.500	
•	M-17	3	<0.050	<0.050	<0.050	
	M-18	1	<0.050	<0.050	<0.100 <0.500	
	M-19	1	<0.050	<0.500	<0.500	\0.500
Total Dissolved Solids (TDS)	M-14	1	270		520	*
.0.0. 2.000 10	M-15	1	270			670
	M-16	3	270	600	1,500	1,500
	M-17	, 3	270	1,200	2,400	1,800
•	M-18	1	270 270	490 17,000	1,200 18,000	1,100 12,000
	M-19	1 .	210	17,000	10,000	. 2 , 000

Table V-275 (Continued)

Pollutant	_ <u>C</u>	ode			Гуре	Sou	urce	Day 1	l Day	2 Day 3
Nonconventional Pollutants	(Contin	ued)								
Total Organic Carbon (TOC)	M	-14	~~ - *		1 .		7 *		 27	
	M	-15			1	< 1				27
	. M	-16			3	< 1		20	42	50
•	· M	-17			3	< 1		15	26	22
	М	-18			1	< 1		10	24	8
	M	-19			1	<1		25	29	7
Total Solids (TS)	M	-14	t		1	280			1,100	-
	M-	-15 °			1	280				1,400
	M-	~16			3	280		870	5,300	5,800
	M-	-17			3.	280		1,300	2,500	2,100
		-18			1	280		550	1,200	1,100
	M-	-19		:	1	280	1	18,000	19,000	12,000
Vanadium	: M-	-14			1	<0.0	050		0.100	n
	M-	-15			1 .	<0.0	050			<0.050
	M-	-16			3	<0.0	050	<0.050	0.100	
	M-	- 1,7			3	<0.0	050	<0.050		
•		-18		•	1	<0.0	050	<0.050	<0.100	
		-19	A		1 .	<0.0)50	<0.500	<0.500	
Yttrium .	M-	-14			1	<0.0	050		<0.050	ו
	. M-	-15			1	<0.0	050			<0.050
	- M-	-16		•	3	<0.0	050	<0.050	<0.100	
	M~	-17			3	<0.0	050	<0.050	<0.050	
•		-18			1	<0.0	50	<0.050	<0.100	
	. M-	-19			1	<0.0	50	<0.500	<0.500	
Conventional Pollutants			10.70	•					· · · · · · · · · · · · · · · · · · ·	
•		_	:	;						
Oil and Grease	. E .	14	•		1	3			∵<1	
	-1	-15			1	3		•	4 2	< 1
	-	-16			1	3		7.8	170	47
e i e e e e e e e e e e e e e e e e e e		-17 .			1,	3 .		<1	2.9	3.7
		-18			1	3		< 1	į <1	<1 .
	M~	-19			1 .	3.		2 -	; <1	. <1
Total Comments C 1:1 (TCC)	÷			:						
Total Suspended Solids (TSS)	•	14	7		1	14		*	600	
,		15			1	14				520
	_	16			3	14		240	4,100	4,500
		17	•		3	14		150	65	90
		18			1	14		110	46	23
	M	19	-		1	14		250	300	77

Table V-275 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT M

	Stream	Sample	Co	ncentratio		
Pollutant	Code	Туре	Source	Day 1	Day 2	Day 3
Conventional Pollutants (Contin	nued)					
pH (Standard Units)	M-14 M-15 M-16 M-17 M-18 M-19	1 1 3 3 1	7.30 7.30 7.30 7.30 7.30 7.30	7.90 11.50 1.90 11.60	6.50 10.30 11.70 1.60 9.90	7.10 10.10 11.70 2.80 11.40

- The following toxic pollutants were not detected at this plant: 1-10, 12, 13, 15-22, 24, 25, 27-43, 45-54, 56-65, 67-85, 87, and 88.
- 2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-276

	Stream	Sample	Conc	Concentrations (mg/l)				
Pollutant	Code	Type	Source	Day 1	Day 2	Day 3		
Toxic Pollutants			, . · ·		v v v ··			
11. 1,1,1-trichloroethane	Q-11	1	0.018	ND		0.008		
ii. i, i, t=tritchtor dethane	Q-11 Q-14	1	0.018	0.008	**	**		
•	Q-15	1	0.018	0.012	0.007	0.006		
	Q-16	1	0.018	0.009	0.007	0.007		
•	Q-17	i	0.018	ND		0.009		
22. p-chloro-m-cresol	Q-11	3	0.011	ND		ND ·		
22. p 51/10/0 m 5/000/	Q-14	4	0.011	ND	ND ·	ND		
	Q-15	4	0.011	ND	ND	ND		
;	Q-16	4	0.011	ND		ND		
	Q-17	1	0.011	ND		ND		
30. 1,2-trans-dichloroethylene	Q~11	1	ND	ND		ND		
	Q-14	1	ND	ND	ND	ND		
	Q-15	1	ND	ND	ND	ND		
	Q-16	31	ND	0.023		0.014		
	Q-17	1	ND	ND	-	ND		
44. methylene chloride	Q-11	. 1	0.002	0.004		0.013		
•	Q-14	1	0.002	0.016	0.014	0.019		
	Q-15	· 1	0.002	0.004	0.005	0.122		
	Q-16	1	0.002	0.004		0.007		
	Q-17	1	0.002	0.004		0.004		
65. phenol	Q-11	3	ND	0.001		NĐ		
the control of the section of the control of the co	Q-14	4		ND	ND	D		
	Q~15	4	ND	0.016	0.006	. 0.009		
••	Q-16	4	ND	0.003	1.0	0.005		
	Q-17	. 1	ND	ND.		В		
66. bis(2-ethylhexyl) phthalate	Q-11	3	ND	ND =		ND		
	Q-14	4	ND	ND	0.003	ND		
were the second of the second	Q-15	4	ND	ND	" ND ;"	0.002		
	Q-16	4 ,	ND	NĎ	:	ИD		
	Q-17	1 .	ND ·	ND -	! !	ИD		
85. tetrachloroethylene	Q-11	1	ND	ND		ND		
•	Q-14	1	ND	ND	3.660	5.770		
•	Q-15	, 1	ND	0.399	0.555	0.460		
1	Q-16	1	ND	0.031	1	0.131		
	Q-17	. 1	ND -	ND		ND		

Table V-276 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT Q

		Stream	Sample		Concentrations (mg/1)				
Pollut	tant	Code	<u>Type</u>		Source		Day 1	Day 2	Day 3
Toxic	Pollutants (Cont	inued)							
87.	trichloroethylen	e	Q-11	1		ИD	ND		ND
•		Q-14	1		ND	ND	ND	ND	
			Q-15	1		ND	ИD	ND	ND
			Q-16	1		ND	0.001		ND
			Q-17	1		ИD	ND		ND
88. vinyl chloride (chloroet		chloroethylene)	0-1-1	1		ND	ND		ND
		•	0-14	1		ИD	ND	ND	ND
			Q-15	1		ND	ND	ND	ND
			0-16	1	-	ND	0.002		ND
			0-17	1		ND	ND		ND

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Day 3
114. antimony	<0.010
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<0.010
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<0.010
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<0.100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<0.050
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<0.010
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<0.010
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<0.010
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<0.080
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<0.010
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<0.010
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<0.005
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<0.050
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<0.005
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<0.005
Q-14 4 <0.020 <0.200 <0.200 Q-15 4 <0.020 <0.020 <0.020 Q-16 4 <0.020 <0.020	<0.005
Q-14 4 <0.020 <0.200 <0.200 Q-15 4 <0.020 <0.020 <0.020 Q-16 4 <0.020 <0.020	<0.020
Q-15 4 <0.020 <0.020 <0.020 Q-16 4 <0.020 <0.020	<0.200
Q-16 4 <0.020 <0.020	<0.020
	<0.020
Q-17 1 <0.020 <0.020	<0.020
119. chromium (total) Q-11 3 <0.020 0.020	0.020
Q-12' 3 <0.020 1,800	
Q-13 3 <0.020 1,900	
Q-14 4 <0.020 1,720 1,590 1,4	30
Q-15 4 <0.020 0.080 0.100	0.060
0-16 4 <0.020 0.040	0.020
Q+17 1 <0.020 0.020	0.040
	0.040
119. chromium (hexavalent) Q-12 3 <0.020 1,700	
Q-13 3 <0.020 0.60	
	40 OF C
	<0.050
Q-14 4 <0.050 0.500 1.00	1.00
	<0.050
	<0.050
Q-17 1 <0.050 <0.050	<0.050

Table V-276 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT Q

		Stream	Sample	Co	ncentratio	ns (ma/l)	
Polluta	<u>ant</u>	Code	Туре	Source	Day 1	Day 2	Day 3
Toxic F	Pollutants (Continued)						
121. c	cyanide (total)	Q-11 Q-14 Q-15 Q-16 Q-17	1 1 1 1	<0.02 <0.02 <0.02 <0.02 <0.02	<0.02 <0.02 <0.02 <0.02	<0.02 <0.02	<0.02 <0.02 <0.02 <0.02 <0.02
122. 1	lead	Q-11 Q-14 Q-15 Q-16 Q-17	3 4 4 4 1	<0.050 <0.050 <0.050 <0.050 <0.050	<0.050 <5.000 0.150 <0.050 <0.050	<5.000 0.150	<0.050 <5.000 0.150 <0.050 <0.050
123. n	nercury	Q-11 Q-14 Q-15 Q-16 Q-17	3 4 4 4 1	0.0002 0.0002 0.0002 0.0002 0.0002	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002	<0.0002 <0.0002	<0.0002 0.0008 <0.0002 <0.0002 <0.0002
124. r	nickel	Q-11 Q-14 Q-15 Q-16 Q-17	3 · 4 4 4	<0.050 <0.050 <0.050 <0.050 <0.050	<0.050 <0.500 <0.050 <0.050 <0.050	<0.500 <0.050	<0.050 <0.500 <0.050 <0.050 <0.050
125. s	selenium	Q-11 Q-14 Q-15 Q-16 Q-17	3 4 4 4	<0.010 <0.010 <0.010 <0.010 <0.010	<0.010 <0.010 <0.010 <0.010 <0.010	<0.010 <0.010	<0.010 <0.010 <0.010 <0.010 <0.010
126. s	silver	Q-11 Q-14 Q-15 Q-16 Q-17	3 4 4 4 1	<0.010 <0.010 <0.010 <0.010 <0.010	<0.010 <0.010 <0.010 <0.010 <0.010	<0.010 <0.010	<0.010 <0.010 <0.010 <0.010 <0.010
127. t	:hallium	Q-11 Q-14 Q-15 Q-16 Q-17	3 4 4 4 1	<0.010 <0.010 <0.010 <0.010 <0.010	<0.010 <0.010 <0.040 <0.010 <0.010	<0.010 <0.020	<0.010 <0.010 <0.010 <0.010 <0.020

	Pollutant	Stream Code	Sample Type	Source	Concentrat Day 1	ions (mg/l Day 2	Day 3
	Toxic Pollutants (Continued)						
٠	128. zinc	Q-11 Q-14 Q-15 Q-16 Q-17	3 4 4 4 1	0.040 0.040 0.040 0.040 0.040	0.320 13.2 0.020 0.520 0.120	10.4 <0.020	0.420 9.40 <0.020 0.260 0.080
	Nonconventional Pollutants						
.	Acidity	Q-11 Q-14 Q-15 Q-16 Q-17	4 4 4	<1 <1 <1 <1 <1	<1 130 <1 <1 <1	130 <1	<1 130 <1 <1 <1
	Alkalinity	Q-11 Q-14 Q-15 Q-16 Q-17	4 1 4 1 4 1	60 60 60 60 60	240 <1 1,300 800 150	<1 1,100	330 <1 1,000 670 150
- day - na chronni	Aluminum	Q-11 Q-14 Q-15 Q-16 Q-17	4 4 4	<0.100 <0.100 <0.100 <0.100 <0.100	0.400 19.0 0.200 0.400 <0.100	23.0	0.700 26.0 0.400 0.500 <0100
	Ammonia Nitrogen	Q-11 Q-14 Q-15 Q-16 Q-17	3 4 4 4 1	0.4 0.4 0.4 0.4 0.4	1.2 8.4 20 4.4 1.3	28 16	0.8 29 17 5.4 0.5
	Barium	Q-11 Q-14 Q-15 Q-16 Q-17	4 4 4	<0.050 <0.050 <0.050 <0.050 <0.050	<0.050 <0.500 0.050 <0.050 <0.050	<0.500 0.100	<0.050 <0.500 0.100 <0.050 <0.050
:	Boron	Q-11 Q-14 Q-15 Q-16 Q-17	3 4 4 4 1	0.300 0.300 0.300 0.300 0.300	0.100 <1.00 0.200 0.200 <0.100	1.00	0.100 1.00 0.500 0.200 0.100

Table V-276 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT Q

<u>Pollutant</u>	Stream Code	Sample Type	Source	Concentration Day 1	ons (mg/1) Day 2	Day 3
Nonconventional Pollutants (Cor	ntinued)					
Calcium	Q-11 Q-14 Q-15 Q-16 Q-17	3 4 4 4 1	3.70 3.70 3.70 3.70 3.70	5.00 15.0 191 28.3 5.00	14.0 249	5.00 13.0 199 47.2 5.60
Chemical Oxygen Demand (COD)	Q-11 Q-14 Q-15 Q-16 Q-17	3 4 4 4	500 500 500 500 500	180 15,000 22 13,000 15 3,500		780 3,000 7,000 770 <10
Chloride	Q-11 Q-14 Q-15 Q-16 Q-17	. 3 4 4 4 1	7 7 7 7	<1 <1 80 31 <1	<1 76	<1 <1 80 44 <1
Cobalt	Q-11 Q-14 Q-15 Q-16 Q-17	3 4 4 . 4	<0.050 <0.050 <0.050 <0.050 <0.050	<0.050 <0.500 <0.050 <0.050 <0.050	<0.500 <0.050	<0.050 <0.500 <0.050 <0.050 <0.050
Fluoride	Q-11 Q-14 Q-15 Q-16 Q-17	3 4 4 4 1	0.3 0.3 0.3 0.3	0.5 8.9 2.6 2.7	8.1	1.9 9.2 3.4 1.1 0.29
Iron	Q-11 Q-14 Q-15 Q-16 Q-17	3 4 4 4	<0.050 <0.050 <0.050 <0.050 <0.050	30.5 0.250 0.500	30.5	0.100 30.5 0.350 0.300 0.750
Magnesium	Q-11 Q-14 Q-15 Q-16 Q-17	3 4 4 4 1	0.900 0.900 0.900 0.900	600 <0.100 28.4	487 <0.100	42.4 437 <0.100 27.8 1.10

Table V-276 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT Q

<u>Pollutant</u>	Stream Code	Sample Type	Source	Concentrati Day 1	ons (mg/1) Day 2	Day 3
Nonconventional Pollutants (Cor	ntinued)					
Titanium	Q-11 Q-14 Q-15 Q-16 Q-17	3 4 4 4 1	<0.050 <0.050 <0.050 <0.050 <0.050	<0.050 <0.500 <0.050 <0.050 <0.050	<0.500 <0.050	<0.050 <0.500 <0.050 <0.050 <0.050
Total Dissolved Solids (TDS)	Q-11 Q-14 Q-15 Q-16 Q-17	3 4 4 4 1	260 260 260 260 260		2,000 12	580 3,300 2,000 3,800 290
Total Organic Carbon (TOC)	Q-11 Q-14 Q-15 Q-16 Q-17	3 4 4 4 1	4.2 4.2 4.2 4.2 4.2			69 2,100 1,300 350 <1
Total Solids (TS)	Q-11 Q-14 Q-15 Q-16 Q-17	3 4 4 4 1	200 200 200 200 200		2,000 1	760 7,500 2,000 4,000 0,000
Vanadium	Q-11 Q-14 Q-15 Q-16 Q-17	3 4 4 4 1	<0.050 <0.050 <0.050 <0.050	<5.00 <0.050 <0.050	<5.00 <0.050	<0.050 <5.00 <0.050 <0.050 <0.050
Yttrium	Q-11 Q-14 Q-15 Q-16 Q-17	3 4 4 4 1	<0.050 <0.050 <0.050 <0.050	<0.500 <0.050 <0.050	<0.500 <0.050	<0.050 <0.500 <0.050 <0.050 <0.050
Conventional Pollutants						
Oil and Grease	Q-11 Q-14 Q-15 Q-16	1 1 1 1 1 1	<1 <1 <1 <1	<1 <1 <1	6 5	5 14 12 9
	Q-17	7	<1	<1	7	4

Table V-276 (Continued)

Pollutant	Stream Code	Sample Type	Source	Concentratio Day 1	ns (mg/1) Day 2	Day 3
Conventional Pollutants (Continu	ied)			•		
Total_Suspended_Solids (ISS)	Q-11 Q-14 Q-15 Q-16 Q-17		31 31 31 31 31	50 92 150 77 45	70 36	32 2 38 3
pH (Standard Units)	Q-11 Q-14 Q-15 Q-16 Q-17	3 4 4 4 1	7.90 7.90 7.90 7.90 7.90	6.80 4.40 5.50 7.80 7.40	4.40 5.30	7.30 4.40 5.30 7.30 7.80

- 1. The following toxic pollutants were not detected at this plant: 1-10, 12-21, 23-29, 31-43, 45-64, 67-84, and 86.
- 2. No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

**Present but not quantifiable.

Table V-277
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT R

Pollutant		Stream Code	Sample Type	Concentration Source Day 1	s (mg/1) Day 2 Day 3
Toxic Pollutants					
119. chromium (total)	R-1 R-2 R-3 R-4	7 6 6 6	<0.01 <0.01 <0.01 <0.01	0.890 0.340 <0.01 <0.01	0.740 0.300 <0.01 <0.01
124. nickel	R-1 R-2 R-3 R-4	7 6 6 6	0.022 0.022 0.022 0.022	0.240 <0.02	25.0 0.440 0.022 0.10
Nonconventional Pollutants					
Acidity	R-1 R-2 R-3 R-4	7 6 6 6	0 0 0	20 0 0 -	27 0 0 -
Fluoride	R-1 R-2 R-3 R-4	7 6 6 6	0.19 0.19 0.19 0.19	0.23 0.22 0.18 0.26	0.17 0.19 0.18 0.29
Iron	R-1 R-2 R-3 R-4	7 6 6 6	1.6 1.6 1.6	7.6 0.21 <0.1 0.38	6.8 0.28 <0.1 0.36
Conventional Pollutants					
Oil and Grease	R-1 R-2 R-3 R-4	1 1 1 1	<5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0

-Table V-277 (Continued)

Pollutant		Stream <u>Code</u>	Sample Type	Concentra Source Day	
Conventional Pollutants (Contin	nued)			e a e e e e e e e e e e e e e e e e e e	
Total Suspended Solids (TSS)	R-1 R-2 R-3 R-4	7 6 6 6	14 14 14 14	56 6.0 6.0 9.0A	25 7.2 1.0 7.5
pH (standard units)	R-1 R-2 R-3 R-4	1 1 1 1	· -	4.8 9.8 6.8 7.4	6.0 9.3

A - Average Value.

No analyses were performed on the following toxic pollutants: 1-118, 120-123, and 125-129.

Table V-278
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT S

		Stream	Sample	Concentrations (mg/1)			
<u>Pollutant</u>		Code	Type	Source Day 1	Day 2	Day 3	
Toxic Pollutants							
10/10			<0.01	<0.01			
115. arsenic	S-2 S-4	2 5	<0.01	<0.01			
118. cadmium	S-2	2	<0.05				
110. Cadimiani	S-4	5	<0.05	<0.05			
119. chromium (total)	S-2	2	<0.05	0.582			
[19. Cill oill dill (20.22.)	S-4	5	<0.05	<0.050			
100	S-2	2	<0.05				
120. copper	S-4	5	<0.05	<0.050			
121. cyanide (total)	S-2	2	<0.01				
121. cyanide (total)	S-4	5	<0.01	<0.01			
.00 1	S-2	2	<0.1	0.101			
122. lead	S-4	5	<0.1	<0.100			
	S-2	2	<0.00	002 <0.0002			
123. mercury	S-4	5	<0.00	002 <0.0002			
	S-2	2	<0.20	00 2.44			
124. nickel	S-4	5	<0.20	00 <0.200			
	S-2	2	<0.0	0.155			
128. zinc	S-4	5	<0.09	0.058			
Nonconventional Pollutants							
4.1	S-2	2	<0.2	0.263			
Aluminum	S-4			<0.200			
0-1-14	S-2	2	<0.1	<0.100			
Cobalt	S-4			<0.100			
Elvanido	S-2	2	<0.1	0.16			
Fluoride	S-4			0.18			
T	S-2	. 2	0.1				
Iron	S-4			22 1.17			
				and the second second	and the second second		

Table V-278 (Continued)

<u>Pollutant</u>		eam S	Sample Type	Concentration Source Day 1	s (mg/1) Day 2	Day 3
Conventional Pollutants						
0il and Grease	S-2 S-4	1	<1 <1	1.6	**	
Total Suspended Solids (TSS)	S-2 S-4	2 5	<0.1 <0.1	347 5.2		
pH (standard units)	S-2 S-4	1	-	8.0-8.2 7.5-8.7		

Footnote: No analyses were performed on the following toxic pollutants: 1 - 114, 116, 117, 125-127, and 129.

Table V-279
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT T

Pollutant	Stream Code		nple /pe Sour	Concentratice Day		
Toxic Pollutants						
119. chromium (total)	T-2	6	<0.01	0.019	0.023	<0.010
120. copper	T-2	6	0.048	0.300	1.400	1.300
121. cyanide (total)	T-2	1	<0.01	<0.01	<0.01	<0.01
122. lead	T-2	6	<0.005	<0.005	<0.005	<0.005
124. nickel	T-2	6	0.075	0.260	0.510	0.340
Nonconventional Pollutants						
Acidity	T-2	6	**	**	**	**
Aluminum	T-2	6	0.14	0.027	0.220	0.072
Cobalt	T-2	6	<0.01	0.310	0.240	0.220
Fluoride	T-2	6	1.01	-	0.87	0.92
Iron	T-2	6 .	0.270	0.320	0.210	0.220
Conventional Pollutants						•
Oil and Grease	T-2	1	<0.1;0.4	0.2;<0.1	1.4;2.0	,
Total Suspended Solids (TSS)	T-2	6	1	4	6	6
pH (standard units)	T-2	6	7.70	8.2	8.2	7.83

^{**}Less than detection limit. Detection limit not known.

^{1.} No analyses were performed on the following toxic pollutants: 1-118, 123, and 125-129.

Table V-280

	Pollutant			Stream Code	Sample Type	<u>Con</u> Source	centrations Day 1		Day 3
Toxio	Pollutants				w -e-	er er er gerg			
11.	1,1,1-trichlo- ethane	U-15	1	ND				1.80	00
	ectione	U-18	1,	ND		0.008			
23.	chloroform	U-15	1	0.0	89				
	·	U-18	i	0.0		0.016		0.09	17
44.	methylene chloride	U-15	1	ND					
		U-18	1	ND		ND	-	0.08	2
48.	dichlorobromo-	U-15	1	0.0	ne				
	methane	U-18	1	0.00		ND	•	ND	
114.	antimony	U-15	3	<0.00	206				
		U-18	3 6	<0.00		0.0067	0.216	0.00 0.15	
115	arsenic	U~15	3 -	<0.00) 1				•
	<u>. </u>	U-18	- 6	<0.00		<0.001	<0.001	<0.00 <0.00	-
117.	beryllium	U-15	3	<0.01				10.01	
	**	U-18	6	<0.01		<0.01	<0.01	<0.01 <0.01	
,1,18.	cadmium	U-15	3 -	0.06	64				
		U-18	. 6 -	0.06		0.15	2.9	0.031 0.79	1

Table V-280 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT U

	Pollutant			Stream Code	Sample Type	Conc Source	entrations Day 1	(mg/1) Day 2 Day 3
Toxic	Pollutants (Contin	ned)						
119.	chromium (total)	U-15 U-18	3 6		033 033	0.031	0 .059	0.026 0.16
120.	copper	U-15 U-18	3 6	0.3 0.3		1.1	1.7	0.29 5.1
121.	cyanide (total)	U-15 U-18	1	<0.0 <0.0		<0.01	<0.01	<0.01 0.034
122.	lead	U-15 U-18	3 6	0. 0.		0.31	0.23	0.15 1.3
123.	mercury	U−15 U−18	3 6	<0.		<0.005	0.021	<0.005 0.006
124.	nickel	U-15 U-18	3		022 022	0.09	1.2	0.05 2.4
125.	selenium	U-15 U-18	3 6	<0. <0.	-	<0.001	0.002	<0.001 0.001

Table V-280 (Continued)

	Polluta	<u>1t</u>		ream Sampl		centrations (r Day 1 Da	ng/1) ay 2 Day 3
Toxic	Pollutants (Continued)			•		
126.	silver	U-15	3	<0.0005			0.011
•	- ,-	U-18	6	<0.0005	0.012	0.0025	0.011
127.	thallium	U-15	3	<0.001			<0.001
		U-19	6	<0.001	0.002	0.0022	0.0027
128.	zinc	U-15	3	<0.01			0.81
		U-18	6	<0.01	1.7	0.38	3.0
Nonco	nventional <u>Po</u>	llutants					
Acidi	tv	U-15	3	20.0			10.0
	•	U-18	3 6	20.0	<10.0	<10.0	30.0
Alkal	inity	U-15	. 3	25.0			24.0
	•	U-18	6 ·	25.0	120.0	380.0	136.0
						•	

Table V-280 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT U

<u>Pollutant</u>		Stream Code	Sample Type	Conce Source	entrations Day 1	(mg/1) Day 2 Day 3
Nonconventional Pollutar	ts (Continue	<u>1)</u>				
Aluminum	U-15 U-18		. 22 . 22	0.29	0.64	0.22 0.75
Ammonia Nitrogen	U-18	6 0.	.06	0.75	2.5	2.7
Barium	U-15 U-18	3 '<0.	.01 .01	<0.01	0.016	<0.01 ≃0.01
Boron			.033 .033	0.08	0.47	<0.02 0.19
Calcium	U-15 U-18	3 12 3 12		88.0	74.0	12.0 88.0
Chemical Oxygen Demand	U-18	100	. 0	100.0	<50.0	50.0
Chloride	U-15 U-18		. 0 . 0	67.0	110.0	17.0 200.0
Cobalt		-	.01 .01	0.02	<0.01	<0.01 <0.01

Table V-280 (Continued)

Pollut	ant			Sample Co	oncentrations Day 1	
Nonconventional P	ollutants (Contin	ued)				Day 2 Day 3
Fluoride	U-15 U-18	3	1.4		<u></u>	1,3
Gold	U-15 U-18	3	<0.25	3.1	7.6	25.0 <0.25
Iron .	U - 15	3 6	<0.25 0.23	<0.25	<0.25	<0.25 0.25
Magnesium	U-18 U-15		0.23 2.1	1.2	1.7	2.3
Manganese	U-18 U-15	3 6	2.1	1.9	2.0	2.1 2.9
-	U-18	3 6	<0.02 <0.02	0.46	0.12	0.17 0.32
Molybdenum	U-15 U-18	3 6	<0.03 <0.03	<0.03	<0.03	<0.03 <0.03
Phosphorus	U-18	6	0.78	3.5	3.8	6.5

Table V-280 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT U

<u>Pollutant</u>		Stream Code	Sample Type Sou	Concentrations rce Day 1	(mg/1) Day 2 Day 3
Nonconventional Pollutan	ts (Continued	1)			
Sodium	U-15 3 U-18 6	7. 7.		1,100.0	8.5 730.0
Sulfate	U-15 C	3. 3.		200.0	7.5 150.0
Tin	U-15 U-18	3 <0. 3 <0.		<0.25	<0.25 <0.25
Titanium .		3 <0. 3 <0.		5 <0.25	<0.25 <0.25
Total Dissolved Solids (TDS)	U-15 U-18	3 150. 5 150.		8,600.0	140.0 2,900.0
Total Organic Carbon (TOC)	U-18	132.	0 27.0	9.0	25.0
Total Solids (TS)	U-15 U-18	3 150. 5 150.		9,100.0	150.0 3,000.0

Table V-280 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT U

<u>Pollutant</u>			Stream Sample Code Type	Cor Source	centrations Day 1	(mg/l) Day 2 Day 3
Nonconventional Pollutar	nts (Conti	nued)	the second second second second second			
Vanadium	U-15 U-18	3 6	<0.02 <0.02	<0.02	<0.02	<0.02 <0.02
Yttrium	U-15 U-18	3 6	<0.12 <0.12	<0.12	<0.12	<0.12 <0.12
Conventional Pollutants						
Oil and Grease	U-15 U-18	1	24.0 24.0	300.0	63.0	160.0 <1.0
Total Suspended Solids (TSS)	U-15 U-18	3 6	<1.0 <1.0	14.0	53.0	2.0 20.0
pH (standard units)	U-15 U-18	3 6	5 5	5	5	. 4 5

^{1.} The following toxic pollutants were not detected at this plant: 1-10, 12-22, 24-43, 45-47, and 49-88.

^{2.} No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-281
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT V

Concen	tcat.	ions i	(ma/1)

				Concentrations (mg/l)							
Pollut	tant	Steam Code	Sample Type	Source	Day 1, Batch 1	Day 1, Batch 2	Day 2	Day 3, Batch 1	Day 3, Batch 2		
											
Toxic	<u>Pollutants</u>										
22.	p-chloro-m-	V-10	1	ND	0.227			1.047			
22.	cresol	V-11	1	ND	ND			0.187			
	Cresor	V-12	i	ND			189.655				
		V-13	i	ND			26.395				
								0.035			
23.	ch1orofo r m	V-10	1	0.103	0.098		•				
		V-11	1	0.103	0.044			0.011			
		V-12	1	0.103			ND				
		V-13	1	0.103			ND				
		V-10	1	ND	ND			0.055			
66.	bis(2-ethylhexyl)			ND	ND			ND			
	phthalate	V-11	1		ND		4.416				
		V-12	1	ND			ND				
		V-13	1	ND			ND				
68.	di-n-butyl	V-10	1 .	ND	ND			0.019			
•••	phthalate	V-11	1	ND	0.015			ND			
	piitiaiate	V-12	1	ND			ND				
		V-13	1	ND			ND				
		10	•	ND	0.059			0.310			
85.	tetrachloro-	V-10	1		ND			0.047			
	ethylene	V-11	1	ND			<5.000	0.0			
		V-12	1	ND		*	ND				
		V-13	1	ND			NU				
114.	antimony	V-10	1	<0.0006	<0.0006	<0.0006		<0.0006	<0.000		
• • • •	arra rinorry	V-11	1	<0.0006	<0.0006	<0.0006		<0.0006	<0.0006		
		V-12	1	<0.0006			0.0018				
		V-13	1	<0.0006			<0.0006				
				40 001	<0.001	<0.001		0.0011	<0.001		
115.	arsenic	V-10	1	<0.001	<0.001	<0.001		<0.001	<0.001		
		V-11	1	<0.001	<0.001	\U.UU1	0.0035	10.001	5.001		
		V-12	1	<0.001			0.0067				
		V-13	1	<0.001		-	0.0007				
117.	beryllium	.V. 10	1	0.012	0.3	0.2		0.1	0.086		
117.	Del-y I I funi	V-11	· · · · · ·	0.012	0.012	0.015	· · · · · · · · · · · · · · · · · · ·	0 . 13	0.033		
		V-12	i	0.012		• "	0.02				
		V-12	i	0.012			0.035				
		v-13	•	0.012			=				

Table V-281 (Continued)

	# - # · ·				Concentrations	s (mg/1).		
Pollutant	Steam Code	Sample Type	Source	Day 1, Batch 1	Day 1, Batch 2	Day 2	Day 3, Batch 1	Day 3, Batch 2
		ors of the second				, , , , , , , , , , , , , , , , , , , 		
Toxic Pollutants (Cont	tinued)							
118. cadmium	V-10 V-11 V-12 V-13	. · 1 1 . · 1	<0.03 <0.03 <0.03 <0.03	0.18 0.14	0.17 <0.03	<0.03 <0.03	0.08 <0.03	0.05 <0.03
119. chromium (total)	V-11 V-12 V-13	1 1 1 1	0.061 0.061 0.061 0.061	0.4 0.08	0.4 <0.03	0.1 0.09	0.2	0.21
119a. chromium (hexa- valent)	V-10 V-11	1 1	NA NA	<0.001 <0.001	<0.001	•	<0.001 <0.001	<0.001
120. copper	V-10 V-11 V-12 V-13	1	0.088 0.088 0.088 0.088	4.2 0.09	4.4 0.039	2.1 0.18	2.3 0.049	1.7
121. cyanide (total)	V-10 V-11 V-12	1 1 1	<0.01 <0.01 <0.01 - <0.01	0.21 0.21	<0.1 0.21	0.21	0.13	0.27 0.38
122. lead	V-10 V-11 V-12 V-13	1 1 1 1	0.036 0.036 0.036 0.036	9.2 0.2	8.8	4.8 0.1	5.2 0.2	3.8 0.16
123. mercury	V-10 V-11 V-12 V-13	1 1 1 1	<0.005 <0.005 <0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005	<0.005 <0.005
124. nickel	V-10 V-11 V-12 V-13	1 1 1 1	0.055 0.055 0.055 0.055	1.4	1.3 0.038	0.17 0.18	0.7 0.047	0.6 0.03

Concentrations (mg/1)

Pollutant	Steam Code	Sample Type	Source	Day 1, Batch 1	Day 1, Batch 2	Day 2	Day 3, Batch 1	Day 3, Batch 2
Toxic Pollutants (C	ontinued)							
125. selenium	V-10 V-11 V-12 V-13	1 1 1	<0.001 <0.001 <0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.0012
126. silver	V-10 V-11 V-12 V-13	1 1 1	<0.0005 <0.0005 <0.0005 <0.0005	0.0011 <0.0005	0.0019 0.0005	0.0007 0.0008	0.0018	0.001 <0.0005
127. thallium	V-10 V-11 V-12 V-13	1 1 1	<0.001 <0.001 <0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.0019	<0.001 <0.001	<0.001 <0.001
128. zinc	V-10 V-11 V-12 V-13	1 1 1	0.101 0.101 0.101 0.101	0.5 0.7	0.5 0.033	3.9 0.3	0.5 0.057	0.6 0.054
Nonconventional Pol	lutants							
Acidity	V-10 V-11 V-12 V-13	1 1 1	<10.0 <10.0 <10.0 <10.0	4,700 <10	120 20	<10 71	1,890 <10	940 <10
Alkalinity	V-10 V-11 V-12 V-13	1 1 1	33.0 33.0 33.0 33.0	33 196	<1 62	- 663 93	<1 294	<1 963
Aluminum	V-10 V-11 V-12 V-13	1 1 1 1	0.131 0.131 0.131 0.131	29.0 3.1	34.0 3.7	5.9 18.0	15.0 1.1	12.0

Table V-281 (Continued)

	· · · · · · · · · · · · · · · · · · ·					Concentrations	s_(mg/1)		
	Pollutant	Steam Code	Sample Type	Source	Day 1, Batch 1	Day 1, Batch 2	Day 2	Day 3, Batch 1	Day 3, Batch 2
		- '	- ,				120 12 TO 12 TO 12	***	
	Nonconventional Polluta	ints (Con	tinued)						
	Ammonia Nitrogen	V-10 V-11 V-12 V-13	1 1 1	0.07 0.07 0.07 0.07	0.92 1.3	0.9 1.5	<0.02 16	<0.02 1.6	1.3 1.5
	`Barium	V-10 V-11 V-12 V-13	1 1 1 1	0.2 0.2 0.2 0.2	2.6	2.3 0.13	0.5 1.0	1.4 0.1	0.8 0.195
	Boron .	V-10 V-11 V-12 V-13	1 1 1	<0.2 <0.2 <0.2 <0.2	1.6 0.4	1.4	0.6	0.8 0.14	0.8 0.102
	Calcium	V-10 V-11 V-12 V-13	1 1 1	0.045 0.045 0.045 0.045	268.0 1,418.0	230.0 1,750	68.0 47.0	457.0 1,336.0	492.0 1,350.0
	Chemical Oxygen Demand (COD)	V-10 V-11 V-12 V-13	1 1 1	<50.0 <50.0 <50.0	<50 <50	80 10	···· <50	<50	15
	Chloride	V-10 V-11 V-12 V-13	1 1 1 1	36.0 36.0 36.0 36.0	385 100	210 55	230 120	38 60	30 42
:	Cobalt	V-10- V-11 V-12 V-13	1 1 1	0.044 0.044 0.044 0.044	2.2 0.073	2.1 0.049	0.18 0.15	0.9 0.079	0.8
٠	Fluoride	V-10 V-11 V-12 V-13	1 1 1	0.41 0.41 0.41 0.41	12 0.75	7.4 5.1	4.7 4.7	9.4 1.9	6.35 2.4

Table V-281 (Continued)

Concentrations (mg/1)

Pollutant	Steam Code	Sample Type	Source	Day 1, Batch 1	Day 1, Batch 2	Day 2	Day 3, Batch 1	Day 3, Batch 2
Nonconventional Po		itinued)			<u> </u>	***************************************		,
	, ,	•						
Iron	V~10	1	0.16	8.1	7.6		7.8	8.7
	V-11.	1	0.16	0.23	0.4		0.17	0.15
	V-12	1	0.16			37.0		
	V~13	1	0.16			44.0		
Magnesium	V-10	1	8.0	24.0	5.7		31.0	6.4
	V-11	1	8.0	1.5	0.42		4.8	0.25
	V-12	1	8.0			50.0	*	
	V-13	1	8.0			2,400.0		
Manganese	V~10	1	0.058	1.3	0.058		1.1	0.7
	V-11	1	0.058	1.0	0.6		0.081	0.042
	. V~12	1	0.058			0.8		
•	V-13	1	0.058			1.2		
Molybdenum	V-10	1	<0.03	9.2	9.2		4.3	5.1
	V~11	1	<0.03	2.0	4.0		1.6	1.4
	V~12	1	<0.03			2.1	*	
	V-13	1	<0.03			0.094		
Nitrate	V~10	1	<0.09	6,600			3,300	3,100
	V~11	1	<0.09	5,400	6,200			
	V-12	1	<0.09			46		
Phosphorus	V-10	1	0.5	60	5.8		1.9	16
	V-11	1	0.5	1.2	<0.18		0.88	2.1
±1	V~12	1	0.5			2.9 2.3		
	V-13	1	0.5			2.3		
Sodium	V-10	1	74.0	860.0	220.0		1,030.0	305.0
	V~11	1	74.0	778.0	217.0		1,033.0	1,072.0
-	V~12	1	74.0			1,519.0		
	V-13	1	74.0			11.2		
Sulfate	V~10	1	2.8	84	8.8		10	93
•	V~11	1	2.8	73	97		97	91
	V-12	1	2.8			12		•
	V-13	1-	2.8			1,100		

Table V-281 (Continued)

					Concentration	ons (mg/l)		
Pollutant	Steam Code	Sample Type	Source	Day 1, Batch 1	Day 1, Batch 2	Day 2	Day 3, Batch 1	Day 3, Batch 2
		r re r r ar	manage of a second of the second			The second secon		
Nonconventional Polluta	<u>ants</u> (Con	tinued)						
•		•						_
Tin	V-10	1	<0.25	0.3	0.3		<0.25	<0.2
	V-11	1	<0.25	<0.25	<0.2		<0.25	<0.25
	V-12	1	<0.25			<0.25	*	
	V-13	1	<0.25			<0.25		
Titanium	V-10	1	<0.2	24.0	23.0		15.0	6.8
	V-11	1	<0.2	<0.2	<0.2		0.3	<0.2
	V-12	1	<0.2			0.9		
	V-13	1	<0.2			1.3		-
Total Dissolved Solids	V-10	1	300.0	11,000	11,000		7,000	5,600
(TDS)	V-11	i	300.0	6,850	7,600		6,100	6,600
	V-12	1	300.0	-,-	.,	7,900	0,100	.,
•	V-13	, i	300.0		*	11,000		
Total Organic Carbon	V-10		<10.0 ···	320	4 <u>5</u>		. 39	<1
(TOC)	V-11	i	<10.0	50 .	<1 ·		2	<1
(100)	V-12	i	<10.0	•	j	1,800	-	•••
	V-13	i	<10.0		s'	<1	•	
T-1-1 C-14d- (TC)		1	000' 0	10.000	10.000		- 400	
Total Solids (TS)	V-10	•	330.0	12,000	12,000		7,100	6,200
	V-11	. 1	330.0	7,300	7,400		900	6,800
	V-12	1	330.0			1,500		
. And the second	V13	1	330.0			14,000		
Uranium	V-10	1	0.89	2,300	2,100		1,300	6.4
	V-11	1	0.89	3.4	4.6		30	5.1
	V-12	1	0.89			37		
	V-13	1	0.89			0.427	-	
Vanadium	V-10	· 1	<0.03	6.0	5.3		2.7	1.8
- 	V-11	i	<0.03	0.04	<0.03		0.041	0.12
	V-12	i	<0.03	0.04	-0.00	0.245	0.0-1	0.12
	V-13	i	<0.03	•		0.11		
Yttrium	V-10	1	<0.1	1.7	1.6		1.3	0.8
	V-11	1	<0.1	<0.1	0.1	•	<0.1	<0.1
	V-12	i	<0.1	-0.1		0.3	-3.1	٠٠, ١
	V-13	i	<0.1			<0.1		

Table V-281 (Continued)

Concen-	tratio	വഭ (സ	n/11
COLLCELL		113 (11	9111

Pollutant	Steam Code	Sample Type	Source	Day 1, Batch 1	Day 1, Batch 2	Day 2	Day 3, Batch 1	Day 3, Batch 2
Nonconventional Po	llutants (Con	tipued)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Nonconventional Po	Trocance (con	·			Concentr	ations (nCi/L)		
Gross Alpha	V-10	1	0.014	2,250	2,160		994	96.7
	V-11	1	0.014	3.0	2.8		0.94	1.1
	V-12	1	0.014			25.4		-
	V-13	1	0.014	*		0.23		
Gross Beta	V-10	1	<0.013	3,310	3,079		1,520	154
	V-11	1	<0.013	4.6	4.4		2.6	2.0
	V-12	1	<0.013			38.3		
	V-13	1	<0.013			1.0		
Radium-226	V-10	1	<0.0008	0.0087	0.005		0.0049	0.006
	V-11	1	<0.0008	<0.0008	0.0014	-	<0.0011	<0.001
	V-12	1	<0.0008			0.0045		
	, V-13	1	<0.0008			<0.0009		
•					Concentr	ations (mg/l)		
Conventional Pollu	tants						•	-
Oil and Grease	V-10	1	<1.0	83 7	60		220	10
	V-11	1	<1.0	7	<1		<1	<1
	V-12	1	<1.0			15,000		
	V-13	1	<1.0			1		

Table V-281 (Continued)

					Concentration	ons (mg/1)		
Pollutant	Steam Code	Sample Type	Source	Day 1, Batch 1	Day 1, Batch 2	Day 2	Day 3, Batch 1	Day 3, Batch 2
						·		
Conventional Pollutants	(Contin	ued)						
Total Suspended Solids	V-10	1	<1.0	72	44		420	400
(TSS)	V-11	· 1	<1.0	180	6		420	91
	V-12	1	<1.0			470		
	V-13	1	<1.0			2,600		
pH (standard units)	V-10	1	6	1	1		. 2	9
	V-11	1	6	10	. 7		11-12	11-12
	V-12	1	6			8-9		
	V-13	1	6			6		

NA - Not analyzed.

^{1.} The following toxic pollutants were not detected at this plant: 1-21, 24-65, 67, 69-84, and 86-88.

^{2.} No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-282
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT W

	Pollutant		Stream Code	Sample Type		rations (mg Day 1 Day	
Toxic	Pollutants						
11.	1,1,1-trichloro- ethane	W-3	1	ND	ND	0.360	
14.	1,1,2-trichloro- ethane	W-3	1	ND	0.210	ND	
22.	p-chloro-m-cresol	W-3	6	ПD	ND	0.048	
23.	chloroform	W-3	1 .	ND	ND	ND	
44.	methylene chloride	W-3	1	ND	31.000	9.700	
66.	bis(2-ethylhexyl) phthalate	W-3	6	ND	ND	0.016	
69.	di-n-octyl phthalate	W-3	6	ND	ND	0.012	
86.	toluene	W-3	1	ND	3.400	8.900	
114.	antimony	w-3	6	<0.0006	0.0006	0.0006	<0.0006
115.	arsenic	W-3	6	<0.001	<0.001	0.002	<0.001
117.	beryllium	W-3	6	0.2	0.059	<0.01	<0.01
118.	cadmium	W-3	6	<0.03	<0.03	<0.03	<0.03
119.	chromium (total)	w-3	6	0.052	<0.04	<0.03	<0.03
120.	copper	W-3	6	<0.03	0.032	<0.03	<0.03
121.	cyanide (total)	W-3	1	<0.1	0.63	<0.1	

Table V-282 (Continued)

	Pollutant	*** ** * ** *	Stream Code	Sample Type	Conce Source	ntrations Day 1	(mg/1) Day 2 <u>Day 3</u>
	Toxic Pollutants (Continu	ned)					
	122. lead	W-3	6	0.1	0.13	0.1	0.12
	123. mercury	M-3	6	<0.005	<0.005	<0.5	<0.005
	124. nickel	W-3	6	0.039	0.11	0.053	0.045
	125. selenium	.W-3	6	<0.0004	<0.0004	<0.0004	<0.0004
	126. silver	W-3	6	<0.005	0.005	<0.005	0.008
	127. thallium	W-3	6	<0.001	<0.001	<0.001	<0.001
	128. zinc	W-3	6	0.036	0.046	0.048	0.047
	Nonconventional Pollutan	ts					
 H	Acidity	W-3	6	10.0	70.0	20.0	10.0
081	Alkalinity	W-3	. 6	12.0	25.0	18.0	18.0
-	Aluminum	w-3		- 0.089 -	,0.9	1.3	1.2
	Ammonia Nitrogen	W-3	6	<0.02	1.6	1.1	
	Barium	W-3	6	1.6	0.1	0.067	0.061
	Boron	W-3	6	0.19	0.083	0.3	0.12
· ····································	Calcium	W3	6· ·	8 . 5	28.0	1.5	13.0
	Chemical Oxygen Demand (COD)	W-3	6	<50.0	<50.0	<50.0	

Table V-282 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT W

Pollutant		Stream <u>Code</u>	Sample Type	Conce Source		mg/1) ay 2 <u>Day 3</u>
Nonconventional Pollutants	(Continue	d)				
Chloride	W-3	6	3,.0	520.0	73.0	28.0
Cobalt	W-3	6	<0.03	<0.025	<0.03	<0.03
Fluoride	W-3	6	0.2	34.0	31.0	26.0
Iron	W-3	6	0.072	0.3	<0.03	0.11
Magnesium	W-3	6	2.0	0.06	3.4	2.9
Manganese	W-3	6	11.0	<0.1	0.3	0.2
Molybdenum	W-3	6	0.08	<0.03	<0.03	<0.03
Phosphorus	W-3	6	<0.18	<0.18	<0.18	
Sodium	W-3	6	14.0	390.0	170.0	110.0
Sulfate	W-3	. 6	6.2	8.5	8.5	25.0
Tin	W-3	6	<0.25	<0.25	<0.25	<0.25

^{1.} The following toxic pollutants were not detected at this plant: 1-10, 12, 13, 15-21, 24-43, 45-65, 67, 68, 70-85, 87, and 88.

^{2.} No analyses were performed on the following toxic pollutants: 89-113, 116, and 129.

Table V-283
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT X

				Stream	Sample	Conc	entrations	(mg/1)	/1)		
	<u>Pollutant</u>			<u>Code</u>	Type	Source	Day 1	Day 2	Day 3		
<u>Toxio</u>	<u>Pollutants</u>										
114.	antimony	X-4	1	<0.2	2	<0.2	<0.2	<0.	2		
		X-6	4	<0.2	2	<0.2	<0.2	<0.			
115.	arsenic	X-4	1	<0.0	005	<0.005	<0.005	<0.	005		
		X-6	4	<0.0	005	<0.005	<0.005	<0.	005		
117.	beryllium	X-4	1	<0.0)2	<0.02	<0.02	<0.	02		
	·	X-6	4	<0.0)2	<0.02	<0.02	<0.			
118.	cadmium	X-4	1	<0.0)3	0.07	0.05	٥.	04		
		X-6	4	<0.0)3	<0.03	<0.03	<0.			
119.	chromium (total)	X-4	1	<0.0)2	0.02	<0.02	<0.	03		
		X-6	4	<0.0)2	<0.02	<0.02	<0.			
120.	copper	X-4	1	<0.0)5	0.8	0.5	0.	4		
		X-6	4	<0.0	15	<0.05	0.02		024		
122.	lead	X-4	1	<0.1		7.1	7.0	4.	5		
		X-6	4	<0.1		0.12	<0.1		11		
123.	mercury	X-4	1	<0.0	105	<0.005	<0.005	<0.	005		
		X-6	4	<0.0	05	<0.005	<0.005		005		
124.	nickel	X-4	1	<0.1		7.0	6.8	4.	6		
	1	X-6	4	<0.1		0.17	0.14	Ö.			

Table V-283 (Continued)

WASTEWATER TREATMENT PERFORMANCE DATA - PLANT X

		5.11			Stream Sample		centrations (
		- Pollut	ant		Code Type	Source	<u>Day_1</u> <u>Da</u>	ay 2 . Day 3
	<u>Toxic</u>	<u>Pollutants</u>	(Continued)					
	125.	selenium	X-4	1	<0.005	<0.005	<0.005	<0.005
			X-6	4	<0.005	<0.005	<0.005	<0.005
	126.	silver	X-4 X-6	1	0.002 0.002	0.57 <0.002	0.37 0.006	0.48 1.9
•	127.	thallium	X-4 X-6	1 4	<0.005 <0.005	0.11 0.075	0.075 0.055	0.082 0.052
	128.	zinc	X-4 X-6	1 4	0.074 0.074	<0.02 0.025	<0.03 0.1	<0.03 0.2
	Noncor	nventional i	Pollutants					
ᆫ ·	Acidi	ty	X-4 X-6	1 4	11 11	11 <10	11 <10	130 <10
1085	Alkal	inity	X-4 X-6	1 4	122 122	129 362	135 119	172 7 5
	Alumir	num	X-4 X-6	1 4	0.12 0.12	0.22	0.1 2.1	<0.1 1.8
•	Barium	m	X-4 X-6	1 4、	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02	<0.02 <0.02

Table V-283 (Continued)

WASTEWATER TREATMENT PERFORMANCE DATA - PLANT X

Pollutant		Stream Code	Sample Type	<u>Conc</u> Source	entrations Day 1	(mg/1) Day 2 Day 3
Nonconventional Pollu	tant (Continued))				
Boron	X-4 1 X-6 4		073 073	2.6 1.6	3.0 17	4.2 3.4
Calcium	X-4 1 X-6 4	31 31		30 17	36 25	36 35
Cobalt	X-4 1 X-6 4	<0. <0.		<0.02 <0.02	<0.03 <0.03	<0.03 <0.03
Columbium	X-4 1 X-6 4	ND ND		ND 0.12	ND 1.8	ND 3.4
Fluoride	X-4 1 X-6 4	1. 1.		1.6 170	1.5 200	1.0 160
Iron	X-4 1 X-6 4		052 052	2.3 0.1	2.0 0.3	1.1
Magnesium	X-4 1 X-6 4	10 10		9.1 0.91	11 6.0	11 8.2

Table V-283 (Continued)

WASTEWATER TREATMENT PERFORMANCE DATA - PLANT X

<u>Pollutant</u>			ample Cor Type Source	ncentrations Day 1	(mg/1) Day 2 Day 3	
Nonconventional Polluta	<u>ınts</u> (Continued	4)			•	
Manganese	X-4	<0.01 <0.01	0.05 <0.01	. 0.07 <0.01	<0.01	
Molybdenum	X-4 1 X-6 4	<0.03 <0.03	0.7 <0.03	0.6 <0.03	0.6 <0.03	
Sodium	X-4 1 X-6 4	23 23	2,000 980	1,400 830	1,600 840	
Tantalum	X-4 1 X-6 4	ND ND	ND 5.8	ND 6.15	ND 12	
Tin	X-4 1 X-6 4	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	
Titanium	X-4 1 X-6 4	<0.2 <0.2	<0.2 1.0	<0.2 0.7	<0.2 0.6	
Total Dissolved Solids (TDS)	X-4 1 X-6 4	2,400 2,400	5,200 3,100	3,700 2,900	4,200 2,600	
Total Solids (TS)	X-4 1 X-6 4	2,600 2,600	5,200 3,000	3,700 3,000	8,100 2,800	
Tungsten	X-4 1 X-6 4	ND ND	14 0.42	8.9 1.45	13.5 2.2	

Table V-283 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT X

<u>Pollutant</u>	Stream Sampl Code Type		Day 1	(mg/1) Day 2 Day 3						
Nonconventional Pollutants (Continued)										
Vanadium	X-4 1	<0.1	<0.1	<0.1	<0.1					
	X-6 4	<0.1	<0.1	<0.1	<0.1					
Yttrium	X-4 1	<0.0001	<0.1	<0.1	<0.1					
	X-6 4	<0.0001	<0.1	<0.1	<0.1					
Conventional Pollutants	(Continued)									
Oil and Grease	X-4 1	. 4	7	2	8					
	X-6 1	4	-15	<1	1 3					
Total Suspended Solids (TSS)	X-4 1	<1	5	17	150					
	X-6 4	<1	<1	200	200					
pH (standard units)	X-4 1	7.06	7.95	8.03	8.10					
	X-6 4	7.06	11.58	10.87	10.46					

No analyses were performed on the following toxic pollutants: 1-113, 116, 121, and 129.

	Pollutant		Stream <u>Code</u>	Sample Type		trations (mg/1 Day 1 Day 2	
Toxic	Pollutants			· parenage	- war in the second of the sec		
114.	antimony	Y-13	-6	0.0002	0.0002	<0.0002	<0.0002
115.	arsenic	Y-13	6	0.002	0.002	<0.001	0.005
117.	beryllium	Y-13	6 ·	<0.02	<0.02	<0.02	<0.02
118.	cadmium	Y-13	6	<0.03	<0.03	<0.03	<0.03
119.	chromium (total)	Y-13	6	<0.02	<0.02	0.02	0.032
120.	copper	Y-13	6	<0.02	0.02	<0.02	<0.02
121.	cyanide (total)	Y-13	1	0.03	0.48	0.45	0.07
122.	lead	Y-13	6	0.067	0.14	0.14	0.15
	and the second s						

Table V-284 (Continued)
WASTEWATER TREATMENT PERFORMANCE DATA - PLANT Y

<u>Pollutant</u>		Stream <u>Code</u>	Sample Type	Source	ntrations (mg/l Day 1 Day 2	
Toxic Pollutants (Continued)						
123. mercury	Y-13	6	<0.005	<0.005	<0.005	<0.005
124. nickel	Y-13	6	0.1	0.3	0.3	0.7
125. selenium	Y-13	6	<0.001	<0.001	<0.001	<0.001
126. silver	Y-13	6	<0.0005	<0.0005	0.0006	<0.0005
127. thallium	Y-13	6	<0.001	<0.001	<0.001	0.003
128. zinc	Y-13	6	0.08	<0.03	<0.03	<0.03
Nonconventional Pollutants						
Acidity	Y-13	6	11.0	<10.0	21.0	40.0
Alkalinity	Y-13	6	31.0	44.0	28.0	31.0

Table V-284 (Continued)

WASTEWATER TREATMENT PERFORMANCE DATA - PLANT Y

<u>Pollutant</u>	20 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Stream Code	Sample Type	Conce Source		g/1) y 2 Day 3
Nonconventional Pollutants	(Continued)					
Aluminum	Y-13	6	0.03	0.2	0.5	0.1
Barium	Y-13	6	<0.02	<0.02	<0.02	<0.02
Boron	Y-13	6	2.2	2.1	0.7	1.0
Calcium	Y-13	6	12.0	8,000.0	3,100.0	4,300.0
Cobalt	Y-13	6	<0.03	0.03	<0.03	0.042
Fluoride	Y-13	6	290.0	20.0	11.0	11.0
Iron	Y-13	6	0.061	0.2	0.1	0.2
Magnesium	Y-13	6	1.8	23.0	23.0	30.0

Table V-284 (Continued)

WASTEWATER TREATMENT PERFORMANCE DATA - PLANT Y

<u>Pollutant</u>		Stream Code	Sample Type	Conc Source	entrations (mg Day 1 Day	
Nonconventional Pollutants (C	ontinued))				
Manganese	Y-13	6	<0.01	<0.01	<0.01	0.02
Molybdenum	Y-13	6	0.056	1.5	1.1	0.9
Sodium	Y-13	6	14.0	880.0	1,200.0	960.0
Tin	Y-13	6	<1.0	<1.0	<1.0	<1.0
Titanium	Y-13	6	0.5	0.2	0.4	0.2
Total Dissolved Solids (TDS)	Y-13	6	120.0	9,984.0	110.0	84.0
Total Solids (TS)	Y-13	6	120.0	9,500.0	160.0	200.0
Vanadium	Y-13	6	<0.1	<0.1	<0.1	<0.1.
Yttrium	Y-13	6	<0.1	<0.1	<0.1	<0.1

Table V-284 (Continued)

WASTEWATER TREATMENT PERFORMANCE DATA - PLANT Y

<u>Pollutant</u>		Stream Code	Sample Type	Source	entrations (mg Day 1 Day	
Conventional Pollutants						
011 and Grease	Y-13	1	1.0	2.0	7.0	<1.0
Total Suspended Solids (TSS)	Y-13	6	54.0	65.0	40.0	15.0
pH (standard units)	- Y−13	6	6	10	7 .	7

NA - Not analyzed.

^{1.} No analyses were performed on the following toxic pollutants: 1-113, 116, and 129.

	<u>Pollutant</u>		Stream Code	Sample Type Sou	Concentration urce Day 1	s (mg/1) Day 2	Day 3
Toxic	<u>Pollutants</u>						
114.	antimony	Z-5 Z-6 Z-7	1 1 1	0.0004 0.0004 0.0004	0.0066 0.00025 0.00025		
115.	arsenic	Z-5 Z-6 Z-7	1 1 1	<0.001 <0.001 <0.001	0.34 0.0053 <0.001		
117.	beryllium	Z-5 Z-6 Z-7	1 1 1 .	<0.01 <0.01 <0.01	0.03 <0.01 <0.01		
118.	cadmium	Z-5 Z-6 Z-7	1 1 1	<0.01 <0.01 <0.01	0.074 <0.01 0.026		
í19.	chromium (total)	Z-5 Z-6 Z-7	1 1 1	0.038 0.038 0.038	13 1 0.07		
120.	copper	Z-5 Z-6 Z-7	1 1 1	0.013 0.013 0.013	0.5 0.042 0.031		
122.	lead	Z-5 Z-6 Z-7	1 · 1 1	0.097 0.097 0.097	1.102 0.62 0.15		
123.	mercury	Z-5 Z-6 Z-7	1 1 1	<0.005 <0.005 <0.005	<0.005 <0.005 <0.005		
124.	nickel	· Z-5 Z-6 Z-7	1 1 1	0.038 0.038 0.038	0.48 0.084 0.059		
125.	selenium	Z-5 Z-6 Z-7	1 1 1	0.0004 0.0004 0.0004	0.0011 0.0016 0.0004		
126.	silver	Z-5 Z-6 Z-7	1 1 1	0.0005 0.0005 0.0005	0.0022 0.057 0.044	وينسيس	

Table V-285 (Continued)

WATERWATER TREATMENT PERFORMANCE DATA - PLANT Z

<u>Pollutant</u>		Stream _Code	Sample-	Concentrations (mg/1)			
<u>. 577528112</u>		_code	Type	Source Day 1		Day 2	Day 3
Toxic Pollutants (Continued)						
127. thallium	Z-5	1	<0.001	0.00	26		
	Z-6	1	<0.001	0.00			
	Z-7	i	<0.001	0.02			
128. zinc	Z-5	1	<0.25	0.41			
	Z-6	1	<0.25	0.05	3		
	Z-7	1	<0.25	0.03	6		
Nonconventional Pollutants							
Acidity	Z-6	1	<10	<10	•		
	Z-7	1	<10	. 27			
Alkalinity	Z-6	1	69	925			
	Z-7	1	69 .	57			
Aluminum	Z-5	1	0.11	36			
	Z-6	1	0.11	2.4			
•	Z-7	1	0.11	0.23			
Barium	Z-5	1	0.04	0.34			
	Z-6	.1	0.04	0.2			
	Z-7	1	0.04	0.12	8		
Boron	Z-5	1	0.5	7.7			
	Z-6 Z-7	1	0.5	3.4			
	2-1	'	0.5	1.2			
Calcium	Z-5	1	79	28,000			
	Z-6	1	79	9,300			
•	Z-7	1	79	1,400			
Cobalt	Z-5	1	<0.01	0.5			
	Z-6	1	<0.01	0.05			
•	Z-7	1	<0.01	0.03	1		
Columbium	Z-5	1	ND	98			
	Z-6	1	ND	3.5			
	Z-7	1	ND	ND			
Fluoride	Z-5	1	0.2	10			
	Z-6	1	0.2	5.3			
•	Z-7	1	0.2	5.9			

Table V-285 (Continued)

WATERWATER TREATMENT PERFORMANCE DATA - PLANT Z

<u>Pollutant</u>		Stream Code	Sample Type	Conce Source	ntrations Day 1	mg/1) Day 2	Day 3
Nonconventional Pollutants	(Continued)					
Iron	Z-5 Z-6 Z-7	1 1 1	0.24 0.24 0.24	0.53 83 0.52			
Magnesium	Z-5 Z-6 Z-7	1 1 1	8.0 8.0 8.0	83 4.6 0.31			
Manganese	Z-5 Z-6 Z-7	1 1 1	0.012 0.012 0.012	81 3.2 0.11	,		
Molybdenum	Z-5 Z-6 Z-7	1 1 1	<0.03 <0.03 <0.03	0.26 0.12 0.13	!		
Sodium	Z-5 Z-6 Z-7	1 1 1	27 27 27	760 1,200 1,200			
Tantalum	Z-5 Z-6 Z-7	1 1 1	ND ND ND	90 3 ND			
Tin	Z-5 Z-6 Z-7	1 1 1	<0.28 <0.28 <0.28	0.87 <0.28 <0.28	3		
Titanium	Z-5 Z-6 Z-7	1 1 1	<0.25 <0.25 <0.25	170 11 <0.25	5		

Table V-285 (Continued)

WATERWATER TREATMENT PERFORMANCE DATA - PLANT Z

"	<u>Pollutant</u>			tream Code		Sample Type	Sou		ntrat Day		(mg/ Day		
	Nonconventional Pollutants (Cont.)		•		-							
	-Total Dissolved Solids (TDS)	Z=6 Z-7		1 · 1		110 -		000· ~ 39		r · ·			
	Total Solids (TS)	Z-6 Z-7		1 1		390 390		300 110					
	Vanadium	Z-5 Z-6 Z-7	1	1 1 1		<0.02 <0.02 <0.02		7.9 0.55 0.02					
	Yttrium	Z-5 Z-6 Z-7		1 1 1		<0.25 <0.25 <0.25		<0.25 <0.25 <0.25	;				
1097	Zirconium	Z-5 Z-6 Z-7		1 1 1		0.26 0.26 0.26		6.7 1.4 <0.25	i				
	Conventional Pollutants												
	Oil and Grease	Z-5 Z-6 Z-7		1 1 1		<1 <1 <1		1 2 3		,			
	Total Suspended Solids (TSS)	Z-6 Z-7	-	1 1	-	100 100	. 5	70 45			-		
	pH (standard units).	Z-5. Z-6 Z-7		1 ; - 1 1		6 6 6		1-2 1 2 6				m - 12 - 1 mag and 10 2 2	-

^{1.} No analyses were performed on the following toxic pollutants: 1-113, 116, 121, and 129.

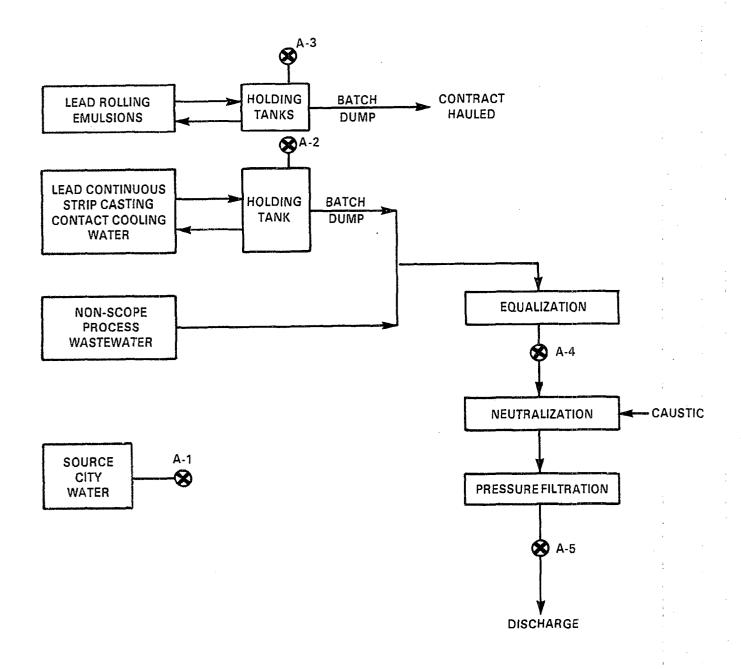


FIGURE V-1
WASTEWATER SOURCES AT PLANT A

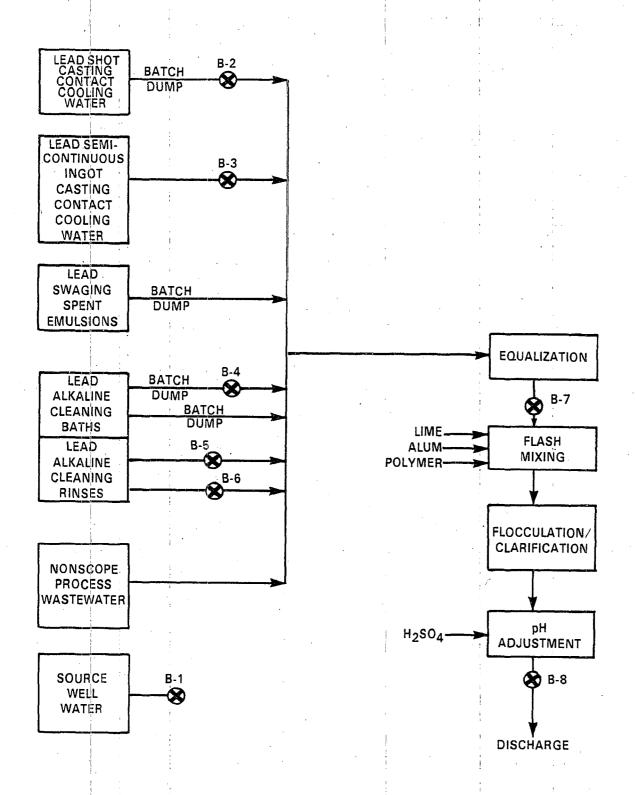


FIGURE V-2
WASTEWATER SOURCES AT PLANT B

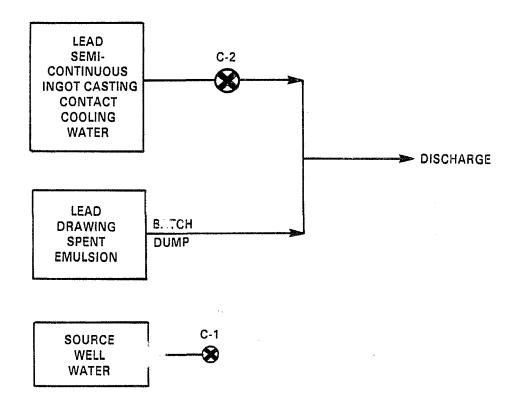


FIGURE V-3
WASTEWATER SOURCES AT PLANT C

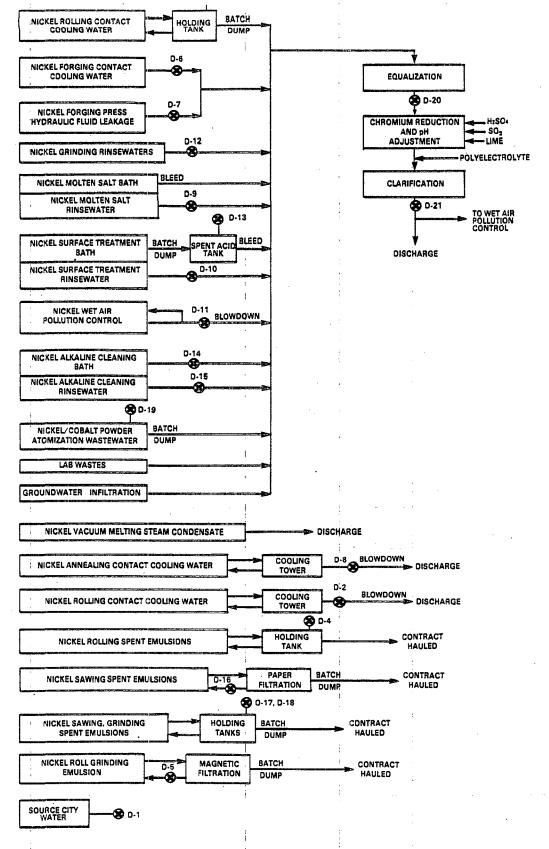


FIGURE V-4
WASTEWATER SOURCES AT PLANT D

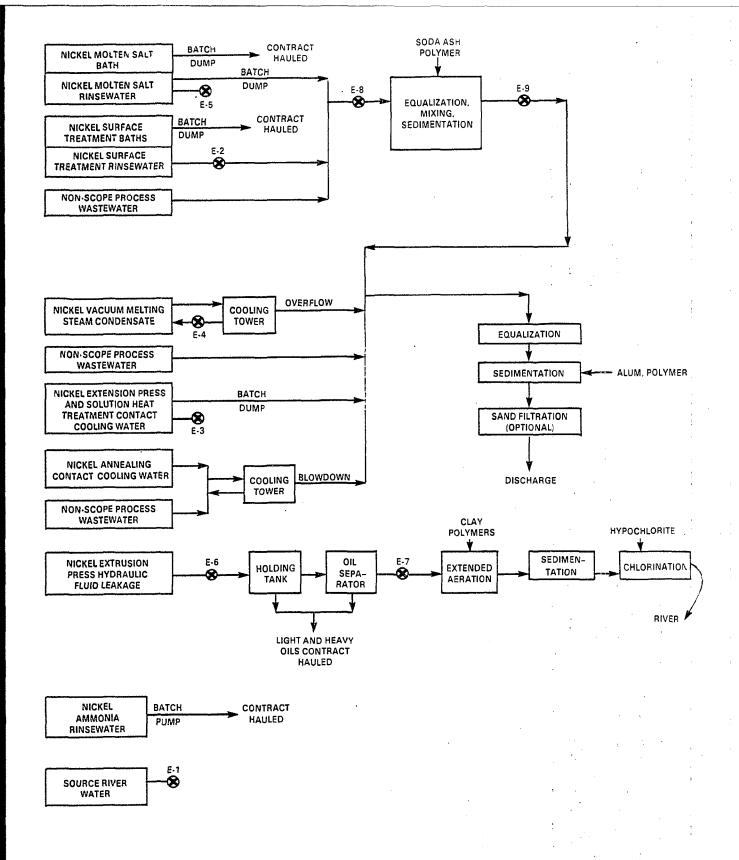
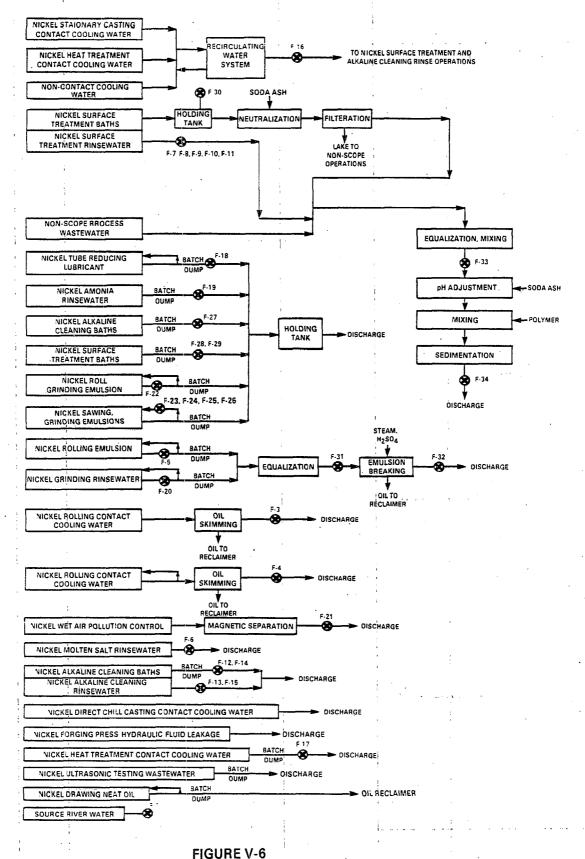
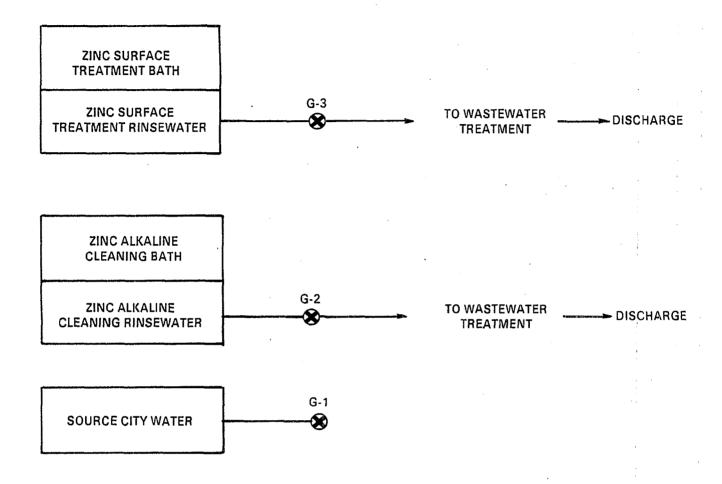




FIGURE V-5
WASTEWATER SOURCES AT PLANT E

WASTEWATER SOURCES AT PLANT F

FIGURES V-7
WASTEWATER SOURCES AT PLANT G

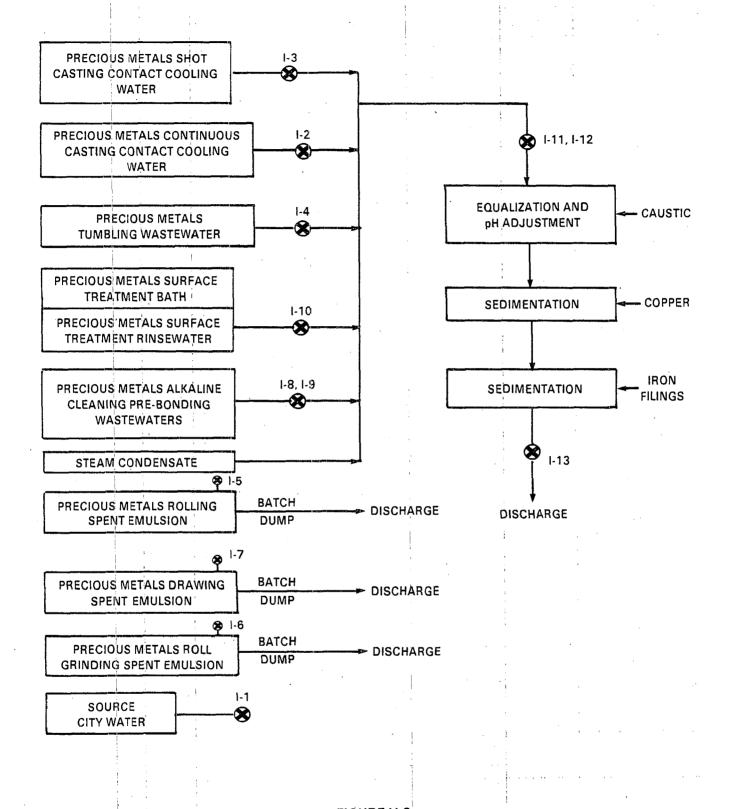


FIGURE V-8
WASTEWATER SOURCES AT PLANT I

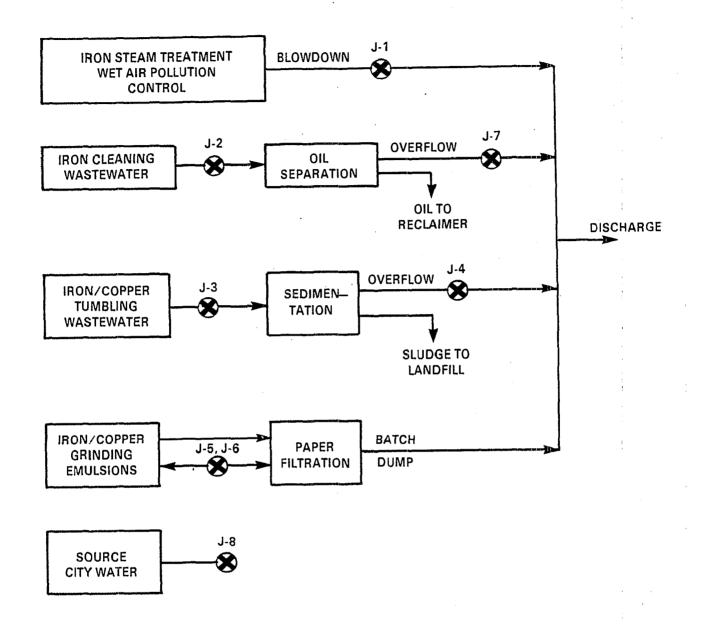


FIGURE V-9
WASTEWATER SOURCES AT PLANT J

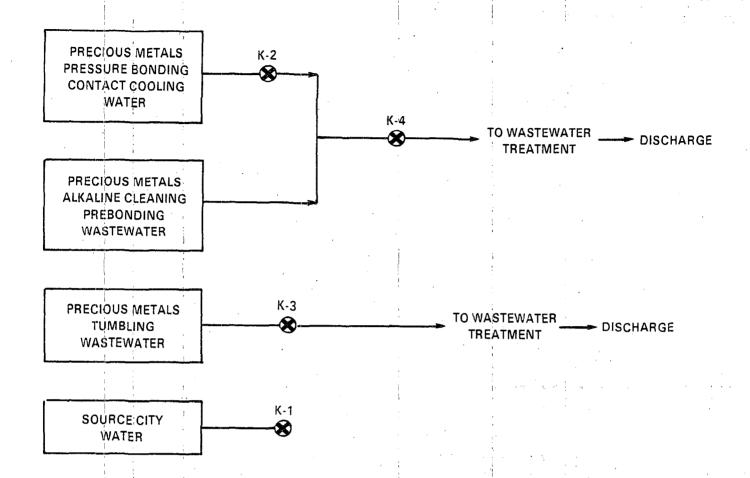


FIGURE V-10
WASTEWATER SOURCES AT PLANT K

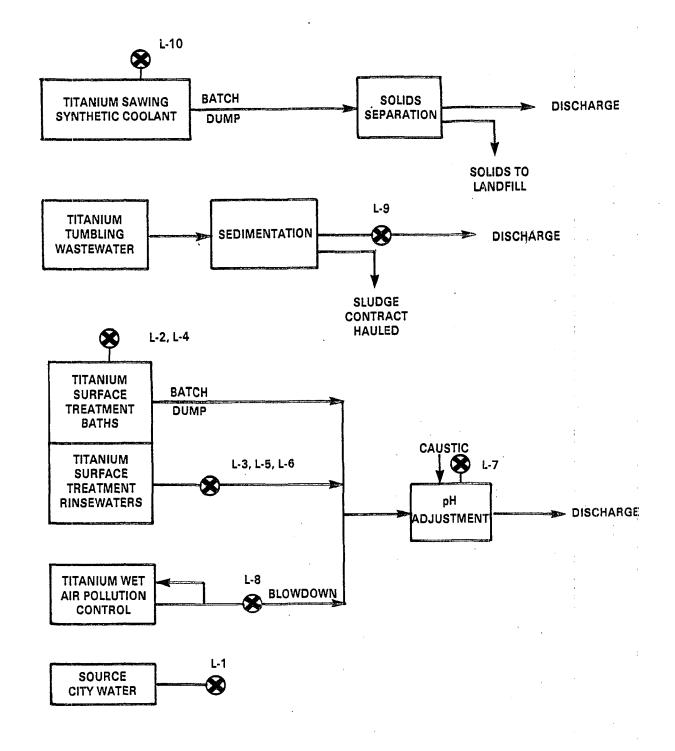
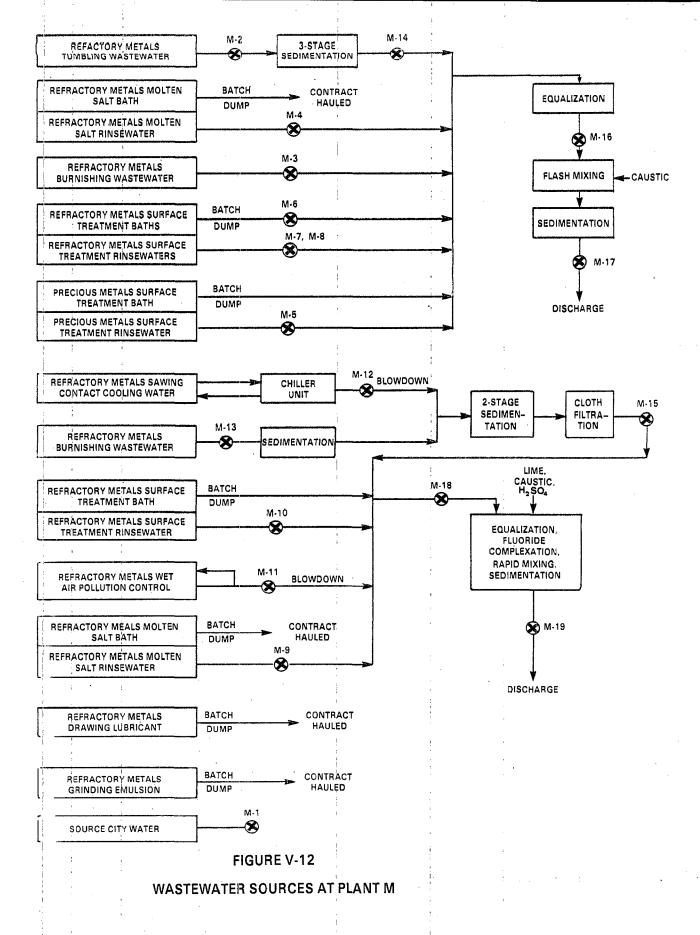



FIGURE V-11
WASTEWATER SOURCES AT PLANT L

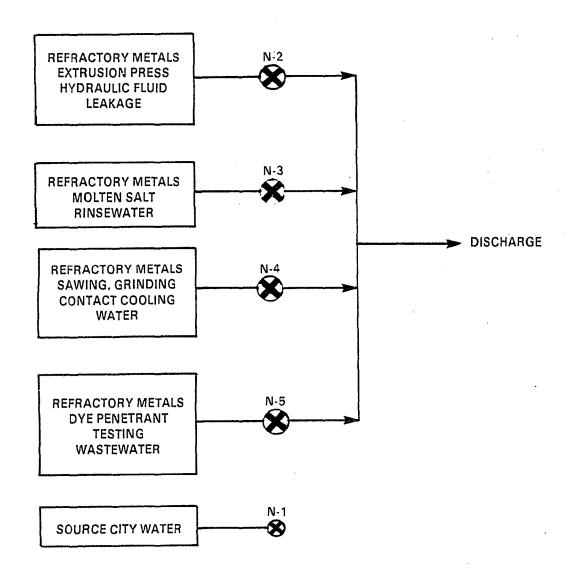


FIGURE V-13
WASTEWATER SOURCES AT PLANT N

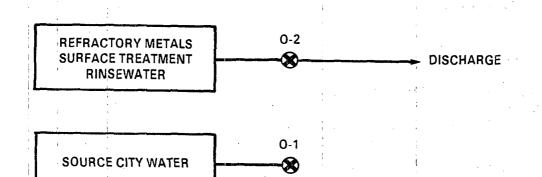


FIGURE V-14
WASTEWATER SOURCES AT PLANT O

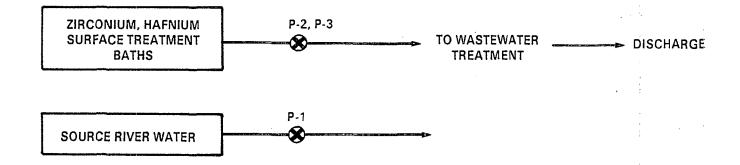
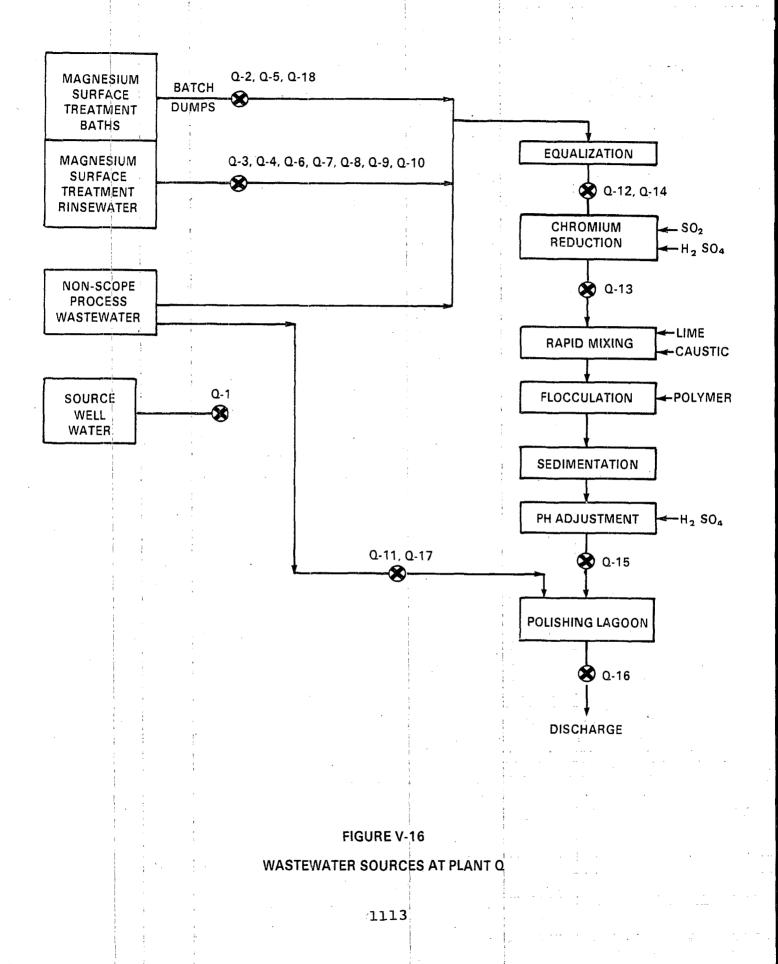



FIGURE V-15
WASTEWATER SOURCES AT PLANT P

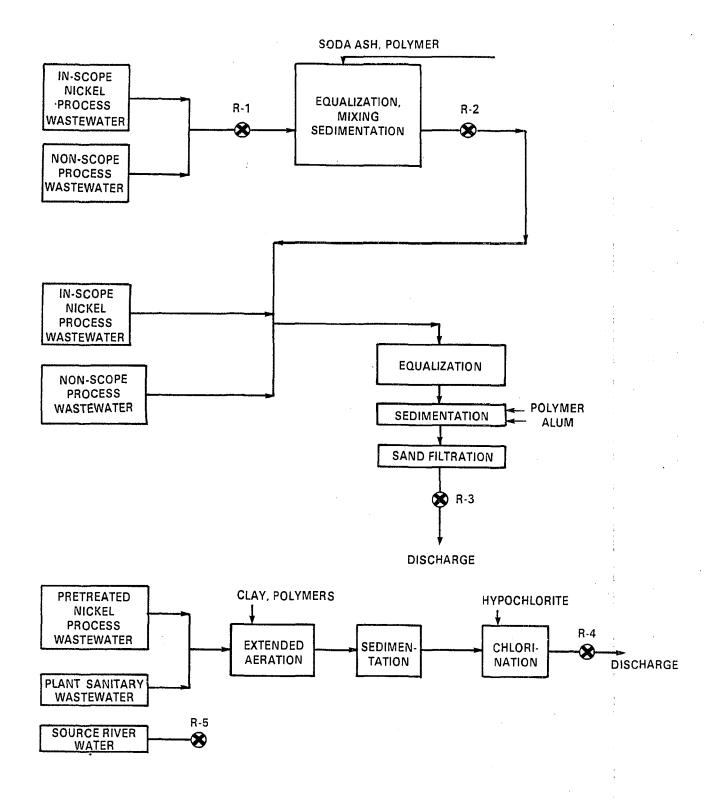
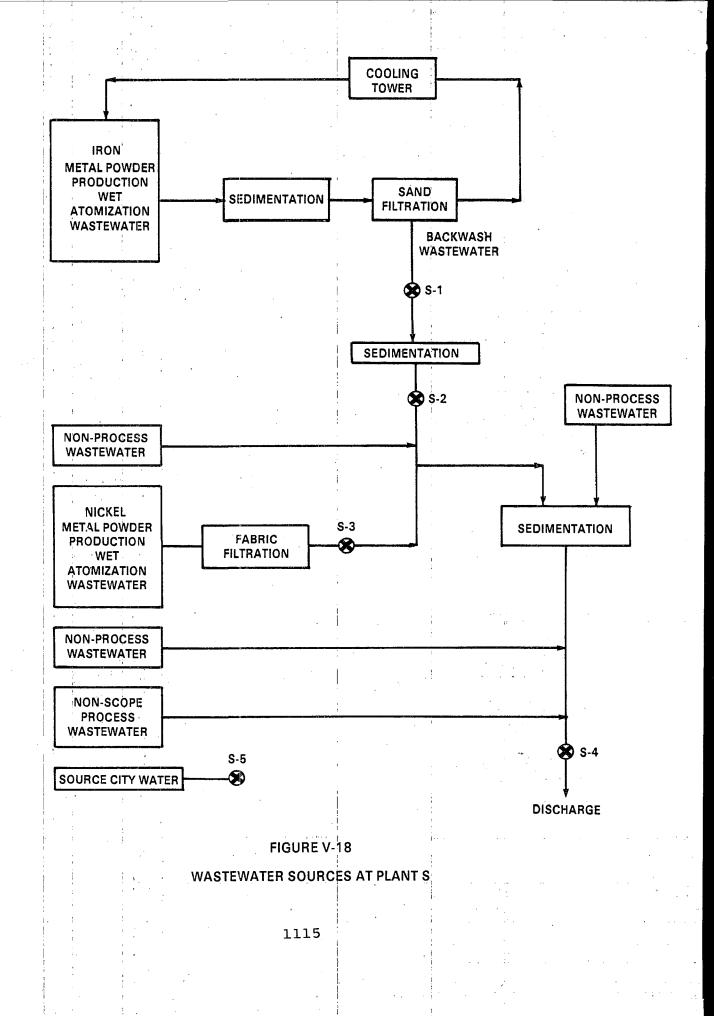



FIGURE V-17
WASTEWATER SOURCES AT PLANT R

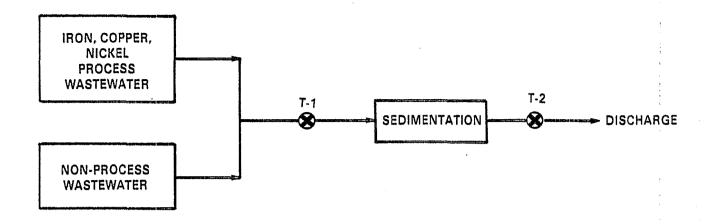
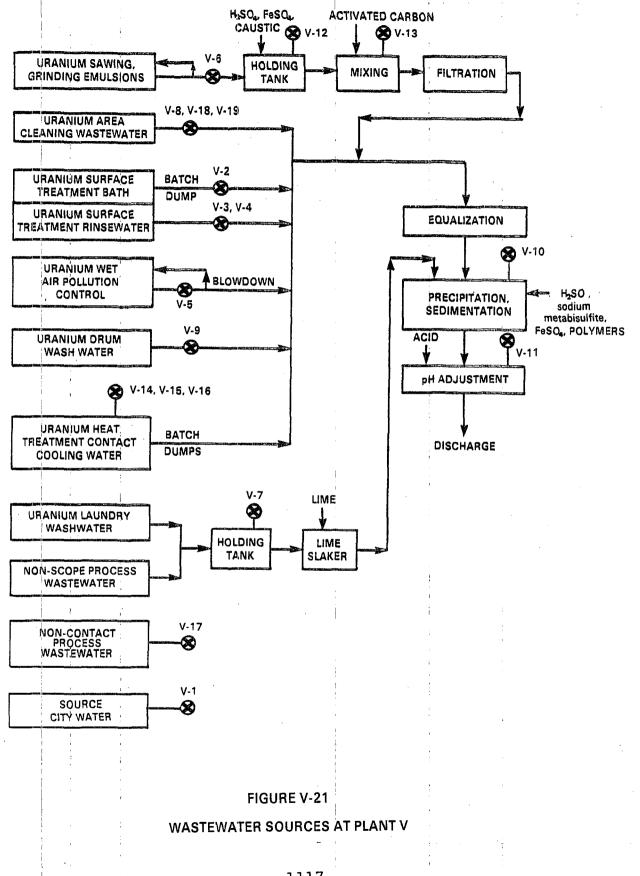



FIGURE V-19
WASTEWATER SOURCES AT PLANT T

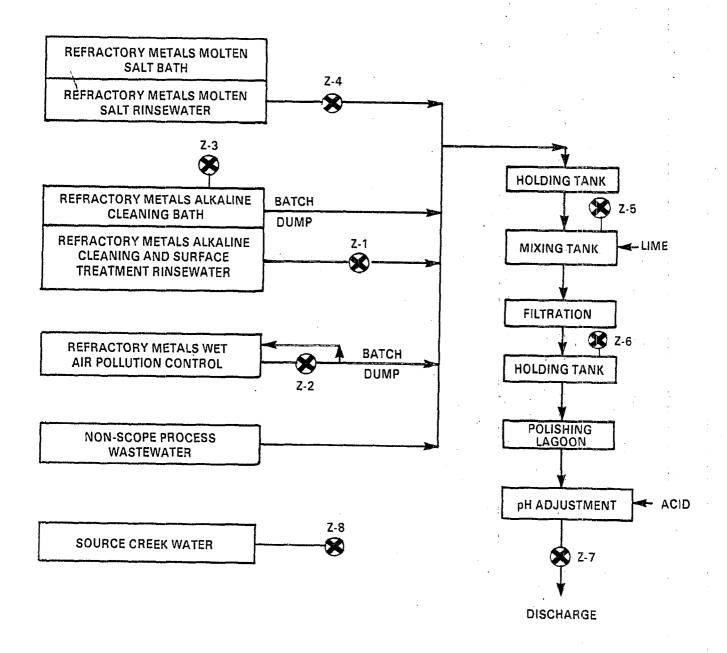


FIGURE V-25
WASTEWATER SOURCES AT PLANT Z

SECTION VI

SELECTION OF POLLUTANT PARAMETERS

The Agency has studied nonferrous metals forming wastewaters to determine the presence or absence of priority, conventional, and selected nonconventional pollutants. The priority and nonconventional pollutants are subject to BPT and BAT effluent limitations, as well as NSPS, PSES, and PSNS. The conventional pollutants are subject to BPT and BCT effluent limitations, as well as NSPS.

One hundred and twenty-nine pollutants (known as the 129 priority pollutants) were studied pursuant to the requirements of the Clean Water Act of 1977 (CWA). These pollutant parameters, which are listed in Table VI-1, are members of the 65 pollutants and classes of toxic pollutants referred to as Table 1 in Section 307(a)(1) of the CWA.

From the original list of 129 pollutants, three pollutants have been deleted in two separate amendments to 40 CFR Subchapter N, Part 401. Dichlorodifluoromethane and trichlorofluoromethane were deleted first (46 FR 2266, January 8, 1981) followed by the deletion of bis-(chloromethyl) ether (46 FR 10723, February 4, 1981).

studies by EPA and others have identified many nonconventional pollutant parameters useful nonpriority, characterizing industrial wastewaters and evaluating treatment process removal efficiencies. Certain of these and other parameters may also selected reliable indicators of the as . presence of specific priority pollutants. For these reasons, a number of nonpriority pollutants were also studied for the nonferrous metals forming category.

The conventional pollutants considered (total suspended solids, oil and grease, and pH) traditionally have been studied to characterize industrial wastewaters. These parameters are especially useful in evaluating the effectiveness of wastewater treatment processes.

Several nonconventional, nonpriority pollutants were considered. As discussed in Section V, raw wastewater samples were analyzed for the following: acidity, alkalinity, aluminum, ammonia nitrogen, barium, boron, calcium, chemical oxygen demand (COD), chloride, cobalt, columbium, fluoride, gold, iron, magnesium, manganese, molybdenum, nitrate, phenolics, phosphate, phosphorus, sodium, sulfate, tantalum, tin, titanium, total dissolved solids (TDS), total organic carbon (TOC), total solids (TS), tungsten, uranium, vanadium, yttrium, zirconium, radium-226, gross-alpha, and gross-beta. Of these nonconventional pollutants, ammmonia, fluoride, gold, and molybdenum were

considered for limitation in particular subcategories, since they are found in significant concentrations in some nonferrous metals forming process wastewater streams and are not effectively controlled simply by controlling the priority metal pollutants.

RATIONALE FOR SELECTION OF POLLUTANT PARAMETERS

Exclusion of Toxic Pollutants

The Settlement Agreement in Natural Resources Defense Council, Inc. vs. Train, 8 ERC 2120 (D.D.C. 1976), modified 12 ERC 1833 (D.D.C. 1979), modified by orders of October 26, 1982, August 2, 1983, January 6, 1984, July 5, 1984 and January 7, 1985, which preceded the Clean Water Act, contains provisions authorizing the exclusion from regulation in certain instances of particular pollutants, categories, and subcategories.

Paragraph 8(a)(iii) of the Settlement Agreement allows the Administrator to exclude from regulation priority pollutants not detectable by Section 304(h) analytical methods or other stateof-the-art methods. Accordingly, pollutants that were never detected, or that were never found above their analytical quantification level, are excluded from regulation. The analytical quantification level for a pollutant is the minimum concentration at which that pollutant can be reliably measured. priority pollutants in this study, the analytical quantification 0.005 mg/l for pesticides, PCB's, and beryllium; levels are: 0.010 mg/l for antimony, arsenic, selenium, silver, thallium, and the remaining organic priority pollutants; 0.020 mg/l cadmium, chromium, cyanide, and zinc; 0.050 mg/l for copper, lead, and nickel; and 0.0002 mg/1 for mercury.

Since there was no reason to expect TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) in nonferrous metals forming process water, EPA decided that maintenance of a TCDD standard in analytical laboratories was too hazardous. Consequently, TCDD was analyzed by GC/MS screening, and compared to EPA's GC/MS computer file. Samples collected by the Agency's contractor were not analyzed for asbestos. Asbestos is not expected to be a part of nonferrous metals forming wastewater since the category only includes metals that have already been refined from any ores that might contain asbestos. In addition, asbestos is not known to be present in any process chemicals used in any forming operations.

Paragraph 8(a)(iii) also allows the Administrator to exclude from regulation priority pollutants detected in amounts too small to be effectively reduced by technologies known to the Administrator. Pollutants which were detected below levels considered to be achievable by specific available treatment methods are excluded. For the priority metals, the chemical precipitation, sedimentation, and filtration technology treatment effectiveness values, which are presented in Section VII were used. For the priority organic pollutants detected above their analytical quantification level, treatment effectiveness values for activated carbon technology were used. These treatment effectiveness

values represent the most stringent treatment options considered for pollutant removal. This allows for the most conservative exclusion for pollutants detected below treatable levels.

Treatment effectiveness concentrations and analytical quantification concentrations are presented for the 129 priority pollutants in Table VI-2.

Paragraph 8(a)(iii) allows for the exclusion of a priority pollutant if it is detected in the source water of the samples taken.

In addition to the provisions outlined above, Paragraph 8(a)(iii) of the Settlement Agreement (1) allows the Administrator to exclude from regulation priority pollutants detectable in the effluent from only a small number of sources within the subcategory because they are uniquely related to those sources, and (2) allows the Administrator to exclude from regulation priority pollutants which will be effectively controlled by the technologies upon which are based other effluent limitations guidelines, or by pretreatment standards.

Waste streams in the nonferrous metals forming category have been grouped together by the subcategorization scheme described in Section IV. The pollutant exclusion procedure was applied for each of the following subcategories:

- (1) Lead-Tin-Bismuth Forming
- (2) Magnesium Forming
- (3) Nickel-Cobalt Forming
- (4) Precious Metals Forming
- (5) Refractory Metals Forming
- (6) Titanium Forming
- (7) Uranium Forming
- (8) Zinc Forming
- (9) Zirconium-Hafnium Forming
- (10) Metal Powders

Priority pollutants remaining after the application of the above exclusion process were selected for further consideration in establishing specific regulations.

DESCRIPTION OF POLLUTANT PARAMETERS

The following discussion addresses pollutant parameters detected above their analytical quantification level in any sample of nonferrous metals forming wastewater. The description of each pollutant provides the following information: the source of the pollutant; whether it is a naturally occuring element, processed metal, or manufactured compound; general physical properties and the form of the pollutant; toxic effects of the pollutant in humans and other animals; and behavior of the pollutant in a POTW at concentrations that might be expected from industrial discharges.

Acenaphthene (1). Acenaphthene (1,2-dihydroacenaphthylene, or 1,8-ethylene-naphthalene) is a polynuclear aromatic hydrocarbon (PAH) with molecular weight of 154 and a formula of $C_{12}H_{10}$.

Acenaphthene occurs in coal tar produced during high temperature coking of coal. It has been detected in cigarette smoke and gasoline exhaust condensates.

The pure compound is a white crystalline solid at room temperature with a melting range of 95C to 97C and a boiling range of 278C to 280C. Its vapor pressure at room temperature is less than 0.02 mm Hg. Acenaphthene is slightly soluble in water (100 mg/l), but even more soluble in organic solvents such as ethanol, toluene, and chloroform. Acenaphthene can be oxidized by oxygen or ozone in the presence of certain catalysts. It is stable under laboratory conditions.

Acenaphthene is used as a dye intermediate, in the manufacture of some plastics, and as an insecticide and fungicide.

So little research has been performed on acenaphthene that its mammalian and human health effects are virtually unknown. The water quality criterion of 0.02 mg/l is recommended to prevent the adverse effects on humans due to the organoleptic properties of acenaphthene in water.

No detailed study of acenaphthene behavior in a POTW is available. However, it has been demonstrated that none of the organic toxic pollutants studied so far can be broken down by biological treatment processes as readily as fatty acids, carbohydrates, or proteins. Many of the toxic pollutants have been investigated, at least in laboratory-scale studies, at concentrations higher than those expected to be contained by most municipal wastewaters. General observations relating molecular structure to ease of degradation have been developed for all of the toxic organic pollutants.

The conclusion reached by study of the limited data is that biological treatment produces little or no degradation of acenaphthene. No evidence is available for drawing conclusions about its possible toxic or inhibitory effect on POTW operation.

Its water solubility would allow acenaphthene present in the influent to pass through a POTW into the effluent. The hydrocarbon character of this compound makes it sufficiently hydrophobic that adsorption onto suspended solids and retention in the sludge may also be a significant route for removal of acenaphthene from the POTW:

Acenaphthene has been demonstrated to affect the growth of plants through improper nuclear division and polyploidal chromosome number. However, it is not expected that land application of sewage sludge containing acenaphthene at the low concentrations bich are to be expected in a POTW sludge would result in any

adverse effects on animals ingesting plants grown in such soil.

Acrolein (2). The available data for acrolein indicate that acute and chronic toxicity to freshwater aquatic life occur at concentrations as low as 0.068 and 0.021 mg/l, respectively, and would occur at lower concentrations among species that are more sensitive than those tested.

For the protection of human health from the toxic properties of acrolein ingested through contaminated aquatic organisms, the ambient water criterion is determined to be 0.320 mg/l. For the protection of human health from the toxic properties of acrolein ingested though contaminated aquatic organisms alone, the ambient water criterion is determined to be 0.780 mg/l.

Acrolein has a wide variety of applications. It is used directly as a biocide for aquatic weed control; for algae, weed, and mollusk |control in recirculating process water systems; for control in the paper industry; and to protect liquid fuels Acrolein is also used directly for against microorganisms. crosslinking protein collagen in leather tanning and for tissue fixation in histological samples. It is widely used as an intermediate in the chemical industry. Its dimer, which is prepared by a thermal, uncatalyzed reaction, has several applications, including use as an intermediate for crosslinking agents, humectants, plasticizers, polyurethane intermediates, copolymers and homopolymers, and creaseproofing cotton. The monomer is utilized in synthesis via the Diels-Alder reaction as a dienophile or a Acrolein is widely used in copolymerization, but its diene. homopolymers do not appear commercially important. The copolymers of acrolein are used in photography, for textile treatment, in the paper industry, as builders in laundry and dishwasher detergents, and as coatings for aluminum and steel panels, as other applications. In 1975, worldwide production was about 59 kilotons. Its largest market was for methionine manu-Worldwide capacity was estimated at 102 kilotons/year, facture. of which U.S. capacity was 47.6 kilotons/year.

Acrolein (2-propenal) is a liquid with a structural formula of $CH_2 = CHCHO$ and a molecular weight of 56.07. It melts at -86.95C, boils at 52.5 to 53.5C, and has a density of 0.8410 at 20C. The vapor pressure at 20C is 215 mm Hg, and its water solubility is 20.8 percent by weight at 20C.

A flammable liquid with a pungent odor, acrolein is an unstable compound that undergoes polymerization to the plastic solid disacryl, especially under light or in the presence of alkali or strong acid. It is the simplest member of the class of unsaturated aldehydes, and the extreme reactivity of acrolein is due to the presence of a vinyl group ($H_2C=H-$) and an aldehyde group on such a small molecule. Additions to the carbon-carbon double bond of acrolein are catalyzed by acids and bases. The addition of halogens to this carbon-carbon double bond proceeds readily.

Acrolein can enter the aquatic environment by its use as an

aquatic herbicide, from industrial discharge, and from the chlorination of organic compounds in wastewater and drinking water treatment. It is often present in trace amounts in foods and is a component of smog, fuel combustion, wood, and possibly other fire, and cigarette smoke. An evaluation of available data indicates that, while industrial exposure to manufactured acrolein is unlikely, acrolein from nonmanufactured sources is pervasive. Acrolein exposure will occur through food ingestion and inhalation. Exposure through the water or dermal route is less likely However, analysis of municipal effluents of Dayton, Ohio showed the presence of acrolein in six of 11 samples, with concentrations ranging from 0.020 to 200 mg/1.

Benzene (4). Benzene (C6H6) is a clear, colorless liquid obtained mainly from petroleum feedstocks by several different processes. Some is recovered from light oil obtained from coal carbonization gases. It boils at 80C and has a vapor pressure of 100 mm Hg at 26C. It is slightly soluble in water (1.8 g/l at 25C) and it dissolves in hydrocarbon solvents. Annual U.S. production is three to four million tons.

Most of the benzene used in the U.S. goes into chemical manufacture. About half of that is converted to ethylbenzene which is used to make styrene. Some benzene is used in motor fuels.

Benzene is harmful to human health, according to numerous published studies. Most studies relate effects of inhaled benzene vapors. These effects include nausea, loss of muscle coordination, and excitement, followed by depression and coma. Death is usually the result of respiratory or cardiac failure. Two specific blood disorders are related to benzene exposure. One of these, acute myelogenous leukemia, represents a carcinogenic effect of benzene. However, most human exposure data is based on exposure in occupational settings and benzene carcinogenesis is not considered to be firmly established.

Oral administration of benzene to laboratory animals produced leukopenia, a reduction in number of leukocytes in the blood. Subcutaneous injection of benzene-oil solutions has produced suggestive, but not conclusive, evidence of benzene carcinogensis.

Benzene demonstrated teratogenic effects in laboratory animals, and mutagenic effects in humans and other animals.

For maximum protection of human health from the potential carcinogenic effects of exposure to benzene through ingestion of water and contaminated aquatic organisms, the ambient water concentration should be zero. Concentrations of benzene estimated to result in additional lifetime cancer risk at levels of 10^{-7} , 10^{-6} , and 10^{-5} are 0.00015 mg/1, 0.0015 mg/1, and 0.015 mg/1, respectively.

Some studies have been reported regarding the behavior of benzene in a POTW. Biochemical oxidation of benzene under laboratory conditions, at concentrations of 3 to 10 mg/l, produced 24, 27,

24, and 20 percent degradation in 5, 10, 15, and 20 days, respectively, using unacclimated seed cultures in fresh water. Degradation of 58, 67, 76, and 80 percent was produced in the same time periods using acclimated seed cultures. Other studies produced similar results. The EPA's most recent study of the behavior of toxic organics in a POTW indicates that benzene is 78 percent removed. Other reports indicate that most benzene entering a POTW is removed to the sludge and that influent concentrations of 1 g/l inhibit sludge digestion. There is no information about possible effects of benzene on crops grown in soils amended with sludge containing benzene.

Benzidine (NH₂(C₆H₄)2NH₂) is a (5). grayish-yellow, white or reddish-gray crystalline powder. melts at 127C (260F), and boils at 400C (752F). This chemical is soluble in hot water, alcohol, and ether, but only slightly soluble in water. It is derived by: (a) reducing nitrobenzene with zinc dust in an alkaline solution followed by distillation; (b) the electrolysis of nitrobenzene, followed by distillation; or, (c) the nitration of diphenyl followed by reduction of the product with zinc dust in an alkaline solution, with subsequent It is used in the synthesis of a variety of tillation. chemicals, such as stiffening agents in rubber organic compounding.

Available data indicate that benzidine is acutely toxic to fresh water aquatic life at concentrations as low as 2.50 mg/l and would occur at lower concentrations among species that are more sensitive than those tested. However, no data are available concerning the chronic toxicity to sensitive freshwater and salt water aquatic life.

For the maximum protection of human health from the potential carcinogenic effects due to exposure to benzidine, through the ingestion of contaminated water and contaminated aquatic organisms, the ambient water concentration should be zero. Concentrations of this pollutant estimated to result in additional lifetime cancer risk at levels of 10^{-5} , 10^{-6} , and 10^{-7} are 0.0000012 mg/l, 0.00000012 mg/l, and 0.000000012 mg/l, respectively.

With respect to treatment in POTWs, laboratory studies have shown that benzidine is amenable to treatment via biochemical oxidation. The expected 30-day average treated effluent concentration is 0.025 mg/l.

Carbon Tetrachloride (6). Carbon tetrachloride (CCl₄), also called tetrachloromethane, is a colorless liquid produced primarily by the chlorination of hydrocarbons - particularly methane. Carbon tetrachloride boils at 77C and has a vapor pressure of 90 mm Hg at 20C. It is slightly soluble in water (0.8 g/l at 25C) and soluble in many organic solvents. Approximately one-third of a million tons is produced annually in the U.S.

Carbon tetrachloride, which was displaced by perchloroethylene as

a dry cleaning agent in the 1930's, is used principally as an intermediate for production of chlorofluoromethanes for refrigerants, aerosols, and blowing agents. It is also used as a grain fumigant.

Carbon tetrachloride produces a variety of toxic effects in humans. Ingestion of relatively large quantities — greater than five grams — has frequently proved fatal. Symptoms are burning sensation in the mouth, esophagus, and stomach, followed by abdominal pains, nausea, diarrhea, dizziness, abnormal pulse, and coma. When death does not occur immediately, liver and kidney damage are usually found. Symptoms of chronic poisoning are not as well defined. General fatigue, headache, and anxiety have been observed, accompanied by digestive tract and kidney discomfort or pain.

Data concerning teratogenicity and mutagenicity of carbon tetrachloride are scarce and inconclusive. However, carbon tetrachloride has been demonstrated to be carcinogenic in laboratory animals. The liver was the target organ.

For maximum protection of human health from the potential carcinogenic effects of exposure to carbon tetrachloride through ingestion of water and contaminated aquatic organisms, the ambient water concentration should be zero. Concentrations of carbon tetrachloride estimated to result in additional lifetime cancer risk at risk levels of 10^{-7} , 10^{-6} , and 10^{-5} are 0.000026 mg/l, 0.00026 mg/l, and 0.0026 mg/l, respectively.

Many of the toxic organic pollutants have been investigated, at least in laboratory-scale studies, at concentrations higher than those expected to be found in most municipal wastewaters. General observations have been developed relating molecular structure to ease of degradation for all of the toxic organic pollutants. reached by study of the limited data is that conclusion biological treatment produces a moderate degree of removal carbon tetrachloride in a POTW. No information was found No information was found regarding the possible interference of carbon tetrachloride with treatment processes. The EPA's most recent study of the behavior toxic organics in a POTW indicates that carbon tetrachloride 50 percent removed. Based on the water solubility of carbon tetrachloride, and the vapor pressure of this compound, it is expected that some of the undegraded carbon tetrachloride will pass through to the POTW effluent and some will be volatilized in aerobic processes.

1,1,1-Trichloroethane (11). 1,1,1-Trichloroethane is one of the two possible trichlorethanes. It is manufactured by hydrochlorinating vinyl chloride to 1,1-dichloroethane which is then chlorinated to the desired product. 1,1,1-Trichloroethane is a liquid at room temperature with a vapor pressure of 96 mm Hg at 20C and a boiling point of 74C. Its formula is CCl₃CH₃. It is slightly soluble in water (0.48 g/l) and is very soluble in organic solvents. U.S. annual production is greater than one-third of a million tons.

1,1,1-Trichloroethane is used as an industrial solvent and degreasing agent.

Most human toxicity data for 1,1,1-trichloroethane relates to inhalation and dermal exposure routes. Limited data are available for determining toxicity of ingested 1,1,1-trichloroethane, and those data are all for the compound itself, not solutions in water. No data are available regarding its toxicity to fish and aquatic organisms. For the protection of human health from the toxic properties of 1,1,1-trichloroethane ingested through the comsumption of water and fish, the ambient water criterion is 15.7 mg/l. The criterion is based on bioassays for possible carcinogenicity.

Biochemical oxidation of many of the toxic organic pollutants has been investigated, at least in laboratory scale studies, at concentrations higher than commonly expected in municipal waste water. General observations relating molecular structure to ease of degradation have been developed for all of these pollutants. The conclusion reached by study of these limited data is that biological treatment produces a moderate degree of degradation of 1,1,1-trichloroethane. No evidence is available for drawing conclusions about its possible toxic or inhibitory effect on POTW operation. However, for degradation to occur, a fairly constant input of the compound would be necessary.

Its water solubility would allow 1,1,1-trichloroethane, present the influent and not biodegrada'ble, to pass through POTW into the effluent. The Agency s most recent behavior of toxic organics in a study of the indicates that 1,1,1-trichlorethane is 87 percent removed. One factor which has received some attention, detailed study, is the volatilization of the lower molecular weight organics from a POTW. Ιf 1,1,1-trichloroethane is not biodegraded, it will volatilize during aeration processes in the POTW. It has been demonstrated that none of the toxic organic pollutants of this type can be broken down by biological treatment processes as readily as fatty acids, carbohydrates, or proteins.

1,1-Dichloroethane (13). 1,1-Dichloroethane, also called ethylidene dichloride and ethylidene chloride, is a colorless liquid manufactured by reacting hydrogen chloride with vinyl chloride in 1,1-dichloroethane solution in the presence of a catalyst. How ever, it is reportedly not manufactured commercially in the U.S. 1,1-Dichloroethane boils at 57C and has a vapor pressure of 182 mm Hg at 20C. It is slightly soluble in water (5.5 g/l at 20C) and very soluble in organic solvents.

1,1-Dichloroethane is used as an extractant for heat-sensitive substances and as a solvent for rubber and silicone grease.

1,1-Dichloroethane is less toxic than its isomer (1,2-dichloroethane), but its use as an anesthetic has been discontinued

because of marked excitation of the heart. It causes central nervous system depression in humans. There are insufficient data to derive water quality criteria for 1,1-dichloroethane.

Many of the toxic organic pollutants have been investigated, at least in laboratory scale studies, at concentrations higher than those expected to be contained by most municipal wastewaters. General observations have been developed relating molecular structure to ease of degradation for all of the toxic organic pollutants. The conclusion reached by study of the limited data is that biological treatment produces only a moderate removal of 1,1-dichloroethane in a POTW by degradation. The EPA's most recent study of the behavior of toxic organics in a POTW indicates that 1,1-dichloroethane is 76 percent removed.

The high vapor pressure of 1,1-dichloroethane is expected to result in volatilization of some of the compound from aerobic processes in a POTW. Its water solubility will result in some of the 1,1-dichloroethane which enters the POTW leaving in the effluent from the POTW.

1,1,2,2-Tetrachloroethane (15). 1,1,2,2-Tetrachloroethane (CHCl2CHCl2) is a heavy, colorless, mobile, nonflammable, corrosive, toxic liquid. While it has a chloroform-like odor, it is more toxic than chloroform. It is soluble in alcohol or ether, but insoluble in water. It has no flash point, boils at 146.5C (296F) and has a vapor pressure of 5 mm Hg at 20.7C. It results from the interaction of acetylene and chlorine, with subsequent distillation. This chemical is used in organic synthesis, as a solvent, and for metal cleaning and degreasing.

Available freshwater data indicate that acute toxicity occurs at concentrations of 9.32 mg/l, and that chronic toxicity occurs at 4.000 mg/l. Available saltwater data indicate that acute toxicity occurs at 9.020 mg/l.

For the maximum protection of human health from the potential carcinogenic effects due to exposure to 1,1,2,2-tetrachloroethane, through contaminated water and contaminated aquatic organisms, the ambient water concentration should be zero. Concentrations of this pollutant estimated to result in additional lifetime cancer risk at risk levels of 10^{-5} and 10^{-6} and 10^{-7} are 0.0017 mg/1, 0.00017 mg/1, and 0.000017 mg/1, respectively.

With respect to treatment in POTW, laboratory studies have shown that 1,1,2,2-tetrachloroethane is not amenable to treatment via biochemical oxidation. As this pollutant is insoluble in water, any removal of this pollutant which would occur in a POTW, would be related to physical treatment processes.

Para-chloro-meta-cresol Para-chloro-meta-cresol 22). (ClC₇H₆OH) is thought to be a 4-chloro-3-methyl-phenol (4-chloro-meta-cresol, or 2-chloro-5-hydroxy-toluene), but is also used by some authorities to refer to 6-chloro-3-methylphenol (6-chloro-meta-cresol, or 4-chloro-3-hydroxy-toluene), depending on whether the chlorine is considered to be para to the methyl or to the hydroxy group. It is assumed for the purposes of this document that the subject compound is 2-chloro-5-hydroxy-This compound is a colorless crystalline solid melting 66 to 68C. It is slightly soluble in water (3.8 g/l) and soluble in organic solvents. This phenol reacts with 4-amino antipyrene to give a colored product and therefore contributes to nonconventional pollutant parameter designated "Total Phenols." No information on manufacturing methods or produced was found.

Para-chloro-meta cresol (abbreviated here as PCMC) is marketed as a microbicide, and was proposed as an antiseptic and disinfectant more than 40 years ago. It is used in glues, gums, paints, inks, textiles, and leather goods.

Although no human toxicity data are available for PCMC, studies on laboratory animals have demonstrated that this compound is toxic when administered subcutaneously and intravenously. Death was preceded by severe muscle tremors. At high dosages kidney damage occurred. On the other hand, an unspecified isomer of chlorocresol, presumed to be PCMC, is used at a concentration of 0.15 percent to preserve mucous heparin, a natural product administered intravenously as an anticoagulant. The report does not indicate the total amount of PCMC typically received. No information was found regarding possible teratogenicity, or carcinogenicity of PCMC.

reports indicate that PCMC undergoes degradation Two biochemical oxidation treatments carried out at concentrations higher than are expected to be encountered in POTW influents. study showed 50 percent degradation in 3.5 hours when a phenol-adapted acclimated seed culture was used with a solution of 60 mg/l PCMC. The other study showed 100 percent degradation a 20 mg/l solution of PCMC in two weeks in an aerobic sludae test system. No degradation occurred under anaerobic conditions. The EPA's most recent study of the behavior of toxic organics in a POTW indicates that PCMC is 89 percent removed.

Chloroform (23). Chloroform, also called trichloromethane, is a colorless liquid manufactured commercially by chlorination of methane. Careful control of conditions maximizes chloroform production, but other products must be separated. Chloroform boils

at 61C and has a vapor pressure of 200 mm Hg at 25C. It is slightly soluble in water (8.22 g/l at 20C) and readily soluble in organic solvents.

Chloroform is used as a solvent and to manufacture refrigerants, pharmaceuticals, plastics, and anesthetics. It is seldom used as an anesthetic.

Toxic effects of chloroform on humans include central nervous system depression, gastrointestinal irritation, liver and kidney damage and possible cardiac sensitization to adrenalin. Carcinogenicity has been demonstrated for chloroform on laboratory animals.

For the maximum protection of human health from the potential carcinogenic effects of exposure to chloroform through ingestion of water and contaminated aquatic organisms, the ambient water concentration should be zero. Concentrations of chloroform estimated to result in additional lifetime cancer risks at the levels of 10^{-7} , 10^{-6} , and 10^{-5} were 0.000021 mg/1, 0.00021 mg/1, and 0.0021 mg/1, respectively.

The biochemical oxidation of this compound was studied in one laboratory scale study at concentrations higher than those expected to be contained by most municipal wastewaters. After 5, 10, and 20 days no degradation of chloroform was observed. The conclusion reached is that biological treatment produces little or no removal by degradation of chloroform in a POTW.

The high vapor pressure of chloroform is expected to result in volatilization of the compound from aerobic treatment steps in a POTW. Remaining chloroform is expected to pass through into the POTW effluent. In addition, the most recent EPA study of the behavior of toxic organics in a POTW indicates that chloroform is 61 percent removed.

3,3'-Dichlorobenzidine (28). 3,3'-Dichlorobenzidine (DCB) or dichlorobenzidine (4,4'-diamino-3,3'-dichlorobiphenyl) is used in the production of dyes and pigments and as a curing agent for polyurethanes. The molecular formula of dichlorobenzidine is C12H10Cl2N2 and the molecular weight is 253.13.

DCB forms brownish needles with a melting point of 132 to 133C. It is readily soluble in alcohol, benzene, and glacial acetic acid, slightly soluble in HCl, and sparingly soluble in water (0.7 g/l at 15C). When combined with ferric chloride or bleaching powder, a green color is produced.

The affinity of DCB for suspended particulates in water is not clear; its basic nature suggests that it may be fairly tightly bound to humic materials in soils. Soils may be moderate to long term reservoirs for DCB.

Pyrolysis of DCB will most likely lead to the release of HCl. Because of the halogen substitution, DCB compounds probably bio-

degrade at a slower rate than benzidine alone. The photochemistry of DCB is not completely known. DCB may photodegrade to benzidine.

Assuming the clean air concentrations of ozone (2×10^{-9}) and an average atmospheric concentration of hydroxyl radicals $(3 \times 10^{-15} \text{ M})$, the half life for oxidation of DCB by either of these chemical compounds is on the order of one and one to 10 days, respectively. Furthermore, assuming a representative concentration of 10^{-19} M for peroxy radicals in sunlit oxygenated water, the half-life for oxidation by these compounds is approximately 100 days, given the variability of environmental conditions.

The data base available for dichlorobenzidines and freshwater organisms is limited to one test on bioconcentration of 3,3'-dichlorobenzidine. No statement can be made concerning acute or chronic toxicity of this pollutant.

No saltwater organisms have been tested with any dichlorobenzidine; no statement can be made concerning acute or chronic toxicity for that pollutant on saltwater organisms.

the maximum protection of human health from the potential carcinogenic effects due to exposure of dichlorobenzidine through ingestion of contaminated water and contaminated aquatic organisms, the ambient water concentration should be zero based on the non-threshold assumption for this chemical. However, the levels that may result in incremental increase of cancer risk over the lifetime were estimated at 10^{-5} , 10^{-6} , and 10^{-7} . corresponding recommended criteria are 0.000103 mg/l, mg/l and 0.000001 mg/l, respectively. If the above 0.00001 estimates are made for consumption of aquatic organisms consumption of water, the levels are only, excluding 0.000020 0.000204 mg/1, mg/1, and 0.000002 mq/l, respectively.

1,1-Dichloroethylene (29). 1,1-Dichloroethylene (1,1-DCE), also called vinylidene chloride, is a clear colorless liquid manufactured by dehydrochlorination of 1,1,2-trichloroethane. 1,1-DCE has the formula CCl₂CH₂. It has a boiling point of 32C, and a vapor pressure of 591 mm Hg at 25C. 1,1-DCE is slightly soluble in water (2.5 mg/l) and is soluble in many organic solvents. U.S. production is in the range of hundreds of thousands of tons annually.

1,1-DCE is used as a chemical intermediate and for copolymer coatings or films. It may enter the wastewater of an industrial facility as the result of decomposition of 1,1,1-trichloroethylene used in degreasing operations, or by migration from vinylidene chloride copolymers exposed to the process water. Human toxicity of 1,1-DCE has not been demonstrated; however, it is a suspected human carcinogen. Mammalian toxicity studies have focused on the liver and kidney damage produced by 1,1-DCE.

Various changes occur in those organs in rats and mice ingesting 1,1-DCE.

For the maximum protection of human health from the potential carcinogenic effects of exposure to 1,1-dichloroethylene through ingestion of water and contaminated aquatic organisms, the ambient water concentration is zero. The concentration of 1,1-DCE estimated to result in an additional lifetime cancer risk of 1 in 100,000 is 0.0013 mg/1.

Under laboratory conditions, dichloroethylenes have been shown to be toxic to fish. The primary effect of acute toxicity of the dichloroethylenes is depression of the central nervous system. The octanol/water partition coefficient of 1,1-DCE indicates it should not accumulate significantly in animals.

Biochemical oxidation of many of the toxic organic pollutants has been investigated in laboratory scale studies at concentrations higher than would normally be expected in municipal wastewaters. General observations relating molecular structure to ease of degradation have been developed for all of these pollutants. The conclusion reached by study of the limited data is that biological treatment produces little or no degradation of 1,1-dichloroethylene. No evidence is available for drawing conclusions about the possible toxic or inhibitory effect of 1,1-DCE on POTW operation. Because of water solubility, 1,1-DCE which is not volatilized or degraded is expected to pass through a POTW. Very little 1,1-DCE is expected to be found in sludge from a POTW.

The most recent EPA study of the behavior of toxic organics in a POTW indicates that 1,1-DCE is 80 percent removed. The very high vapor pressure of 1,1-DCE is expected to result in release of significant percentages of this material to the atmosphere in any treatment involving aeration. Degradation of dichloroethylene in air is reported to occur, with a half-life of eight weeks.

2,4-Dimethylphenol (34). 2,4-Dimethylphenol (2,4-DMP), also called 2,4-xylenol, is a colorless, crystalline solid at room temperature (25C), but melts at 27C to 28C. 2,4-DMP is slightly soluble in water and, as a weak acid, is soluble in alkaline solutions. Its vapor pressure is less than 1 mm Hg at room temperature.

2,4-DMP is a natural product, occurring in coal and petroleum sources. It is used commercially as an intermediate for manufacture of pesticides, dye stuffs, plastics and resins, and surfactants. It is found in the water runoff from asphalt surfaces. It can find its way into the wastewater of a manufacturing plant from any of several adventitious sources.

Analytical procedures specific to this compound are used for its identification and quantification in wastewaters. This compound does not contribute to "Total Phenols" determined by the 4-aminoantipyrene method.

Three methylphenol isomers (cresols) and six dimethylphenol isomers (xylenols) generally occur together in natural products, industrial processes, commercial products, and phenolic wastes. Therefore, data are not available for human exposure to 2,4-DMP alone. In addition to this, most mammalian tests for toxicity of individual dimethylphenol isomers have been conducted with isomers other than 2,4-DMP.

In general, the mixtures of phenol, methylphenols, and dimethyl phenols contain compounds which produced acute poisoning in laboratory animals. Symptoms were difficult breathing, rapid muscular spasms, disturbance of motor coordination, and asymmetrical body position. In a 1977 National Academy of Science publication the conclusion was reached that, "In view of the relative paucity of data on the mutagenicity, carcinogenicity, teratogenicity, and long term oral toxicity of 2,4-dimethylphenol, estimates of the effects of chronic oral exposure at low levels cannot be made with any confidence." No ambient water quality criterion can be set at this time. In order to protect public health, exposure to this compound should be minimized as soon as possible.

Toxicity data for fish and freshwater aquatic life are limited; however, in reported studies of 2,4-dimethylphenol at concentrations as high as 2 mg/l no adverse effects were observed.

Biological degradability of 2,4-DMP as determined in one study, showed 94.5 percent removal based on chemical oxygen demand (COD). Another study determined that persistance of 2,4-DMP in the environment is low, and thus any of the compound which remained in the sludge or passed through the POTW into the effluent would be degraded within moderate length of time (estimated as two months in the report). The EPA's most recent study of the behavior of toxic organics in a POTW indicates that 2,4-DMP is 59 percent removed.

As a weak acid, the behavior of 2,4-DMP may be somewhat dependent on the pH of the influent to the POTW. However, over the normal limited range of POTW pH, little effect of pH would be expected.

2,4-Dinitrotoluene (35). 2,4-Dinitrotoluene [(NO₂)₂ C₆ H₄ CH₃], a yellow crystalline compound, is manufactured as a coproduct with the 2,6-isomer by nitration of nitrotoluene. It melts at 71C. 2,4-Dinitrotoluene is insoluble (0.27 g/l at 22C) and soluble in a number of organic Production data for the 2,4-isomer alone are solvents. The 2,4-and 2,6-isomers are manufactured in an 80:20 available. 65:35 ratio, depending on the process used. Annual U.S. commercial production is about 150 thousand tons of isomers. Unspecified amounts are produced by the U.S. government further nitrated to trinitrotoluene (TNT) for military use. major use of the dinitrotoluene mixture is for production of toluene diisocyanate used to make polyurethanes. Another use is in production of dyestuffs.

The toxic effect of 2,4-dinitrotoluene in humans is primarily methemoglobinemia (a blood condition hindering oxygen transport by the blood). Symptoms depend on severity of the disease, but include cyanosis, dizziness, pain in joints, headache, and loss of appetite in workers inhaling the compound. Laboratory animals fed oral doses of 2,4-dinitrotoluene exhibited many of the same symptoms. Aside from the effects in red blood cells, effects are observed in the nervous system and testes.

Chronic exposure to 2,4-dinitrotoluene may produce liver damage and reversible anemia. No data were found on teratogenicity of this compound. Mutagenic data are limited and are regarded as confusing. Data resulting from studies of carcinogenicity of 2,4-dinitrotoluene point to a need for further testing for this property.

For the maximum protection of human health from the potential carcinogenic effects of exposure to 2,4-dinitrotoluene through ingestion of water and contaminated aquatic organisms, the ambient water concentration should be zero. Concentrations of 2,4-dinitrotoluene estimated to result in additional lifetime cancer risk at risk levels of 10^{-7} 10^{-6} and 10^{-5} are 0.0074 mg/l, 0.074 mg/l, and 0.740 mg/l, respectively.

Data on the behavior of 2,4-dinitrotoluene in a POTW are available. However, biochemical oxidation of 2,4-dinitrophenol was investigated on a laboratory scale. At 100 mg/l of 2.4dinitrotoluene, a concentration considerably higher than that expected in municipal wastewaters, biochemical oxidation by an acclimated, phenol-adapted seed culture produced 52 percent Based on this limited information degradation in three hours. and general observations relating molecular structure to ease of degradation for all the toxic organic pollutants, it was concluded that biological treatment in a POTW removes 2,4-dinitrotoluene to a high degree or completely. No information is available regarding possible interference by 2,4-dinitrotoluene in POTW treatment processes, or on the possible detrimental effect on sludge used to amend soils in which food crops are grown.

 $\frac{2,6-\text{Dinitrotoluene}}{C_6}$ $\frac{(36)}{H_4}$ $\frac{(36)}{C_{13}}$, a yellow crystalline compound, is $[(NO_2)_2]$ manufactured as a coproduct with the 2,4-isomer by nitration of It melts at 71C. 2,6-Dinitrotoluene is insoluble nitrotoluene. in water (0.27 g/l at 22C) and soluble in a number of organic Production data for the 2,6-isomer alone are not solvents. available. The 2,4- and 2,6-isomers are manufactured in an 80:20 65:35 ratio, depending on the process used. Annual U.S. commercial production is about 150 thousand tons of the two isomers. Unspecified amounts are produced by the U.S. government and further nitrated to trinitrotoluene (TNT) for military use. The major use of the dinitrotoluene mixture is for production of toluene diisocyanate used to make polyurethanes. Another use is in production of dyestuffs.

Data on the behavior of 2,6-dinitrotoluene in a POTW are not available. However, biochemical oxidation of the 2,4-dinitrotoluene isomer was investigated in a laboratory scale. mg/l of 2,4-dinitrotoluene, a concentration considerably higher than that expected in municipal wastewaters, biochemical oxidation by an acclimated, phenol-adapted seed culture produced percent degradation in three hours. Based on this limited information and general observations relating molecular structure to ease of degradation for all the toxic organic pollutants, it was concluded that biological treatment in a POTW removes 2,4-dinitrotoluene to a high degree. It is not known if the conclusion can be expanded to include the 2,6-isomer. No information is available regarding possible interference by 2,6-dinitrotoluene in POTW treatment processes, or on the possible detrimental effect on sludge used to amend soils in which food crops grown.

Ethylbenzene (38). Ethylbenzene is a colorless, flammable liquid manufactured commercially from benzene and ethylene. Approximately half of the benzene used in the U.S. goes into the manufacture of more than three million tons of ethylbenzene annually. Ethylbenzene boils at 136C and has a vapor pressure of 7 mm Hg at 20C. It is slightly soluble in water (0.14 g/l at 15C) and is very soluble in organic solvents.

About 98 percent of the ethylbenzene produced in the U.S. goes into the production of styrene, much of which is used in the plastics and synthetic rubber industries. Ethylbenzene is a constituent of xylene mixtures used as diluents in the paint industry, agricultural insecticide sprays, and gasoline blends.

Although humans are exposed to ethylbenzene from a variety of sources in the environment, little information on effects of ethylbenzene in man or animals is available. Inhalation can irritate eyes, affect the respiratory tract, or cause vertigo. In laboratory animals ethylbenzene exhibited low toxicity. There are no data available on teratogenicity, mutagenicity, or carcinogenicity of ethylbenzene.

Criteria are based on data derived from inhalation exposure limits. For the protection of human health from the toxic properties of ethylbenzene ingested through water and contaminated aquatic organisms, the ambient water quality criterion is 1.1 mg/1.

Laboratory scale studies of the biochemical oxidation of ethylbenzene at concentrations greater than would normally be found in municipal wastewaters have demonstrated varying degrees of degradation. In one study with phenol-acclimated seed cultures, 27 percent degradation was observed in a half day at 250 mg/l ethylbenzene. Another study at unspecified conditions showed 32, 38, and 45 percent degradation after 5, 10, and 20 days, respectively. Based on these results and general observations relating molecular structure of degradation, the conclusion was reached

that biological treatment produces only moderate removal of ethylbenzene in a POTW by degradation.

Other studies suggest that most of the ethybenzene entering a POTW is removed from the aqueous stream to the sludge. The ethylbenzene contained in the sludge removed from the POTW may volatilize.

In addition, the most recent EPA study of the behavior of toxic organics in POTW indicates that ethylbenzene is approximately 84 percent removed.

Fluoranthene (39). Fluoranthene (1,2-benzacenaphthene) is one of the compounds called polynuclear aromatic hydrocarbons (PAH). A pale yellow solid at room temperature, it melts at 111C and has a negligible vapor pressure at 25C. Water solubility is low (0.2 mg/l). Its molecular formula is $C_{16}H_{10}$.

Fluoranthene, along with many other PAH's, is found throughout the environment. It is produced by pyrolytic processing of organic raw materials, such as coal and petroleum, at high temperature (coking processes). It occurs naturally as a product of plant biosyntheses. Cigarette smoke contains fluoranthene. Although it is not used as the pure compound in industry, it has been found at relatively higher concentrations (0.002 mg/l) than most other PAH's in at least one industrial effluent. Further more, in a 1977 EPA survey to determine levels of PAH in U.S. drinking water supplies, none of the 110 samples analyzed showed any PAH other than fluoranthene.

Experiments with laboratory animals indicate that fluoranthene presents a relatively low degree of toxic potential from acute exposure, including oral administration. Where death occurred, no information was reported concerning target organs or specific cause of death.

There is no epidemiological evidence to prove that PAH in general, and fluoranthene, in particular, present in drinking water are related to the development of cancer. The only studies directed toward determining carcinogenicity of fluoranthene have been skin tests on laboratory animals. Results of these tests show that fluoranthene has no activity as a complete carcinogen (i.e., an agent which produces cancer when applied by itself), but exhibits significant cocarcinogenicity (i.e., in combination with a carcinogen, it increases the carcinogenic activity).

Based on the limited animal study data, and following an established procedure, the ambient water quality criterion for fluoranthene alone (not in combination with other PAH) is determined to be 200 mg/l for the protection of human health from its toxic properties.

There are no data on the chronic effects of fluoranthene on freshwater organisms. One saltwater invertebrate shows chronic toxicity at concentrations below 0.016 mg/l. For some fresh

water fish species the concentrations producing acute toxicity are substantially higher, but data are very limited.

Results of studies of the behavior of fluoranthene in conventional sewage treatment processes found in a POTW have been published. Removal of fluoranthene during primary sedimentation was found to be 62 to 66 percent (from an initial value of 0.00323 to 0.04435 mg/l to a final value of 0.00122 to 0.0146 mg/l), and the removal was 91 to 99 percent (final values of 0.00028 to 0.00026 mg/l) after biological purification with activated sludge processes.

A review was made of data on biochemical oxidation of many of the toxic organic pollutants investigated in laboratory scale studies at concentrations higher than would normally be expected in municipal wastewaters. General observations relating molecular structure to ease of degradation have been developed for all of these pollutants. The conclusion reached by study of the limited data is that biological treatment produces little or no degradation of fluoranthene. The same study, however, concludes that fluoranthene would be readily removed by filtration and oil-water separation and other methods which rely on water insolubility, or adsorption on other particulate surfaces. This latter conclusion is supported by the previously cited study showing significant removal by primary sedimentation.

No studies were found to give data on either the possible interference of fluoranthene with POTW operation, or the persistance of fluoranthene in sludges or POTW effluent waters. Several studies have documented the ubiquity of fluoranthene in the environment and it cannot be readily determined if this results from persistence of anthropogenic fluoranthene or the replacement of degraded fluoranthene by natural processes such as biosynthesis in plants.

Methylene Chloride (44). Methylene chloride, also called dichloromethane (CH₂Cl₂), is a colorless liquid manufactured by chlorination of methane or methyl chloride followed by separation from the higher chlorinated methanes formed as coproducts. Methylene chloride boils at 40C, and has a vapor pressure of 362 mm Hg at 20C. It is slightly soluble in water (20 g/l at 20C), and very soluble in organic solvents. U.S. annual production is about 250,000 tons.

Methylene chloride is a common industrial solvent found in insecticides, metal cleaners, paint, and paint and varnish removers.

Methylene chloride is not generally regarded as highly toxic to humans. Most human toxicity data are for exposure by inhalation. Inhaled methylene chloride acts as a central nervous system depressant. There is also evidence that the compound causes heart failure when large amounts are inhaled.

Methylene chloride does produce mutation in tests for this effect. In addition, a bioassay recognized for its extremely

high sensitivity to strong and weak carcinogens produced results which were marginally significant. Thus potential carcinogenic effects of methylene chloride are not confirmed or denied, but are under continuous study. These studies are difficult to conduct for two reasons. First, the low boiling point (40C) of methylene chloride makes it difficult to maintain the compound at 37C during incubation. Secondly, all impurities must be removed because the impurities themselves may be carcinogenic. These complications also make the test results difficult to interpret.

For the protection of human health from the toxic properties of methylene chloride ingested through water and contaminated aquatic organisms, the ambient water criterion is 0.002 mg/l. The biochemical oxidation of this compound was studied in one laboratory scale study at concentrations higher than those expected to be contained by most municipal wastewaters. After five days no degradation of methylene chloride was observed. The conclusion reached is that biological treatment produces little or no removal by degradation of methylene chloride in a POTW.

The high vapor pressure of methylene chloride is expected to result in volatilization of the compound from aerobic treatment steps in a POTW. It has been reported that methylene chloride inhibits anaerobic processes in a POTW. Methylene chloride that is not volatilized in the POTW is expected to pass through into the effluent.

The most recent EPA study of POTW removal of toxic organics indicates that methylene chloride is approximately 58 percent removed.

(45).Chloride Methyl chloride (CH₃Cl) Methyl is colorless, noncorrosive liquifiable gas which is transparent in both the gaseous and liquid states. It has a faintly sweet, It boils at -23.7C (-11F). ethereal odor. It is soluble in water (by which it is decomposed) and soluble in alcohol, chloroform, benzene, carbon tetrachloride, and glacial acetic acid. It is derived by: (a) the chlorination of methane; (b) the action of hydrochloric acid on methanol, either in vapor or liquid phase. It is used as an extractant and solvent, as a pesticide, in the synthesis of organic chemicals, silicones.

The available data for this pollutant indicate that acute toxicity to freshwater aquatic life occurs at concentrations as low as 11.0 mg/l. No data are available concerning this pollutant's chronic toxicity to sensitive freshwater aquatic life. The available data for this pollutant indicate that acute and chronic toxicities to saltwater aquatic life occur at concentrations as low as 12.0 mg/l and 6.40 mg/l, respectively. With respect to saltwater aquatic life, a decrease in algal cell numbers was found to occur at concentrations as low as 11.5 mg/l.

For the maximum protection of human health from the potential carcinogenic effects due to exposure to this pollutant, through

the ingestion of contaminated water and aquatic organisms, the ambient water concentration should be zero. Concentrations of in additional lifetime cancer this pollutant estimated to result, risks at risk levels of 10^{-5} 10^{-6} and 10^{-7} are 0.0019 mg/l, 0.00019 mg/l, and 0.000019 mg/l, respectively.

Concerning treatment in POTW, laboratory studies have shown that methyl chloride is not amenable to treatment via biochemical oxidation.

Chlorodibromomethane (51). Chlorodibromomethane (CHBr₂Cl) is a clear, colorless, heavy liquid. It boils at 116C (241F). This pollutant is used in the synthesis of various organic compounds.

The available data for this pollutant indicate that acute toxicity to freshwater aquatic life occurs at concentrations as low as 11.0 mg/l. No data are available concerning this pollutant's chronic toxicity to sensitive freshwater aquatic life. The available data for this pollutant indicate that acute and chronic toxicities to saltwater aquatic life occur at concentrations as low as 12.0 mg/l and 6.40 mg/l, respectively. With respect to saltwater aquatic life, a decrease in algal cell numbers was found to occur at concentrations as low as 11.5 mg/l.

For the maximum protection of human health from the potential carcinogenic effects due to exposure to this pollutant, through the ingestion of contaminated water and aquatic organisms, the ambient water concentration should be zero. Concentrations of this pollutant estimated to result in additional lifetime cancer risks at risk levels of 10^{-5} , 10^{-6} , and 10^{-7} are 0.0019 mg/1, 0.00019 mg/1, and 0.000019 mg/1, respectively.

With respect to treatment in POTW, laboratory studies indicate that this pollutant is not amenable to treatment via biochemical oxidation.

Naphthalene is an aromatic hydrocarbon with Naphthalene (55). two orthocondensed benzene rings and a molecular formula of As such it is properly classed as a polynuclear CloHe. (PAH). hydrocarbon Pure naphthalene is a white aromatic crystalline solid melting at 80C. For a solid, it has a relatively high vapor pressure (0.05 mm Hg at 20C), and moderate water solubility (19 mg/l at 20C). Napthalene is the most abundant single component of coal tar. Production is more than a third of a million tons annually in the U.S. About three fourths the production is used as feedstock for phthalic anhydride Most of the remaining production goes into manufacture. of insecticide, dyestuffs, manufacture pigments, partially hydrogenated pharmaceuticals. Chlorinated and naphthalenes are used in some solvent mixtures. Naphthalene is also used as a moth repellent.

Naphthalene, ingested by humans, has reportedly caused vision loss (cataracts), hemolytic anemia, and occasionally, renal disease. These effects of naphthalene ingestion are confirmed by

studies on laboratory animals. No carcinogenicity studies are available which can be used to demonstrate carcinogenic activity for naphthalene. Naphthalene does bioconcentrate in aquatic organisms.

For the protection of human health from the toxic properties of naphthalene ingested through water and through contaminated aquatic organisms, the ambient water criterion is determined to be 143 mg/l.

Only a limited number of studies have been conducted to determine the effects of naphthalene on aquatic organisms. The data from those studies show only moderate toxicity.

Biochemical oxidation of many of the toxic organic pollutants has been investigated in laboratory scale studies at concentrations higher than would normally be expected in municipal wastewaters. General observations relating molecular structure to ease of degradation have been developed for all of these pollutants. The conclusion reached by study of the limited data is that biological treatment produces a high removal by degradation of naphthalene. One recent study has shown that microorganisms can degrade naphthalene, first to a dihydro compound, and ultimately to carbon dioxide and water.

Naphthalene has been detected in sewage plant effluents at concentrations up to 0.022 mg/l in studies carried out by the U.S. EPA. Influent levels were not reported. The most recent EPA study of the behavior of toxic organics in POTW indicates that naphthalene is approximately 61 percent removed.

Nitrobenzene (56). Nitrobenzene (C6H5NO2), also called nitrobenzol and oil of mirbane, is a pale yellow, oily liquid, manufactured by reacting benzene with nitric acid and sulfuric acid. Nitrobenzene boils at 210C and has a vapor pressure of 0.34 mm Hg at 25C. It is slightly soluble in water (1.9 g/l at 20C), and is miscible with most organic solvents. Estimates of annual U.S. production vary widely, ranging from 100 to 350 thousand tons.

Almost the entire volume of nitrobenzene produced (97 percent) is converted to aniline, which is used in dyes, rubber, and medicinals. Other uses for nitrobenzene include: solvent for organic synthesis, metal polishes, shoe polish, and perfume.

The toxic effects of ingested or inhaled nitrobenzene in humans are related to its action in blood: methemoglobinemia and cyanosis. Nitrobenzene administered orally to laboratory animals caused degeneration of heart, kidney, and liver tissue; paralysis; and death. Nitrobenzene has also exhibited teratogenicity in laboratory animals, but studies conducted to determine mutagenicity or carcinogenicity did not reveal either of these properties.

For the prevention of adverse effects due to the organoleptic properties of nitrobenzene in water, the criterion is 0.030 mg/l.

Data on the behavior of nitrobenzene in POTW are not available. However, laboratory scale studies have been conducted at concentrations higher than those expected to be found in municipal wastewaters. Biochemical oxidation produced no degradation after 5, 10, and 20 days. A second study also reported no degradation after 28 hours, using an acclimated, phenol-adapted seed culture with nitrobenzene at 100 mg/l. Based on these limited data, and on general observations relating molecular structure to ease of biological oxidation, it is concluded that little or no removal of nitrobenzene occurs during biological treatment in POTW. The low water solubility and low vapor pressure of nitrobenzene lead to the expectation that nitrobenzene will be removed from POTW in the effluent and by volatilization during aerobic treatment.

2-Nitrophenol (57). 2-Nitrophenol (NO₂C₆H₄OH), also called ortho-nitrophenol, is a light yellow crystalline solid, manufactured commercially by hydrolysis of 2-chloro-nitrobenzene with aqueous sodium hydroxide. 2-Nitrophenol melts at 45C and has a vapor pressure of 1 mm Hg at 49C. 2-Nitrophenol is slightly soluble in water (2.1 g/1 at 20C) and soluble in organic solvents. This phenol does not react to give a color with 4-aminoantipyrene, and therefore does not contribute to the nonconventional pollutant parameter "Total Phenols." U.S. annual production is 5,000 to 8,000 tons.

The principal use of ortho-nitrophenol is to synthesize ortho-aminophenol, ortho-nitroanisole, and other dyestuff intermediates.

The toxic effects of 2-nitrophenol on humans have not been extensively studied. Data from experiments with laboratory animals indicate that exposure to this compound causes kidney and liver damage. Other studies indicate that the compound acts directly on cell membranes, and inhibits certain enzyme systems in vitro. No information regarding potential teratogencity was found. Available data indicate that this compound does not pose a mutagenic hazard to humans. Very limited data for 2-nitrophenol do not reveal potential carcinogenic effects.

The available data base is insufficient to establish an ambient water criterion for protection of human health from exposure to 2-nitrophenol. No data are available on which to evaluate the adverse effects of 2-nitrophenol on aquatic life.

Data on the behavior of 2-nitrophenol in POTW were not available. However, laboratory-scale studies have been conducted at concentrations higher than those expected to be found in municipal wastewater. Biochemical oxidation using adapted cultures from various sources produced 95 percent degradation in three to six days in one study. Similar results were reported for other studies. Based on these data, and general observations relating molecular structure to ease of biological oxidation, it is

expected that 2-nitrophenol will be biochemically oxidized to a lesser extent than domestic sewage by biological treatment in POTW.

4-Nitrophenol (58) 4-Nitrophenol (NO₂C₆H₄OH), also called paranitrophenol, is a colorless to yellowish crystalline solid manufactured commercially by hydrolysis of 4-chloronitrobenzene with aqueous sodium hydroxide. 4-Nitrophenol melts at 114C. Vapor pressure is not cited in the usual sources. 4-Nitrophenol is slightly soluble in water (15 g/l at 25C) and soluble in organic solvents. This phenol does not react to give a color with 4-aminoantipyrene, and therefore does not contribute to the nonconventional pollutant parameter "Total Phenols." U.S. annual production is about 20,000 tons.

Paranitrophenol is used to prepare phenetidine, acetaphenetidine, azo and sulfur dyes, photochemicals, and pesticides.

The toxic effects of 4-nitrophenol on humans have not been extensively studied. Data from experiments with laboratory animals indicate that exposure to this compound results in methemoglobishortness of breath, nemia, and stimulation followed by depression. Other studies indicate that the compound acts directly on cell membranes, and inhibits certain enzyme systems in vitro. No information regarding potential teratogenicity was Available data indicate that this compound does not pose found. mutagenic hazard to humans. Very limited data for 4effects, nitrophenol do not reveal potential carcinogenic although the compound has been selected by the national cancer institute for testing under the Carcinogenic Bioassay Program.

No U.S. standards for exposure to 4-nitrophenol in ambient water have been established.

Data on the behavior of 4-nitrophenol in a POTW are not available. However, laboratory scale studies have been conducted at concentrations higher than those expected to be found in municipal wastewaters. Biochemical oxidation using adapted cultures from various sources produced 95 percent degradation in three to six days in one study. Similar results were reported for other studies. Based on these data, and on general observations relating molecular structure to ease of biological oxidation, it is concluded that complete or nearly complete removal of 4-nitrophenol occurs during biological treatment in a POTW.

4,6-Dinitro-o-cresol (60). 4,6-Dinitro-o-cresol (DNOC) is a yellow crystalline solid derived from o-cresol. DNOC melts at 85.8C and has a vapor pressure of 0.000052 mm Hg at 20C. DNOC is sparingly soluble in water (100 mg/l at 20C), while it is readily soluble in alkaline aqueous solutions, ether, acetone, and alcohol. DNOC is produced by sulfonation of o-cresol followed by treatment with nitric acid.

DNOC is used primarily as a blossom thinning agent on fruit trees and as a fungicide, insecticide, and miticide on fruit trees

during the dormant season. It is highly toxic to plants in the growing stage. DNOC is not manufactured in the U.S. as an agricultural chemical. Imports have been decreasing recently with only 30,000 lbs being imported in 1976.

While DNOC is highly toxic to plants, it is also very toxic to humans and is considered to be one of the more dangerous agricultural pesticides. The available literature concerning humans indicates that DNOC may be absorbed in acutely toxic amounts through the respiratory and gastrointestinal tracts and through the skin, and that it accumulates in the blood. Symptoms of poisoning include profuse sweating, thirst, loss of weight, headache, malaise, and yellow staining to the skin, hair, sclera, and conjunctiva.

There is no evidence to suggest that DNOC is teratogenic, mutagenic, or carcinogenic. The effects of DNOC in the human due to chronic exposure are basically the same as those effects resulting from acute exposure. Although DNOC is considered a cumulative poison in humans, cataract formation is the only chronic effect noted in any human or experimental animal study. It is believed that DNOC accumulates in the human body and that toxic symptoms may develop when blood levels exceed 20 mg/kg.

For the protection of human health from the toxic properties of dinitro-o-cresol ingested through water and contaminated aquatic organisms, the ambient water criterion is determined to be 0.0134 mg/l. If contaminated aquatic organisms alone are consumed, excluding the consumption of water, the ambient water criterion is determined to be 0.765 mg/l. No data are available on which to evaluate the adverse effects of 4,6-dinitro-o-cresol on aquatic life.

Some studies have been reported regarding the behavior of DNOC in POTW. Biochemical oxidation of DNOC under laboratory conditions at a concentration of 100 mg/l produced 22 percent degradation in 3.5 hours, using acclimated phenol adapted seed cultures. In addition, the nitro group in the number 4 (para) position seems to impart a destabilizing effect on the molecule. Based on these data and general conclusions relating molecular structure to biochemical oxidation, it is expected that 4,6-dinitro-o-cresol will be biochemically oxidized to a lesser extent than domestic sewage by biological treatment in POTW.

N-nitrosodiphenylamine (62). N-nitrosodiphenylamine [(C6 $\rm H_5$)2 NNO], also called nitrous diphenylamide, is a yellow crystalline solid manufactured by nitrosation of diphenylamine. It melts at 66C and is insoluble in water, but soluble in several organic solvents other than hydrocarbons. Production in the U.S. has approached 1,500 tons per year. The compound is used as a retarder for rubber vulcanization and as a pesticide for control of scorch (a fungus disease of plants).

N-nitroso compounds are acutely toxic to every animal species tested and are also poisonous to humans. N-nitrosodiphenylamine

toxicity in adult rats lies in the mid range of the values for 60 N-nitroso compounds tested. Liver damage is the principal toxic effect. N-nitrosodiphenylamine, unlike many other N-nitrosoamines, does not show mutagenic activity. N-nitrosodiphenylamine has been reported by several investigations to be non-carcinogenic. However in a recent study by the National Cancer Institute, the compound was found to induce a significant incidence of urinary bladder tumors in both male and female rats. Few urinary bladder tumors were observed in mice, although there was a high incidence of non-neoplastic bladder lesions. addition, N-nitrosodipheylamine is capable of trans-nitrosation and could thereby convert other amines to carcinogenic N-Sixty-seven of 87 N-nitrosoamines studied were nitrosoamines. reported to have carcinogenic activity. No water quality criterion have been proposed for N-nitrosodiphenylamine.

No data are available on the behavior of N-nitrosodiphenylamine in a POTW. Biochemical oxidation of many of the toxic organic pollutants have been investigated, at least in laboratory scale studies, at concentrations higher than those expected to be contained in most municipal wastewaters. General observations have been developed relating molecular structure to ease of degradation for all the toxic organic pollutants. The conclusion reached by study of the limited data is that biological treatment produces little or no removal of N-nitrosodiphenylamine in a No information is available regarding possible interfer-POTW. ence by N-nitrosodiphenylamine in POTW processes, or on the possible detrimental effect on sludge used to amend soils in which crops are grown. However, no interference or detrimental effects are expected because N-nitroso compounds are widely distributed in the soil and water environment, at low concentraa result of microbial action on nitrates and as nitrosatable compounds.

N-nitrosodi-n-propylamine (63). No physical properties or usage data could be found for this pollutant. It can be formed from the interaction of nitrite with secondary and tertiary amines

The available data for this pollutant indicate that acute toxicity to freshwater aquatic life occurs at concentrations as low as 5.85 mg/l. No data are available concerning this pollutant's chronic toxicity to freshwater and saltwater aquatic life. The available data indicate that acute toxicity to saltwater aquatic life occurs at concentrations as low as 3,300 mg/l.

For the maximum protection of human health from the potential carcinogenic effects due to exposure to this pollutant, through the ingestion of contaminatd water and aquatic organisms, the ambient water concentration should be zero. Concentrations of this pollutant estimated to result in additional lifetime cancer risks of risk levels of 10^{-5} , 10^{-6} , and 10^{-7} are 0.00016 mg/1, 0.000016 mg/1, and 0.0000016 mg/1, respectively.

With respect to treatment in POTW, laboratory studies indicate that this pollutant is not amenable to treatment via biochemical oxidation.

Pentachlorophenol (64). Pentachlorophenol (C6Cl5OH) is a white crystalline solid produced commercially by chlorination of phenol or polychlorophenols. U.S. annual production is in excess of 20,000 tons. Pentachlorophenol melts at 190C and is slightly soluble in water (14 mg/1). Pentachlorophenol is not detected by the 4-aminoantipyrene method and so does not contribute to the nonconventional pollutant parameter "Total Phenols".

Pentachlorophenol is a bactericide and fungicide and is used for preservation of wood and wood products. It is competitive with creosote in that application. It is also used as a preservative in glues, starches, and photographic papers. It is an effective algicide and herbicide.

Although data are available on the human toxicity effects of pentachlorophenol, interpretation of data is frequently uncertain. Occupational exposure observations must be examined carefully because exposure to pentachlorophenol is frequently accompanied by exposure to other wood preservatives. Additionally, experimental results and occupational exposure observations must be examined carefully to make sure that observed effects are produced by the pentachlorophenol itself and not by the by-products which usually contaminate pentachlorophenol.

Acute and chronic toxic effects of pentachlorophenol in humans are similar; muscle weakness, headache, loss of appetite, abdominal pain, weight loss, and irritation of skin, eyes, and respiratory tract. Available literature indicates that pentachlorophenol does not accumulate in body tissues to any significant extent. Studies on laboratory animals of distribution of the compound in body tissues showed the highest levels of pentachlorophenol in liver, kidney, and intestine, while the lowest levels were in brain, fat, muscle, and bone.

Toxic effects of pentachlorophenol in aquatic organisms are much greater at pH 6 where this weak acid is predominantly in the undissociated form than at pH 9 where the ionic form predominates. Similar results were observed in mammals where oral lethal doses of pentachlorophenol were lower when the compound was administered in hydrocarbon solvents (un-ionized form) than when it was administered as the sodium salt (ionized form) in water.

There appear to be no significant teratogenic, mutagenic, or carcinogenic effects of pentachlorophenol.

For the protection of human health from the toxic properties of pentachlorophenol ingested through water and through contaminated aquatic organisms, the ambient water quality criterion is determined to be 0.140 mg/l.

Some data are available on the behavior of pentachlorophenol in a Pentachlorophenol has been found in the influent In a study of one POTW the mean removal was 59 percent over a seven day period. Trickling filters removed 44 percent at the influent pentachlorophenol, suggesting that biological degra-The same report compared removal of pentachlorodation occurs. phenol at the same plant and two additional POTW facilities on, a later date and obtained values of 4.4, 19.5 and 28.6 percent removal, the last value being for the plant which was 59 percent removal in the original study. Influent concentrations of pentachlorophenol ranged from 0.0014 to 0.0046 mg/l. Other studies, including the general review of data relating molecular structure to biological oxidation, indicate that pentachlorophenol is removed by biological treatment processes in a POTW. digestion processes are inhibited by 0.4 mg/l pentachlorophenol. The most recent EPA study of the behavior of toxic organics in a POTW indicates that pentachlorophenol is 52 percent removed.

The low water solubility and low volatility of pentachlorophenol lead to the expectation that most of the compound will remain in the sludge in a POTW. The effect on plants grown on land treated with pentachlorophenol-containing sludge is unpredictable. Laboratory studies show that this compound affects crop germination at 5.4 mg/l. However, photodecomposition of pentachlorophenol occurs in sunlight. The effects of the various breakdown products which may remain in the soil was not found in the literature.

Phenol (65). Phenol, also called hydroxybenzene and carbolic acid, is a clear, colorless, hygroscopic, deliquescent, crystal line solid at room temperature. Its melting point is 43C and its vapor pressure at room temperature is 0.35 mm Hg. It is very soluble in water (67 gm/l at 16C) and can be dissolved in benzene, oils, and petroleum solids. Its formula is C_6H_5OH .

Although a small percent of the annual production of phenol is derived from coal tar as a naturally occuring product, most of the phenol is synthesized. Two of the methods are fusion of benzene sulfonate with sodium hydroxide, and oxidation of cumene followed by cleavage with a catalyst. Annual production in the U.S. is in excess of one million tons. Phenol is generated during distillation of wood and the microbiological decomposition of organic matter in the mammalian intestinal tract.

Phenol is used as a disinfectant, in the manufacture of resins, dyestuffs, and in pharmaceuticals, and in the photo processing industry. In this discussion, phenol is the specific compound which is separated by methylene chloride extraction of an acidified sample and identified and quantified by GC/MS. Phenol also contributes to the "Total Phenols," discussed elsewhere which are determined by the 4-AAP colorimetric method.

Phenol exhibits acute and sub-acute toxicity in humans and laboratory animals. Acute oral doses of phenol in humans cause sudden collapse and unconsciousness by its action on the central

nervous system. Death occurs by respiratory arrest. Sub-acute oral doses in mammals are rapidly absorbed and quickly distributed to various organs, then cleared from the body by urinary excretion and metabolism. Long term exposure by drinking phenol contaminated water has resulted in statistically significant increase in reported cases of diarrhea, mouth sores, and burning of the mouth. In laboratory animals, long term oral administration at low levels produced slight liver and kidney damage. No reports were found regarding carcinogenicity of phenol administered orally -- all carcinogenicity studies were skin test.

For the protection of human health from phenol ingested through water and through contaminated aquatic organisms, the concentration in water should not exceed 3.4 mg/l.

Fish and other aquatic organisms demonstrated a wide range of sensitivities to phenol concentration. However, acute toxicity values were at moderate levels when compared to other toxic organic pollutants.

Data have been developed on the behavior of phenol in a POTW. Phenol is biodegradable by biota present in a POTW. The ability of a POTW to treat phenol-bearing influents depends upon acclimation of the biota and the constancy of the phenol concentration. It appears that an induction period is required to build up the population of organisms which can degrade phenol. Too large a concentration will result in upset or pass though in the POTW, but the specific level causing upset depends on the immediate past history of phenol concentrations in the influent. Phenol levels as high as 200 mg/l have been treated with 95 percent removal in a POTW, but more or less continuous presence of phenol is necessary to maintain the population of microorganisms that degrade phenol.

Phenol which is not degraded is expected to pass through the POTW because of its very high water solubility. However, in a POTW where chlorination is practiced for disinfection of the POTW effluent, chlorination of phenol may occur. The products of that reaction may be toxic pollutants.

The EPA has developed data on influent and effluent concentrations of total phenols in a study of 103 POTW facilities. However, the analytical procedure was the 4-AAP method mentioned earlier and not the GC/MS method specifically for phenol. Discussion of the study, which of course includes phenol, is presented under the pollutant heading "Total Phenols." The most recent study by EPA on the behavior of toxic organics in a POTW indicates that phenol is 96 percent removed.

Phthalate Esters (66-71). Phthalic acid, or 1,2-benzene dicarboxylic acid, is one of three isomeric benzenedicarboxylic acids produced by the chemical industry. The other two isomeric forms are called isophthalic and terephthalic acids. The formula for all three acids is $C_6H_4(COOH)_2$. Some esters of phthalic acid are designated as toxic pollutants. They will be

discussed as a group here, and specific properties of individual phthalate esters will be discussed afterwards.

Phthalic acid esters are manufactured in the U.S. at an annual rate in excess of one billion pounds. They are used as plasticizers -- primarily in the production of polyvinyl chloride The most widely used phthalate plasticizer (PVC) resins. (2-ethylhexyl) phthalate (66) which accounts for nearly is bis one-third phthalate esters produced. the particular ester is commonly referred to as dioctyl phthalate confused with one of the less used (DOP) and should not be esters, di-n-octyl phthalate (69), which is also used as plasticizer. In addition to these two isomeric dioctyl phthalates, four other esters, also used primarily pollutants. plasticizers, are designated as toxic Thev phthalate benzyl phthalate (67), di-n-butyl butyl (68), diethyl phthalate (70), and dimethyl phthalate (71).

Industrially, phthalate esters are prepared from phthalic anhydride and the specific alcohol to form the ester. Some evidence is available suggesting that phthalic acid esters also may be synthesized by certain plant and animal tissues. The extent to which this occurs in nature is not known.

Phthalate esters used as plasticizers can be present in concentrations up to 60 percent of the total weight of the PVC plastic. The plasticizer is not linked by primary chemical bonds to the PVC resin. Rather, it is locked into the structure of intermeshing polymer molecules and held by van der Waals forces. The result is that the plasticizer is easily extracted. Plasticizers are responsible for the odor associated with new plastic toys or flexible sheet that has been contained in a sealed package.

Although the phthalate esters are not soluble or are only very slightly soluble in water, they do migrate into aqueous solutions placed in contact with the plastic. Thus, industrial facilities with tank linings, wire and cable coverings, tubing, and sheet flooring of PVC are expected to discharge some phthalate esters in their raw waste. In addition to their use as plasticizers, phthalate esters are used in lubricating oils and pesticide carriers. These also can contribute to industrial discharge of phthalate esters.

From the accumulated data on acute toxicity in animals, phthalate esters may be considered as having a rather low order of toxicity. Human toxicity data are limited. It is thought that the toxic effect of the esters is most likely due to one of the metabolic products, in particular the monoester. Oral acute toxicity in animals is greater for the lower molecular weight esters than for the higher molecular weight esters.

Orally administered phthalate esters generally produced enlarging of liver and kidney, and atrophy of testes in laboratory animals. Specific esters produced enlargement of heart and brain, spleenitis, and degeneration of central nervous system tissue.

Subacute doses administered orally to laboratory animals produced some decrease in growth and degeneration of the testes. Chronic studies in animals showed similar effects to those found in acute and subacute studies, but to a much lower degree. The same organs were enlarged, but pathological changes were not usually detected.

A recent study of several phthalic esters produced suggestive but not conclusive evidence that dimethyl and diethyl phthalates have a cancer liability. Only four of the six toxic pollutant esters were included in the study. Phthalate esters do bioconcentrate in fish. The factors, weighted for relative consumption of various aquatic and marine food groups, are used to calculate ambient water quality criteria for four phthalate esters. The values are included in the discussion of the specific esters.

Studies of toxicity of phthalate esters in freshwater and salt water organisms are scarce. A chronic toxicity test with bis(2-ethylhexyl) phthalate showed that significant reproductive impairment occurred at 0.003 mg/l in the freshwater crustacean, Daphnia magna. In acute toxicity studies, saltwater fish and organisms showed sensitivity differences of up to eight-fold to butyl benzyl, diethyl, and dimethyl phthalates. This suggests that each ester must be evaluated individually for toxic effects.

The biochemical oxidation of many of the toxic organic pollutants has been investigated in laboratory scale studies at concentrations higher than would normally be expected in municipal wastewaters. Three of the phthalate esters were studed. Bis(2ethylhexyl) phthalate was found to be degraded slightly or not at all and its removal by biological treatment in a POTW is expected to be slight or zero. Di-n-butyl phthalate and diethyl phthalate were degraded to a moderate degree and their removal by biological treatment in a POTW is expected to occur to a moderate degree. Using these data and other observations relating molecustructure to ease of biochemical degradation of other toxic organic pollutants, the conclusion was reached that butyl benzyl phthalate and dimethyl phthalate would be removed in a POTW to a moderate degree by biological treatment. On the same basis, concluded that di-n-octyl phthalate would be removed to a slight degree or not at all. An EPA study of seven POTW facilities revealed that for all but di-n-octyl phthalate, which was not studied, removals ranged from 62 to 87 percent. The most EPA study of the behavior of toxic organics in POTW indicates removals ranging from 48 percent to 81 percent for the six phthalate esters designated as toxic pollutants.

No information was found on possible interference with POTW operation or the possible effects on sludge by the phthalate esters. The water insoluble phthalate esters — butyl benzyl and didnoctyl phthalate — would tend to remain in sludge, whereas the other four toxic pollutant phthalate esters with water solubilities ranging from 50 mg/l to 4.5 mg/l would probably pass through into the POTW effluent.

Bis(2-ethylhexyl) Phthalate (66). In addition to the general remarks and discussion on phthalate esters, specific information on bis(2-ethylhexyl) phthalate is provided. Little information is available about the physical properties of bis(2-ethylhexyl) It is a liquid boiling at 387C at 5mm Hg and is phthalate. insoluble in water. Its formula $C_6H_4(COOC_8H_{17})$. This toxic pollutant format constitutes about one-third of the phthalate ester production in It is commonly referred to as dioctyl phthalate, or DOP, in the plastics industry where it is the most extensively used compound for the plasticization of polyvinyl chloride (PVC). Bis(2-ethylhexyl) phthalate has been approved by the FDA for use in plastics in contact with food. Therefore, it may be found in coming in contact with discarded plastic food wastewaters wrappers as well as the PVC films and shapes normally found in industrial plants. This toxic pollutant is also a commonly used organic diffusion pump oil, where its low vapor pressure is an advantage.

For the protection of human health from the toxic properties of bis(2-ethylhexyl) phthalate ingested through water and through contaminated aquatic organisms, the ambient water quality criterion is determined to be 15 mg/l. If contaminated aquatic organisms alone are consumed, excluding the consumption of water, the ambient water criteria is determined to be 50 mg/l.

Biochemical oxidation of this toxic pollutant has been studied on a laboratory scale at concentrations higher than would normally be expected in municipal wastewater. In fresh water with a nonacclimated seed culture no biochemical oxidation was observed after 5, 10, and 20 days. However, with an acclimated seed culture, biological oxidation occured to the extents of 13, 0, 6, and 23 percent of theoretical after 5, 10, 15 and 20 days, respectively. Bis(2-ethylhexyl) phthalate concentrations were 3 to $\bar{1}0$ mg/1. Little or no removal of bis(2-ethylhexyl) phthalate by biological treatment in a POTW is expected. The most recent EPA study of the behavior of toxic organics in a POTW indicates that bis(2-ethylhexyl) phthalate is 62 percent removed.

Butyl Benzyl Phthalate (67). In addition to the general remarks and discussion on phthalate esters, specific information on butyl benzyl phthalate is provided. No information was found on the physical properties of this compound.

Butyl benzyl phthalate is used as a plasticizer for PVC. Two special applications differentiate it from other phthalate esters. It is approved by the U.S. FDA for food contact in wrappers and containers; and it is the industry standard for plasticization of vinyl flooring because it provides stain resistance.

No ambient water quality criterion is proposed for butyl benzyl phthalate.

Butyl benzyl phthalate removal in a POTW by biological treatment is expected to occur to a moderate degree. The most recent EPA study of the behavior of toxic organics in POTWs indicates that butyl benzyl phthalate is 59 percent removed.

Di-n-butyl Phthalate (68). In addition to the general remarks and discussion on phthalate esters, specific information on di-n-butyl phthalate (DBP) is provided. DBP is a colorless, oil liquid, boiling at 340C. Its water solubility at room temperature is reported to be 0.4 g/l and 4.5 g/l in two different chemistry handbooks. The formula for DBP, C6H4 (COOC4H)2 is the same as for its isomer, di-isobutyl phthalate. DBP production is 1 to 2 percent of total U.S. phthalate ester production.

Dibutyl phthalate is used to a limited extent as a plasticizer for polyvinyl chloride (PVC). It is not approved for contact with food. It is used in liquid lipsticks and as a diluent for polysulfide dental impression materials. DBP is used as a plasticizer for nitrocellulose in making gun powder, and as a fuel in solid propellants for rockets. Further uses are insecticides, safety glass manufacture, textile lubricating agents, printing inks, adhesives, paper coatings, and resin solvents.

For protection of human health from the toxic properties of dibutyl phthalate ingested through water and through contaminated aquatic organisms, the ambient water quality criterion is determined to be 34 mg/l. If contaminated aquatic organisms alone are consumed, excluding the consumption of water, the ambient water criterion is 154 mg/l.

Biochemical oxidation of this toxic pollutant has been studied on a laboratory scale at concentrations higher than would normally be expected in municipal wastewaters. Biochemical oxidation of 35, 43, and 45 percent of theoretical oxidation were obtained after 5, 10, and 20 days, respectively, using sewage microorganisms as an unacclimated seed culture.

Biological treatment in a POTW is expected to remove 'di-n-butyl phthalate to a moderate degree. The most recent EPA study of the behavior of toxic organics in a POTW indicates that di-n-butyl phthalate is 48 percent removed.

Di-n-octyl phthalate (69). In addition to the general remarks and discussion on phthalate esters, specific information on di-noctyl phthalate is provided. Di-n-octyl phthalate is not to be confused with the isomeric bis(2-ethylhexyl) phthalate which commonly referred to in the plastics industry as DOP. Di-n-octyl phthalate is a liquid which boils at 220C at 5 mm Hq. molecular insoluble water. in Iţs formula is $(COOC_8H_{17})_2.$ Its production percent of all phthalate ester constitutes about production in the U.S.

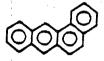
Industrially, di-n-octyl phthalate is used to plasticize polyvinyl chloride (PVC) resins.

No ambient water quality criterion is proposed for di-n-octyl phthalate.

Biological treatment in a POTW is expected to lead to little or no removal of di-n-octyl phthalate. The most recent EPA study of the behavior of toxic organics in POTWs indicates that di-n-octyl phthalate is 81 percent removed.

Diethyl phthalate (70). In addition to the general remarks and discussion on phthalate esters, specific information on diethyl phthalate is provided. Diethyl phthalate, or DEP, is a colorless liquid boiling at 296C, and is insoluble in water. Its molecular formula is $C_6H_4(COOC_2H_5)_2$. Production of diethyl phthalate constitutes about 1.5 percent of phthalate ester production in the U.S.

Diethyl phthalate is approved for use in plastic food containers by the U.S. FDA. In addition to its use as a polyvinyl chloride (PVC) plasticizer, DEP is used to plasticize cellulose nitrate for gun powder, to dilute polysulfide dental impression materials, and as an accelerator for dyeing triacetate fibers. additional use which would contribute to its wide distribution in the environment is as an approved special denaturant for ethyl The alcohol-containing products for which DEP is approved denaturant include a wide range of personal care items such as bath preparations, bay rum, colognes, hair preparations, face and hand creams, perfumes and toilet soaps. Additionally, denaturant is approved for use in biocides, cleaning solutions, disinfectants, insecticides, fungicides, and room deoderants which have ethyl alcohol as part of the formulation. expected, therefore, that people and buildings would have some surface loading of this toxic pollutant which would find its way into raw wastewaters.

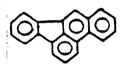

For the protection of human health from the toxic properties of diethyl phthalate ingested through water and through contaminated aquatic organisms, the ambient water quality criterion is determined to be 350 mg/l. If contaminated aquatic organisms alone are consumed, excluding the consumption of water, the ambient water criterion is 1,800 mg/l.

Biochemical oxidation of this toxic pollutant has been studied on a laboratory scale at concentrations higher than would normally be expected in municipal wastewaters. Biochemical oxidation of 79, 84, and 89 percent of theoretical was observed after 5, 15, and 20 days respectively. Biological treatment in a POTW is expected to lead to a moderate degree of removal of diethyl phthalate. The most recent EPA study of the behavior of toxic organics in POTWs indicates that diethyl phthalate is 74 percent removed.

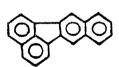
Polynuclear Aromatic Hydrocarbons (72-84). The polynuclear aromatic hydrocarbons (PAH) selected as toxic pollutants are a group of 13 compounds consisting of substituted and unsubstituted polycyclic aromatic rings. The general class of PAH includes heterocyclics, but none of those were selected as toxic pollutants. PAH are formed as the result of incomplete combustion when organic compounds are burned with insufficient oxygen. PAH are found in coke oven emissions, vehicular emissions, and volatile products of oil and gas burning. The compounds chosen as toxic pollutants are listed with their structural formula and melting point (m.p.). All are insoluble in water.

72 Benzo(a)anthracene (1,2-benzanthracene)

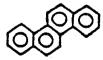
m.p. 162C


73 Benzo(a)pyrene (3,4-benzopyrene)

m.p. 176C


74 3,4-Benzofluoranthene

m.p. 168C


Benzo(k)fluoranthene (11,12-benzofluoranthene)

m.p. 217C

76 Chrysene (1,2-benzphenanthrene)

m.p. 255C

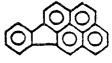
77 Acenaphthylene

m.p. 92C

80 Fluorene (alpha-diphenylenemethane)

m.p. 116C

81 Phenanthrene


m.p. 101C

82 Dibenzo(a,h)anthracene (1,2,5,6dibenzoanthracene)

m.p. 269C

m.p. not available

84 Pyrene

m.p. 156C

Some of these toxic pollutants have commercial or industrial uses. Benzo(a)anthracene, benzo(a)pyrene, chrysene, anthracene, dibenzo(a,h)anthracene, and pyrene are all used as antioxidants. Chrysene, acenaphthylene, anthracene, fluorene, phenanthrene, and pyrene are all used for synthesis of dyestuffs or other organic chamicals. 3,4-Benzofluoranthrene, benzo(k)fluoranthene, benzo (ghi)perylene, and indeno (1,2,3-cd)pyrene have no known indus-

trial uses, according to the results of a recent literature search.

Several of the PAH toxic pollutants are found in smoked meats, in smoke flavoring mixtures, in vegetable oils, and in coffee. Consequently, they are also found in many drinking water supplies. The wide distribution of these pollutants in complex mixtures with the many other PAHs which have not been designated as toxic pollutants results in exposures by humans that cannot be associated with specific individual compounds.

The screening and verification analysis procedures used for the toxic organic pollutants are based on gas chromatography (GC). Three pairs of the PAH have identical elution times on the column specified in the protocol, which means that the parameters of the pair are not differentiated. For these three pairs [anthracene (78) - phenanthrene (81); 3,4-benzofluoranthene (74) - benzo(k)-fluoranthene (75); and benzo(a)anthracene (72) - chrysene (76)] results are obtained and reported as "either-or." Either both are present in the combined concentration reported, or one is present in the concentration reported.

There are no studies to document the possible carcinogenic risks to humans by direct ingestion. Air pollution studies indicate an excess of lung cancer mortality among workers exposed to large amounts of PAH containing materials such as coal gas, tars, and coke-oven emissions. However, no definite proof exists that the PAH present in these materials are responsible for the cancers observed.

Animal studies have demonstrated the toxicity of PAH by oral and dermal administration. The carcinogenicity of PAH has been traced to formation of PAH metabolites which, in turn, lead to tumor formation. Because the levels of PAH which induce cancer are very low, little work has been done on other health hazards resulting from exposure. It has been established in animal studies that tissue damage and systemic toxicity can result from exposure to non-carcinogenic PAH compounds.

Because there were no studies available regarding chronic oral exposures to PAH mixtures, proposed water quality criteria were derived using data on exposure to a single compound. Two studies were selected, one involving benzo(a)pyrene ingestion and one involving dibenzo(a,h)anthracene ingestion. Both are known animal carcinogens.

For the maximum protection of human health from the potential carcinogenic effects of exposure to polynuclear aromatic hydrocarbons (PAH) through ingestion of water and contaminated aquatic organisms, the ambient water concentration is zero. Concentrations of PAH estimated to result in additional risk of 1 in 100,000 were derived by the EPA and the Agency is considering setting criteria at an interim target risk level in the range of 10^{-7} , 10^{-6} , or 10^{-5} with corresponding criteria of 0.00000097 mg/l, and 0.0000097 mg/l, respectively.

No standard toxicity tests have been reported for freshwater or saltwater organisms and any of the 13 PAH discussed here.

The behavior of PAH in a POTW has received only a limited amount of study. It is reported that up to 90 percent of PAH entering a POTW will be retained in the sludge generated by conventional sewage treatment processes. Some of the PAH can inhibit bacterial growth when they are present at concentrations as low as 0.018 mg/l.Biological treatment in activated sludge units has been shown to reduce the concentration of phenanthrene and anthracene to some extent; however, a study of biochemical oxidation of fluorene on a laboratory scale showed no degradation after 5, 10, and 20 days. On the basis of that study and studies of other toxic organic pollutants, some general observations were made relating molecular structure to ease of degradation. observations lead to the conclusion that the 13 PAH selected represent that group as toxic pollutants will be removed only slightly or not at all by biological treatment methods in a POTW. Based on their water insolubility and tendency to attach to sediment particles very little pass through of PAH to POTW effluent The most recent EPA study of the behavior of toxic organics in POTW indicates that removals for five of the 13 PAH range from 40 percent to 83 percent.

No data are available at this time to support any conclusions about contamination of land by PAH on which sewage sludge containing PAH is spread.

Tetrachloroethylene (85). Tetrachloroethylene (CCl₂CCl₂), also called perchloroethylene and PCE, colorless, nonflammable liquid produced mainly by two methods -pyrolysis of ethane chlorination and and propane, oxychlorination of dichloro ethane. U.S. annual production exceeds 300,000 tons. PCE boils at 121C and has a vapor pressure 19 mm Hg at 20C. It is insoluble in water but soluble organic solvents.

Approximately two-thirds of the U.S. production of PCE is used for dry cleaning. Textile processing and metal degreasing, in equal amounts consume about one-quarter of the U.S. production.

The principal toxic effect of PCE on humans is central nervous system depression when the compound is inhaled. Headache, fatigue, sleepiness, dizziness, and sensations of intoxication are reported. Severity of effects increases with vapor concentration. High integrated exposure (concentration times duration) produces kidney and liver damage. Very limited data on PCE ingested by laboratory animals indicate liver damage occurs when PCE is administered by that route. PCE tends to distribute to fat in mammalian bodies.

One report found in the literature suggests, but does not conclude, that PCE is teratogenic. PCE has been demonstrated to be a liver carcinogen in B6C3-F1 mice. For the maximum protection of human health from the potential carcinogenic effects of exposure to tetrachlorethylene through ingestion of water and contaminated aquatic organisms, the ambient water concentration should be zero. Concentrations of tetrachloroethylene estimated to result in additional lifetime cancer risk levels of 10^{-7} , 10^{-6} , and 10^{-5} are 0.000020 mg/l, 0.00020 mg/l, and 0.0020 mg/l, respectively.

Many of the toxic organic pollutants have been investigated, at least in laboratory scale studies, at concentrations higher than those expected to be contained by most municipal wastewaters. General observations have been developed relating molecular structure to ease of degradation for all of the toxic organic pollutants. The conclusions reached by the study of the limited data is that biological treatment produces a moderate removal of PCE in a POTW by degradation. No information was found to indicate that PCE accumulates in the sludge, but some PCE is expected to be adsorbed onto settling particles. Some PCE is expected to be volatilized in aerobic treatment processes and little, if any, is expected to pass through into the effluent from the POTW. The most recent EPA study of the behavior of toxic organics in POTWs indicates that PCE is 81 percent removed.

Toluene (86). Toluene is a clear, colorless liquid benzene-like odor. It is a naturally occuring compound derived primarily from petroleum or petrochemical processes. toluene is obtained from the manufacture of metallurgical Toluene is also referred to as totuol, methylbenzene, methacide, phenylmethane. It is an aromatic hydrocarbon with the It boils at 111C and C6H5CH3. pressure of 30 mm Hg at room temperature. The water solubility of toluene is 535 mg/l, and it is miscible with a variety of organic solvents. Annual production of toluene in the U.S. is than two million metric tons. Approximately two-thirds toluene is converted to benzene and the remaining divided approximately equally into percent and use as a paint solvent and aviation gasoline manufacture, An estimated 5,000 metric tons is discharged to the additive. environment anually as a constituent in wastewater.

data on the effects of toluene in human and other mammals have been based on inhalation exposure or dermal contact studies. There appear to be no reports of oral administration of human subjects. A long term toxicity study on female rats revealed no adverse effects on growth, mortality, appearance and behavior, organ to body weight ratios, blood-urea nitrogen levels, bone marrow counts, peripheral blood counts, or morphol-The effects of inhaled toluene on the cenogy of major organs. tral nervous system, both at high and low concentrations, been studied in humans and animals. However, ingested toluene is expected to be handled differently by the body because absorbed more slowly and must first pass through the liver before reaching the nervous system. Toluene is extensively and rapidly metabolized in the liver. One of the principal metabolic products of toluene is benzoic acid, which itself seems to have little potential to produce tissue injury.

Toluene does not appear to be teratogenic in laboratory animals or man. Nor is there any conclusive evidence that toluene is mutagenic. Toluene has not been demonstrated to be positive in any in vitro mutagenicity or carcinogenicity bioassay system, nor to be carcinogenic in animals or man.

Toluene has been found in fish caught in harbor waters in the vicinity of petroleum and petrochemical plants. Bioconcentration studies have not been conducted, but bioconcentration factors have been calculated on the basis of the octanol-water partition coefficient.

For the protection of human health from the toxic properties of toluene ingested through water and through contaminated aquatic organisms, the ambient water criterion is determined to be 14.3 mg/l. If contaminated aquatic organisms alone are consumed excluding the consumption of water, the ambient water criterion is 424 mg/l. Available data show that the adverse effects on aquatic life occur at concentrations as low as 5 mg/l.

Acute toxicity tests have been conducted with toluene and a variety of freshwater fish and Daphnia magna. The latter appears to be significantly more resistant than fish. No test results have been reported for the chronic effects of toluene on freshwater fish or invertebrate species.

The biochemical oxidation of many of the toxic pollutants has been investigated in laboratory scale studies at concentrations greater than those expected to be contained by most municipal wastewaters. At toluene concentrations ranging from 3 to 250 mg/l biochemical oxidation proceeded to 50 percent of theoretical or greater. The time period varied from a few hours to 20 days depending on whether or not the seed culture was acclimated. Phenol adapted acclimated seed cultures gave the most rapid and extensive biochemical oxidation.

Based on study of the limited data, it is expected that toluene will be biochemically oxidized to a lesser extent than domestic sewage by biological treatment in a POTW. The volatility and relatively low water solubility of toluene lead to the expectation that aeration processes will remove significant quantities of toluene from the POTW. The EPA studied toluene removal in seven POTW facilities. The removals ranged from 40 54 x Sludge concentrations of toluene ranged from to 1.85 mg/l. The most recent EPA study of behavior of toxic organics in a POTW indicates that toluene is 90 percent removed.

Trichloroethylene (87). Trichloroethylene (1,1,2-trichloroethylene or TCE) is a clear, colorless liquid boiling at 87C. It has a vapor pressure of 77 mm Hg at room temperature and is slightly soluble in water (1 g/l). U.S. production is greater than 0.25

million metric tons annually. It is produced from tetrachloroethane by treatment with lime in the presence of water.

TCE is used for vapor phase degreasing of metal parts, cleaning and drying electronic components, as a solvent for paints, as a refrigerant, for extraction of oils, fats, and waxes, and for dry cleaning. Its widespread use and relatively high volatility result in detectable levels in many parts of the environment.

Data on the effects produced by ingested TCE are limited. Most studies have been directed at inhalation exposure. Nervous system disorders and liver damage are frequent results of inhalation exposure. In the short term exposures, TCE acts as a central nervous system depressant -- it was used as an anesthetic before its other long term effects were defined.

TCE has been shown to induce transformation in a highly sensitive in vitro Fischer rat embryo cell system (F1706) that is used for identifying carcinogens. Severe and persistent toxicity to the liver was recently demonstrated when TCE was shown to produce carcinoma of the liver in mouse strain B6C3Fl One systematic study of TCE exposure and the incidence of human cancer was based on 518 men exposed to TCE. The authors of that study concluded that although the cancer risk to man cannot be ruled out, exposure to low levels of TCE probably does not present a very serious and general cancer hazard.

TCE is bioconcentrated in aquatic species, making the consumption of such species by humans a significant source of TCE. For the protection of human health from the potential carcinogenic effects of exposure to trichloroethylene through ingestion of water and contaminated aquatic organisms, the ambient water concentration is zero. Concentrations of trichloroethylene estimated to result in additional lifetime cancer risks of 10^{-7} , 10^{-6} , and 10^{-5} are 0.00027 mg/l, 0.0027 mg/l, and 0.027 mg/l, respectively. If contaminated aquatic organisms alone are consumed excluding the consumption of water, the water concentration should be less than 0.807 mg/l to keep the additional lifetime cancer risk below 10^{-5} .

Only a very limited amount of data on the effects of TCE on freshwater aquatic life are available. One species of fish (fat head minnows) showed a loss of equilibrium at concentrations below those resulting in lethal effects.

In laboratory scale studies of toxic organic pollutants, TCE was subjected to biochemical oxidation conditions. After 5, 10, and 20 days no biochemical oxidation occurred. On the basis of this study and general observations relating molecular structure to ease of degradation, the conclusion is reached that TCE would undergo no removal by biological treatment in a POTW. The volatility and relatively low water solubility of TCE is expected to result in volatilization of some of the TCE in aeration steps in a POTW. The most recent EPA study of the behavior of toxic organics in a POTW indicates that TCE is 85 percent removed.

Antimony (114). Antimony (chemical name - stibium, symbol Sb), classified as a non-metal or metalloid, is a silvery white, brittle crystalline solid. Antimony is found in small ore bodies throughout the world. Principal ores are oxides of mixed antimony valences, and an oxysulfide ore. Complex ores with metals are important because the antimony is recovered as a by-product. Antimony melts at 631C, and is a poor conductor of electricity and heat.

Annual U.S. consumption of primary antimony ranges from 10,000 to 20,000 tons. About half is consumed in metal products — mostly antimonial lead for lead acid storage batteries, and about half in non-metal products. A principal compound is antimony trioxide which is used as a flame retardant in fabrics, and as an opacifier in glass, ceramics, and enamels. Several antimony compounds are used as catalysts in organic chemicals synthesis, as fluorinating agents (the antimony fluorides), as pigments, and in fire works. Semiconductor applications are economically significant.

Essentially no information on antimony-induced human health effects has been derived from community epidemiology studies. The available data are in literature relating effects observed with therapeutic medicinal uses of antimony compounds or industrial exposure studies. Large therapeutic doses of antimonial compounds, usually used to treat schistisomiasis, have caused severe nausea, vomiting, convulsions, irregular and skin rashes. Studies of action, liver damage, industrial antimony poisoning have revealed loss of appetite, diarrhea, headache, and dizziness in addition to the symptoms found in studies of therapeutic doses of antimony.

For the protection of human health from the toxic properties of antimony ingested through water and through contaminated aquatic organisms the ambient water criterion is determined to be 0.146 mg/l. If contaminated aquatic organisms are consumed, excluding the consumption of water, the ambient water criterion is determined to be 45 mg/l. Available data show that adverse effects on aquatic life occur at concentrations higher than those cited for human health risks.

The limited solubility of most antimony compounds expected in a POTW, i.e., the oxides and sulfides, suggests that at least part of the antimony entering a POTW will be precipitated and incorporated into the sludge. However, some antimony is expected to remain dissolved and pass through the POTW into the effluent. Antimony compounds remaining in the sludge under anaerobic conditions may be connected to stibine (SbH3), a very soluble and very toxic compound. There are no data to show antimony inhibits any POTW processes. The most recent EPA study of the behavior of toxic pollutants in POTW indicates that antimony is 60 percent removed. Antimony is not known to be essential to the growth of plants, and has been reported to be moderately toxic. Therefore, sludge containing large amounts of antimony could be detrimental to plants if it is applied in large amounts to

Arsenic (115). Arsenic (chemical symbol As), is classified as a non-metal or metalloid. Elemental arsenic normally exists in the alpha-crystalline metallic form which is steel gray and brittle, and in the beta form which is dark gray and amorphous. Arsenic sublimes at 615C. Arsenic is widely distributed throughout the world in a large number of minerals. The most important commercial source of arsenic is as a by-product from treatment of copper, lead, cobalt, and gold ores. Arsenic is usually marketed as the trioxide (As2O3). Annual U.S. production of the trioxide approaches 40,000 tons.

The principal use of arsenic is in agricultural chemicals (herbicides) for controlling weeds in cotton fields. Arsenicals have various applications in medicinal and vetrinary use, as wood preservatives, and in semiconductors.

The effects of arsenic in humans were known by the ancient Greeks and Romans. The principal toxic effects are gastrointestinal disturbances. Breakdown of red blood cells occurs. Symptoms of acute poisoning include vomiting, diarrhea, abdominal pain, lassitude, dizziness, and headache. Longer exposure produced dry, falling hair, brittle, loose nails, eczema, and exfoliation. Arsenicals also exhibit teratogenic and mutagenic effects in humans. Oral administration of arsenic compounds has been associated clinically with skin cancer for nearly one hundred years. Since 1888 numerous studies have linked occupational exposure and therapeutic administration of arsenic compounds to increased incidence of respiratory and skin cancer.

the maximum protection of human health from the potential carcinogenic effects of exposure to arsenic through ingestion of water and contaminated aquatic organisms, the ambient water concentration should be zero. Concentrations of arsenic estimated to result in additional lifetime cancer risk levels of 10^{-7} , 10^{-6} , and 10^{-5} are 2.2 x 10^{-7} mg/1, 2.2 10^{-6} mg/1, and 2.2 x 10^{-5} mg/1, respectively. If If contaminated aquatic organisms alone are consumed, excluding the consumption of water, the water concentration should be less than 10-4 to keep the increased lifetime cancer risk below 10^{-5} . Available data show that adverse effects on life occur at concentrations higher than those cited for human health risks.

A few studies have been made regarding the behavior of arsenic in a POTW. One EPA survey of nine POTW facilities reported influent concentrations ranging from 0.0005 to 0.693 mg/l; effluents from three POTW having biological treatment contained 0.0004 to 0.01 mg/l; two POTW facilities showed arsenic removal efficiencies of 50 and 71 percent in biological treatment. Inhibition of treatment processes by sodium arsenate is reported to occur at 0.1 mg/l in activated sludge, and 1.6 mg/l in anaerobic digestion processes. In another study based on data from 60 POTW facili-

ties, arsenic in sludge ranged from 1.6 to 65.6 mg/kg and the median value was 7.8 mg/kg. The most recent EPA study of the behavior of toxic pollutants in POTW indicates that total trivalent arsenic is 65 percent removed. Arsenic in sludge spread on cropland may be taken up by plants grown on that land. Edible plants can take up arsenic, but normally their growth is inhibited before the plants are ready for harvest.

Beryllium (117). Beryllium is a dark gray metal of the alkaline earth family. It is relatively rare, but because of its unique properties finds widespread use as an alloying element, especially for hardening copper which is used in springs, electrical contacts, and non-sparking tools. World production is reported to be in the range of 250 tons annually. However, much more reaches the environment as emissions from coal burning operations. Analysis of coal indicates an average beryllium content of 3 ppm and 0.1 to 1.0 percent in coal ash or fly ash.

The principal ores are beryl (3BeO·Al₂O₃·6SiO₂) and bertrandite [Be₄Si₂O₇(OH)₂]. Only two industrial facilities produce beryllium in the U.S. because of limited demand and the highly toxic character. About two-thirds of the annual production goes into alloys, 20 percent into heat sinks, and 10 percent into beryllium oxide (BeO) ceramic products.

Beryllium has a specific gravity of 1.846, making it the lightest metal with a high melting point (1,350C). Beryllium alloys are corrosion resistant, but the metal corrodes in aqueous environ ments. Most common beryllium compounds are soluble in water, at least to the extent necessary to produce a toxic concentration of beryllium ions.

Most data on toxicity of beryllium is for inhalation of beryllium oxide dust. Some studies on orally administered beryllium in laboratory animals have been reported. Despite the large number of studies implicating beryllium as a carcinogen, there is no recorded instance of cancer being produced by ingestion. How ever, a recently convened panel of uninvolved experts concluded that epidemiologic evidence is suggestive that beryllium is a carcinogen in man.

In the aquatic environment beryllium is chronically toxic to aquatic organisms at 0.0053~mg/l. Water softness has a large effect on beryllium toxicity to fish. In soft water, beryllium is reportedly 100 times as toxic as in hard water.

For the maximum protection of human health from the potential carcinogenic effects of exposure to beryllium through ingestion of water and contaminated aquatic organisms the ambient water concentration should be zero. Concentrations of beryllium estimated to result in additional lifetime cancer risk levels of 10^{-7} , 10^{-6} , and 10^{-5} are 0.00000068 mg/l, 0.0000068 mg/l, and 0.000068 mg/l, respectively. If contaminated aquatic organisms alone are consumed excluding the consumption of water,

the concentration should be less than 0.00117~mg/l to keep the increased lifetime cancer risk below 10^{-5} .

Information on the behavior of beryllium in a POTW is scarce. Because beryllium hydroxide is insoluble in water, most beryllium entering a POTW will probably be in the form of suspended solids. As a result most of the beryllium will settle and be removed with sludge. However, beryllium has been shown to inhibit several enzyme systems, to interfere with DNA metabolism in the liver, and to induce chromosomal and mitotic abnormalities. This interference in cellular processes may extend to interfere with biological treatment processes. The concentration and effects of beryllium in sludge which could be applied to cropland has not been studied.

Cadmium (118). Cadmium is a relatively rare metallic element that is seldom found in sufficient quantities in a pure state to warrant mining or extraction from the earth's surface. It is found in trace amounts of about 1 ppm throughout the earth's crust. Cadmium is, however, a valuable by-product of zinc production.

Cadmium is used primarily as an electroplated metal, and is found as an impurity in the secondary refining of zinc, lead, and copper.

Cadmium is an extremely dangerous cumulative toxicant, causing progressive chronic poisoning in mammals, fish, and probably other organisms. The metal is not excreted.

Toxic effects of cadmium on man have been reported from through-Cadmium may be a factor in the development of out the world. such human pathological conditions as kidney disease, testicular arteriosclerosis, growth inhibition, tumors, hypertension, chronic disease of old age, and cancer. Cadmium is normally ingested by humans through food and water as well as by breathing contaminated by cadmium dust. Cadmium is cumulative in the liver, kidney, pancreas, and thyroid of humans and other animals. A severe bone and kidney syndrome known as itai-itai disease has been documented in Japan as caused by cadmium ingestion via drinking water and contaminated irrigation water. Ingestion of as little as 0.6 mg/day has produced the disease. Cadmium acts synergistically with other metals. Copper and zinc substantially increase its toxicity.

Cadmium is concentrated by marine organisms, particularly molluscs, which accumulate cadmium in calcareous tissues and in the viscera. A concentration factor of 1,000 for cadmium in fish muscle has been reported, as have concentration factors of 3,000 in marine plants and up to 29,600 in certain marine animals. The eggs and larvae of fish are apparently more sensitive than adult fish to poisoning by cadmium, and crustaceans appear to be more sensitive than fish eggs and larvae.

For the protection of human health from the toxic properties of

cadmium ingested through water and through contaminated aquatic organisms, the ambient water criterion is determined to be 0.010 mg/l. Available data show that adverse effects on aquatic life occur at concentrations in the same range as those cited for human health, and they are highly dependent on water hardness.

Cadmium is not destroyed when it is introduced into a POTW, and will either pass through to the POTW effluent or be incorporated into the POTW sludge. In addition, it can interfere with the POTW treatment process.

In a study of 189 POTW facilities, 75 percent of the primary plants, 57 percent of the trickling filter plants, 66 percent of the activated sludge plants, and 62 percent of the biological plants allowed over 90 percent of the influent cadmium to pass through to the POTW effluent. Only two of the 189 POTW facilities allowed less than 20 percent pass-through, and none less than 10 percent pass-through. POTW effluent concentrations ranged from 0.001 to 1.97 mg/l (mean 0.028 mg/l, standard deviation 0.167 mg/l). The most recent EPA study of the behavior of toxic pollutants in POTW indicates that cadmium is 38 percent removed.

Cadmium not passed through the POTW will be retained in the sludge where it is likely to build up in concentration. Cadmium contamination of sewage sludge limits its use on land since it increases the level of cadmium in the soil. Data show cadmium can be incorporated into crops, including vegetables and grains, from contaminated soils. Since the crops themselves show no adverse effects from soils with levels up to 100 mg/kg cadmium, these contaminated crops could have a significant impact on Two Federal agencies have already recognized the human health. potential adverse human health effects posed by the use of sludge on cropland. The FDA recommends that sludge containing over: 30 mg/kg of cadmium should not be used on agricultural land. Sewage sludge contains 3 to 300 mg/kg (dry basis) of cadmium mean = 10 mg/kg; median 16 mg/kg. The USDA also recommends placing limits on the total cadmium from sludge that may be applied to land.

Chromium (119). Chromium is an elemental metal usually found as a chromite (FeO·Cr₂O₃). The metal is normally produced by reducing the oxide with aluminum. A significant proportion of the chromium used is in the form of compounds such as sodium dichromate (Na₂CrO₄), and chromic acid (CrO₃) -- both are hexavalent chromium compounds.

Chromium is found as an alloying component of many steels (especially high nickel stainless steels) and its compounds are used in electroplating baths, and as corrosion inhibitors for closed water circulation systems.

The two chromium forms most frequently found in industry waste waters are hexavalent and trivalent chromium. Hexavalent chromium is the form used for metal treatments. Some of it is

reduced to trivalent chromium as part of the process reaction. The raw wastewater containing both valence states is usually treated first to reduce remaining hexavalent to trivalent chromium, and second to precipitate the trivalent form as the hydroxide. The hexavalent form is not removed by lime treatment.

Chromium, in its various valence states, is hazardous to man. It can produce lung tumors when inhaled, and induces skin sensitizations. Large doses of chromates have corrosive effects on the intestinal tract and can cause inflammation of the kidneys. Hexavalent chromium is a known human carcinogen. Levels of chromate ions that show no effect in man appear to be so low as to prohibit determination, to date.

The toxicity of chromium salts to fish and other aquatic life varies widely with the species, temperature, pH, valence of the chromium, and synergistic or antagonistic effects, especially the effect of water hardness. Studies have shown that trivalent chromium is more toxic to fish of some types than is hexavalent chromium. Hexavalent chromium retards growth of one fish species at 0.0002 mg/l. Fish food organisms and other lower forms of aquatic life are extremely sensitive to chromium. Therefore, both hexavalent and trivalent chromium must be considered harmful to particular fish or organisms.

For the protection of human health from the toxic properties of chromium (except hexavalent chromium) ingested through water and contaminated aquatic organisms, the ambient water quality criterion is 170 mg/l. If contaminated aquatic organisms alone are consumed, excluding the consumption of water, the ambient water criterion for trivalent chromium is 3,443 mg/l. The ambient water quality criterion for hexavalent chromium is recommended to be identical to the existing drinking water standard for total chromium which is 0.050 mg/l.

Chromium is not destroyed when treated by a POTW (although the oxidation state may change), and will either pass through to the POTW effluent or be incorporated into the POTW sludge. Both oxidation states can cause POTW treatment inhibition and can also limit the usefulness of municipal sludge.

Influent concentrations of chromium to POTW facilities have been observed by EPA to range from 0.005 to 14.0 mg/l, with a median concentration of 0.1 mg/l. The efficiencies for removal of chromium by the activated sludge process can vary greatly, depending on chromium concentration in the influent, and other operating conditions at the POTW. Chelation of chromium by organic matter and dissolution due to the presence of carbonates can cause deviations from the predicted behavior in treatment systems.

The systematic presence of chromium compounds will halt nitrification in a POTW for short periods, and most of the chromium will be retained in the sludge solids. Hexavalent chromium has been reported to severely affect the nitrification process, but trivalent chromium has little or no toxicity to activated sludge,

except at high concentrations. The presence of iron, copper, and low pH will increase the toxicity of chromium in a POTW by

releasing the chromium into solution to be ingested by micro-organisms in the POTW.

The amount of chromium which passes through to the POTW effluent depends on the type of treatment processes used by the POTW. In a study of 240 POTW facilities, 56 percent of the primary plants allowed more than 80 percent pass-through to POTW effluent. More advanced treatment results in less pass through. POTW effluent concentrations ranged from 0.003 to 3.2 mg/l total chromium (mean = 0.197, standard deviation = 0.48), and from 0.002 to 0.1 mg/l hexavalent chromium (mean = 0.017, standard deviation = 0.020). The most recent EPA study of the behavior of toxic pollutants in POTWs indicates that hexavalent chromium is 18 percent removed.

Chromium not passed through the POTW will be retained sludge, where it is likely to build up in concentration. Sludge concentrations of total chromium of over 20,000 mg/kg (dry basis) Disposal of sludges containing very high have been observed. concentrations of trivalent chromium can potentially cause prob-Incineration, lems in uncontrolled landfills. or similar destructive oxidation processes, can produce hexavalent chromium from lower valence states. Hexavalent chromium is potentially more toxic than trivalent chromium. In cases where high rates of chrome sludge application on land are used, distinct growth inhibition and plant tissue uptake have been noted.

Pretreatment of discharges substantially reduces the concentration of chromium in sludge. In Buffalo, New York, pretreatment of electroplating waste resulted in a decrease in chromium concentrations in POTW sludge from 2,510 to 1,040 mg/kg. A similar reduction occurred in Grand Rapids, Michigan, POTW facilities where the chromium concentration in sludge decreased from 11,000 to 2,700 mg/kg when pretreatment was made a requirement.

Copper (120). Copper is a metallic element that sometimes is found free, as the native metal, and is also found in minerals such as cuprite (Cu_2O), malechite [Cu_2O Cu(OH)2], azurite [$\text{2Cu}_2\text{Co}_3$ Cu(OH)2], chalcopyrite (Cu_2Es_2), and bornite (Cu_2Fes_4). Copper is obtained from these ores by smelting, leaching, and electrolysis. It is used in the plating, electrical, plumbing, and heating equipment industries, as well as in insecticides and fungicides.

Traces of copper are found in all forms of plant and animal life, and the metal is an essential trace element for nutrition. Copper is not considered to be a cumulative systemic poison for humans as it is readily excreted by the body, but it can cause symptoms of gastroenteritis, with nausea and intestinal irritations, at relatively low dosages. The limiting factor in domestic water supplies is taste. To prevent this adverse organoleptic effect of copper in water, a criterion of 1 mg/l has been established.

The toxicity of copper to aquatic organisms varies significantly, not only with the species, but also with the physical and chemical characteristics of the water, including temperature, hardness, turbidity, and carbon dioxide content. In hard water, the toxicity of copper salts may be reduced by the precipitation of copper carbonate or other insoluble compounds. The sulfates of copper and zinc, and of copper and calcium are synergistic in their toxic effect on fish.

Relatively high concentrations of copper may be tolerated by adult fish for short periods of time; the critical effect of copper appears to be its higher toxicity to young or juvenile fish. Concentrations of 0.02 to 0.03 mg/l have proved fatal to some common fish species. In general the salmonoids are very sensitive and the sunfishes are less sensitive to copper.

The recommended criterion to protect freshwater aquatic life is 0.0056 mg/l as a 24-hour average, and 0.012 mg/l maximum concentration at a hardness of 50 mg/l CaCO3. For total recoverable copper the criterion to protect freshwater aquatic life is 0.0056 mg/l as a 24-hour average.

Copper salts cause undesirable color reactions in the food industry and cause pitting when deposited on some other metals such as aluminum and galvanized steel. To control undesirable taste and odor quality of ambient water due to the organoleptic properties of copper, the estimated level is 1.0 mg/l for total recoverable copper.

Irrigation water containing more than minute quantities of copper can be detrimental to certain crops. Copper appears in all soils, and its concentration ranges from 10 to 80 ppm. In soils, copper occurs in association with hydrous oxides of manganese and iron, and also as soluble and insoluble complexes with organic matter. Copper is essential to the life of plants, and the normal range of concentration in plant tissue is from 5 to 20 ppm. Copper concentrations in plants normally do not build up to high levels when toxicity occurs. For example, the concentrations of copper in snapbean leaves and pods was less than 50 and 20 mg/kg, respectively, under conditions of severe copper toxicity. Even under conditions of copper toxicity, most of the excess copper accumulates in the roots; very little is moved to the aerial part of the plant.

Copper is not destroyed when treated by a POTW, and will either pass through to the POTW effluent or be retained in the POTW sludge. It can interfere with the POTW treatment processes and can limit the usefulness of municipal sludge.

The influent concentration of copper to a POTW has been observed by the EPA to range from 0.01 to 1.97 mg/l, with a median concentration of 0.12 mg/l. The copper that is removed from the influent stream of a POTW is absorbed on the sludge or appears in the sludge as the hydroxide of the metal. Bench scale pilot studies have shown that from about 25 percent to 75 percent of

the copper passing through the activated sludge process remains in solution in the final effluent. Four-hour slug dosages of copper sulfate in concentrations exceeding 50 mg/l were reported to have severe effects on the removal efficiency of an unacclimated system, with the system returning to normal in about 100 hours. Slug dosages of copper in the form of copper cyanide were observed to have much more severe effects on the activated sludge system, but the total system returned to normal in 24 hours.

In a recent study of 268 POTW facilities, the median pass-through was over 80 percent for primary plants and 40 to 50 percent for trickling filter, activated sludge, and biological treatment plants. POTW effluent concentrations of copper ranged from 0.003 to 1.8 mg/l (mean 0.126, standard deviation 0.242). The most recent EPA study of the behavior of toxic pollutants in POTW indicates that copper is 58 percent removed.

Copper which does not pass through the POTW will be retained in the sludge where it will build up in concentration. The presence of excessive levels of copper in sludge may limit its use on cropland. Sewage sludge contains up to 16,000 mg/kg of copper, with 730 mg/kg as the mean value. These concentrations are significantly greater than those normally found in soil, which usually range from 18 to 80 mg/kg. Experimental data indicate that when dried sludge is spread over tillable land, the copper tends to remain in place down to the depth of the tillage, except for copper which is taken up by plants grown in the soil. Recent investigation has shown that the extractable copper content of sludge-treated soil decreased with time, which suggests a reversion of copper to less soluble forms was occurring.

Cyanide (121). Cyanides are among the most toxic of pollutants commonly observed in industrial wastewaters. Introduction of cyanide into industrial processes is usually by dissolution of potassium cyanide (KCN) or sodium cyanide (NaCN) in process waters. However, hydrogen cyanide (HCN) formed when the above salts are dissolved in water, is probably the most acutely lethal compound.

The relationship of pH to hydrogen cyanide formation is very important. As pH is lowered to below 7, more than 99 percent of the cyanide is present as HCN and less than 1 percent as cyanide ions. Thus, at neutral pH, that of most living organisms, the more toxic form of cyanide prevails.

Cyanide ions combine with numerous heavy metal ions to form complexes. The complexes are in equilibrium with HCN. Thus, the stability of the metal-cyanide complex and the pH determine the concentration of HCN. Stability of the metal-cyanide anion complexes is extremely variable. Those formed with zinc, copper, and cadmium are not stable -- they rapidly dissociate, with production of HCN, in near neutral or acid waters. Some of the complexes are extremely stable. Cobaltocyanide is very resistant to acid distillation in the laboratory. Iron cyanide complexes are also stable, but undergo photodecomposition to give HCN upon

exposure to sunlight. Synergistic effects have been demonstrated for the metal cyanide complexes making zinc, copper, and cadmium

cyanides more toxic than an equal concentration of sodium cyanide.

The toxic mechanism of cyanide is essentially an inhibition of oxygen metabolism, i.e., rendering the tissues incapable of exchanging oxygen. The cyanogen compounds are true noncumulative protoplasmic poisons. They arrest the activity of all forms of animal life. Cyanide shows a very specific type of toxic action. It inhibits the cytochrome oxidase system. This system is the one which facilitates electron transfer from reduced metabolites to molecular oxygen. The human body can convert cyanide to a non-toxic thiocyanate and eliminate it. However, if the quantity of cyanide ingested is too great at one time, the inhibition of oxygen utilization proves fatal before the detoxifying reaction reduces the cyanide concentration to a safe level.

Cyanides are more toxic to fish than to lower forms of aquatic organisms such as midge larvae, crustaceans, and mussels. Toxic ity to fish is a function of chemical form and concentration, and is influenced by the rate of metabolism (temperature), the level of dissolved oxygen, and pH. In laboratory studies free cyanide concentrations ranging from 0.05 to 0.14 mg/l have been proven to be fatal to sensitive fish species including trout, bluegill, and fathead minnows. Levels above 0.2 mg/l are rapidly fatal to most fish species. Long term sublethal concentrations of cyanide as low as 0.01 mg/l have been shown to affect the ability of fish to function normally, e.g., reproduce, grow, and swim.

For the protection of human health from the toxic properties of cyanide ingested through water and through contaminated aquatic organisms, the ambient water quality criterion is determined to be $0.200 \, \text{mg/1}$.

Persistence of cyanide in water is highly variable and depends upon the chemical form of cyanide in the water, the concentration of cyanide, and the nature of other constituents. Cyanide may be destroyed by strong oxidizing agents such as permanganate and chlorine. Chlorine is commonly used to oxidize strong cyanide solutions. Carbon dioxide and nitrogen are the products of complete oxidation. But if the reaction is not complete, the very toxic compound, cyanogen chloride, may remain in the treatment system and subsequently be released to the environment. Partial chlorination may occur as part of a POTW treatment, or during the disinfection treatment of surface water for drinking water preparation.

Cyanides can interfere with treatment processes in a POTW, or pass through to ambient waters. At low concentrations and with acclimated microflora, cyanide may be decomposed by microorganisms in anaerobic and aerobic environments or waste treatment systems. However, data indicate that much of the cyanide introduced passes through to the POTW effluent. The mean pass-through

of 14 biological plants was 71 percent. In a recent study of 41 POTW facilities the effluent concentrations ranged from 0.002 to 100 mg/l (mean = 2.518, standard deviation = 15.6). Cyanide also enhances the toxicity of metals commonly found in POTW effluents, including the toxic pollutants cadmium, zinc, and copper. The most recent EPA study of the behavior of toxic pollutants in POTWs indicates that free cyanide is 52 percent removed.

Data for Grand Rapids, Michigan, showed a significant decline in cyanide concentrations downstream from the POTW after pretreatment regulations were put in force. Concentrations fell from 0.66 mg/l before, to 0.01 mg/l after pretreatment was required.

Lead (122). Lead is a soft, malleable, ductile, blueish-gray, metallic element, usually obtained from the mineral galena (lead sulfide, PbS), anglesite (lead sulfate, PbSO₄), or cerussite (lead carbonate, PbCO₃). Because it is usually associated with minerals of zinc, silver, copper, gold, cadmium, antimony, and arsenic, special purification methods are frequently used before and after extraction of the metal from the ore concentrate by smelting.

Lead is widely used for its corrosion resistance, sound and vibration absorption, low melting point (solders), and relatively high imperviousness to various forms of radiation. Small amounts of copper, antimony and other metals can be alloyed with lead to achieve greater hardness, stiffness, or corrosion resistance than is afforded by the pure metal. Lead compounds are used in glazes and paints. About one third of U.S. lead consumption goes into storage batteries. About half of U.S. lead consumption is from secondary lead recovery. U.S. consumption of lead is in the range of one million tons annually.

Lead ingested by humans produces a variety of toxic effects including impaired reproductive ability, disturbances in blood chemistry, neurological disorders, kidney damage, and adverse cardiovascular effects. Exposure to lead in the diet results in permanent increase in lead levels in the body. Most of the lead entering the body eventually becomes localized in the bones where it accumulates. Lead is a carcinogen or cocarcinogen in some species of experimental animals. Lead is teratogenic in experimental animals. Mutagenicity data are not available for lead.

The ambient water quality criterion for lead is recommended to be identical to the existing drinking water standard which is 0.050 mg/l. Available data show that adverse effect on aquatic life occur at concentrations as low as 7.5×10^{-4} mg/l of total recoverable lead as a 24-hour average with a water hardness of 50 mg/l as CaCO₃.

Lead is not destroyed in a POTW, but is passed through to the effluent or retained in the POTW sludge; it can interfere with POTW treatment processes and can limit the usefulness of POTW sludge for application to agricultural croplands. Threshold concentration for inhibition of the activated sludge process is 0.1

mg/1, and for the nitrification process is 0.5 mg/1. In a study of 214 POTW facilities, median pass through values were over 80 percent for primary plants and over 60 percent for trickling filter, activated sludge, and biological process plants. Lead concentration in POTW effluents ranged from 0.003 to 1.8 mg/1 (mean = 0.106 mg/1, standard deviation = 0.222). The most recent EPA study of the behavior of toxic pollutants in a POTW indicates that lead is 48 percent removed.

Application of lead-containing sludge to cropland should not lead to uptake by crops under most conditions because normally lead is strongly bound by soil. However, under the unusual condition of low pH (less than 5.5) and low concentrations of labile phosphorus, lead solubility is increased and plants can accumulate lead.

Mercury (123). Mercury is an elemental metal rarely found in nature as the free metal. Mercury is unique among metals as it remains a liquid down to about 39 degrees below zero. It is relatively inert chemically and is insoluble in water. The principal ore is cinnabar (HgS).

Mercury is used industrially as the metal and as mercurous and mercuric salts and compounds. Mercury is used in several types of batteries. Mercury released to the aqueous environment is subject to biomethylation -- conversion to the extremely toxic methyl mercury.

Mercury can be introduced into the body through the skin and the respiratory system as the elemental vapor. Mercuric salts are highly toxic to humans and can be absorbed through the gastro-intestinal tract. Fatal doses can vary from 1 to 30 grams. Chronic toxicity of methyl mercury is evidenced primarily by neurological symptoms. Some mercuric salts cause death by kidney failure.

Mercuric salts are extremely toxic to fish and other aquatic life. Mercuric chloride is more lethal than copper, hexavalent chromium, zinc, nickel, and lead towards fish and aquatic life. In the food cycle, algae containing mercury up to 100 times the concentration in the surrounding sea water are eaten by fish which further concentrate the mercury. Predators that eat the fish in turn concentrate the mercury even further.

For the protection of human health from the toxic properties of mercury ingested through water and through contaminated aquatic organisms the ambient water criterion is determined to be $0.0002 \, \text{mg/l}$.

Mercury is not destroyed when treated by a POTW, and will either pass through to the POTW effluent or be incorporated into the POTW sludge. At low concentrations it may reduce POTW removal efficiencies, and at high concentrations it may upset the POTW operation.

The influent concentrations of mercury to a POTW have been observed by the EPA to range from 0.002 to 0.24 mg/l, with a median concentration of 0.001 mg/l. Mercury has been reported in the literature to have inhibiting effects upon an activated sludge POTW at levels as low as 0.1 mg/l. At 5 mg/l of mercury, losses of COD removal efficiency of 14 to 40 percent have been reported, while at 10 mg/l loss of removal of 59 percent has been reported. Upset of an activated sludge POTW is reported in the literature to occur near 200 mg/l. The anaerobic digestion process is much less affected by the presence of mercury, with inhibitory effects being reported at 1,365 mg/l.

In a study of 22 POTW facilities having secondary treatment, the range of removal of mercury from the influent to the POTW ranged from 4 to 99 percent with median removal of 41 percent. The most recent EPA study of the behavior of toxic pollutants in POTW indicates that mercury is 69 percent removed. Thus significant pass through of mercury may occur.

In sludges, mercury content may be high if industrial sources of mercury contamination are present. Little is known about the form in which mercury occurs in sludge. Mercury may undergo biological methylation in sediments, but no methylation has been observed in soils, mud, or sewage sludge.

The mercury content of soils not receiving additions of POTW sewage sludge lie in the range from 0.01 to 0.5 mg/kg. In soils receiving POTW sludges for protracted periods, the concentration of mercury has been observed to approach 1.0 mg/kg. In the soil, mercury enters into reactions with the exchange complex of clay and organic fractions, forming both ionic and covalent bonds. Chemical and microbiological degradation of mercurials can take place side by side in the soil, and the products — ionic or molecular — are retained by organic matter and clay or may be volatilized if gaseous. Because of the high affinity between mercury and the solid soil surfaces, mercury persists in the upper layer of the soil.

Mercury can enter plants through the roots, it can readily move to other parts of the plant, and it has been reported to cause injury to plants. In many plants mercury concentrations range from 0.01 to 0.20 mg/kg, but when plants are supplied with high levels of mercury, these concentrations can exceed 0.5 mg/kg. Bioconcentration occurs in animals ingesting mercury in food.

Nickel (124). Nickel is seldom found in nature as the pure elemental metal. It is a relatively plentiful element and is widely distributed throughout the earth's crust. It occurs in marine organisms and is found in the oceans. The chief commercial ores for nickel are pentlandite [(Fe,Ni)9S8], and a lateritic ore consisting of hydrated nickel-iron-magnesium silicate.

Nickel has many and varied uses. It is used in alloys and as the pure metal. Nickel salts are used for electroplating baths.

The toxicity of nickel to man is thought to be very low, and systemic poisoning of human beings by nickel or nickel salts is almost unknown. In non-human mammals nickel acts to inhibit insulin release, depress growth, and reduce cholesterol. A high incidence of cancer of the lung and nose has been reported in humans engaged in the refining of nickel.

Nickel salts can kill fish at very low concentrations. However, nickel has been found to be less toxic to some fish than copper, zinc, and iron. Nickel is present in coastal and open ocean water at concentrations in the range of 0.0001 to 0.006 mg/l although the most common values are 0.002 to 0.003 mg/l. Marine animals contain up to 0.4 mg/l and marine plants contain up to 3 mg/l. Higher nickel concentrations have been reported to cause reduction in photosynthetic activity of the giant kelp. A low concentration was found to kill oyster eggs.

For the protection of human health based on the toxic properties of nickel ingested through water and through contaminated aquatic organisms, the ambient water criterion is determined to be 0.0134 mg/l. If contaminated aquatic organisms are consumed, excluding consumption of water, the ambient water criterion is determined to be 0.100 mg/l. Available data show that adverse effects on aquatic life occur for total recoverable nickel concentrations as low as 0.0071 mg/l as a 24-hour average.

Nickel is not destroyed when treated in a POTW, but will either pass through to the POTW effluent or be retained in the POTW sludge. It can interfere with POTW treatment processes and can also limit the usefulness of municipal sludge.

Nickel salts have caused inhibition of the biochemical oxidation of sewage in a POTW. In a pilot plant, slug doses of nickel significantly reduced normal treatment efficiencies for a few hours, but the plant acclimated itself somewhat to the slug dosage and appeared to achieve normal treatment efficiencies within 40 hours. It has been reported that the anaerobic digestion process is inhibited only by high concentrations of nickel, while a low concentration of nickel inhibits the nitrification process.

The influent concentration of nickel to a POTW has been observed by the EPA to range from 0.01 to 3.19 mg/l, with a median of 0.33 mg/l. In a study of 190 POTW facilities, nickel pass-through was greater than 90 percent for 82 percent of the primary plants. Median pass-through for trickling filter, activated sludge, and biological process plants was greater than 80 percent. POTW effluent concentrations ranged from 0.002 to 40 mg/l (mean 0.410, standard deviation = 3.279). The most recent EPA study of the behavior of toxic pollutants in POTW indicates that nickel is 19 percent removed.

Nickel not passed through the POTW will be incorporated into the sludge. In a recent two-year study of eight cities, four of the cities had median nickel concentrations of over 350 mg/kg, and two were over 1,000 mg/kg. The maximum nickel concentration

Nickel is found in nearly all soils, plants, and waters. Nickel has no known essential function in plants. In soils, nickel typically is found in the range from 10 to 100 mg/kg. Various environmental exposures to nickel appear to correlate with increased incidence of tumors in man. For example, cancer in the maxillary antrum of snuff users may result from using plant materials grown on soil high in nickel.

Nickel toxicity may develop in plants from application of sewage sludge on acid soils. Nickel has caused reduction of yields for a variety of crops including oats, mustard, turnips, and cabbage. In one study nickel decreased the yields of oats significantly at 100 mg/kg.

Whether nickel exerts a toxic effect on plants depends on several soil factors, the amount of nickel applied, and the contents of other metals in the sludge. Unlike copper and zinc, which are more available from inorganic sources than from sludge, nickel uptake by plants seems to be promoted by the presence of the organic matter in sludge. Soil treatments, such as liming, reduce the solubility of nickel. Toxicity of nickel to plants is enhanced in acidic soils.

Selenium (125). Selenium (chemical symbol Se) is a non-metallic element existing in several allotropic forms. Gray selenium, which has a metallic appearance, is the stable form at ordinary temperatures and melts at 220C. Selenium is a major component of 38 minerals and a minor component of 37 others found in various parts of the world. Most selenium is obtained as a by-product of precious metals recovery from electrolytic copper refinery slimes. U.S. annual production at one time reached one million pounds.

Principal uses of selenium are in semi-conductors, pigments, decoloring of glass, zerography, and metallurgy. It also is used to produce ruby glass used in signal lights. Several selenium compounds are important oxidizing agents in the synthesis of organic chemicals and drug products.

While results of some studies suggest that selenium may be an essential element in human nutrition, the toxic effects of selenium in humans are well established. Lassitude, loss of hair, discoloration and loss of fingernails are symptoms of selenium poisoning. In a fatal case of ingestion of a larger dose of selenium acid, peripheral vascular collapse, pulmonary edema, and coma occurred. Selenium produces mutagenic and teratogenic effects, but it has not been established as exhibiting carcinogenic activity.

For the protection of human health from the toxic properties of selenium ingested through water and through contaminated aquatic organisms, the ambient water criterion is determined to be 0.010

mg/l, i.e., the same as the drinking water standard. Available data show that adverse effects on aquatic life occur at concentrations higher than that cited for human toxicity.

Very few data are available regarding the behavior of selenium in a POTW. One EPA survey of 103 POTW facilities revealed one POTW using biological treatment and having selenium in the influent. Influent concentration was 0.0025 mg/l, effluent concentration was 0.0016 mg/l, giving a removal of 37 percent. The most recent EPA study of the behavior of toxic pollutants in POTW indicates that selenium is 46 percent removed. It is not known to be inhibitory to POTW processes. In another study, sludge from POTW facilities in 16 cities was found to contain from 1.8 to 8.7 mg/kg selenium, compared to 0.01 to 2 mg/kg in untreated soil. These concentrations of selenium in sludge present a potential hazard for humans or other mammals eating crops grown on soil treated with selenium-containing sludge.

Silver (126). Silver is a soft, lustrous, white metal that is insoluble in water and alkali. In nature, silver is found in the elemental state (native silver) and combined in ores such as argentite (Ag₂S), horn silver (AgCl), proustite (Ag₃AsS₃), and pyrargyrite (Ag₃SbS₃). Silver is used extensively in several industries, among them electroplating.

Metallic silver is not considered to be toxic, but most of its salts are toxic to a large number of organisms. Upon ingestion by humans, many silver salts are absorbed in the circulatory system and deposited in various body tissues, resulting in generalized or sometimes localized gray pigmentation of the skin and mucous membranes known as argyria. There is no known method for removing silver from the tissues once it is deposited, and the effect is cumulative.

Silver is recognized as a bactericide and doses from 0.000001 to 0.0005 mg/l have been reported as sufficient to sterilize water. The criterion for ambient water to protect human health from the toxic properties of silver ingested through water and through contaminated aquatic organisms is 0.010 mg/l.

The chronic toxic effects of silver on the aquatic environment have not been given as much attention as many other heavy metals. Data from existing literature support the fact that silver is very toxic to aquatic organisms. Despite the fact that silver is nearly the most toxic of the heavy metals, there are insufficient data to adequately evaluate even the effects of hardness on silver toxicity. There are no data available on the toxicity of different forms of silver.

The most recent EPA study of the behavior of toxic pollutants in a POTW indicates that silver is 66 percent removed.

Bioaccumulation and concentration of silver from sewage sludge has not been studied to any great degree. There is some indica-

tion that silver could be bioaccumulated in mushrooms to the extent that there could be adverse physiological effects on humans if they consumed large quantities of mushrooms grown in silver enriched soil. The effect, however, would tend to be unpleasant rather than fatal.

There is little summary data available on the quantity of silver discharged to a POTW. Presumably there would be a tendency to limit its discharge from a manufacturing facility because of its high intrinsic value.

Thallium (127). Thallium (T1) is a soft, silver-white, dense, malleable metal. Five major minerals contain 15 to 85 percent thallium, but they are not of commercial importance because the metal is produced in sufficient quantity as a by-product of lead-zinc smelting of sulfide ores. Thallium melts at 304C. U.S. annual production of thallium and its compounds is estimated to be 1,500 pounds.

Industrial uses of thallium include the manufacture of alloys, electronic devices and special glass. Thallium catalysts are used for industrial organic syntheses.

Acute thallium poisoning in humans has been widely described. Gastrointestinal pains and diarrhea are followed by abnormal sensation in the legs and arms, dizziness, and, later, loss of hair. The central nervous system is also affected. Somnolence, delerium or coma may occur. Studies on the teratogenicity of thallium appear inconclusive; no studies on mutagenicity were found; and no published reports on carcinogenicity of thallium were found.

For the protection of human health from the toxic properties of thallium ingested through water and contaminated aquatic organisms, the ambient water criterion is 0.013 mg/l.

No reports were found regarding the behavior of thallium in a POTW. It will not be degraded, therefore, it must pass through to the effluent or be removed with the sludge. However, since the sulfide (TIS) is very insoluble, if appreciable sulfide is present dissolved thallium in the influent to a POTW may be precipitated into the sludge. Subsequent use of sludge bearing thallium compounds as a soil amendment to crop bearing soils may result in uptake of this element by food plants. Several leafy garden crops (cabbage, lettuce, leek, and endive) exhibit relatively higher concentrations of thallium than other foods such as meat.

Zinc (128). Zinc occurs abundantly in the earth's crust, con centrated in ores. It is readily refined into the pure, stable, silver-white metal. In addition to its use in alloys, zinc is used as a protective coating on steel. It is applied by hot dipping (i.e., dipping the steel in molten zinc) or by electroplating.

Zinc can have an adverse effect on man and animals at high concentrations. Zinc at concentrations in excess of 5 mg/l causes an undesirable taste which persists through conventional treatment. For the prevention of adverse effects due to these organoleptic properties of zinc, 5 mg/l was adopted for the ambient water criterion. Available data show that adverse effects on aquatic life occur at concentrations as low as 0.047 mg/l as a 24-hour average.

Toxic concentrations of zinc compounds cause adverse changes in the morphology and physiology of fish. Lethal concentrations in the range of 0.1 mg/l have been reported. Acutely toxic concentrations induce cellular breakdown of the gills, and possibly the clogging of the gills with mucous. Chronically toxic concentrations of zinc compounds cause general enfeeblement and widespread histological changes to many organs, but not to gills. Abnormal swimming behavior has been reported at 0.04 mg/l. Growth and maturation are retarded by zinc. It has been observed that the effects of zinc poisoning may not become apparent immediately, so that fish removed from zinc-contaminated water may die as long as 48 hours after removal.

In general, salmonoids are most sensitive to elemental zinc in soft water; the rainbow trout is the most sensitive in hard waters. A complex relationship exists between zinc concentration, dissolved zinc concentration, pH, temperature, and calcium and magnesium concentration. Prediction of harmful effects has been less than reliable and controlled studies have not been extensively documented.

The major concern with zinc compounds in marine waters is not with acute lethal effects, but rather with the long-term sublethal effects of the metallic compounds and complexes. Zinc accumulates in some marine species, and marine animals contain zinc in the range of 6 to 1,500 mg/kg. From the point of view of acute lethal effects, invertebrate marine animals seem to be the most sensitive organism tested.

Toxicities of zinc in nutrient solutions have been demonstrated for a number of plants. A variety of fresh water plants tested manifested harmful symptoms at concentrations of 0.030 to 21.6 mg/l. Zinc sulfate has also been found to be lethal to many plants and it could impair agricultural uses of the water.

Zinc is not destroyed when treated by a POTW, but will either pass through to the POTW effluent or be retained in the POTW sludge. It can interfere with treatment processes in the POTW and can also limit the usefulness of municipal sludge.

In slug doses, and particularly in the presence of copper, dissolved zinc can interfere with or seriously disrupt the operation of POTW biological processes by reducing overall removal efficiencies, largely as a result of the toxicity of the metal to biological organisms. However, zinc solids in the form of hydroxides or sulfides do not appear to interfere with biological

treatment processes, on the basis of available data. Such solids accumulate in the sludge.

The influent concentrations of zinc to a POTW has been observed by the EPA to range from 0.017 to 3.91 mg/l, with a median concentration of 0.33 mg/l. Primary treatment is not efficient in removing zinc; however, the microbial floc of secondary treatment readily adsorbs zinc.

In a study of 258 POTW facilities, the median pass-through values were 70 to 88 percent for primary plants, 50 to 60 percent for trickling filter and biological process plants, and 30 to 40 percent for activated process plants. POTW effluent concentrations of zinc ranged from 0.003 to 3.6 mg/l (mean = 0.330, standard deviation = 0.464). The most recent EPA study of the behavior of toxic pollutants in POTW indicates that zinc is 65 percent removed.

The zinc which does not pass through the POTW is retained in the sludge. The presence of zinc in sludge may limit its use on cropland. Sewage sludge contains 72 to over 30,000 mg/kg of zinc, with 3,366 mg/kg as the mean value. These concentrations are significantly greater than those normally found in soil, which range from 0 to 195 mg/kg, with 94 mg/kg being a common level. Therefore, application of sewage sludge to soil will generally increase the concentration of zinc in the soil. Zinc can be toxic to plants, depending upon soil pH. Lettuce, tomatoes, turnips, mustard, kale, and beets are especially sensitive to zinc contamination.

Oil and Grease. Oil and grease are taken together as one pollutant parameter. This is a conventional pollutant and some of its components are:

- l. Light Hydrocarbons These include light fuels such as gasoline, kerosene, and jet fuel, and miscellaneous solvents used for industrial processing, degreasing, or cleaning purposes. The presence of these light hydrocarbons may make the removal of other heavier oil wastes more difficult.
- 2. Heavy Hydrocarbons, Fuels, and Tars These include the crude oils, diesel oils, #6 fuel oil, residual oils, slop oils, and in some cases, asphalt and road tar.
- 3. Lubricants and Cutting Fluids These generally fall into two classes: non-emulsifiable oils such as lubricating oils and greases and emulsifiable oils such as water soluble oils, rolling oils, cutting oils, and drawing compounds. Emulsifiable oils may contain fat, soap, or various other additives.
- 4. Vegetable and Animal Fats and Oils These originate primarily from processing of foods and natural products, but are sometimes used as metal forming lubricants.

These compounds can settle or float and may exist as solids or

liquids depending upon factors such as method of use, production process, and temperature of water.

Oil and grease even in small quantities cause troublesome taste and odor problems. Scum lines from these agents are produced on water treatment basin walls and other containers. Fish and water fowl are adversely affected by oils in their habitat. Oil emulsions may adhere to the gills of fish causing suffocation, and the flesh of fish is tainted when microorganisms that were exposed to waste oil are eaten. Deposition of oil in the bottom sediments of water can serve to inhibit normal benthic growth. Oil and grease exhibit an oxygen demand.

Many of the toxic organic pollutants will be found distributed between the oil phase and the aqueous phase in industrial waste waters. The presence of phenols, PCB's, PAH's, and almost any other organic pollutant in the oil and grease make characterization of this parameter almost impossible. However, all of these other organics add to the objectionable nature of the oil and grease.

Levels of oil and grease which are toxic to aquatic organisms vary greatly, depending on the type and the species susceptibility. However, it has been reported that crude oil in concentrations as low as 0.3 mg/l is extremely toxic to freshwater fish. It has been recommended that public water supply sources be essentially free from oil and grease.

Oil and grease in quantities of 100 l/sq km show up as a sheen on the surface of a body of water. The presence of oil slicks decreases the aesthetic value of a waterway.

Oil and grease is compatible with a POTW activated sludge process in limited quantity. However, slug loadings or high concentrations of oil and grease interfere with biological treatment processes. The oils coat surfaces and solid particles, preventing access of oxygen, and sealing in some microorganisms. Land spreading of POTW sludge containing oil and grease uncontaminated by toxic pollutants is not expected to affect crops grown on the treated land, or animals eating those crops.

pH. Although not a specific pollutant, pH is related to the acidity or alkalinity of a wastewater stream. It is not, however, a measure of either. The term pH is used to describe the hydrogen ion concentration (or activity) present in a given solution. Values for pH range from 0 to 14, and these numbers are the negative logarithms of the hydrogen ion concentrations. A pH of 7 indicates neutrality. Solutions with a pH above 7 are alkaline, while those solutions with a pH below 7 are acidic. The relationship of pH and acidity and alkalinity is not necessarily linear or direct. Knowledge of the water pH is useful in determining necessary measures for corrosion control, sanitation, and disinfection. Its value is also necessary in the treatment of industrial wastewaters to determine amounts of chemicals required to remove pollutants and to measure their effectiveness. Removal

of pollutants, especially dissolved solids is affected by the pH of the wastewater.

Waters with a pH below 6.0 are corrosive to water works structures, distribution lines, and household plumbing fixtures and can thus add constituents to drinking water such as iron, copper, zinc, cadmium, and lead. The hydrogen ion concentration can affect the taste of the water, and at a low pH water tastes sour. The bactericidal effect of chlorine is weakened as the pH increases, and it is advantageous to keep the pH close to 7.0. This is significant for providing safe drinking water.

Extremes of pH or rapid pH changes can exert stress conditiooons or kill aquatic life outright. Even moderate changes from acceptable criteria limits of pH are deleterious to some species.

The relative toxicity to aquatic life of many materials is increased by changes in the water pH. For example, metallocyanide complexes can increase a thousand-fold in toxicity with a drop of 1.5 pH units.

Because of the universal nature of pH and its effect on water quality and treatment, it is selected as a pollutant parameter for many industry categories. A neutral pH range (approximately 6 to 9) is generally desired because either extreme beyond this range has a deleterious effect on receiving waters or the pollutant nature of other wastewater constituents.

Pretreatment for regulation of pH is covered by the "General Pretreatment Regulations for Existing and New Sources of Pollution," 40 CFR 403.5. This section prohibits the discharge to a POTW of "pollutants which will cause corrosive structural damage to the POTW but in no case discharges with pH lower than 5.0 unless the works is specially designed to accommodate such discharges."

Suspended Solids (TSS). Suspended solids include both organic and inorganic materials. The inorganic compounds include sand, silt, and clay. The organic fraction includes such materials as grease, oil, tar, and animal and vegetable waste products. These solids may settle out rapidly, and bottom deposits are often a mixture of both organic and inorganic solids. Solids may suspended in water for a time and then settle to the bed the stream or lake. These solids discharged with man's wastes may be inert, slowly biodegradable materials, or rapidly decom-While in suspension, suspended solids posable substances. increase the turbidity of the water, reduce light penetration, and impair the photosynthetic activity of aquatic plants.

Suspended solids in water interfere with many industrial processes and cause foaming in boilers and incrustations on equipment exposed to such water, especially as the temperature rises. They are undesirable in process water used in the manufacture of steel, in the textile industry, in laundries, in dyeing, and in cooling systems.

Solids in suspension are aesthetically displeasing. When they settle to form sludge deposits on the stream or lake bed, they are often damaging to the life in the water. Solids, when transformed to sludge deposit, may do a variety of damaging things, including blanketing the stream or lake bed and thereby destroy ing the living spaces for those benthic organisms that would otherwise occupy the habitat. When of an organic nature, solids use a portion or all of the dissolved oxygen available in the area. Organic materials also serve as a food source for sludgeworms and associated organisms.

Disregarding any toxic effect attributable to substances leached out by water, suspended solids may kill fish and shellfish by causing abrasive injuries and by clogging the gills and respiratory passages of various aquatic fauna. Indirectly, suspended solids are inimical to aquatic life because they screen out light, and they promote and maintain the development of noxious conditions through oxygen depletion. This results in the killing of fish and fish food organisms. Suspended solids also reduce the recreational value of the water.

Total suspended solids is a traditional pollutant which is compatible with a well-run POTW. This pollutant with the exception of those components which are described elsewhere in this section, e.g., heavy metal components, does not interfere with the operation of a POTW. However, since a considerable portion of the innocuous TSS may be inseparably bound to the constituents which do interfere with POTW operation, or produce unusable sludge, or subsequently dissolve to produce unacceptable POTW effluent, TSS may be considered a toxic waste.

Aluminum (Al). Aluminum, a nonconventional pollutant, is the most common metallic element in the earth's crust, and the third most abundant element (8.1 percent). It is never found free in Most rocks and various clays contain aluminum in the form of aluminosilicate minerals. Generally, aluminum is first converted to alumina (Al₂0₃) from bauxite ore. The alumina then undergoes electrolytic reduction to form the metal. Aluminum powders (used in explosives, fireworks, and rocket fuels) form flammable mixtures in the air. Aluminum metal resists corrosion under many conditions by forming a protective oxide film on the surface. This oxide layer corrodes rapidly in strong acids and alkalis, and by the electrolytic action of other metals with which it comes in contact. Aluminum is possesses high thermal and electrical malleable, ductile, It can be formed, machined, conductivity, and is non-magnetic. Aluminum is used in the building and construction, transportation, and the container and packaging industries and competes with iron and steel in these markets.

Aluminum is soluble under both acidic and basic conditions, with environmental transport occurring most readily under these conditions. In water, aluminum can behave as an acid or base, can form ionic complexes with other substances, and can polymerize, depending on pH and the dissolved substances in

water. Aluminum's high solubility at acidic pH conditions makes it readily available for accumulation in aquatic life. Acidic waters consistently contain higher levels of soluble aluminum than neutral or alkaline waters. Loss of aquatic life in acidified lakes and streams has been shown to be due in part to increased concentrations of aluminum in waters as a result of leaching of aluminum from soil by acidic rainfall.

Aluminum has been found to be toxic to freshwater and marine aquatic life. In freshwaters acute toxicity and solubility increases as pH levels increase above pH 7. This relationship also appears to be true as the pH levels decrease below pH 7. Chronic effects of aluminum on aquatic life have also been documented. Aluminum has been found to be toxic to certain plants. A water quality standard for aluminum was established (U.S. Federal Water Pollution Control Administration, 1968) for interstate agricultural and irrigation waters, which set a trace element tolerance at 1 mg/l for continuous use on all soils and 20 mg/l for short term use on fine-textured soils.

There are no reported adverse physiological effects on man from exposure to low concentrations of aluminum in drinking water. Large concentrations of aluminum in the human body, however, are alleged to cause changes in behavior. Aluminum compounds, especially aluminum sulfate, are major coagulants used in the treatment of drinking water. Aluminum is not among the metals for which a drinking water standard has been established.

The highest aluminum concentrations in animals and humans occur in the lungs, mostly from the inhalation of airborne particulate matter. Pulmonary fibrosis has been associated with the inhalation of very fine particles of aluminum flakes and powders among workers in the explosives and fireworks industries. An occupational exposure Threshold Limit Value (TLV) of 5 mg/m³ is recommended for pyro powders to prevent lung changes, and a Time-Weighted Average (TWA) of 10 mg/m³ is recommended for aluminum dust. High levels of aluminum have been found in the brains, muscles, and bones of patients with chronic renal failure who are being treated with aluminum hydroxide, and high brain levels of aluminum are found in those suffering from Alzheimers disease (presentle dementia) which manifests behavioral changes.

Aluminum and some of its compounds used in food preparation and as food additives are generally recognized as safe and are sanctioned by the Food and Drug Administration. No limits on aluminum content in food and beverage products have been established.

Aluminum has no adverse effects on POTW operation at concentrations normally encountered. The results of an EPA study of 50 POTW revealed that 49 POTW contained aluminum with effluent concentrations ranging from less than 0.1 mg/l to 1.07 mg/l and with an average removal of 82 percent.

Ammonia. Ammonia (chemical formula NH3) is a nonconventional

pollutant. It is a colorless gas with a very pungent odor, detectable at concentrations of 20 ppm in air by the nose, and is very soluble in water (570 gm/l at 25C). Ammonia is produced industrially in very large quant ties (nearly 20 million tons annually in the U.S.). It is converted to ammonium compounds or shipped in the liquid form (it liquifies at -33C). Ammonia also results from natural processes. Bacterial action on nitrates or nitrites, as well as dead plant and animal tissue and animal wastes produces ammonia. Typical domestic wastewaters contain 12 to 50 mg/l ammonia.

The principal use of ammonia and its compounds is as fertilizer. High amounts are introduced into soils and the water runoff from agricultural land by this use. Smaller quantities of ammonia are used as a refrigerant. Aqueous ammonia (2 to 5 percent solution) is widely used as a household cleaner. Ammonium compounds find a variety of uses in various industries, as an example, ammonium hydroxide is used as a reactant in the purification of tungsten.

Ammonia is toxic to humans by inhalation of the gas or ingestion of aqueous solutions. The ionized form, ammonium (NH4+), is less toxic than the unionized form. Ingestion of as little as one ounce of household ammonia has been reported as a fatal dose. Whether inhaled or ingested, ammonia acts destructively on mucous membrane with resulting loss of function. Aside from breaks in liquid ammonia refrigeration equipment, industrial hazard from ammonia exists where solutions of ammonium compounds may be accidently treated with a strong alkali, releasing ammonia gas. As little as 150 ppm ammonia in air is reported to cause laryngeal spasms, and inhalation of 5,000 ppm in air is considered sufficient to result in death.

The behavior of ammonia in POTW is well documented because it is natural component of domestic wastewaters. Only very high concentrations of ammonia compounds could overload POTW. study has shown that concentrations of unionized ammonia greater than 90 mg/l reduce gasification in anaerobic digesters and concentrations of 140 mg/l stop digestion completely. copper piping and excessive consumption of chlorine also result from high ammonia concentrations. Interference with processes can occur nitrification when concentrations of ammonia suppress dissolved oxygen. Nitrites then produced instead of nitrates. Elevated nitrite concentrations in drinking water are known to cause infant methemoglobinemia.

Cobalt (Co). Cobalt is a nonconventional pollutant. It is a brittle, hard, magnetic, gray metal with a reddish tinge. Cobalt ores are usually the sulfide or arsenic [smaltrite-(Co, Ni)As2; cobaltite-CoAsS] and are sparingly distributed in the earth's crust. Cobalt is usually produced as a by-product of mining copper, nickel, arsenic, iron manganese, or silver. Because of the variety of ores and the very low concentrations of cobalt, recovery of the metal is accomplished by several different processes. Most consumption of cobalt is for alloys.

Over two-thirds of U.S. production goes to heat resistant, magnetic, and wear resistant alloys. Chemicals and color pigments make up most of the rest of consumption.

Cobalt and many of its alloys are not corrosion resistant, therefore, minor corrosion of any of the tool alloys or electrical resistance alloys can contribute to its presence in raw wastewater from a variety of manufacturing facilities. Additionally, the use of cobalt soaps used in coatings may be a general source of small quantities of the metal. Several cobalt pigments are used in paints to produce yellows or blues.

Cobalt is an essential nutrient for humans and other mammals, and is present at a fairly constant level of about 1.2 mg in the adult human body. Mammals tolerate low levels of ingested watersoluble cobalt salts without any toxic symptoms; safe dosage levels in man have been stated to be 2-7 mg/kg body weight per day. A goitrogenic effect in humans is observed after the systematic administration of 3-4 mg cobalt as cobaltous chloride daily for three weeks. Fatal heart disease among heavy beer drinkers was attributed to the cardiotoxic action of cobalt salts which were formerly used as additives to improve foaming. The carcinogenicity of cobalt in rats has been verified, however, there is no evidence for the involvement of dietary cobalt in carcinogenisis in mammals.

There are no data available on the behavior of cobalt in POTW. There are no data to lead to an expectation of adverse effects of cobalt on POTW operation or the utility of sludge from POTW for crop application. Cobalt which enters POTW is expected to pass through to the effluent unless sufficient sulfide ion is present, or generated in anaerobic processes in the POTW to cause precipitation of the very insoluble cobalt sulfide.

Fluoride ion (F-) is a nonconventional pollutant. Fluoride. Fluorine is an extremely reactive, pale yellow, gas which is never found free in nature. Compounds of fluorine - fluorides are found widely distributed in nature. The principal minerals containing fluorine are fluorspar (CaF2) and cryolite (Na2AlF6). Although fluorine is produced commercially in small quantities by electrolysis of potassium bifluoride anhydrous hydrogen fluoride, the elemental form bears little relation to the combined ion. Total production of fluoride chemicals in the U.S. is difficult to estimate because of the varied uses. Large volume usage compounds are: calcium fluoride (estimated 1,500,000 tons in U.S.) and sodium fluoraluminate (estimated 100,000 tons in U.S.). Some fluoride compounds and their uses are sodium fluoroaluminate - aluminum production; calcium fluoride - steelmaking, hydrofluoric acid production, enamel, iron foundry; boron trifluoride - organic synthesis; antimony pentafluoride - fluorocarbon production; fluoboric acid and fluoborates - electroplating; perchloryl fluoride (Cl03F) - rocket fuel oxidizer; hydrogen fluoride - organic fluoride manufacture, pickling acid in stainless steelmaking, manufacture of aluminum fluoride; sulfur hexafluoride - insulator in high

voltage transformers; polytetrafluoroethylene - inert plastic. Sodium fluoride is used at a concentration of about 1 pm in many public drinking water supplies to prevent tooth decay in children.

The toxic effects of fluoride on humans include severe gastroenteritis, vomiting, diarrhea, spasms, weakness, thirst, failing pulse and delayed blood coagulation. Most observations of toxic effects are made on individuals who intentionally or accidentally ingest sodium fluoride intended for use as rat poison or insecticide. Lethal does for adults are estimated to be as low as 2.5 g. At 1.5 ppm in drinking water, mottling of tooth enamel is reported, and 14 ppm, consumed over a period of years, may lead to deposition of calcium fluoride in bone and tendons.

Fluorides found in irrigation waters in high concentrations have caused damage to certain plants exposed to these waters. Chronic fluoride poisoning of livestock has been observed. Fluoride from waters apparently does not accumulate in soft tissue to a significant degree; it is transferred to a very small extent into the milk and to a somewhat greater degree in eggs. Data for fresh water indicate that fluorides are toxic to fish.

Very few data are available on the behavior of fluoride in POTW. Under usual operating conditions in POTW, fluorides pass through into the effluent. Very little of the fluoride entering conventional primary and secondary treatment processes is removed. In one study of POTW influents conducted by the U.S. EPA, nine POTW reported concentrations of fluoride ranging from 0.7 mg/l to 1.2 mg/l, which is the range of concentrations used for fluoridated drinking water.

(Au). The oldest and principle use of gold is in jewelry. Gold is chemically inert toward most substances, and does not tarnish or corrode in use. It is the most malleable of metals, a bright pleasing color, alloys readily with common metals has has high electrical and thermal conductivity. jewelry, gold is nonallergenic, remains tarnish free indefinitely and is relatively easy to fashion. For many of the same reasons is used in dentistry, in inlays, crowns, bridges, orthodontic appliances. Strategic and industrial uses of gold include electronic devices particularly printed circuit boards, connectors, keyboard contactors, and miniaturized circuitry. Instead of gold plating an entire device, the electronics industry has developed a selected-area plating process or make contact point from gold inlay and other types of bimetallic strip.

Gold is widely distributed in nature, occurring in trace quantities in several ores, and sea water. The pure metal is extremely inactive, and insoluble in water, thus gold ions are unlikely to be found in natural waters.

One study has shown gold ions to be lethal to the stickleback at

0.40 mg/l. Gold injections have been used to treat arthritis in humans, with apparently little toxic effect.

Iron (Fe). Iron is a nonconventional pollutant. It is an abundant metal found at many places in the earth's crust. The most common iron ore is hematite (Fe₂0₃) from which iron is obtained by reduction with carbon. Other forms of commercial ores are magnetite (Fe₃0₄) and taconite (FeSi0). Pure iron is not often found in commercial use, but it is usually alloyed with other metals and minerals. The most common of these is carbon.

Iron is the basic element in the production of steel. Iron with carbon is used for casting of major parts of machines and it can be machined, cast, formed, and welded. Ferrous iron is used in paints, while powdered iron can be sintered and used in powder metallurgy. Iron compounds are also used to precipitate other metals and undesirable minerals from industrial wastewater streams.

Corrosion products of iron in water cause staining of porcelain fixtures, and ferric iron combines with tannin to produce a dark The presence of excessive iron in color. discourages cows from drinking and thus reduces milk production. High concentrations of ferric and ferrous ions in water kill most fish introduced to the solution within a few hours. The killing action is attributed to coatings of iron hydroxide precipitates on the gills. Iron oxidizing bacteria are dependent on iron in These bacteria form slimes that can affect the water for growth. aesthetic values of bodies of water and cause stoppage of flows However, high concentrations of iron can precipitate in pipes. on bottom sediments and affect rooted aquatic and invertebrate benthos.

Iron is an essential nutrient and micro-nutrient for all forms of growth. Drinking water standards in the U.S. set a limit of 0.3 mg/l of iron in domestic water supplies based on aesthetic and organoleptic properties of iron in water.

High concentrations of iron do not pass through a POTW into the effluent. In some POTW iron salts are added to coagulate precipitates and suspended sediments into a sludge. In an EPA study of POTW the concentration of iron in the effluent of 22 biological POTW meeting secondary treatment performance levels ranged from 0.048 to 0.569 mg/l with a median value of 0.25 mg/l. This represented removals of 76 to 97 percent with a median of 87 percent removal.

Iron in sewage sludge spread on land used for agricultural purposes is not expected to have a detrimental effect on crops grown on the land.

Magnesium (Mg). Magnesium is the eighth most abundant element in the earth's crust and third most plentiful element dissolved in seawater with an average concentration of 1,300 mg/l. Magnesium

salts tend to be very soluble; for example magnesium carbonate will dissolve as much as 100 to 300 mg/l at 20C. At a pH 7 magnesium ions can be solubilized in water as much as 28,800 gram/l. Magnesium ions occur in significant concentration in natural waters, and along with calcium form the bulk of the hardness reaction.

Of the many magnesium-bearing ores, dolomite (CaCO3. Mg CO3), magnesite (MgCO3) brucite (Mg(OH)2) and olivine (Mg2Fe2SiO4) are the only ones used commercially to produce magensium metal. Magnesium metal and compounds are also prepared from seawaters, brines and bitterns. Dolomite, seawater and brines are widely distributed throughout the world.

is produced by one of Magnesium metal two techniques: electrolytically with a silicothermic process. Seawater or brine is the primary feed material for the electrolytic process. Hydrous magnesium chloride is produced by reacting dolomite with to precipitate dissolved magnesium as hydroxide and then neutralizing with hydrochlric acid. resulting solution is dehydrated to produce a dust which is feed for the electrolytic cells. Hydrous or anbydrous magnesium chloride is fed to an electrolytic cell containing molten magnesium choride at 1,292F. Graphite rods are the electrodes and steel rod the cathodes. Direct current breaks magensium chloride releasing chlorine gas and molten The metal is formed at the cathode and rises to the magensium. surface.

Magnesium and its alloys can be cast by sand, die, and permanent mold processes using conventional foundry techniques, it can be extruded rolled drawn and forged at elevated temperatures ranging from 400 to 750F. Magnesium and its alloys are the easiest of the structural metals to machine. They can be joined by brazing, riveting, soldering, and adhesive bonding.

Of the magnesium consumed in the U.S., 85 percent is used in magnesium compounds, the remainder is used as metal. Its major use as a metal is an alloying agent in aluminum alloys. Magnesium metal is used in the auto manufacturing and power tool manufacturing. It is also used as a catalyst for producing organic chemicals and petrochemicals and as a reducing agent for producing other nonferrous metals.

Magnesium is considered relatively non-toxic to man; before toxic concentrations are reached it causes an unpleasant taste in water. Magnesium at high concentration has a laxative effect. Magnesium is essential to normal plant growth; however in very high concentrations (3000-5000 mg/l) MgCl $_2$ and MgSO $_4$ have been toxic to the bean plant.

Animals require magnesium salts in their diet; however, high doses of magnesium act as diurectics and cathartics among animals and may cause scouring diseases among stock. The relative concentrations of magnesium and calcium in water may be one

Luctor controlling the distribution of certain crustacean fish food organisms, such as copepods, in streams. Magnesium chloride and nitrate can be toxic to fish in distilled or tap water at concentrations between 100 and 400 mg/l as magnesium.

Molybdenum (Mo). Molybdenum is present in the environment in trace quantities. It is estimated that 3.6 x 10^{10} grams of molybdenum are released into surface waters of the world each year by natural processes. Most surface waters contain less than 0.02 mg/l of molybdenum, and sea water concentrations range from 0.004 to 0.012 mg/l. Finished waters in the United States contain a median of 0.0014 mg/l of molybdenum and a maximum of 0.068 mg/l. Normal concentrations in stream sediments range from l to 5 ppm and the concentration of molybdenum tends to increase with decreasing grain size.

Molybdenum is vitally necessary to plants and animals as it is a constituent of essential enzymes needed for life processes. Molybdenum concentrations in plants normally range from 1 to 2 mg/l, though a range of tenths to hundredths of ppm have been observed. Legumes tend to take up more molybdenum than other plants. Accumulation of molybdenum in plants occurs without detrimental effects.

Disease related to molybdenum in humans and animals has historically been a result of excessive uptake of molybdenum.

Average daily intake of molybdenum in the United States varies between 0.12 and 0.24 mg/day, depending on age, sex, and family income. Estimated daily intake of molybdenum in the U.S.S.R. has been reported to be between 0.329 to 0.376 mg/day. Abnormally high intakes, as high as 10 to 15 mg/day, have been documented in India, the U.S.S.R., and are suspected in Turkey. Diet plays a large part in determining molybdenum uptake. Legumes, cereal grains, leafy vegetables, liver, and kidney beans are among the foods which contain greater concentrations of molybdenum than fruits, root and stem vegetables, muscle meats, and dairy products.

The only clinical symptom resulting from excessive molybdenum uptake in humans is described as a gout-like disease. Study of a human population receiving 10 to 15 mg/day of molybdenum found high incidence of this gout-like disease. In addition, increased uric acid levels were noted. Another study where humans were exposed to 10 mg/day found greatly increased blood and urine levels of molybdenum, and significant increases in uric acid excretion, though the levels of uric acid were still within acceptable range for humans. For daily intake levels between 0.5 and 1.0 mg of molybdenum, increased urinary copper excretion was noted in human subjects. Increased urinary excretion molybdenum has been observed in humans whose water contained 0.05 to 0.2 mg/l No biochemical or clinical effects are known in humans whose water supply contains less than 0.05 mg/l of molybdenum.

Sources of molybdenum for animals are primarily in pasture forage and grain feed. Intake from water sources is not very significant. Molybdenum is more toxic to animals than to humans, and cattle and sheep are more susceptible to disease caused by excessive molybdenum than rats, poultry, horses, and pigs. These species differences are not understood. The Registry of Toxic Effects of Chemical Substances states the lower toxic dose (oral) for rats and rodents is 6.050 mg/kg.

All cattle are susceptible to molybdenosis, with dairy cattle and calves showing a higher susceptibility. The characteristic scouring disease and weight loss may be debilitating to the point of permanent injury or death. Pastures containing 20 to 100 ppm of molybdenum (dry weight basis) are likely to induce the disease compared to health forage containing 3 to 5 ppm molybdenum or difficult to assign a firm threshold value of is contained in pasture that will include molybdenosis because of the effects of two other dietary constituents. levels of molybdenum act to decrease the retention of copper an animal. Increased copper intake could, therefore, mitigate the effect of high amounts of molybdenum. The second factor the diet is sulfate. It has been shown that in animals showing increasing levels of molybdenum, an increase in dietary sulfate causes more of the molybdenum to be excreted harmlessly.

study of the effects on frogs to changes in the molybdenum concentration in the aqueous environment concluded that while high concentrations of aqueous molybdenum increased blood levels of molybdenum in frogs, no deleterious effects were observed. Laboratory bioassays involving rainbow trout have also been conducted to determine long-term and acute toxicity of molybde-Long-term toxicity tests included sodium molybdate dissolved in demineralized water in concentrations ranging from 0 to mg/l molybdenum. After one year, results showed no significant differences in growth and mortality for the exposed fish. Acute toxicity results determined that for rainbow averaging 55 mm and 20 mm, and 96 hr LC50 is 1,320 molydenum and 800 mg/l respectively. Studies performed on immature rainbow trout using continuous exposure to molybdenum from fertilization through 4 day after hatching produced an LC50 value of 0.79 mg/l.

A third study was done to determine whether or not molybdenum mining in Colorado was causing any environmental problems to the natural wildlife in geographic areas impacted by molybdenum mining and milling. Animals in the area were assayed, fish were placed a mile downstream of mine tailings, and tailings were fed to chicks. No serious adverse effects were discovered in animals, and chicks fed 20 percent mine tailings remained healthy. Some adverse effects and abnormal tissue were found in the fish, but it was not certain whether these conditions were caused by excessive molybdenum or other heavy metals also present in the stream.

Molybdenum is not very toxic to humans. Clinical effects have been reported at steady intake levels of 10 to 15 mg/day of molybdenum, and biochemical effects in the range of 0.5 to 10 mg/day. Below 0.5 mg/day, there is no evidence of substantial toxic effects of molybdenum to humans.

The greatest problem of molybdenum toxicity volves cattle and other ruminants. These animals are for unknown reasons particularly susceptible to molybdenosis, and in addition, rely entirely on forage for food. It is known that plants can accumulate molybdenum without harmful effects, but herbage containing more than 20 ppm (dry weight basis) may cause molybdenosis in cattle.

High molybdenum content in surface waters in the United States is rare and usually associated with molybdenum mining and milling, uranium mining and milling, copper mining and milling, molybdenum smelting and purification, or shale oil production. Toxicity of molybdenum to some aquatic life has been shown to be low. Surface or ground waters high in molybdenum that are used for farmland irrigation may increase molybdenum content of plants. This may have effects on animals further along the food chain.

Tantalum (Ta). Tantalum is a nonconventional pollutant. It occurs in a number of oxide minerals which almost invariably contain columbium. Tantalum does not occur naturally in the free state. The manufacture of tantalum metal is accomplished by extraction of tantalum from the ore or tin slag, separation of the extract of tantalum from other metals present, formation of a pure tantalum compound fluorotantalate, and reduction of the compound to metal powder.

Most of the world's resources of tantalum occr outside the United States. The U.S. consumes usually 60 percent of the tantalum produced worldwide. The relatively small amount of tantalum in the earth's crust and low concentrations in known deposits keep the cost of concentrates quite high. The presence of a naturally occuring oxide film on the surface of tantalum makes it resistant to corrosion in most severe acid environments and to many other chemicals encountered in industrial applications. About 60 percent of the world's annual production of tantalum is used in capacitors, because of the metals ability to form the stable dielectric oxide surface film; 27 percent is used as the carbide, TaC, in cemented carbide cutting tools.

Pure tantalum is soluble in fused alkalies. It is insoluble in acids except hydrofluoric and fuming sulfuric. Tantalum oxide, a compound used in intermediate preparation of pure tantalum, is slightly soluble in cold water and quite soluble in hot water.

Tantalum is inert and does not appear to have detrimental affects on the human body, when used in surgical implants. Tantalum powder, however, is moderately toxic by inhalation. It has been suspected of causing skin irratation and mild fibrosis of the lungs. The recommended threshold limit value (TLV) reported by

OSHA for exposure in workroom air is 5.0 mg/m³ of air.

In the aquatic environment, tantalum is found to cause chronic effects (as determined by embyro-larval bioassays on rainbow trout) at levels of 0.094 mg/l. Tantalum has been found to cause tumorigenic activity when implanted in rats at levels of $3760 \, \mathrm{mg/kg}$.

 $\overline{\text{tin}}$ (Sn). Tin is a nonconventional pollutant. This metallic element occurs in the earth's crust to the extent of 40 grams per metric ton. It is present in the form of nine different minerals from two types of deposits: the most commercially significant ore cassiterite, Sn0₂; and the complex sulfidic ores which are combinations with the sulfides of base metals and pyrites.

Tin is obtained by roasting the ore (cassiterite) to oxidize sulfates and to remove arsine, then reducing with coal in a reverberatory furnace, or by smelting in an electric furnace. The crude tin obtained from slags and by smelting ore concentrates is refined by further heat treatment, or sometimes electrolytic processes. The conventional heat treatment refining includes liquidation or sweating and boiling, or tossing.

In 1980, greater than 14,700 metric tons of tin were recovered in the United States from scrap. Sources include bronze rejects and used parts, solder in the form of dross or sweepings, dross from tinning pots, sludges from tinning lines, and babbitt from discarded bearings.

Tin is used in various industrial applications as cast and wrought forms obtained by rolling, drawing, extrusion, atomizing, and casting. Its uses include tin plate, terneplate, babbitt metal, pewter bronze, corrosion resistant coatings, collapsible tubes, anodes for electrotin plating, and hot-dipped coatings.

Tin is soluble in acids and hot potassium hydroxide solution. It is insoluble in water. Test have shown that considerable quantities of tin can be consumed without any effect on the human system. Small amounts of tin are present in most liquid canned products. The permitted limit of tin content in foods is 300 mg/kg in the United States. The OSHA standard for pulmonary exposure specifies a threshold limit value (TLV) of 2 mg tin per m³.

Elemental tin has low toxicity, but most of its compounds are toxic. Lethal oral doses (LD50) of stannous chloride of 700 mg/kg and 1200 mg/kg for rats and mice have been reported. Stannous chloride is soluble in cold water and decomposes in hot water and a concentration of 0.019 mg/l has been reported to cause chronic effects on rainbow trout embryos.

Titanium (Ti). Titanium is a nonconventional pollutant. It is a lustrous white metal occurring as the oxide in ilmenite (Fe0·Ti0₂) and rutile (Ti0₂). The metal is used in heat-resistant, high-strength, light-weight alloys for aircraft

and missiles. It is also used in surgical appliances because of its high strength and light weight. Titanium dioxide is used extensively as a white pigment in paints, ceramics, and plastics.

Toxicity data on titanium are not abundant. Because of the lack of definitive data titanium compounds are generally considered non-toxic. Large oral doses of titanium dioxide ($Ti0_2$) and thiotitanic acid (H_4TiS0_3) were tolerated by rabbits for several days with no toxic symptoms. However, impaired reproductive capacity was observed in rats fed 5 mg/l titanium as titanite in drinking water. There was also a reduction in the male/female ratio and in the number of animals surviving to the third generation. Titanium compounds are reported to inhibit several enzyme systems and to be carcinogenic.

The behavior of titanium in POTW has not been studied. On the basis of the insolubility of the titanium oxides in water, it is expected that most of the titanium entering the POTW will be removed by settling and will remain in the sludge. No data were found regarding possible effects on plants as a result of spreading titanium-containing sludge on agricultural cropland.

Tungsten (W). Tungsten, a nonconventional pollutant, is the eighteenth most abundant metal, making up between 1 to 1.3 ppm of the earth's crust. In nature it exists primarily as tungsten trioxide in the form of ferberite, huebnerite, wolframite, and scheelite ores. These ores contain low concentrations of tungsten trioxide and must be concentrated via benefication before further processing. Seventy-five percent of the worlds tungsten deposits are located in the People's Republic of China. However, ninety-five percent of tungsten used in the U. S. comes from domestic sources. In 1980 thirty-five hundred tons of tungsten was produced at a value of sixty million dollars. Up to seventeen percent of tungsten produced has been recycled in past years.

In pure form tungsten is a hard, brittele silver-gray metallic element with very high electrical and thermal conductivity. Tungsten is resistant to extreme heat, as well as many chemicals. Only a mix of hydrofluoric and nitric acids will rapidly attack tungsten at room temperature. Sulfuric and phosphoric acids have little effect. Tungsten is weakly magnetic.

Most tungsten uses require a pure form. This is usually achieved by an extractive metallurgical process called Ammonium Paratungstate (APT) Conversion. This process converts tungsten trioxide to an intermediate form (APT) which can be reduced to a pure metal powder. Sixty-five percent of tungsten goes to tungsten carbide production. Tungsten carbide is used for high hardness, heat resistant tools, such as cutting and drilling tools, bearings, etc. Sixteen percent of tungsten is used as an alloying additive. In these processes, tungsten trioxide concentrates are used instead of pure tungsten to produce high temperature resistant steel for hot work tools. Ten percent of metallic tungsten is used to produce lamp filaments, X-ray

cargets, heat shields, and glass melting equipment. Tungsten compounds are often used as industrial and oil refining catalysts.

In the tungsten carbide industry many cases of pneumonia have been noted. It is believed that these incidences are related to other chemicals and metals used in the manufacturing process. Tungsten and tungsten ores alone seem to have little or no toxic effects upon humans. Some tungsten compounds have created acute and chronic toxic effects on test animals. The most toxic tungsten compound is sodium tungstate. Recommended exposure limits (TWA & TLV) have been set equally at 5.0 mg/m³ as tungsten.

In one study using rainbow trout embryos, tungsten was found to cause chronic, sub-lethal effects at levels of 1.066 mg/l.

Uranium (U). Uranium, a nonconventional pollutant, is a member of the actinide series of transition elements. It is present in the earth's crust at approximately 2 ppm. Ninety percent of the world's known uranium resources are contained in conglomerates and in sandstone. The methods used to extract uranium resources from ores vary widely, and composition is only one of several factors affecting the choice. Methods performed are crushing and grinding, roasting and calcining, preconcentration, and leaching. The resulting pure uranium is a dense, lustrous metal resembling iron; it is ductile and malleable. In air it tarnishes rapidly, and in a short time, even a polished surface becomes coated with a dark-colored layer of oxide. Uranium is attacked by water, acids and peroxides, but is inert toward alkalies.

The largest use of uranium is as a fuel in nuclear power reactors. Uranium provides a source of fissionable isotope 235 and plutonium by neutron capture. It is also used in inertial guidance devices, gyro compasses, as a counter-weight for missle re-entry vehicles, shielding material, and X-ray targets.

Uranium is found in both food and drinking water. The uranium content of most foods is in the range of 10-100 ng/g and the average intake of uranium in food is about 0.001 mg/day. The opportunity for ingesting uranium in drinking water usually exceeds that for food. The surface and ground water supplies identified as domestic water sources have a range of 0.00015-0.980 mg/l. EPA's Office of Drinking Water is considering proposing a health effects guidance level of 10 pCi/l (0.015 mg/l, assuming equilibrium of three uranium isotopes) for uranium in drinking water.

The toxicity of uranium caused by its radiation depends on the isotopes present. Such isotopes as 232U, which emits a fairly strong alpha radiation should be handled in a hot cell, others should be manipulated in a glove box.

Uranium is not only toxic because of its radiation, but it is also chemically toxic. Nephritis is the primary chemically-

induced health effect of uranium in animals and humans. LD50 values of 40-297 mg/kg body weight for male rats have been reported. The "no observed effect" level of 0.1 mg/kg has been derived from both human and animal data for one time only ingestions. There are no chronic studies of animals or humans at low levels for the ingestion of uranium.

The toxicity of uranium compounds varies. Uranium compounds may be ingested, inhaled, or absorbed through the skin. In acute uranium poisoning, kidney lesions, internal hemorrhage, and liver-cell changes were observed. Standard laboratory protective measures against chemical poisoning by uranium are mandatory, e.g., no pipetting by the mouth; protective clothing; surgical gloves; and in operations involving dust formation, face mask, and constant ventilation of working areas. The OSHA standard for pulmonary exposure specifies a threhold limit value (TLV) of 0.2 mg/m3.

There is little data on the toxic effects of uranium on aquatic life. In one study uranium was found to bioconcentrate in bottom feeding fish at levels much higher than other types of fish.

<u>Vanadium</u> (V). Vanadium, a transition metal, is a nonconventional pollutant. It makes up 0.07 percent of the lithosphere by weight and is ranked twenty-second for elemental abundance in the earth's crust. Usable world resources are estimated to exceed 120 billion tons in the form of vanadium ores found in deposits titaniferous magnetite, phosphate ores, uranium ores, and petroliferous material. Most vanadium ores are obtained as a byproduct of these larger scale mining operations. Vanadium ores are generally salt-roasted to obtain 86 percent pure vanadium pentoxide in a red cake which can be further processed by calcium reduction to obtain 99.5 percent pure vanadium metal. 5050 tons of vanadium was produced in the United States, and this number is expected to grow as industrial, transportation, high technology needs expand.

Pure vanadium is a silver-white solid that is corrosion resistant, insoluble in water and alkali solutions, and soluble in nitric, hydrofluoric, and concentrated sulfuric acid. The elemental form of vanadium is soft and ductile, yet susceptible to hydrogen, nitrogen, oxygen, and carbon embrittlement. The pure metal has relatively high thermal and electrical conductivity, and is paramagnetic. Pentavalent vanadium (vanadium pentoxide) is an amphoteric substance slightly soluble in water, and soluble in acid and alkali solutions.

The major end uses of vanadium are in the areas of transportation, machinery, and construction, where vanadium alloyed steel is used. Using vanadium as an alloying agent yields a very desirable ferrous alloy with greater toughness, impact resistance, wear resistance, weldability, and heat resistance. Because of these qualities vanadium steels are used in construction steel, machining tools, forged parts, auto parts,

ball bearings, etc. Nonferrous alloys of vanadium are becoming increasingly important in supersonic aircraft applications where consideration of strength to weight ratios is essential. Lesser uses consist of target material for X-rays, and catalysts for sulfuric acid and synthetic rubber production.

Vanadium metal is essentially non-toxic, however, vanadium pentoxide, the most common environmental form has been shown to be potentially toxic. Vanadium pentoxide can enter the atmosphere from the burning of fuels or oil refining processes, and has the potential to contaminate the aquatic environment, via fall-out. Surface water concentrations have been shown to be 0.05 mg/l on the average, and as high as 0.3 mg/l.

In studies done using the rat, it was found that very small amounts of vanadium were essential in the animals diet. Even at relatively high levels given in drinking water as vanadyl sulfate, no apparent deleterious effects were noted, even though small amounts did accumulate in various organs. A recommended standard for vanadium in livestock water is 0.1 mg/l maximum concentration.

Vanadium pentoxide was found to cause acute and chronic, sublethal effects at a concentrations of 11.2 mg/l and 0.08 mg/l, respectively, on adult american flagfish. It should also be noted that at low levels (0.041 mg/l), increased reproduction and greater female size resulted. Another study found vanadium pentoxide to cause chronic effects on rainbow trout (using embyro-larval bioassays) at levels of 0.009 mg/l.

The oral toxicity of vanadium on humans has been found to be minimal. However, toxicity due to dust and fumes have been noted. At several mg/m^3 direct pulmonary complications were observed. Most effects seem to be acute although a few chronic toxic effects were noted. OSHA threshold ceiling regulations have been set for vanadium pentoxide in the workspace as 0.5 mg/m^3 for dust and 0.1 mg/m^3 as fumes.

Zirconium (Zr). Zirconium is a nonconventional pollutant. It is a metallic element which forms a very stable oxide. Zirconium is found in at least 37 different mineral forms but the predominant commercial source is the mineral zircon (zirconium orthosilicate). Zircon is an almost ubiquitous mineral, occuring in granular limestone, gneiss, syenite, granite, sandstone, and many other minerals. The average concentration of zirconium in the earth's crust is estimated at 220 ppm.

Zirconium is a hard, shiny, ductile metal, similar to stainless steel in appearance. It can be hot-worked to form slabs, rods, and rounds from arc-melted ingot. Further cold-working of zirconium with intermediate annealings produces sheet, foil, bar wire, and tubing.

Zirconium is used as a containment material for the uranium oxide fuel pellets in nuclear power reactors. Zirconium is particulary

useful for this application because of its ready availability, good ductility, resistance to radiation damage, low thermal-neutron absorption cross section, and excellent corrosion resistance in pressurized hot water. Zirconium is used as an alloy strengthening agent in aluminum and magnesium, and as the burning component in flash bulbs. It is employed as a corrosion resistant metal in the chemical process industry, and as pressure-vessel construction material in the ASME Boiler and Pressure Vessel Codes.

Zirconium is soluble in hot, very concentrated acids and insoluble in water and cold acids.

Zirconium is generally nontoxic as an element or in compounds. Lethal doses (LD50) of zirconium tetrachloride for rats and mice of 1,688 mg/kg and 665 mg/kg have been reported. At pH normally associated with biological activity, zirconium chiefly exists as the dioxide which is insoluble in water and in this form, zirconium is physiologically inert. Zirconium tetrachloride decomposes in water. A chronic value of 0.01 mg/l for rainbow trout has been reported for zirconium tetrachloride.

The oral toxicity is low; OSHA standards for pulmonary exposure specify a threshold limit value (TLV) of 5 mg zirconium per m³.

POLLUTANT SELECTION BY SUBCATEGORY

Section V of this development document presented the data collected during nonferrous metals forming plant sampling visits and subsequent chemical analyses. This section examines that data and discusses the selection or exclusion of priority pollutants for limitation.

Pollutant Selection for Lead-Tin-Bismuth Forming

Table VI-3 summarizes the disposition of priority pollutants with respect to each waste stream and overall for the lead-tin-bismuth forming subcategory. These data provide the basis for the categorization of specific pollutants, as discussed below. Table

VI-3 is based on the raw wastewater sampling data presented in Section V_{\bullet}

Pollutants Never Detected. The priority pollutants identified by "ND" in Table VI-3 were not detected in any samples from this subcategory; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are listed below:

- 1. acenaphthene
- 2. acrolein
- 3. acrylonitrile

- 5. benzidene
- 7. chlorobenzene
- 8. 1,2,4-trichlorobenzene
- 9. hexachlorobenzene
- 10. 1,2-dichloroethane
- 12. hexachloroethane
- 13. 1,1-dichloroethane
- 14. 1,1,2-trichloroethane
- 16. chloroethane
- 17. bis(chloromethyl) ether
- 18. bis(2-chloroethyl) ether
- 19. 2-chloroethyl vinyl ether
- 20. 2-chloronaphthalene
- 21. 2,4,6-trichlorophenol
- 24. 2-chlorophenol
- 25. 1,2-dichlorobenzene
- 26. 1,3-dichlorobenzene
- 27. 1,4-dichlorobenzene
- 28. 3.3'-dichlorobenzidine
- 29. 1,1-dichloroethylene
- 30. 1,2-trans-dichloroethylene
- 31. 2,4-dichlorophenol
- 32. 1,2-dichloropropane
- 33. 1,2-dichloropropylene
- 34. 2,4-dimethylphenol
- 35. 2,4-dinitrotoluene
- 36. 2,6-dinitrotoluene
- 37. 1,2-diphenylhydrazine
- 39. fluoranthene
- 40. 4-chlorophenyl phenyl ether
- 41. 4-bromophenyl phenyl ether
- 42. bis(2-chloroisopropyl) ether
- 43. bis(2-chloroethoxy) methane
- 44. methylene chloride
- 45. methyl chloride
- 46. methyl bromide
- 47. bromoform
- 48. dichlorobromomethane
- 49. trichlorofluoromethane
- 50. dichlorodifluoromethane
- 51. chlorodibromomethane
- 52. hexachlorobutadiene
- 53. hexachlorocyclopentadiene
- 54. isophorone
- 55. naphthalene
- 56. nitrobenzene
- 57. 2-nitrophenol
- 58. 4-nitrophenol
- 59. 2,4-dinitrophenol
- 60. 4,6-dinitro-o-cresol
- 61. N-nitrosodimethylamine
- 62. N-nitrosodiphenylamine
- 63. N-nitrosodi-n-propylamine
- 64. pentachlorophenol
- 67. butyl benzyl phthalate

68. di-n-butyl phthalate 69. di-n-octyl phthalate 70. diethyl phthalate 71. dimethyl phthalate 72. benzo(a)anthracene 73. benzo(a)pyrene 74. benzo(b)fluoranthene 75. benzo(k)fluoranthene 76. chrysene 77. acenaphthylene 78. anthracene 79. benzo(ghi)perylene 80. fluorene 82. dibenzo(a,h)anthracene 83. indeno(1,2,3-cd)pyrene 84. pyrene 85. tetrachloroethylene 86. toluene 87. trichloroethylene 88. vinyl chloride 89. aldrin 90. dieldrin 91. chlordane 92. 4,4'-DDT 4,4'-DDE 93. 4,4'-DDD 94. 95. alpha-endosulfan beta-endosulfan 96. 97. endosulfan sulfate 98. endrin 99. endrin aldehyde 100. heptachlor 101. heptachlor epoxide 102. alpha-BHC 103. beta-BHC 104. gamma-BHC 105. delta-BHC 106. PCB-1242 PCB-1254 107. PCB-1221 108. 109. PCB-1232 110. PCB-1248 111. PCB-1260 112. PCB-1016 113. toxaphene 116. asbestos 125. selenium 126. silver 127. thallium

<u>Pollutants</u> <u>Detected</u> <u>Below Levels Achievable by Treatment</u>. The priority pollutants identified by "NT" in Table VI-3 were found above their analytical quantification level only at a concentra-

2,3,7,8-tetra chlorodibenzo-p-dioxin (TCDD)

129.

tion below the concentration considered achievable by specific available treatment methods; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below.

Benzene was detected above its analytical quantification level in one of four samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 to 0.10 mg/l).

Carbon tetrachloride was detected above its analytical quantification level in one of four samples; however, it was not found above the level considered achievable by specific treatments methods (0.05 mg/l).

1,1,1-Trichloroethane was detected above its analytical quantification level in one of four samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/l).

1,1,2,2-Tetrachloroethane was detected above its analytical quantification level in one of four samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/l).

Parachlorometacresol was detected above its analytical quantification level in one of twelve samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/l).

Chloroform was detected above its analytical quantification level in one of four samples; however, it was not found above the level considered achievable by specific treatment methods (0.10 mg/l).

Ethylbenzene was detected above its analytical quantification level in one of four samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/1).

Arsenic was detected above its analytical quantification level in seven of twelve samples; however, it was not found above the level considered achievable by specific treatment methods (0.34 mg/l).

Beryllium was detected above its analytical quantification level in one of thirteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.20 mg/l).

Cadmium was detected above its analytical quantification level in two of thirteen samples; however, it was not found above the level considered achievable by specific treatment methods $(0.049 \, \text{mg/1})$.

Mercury was detected above its analytical quantification level in five of thirteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.036 mg/l).

Nickel was detected above its analytical quantification level in one of thirteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.22 mg/l).

Pollutants Detected in a Small Number of Sources. The priority pollutants identified by "SU" in Table VI-3 were found above their analytical quantification level at only a small number of sources within the category and are uniquely related to only those sources. The pollutants are individually discussed below.

Phenol was detected above its analytical quantification level in two of twelve samples and in one of seven sources.

Bis(2-ethylhexyl)phthalate was detected above its analytical quantification level in one of twelve samples and in one of seven sources.

Phenanthrene was detected above its analytical quantification level in one of twelve samples and in one of seven sources.

Chromium was detected above its analytical quantification level in one of thirteen samples and in one of eight sources.

Copper was detected above its analytical quantification level in four of thirteen samples; however, it was only found above the level considered achievable by specific treatment methods (0.39 mg/l) in one of thirteen samples and in one of eight sources.

Cyanide was detected above its analytical quantification level in one of twelve samples and in one of seven sources.

Zinc was detected above its analytical quantification level in eight of thirteen samples; however, it was only found above the level considered achievable by specific treatment methods (0.23 mg/l) in two of thirteen samples and in two of eight sources.

Pollutants Selected for Consideration in Establishing Regulations for the Lead-Tin-Bismuth Forming Subcategory. The priority pollutants identified by "RG" in Table VI-3 are those not eliminated from consideration for any of the reasons listed above; therefore, each was selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below.

Antimony was detected above its analytical quantification level in ten of twelve samples and above the level considered achievable by specific treatment methods (0.47 mg/l) in seven of twelve samples and in four of seven sources.

Lead was detected above its analytical quantification level in thirteen of thirteen samples and above the level considered achievable by specific treatment methods (0.08 mg/l) in thirteen of thirteen samples and in eight of eight sources.

Pollutant Selection for Magnesium Forming

Table VI-4 summarizes the disposition of priority pollutants with respect to each waste stream and overall for the magnesium forming subcategory. These data provide the basis for the categorization of specific pollutants, as discussed below. Table VI-4 is based on the raw wastewater sampling data presented in Section V.

Pollutants Never Detected. The priority pollutants identified by "ND" in Table VI-4 were not detected in any samples from this subcategory; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are listed below:

- 1. acenaphthene
- 2. acrolein
- 3. acrylonitrile
- 4. benzene
- 5. benzidene
- 6. carbon tetrachloride
- 7. chlorobenzene
- 8. 1,2,4-trichlorobenzene
- 9. hexachlorobenzene
- 10. 1,2-dichloroethane
- 12. hexachloroethane
- 13. 1,1-dichloroethane
- 14. 1,1,2-trichloroethane
- 15. 1,1,2,2-tetrachloroethane
- 16. chloroethane
- 17. bis(chloromethyl) ether
- 20. 2-chloronaphthalene
- 21. 2,4,6-trichlorophenol
- 22. parachlorometa dresol
- 23. chloroform
- 24. 2-chlorophenol
- 25. 1,2-dichlorobenzene
- 26. 1,3-dichlorobenzene
- 27. 1,4-dichlorobenzene
- 28. 3,3'-dichlorobenzidine
- 29. 1,1-dichloroethylene
- 30. 1,2-trans-dichloroethylene
- 31. 2,4-dichlorophenol
- 32. 1,2-dichloropropane
- 33. 1,2-dichloropropylene
- 34. 2,4-dimethylphenol
- 35. 2,4-dinitrotoluene
- 36. 2,6-dinitrotoluene
- 37. 1,2-diphenylhydrazine

- 38. ethylbenzene
- 39. fluoranthene
- 40. 4-chlorophenyl phenyl ether
- 41. 4-bromophenyl phenyl ether
- 42. bis(2-chloroisopropyl) ether
- 43. bis(2-chloroethoxy) methane
- 45. methyl chloride
- 46. methyl bromide
- 47. bromoform
- 48. dichlorobromomethane
- 49. trichlorofluoromethane
- 50. dichlorodifluoromethane
- 51. chlorodibromomethane
- 52. hexachlorobutadiene
- 53. hexachlorocyclopentadiene
- 54. isophorone
- 55. naphthalene
- 56. nitrobenzene
- 58. 4-nitrophenol
- 59. 2,4-dinitrophenol
- 60. 4,6-dinitro-o-cresol
- 61. N-nitrosodimethylamine
- 62. N-nitrosodiphenylamine
- 63. N-nitrosodi-n-propylamine
- 64. pentachlorophenol
- 66. bis(2-ethylhexyl) phthalate
- 67. butyl benzyl phthalate
- 68. di-n-butyl phthalate
- 69. di-n-octyl phthalate
- 70. diethyl phthalate
- 71. dimethyl phthalate
- 72. benzo(a)anthracene
- 73. benzo(a)pyrene
- 74. benzo(b)fluoranthene
- 75. benzo(k)fluoranthene
- 76. chrysene
- 77. acenaphthylene
- 78. anthracene
- 79. benzo(ghi)perylene
- 80. fluorene
- 81. phenanthrene
- 82. dibenzo(a,h)anthracene
- 83. indeno(1,2,3-cd)pyrene
- 84. pyrene
- 85. tetrachloroethylene
- 86. toluene
- 87. trichloroethylene
- 88. vinyl chloride
- 89. aldrin
- 90. dieldrin
- 91. chlordane
- 92. 4,4'-DDT
- 93. 4,4'-DDE
- 94. 4,4'-DDD
- 95. alpha-endosulfan

- 96. beta-endosulfan
- 97. endosulfan sulfate
- 98. endrin
- 99. endrin aldehyde
- 100. heptachlor
- 101. heptachlor epoxide
- 102. alpha-BHC
- 103. beta-BHC
- 104. gamma-BHC
- 105. delta-BHC
- 106. PCB-1242
- 107. PCB-1254
- 108. PCB-1221
- 109. PCB+1232
- 110. PCB-1248
- 111. PCB-1260
- 112. PCB-1016
- 113. toxaphene
- 115. arsenic
- 116. asbestos
- 118. cadmium
- 120. copper
- 124. nickel
- 125. selenium
- 127. thallium
- 129. 2,3,7,8-tetra chlorodibenzo-p-dioxin (TCDD)

Pollutants Detected Below Levels Achievable by Treatment. The priority pollutants identified by "NT" in Table VI-4 were found above their analytical quantification level only at a concentration below the concentration considered achievable by specific available treatment methods; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below.

Methylene chloride was detected above its analytical quantification level in one of four samples; however, it was not found above the level considered achievable by specific treatment methods (0.10 mg/l).

1,1,1-Trichloroethane was detected above its analytical quantification level in three of four samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/l).

2-Nitrophenol was detected above its analytical quantification level in one of four samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/l).

Phenol was detected above its analytical quantification level in one of four samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/l).

Antimony was detected above its analytical quantification level in one of fifteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.47 mg/l).

Mercury was detected above its analytical quantification level in one of fifteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.036 mg/l).

Silver was detected above its analytical quantification level in one of fifteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.07 mg/l).

Pollutants Detected in a Small Number of Sources. The priority pollutants identified by "SU" in Table VI-4 were found above their analytical quantification level at only a small number of sources within the category and are uniquely related to only those sources; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below.

Beryllium was detected above its analytical quantification level in three of fifteen samples; however, it was only found above the level considered achievable by specific treatment methods (0.20 mg/l) in one of fifteen samples and in one of eleven sources.

Cyanide was detected above its analytical quantification level in three of fourteen samples; however, it was only found above the level considered achievable by specific treatment methods (0.047 mg/l) in two of fourteen samples and in two of eleven sources.

Lead was detected above its analytical quantification level in one of fifteen samples; however, it was only found above the level considered achievable by specific treatment methods (0.08 mg/l) in one of fifteen samples and in one of eleven sources.

Pollutants Selected for Consideration in Establishing Regulations for the Magnesium Forming Subcategory. The priority pollutants identified by "RG" in Table VI-4 are those not eliminated from consideration for any of the reasons listed above; therefore, each was selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below.

Chromium was detected above its analytical quantification level in ten of fifteen samples and above the level considered achievable by specific treatment methods (0.07 mg/l) in seven of fifteen samples and in six of eleven sources.

Zinc was detected above its analytical quantification level in thirteen of fifteen samples and above the level considered achievable by specific treatment methods (0.23 mg/l) in nine of fifteen samples and in six of eleven sources.

Pollutant Selection for Nickel-Cobalt Forming

Table VI-5 summarizes the disposition of priority pollutants with respect to each waste stream and overall for the nickel-cobalt forming subcategory. These data provide the basis for the categorization of specific pollutants, as discussed below. Table VI-5 is based on the raw wastewater sampling data presented in Section V.

Pollutants Never Detected. The priority pollutants identified by "ND" in Table VI-5 were not detected in any samples from this subcategory; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are listed below:

- 2. acrolein
- 3. acrylonitrile
- 6. carbon tetrachloride
- 7. chlorobenzene
- 8. 1,2,4-trichlorobenzene
- 9. hexachlorobenzene
- 10. 1,2-dichloroethane
- 14. 1,1,2-trichloroethane
- 15. 1,1,2,2-tetrachloroethane
- 16. chloroethane
- 17. bis(chloromethyl) ether
- 18. bis(2-chloroethyl) ether
- 19. 2-chloroethyl vinyl ether
- 20. 2-chloronaphthalene
- 21. 2,4,6-trichlorophenol
- 24. 2-chlorophenol
- 25. 1,2-dichlorobenzene
- 26. 1,3-dichlorobenzene
- 27. 1,4-dichlorobenzene
- 30. 1,2-trans-dichloroethylene
- 31. 2,4-dichlorophenol
- 32. 1,2-dichloropropane
- 33. 1,2-dichloropropylene
- 35. 2,4-dinitrotoluene
- 38. ethylbenzene
- 40. 4-chlorophenyl phenyl ether
- 41. 4-bromophenyl phenyl ether
- 42. bis(2-chloroisopropyl) ether
- 45. methyl chloride
- 46. methyl bromide
- 47. bromoform
- 48. dichlorobromomethane
- 49. trichlorofluoromethane
- 50. dichlorodifluoromethane
- 51. chlorodibromomethane
- 52. hexachlorobutadiene
- 53. hexachlorocyclopentadiene
- 54. isophorone
- 56. nitrobenzene

- 59. 2,4-dinitrophenol
- 74. benzo(b)fluoranthene
- 79. benzo(ghi)perylene
- 82. dibenzo(a,h)anthracene
- 85. tetrachloroethylene
- 87. trichloroethylene
- 88. vinyl chloride
- 89. aldrin
- 90. dieldrin
- 91. chlordane
- 92. 4.4'-DDT
- 93. 4,4'-DDE
- 94. 4,4'-DDD
- 95. alpha-endosulfan
- 96. beta-endosulfan
- 97. endosulfan sulfate
- 98. endrin
- 99. endrin aldehyde
- 100. heptachlor
- 101. heptachlor epoxide
- 102. alpha-BHC
- 103. beta-BHC
- 104. gamma-BHC
- 105. ďelta-BHC
- 106. PCB-1242
- 107. PCB-1254
- 108. PCB-1221
- 109. PCB-1232
- 110. PCB-1248
- 111. PCB-1260
- 112. PCB-1016
- 113. toxaphene
- 116. asbestos
- 129. 2,3,7,8-tetra chlorodibenzo-p-dioxin (TCDD)

Pollutants Never Found Above Their Analytical Quantification Level. The priority pollutants identified by "NQ" in Table VI-5 were never found above their analytical quantification level in any samples from this subcategory; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are listed below:

- 72. benzo(a)anthracene
- 75. benzo(k)fluoranthene
- 76. chrysene

Pollutants Detected Below Levels Achievable by Treatment. The priority pollutants identified by "NT" in Table VI-5 were found above their analytical quantification level only at a concentration below the concentration considered achievable by specific available treatment methods; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below.

Benzene was detected above its analytical quantification level in two of thirty-seven samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 to 0.10 mg/l).

Hexachloroethane was detected above its analytical quantification level in two of forty-one samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/l).

Chloroform was detected above its analytical quantification level in one of thirty-six samples; however, it was not found above the level considered achievable by specific treatment methods (0.10 mg/l).

1,1-Dichloroethylene was detected above its analytical quantification level in one of thirty-five samples; however, it was not found above the level considered achievable by specific treatment methods (0.1 mg/l).

1,2-Diphenylhydrazine was detected above its analytical quantification level in four of forty-one samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/l).

Bis(2-chloroethoxy) methane was detected above its analytical quantification level in two of forty-one samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/l).

Butyl benzyl phthalate was detected above its analytical quantification level in four of forty-one samples; however, it was not found above the level considered achievable by specific treatment methods (0.001 to 0.01 mg/1).

Di-n-octyl phthalate was detected above its analytical quantification level in one of forty-one samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/l).

Diethyl phthalate was detected above its analytical quantification level in one of forty-one samples; however, it was not found above the level considered achievable by specific treatment methods (0.025 mg/l).

Dimethyl phthalate was detected above its analytical quantification level in one of forty-one samples; however, it was not found above the level considered achievable by specific treatment methods (0.025 mg/l).

Acenaphthylene was detected above its analytical quantification level in one of forty-one samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/l).

Anthracene was detected above its analytical quantification level in two of forty-one samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/l).

Indeno(1,2,3-c,d)pyrene was detected above its analytical quantification level in one of forty-one samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/l).

Toluene was detected above its analytical quantification level in one of thirty-four samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/l).

Beryllium was detected above its analytical quantification level in four of eighty-eight samples; however, it was not found above the level considered achievable by specific treatment methods (0.20 mg/l).

Mercury was detected above its analytical quantification level in two of eighty-seven samples; however, it was not found above the level considered achievable by specific treatment methods (0.036 mg/l).

Thallium was detected above its analytical quantification level in five of eighty-seven samples; however, it was not found above the level considered achievable by specific treatment methods (0.34 mg/l).

Pollutants Detected in a Small Number of Sources. The priority pollutants identified by "SU" in Table VI-5 were found above their analytical quantification level at only a small number of sources within the category and are uniquely related to only those sources; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below.

Acenaphthene was detected above its analytical quantification level in one of thirty-nine samples and in one of twenty-nine sources.

Benzidene was detected above its analytical quantification level in three of thirty-eight samples and in two of thirty sources.

1,1-Dichloroethane was detected above its analytical quantification level in five of thirty-six samples and in five of twenty-eight sources.

Parachlorometa cresol was detected above its analytical quantification level in three of forty-three samples and in three of thirty-four sources.

- 3,3'-Dichlorobenzidene was detected above its analytical quantification level in two of forty-two samples and in one of thirty-two sources.
- 2,4-Dimethylphenol was detected above its analytical quantification level in three of forty-two samples and in three of thirty-three sources.
- 2,6-Dinitrotoluene was detected above its analytical quantification level in one of forty-two samples and in one of thirty-three sources.

Fluoranthene was detected above its analytical quantification level in one of forty-two samples and in one of thirty-three sources.

Methylene chloride was detected above its analytical quantification level in nineteen of thirty-nine samples; however, it was only found above the level considered achievable by specific treatment methods (0.10 mg/l) in twelve of thirty-nine samples and in ten of thirty-one sources.

Naphthalene was detected above its analytical quantification level in five of thirty-nine samples and in four of thirty-two sources.

2-Nitrophenol was detected above its analytical quantification level in one of forty-two samples and in one of thirty-three sources.

4-Nitrophenol was detected above its analytical quantification level in one of forty-two samples and in one of thirty-three sources.

4,6-Dinitro-o-cresol was detected above its analytical quantification level in one of forty-two samples and in one of thirty-three sources.

N-nitrosodiphenylamine was detected above its analytical quantification level in two of forty-two samples and in two of thirty-three sources.

N-nitrosodi-n-propylamine was detected above its analytical quantification level in six of forty-two samples and in four of thirty-three sources.

Pentachlorophenol was detected above its analytical quantification level in five of forty-two samples and in three of thirty-three sources.

Phenol was detected above its analytical quantification level in fourteen of forty-two samples; however, it was only found above the level considered achievable by specific treatment methods (0.05 mg/l) in ten of forty-two samples and in six of thirty-three sources.

Bis(2-ethylhexyl)phthalate was detected above its analytical quantification level in four of forty-two samples and in four of thirty-three sources.

Di-n-butyl phthalate was detected above its analytical quantification level in one of forty-two samples and in one of thirty-three sources.

Benzo(a)pyrene was detected above its analytical quantification level in one of forty-two samples and in one of thirty-three sources.

Fluorene was detected above its analytical quantification level in one of forty-two samples and in one of thirty-three sources.

Phenanthrene was detected above its analytical quantification level in seven of forty-two samples and in seven of thirty-three sources.

Pyrene was detected above its analytical quantification level in one of forty-two samples and in one of thirty-three sources.

Antimony was detected above its analytical quantification level in seventeen of eighty-six samples and in fourteen of fifty-seven sources.

Arsenic was detected above its analytical quantification level in twenty-two of eighty-seven samples; however, it was only found above the level considered achievable by specific treatment methods (0.34 mg/l) in one of eighty-seven samples and in one of fifty-eight sources.

Cyanide was detected above its analytical quantification level in two of sixty-eight samples and in two of forty-one sources.

Selenium was detected above its analytical quantification level in five of eighty-six samples and in five of fifty-seven sources.

Silver was detected above its analytical quantification level in seven of eighty-six samples and in seven of fifty-seven sources.

Pollutants Selected for Consideration in Establishing Regulations for the Nickel-Cobalt Forming Subcategory. The priority pollutants identified by "RG" in Table VI-5 are those not eliminated from consideration for any of the reasons listed above; therefore, each was selected for consideration in establishing regulations for this subcategory. The pollutants are listed below:

1,1,1-Trichloroethane was detected above its analytical quantification level in eighteen of thirty-five samples and above the level considered achievable by specific treatment methods (0.01 mg/l) in eighteen of thirty-five samples and in fourteen of twenty-seven sources.

Cadmium was detected above its analytical quantification level in eighteen of eighty-seven samples and above the level considered achievable by specific treatment methods (0.049 mg/l) in seventeen of eighty-seven samples and in thirteen of fifty-eight sources.

Chromium was detected above its analytical quantification level in seventy-two of ninety samples and above the level considered achievable by specific treatment methods (0.07 mg/l) in seventy-one of ninety samples and in fifty of fifty-nine sources.

Copper was detected above its analytical quantification level in eighty-three of eighty-nine samples and above the level considered achievable by specific treatment methods (0.39 mg/l) in fifty-six of eighty-nine samples and in thirty-nine of fifty-nine sources.

Lead was detected above its analytical quantification level in thirty-two of ninety samples and above the level considered achievable by specific treatment methods (0.08 mg/l) in thirty-two of ninety samples and in twenty-six of fifty-nine sources.

Nickel was detected above its analytical quantification level in eighty-five of ninety samples and above the level considered achievable by specific treatment methods (0.22 mg/l) in eighty-two of ninety samples and in fifty-two of fifty-nine sources.

Zinc was detected above its analytical quantification level in seventy-five of eighty-eight samples and above the level considered achievable by specific treatment methods (0.23 mg/l) in forty-one of eighty-eight samples and in thirty-one of fifty-eight sources.

Pollutant Selection for Precious Metals Forming

Table VI-6 summarizes the disposition of priority pollutants with respect to each waste stream and overall for the precious metals forming subcategory. These data provide the basis for the categorization of specific pollutants, as discussed below. Table VI-6 is based on the raw wastewater sampling data presented in Section V.

Pollutants Never Detected. The priority pollutants identified by "ND" in Table VI-6 were not detected in any samples from this subcategory; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are listed below:

- 1. acenaphthene
- 2. acrolein
- 3. acrylonitrile
- 5. benzidene
- 6. carbon tetrachloride
- 7. chlorobenzene

- 8. 1,2,4-trichlorobenzene
- 9. hexachlorobenzene
- 10. 1,2-dichloroethane
- 12. hexachloroethane
- 13. 1,1-dichloroethane
- 14. 1,1,2-trichloroethane
- 15. 1,1,2,2-tetrachloroethane
- 17. bis(chloromethyl) ether
- 18. bis(2-chloroethyl) ether
- 19. 2-chloroethyl vinyl ether
- 20. 2-chloronaphthalene
- 21. 2,4,6-trichlorophenol
- 22. parachlorometa cresol
- 23. chloroform
- 24. 2-chlorophenol
- 25. 1,2-dichlorobenzene
- 26. 1,3-dichlorobenzene
- 27. 1,4-dichlorobenzene
- 28. 3,3'-dichlorobenzidine
- 29. l,1-dichloroethylene
- 30. 1,2-trans-dichloroethylene
- 31. 2,4-dichlorophenol32. 1,2-dichloropropane
- 33. 1,2-dichloropropylene
- 34. 2,4-dimethylphenol
- 35. 2,4-dinitrotoluene
- 36. 2,6-dinitrotoluene
- 37. 1,2-diphenylhydrazine
- 38. ethylbenzene
- 39. fluoranthene
- 40. 4-chlorophenyl phenyl ether
- 41. 4-bromophenyl phenyl ether
- 42. bis(2-chloroisopropyl) ether
- 43. bis(2-chloroethoxy) methane
- 46. methyl bromide
- 47. bromoform
- 48. dichlorobromomethane
- 49. trichlorofluoromethane
- 50. dichlorodifluoromethane
- 51. chlorodibromomethane
- 52. hexachlorobutadiene
- 53. hexachlorocyclopentadiene
- 54. isophorone
- 55. naphthalene
- 56. nitrobenzene
- 57. 2-nitrophenol
- 58. 4-nitrophenol
- 59. 2,4-dinitrophenol
- 60. 4,6-dinitro-o-cresol
- 61. N-nitrosodimethylamine
- 62. N-nitrosodiphenylamine
- 63. N-nitrosodi-n-propylamine
- 64. pentachlorophenol
- 67. butyl benzyl phthalate
- 68. di-n-butyl phthalate

69. di-n-octyl phthalate 70. diethyl phthalate 71. dimethyl phthalate 72. benzo(a)anthracene 73. benzo(a)pyrene 74. benzo(b)fluoranthene 75. benzo(k)fluoranthene 76. chrysene 77. acenaphthylene 78. anthracene 79. benzo(ghi)perylene 80. fluorene 81. phenanthrene 82. dibenzo(a,h)anthracene 83. indeno(1,2,3-cd)pyrene pyrene 84. tetrachloroethylene 85. vinvl chloride 88. 89. aldrin 90. dieldrin 91. chlordane 4,4'-DDT 92. 4,4'-DDE 93. 4,4'-DDD 94. 95. alpha-endosulfan beta-endosulfan 96. endosulfan sulfate 97. 98. endrin endrin aldehyde 99. 100. heptachlor 101. heptachlor epoxide alpha-BHC 102. beta-BHC 103. 104. gamma-BHC 105. delta-BHC 106. PCB-1242 107. PCB-1254 108. PCB-1221 109. PCB-1232 110. PCB-1248 111. PCB-1260 PCB-1016 112. 113. toxaphene 116. asbestos

129. 2,3,7,8-tetra chlorodibenzo-p-dioxin (TCDD)

117.

125.

beryllium

selenium

Pollutants Detected Below Levels Achievable by Treatment. The priority pollutants identified by "NT" in Table VI-6 were found above their analytical quantification level only at a concentration below the concentration considered achievable by specific available treatment methods; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below.

Phenol was detected above its analytical quantification level in two of sixteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/l).

Bis(2-ethylhexyl) phthalate was detected above its analytical quantification level in one of sixteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/l).

Chloroethane was detected above its analytical quantification level in one of sixteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/l).

Antimony was detected above its analytical quantification level in three of thirty-seven samples; however, it was not found above the level considered achievable by specific treatment methods (0.47 mg/l).

Arsenic was detected above its analytical quantification level in five of thirty-seven samples; however, it was not found above the level considered achievable by specific treatment methods (0.34 mg/l).

Mercury was detected above its analytical quantification level in four of thirty-seven samples; however, it was not found above the level considered achievable by specific treatment methods $(0.036 \, \text{mg/l})$.

Thallium was detected above its analytical quantification level in six of thirty-seven samples; however, it was not found above the level considered achievable by specific treatment methods (0.34 mg/l).

Pollutants Detected in a Small Number of Sources. The priority pollutants identified by "SU" in Table VI-6 were found above their analytical quantification level at only a small number of sources within the category and are uniquely related to only those sources; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below.

Benzene was detected above its analytical quantification level in one of sixteen samples and in one of ten sources.

1,1,1-Trichloroethane was detected above its analytical quantification level in five of sixteen samples; however, it was only found above the level considered achievable by specific treatment methods (0.01 mg/l) in five of sixteen samples and in four of ten sources.

Methylene chloride was detected above its analytical quantification level in eight of sixteen samples; however, it was only found above the level considered achievable by specific treatment

methods (0.10 mg/l) in four of sixteen samples and in four of ten sources.

Methyl chloride was detected above its analytical quantification level in one of sixteen samples and in one of ten sources.

Toluene was detected above its analytical quantification level in three of sixteen samples and in two of ten sources.

Trichloroethylene was detected above its analytical quantification level in two of sixteen samples and in two of ten sources.

Pollutants Selected for Consideration in Establishing Regulations for the Precious Metals Subcategory. The priority pollutants identified by "RG" in Table VI-6 are those not eliminated from consideration for any of the reasons listed above; therefore, each was selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below.

Chromium was detected above its analytical quantification level in eighteen of thirty-seven samples; however, it was only found above the level considered achievable by specific treatment methods (0.07 mg/l) in eight of thirty-seven samples and in four of twenty-six sources.

Cadmium was detected above its analytical quantification level in twenty-five of thirty-seven samples and above the level considered achievable by specific treatment methods (0.049 mg/l) in twenty-three of thirty-seven samples and in eighteen of twenty-six sources.

Copper was detected above its analytical quantification level in thirty-six of thirty-seven samples and above the level considered achievable by specific treatment methods (0.39 mg/l) in thirty-four of thirtyseven samples and in twenty-four of twenty-six sources.

Cyanide was detected above its analytical quantification level in five of thirty-three samples and above the level considered achievable by specific treatment methods (0.047 mg/l) in five of thirty-three samples and in four of twenty-three sources.

Lead was detected above its analytical quantification level in twenty-four of thirty-seven samples and above the level considered achievable by specific treatment methods (0.08 mg/l) in twenty-four of thirty-seven samples and in twenty-two of twenty-six sources.

Nickel was detected above its analytical quantification level in twenty-six of thirty-seven samples and above the level considered achievable by specific treatment methods (0.22 mg/l) in seventeen of thirty-seven samples and in thirteen of twenty-six sources.

Silver was detected above its analytical quantification level in twenty-seven of thirty-seven samples and above the level considered achievable by specific treatment methods (0.07 mg/l) in eleven of thirty-seven samples and in nine of twenty-six sources.

Zinc was detected above its analytical quantification level in thirty-six of thirty-seven samples and above the level considered achievable by specific treatment methods (0.23 mg/l) in twenty-seven of thirty-seven samples and in twenty-two of twenty-six sources.

Pollutant Selection for Refractory Metals Forming

Table VI-7 summarizes the disposition of priority pollutants with respect to each waste stream and overall for the refractory metals subcategory. These data provide the basis for the categorization of specific pollutants, as discussed below. Table VI-7 is based on the raw wastewater sampling data presented in Section V.

Pollutants Never Detected. The priority pollutants identified by "ND" in Table VI-7 were not detected in any samples from this subcategory; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are listed below:

- 1. acenaphthene
- 2. acrolein
- 3. acrylonitrile
- 4. benzene
- 5. benzidene
- 6. carbon tetrachloride
- 7. chlorobenzene
- 8. 1,2,4-trichlorobenzene
- 9. hexachlorobenzene
- 10. 1,2-dichloroethane
- 12. hexachloroethane
- 14. 1,1,2-trichloroethane
- 16. chloroethane
- 17. bis(chloromethyl) ether
- 18. bis(2-chloroethyl) ether
- 19. 2-chloroethyl vinyl ether
- 20. 2-chloronaphthalene
- 21. 2,4,6-trichlorophenol
- 22. parachlorometa cresol
- 25. 1,2-dichlorobenzene
- 26. 1,3-dichlorobenzene
- 27. 1,4-dichlorobenzene
- 28. 3,3'-dichlorobenzidine
- 30. 1,2-trans-dichloroethylene
- 31. 2,4-dichlorophenol
- 32. 1,2-dichloropropane
- 33. 1,2-dichloropropylene
- 36. 2,6-dinitrotoluene
- 37. 1,2-diphenylhydrazine

```
38.
      ethylbenzene
 40.
      4-chlorophenyl phenyl ether
 41.
      4-bromophenyl phenyl ether
 42.
      bis(2-chloroisopropyl) ether
 43.
      bis(2-chloroethoxy) methane
 45.
      methyl chloride
      methyl bromide
 46.
 47.
      bromoform
 48.
      dichlorobromomethane
 49.
      trichlorofluoromethane
 50.
      dichlorodifluoromethane
      chlorodibromomethane
 51.
 52. hexachlorobutadiene
 53.
      hexachlorocyclopentadiene
 54.
      isophorone
 58.
      4-nitrophenol
 59.
      2,4-dinitrophenol
      N-nitrosodimethylamine
 61.
 64.
      pentachlorophenol
 71.
      dimethyl phthalate
 73.
      benzo(a)pyrene
 74.
      benzo(b)fluoranthene
 75.
      benzo(k)fluoranthene
 79:
      benzo(ghi)perylene
 82.
      dibenzo(a,h)anthracene
      indeno(1,2,3-cd)pyrene
 83.
      trichloroethylene
 87.
 88.
      vinyl chloride
 89.
      aldrin
 90.
      dieldrin
 91.
      chlordane
 92.
      4,4'-DDT
 93.
      4,4'-DDE
 94.
      4,4'-DDD
 95.
      alpha-endosulfan
 96.
     beta-endosulfan
 97.
     endosulfan sulfate
 98.
     endrin
 99.
     endrin aldehyde
100.
     heptachlor
101.
     heptachlor epoxide
102.
     alpha-BHC
103.
     beta-BHC
105.
     delta-BHC
106.
     PCB-1242
107.
    PCB-1254
108.
    PCB-1221
109.
    PCB-1232
110.
    PCB-1248
111. PCB-1260
```

2,3,7,8-tetra chlorodibenzo-p-dioxin (TCDD)

112.

116.

129.

PCB-1016

asbestos

113. toxaphene

Pollutants Never Found Above Their Analytical Quantification Level. The priority pollutants identified by "NQ" in Table VI-7 were never found above their analytical quantification level in any samples from this subcategory; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are listed below:

- 13. 1,1-dichloroethane
- 15. 1,1,2,2-tetrachloroethane
- 24. 2-chlorophenol
- 29. 1,1-dichloroethylene
- 84. pyrene
- 104. gamma-BHC

Pollutants Detected Below Levels Achievable by Treatment. The priority pollutants identified by "NT" in Table VI-7 were found above their analytical quantification level only at a concentration below the concentration considered achievable by specific available treatment methods; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below.

Chloroform was detected above its analytical quantification level in two of eleven samples; however, it was not found above the level considered achievable by specific treatment methods (0.1 mg/l).

2,4-Dimethylphenol was detected above its analytical quantification level in one of eleven samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/l).

Nitrobenzene was detected above its analytical quantification level in one of eleven samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/l).

Antimony was detected above its analytical quantification level in three of twenty-five samples; however, it was not found above the level considered achievable by specific treatment methods (0.47 mg/l).

Arsenic was detected above its analytical quantification level in two of twenty-five samples; however, it was not found above the level considered achievable by specific treatment methods (0.34 mg/l).

Beryllium was detected above its analytical quantification level in two of twenty-five samples; however, it was not found above the level considered achievable by specific treatment methods (0.20 mg/l).

Mercury was detected above its analytical quantification level in one of twenty-five samples; however, it was not found above

the level considered achievable by specific treatment methods (0.036 mg/l).

Selenium was detected above its analytical quantification level in three of twenty-five samples; however, it was not found above the level considered achievable by specific treatment methods (0.20 mg/l).

Thallium was detected above its analytical quantification level in two of twenty-five samples; however, it was not found above the level considered achievable by specific treatment methods (0.34 mg/l).

Pollutants Detected in a Small Number of Sources. The priority pollutants identified by "SU" in Table VI-7 were found above their analytical quantification level at only a small number of sources within the category and are uniquely related to only those sources; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below.

2,4-Dinitrotoluene was detected above its analytical quantification level in one of eleven samples and in one of nine sources.

Fluoranthene was detected above its analytical quantification level in one of eleven samples and in one of nine sources.

Methylene chloride was detected above its analytical quantification level in one of eleven samples and in one of nine sources.

Naphthalene was detected above its analytical quantification level in one of eleven samples and in one of nine sources.

2-Nitrophenol was detected above its analytical quantification level in one of eleven samples and in one of nine sources.

4,6-Dinitro-o-cresol was detected above its analytical quantification level in one of eleven samples and in one of nine sources.

N-nitrosodiphenylamine was detected above its analytical quantification level in one of eleven samples and in one of nine sources.

N-nitrosodi-n-propylamine was detected above its analytical quantification level in one of eleven samples and in one of nine sources.

Phenol was detected above its analytical quantification level in four of eleven samples; however, it was only found above the level considered achievable by specific treatment methods (0.05 mg/l) in two of eleven samples and in two of nine sources.

Bis(2-ethylhexyl) phthalate was detected above its analytical quantification level and the level considered achievable by

specific treatments methods (0.01 mg/1) in three of eleven samples.

Butyl benzyl phthalate was detected above its analytical quantification level in one of eleven samples and in one of nine sources.

Di-n-butyl phthalate was detected above its analytical quantification level in one of eleven samples and in one of nine sources.

Di-n-octyl phthalate was detected above its analytical quantification level in one of eleven samples and in one of nine sources.

Diethyl phthalate was detected above its analytical quantification level in one of eleven samples and in one of nine sources.

Benzo(a)anthracene was detected above its analytical quantification level in one of eleven samples and in one of nine sources.

Chrysene was detected above its analytical quantification level in one of eleven samples and in one of nine sources.

Acenaphthylene was detected above its analytical quantification level in one of eleven samples and in one of nine sources.

Anthracene was detected above its analytical quantification level in one of eleven samples and in one of nine sources.

Fluorene was detected above its analytical quantification level in one of eleven samples and in one of nine sources.

Phenanthrene was detected above its analytical quantification level in one of eleven samples and in one of nine sources.

Tetrachloroethylene was detected above its analytical quantification level in two of eleven samples and in two of nine sources.

Toluene was detected above its analytical quantification level in one of eleven samples and in one of nine sources.

Cadmium was detected above its analytical quantification level in ten of twenty-five samples; however, it was only found above the level considered achievable by specific treatment methods (0.049 mg/l) in five of twenty-five samples and in four of twenty-one sources.

Cyanide was detected above its analytical quantification level in one of nineteen samples and in one of fifteen sources.

Pollutants Selected for Consideration in Establishing Regulations for the Refractory Metals Forming Subcategory. The priority pollutants identified by "RG" in Table VI-7 are those not eliminated from consideration for any of the reasons listed above; therefore, each was selected for consideration in establishing

regulations for this subcategory. The pollutants are discussed individually below.

1,1,1-Trichloroethane was detected above its analytical quantification level in ten of eleven samples and above the level considered achievable by specific treatment methods (0.01 mg/l) in nine of eleven samples.

Chromium was detected above its analytical quantification level in nineteen of twenty-five samples and above the level considered achievable by specific treatment methods (0.07 mg/l) in sixteen of twenty-five samples and in fourteen of twenty-one sources.

Copper was detected above its analytical quantification level in thirteen of twenty-five samples and above the level considered achievable by specific treatment methods (0.39 mg/l) in nine of twenty-five samples and in seven of twenty-one sources.

Lead was detected above its analytical quantification level in eleven of twenty-five samples and above the level considered achievable by specific treatment methods (0.08 mg/l) in eight of twenty-five samples and in eight of twenty-one sources.

Nickel was detected above its analytical quantification level in fifteen of twenty-five samples and above the level considered achievable by specific treatment methods (0.22 mg/l) in thirteen of twenty-five samples and in eleven of twenty-one sources.

Silver was detected above its analytical quantification level in eleven of twenty-five samples and above the level considered achievable by specific treatment methods (0.07 mg/l) in seven of twenty-five samples and in five of twenty-one sources.

Zinc was detected above its analytical quantification level in eighteen of twenty-five samples and above the level considered achievable by specific treatment methods (0.23 mg/l) in seven of twenty-five samples and in seven of twenty-one sources.

Pollutant Selection for Titanium Forming

Table VI-8 summarizes the disposition of priority pollutants with respect to each waste stream and overall for the titanium forming subcategory. These data provide the basis for the categorization of specific pollutants, as discussed above. Table VI-8 is based on the raw wastewater sampling data presented in Section V.

Pollutants Never Detected. The priority pollutants identified by "ND" in Table VI-8 were not detected in any samples from this subcategory; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are listed below:

- 1. acenaphthene
- 2. acrolein
- 3. acrylonitrile

- 4. benzene
- 5. benzidene
- 7. chlorobenzene
- 8. 1,2,4-trichlorobenzene
- 9. hexachlorobenzene
- 10. 1,2-dichloroethane
- 11. 1,1,1-trichloroethane
- 12. hexachloroethane
- 13. 1,1-dichloroethane
- 14. 1,1,2-trichloroethane
- 15. 1,1,2,2-tetrachloroethane
- 16. chloroethane
- 17. bis(chloromethyl) ether
- 18. bis(2-chloroethyl) ether
- 19. 2-chloroethyl vinyl ether
- 20. 2-chloronaphthalene
- 21. 2,4,6-trichlorophenol
- 22. parachlorometa cresol
- 23. chloroform
- 24. 2-chlorophenol
- 25. 1,2-dichlorobenzene
- 26. 1,3-dichlorobenzene
- 27. 1,4-dichlorobenzene
- 28. 3,3'-dichlorobenzidine
- 29. 1,1-dichloroethylene
- 30. 1,2-trans-dichloroethylene
- 31. 2,4-dichlorophenol
- 32. 1,2-dichloropropane
- 33. 1,2-dichloropropylene
- 34. 2,4-dimethylphenol
- 35. 2,4-dinitrotoluene
- 36. 2,6-dinitrotoluene
- 37. 1,2-diphenylhydrazine
- 38. ethylbenzene
- 39. fluoranthene
- 40. 4-chlorophenyl phenyl ether
- 41. 4-bromophenyl phenyl ether
- 42. bis(2-chloroisopropyl) ether
- 43. bis(2-chloroethoxy) methane
- 45. methyl chloride
- 46. methyl bromide
- 47. bromoform
- 48. dichlorobromomethane
- 49. trichlorofluoromethane
- 50. dichlorodifluoromethane
- 51. chlorodibromomethane
- 52. hexachlorobutadiene
- 53. hexachlorocyclopentadiene
- 54. isophorone
- 55. naphthalene
- 56. nitrobenzene
- 57. 2-nitrophenol
- 58. 4-nitrophenol
- 59. 2,4-dinitrophenol
- 60. 4,6-dinitro-o-cresol

```
61.
     N-nitrosodimethylamine
 62.
     N-nitrosodiphenylamine
 63.
     N-nitrosodi-n-propylamine
 64.
     pentachlorophenol:
 65.
     phenol
     bis(2-ethylhexyl) phthalate
 66.
     butyl benzyl phthalate
 67.
 68.
     di-n-butyl phthalate
 69.
     di-n-octyl phthalate
 70. diethyl phthalate:
 71.
     dimethyl phthalate
 72.
     benzo(a)anthracene
 73. benzo(a)pyrene
 74.
    benzo(b)fluoranthene
 75. benzo(k)fluoranthene
 76. chrysene
 77. acenaphthylene
 78. anthracene
 79. benzo(ghi)perylene
 80. fluorene
     phenanthrene
 81.
 82. dibenzo(a,h)anthracene
 83. indeno(1,2,3-cd)pyrene
 84.
     pyrene
 85. tetrachloroethylene
 86. toluene
 87. trichloroethylene
 88.
    vinyl chloride
 89.
    aldrin
 90. dieldrin
 91.
     chlordane
    4,4'-DDT
 92.
 93. 4,4'-DDE
 94. 4,4'-DDD
 95.
     alpha-endosulfan
 96.
    beta-endosulfan
    endosulfan sulfate
 97.
98. endrin
99. endrin aldehyde
100. heptachlor
101. heptachlor epoxide
102. alpha-BHC
103. beta-BHC
104. gamma-BHC
105. delta-BHC
106. PCB-1242
107. PCB-1254
     PCB-1221
```

107. PCB-1234 108. PCB-1221 109. PCB-1232 110. PCB-1248

111. PCB-1260

112. PCB-1016 113. toxaphene

116. asbestos

129. 2,3,7,8-tetra chlorodibenzo-p-dioxin (TCDD)

Pollutants Detected Below Levels Achievable by Treatment. The priority pollutants identified by "NT" in Table VI-8 were found above their analytical quantification level only at a concentration below the concentration considered achievable by specific available treatment methods; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below.

Carbon tetrachloride was detected above its analytical quantification level in one of one samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/l).

Methylene chloride was detected above its analytical quantification level in one of one samples; however, it was not found above the level considered achievable by specific treatment methods (0.10 mg/l).

Antimony was detected above its analytical quantification level in four of twenty-one samples; however, it was not found above the level considered achievable by specific treatment methods (0.47 mg/l).

Beryllium was detected above its analytical quantification level in one of twenty-one samples; however, it was not found above the level considered achievable by specific treatment methods (0.20 mg/l).

Mercury was detected above its analytical quantification level in one of twenty-one samples; however, it was not found above the level considered achievable by specific treatment methods $(0.036 \, \text{mg/l})$.

Silver was detected above its analytical quantification level in four of twenty-one samples; however, it was not found above the level considered achievable by specific treatment methods (0.07 mg/l).

Thallium was detected above its analytical quantification level in one of twenty-one samples; however, it was not found above the level considered achievable by specific treatment methods (0.34 mg/l).

Pollutants Detected in a Small Number of Sources. The priority pollutants identified by "SU" in Table VI-8 were found above their analytical quantification level at only a small number of sources within the category and are uniquely related to only those sources; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are individually listed below.

Arsenic was detected above its analytical quantification level in six of twenty-one samples; however, it was only found above the

level considered achievable by specific treatment methods (0.34 mg/l) in two of twenty-one samples and in two of sixteen sources.

Cadmium was detected above its analytical quantification level in three of twenty-one samples and in three of sixteen sources.

Selenium was detected above its analytical quantification level in two of twenty-one samples and in two of sixteen sources.

Pollutants Selected for Consideration in Establishing Regulations for the Titanium Forming Subcategory. The priority pollutants identified by "RG" in Table VI-8 are those not eliminated from consideration for any of the reasons listed above; therefore, each was selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below.

Chromium was detected above its analytical quantification level in fifteen of twenty-one samples and above the level considered achievable by specific treatment methods (0.07 mg/l) in thirteen of twenty-one samples and in twelve of sixteen sources.

Copper was detected above its analytical quantification level in twelve of twenty-one samples and above the level considered achievable by specific treatment methods (0.39 mg/l) in ten of twenty-one samples and in nine of sixteen sources.

Cyanide was detected above its analytical quantification level in six of fourteen samples and above the level considered achievable by specific treatment methods (0.047 mg/l) in five of fourteen samples and in five of thirteen sources.

Lead was detected above its analytical quantification level in eighteen of twenty-one samples and above the level considered achievable by specific treatment methods (0.08 mg/l) in eighteen of twenty-one samples and in fourteen of sixteen sources.

Nickel was detected above its analytical quantification level in fourteen of twenty-one samples and above the level considered achievable by specific treatment methods (0.22 mg/l) in twelve of twenty-one samples and in eleven of sixteen sources.

Zinc was detected above its analytical quantification level in sixteen of twenty-one samples and above the level considered achievable by specific treatment methods (0.23 mg/l) in ten of twenty-one samples and in ten of sixteen sources.

Pollutant Selection for Uranium Forming

Table VI-9 summarizes the disposition of priority pollutants with respect to each waste stream and overall for the uranium forming subcategory. These data provide the basis for the categorization of specific pollutants, as discussed below. Table VI-9 is based on the raw wastewater sampling data presented in Section V.

Pollutants Never Detected. The priority pollutants identified by "ND" in Table VI-9 were not detected in any samples from this subcategory; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are listed below:

- 1. acenaphthene
- 2. acrolein
- 3. acrylonitrile
- 4. benzene
- 5. benzidene
- 6. carbon tetrachloride
- 7. chlorobenzene
- 8. 1,2,4-trichlorobenzene
- 9. hexachlorobenzene
- 10. 1,2-dichloroethane
- 11. 1,1,1-trichloroethane
- 12. hexachloroethane
- 13. 1,1-dichloroethane
- 14. 1,1,2-trichloroethane
- 15. 1,1,2,2-tetrachloroethane
- 16. chloroethane
- 17. bis(chloromethyl) ether
- 18. bis(2-chloroethyl) ether
- 19. 2-chloroethyl vinyl ether
- 20. 2-chloronaphthalene
- 21. 2,4,6-trichlorophenol
- 23. chloroform
- 24. 2-chlorophenol
- 25. 1,2-dichlorobenzene
- 26. 1,3-dichlorobenzene
- 27. 1,4-dichlorobenzene
- 28. 3,3'-dichlorobenzidine
- 29. 1,1-dichloroethylene
- 30. 1,2-trans-dichloroethylene
- 31. 2,4-dichlorophenol
- 32. 1,2-dichloropropane
- 33. 1,2-dichloropropylene
- 34. 2,4-dimethylphenol
- 35. 2,4-dinitrotoluene
- 36. 2,6-dinitrotoluene
- 37. 1,2-diphenylhydrazine
- 38. ethylbenzene
- 39. fluoranthene
- 40. 4-chlorophenyl phenyl ether
- 41. 4-bromophenyl phenyl ether
- 42. bis(2-chloroisopropyl) ether
- 43. bis(2-chloroethoxy) methane
- 44, methylene chloride
- 45. methyl chloride
- 46. methyl bromide
- 47. bromoform
- 48. dichlorobromomethane
- 49. trichlorofluoromethane

- dichlorodifluoromethane 50.
- 51. chlorodibromomethane
- 52. hexachlorobutadiene
- 53. hexachlorocyclopentadiene
- 54. isophorone
- 55. naphthalene
- 56. nitrobenzene
- 57. 2-nitrophenol
- 58. 4-nitrophenol
- 59. 2,4-dinitrophenol
- 4,6-dinitro-o-cresol 60.
- 61. N-nitrosodimethylamine
- 62. N-nitrosodiphenylamine
- 63. N-nitrosodi-n-propylamine
- 64. pentachlorophenol
- 65. phenol
- 67. butyl benzyl phthalate
- 68. di-n-butyl phthalate
- 69. di-n-octyl phthalate
- 70. diethyl phthalate
- 71. dimethyl phthalate
- 72. benzo(a)anthracene
- 73. benzo(a)pyrene
- 74. benzo(b)fluoranthene
- 75. benzo(k)fluoranthene
- 76. chrysene

- 77. acenaphthylene78. anthracene79. benzo(ghi)perylene
- 80. fluorene
- 82. dibenzo(a,h)anthracene
- 83. indeno(1,2,3-cd)pyrene
- 84. pyrene
- 85. tetrachloroethylene
- 86. toluene
- 87. trichloroethylene
- 88. vinyl chloride
- 89. aldrin
- 90. dieldrin
- 91. chlordane
- 92. 4,4'-DDT
- 93. 4,4'-DDE
- 94. 4,4'-DDD
- 95. alpha-endosulfan
- 96. beta-endosulfan
- 97. endosulfan sulfate
- 98. endrin
- 99. endrin aldehyde
- 100. heptachlor
- 101. heptachlor epoxide
- 102. alpha-BHC
- 103. beta-BHC
- 104. gamma-BHC
- 105. delta-BHC
- 106. PCB-1242

107. PCB-1254

108. PCB-1221

109. PCB-1232

110. PCB-1248

111. PCB-1260

112. PCB-1016

113. toxaphene

116. asbestos

129. 2,3,7,8-tetra chlorodibenzo-p-dioxin (TCDD)

Pollutants Detected Below Levels Achievable by Treatment. The priority pollutants identified by "NT" in Table VI-9 were found above their analytical quantification level only at a concentration below the concentration considered achievable by specific available treatment methods; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below.

Antimony was detected above its analytical quantification level in four of fourteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.47 mg/l).

Arsenic was detected above its analytical quantification level in one of fourteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.34 mg/l).

Mercury was detected above its analytical quantification level in one of fourteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.036 mg/l).

Selenium was detected above its analytical quantification level in four of fourteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.20 mg/l).

Silver was detected above its analytical quantification level in nine of fourteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.07 mg/l).

Thallium was detected above its analytical quantification level in one of fourteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.34 mg/l).

Pollutants Detected in a Small Number of Sources. The priority pollutants identified by "SU" in Table VI-9 were found above their analytical quantification level at only a small number of sources within the category and are uniquely related to only those sources; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below.

Parachlorometa cresol was detected above its analytical quantification level in one of four samples and in one of four sources.

Phenanthrene was detected above its analytical quantification level in one of four samples and in one of four sources.

Beryllium was detected above its analytical quantification level in fourteen of fourteen samples; however, it was only found above the level considered achievable by specific treatment methods (0.20 mg/l) in three of fourteen samples and in three of thirteen sources.

Cyanide was detected above its analytical quantification level in three of twelve samples and in three of twelve sources.

Pollutants Selected for Consideration in Establishing Regulations for the Uranium Forming Subcategory. The priority pollutants identified by "RG" in Table VI-9 are those not eliminated from consideration for any of the reasons listed above; therefore, each was selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below.

Bis(2-ethylhexyl) phthalate was detected above its analytical quantification level in three of four samples and above the level considered achievable by specific treatment methods (0.01 mg/l) in three of four samples and in three of four sources.

Cadmium was detected above its analytical quantification level in eight of fourteen samples and above the level considered achievable by specific treatment methods (0.049 mg/l) in seven of fourteen samples and in six of thirteen sources.

Chromium was detected above its analytical quantification level in eleven of fourteen samples and above the level considered achievable by specific treatment methods (0.07 mg/l) in nine of fourteen samples and in eight of thirteen sources.

Copper was detected above its analytical quantification level in fourteen of fourteen samples and above the level considered achievable by specific treatment methods (0.39 mg/l) in ten of fourteen samples and in nine of thirteen sources.

Lead was detected above its analytical quantification level in thirteen of fourteen samples and above the level considered achievable by specific treatment methods (0.08 mg/l) in thirteen of fourteen samples and in twelve of thirteen sources.

Nickel was detected above its analytical quantification level in eleven of fourteen samples and above the level considered achievable by specific treatment methods (0.22 mg/l) in eight of fourteen samples and in seven of thirteen sources.

Zinc was detected above its analytical quantification level in fourteen of fourteen samples and above the level considered achievable by specific treatment methods (0.23 mg/l) in eleven of fourteen samples and in ten of thirteen sources.

Pollutant Selection for Zinc Forming

Table VI-10 summarizes the disposition of priority pollutants with respect to each waste stream and overall for the zinc forming subcategory. These data provide the basis for the categorization of specific pollutants, as discussed below. Table VI-10 is based on the raw wastewater sampling data presented in Section V.

Pollutants Never Detected. The priority pollutants identified by "ND" in Table VI-10 were not detected in any samples from this subcategory; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are listed below:

- 2. acrolein
- 5. benzidene
- 9. hexachlorobenzene
- 12. hexachloroethane
- 16. chloroethane
- 17. bis(chloromethyl) ether
- 19. 2-chloroethyl vinyl ether
- 20. 2-chloronaphthalene
- 21. 2,4,6-trichlorophenol
- 22. parachlorometa cresol
- 24. 2-chlorophenol
- 25. 1,2-dichlorobenzene
- 26. 1,3-dichlorobenzene
- 27. l,4-dichlorobenzene
- 28. 3,3'-dichlorobenzidine
- 31. 2,4-dichlorophenol
- 35. 2,4-dinitrotoluene
- 40. 4-chlorophenyl phenyl ether
- 41. 4-bromophenyl phenyl ether
- 42. bis(2-chloroisopropyl) ether
- 45. methyl chloride
- 49. trichlorofluoromethane
- 50. dichlorodifluoromethane
- 52. hexachlorobutadiene

- 53. hexachlorocyclopentadiene
- 54. isophorone
- 56. nitrobenzene
- 57. 2-nitrophenol
- 58. 4-nitrophenol
- 59. 2,4-dinitrophenol
- 60. 4,6-dinitro-o-cresol
- 61. N-nitrosodimethylamine
- 62. N-nitrosodiphenylamine
- 63. N-nitrosodi-n-propylamine
- 64. pentachlorophenol
- 65. phenol
- 69. di-n-octyl phthalate
- 71. dimethyl phthalate
- 73. benzo(a)pyrene
- 74. benzo(b)fluoranthene
- 75. benzo(k)fluoranthene
- 77. acenaphthylene
- 79. benzo(ghi)perylene
- 80. fluorene
- 82. dibenzo(a,h)anthracene
- 84. pyrene
- 88. vinyl chloride
- 89. aldrin
- 90. dieldrin
- 91. chlordane
- 92. 4,4'-DDT
- 93. 4,4'-DDE
- 94. 4,4'-DDD
- 95. alpha-endosulfan
- 96. beta-endosulfan
- 97. endosulfan sulfate
- 98. endrin
- 99. endrin aldehyde
- 100. heptachlor
- 101. heptachlor epoxide
- 102. alpha-BHC
- 103. beta-BHC
- 104. gamma-BHC
- 105. delta-BHC
- 106. PCB-1242
- 107. PCB-1254
- 108. PCB-1221
- 109. PCB-1232
- 110. PCB-1248
- 111. PCB-1260
- 112. PCB-1016
- 113. toxaphene
- 114. antimony
- 115. arsenic
- 116. asbestos
- 117. beryllium
- 118. cadmium
- 120. copper
- 122. lead

- 123. mercury
- 125. selenium
- 126. silver
- 127. thallium
- 129. 2,3,7,8-tetra chlorodibenzo-p-dioxin (TCDD)

Pollutants Never Found Above Their Analytical Quantification Level. The priority pollutants identified by "NQ" in Table VI-10 were never found above their analytical quantification level in any samples from this subcategory; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are listed below:

- 1. acenaphthene
- 7. chlorobenzene
- 8. 1,2,4-trichlorobenzene
- 10. 1,2-dichloroethane
- 14. 1,1,2-trichloroethane
- 37. 1,2-diphenylhydrazine
- 46. methyl bromide

Pollutants Detected But Present Solely as a Result of Its Presence in the Intake Waters. Paragraph 8(a)(iii) allows for the exclusion of a priority pollutant if it is detected in the source water of the samples taken. The toxic pollutant identified by "TS" in Table VI-10 was found above its analytical quantification level but not above the level in the source water; therefore, it was not selected for consideration in establishing regulations for this subcategory. The pollutant is listed below:

83. indeno(1,2,3-cd) pyrene

Pollutants Detected Below Levels Achievable by Treatment. The priority pollutants identified by "NT" in Table VI-10 were found above their analytical quantification level only at a concentration below the concentration considered achievable by specific available treatment methods; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below.

Acrylonitrile was detected above its analytical quantification level in two of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/l).

Benzene was detected above its analytical quantification level in one of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 to 0.10 mg/l).

Carbon tetrachloride was detected above its analytical quantification level in two of two samples; however, it was not found above the level considered achievable by specific treatment method (0.05 mg/l).

- 1,1,1-Trichloroethane was detected above its analytical quantification level in one of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/l).
- l,l-Dichloroethane was detected above its analytical quantification level in two of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/l).
- 1,1,2,2-Tetrachloroethane was detected above its analytical quantification level in two of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/l).
- Bis(2-chloroethylene) ether was detected above its analytical quantification level in one of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/l).
- Chloroform was detected above its analytical quantification level in two of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.10 mg/l).
- l,l-Dichloroethylene was detected above its analytical quantification level in two of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.1 mg/l).
- 1,2-trans-Dichloroethylene was detected above its analytical quantification level in two of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.1 mg/1).
- 1,2-Dichloropropane was detected above its analytical quantification level in one of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/1).
- 1,2-Dichloropropylene was detected above its analytical quantification level in one of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/l).
- 2,4-Dimethylphenol was detected above its analytical quantification level in one of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/l).
- 2,6-Dinitrotoluene was detected above its analytical quantification level in two of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/l).

Ethylbenzene was detected above its analytical quantification level in two of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/l).

Fluoranthene was detected above its analytical quantification level in one of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/l).

Bis(2-chloroethoxy) methane was detected above its analytical quantification level in two of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/1).

Methylene chloride was detected above its analytical quantification level in two of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.10 mg/l).

Bromoform was detected above its analytical quantification level in two of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/l).

Dichlorobromomethane was detected above its analytical quantification level in two of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.10 mg/1).

Naphthalene was detected above its analytical quantification level in two of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/l).

Butyl benzyl phthalate was detected above its analytical quantification level in two of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.001 to 0.01 mg/l).

Diethyl phthalate was detected above its analytical quantification level in two of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.025 mg/l).

Benzo(a)anthracene was detected above its analytical quantification level in two of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/l).

Chrysene was detected above its analytical quantification level in one of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.001 mg/l).

Anthracene was detected above its analytical quantifica-tion level in one of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/l).

Phenanthrene was detected above its analytical quantification level in one of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/1).

Tetrachloroethylene was detected above its analytical quantification level in two of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/1).

Toluene was detected above its analytical quantification level in two of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/l).

Trichloroethylene was detected above its analytical quantification level in two of two samples; however, it was not found above the level considered achievable by specific treatment methods (0.01 mg/1).

Pollutants Selected for Consideration in Establishing Regulations for the Zinc Forming Subcategory. The priority pollutants identified by "RG" in Table VI-10 are those not eliminated from consideration for any of the reasons listed above; therefore, each was selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below.

Chlorodibromomethane was detected above its analytical quantification level in two of two samples and above the level considered achievable by specific treatment methods (0.10 mg/l) in one of two samples and in one of two sources.

Bis(2-ethylhexyl) phthalate was detected above its analytical quantification level in one of two samples and above the level considered achievable by specific treatment methods (0.01 mg/l) in one of two samples and in one of two sources.

Di-n-butyl phthalate was detected above its analytical quantification level in one of two samples and above the level considered achievable by specific treatment methods (0.025 mg/l) in one of two samples and in one of two sources.

Chromium was detected above its analytical quantification level in one of two samples and above the level considered achievable by specific treatment methods (0.07 mg/l) in one of two samples and in one of two sources.

Cyanide was detected above its analytical quantification level in one of two samples and above the level considered achievable by

specific treatment methods (0.047 mg/l) in one of two samples and in one of two sources.

Nickel was detected above its analytical quantification level in one of two samples and above the level considered achievable by specific treatment methods (0.22 mg/l) in one of two samples and in one of two sources.

Zinc was detected above its analytical quantification level in two of two samples and above the level considered achievable by specific treatment methods (0.23 mg/l) in two of two samples and in two of two sources.

Pollutant Selection for Zirconium-Hafnium Forming

Table VI-11 summarizes the disposition of priority pollutants with respect to each waste stream and overall for the zirconium-hafnium forming subcategory. These data provide the basis for the categorization of specific pollutants, as discussed below. Table VI-11 is based on the raw wastewater sampling data presented in Section V.

Pollutants Never Detected. The priority pollutants identified by "ND" in Table VI-11 were not detected in any samples from this subcategory; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are listed below:

- 1. acenaphthene
- 3. acrylonitrile
- 5. benzidene
- carbon tetrachloride
- 8. 1,2,4-trichlorobenzene
- 9. hexachlorobenzene
- 10. 1,2-dichloroethane
- 12. hexachloroethane
- 14. 1,1,2-trichloroethane
- 15. 1,1,2,2-tetrachloroethane
- 16. chloroethane
- 17. bis(chloromethyl) ether
- 18. bis(2-chloroethyl) ether
- 19. 2-chloroethyl vinyl ether
- 20. 2-chloronaphthalene
- 21. 2,4,6-trichlorophenol
- 24. 2-chlorophenol
- 25. 1,2-dichlorobenzene
- 26. 1,3-dichlorobenzene
- 27. 1,4-dichlorobenzene
- 28. 3,3'-dichlorobenzidine
- 29. 1,1-dichloroethylene
- 30. 1,2-trans-dichloroethylene
- 31. 2,4-dichlorophenol
- 32. 1,2-dichloropropane
- 33. 1,2-dichloropropylene
- 34. 2,4-dimethylphenol

- 35. 2,4-dinitrotoluene
- 36. 2,6-dinitrotoluene
- 37. 1,2-diphenylhydrazine
- 39. fluoranthene
- 40. 4-chlorophenyl phenyl ether
- 41. 4-bromophenyl phenyl ether
- 42. bis(2-chloroisopropyl) ether
- 43. bis(2-chloroethoxy) methane
- 45. methyl chloride
- 46. methyl bromide
- 47. bromoform
- 48. dichlorobromomethane
- 49. trichlorofluoromethane
- 50. dichlorodifluoromethane
- 51. chlorodibromomethane
- 52. hexachlorobutadiene
- 53. hexachlorocyclopentadiene
- 54. isophorone
- 55. naphthalene
- 56. nitrobenzene
- 58. 4-nitrophenol
- 59. 2,4-dinitrophenol
- 60. 4,6-dinitro-o-cresol
- 61. N-nitrosodimethylamine
- 62. N-nitrosodiphenylamine
- 63. N-nitrosodi-n-propylamine
- 64. pentachlorophenol
- 65. phenol
- 67. butyl benzyl phthalate
- 71. dimethyl phthalate
- 72. benzo(a)anthracene
- 73. benzo(a)pyrene
- 74. benzo(b)fluoranthene
- 75. benzo(k)fluoranthene
- 76. chrysene
- 77. acenaphthylene
- 79. benzo(ghi)perylene
- 80. fluorene
- 82. dibenzo(a,h)anthracene
- 83. indeno(1,2,3-cd) pyrene
- 84. pyrene
- 88. vinyl chloride
- 89. aldrin
- 90. dieldrin
- 91. chlordane
- 92. 4,4'-DDT
- 93. 4,4'-DDE
- 94. 4,4'-DDD
- 95. alpha-endosulfan
- 96. beta-endosulfan
- 97. endosulfan sulfate
- 98. endrin
- 99. endrin aldehyde
- 100. heptachlor
- 101. heptachlor epoxide

- 102. alpha-BHC
- 103. beta-BHC
- 104. gamma-BHC
- 105. delta-BHC
- 106. PCB-1242
- 107. PCB-1254
- 108. PCB-1221
- 109. PCB-1232
- 110. PCB-1248
- 111. PCB-1260
- 112. PCB-1016
- 113. toxaphene
- 116. asbestos
- 129. 2,3,7,8-tetra chlorodibenzo-p-dioxin (TCDD)

Pollutants Never Found Above Their Analytical Quantification Level. The priority pollutants identified by "NQ" in Table VI-11 were never found above their analytical quantification level in any samples from this subcategory; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are listed below:

- 4. benzene
- 7. chlorobenzene
- 13. 1,1-dichloroethane
- 57. 2-nitrophenol
- 68. di-n-butyl phthalate
- 70. diethyl phthalate
- 78. anthracene
- 81. phenanthrene
- 85. tetrachloroethylene
- 87. trichloroethylene

Pollutants Detected Below Levels Achievable by Treatment. The priority pollutants identified by "NT" in Table VI-11 were found above their analytical quantification level only at a concentration below the concentration considered achievable by specific available treatment methods; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below:

Acrolein was detected above its analytical quantification level in one of ten samples; however, it was not found above the level considered achievable by specific treatment methods (0.100 mg/l).

Chloroform was detected above its analytical quantification level in one of ten samples; however, it was not found above the level considered achievable by specific treatment methods (0.1 mg/l).

Beryllium was detected above its analytical quantification level in thirteen of nineteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.20 mg/l). Mercury was detected above its analytical quantification level in three of nineteen samples; however, it was not found above the level considered achievable by specific treatment methods $(0.036 \, \text{mg/1})$.

Selenium was detected above its analytical quantification level in six of nineteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.20 mg/1).

Silver was detected above its analytical quantification level in five of nineteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.07 mg/1).

Pollutants Detected in a Small Number of Sources. The priority pollutants identified by "SU" in Table VI-11 were found above their analytical quantification level at only a small number of sources within the category and are uniquely related to only those sources; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below:

Parachlorometa cresol was detected above its analytical quantification level in one of eleven samples and in one of nine sources.

Ethylbenzene was detected above its analytical quantification level in two of ten samples and in two of nine sources.

Bis(2-ethylhexyl) phthalate was detected above its analytical quantification level in one of eleven samples and in one of nine sources.

Di-n-octyl phthalate was detected above its analytical quantification level in one of eleven samples and in one of nine sources.

Antimony was detected above its analytical quantification level in three of nineteen samples and in three of fifteen sources.

Arsenic was detected above its analytical quantification level in two of nineteen samples and in two of fifteen sources.

Cadmium was detected above its analytical quantification level in three of nineteen samples and in three of fifteen sources.

Thallium was detected above its analytical quantification level in three of nineteen samples and in three of fifteen sources.

Pollutants Selected for Consideration in Establishing Regulations for the Zirconium-Hafnium Forming Subcategory. The priority pollutants identified by "RG" in Table VI-11 are those not eliminated from consideration for any of the reasons listed above; therefore, each was selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below:

1,1,1-Trichloroethane was detected above its analytical quantification level in three of ten samples and above the level considered achievable by specific treatment methods (0.01 mg/l) in three of ten samples and in three of nine sources.

Methylene chloride was detected above its analytical quantification level in six of ten samples and above the level considered achievable by specific treatment methods (0.10 mg/l) in five of ten samples and in four of nine sources.

Toluene was detected above its analytical quantification level in five of ten samples and above the level considered achievable by specific treatment methods (0.05 mg/l) in four of ten samples and in three of nine sources.

Chromium was detected above its analytical quantification level in eighteen of nineteen samples and above the level considered achievable by specific treatment methods (0.07 mg/l) in ten of nineteen samples and in eight of fifteen sources.

Copper was detected above its analytical quantification level in sixteen of nineteen samples and above the level considered achievable by specific treatment methods (0.39 mg/l) in seven of nineteen samples and in seven of fifteen sources.

Cyanide was detected above its analytical quantification level in two of seventeen samples and above the level considered achievable by specific treatment methods (0.047 mg/l) in two of seventeen samples and in two of thirteen sources.

Lead was detected above its analytical quantification level; in eighteen of nineteen samples and above the level considered achievable by specific treatment methods (0.08 mg/l) in sixteen of nineteen samples and in fourteen of fifteen sources.

Nickel was detected above its analytical quantification level in eight of nineteen samples and above the level considered achievable by specific treatment methods (0.22 mg/l) in five of nineteen samples and in five of fifteen sources.

Zinc was detected above its analytical quantification level in seventeen of nineteen samples and above the level considered achievable by specific treatment methods (0.23 mg/l) in eight of nineteen samples and in eight of fifteen sources.

Pollutant Selection for Metal Powders

Table VI-12 summarizes the disposition of priority pollutants with respect to each waste stream and overall for the metal powders subcategory. These data provide the basis for the categorization of specific pollutants, as discussed below. Table VI-12 is based on the raw wastewater sampling data presented in Section V.

Pollutants Never Detected. The priority pollutants identified by "ND" in Table VI-12 were not detected in any samples from this subcategory; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are listed below:

- 1. acenaphthene
- 2. acrolein
- 3. acrylonitrile
- 5. benzidene
- 7. chlorobenzene
- 8. 1,2,4-trichlorobenzene
- 9. hexachlorobenzene
- 10. 1,2-dichloroethane
- 12. hexachloroethane
- 13. 1,1-dichloroethane
- 14. 1,1,2-trichloroethane
- 15. 1,1,2,2-tetrachloroethane
- 16. chloroethane
- 17. bis(chloromethyl) ether
- 18. bis(2-chloroethyl) ether
- 19. 2-chloroethyl vinyl ether
- 20. 2-chloronaphthalene
- 21. 2,4,6-trichlorophenol
- 22. parachlorometa cresol
- 23. chloroform
- 24. 2-chlorophenol
- 25. 1,2-dichlorobenzene
- 26. 1,3-dichlorobenzene
- 27. 1,4-dichlorobenzene
- 28. 3,3'-dichlorobenzidine
- 29. 1,1-dichloroethylene
- 30. 1,2-trans-dichloroethylene
- 31. 2,4-dichlorophenol
- 32. 1,2-dichloropropane
- 33. 1,2-dichloropropylene
- 34. 2,4-dimethylphenol
- 35. 2,4-dinitrotoluene
- 36. 2,6-dinitrotoluene
- 37. 1,2-diphenylhydrazine
- 38. ethylbenzene
- 39. fluoranthene
- 40. 4-chlorophenyl phenyl ether
- 41. 4-bromophenyl phenyl ether
- 42. bis(2-chloroisopropyl) ether
- 43. bis(2-chloroethoxy) methane
- 45. methyl chloride
- 46. methyl bromide
- 47. bromoform
- 48. dichlorobromomethane
- 49. trichlorofluoromethane
- 50. dichlorodifluoromethane
- 51. chlorodibromomethane
- 52. hexachlorobutadiene

- 53. hexachlorocyclopentadiene
- 54. isophorone
- 55. naphthalene
- 56. nitrobenzene
- 57. 2-nitrophenol
- 58. 4-nitrophenol
- 59. 2,4-dinitrophenol
- 60. 4,6-dinitro-o-cresol
- 61. N-nitrosodimethylamine
- 62. N-nitrosodiphenylamine
- 63. N-nitrosodi-n-propylamine
- 64. pentachlorophenol
- 65. phenol
- 66. bis(2-ethylhexyl) phthalate
- 67. butyl benzyl phthalate
- 68. di-n-butyl phthalate
- 69. di-n-octyl phthalate
- 70. diethyl phthalate
- 71. dimethyl phthalate
- 72. benzo(a)anthracene
- 73. benzo(a)pyrene
- 74. benzo(b)fluoranthene
- 75. benzo(k)fluoranthene
- 76. chrysene
- 77. acenaphthylene
- 78. anthracene
- 79. benzo(ghi)perylene
- 80. fluorene
- 81. phenanthrene
- 82. dibenzo(a,h)anthracene
- 83. indeno(1,2,3-cd)pyrene
- 84. pyrene
- 85. tetrachloroethylene
- 87. trichloroethylene
- 88. vinyl chloride
- 89. aldrin
- 90. dieldrin
- 91. chlordane
- 92. 4,4'-DDT
- 93. 4,4'-DDE
- 94. 4,4'-DDD
- 95. alpha-endosulfan
- 96. beta-endosulfan
- 97. endosulfan sulfate
- 98. endrin
 - 99. endrin aldehyde
- 100. heptachlor
- 101. heptachlor epoxide
- 102. alpha-BHC
- 103. beta-BHC
- 104. gamma-BHC
- 105. delta-BHC
- 106. PCB-1242
- 107. PCB-1254
- 108. PCB-1221

- 109. PCB-1232
- 110. PCB-1248
- 111. PCB-1260
- 112. PCB-1016
- 113. toxaphene
- 116. asbestos
- 117. beryllium
- 118. cadmium
- 123. mercury
- 125. selenium
- 126. silver
- 129. 2,3,7,8-tetra chlorodibenzo-p-dioxin (TCDD)

Pollutants Detected Below Levels Achievable by Treatment. The priority pollutants identified by "NT" in Table VI-12 were found above their analytical quantification level only at a concentration below the concentration considered achievable by specific available treatment methods; therefore, they were not selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below.

Benzene was detected above its analytical quantification level in one of fourteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 to 0.10 mg/1).

Carbon tetrachloride was detected above its analytical quantification level in four of fourteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/l).

Methylene chloride was detected above its analytical quantification level in one of fourteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.10 mg/1).

Toluene was detected above its analytical quantification level in one of fourteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.05 mg/l).

Antimony was detected above its analytical quantification level in one of fourteen samples; however, it was not found above the level considered achievable by specific treatment methods $(0.47 \, \text{mg/l})$.

Arsenic was detected above its analytical quantification level in one of fifteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.34 mg/l).

Thallium was detected above its analytical quantification level in one of fourteen samples; however, it was not found above the level considered achievable by specific treatment methods (0.34 mg/l).

Pollutants Selected for Consideration in Establishing Regulations for the Metal Powders Subcategory. The priority pollutants identified by "RG" in Table VI-12 are those not eliminated from consideration for any of the reasons listed above; therefore, each was selected for consideration in establishing regulations for this subcategory. The pollutants are individually discussed below.

1,1,1-Trichloroethane was detected above its analytical quantification level in seven of fourteen samples and above the level considered achievable by specific treatment methods (0.01 mg/l) in seven of fourteen samples and in four of six sources.

Chromium was detected above its analytical quantification level in eleven of sixteen samples and above the level considered achievable by specific treatment methods (0.07 mg/l) in seven of sixteen samples and in five of eight sources.

Copper was detected above its analytical quantification level in ten of sixteen samples and above the level considered achievable by specific treatment methods (0.39 mg/l) in ten of sixteen samples and in five of eight sources.

Cyanide was detected above its analytical quantification level in eleven of sixteen samples and above the level considered achievable by specific treatment methods (0.047 mg/l) in eight of sixteen samples and in five of eight sources.

Lead was detected above its analytical quantification level in eight of sixteen samples and above the level considered achievable by specific treatment methods (0.08 mg/l) in eight of sixteen samples and in four of eight sources.

Nickel was detected above its analytical quantification level in eleven of sixteen samples and above the level considered achievable by specific treatment methods (0.22 mg/l) in ten of sixteen samples and in four of eight sources.

Zinc was detected above its analytical quantification level in thirteen of fifteen samples and above the level considered achievable by specific treatment methods (0.23 mg/l) in nine of fifteen samples and in five of seven sources.

Table VI-1

LIST OF 129 PRIORITY POLLUTANTS

Compound Name

- 1. acenaphthene
- 2. acrolein
- 3. acrylonitrile
- 4. benzene
- 5. benzidene
- 6. carbon tetrachloride (tetrachloromethane)

Chlorinated benzenes (other than dichlorobenzenes)

- 7. chlorobenzene
- 8. 1,2,4-trichlorobenzene
- 9. hexachlorobenzene

Chlorinated ethanes (including 1,2-dichloroethane, 1,1,1-trichloroethane and hexachloroethane)

- 10. 1,2-dichloroethane
- 11. 1,1,1-trichloroethane
- 12. hexachloroethane
- 13. 1,1-dichloroethane
- 14. 1,1,2-trichloroethane
- 15. 1,1,2,2-tetrachloroethane
- 16. chloroethane

Chloroalkyl ethers (chloromethyl, chloroethyl and mixed ethers)

- 17. bis (chloromethyl) ether
- 18. bis (2-chloroethy1) ether
- 19. 2-chloroethyl vinyl ether (mixed)

Chlorinated naphthalene

20. 2-chloronaphthalene

LIST OF 129 PRIORITY POLLUTANTS

<u>Chlorinated phenols</u> (other than those listed elsewhere; includes trichlorophenols and chlorinated cresols)

- 21. 2,4,6-trichlorophenol
- 22. parachlorometa cresol
- 23. chloroform (trichloromethane)
- 24. 2-chlorophenol

Dichlorobenzenes

- 25. 1,2-dichlorobenzene
- 26. 1,3-dichlorobenzene
- 27. 1,4-dichlorobenzene

Dichlorobenzidine

28. 3,3'-dichlorobenzidine

<u>Dichloroethylenes</u> (1,1-dichloroethylene and 1,2-dichloroethylene)

- 29. 1,1-dichloroethylene
- 30. 1,2-trans-dichloroethylene
- 31. 2,4-dichlorophenol

Dichloropropane and dichloropropene

- 32. 1,2-dichloropropane
- 33. 1,2-dichloropropylene (1,3-dichloropropene)
- 34. 2,4-dimethylphenol

Dinitrotoluene

- 35. 2,4-dinitrotoluene
- 36. 2,6-dinitrotoluene
- 37. 1,2-diphenylhydrazine
- 38. ethylbenzene
- 39. fluoranthene

LIST OF 129 PRIORITY POLLUTANTS

Haloethers (other than those listed elsewhere)

- 40. 4-chlorophenyl phenyl ether
- 41. 4-bromophenyl phenyl ether
- 42. bis(2-chloroisopropyl) ether
- 43. bis(2-choroethoxy) methane

Halomethanes (other than those listed elsewhere)

- 44. methylene chloride (dichloromethane)
- 45. methyl chloride (chloromethane)
- 46. methyl bromide (bromomethane)
- 47. bromoform (tribromomethane)
- 48. dichlorobromomethane
- 49. trichlorofluoromethane
- 50. dichlorodifluoromethane
- 51. chlorodibromomethane
- 52. hexachlorobutadiene
- 53. hexachlorocyclopentadiene
- 54. isophorone
- 55. naphthalene
- 56. nitrobenzene

<u>Nitrophenols</u> (including 2,4-dinitrophenol and dinitrocresol)

- 57. 2-nitrophenol
- 58. 4-nitrophenol
- 59. 2,4-dinitrophenol
- 60. 4,6-dinitro-o-cresol

Nitrosamines

- 61. N-nitrosodimethylamine
- 62. N-nitrosodiphenylamine:
- 63. N-nitrosodi-n-propylamine
- 64. pentachlorophenol
- 65. phenol

LIST OF 129 PRIORITY POLLUTANTS

Phthalate esters

- 66. bis(2-ethylhexyl) phthalate
- 67. butyl benzyl phthalate
- 68. di-n-butyl phthalate
- **69.** di-n-octyl phthalate
- 70. diethyl phthalate
- 71. dimethyl phthalate

Polynuclear aromatic hydrocarbons

- 72. benzo (a)anthracene (1,2-benzanthracene)
- 73. benzo (a)pyrene (3,4-benzopyrene)
- 74. 3,4-benzofluoranthene
- 75. benzo(k)fluoranthane (11,12-benzofluoranthene)
- 76. chrysene
- 77. acenaphthylene
- 78. anthracene
- 79. benzo(ghi)perylene (1,11-benzoperylene)
- 80. fluorene
- 81. phenanthrene
- 82. dibenzo (a,h)anthracene (1,2,5,6-dibenzanthracene)
- 83. indeno (1,2,3-cd)pyrene (w,e,-o-phenylenepyrene)
- 84. pyrene
- 85. tetrachloroethylene
- 86. toluene
- 87. trichloroethylene
- 88. vinyl chloride (chloroethylene)

Pesticides and metabolites

- 89. aldrin
- 90. dieldrin
- 91. chlordane (technical mixture and metabolites)

DDT and metabolites

- 92. 4,4'-DDT
- 93. 4,4'-DDE(p,p'DDX)
- 94. 4,4'-DDD(p,p'TDE)

LIST OF 129 PRIORITY POLLUTANTS

Endosulfan and metabolites

- 95. a-endosulfan-Alpha
- 96. b-endosulfan-Beta
- 97. endosulfan sulfate

Endrin and metabolites

- 98. endrin
- 99. endrin aldehyde

Heptachlor and metabolites

- 100. heptachlor
- 101. heptachlor epoxide

Hexachlorocyclohexane (all isomers)

- 102. a-BHC-Alpha
- 103. b-BHC-Beta
- 104. r-BHC (lindane)-Gamma
- 105. g-BHC-Delta

Polychlorinated biphenyls (PCB's)

- 106. PCB-1242 (Arochlor 1242)
- 107. PCB-1254 (Arochlor 1254)
- 108. PCB-1221 (Arochlor 1221)
- 109. PCB-1232 (Arochlor 1232) 110. PCB-1248 (Arochlor 1248)
- 111. PCB-1260 (Arochlor 1260)
- 112. PCB-1016 (Arochlor 1016)

Metals and Cyanide, and Asbestos

- 114. antimony
- 115. arsenic
- 116. asbestos (Fibrous)
- 117. beryllium
- 118. cadmium
- 119. chromium (Total)

LIST OF 129 PRIORITY POLLUTANTS

Metals and Cyanide, and Asbestos (Cont.)

- 120. copper
- 121. cyanide (Total)
- 122. lead
- 123. mercury
- 124. nickel
- 125. selenium
- 126. silver
- 127. thallium
- 128. zinc

Other

- 113. toxaphene
- 129. 2,3,7,8-tetra chlorodibenzo-p-dioxin (TCDD)

Table VI-2

PRIORITY POLLUTANT ANALYTICAL QUANTIFICATION AND TREATMENT EFFECTIVENESS CONCENTRATIONS

	Pollutant		Analytical Quantification Concentration (mg/l)(a)	Treatment Effectiveness Concentration (mg/l)(b)
l.	acenaphthene		0.010	0.010
2.	acrolein		0.010	0.100
3.	acrylonitrile		0.010	0.01
4.	benzene		0.010	0.05 - 0.10
5.	benzidine		0.010	0.01
6.	carbon tetrachloride		0.010	0.05
7.	chlorobenzene		0.010	0.025
8.	1,2,4-trichlorobenzene		0.010	0.01
9.	hexachlorobenzene		0.010	0.01
10.	1,2-dichloroethane		0.010	0.1
11.	1,1,1-trichloroethane	1	0.010	0.01
12.	hexachloroethane		0.010	· ·
13.	1,1-dichloroethane		0.010	0.01 0.01
			0.010	
14.	1,1,2-trichloroethane	222	0.010	0.1
15.	1,1,2,2-tetrachloroeth	ane		0.05
16.	chloroethane		0.010	0.01
17.	bis(chloromethyl) ethe		0.010	0.01
18.	bis(2-chloroethyl) eth		0.010	0.01
19.	2-chloroethyl vinyl et	ner	0.010	0.01
20.	2-chloronaphthalene		0.010	0.01
21.	2,4,6-trichlorophenol		0.010	0.025
22.	parachlorometa cresol	•	0.010	0.05
23.	chloroform	•	0.010	0.1
24.	2-chlorophenol		0.010	0.05
25.	1,2-dichlorobenzene		0.010	0.05
26.	1,3-dichlorobenzene	5	0.010	0.01
27.	1,4-dichlorobenzene	1	0.010	0.01
28.	3,3'-dichlorobenzidine		0.010	0.01
29.	1,1-dichloroethylene	<u>i</u>	0.010	0.1
30.	1,2-trans-dichloroethy	lene	0.010	0.1
31.	2,4-dichlorophenol		0.010	0.01
32.	1,2-dichloropropane	!	0.010	0.01
33.	1,2-dichloropropylene		0.010	0.01
34.	2,4-dimethylphenol		0.010	0.05
35.	2,4-dinitrotoluene	!	0.010	0.05
36.	2,6-dinitrotoluene		0.010	0.05
37.	1,2-diphenylhydrazine		0.010	0.05
38.	ethylbenzene	,1	0.010	0.05
39.	fluoranthene	. 1	0.010	0.01
40.	4-chlorophenyl phenyl		0.010	0.01
41.	4-bromophenyl phenyl e		0.010	0.01
42.	bis(2-chloroisopropyl)		0.010	0.01
43.	bis(2-chloroethoxy) me	thane	0.010	0.01

PRIORITY POLLUTANT ANALYTICAL QUANTIFICATION AND TREATMENT EFFECTIVENESS CONCENTRATIONS

	Pollutant	Analytical Quantification Concentration (mg/l)(a)	Treatment Effectiveness Concentration (mg/l)(b)
44.	methylene chloride	0.010	0.10
45.	methyl chloride	0.010	0.01
46.	methyl bromide	0.010	0.01
47.	bromoform	0.010	0.05
48.	dichlorobromomethane	0.010	0.10
49.	trichlorofluoromethane	0.010	0.01
50.	dichlorodifluoromethane	0.010	0.01
51.	chlorodibromomthane	0.010	0.10
	hexachlorobutadiene	0.010	0.01
53.	hexachlorocyclopentadiene	0.010	0.01
54.	isophorone	0.010	0.05
55.	naphthalene	0.010	0.05
56.	nitrobenzene	0.010	0.05
57.	2-nitrophenol	0.010	0.01
58.	4-nitrophenol	0.010	0.05
59.	2,4-dinitrophenol	0.010	0.025
60.	4,6-dinitro-o-cresol	0.010	0.025
61.	N-nitrosodimethylamine	0.010	0.01
62.	N-nitrosodiphenylamine	0.010	0.01
63.	N-nitrosodi-n-propylamine	0.010	0.01
64.	pentachlorophenol	0.010	0.01
65.	phenol	0.010	0.05
66.	<pre>bis(2-ethylhexyl)phthalate</pre>	0.010	0.01
67.	butyl benzyl phthalate	0.010	0.001 - 0.01
68.	di-n-butyl phthalate	0.010	0.025
69.	di-n-octyl phthalate	0.010	0.01
70.	diethyl phthalate	0.010	0.025
71.	dimethyl phthalate	0.010	0.025
72.	benzo(a)anthracene	0.010	0.01
73.	benzo(a)pyrene	0.010	0.01
74.	3,4-benzofluoranthene	0.010	0.01
75.	benzo(k)fluoranthene	0.010	0.01
76.	chrysene	0.010	0.001
77.	acenaphthylene	0.010	0.01
78.	anthracene	0.010	0.01
79.	benzo(ghi)perylene	0.010	0.01
80.	fluorene	0.010	0.01
81.	phenanthrene	0.010	0.01
82.	dibenzo(a,h)anthracene	0,010	0.01
83.	indeno(1,2,3-cd)pyrene	0.010	0.01
84.	pyrene	0.010	0.001 - 0.01
85.	tetrachloroethylene	0,010	0.05
86.	toluene	0.010	0.05

PRIORITY POLLUTANT ANALYTICAL QUANTIFICATION AND TREATMENT EFFECTIVENESS CONCENTRATIONS

•	Pollutant	Analytical Quantification Concentration (mg/l)(a)	Treatment Effectiveness Concentration (mg/1)(b)
92. 93. 94. 95. 96. 97. 98. 99. 100. 101. 102. 103. 104. 105. 106. 107.	trichloroethylene vinyl chloride aldrin dieldrin chlordane 4,4'-DDT 4,4'-DDE 4,4'-DDD alpha-endosulfan beta-endosulfan endosulfan sulfate endrin endrin aldehyde heptachlor heptachlor epoxide alpha-BHC beta-BHC gamma-BHC delta-BHC PCB-1242 PCB-1254		
120. 121. 122.	copper cyanide (c) lead	0.050 0.02 0.050	0.39 0.047 0.08
123. 124. 125. 126. 127. 128.	• =	0.0002 0.050 0.010 0.010 0.010 0.020	0.036 0.22 0.20 0.07 0.34 0.23

PRIORITY POLLUTANT ANALYTICAL OUANTIFICATION AND TREATMENT EFFECTIVENESS CONCENTRATIONS

Analytical Quantification Effectiveness Concentration Concentration (mg/l)(a)

Treatment (mq/1)(b)

Pollutant

2,3,7,8-tetrachlorodibenzo-129. p-dioxin (TCDD)

Analytical quantification concentration was reported with (a) the data (see Section V).

Treatment effectiveness concentrations are based on perfor-(b) mance of lime precipitation, sedimentation, and filtration for toxic metals and activated carbon for toxic organics.

⁽C) Analytical quantification concentration for EPA Method 352.2, Total Cyanide Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020, March 1979.

Table VI-3

PRIORITY POLLUTANT DISPOSITION
LEAD-TIN-BISMUTH FORMING SUBCATEGORY

	Pollutant	Rolling Spent Emulsions	Extrusion Press and Soln. Heat Trt. CCW	Continuous Strip Casting CCW	Semi-Continuous Ingot Casting CCW	Shot Casting CCW	Alkaline Cleaning Spent Baths	Alkaline Cleaning Rinsewater	Total Subcategory
1.	acenaphthene	ND	ND	NA.	ND	ND	ND	ND	ND
2.	acrolein	ND	ND	NA NA	ND	NA	NA.	NA .	ND
3.	acrylonitrile	ND .	ND	. NA	ND	NA.	NA NA	. NA	ND
4.	benzene	ND	NT	NA NA	ND	NA	NA NA	NA NA	NT
5.	benzidine	ND	ND	NA NA	ND	ND	ND	ND	ND
6.	carbon tetrachloride	NT	ND	NA NA	ND	NA	NA.	NA NA	NT
7.	chlorobenzene	ND	ND	NA NA	ND	NA	NA.	. NA	ND
8.	1,2,4-trichlorobenzene	ND	ND	NA	ND	ND	ND	ND ND	ND
9.	hexachlorobenzene	ND	ND	NA /	ND	ND	ND	ND	ND
10.	1.2-dichloroethane	ND	NO.	NA NA	ND ND	NA NA	NA NA	NA NA	ND ND
11.	1.1.1-trichloroethane	NT	- ND	*1.4	ND.	NA	NA NA		TN T
12		ND	ND	NA EN O DE LA	ND	ND	ND	ND	ND
13.	1.1-dichloroethane	ND	ND	NA NA	ND	NA NA	NA NA	NA NA	ND ND
14.	1.1.2-trichloroethane	ND ·	ND .	NA NA	ND ND	NA NA	NA NA	NA NA	ND ND
15.	1.1.2.2-tetrachloroethane	NT	ND	NA NA	ND	NA NA	NA NA	NA NA	NT NT
16.	chloroethane	ND	ND	NA NA	ND ND	NA NA	NA NA	NA NA	ND ND
17.	bis(chloromethyl) ether	ND	ND	NA NA	ND.		NA NA		
18.	bis(2-chloroethyl) ether	ND	ND	NA	ND	- NA		NA	ND
19.	2-chloroethyl vinyl ether	ND ND	ND .	NA .	ND ND	ND	ND	ND	ND
20.	2-chloronaphthalene	ND	ND .	NA ·		NA.	NA	NA NB	ND
21.	2,4,6-trichlorophenol	ND	ND ND	NA NA	ND ND	ИD	ND ND	ND ND	ND
22.	parachlorometa cresol	ND	ND	NA NA	ND	ND	NT NT		ND
23.	chloroform	NT.	NT	NA NA		ND		ND .	NT
24.	2-chlorophenol	ND	ND		ND	NA	NA	NA	NT
25.	1,2-dichlorobenzene	ND ND	ND ND	NA NA	ND	ŇD	ND ND	ND	ND
26.	1,3-dichlorobenzene	ND ND	ND		ND	ND		ND	ND
27.	1,4-dichlorobenzene	ND	ND	NA	ND ND	ND	ND	ND	, ND
28.	3.3'-dichlorobenzidine	ND ND		NA NA	ND	ND	ND	ND .	ND
29.	• •	ND	ND ND	NA VA	ND	ND	ND	ND	ND
30.	1,1-dichloroethylene 1,2-trans-dichloroethylene	ND		NA NA	ND	NA	NA	NA	ND
31.	2.4-dichlorophenol	ND ND	ND	NA	ND	NA	NA	NA	ND
32.	1,2-dichloropropane	ND	ND	NA 	ND	ND	ND	ND	ND
33.			ND	NA	ND	. NA	NA	NA	ND
34.	1,2-dichloropropylene	ND	ND	NA	ND	NA	NA	NA NA	· ND
35.	2,4-dimethylphenol	ND - ND · ····	ND ND	NA .	ND	, <u>N</u> D	ND	. ND	- ND
-	2,4-dinitrotoluene			NA .	ND	ND	ND :	ND	ND
36.	2,6-dinitrotoluene	ND	ND	NA	ND	ND	ИD	ND	- ND
37.	1,2-diphenylhydrazine	ND	ND	NA	ND	ND	ND	ND	ND
38.	ethylbenzene	NT	ND	NA	ND	NA	NA	NA	NT
39.	fluoranthene	ND	ND	NA	ND	ND	ND	ND	ND
40.	4-chlorophenyl phenyl ether	ND	ND	NA	ND	ND	ND	ND	ND
41.	4-bromophenyl phenyl ether	ND	ND	NA	ND	ND	ND	ND	ND
42.	bis(2-chloroisopropyl) ether	ND	ND	NA	ND	ND	ND	ND	ND
43.	bis(2-chloroethoxy) methane	ND	ND	NA	ND	ND	ND	ND	NO

PRIORITY POLLUTANT DISPOSITION LEAD-TIN-BISMUTH FORMING SUBCATEGORY

	Pollutant	Rolling Spent Emulsions	Extrusion Press and Soln. Heat Trt. CCW	Continuous Strip Casting CCW	Semi-Continuous Ingot Casting CCW	Shot Casting CCW	Alkaline Cleaning Spent Baths	Alkaline Cleaning Rinsewater	Total Subcategory
44.	methylene chloride	ДИ	ND	NA	ND	NA	NA	NA	ND
45.	methyl chloride	ND	ND	NA NA	ND	NA.	NA	NA NA	ND
46.	methyl bromide	ND	ND	NA NA	ND	NA.	NA NA	NA	ND
47.	bromoform	ND	ND	NA NA	ND	NA NA	NA NA	NA NA	ND
48.	dichlorobromomethane	ND	ND	NA NA	ND	NA.	NA NA	NA NA	ND
	trichlorofluoromethane	DN	ND	NA NA	ND	NA AN	NA NA	NA NA	ND
49.		ND	ND	NA NA	ND	NA NA	NA NA	NA NA	ND
50.	dichlorodifluoromethane		ND ND	NA NA	ND	NA NA	NA NA	NA NA	ND
51.	chlorodibromomethane	ND					ND ND	ND	ND
52.	hexachlorobutadiene	ND	ND	NA	ND	ND			
53.	hexachlorocyclopentadiene	ND	ND	NA	ND	ND	ND	ND	ND
54.	isophorone	ND	ND	NA	ND	ND	ND	ДŅ	ND
55.	naphthalene	ND	ND	NA	ND	ND	ND	ND	ND
56.	nitrobenzene	ND	ND	NA	ND	ND	ND	ND	ND
57.	2-nitrophenol	ND	ND	NA	ND	ND	ND	ND	ND
58.	4-nitrophenol	ND	ND	NA	ND	ND	ND	ND	ДИ
59.	2,4-dinitrophenol	ND	, ND	NA	ND	ND	ND	ND	ND
60.	4,6-dinitro-o-cresol	ND	ND	NA	ND	ND	ND	ND	ND
61.	N-nitrosodimethylamine	ND	ND	NA	ND	ND	ND	ND	ND
62.	N-nitrosodiphenylamine	ND	ND	NA	ND	ND	ND	ND	ND
63.	N-nitrosodi-n-propylamine	ND	ND	NA	ND	ND	ND	ND	ИD
64.	pentachlorophenol	ND	ND	NA	ND	ND	ND	ND	ND
65.	pheno ì	ND	ND	NA	ND	RG	ND	ND-	SU
66.	bis(2-ethylhexyl) phthalate	ND	ND	NA	ND	ND	RG	ND	SU
67.	butyl benzyl phthalate	ND	ND	NA	ND	ND	ND	ND	ND
68.	di-n-butyl phthalate	ND	ND	NA	ND	ND	ND	ND	ND
69.	di-n-octyl phthalate	ND	ND	NA	ND .	ND	· ND	ND	ND
70.	diethyl phthalate	ND	ND	NA	ND-	ND	ND	ND	ND
71.	dimethyl phthalate	ND	- ND	NA	ND	ND	ND	ND	ND
72.	benzo(a)anthracene	ND	ND	NA	ND	ND	ND	ND	ND.
73.	benzo(a)pyrene	ND	- ND	NA	ND	ND	ND	ND	ND
74.	3.4-benzofluoranthene	ND	ND	NA	ND	ND	ND	, ND	ND
75.	benzo(k)fluoranthene	ND	ND	NA	ND	ND	ND	ND	ND
76.	chrysene	ND	ND	NA	ND	ND	ND	ND	ND
77.	acenaphthylene	ND	ND	NA	ND	ND	ND	ND	ND
78.	anthracene	ND	ND	NA	ND	ND	ND	ND	ND
79.	benzo(ghi)perylene	ND	ND	NA.	ND	ND	ND	ND	ND
80.	fluorene	ND	ND	NA.	ND	ND	ND	ND	ND
81.	phenanthrene	ND	ND	NA NA	ND	ND	RG	ND	SU
82.	dibenzo(a,h)anthracene	ND	ND	NA.	ND	ND	ND	ΝĎ	ND
83.	indeno(1,2,3~c,d)pyrene	ND -	· · · · · ND · · ·	NA	ND	· · ND ·	ND	ND	ND
84.	pyrene	ND	ND	NA:	ND	ND	ND	ND	ND
85.	tetrachloroethylene	ND ND	ND ND	NA NA	NA NA	ND	NA NA	NA NA	ND
	toluene	, ND, .	ND ND	NA NA	NA NA	ND	NA NA	NA NA	ND
86.	cordene	, ND, .	, ND	ΪÄΑ	NA	ND			110

Table VI-3 (Continued)

PRIORITY POLLUTANT DISPOSITION LEAD-TIN-BISMUTH FORMING SUBCATEGORY

	Pollutant	Rolling Spent Emulsions	Extrusion Press and Soln. Heat Trt. CCW	Continuous Strip Casting CCW	Semi-Continuous Ingot Casting CCW	Shot Casting CCW	Alkaline Cleaning Spent Baths	Alkaline Cleaning Rinsewater	Total Subcategory
87.	trichloroethylene	ND	ND	NA	ND	NA	NA	NA	ND
88.	vinyl chloride	ND	ND	NA	ND	NA NA	NA	NA:	ND
89.	aldrin	NA	NA	NA.	NA	NA	NA	NA.	NA
90.	dieldrin	NA	NA	NA	NA	NA	NA	NA	NA
91.	chlordane	NA	NA	NA	NA NA	NA	NA	NA	NA
92.	4,4'-DDT	NA NA	NA	NA	NA NA	NA	NA	NA NA	NA
93.	4.4'-DDE	NA	NA	NA	NA NA	NA	NA	·NA	NA
94.	4,4'-DDD	NA	NA	NA	NA	NA NA	NA.	NA	NA
95.	alpha-endosulfan	NA	NA	NA.	NA NA	NA	NA	NA	NA
96.	beta-endosulfan	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA ·	NA NA
97.	endosulfan sulfate	NA	NA NA	. NA	NA ·	NA	NA	NA NA	NA
98.		NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA
99.	endrin aldehyde	NA	NA	NA	NA	NA	NA	NA	NA
100.	heptachlor	NA	- NA	NA NA	- NA - :	NA:	NA -	NA	NA-
-101.	heptachlor epoxide	NA	NA	NA	NA	NA	NA	NA	NA
102.	alpha~BHC	NA NA	NA NA	NA	NÁ	NA.	NA	NA	. NA
103.	beta-BHC	NA	NA	NA	NA	NA	NA	NA NA	NA
104.	gamma-BHC	NA	NA	NA	· NA	NA NA	NA	NA	NA
105.	delta-BHC	NA	NA	NA	NA NA	NA NA	NA	NA NA	NA NA
106.	PCB-1242	NA	NA.	NA	- NA	NA	NA NA	NA	NA
107.	PCB-1254	NA :	NA	NA NA	NA	NA	NA	NA	NA
108.	PCB-1221	NA	NA	NA	NA NA	NA.	NA	NA NA	NA NA
109.	PCB-1232	NA .	NA	NA	NA	NA	NA.	NA	NA NA
110.	PCB-1248	NA	NA	· NA	. NA	NA	NA	NA .	NA
111.	PCB-1260	NA	NA	NA	, NA	NA.	NA	NA NA	NA
112.	PCB-1016	NA	NA	NA	NA	NA	NA	NA.	NA NA
113.	toxaphene	NA	NA.	NA	NA	NA	NA.	NA ·	. NA
114.	antimony	ND	ND	NA	NT	RG	RG	RG	RG
115.	arsenic	ND	ND	NA	NT	NT	, NT	NT	NT
116.	asbestos	NA ·	NA.	NA	NA NA	NA	NA.	NA	NA
117.	beryllium	ND -	NT	.ND	ND	ND	ND	ND	NT
118.	cadmium	ND	NT	NT	' ND	ND	ND	ND	NT
119.	chromium	ND	RG	NT	ND	ND	ND	ND	SÜ
120.	copper	NT	NT	RG	. ND	ND	NT	NT*	รับ
121.	cyanide	NA .	RG	NA	· ND	ND	ND	ND	SU-
122.	lead	RG	RG	RG	RG	RG	RG	RG	RG
123.	mercury	ND	ND	NA NA	ND	NT	ND	NT	NT NT
	nickel	NT	NT NT	TN	ND	ND	ND	ND	NT*
125.	selenium	ND	ND	NA	ND	ND	ND	ND	ND
126.	silver	ND	ND	NA	ND	ND	ND	ND	NP
	thallium	ND	ND	NA .	ND .	ND.	ND	ND ND	ND
128.	zinc	RG	ND	RG	NT	NT	NT	NT*	ŞÚ
129.	2,3,7,8-tetrachlorodibenzo-	NA	· NA	NA NA	NA NA	NA	NA	· NA	NA
•	p-dioxin (TCDD)							•	

PRIORITY POLLUTANT DISPOSITION LEAD-TIN-BISMUTH FORMING SUBCATEGORY

*These pollutant parameters could also have been eliminated from further consideration due to presence in a small number of sources (SU).

Key: NA - Not Analyzed

ND - Never Detected

NQ - Never Found Above Their Analytical Quantification

NT - Detected Below Levels Achievable by Treatment SU - Detected in a Small Number of Sources

RG - Considered for Regulation

1258

	Pollutant	Surface Trt. Spent Baths	Surface Trt. Rinsewater	Total Subcategory
1.	acenaphthene	NA	ND	ND
2.		NA	ND	. ND
3.	acrylonitrile	NA NA	ND	ND
4.	benzene	NA NA	ND	ND
5.	benzidine	NA NA	ND	ND
6.	carbon tetrachloride	NA .	ND	ND
7.	chlorobenzene	NA .	ND	ND
8.	1,2,4-trichlorobenzene	NA NA	ND	ND
9.	hexachlorobenzene	NA NA	ND	ND
10.	1,2-dichloroethane	NA .	ND	ND
11.	1,1,1-trichloroethane	' NA	NT	NT
12.	hexachloroethane	NA NA	ND	ND
13.	1,1-dichloroethane	NA	ND -	ND
14.		NA NA	ND	ND
15.	1,1,2,2-tetrachloroethane	NA .	ND	ND
16.	chloroethane	NA NA	ND ND	ND
17.	bis(chloromethyl) ether	NA NA		
18.	bis(2-chloroethyl) ether	NA NA	ND :	ND ND
19.		the state of the s	ND	
20.	2-chloroethyl vinyl ether 2-chloronaphthalene	NA NA	ND	ND
21.		NA NA	ND	ND
22.	2,4,6-trichlorophenol	, NA	ND	ND
23.	parachlorometa cresol	NA NA	ND	ND
24.	chloroform	NA	ND .	ND
25.	2-chlorophenol	NA .	ND	ND
	1,2-dichlorobenzene	NA	ND	ND
26.	1,3-dichlorobenzene	NA NA	ND	ND
	1,4-dichlorobenzene	NA NA	ND	ND
28.	3,3'-dichlorobenzidine	NA	ND	ND
	1,1-dichloroethylene	NA	ND	ND
30.	1,2-trans-dichloroethylene	NA .	ND	ND
	2,4-dichlorophenol	NA	ND	ND
32.	1,2-dichloropropane	NA	ND	ND
33.	1,2-dichloropropylene	NA.	- ND	ND
34.	2,4-dimethylphenol	NA	ND	ND
35.	2,4-dinitrotoluene	NA	ND	ND.
	2,6-dinitrotoluene	NA	ND	ND - ,
37.	1,2-diphenylhydrazine	NA	ND ·	ND
38.	ethylbenzene	NA	ND	ND .
39.	fluoranthene	NA	ND	ND
40.	4-chlorophenyl phenyl ether	NA	ND	ND
41.	4-bromophenyl phenyl ether	NA	ND	ND
42.	bis(2-chloroisopropyl) ether	NA	ND	ND
43.	bis(2-chloroethoxy) methane	NA	ND	ND

	Pollutant	Surface Trt. Spent Baths	Surface Trt. Rinsewater	Total Subcategory
44.	methylene chloride	NA	NT	NT
45.	methyl chloride	NA	ИD	ND
46.	methyl bromide	NA	ИD	ND
47.	bromoform	NA	ND	ND
48.	dichlorobromomethane	NA	ND	ND
49.	trichlorofluoromethane	NA	ЙD	ND
50.	dichlorodifluoromethane	NA	ND	ND
51.	chlorodibromomethane	NA	ND	ND
52.	hexachlorobutadiene	NA	ND	ND ND
53.	hexachlorocyclopentadiene	NA	ND	
54.	isophorone	NA	ND	ND ND
55.	naphthalene	NA	ND	
56.	nitrobenzene	NA	ND	ND NT
57.	2-nitrophenol	NA	NT	ND
58.	4-nitrophenol	NA	ND	ND ND
59.	2,4-dinitrophenol	NA	ND	ND ND
60.	4,6-dinitro-o-cresol	NA	ND	ND
61.	N-nitrosodimethylamine	NA	ND	ND
62.	N-nitrosodiphenylamine	NA	ND	ND
63.	N-nitrosodi-n-propylamine	, NA	ND ND	ND
64.	pentachlorophenol	NA	NT	NT
65.	phenol	NA	ND	ND
6 6.	bis(2-ethylhexyl) phthalate	NA	ND	ND
67.	butyl benzyl phthalate	NA	ND ND	ND
68.	di-n-butyl phthalate	NA	ND	ND
69.	di-n-octyl phthalate	NA NA	ND	ND
70.	diethyl phthalate	NA NA	ND	ND
71.	dimethyl phthalate	NA NA	ND	ND
72.	benzo(a)anthracene	NA NA	ND	ND
73.	benzo(a)pyrene	NA	ND	ND
74.	3,4-benzofluoranthene	NA	ND	ND
75.	benzo(k)fluoranthene	NA	ND	ND
76.	chrysene	NA NA	ND	ND
77.	acenaphthylene	NA NA	ND	ND
78.	anthracene	NA NA	ND	ND
79.	benzo(ghi)perylene	NA.	ND	ND
80.	fluorene	NA	ND	ND
81.	phenanthrene dibenzo(a,h)anthracene	NA NA	ND	ND
82.	indeno(1,2,3-c,d)pyrene	NA NA	ND	ДŅ
83.		NA	ND	ND
84.	pyrene tetrachloroethylene	NA	ND	ND
85. 86.	toluene	NA	ND	ŊD

Table VI-4 (Continued)

*	Pollutant	Surface Trt. Spent Baths	Surface Trt. Rinsewater	Total Subcategory
	Politicant	spenir barns	Killsewatel	Subcategory
87.	trichloroethylene	NA ~	ND	ND
88.	vinyl chloride	NA	ND	ND
89.	aldrin	NA	NA	ŅA
90.	dieldrin	NA	NA	NA
91.	chlordane	NA .	NA	` NA
92.	4,4'-DDT	NA	NA	. NA
93.	4,4'-DDE	NA	NA	NA
94.	4,4'-DDD	. NA	. NA	NA
95.	alpha-endosulfan	NA NA	NA	NA
96.	beta-endosulfan	NA	NA	NA
97.	endosulfan sulfate	NA	NA	NA NA
98.	endrin	NA NA	NA	NA
99.	endrin aldehyde	NA	NA	NA
100.	heptachlor	NA	NA	NA
101.	heptachlor epoxide	· NA	NA	. NA
102.	alpha-BHC	NA	NA	NA
103.	beta-BHC	NA	NA	NA
104.	gamma-BHC	NA	NA	NA 🕖
105.	delta-BHC	NA	NA -	. NA
106.	PCB-1242	NA	NA -	NA
107.	PCB-1254	NA	NA	NA
108.	PCB-1221	NA	NA	NA -
109.	PCB-1232	NA NA	NA	NΑ
110.	PCB-1248	NA	NA	, NA
111.	PCB-1260	· NA	NA .	NA
112.	PCB-1016	· NA	NA	NA
113.	toxaphene .	NA	NA	NA
114.	antimony	NT	ND	NT
115.	arsenic .	ND	ND	ND
116.	asbestos	NA	NA	NA
117.	beryllium	R G	NT	SU
118.	cadmium	ND	ND	ND
119.	chromium	RG	R G	RG
120.	copper	ND ·	ND	ND
121.	cyanide	RG	ND	รบ
122.	lead	RG	ND	SU
123.	mercury	NT	NT	NT
124.	nickel	ND	ND	ND
125.	selenium	ND	ND .	ND
126.	silver	NT	ND	· NT
127.	thallium	ND	ND	ND T
128.	zinc	RG	RG	RG
129.	2,3,7,8-tetrachlorodibenzo-	NA	· NA	NA
	p-dioxin (TCDD)			

- Key: NA Not Analyzed
 - ND Never Detected
 - NQ Never Found Above Their Analytical Quantification NT Detected Below Levels Achievable by Treatment

 - SU Detected in a Small Number of Sources
 - RG Considered for Regulation

Table VI-5
PRIORITY POLLUTANT DISPOSITION
NICKEL-COBALT FORMING SUBCATEGORY

	Pollutant	Rolling Spent Emulsions	Rolling CCW	Extrusion Press and Soln. Heat - Trt. CCW	Extrusion Press Hydraulic Fluid Leakage	Forging CCW	Tube Reducing Spent Lubricants	Powder Production Wet Atomization Wastewater	Vacuum Melting Steam Condensate
1.	acenaphthene	ND	ND	ND	ND	ND	ND	NA	ND
2.	acrolein	ND	ND	ND	ND -	- ND	ND	NA	ND
З.	acrylonitrile	ND	ND	ND	, ND	ND	ND	NA	ND
4.	benzene	ND	ИĎ	· ND	ND	ND	ND	NA "	ND
5.	benzidine	ND '	ND	NQ	RG ·	ND	ND	· NA	NQ
6.	carbon tetrachloride	ND	ND	ND	ND	ND	ND	NA NA	ND
7.	chlorobenzene	ND ,	ND	ND .	ND	ND	ND	NA	ND
8.	1,2,4-trichlorobenzene	ND .	ИD	ND	ND	ND	ND .	NA	ND
9.	hexachlorobenzene	ND	, ND	ND	ND	ND _	ND ND	. NA	ДN
10.	1,2-dichloroethane	ND ND	ND	ND	ND	ND	ND	NA	ND
11.	1,1,1-trichloroethane	RG	RG	ND	RG	RG	RG	NA NA	. NT
. 12.	hexachloroethane	ND	ND	ND -	NT	ND	ND	NA .	NT
13.	1,1~dichloroethane	ND ND	SU	ND	NT	ND	ND .	NA NA	ND
14. 15.	1,1,2-trichloroethane	ND ND	.ND ND	ND ND	ND ND	ΝD	ND ND	NA NA	ND ND
16.	1,1,2,2-tetrachloroethane	, ND	ИD	ND.	ND ND	ND		NA 1	ND ND
17.	chloroethane bis(chloromethyl) ether	ND ND	ND ND	ND.	ND ND	ND .	ND ND	NA NA	¹ ND ⁻
18.	bis(2-chloroethy1) ether	. ND .	. ND	ND UD	ND ND	ND ND	ND UN	NA NA	ND
19.	2-chloroethyl vinyl ether	ND .	ND	ND ·	ND ND	ИÐ	ИD	NA NA	ND ND
20.	2-chloronaphthalene	ND ND	ND	ND ·	NĎ	ND ND	ND ND	NA NA	ND UN
21.	2,4,6-trichlorophenol	ND	ND	ND	ND ND	ND	ND ND	NA NA	ND
22.	parachlorometa cresol	ND	NT*	ND	RG	ND	ND	NA NA	ND UN
23.	chloroform	ND	ND	ND	ND	NT	ND	NA NA	ND.
24.	2-ch1oropheno1	ND .	ND	ND	ND	ND	ND .	NA NA	ND I
25.	1,2-dichlorobenzene	, ND	ND	ND	ŇD	ND	ND	NA NA	ND
26.	1,3-dichlorobenzene	. ND	ND.	ND	ND "	ND	ND ,	NA NA	ND
27.	1,4-dichlorobenzene	ND	ND	ND	ND	ND	ND	ŇÁ	ND
28.	3,3'-dichlorobenzidine	ND ND	ND	ND	RG	ND	ND	NA NA	ND
29.	1,1-dichloroethylene	- ND	NT*	. ND	ND	ND	ND	NA	ND
30.	1,2-trans-dichloroethylene	ND	ND	. ND	, ND	ND	ND ·	· NA	ND
31.	2,4-dichlorophenol	ND	ND	ND	ND	ND	ND .	NA 1	ND
32.	1,2-dichloropropane	ND	ND	ND	ND	ND	ND	NA	ND
33	1,2-dichloropropylene	ND	- ND		ND	ND	· · · · · · · · · · · · · · · · · · ·	NA	- ND -
34.	2,4-dimethy1pheno1	ΝĎ	NT*	ND .	ND	ND	ND	NA Ţ	ND
35.	2,4-dinitrotoluene	ND	ND	ND .	ND	ND	ND	NA ¹	ND
36.	2,6-dinitrotoluene	ND	· ND	. NT	RG	, ND	ND	NA	· NT
37.	1,2-diphenylhydrazine	ND	ND	ŃD	NT	ND	ND	NA	ND
38.	ethy1benzene	ND	ND	ND .	ND	ND	ND	NA	ND
39.	fluoranthene	ND ND	ND	ND	NT	ND	ND	NA	ND
40.	4-chlorophenyl phenyl ether	ND	ND	ND	ND	ND	ND ,	NA	ND .
41.	4-bromophenyl phenyl ether	ND	ND ·	ND	· ND	ND	ΝĐ	NA	ND .
42.	bis(2-chloroisopropyl) ether		ND	ND	ND	ND	ND	NA	ND
43.	bis(2-chloroethoxy) methane	ND	ND	ND	NT	ND	ND	NA NA	ΝD

Table VI-5 (Continued)

PRIORITY POLLUTANT DISPOSITION NICKEL-COBALT FORMING SUBCATEGORY

				Extrusion	Extrusion		Tube	Powder	Vacuum
		Rolling	Dallia.	Press and	Press	C/	Reducing	Production	Melting
	Pollutant	Spent Emulsions	Rolling CCW	Soln. Heat - Trt. CCW	Hydraulic	Forging	Spent	Wet Atomization	Steam
	Politant	EMUISTORS	CCW	- Irt. CCW	Fluid Leakage	CCW	Lubricants	Wastewater	Condensate
44.	methylene chloride	RG	su	ND	ND	NT	RG	NA ·	ND
45.	methyl chloride	ND.	ND	ND	ND	ND	ND	NA	ND
46.	methyl bromide	ND	ND	ND	ND	ND	, ND	NA	ND
47.	bromoform	ND	ND	ND	ND	ND	ND	NA	ND
48.	dichlorobromomethane	ND	ND	ND	ND	ND	ND	NA	ND
49.	trichlorofluoromethane	ND	ND	ND	ND	ND	ND	NA	ND
50.	dichlorodifluoromethane	ND	ND	ND	ND	ND	ND	NA	ND
51.	chlorodibromomethane	ND	ND	ND	ND	ND	ND	NA ,	ND
52.	hexachlorobutadiene	ND	ND	ND	ND	ND	ND	NA	ND
53.	hexachlorocyclopentadiene	ND	ND	ND	ND	ND	ND	NA	ND
54.	isophorone	ND	ND	ND	ND	ND	ND	NA	ND
55.	naphthalene	RG	SU	ND	ΝT	ND	ND	NA	NT
-56.	nitrobenzene	ND -	ND	ND	ND	ND	ND	NA	ND
57.	2-nitrophenol	ND	ND	ND	ND	ND	ND ·	NA	ND
58.	4-nitrophenol	ND	ND	ND	ND	ND	ND	NA -	ND
59.	2,4-dinitrophenol	ND	ND	ND	ND	ND	. ND	NA	ND -
60.	4,6-dinitro-o-cresol	ND	ND	ND	ND	ND	ND	NA	ND
61.	N-nitrosodimethylamine	ND	ND	NQ	NT	ND	ND	NA .	ND
62.	N-nitrosodiphenylamine	ND	ND	ND	ND	ND	R G	NA	ND
63.	N-nitrosodi-n-propylamine	ND	ND	SU	SU	ND	ND	. NA	TS
64.	pentachlorophenol	RG	ND	ND	ND	ND	ND	NA	ND
65.	phenol	RG	SU	ND	NQ	ND	ND	NA	ND
66.	bis(2-ethylhexyl) phthalate	ND	SU	NT	NŤ	NT	ND	NA	NT
67.	butyl benzyl phthalate	ND	NT	ND	NT	ND	ND	NA	ND
68.	di-n-butyl phthalate	ND	NT	ND	ND	ND	ND	NA	. ND
69.	di-n-octyl phthalate	ND	ND	NT	ND	ND	ND	. NA	ND
70.	diethyl phthalate	ND	ND	ND	NT	. ND	ND	NA	NQ
71.	dimethyl phthalate	ND	ND	ND	NT	ND	ND	NA ·	ND
72.	benzo(a)anthracene	- ND	ND	ND	- NQ	ND		NA	ND
73.	benzo(a)pyrene	ND	ND	ND	RG	ND	ND	NA	ND
74.	3,4-benzofluoranthene	ND	ND	ND	. ND	ND	ND	NA	ND
75.	benzo(k)fluoranthene	ND	ND	, ND	NQ	ИD	ND	NA	ND
76.	chrysene	ND	ND	ND	NQ	ND	· ND	NĂ	ND
77.	acenaphthylene	ND	ND	ND	ND	ND	ND	NA NA	ND
78.	anthracene	. ND	ND	ND	NT	ND	. ND	NA	ND -
79.	benzo(ghi)perylene	ND	ND	· ND	ND ·	ND	ND	NA	ND
80.	fluorene	ND	ND	ND	ND	ND	ND	NA	ND
81.	phenanthrene	RG	ND	ND	NT	ND	ND -	NA	ND
82.	dibenzo(a,h)anthracene	ND	ND ND	ND	ND	ND	ND	NA	ND
83.	indeno(1,2,3-c,d)pyrene	ND	ND	ND	NT	ND	· ND	NA .	ND
84.	pyrene	ND	ND	ND	· NT	ND	ND	NA	ND
85.	tetrachloroethylene	.ND	ND	- <u>-</u> - ND	ND	ND	ND	NA T	ND
86.	toluene	ND	ND	ND	ND .	NT	ND	NA	ND
	•								

Table VI~5 (Continued)

	Pollutant	Rolling Spent Emulsions	Rolling CCW	Extrusion Press and Soln. Heat - Trt. CCW	Extrusion Press Hydraulic Fluid Leakage	Forging CCW	Tube Reducing Spent Lubricants	Powder Production Wet Atomization Wastewater	Vacuum Melting Steam Condensate
87.	trichloroethylene	ND	ND	ND	ND	ДИ	ND	NA	ND
88.	vinyl chloride	ND	ND	· ND	ND .	ПD	ND	NA.	ND
89.	aldrin	NA NA	NA	NA	NA	, NA	NA	NA	NA
90.	dieldrin	NA	NA .	NA	NA	NA	NA	· NA	NA
91.	chlordane	NA	NA	NA	NA	NA	· NA	NA	NA
`∘ 92 .	4,4'-DDT	NA	NA	. NA	NA	NA	NA	ŊA	NA
93.	4,4'-DDE	NA ·	NA	NA .	NA ·	NA	NA	NA	· NA
94.	4,4'-DDD	. NA	NA	NA	NA	NÄ	NA	NA	NA .
95.	alpha-endosulfan		NA:	NA	THE HALLET IN	: NA	Lagara NA agraga	u MA	NA NA
96.	beta-endosulfan	NA	NA	NA NA	NA	NA	NA	NA	NA
97.	endosulfan sulfate	· NA	NA	NA	N:A	NA ,	NA.	NA .	NA
98.	endrin	NA	NA	NA .	ÑΑ	NA	NA	· · NA	· NA
99.	endrin ældehyde	NA	NA	. NA	NA	NA-	NA	NA NA	, NA
100.	heptachlor	NA	NA	. NA	NÁ	NA	NA	NA .	NA.
101.	heptachlor epoxide	- NA	NA .	NA .	. NA	NA	NA	NA NA	NA
102.	alpha-BHC	- NA	- NA	NA	NA	. NA	NA	NA	NA
103.	beta-BHC	NA	NA	NA	NA -	NA	NA	NA	NA
104.	gamma-BHC	NA ·	NA	NA	NA	NA	NA	NA	· NA
105.	.delta-BHC	NA	NA	NA	NA	NA .	NA	NA "	.NA
106.	PCB-1242	NA	NA	· NA	NA ·	NA	NA	, NA	, ŃA
107.	PCB-1254	NA	NA	NA .	NA NA	NA	NA	NA	NA
108.	PCB-1221	NA	NA	NA	NA	NA	. NA	. NA .	NA
109.	PCB-1232	NA .	NA .	NA	NA	NA	NA	NA	NA
110.	PCB-1248	NA .	NA	NA	NA	NA	NA	NA	N:A
111.	PCB-1260	. NA	NA	NA	NA	NA	NA	NA	N:A
112.	PCB-1016	NA	NA	NA	. NA	NA	NA	NA	NA
113.	toxaphene	NA	. NA	NA ·	NA	NA	, NA	NA	. NA
114.	antimony	NT	NT	ND	ND	NT	ND	ND	, ND
115.	arsenic	NT	NT*	ND	ND	NT	NT	ND	N.D
116.	asbestos	NA	NA	NA	NA	NA	NA	NA	NA
117.	beryllium	ND	NT	ND	- ND	NT	ND -	· ND	ND
1.18		RG		ND_	ND	RG	ND	ND	ND
119.	chromium	RG	RG ·	RG	ND	RG	RG	RG	ND
120.	copper	RG	SU	NT	RG	RG	RĞ	RG	' NT
121.	cyanide	ND ·	ND	.· ND	ND	ND	ND	ND	ND
122.	ì ead	RG	ŞÜ	. ND	RG	RG	RG	ND	ND
123.	mercury	. ND	ND	ND	ND	ND .	ND .	ND	ND
124.	nickel .	RG	RG	NT .	RG	RG	RG	RG	ND
125.	selenium	ND	ND	ND	ND	ND	ND	ND	ND
126.	silver	NT	ND	ND	ND	ND.	NT	NT	ND
127.	thallium	ND	ND	ND .	ND	ND	ND	NT	ND
128.	zinc	RG	RG	NT	RG	NT	. RG	· RG ···	NT
129.	2,3,7,8-tetrachlorodibenzo	- NA	NA	NA	NA	NA	NA	NA .	NA
	p-dioxin (TCDD)								

Table VI-5 (Continued)

	Pollutant	Annealing and Soln. Heat Trt. CCW	Surface Trt. Spent Bath	Surface Trt. Rinsewater	Ammonia Rinsewater	Alkaline Cleaning Spent Baths	Alkaline Cleaning Rinsewater	Molten Salt Rinsewater	Sawing or Grinding Spent Emulsions
1.	acenaphthene	ND	NA	ND	ND	ND	ND	NA	SU
2.	acrolein	ND	NA	ND	. ND	ND	ND	NA	ND
3.	acrylonitrile	ND	NA	ND	ND	ND	ND	NA	ND
4.	benzene	ND	NA	ND	ND	ND	ND	NA	NT*
5.	benzidine	ND	NA	RG	ND	ND	ND	NA	ND
6.	carbon tetrachloride	ND	NA	ND	ND	ND	ND	NA	ND
7.	chlorobenzene	· ND	NA	. ND	ND	ND	ND	NA	ND
8.	1,2,4-trichlorobenzene	ND	NA	ND -	ND	ND	ND	NA	ND
9.	hexachlorobenzene	ND	NA	. ND	ND	ND	ND	NA	ND
10.	1,2-dichloroethane	ND	NA	ND	ND	ND	ND	NA	ND
11.	1,1,1-trichloroethane	ND	NA	RG	ND	ND	ND	NA	RG
12.	hexachloroethane	ND	NA	NT	ND	ND	ND	NA	ND
13.	1,1-dichloroethane	ND	· NA	ND	۱ ND	ND	ND	NA	SU
14.	1,1,2-trichloroethane	ND	NA	ND	ND	ND	ND	NA	ND
15.	1,1,2,2-tetrachloroethane	ND	NA	ND	ND	ND	ND	NA	ND
16.	chloroethane	ND .	NA	ND	ND	ND	ND	· NA	ND
17.	bis(chloromethyl) ether	ND	NA	ND	ND	ND	ND	NA	ND
18.	bis(2-chloroethyl) ether	ND	NA	ÑD	ND	ND	ND	NA	ND
19.	2-chloroethyl vinyl ether	ND	NA	ND	ND	ND	ND	NA	ND
20.	2-chloronaphthalene	ND	NA	ND	ND	ND	ND	NA	ND
21.	2,4,6-trichlorophenol	ND	NA	ND	ND	ND	ND	NA	ND
22.	parachlorometa cresol	ND	NA	ND	ND	ND	ND	NA	SU
23.	chloroform	ND	NA	ND	ND	ND	ND	. NA	ND .
24.	2-chlorophenol	ND	NA	ND	ND	ND	ND	NA	ŊD
25.	1,2-dichlorobenzene	ND	NA	ND	ND	ND	. ND	NA	ND
26.	1,3-dichlorobenzene	ND	NA	ND	ND	ND	ND	NA	ND
27.	1,4-dichlorobenzene	ND	NA	ND .	ND ·	ND ·	ND	NA	ND
28.	3,3'-dichlorobenzidine	ND	NA	ND	ND	ND	ND	NA	ND
29.	1,1-dichloroethylene	ND	NA	ND	ND .	ND	. ND	NA	ND
30.	1,2-trans-dichloroethylene	ND	NA	ND	ND	ND	. ND	NA	ND
31.	2,4-dichlorophenol	ND	NA	ND	ND	ND	` ND	NA	ND
32.	1,2-dichloropropane	ND	NA	ND	ND	ND	ND	NA	ND
33.	1,2-dichloropropylene	ND	NA	ND	ND	ND	ND	NA	NĐ
34.	2,4-dimethylphenol	ND	NA	ND	ND	ND	ND	NA	SU
35.	2,4-dinitrotoluene	ND	NA	· ND	ND	[®] ND	ND	NA	ND
36.	2,6-dinitrotoluene	ND	NA .	NT	ND	ND	ND	NA .	ND
37.	1,2-diphenylhydrazine	ND ·	NA .	ND	ND	ИĎ	ND	NA.	ŊΤ
38.	ethylbenzene	ND	. NA .	ND	ND .	ND	ND	NA	N.D
39.	fluoranthene	ND	NA	ND	ND	ND	ND	NA	SU
40.	4-chlorophenyl phenyl ether	ND	NA	ND	ND	ND	ND	NA	ND
41.	4-bromophenyl phenyl ether	ND	NA	ND	ND	ND	ND	NA	ND
42.	bis(2-chloroisopropyl) ether	ND	NA -	ND	ND	ND	· · ND	NA NA	ND ·
43.	bis(2-chloroethoxy) methane	ND	NA	NQ	ND	ND	ND	NA _:	ND

Table VI-5 (Continued)

, -		W	Annealing	Surface Trt.	Surface		Alkaline Cleaning	Alkaline	Molten	Sawing or Grinding
		Pollutant	and Soln. Heat Trt. CCW	Spent Bath	·Trt. Rinsewater	Ammonia Rinsewater	Spent Baths	Cleaning Rinsewater	Salt Rinsewater	Spent Emulsions
•	44.	methylene chloride	RG	NA .	NĎ	RG	RG	NT	NA	RG
	45.	methyl chloride	ND	NA	ND	ND	ND	ND	NA	, ND
	46.	methyl bromide	, ND	NA	ND .	ND	ND	ND	NA .	ND
	47.	bromoform	ND	NA	ND	ND	ND	. ND	NA	ND
•	48.	dichlorobromomethane	ND	NA	ND	ND	ND	ND	NA	ND
	49	trichlorofluoromethane		INA		ND	ND	.N.D,		: ND
	50.	dichlorodifluoromethane	ND	NA ·	ND	ND	ND	ND	NA	ND
	51.	chlorodibromomethane	ND	NA	- ND	· ND	ND	ND `	, NA ,	ND
	52.	hexachlorobutadiene	, ND	NA	ND	ND	ND	ND	NA	ND
	53.	hexachlorocyclopentadiene	ND	NA	ND `	ND	ND . ;	- ND	NA	ND .
	54.	isophorone	ND ,	NA	ND į	ND	ND	ND	NA	ND
	55.	naphthalene	ND	NA	NT	ND	ND	ND	NA	SU
-	56.	nitrobenzene	, ND	NA .	ND	ND	ND	ND	NΆ	ND .
	57.	2-nitrophenol	. ND	NA	ND	ND	ND	ND	NA -	SU
	58.	4-nitrophenol :	ND	NA	ND	ND	ND	ΝŤ	N [.] A	Su
	. 59.	2,4-dinitrophenol	· ND	NA	ND	ND .	ND	ND	N:A	ND
	60.	4,6-dinitro-o-cresol	, ND	. NA .	ND	, ND	ND	ND	NA	SU
	61.	N-nitrosodimethylamine	ND	NA ·	NT	ND	· ND	ND	NA	ND
	62.	N-nitrosodiphenylamine	ND	NA	RG .	ND	ND	ND	NA	ND
	63.	N-nitrosodi-n-propylamine	ND	NA	SU	ND	ND	ND	NA	. ND
٠.	64.	pentachlorophenol ·	. ND	NA	ND	ND	ND	ND	NA	SU .
	65.	phenol	ND	NA	ND	ND	ND.	. NT*	N·A·	RG
	66.	bis(2-ethylhexyl) phthalate	NT	NA	NT .	ND	ND	NΤ	NA	รบ
	67.	butyl benzyl phthalate	ND	NA	NΤ	ND	- ND	ND	NA	ND
	68.	di-n-butyl phthalate	ND	NA:	ND	RG	ND	ND _	NA	NT
	69.	di-n-octyl phthalate	ND	NA ·	ND	ND	ND	ND	NA	NT
	70.	diethy! phthalate	ND	NA	NQ	ND	ND	ND	NA	ND
	71.	dimethyl phthalate	, ND	NA	NT	ND	ND ·	ND .	NA	ND
	72.	benzo(a)anthracene	ND	NA	ND	ND	ND	ND	NA	ND
	73.	benzo(a)pyrene	ND	NA	ND	ND	ND	ND	NA	ND
	74.	3,4-benzofluoranthene	ND	NA	ND.	ND	ND	ND.	NA	ND
-	75.	benzo(k)fluoranthene	ND	NA	ND	ND	ND	ND	NA	ND
	76.	chrysene	· ND	NA	ND	ND	ND	ND	NA ·	,ND
	77.	acenaphthylene	. ND	NΑ	ND	ND .	ND	ND	, NA	NT
	78.	anthracene	ND	NA	ND	ND	ND	ND	NA	ND
	79.	benzo(ghi)perylene	ND	NA	ND	ND	ND	ND	NA	ND
		fluorene	ND	NA	ND	ND	- ND	ND	NA	Su
	81.	phenanthrene	ND	NA	NT	ND	ND	~ND	NA	· RG
	82.	dibenzo(a,h)anthracene	ND	NA	ND	ND	ND	ND	NA	ND
	83.	indeno(1,2,3-c,d)pyrene	ND	NA	ND	ND	, ND	ND	NA .	ND
	84.	pyrene	ND .	NA	ND	ND	; ND	ND .	NA	SU
	85.	tetrachloroethylene	ND	NA	ND	ND	ND	ND	NA	ΩИ
-	86.	toluene	ŃD	NA	ND	ND	ND.	ND	N:A	ПN
			•							

Table VI-5 (Continued)

	Pollutant	Annealing and Soln. Heat Trt. CCW	Surface Trt. Spent Bath	Surface Trt. Rinsewater	Ammonia Rinsewater	Alkaline Cleaning Spent Baths	Alkaline Cleaning Rinsewater	Molten Salt Rinsewater	Sawing or Grinding Spent Emulsions
87.	trichloroethylene	ND	NA	ND	ND	ND	ND	NA	ND.
88.	vinyl chloride	ND	NA	ND	ND	ND	ND	NA	ND
89.	aldrin	NA ,	NA	NA	NA	NA	NA	NA	NA
90.	dieldrin	NA ´	NA	NA	NA	NA	NA	NA	NA
91.	chlordane	NA	NA .	NA	NA	NA	NA	NA	NA
92.	4,4'-DDT	NA	NA	NA	NA	NA	NA	NA	NA
93.	4,4'-DDE	NA	NA	NA	NA	NA .	NA	NA	NA
94.	4,4'-DDD	. NA	NA	NA "	NA	NA	NA	NA	NA
95.	alpha-endosulfan	NA	NA	NA	NA	NA	NA	· NA	NA
96.	beta-endosulfan	NA	NA	NA	NA	NA	NA	NA NA	NA
97.	endosulfan sulfate	NA	NA	NA	NA	NA	N:A	NA	NA
98.	endrin	NA	NA	NA	NA	NA	- NA	NA	NA
99.	endrin aldehyde	NA	N-A	NA	NA	NA	NA	NA	NA
100.	heptachlor	NA	NA	NA	NA	NA	NA	· NA	NA
101.	heptachlor epoxide	NA	NA	NA	NA	NA	NA	NA	NA
102.	alpha-BHC	NA	NA	NA	NA	NA	NA	NA	NA
103.	beta-BHC	NA	NA	NA	NA	NA	NA	ŇA	. NA
104.	gamma-BHC	NA	NA	NA	NA	NA	NA	NA	N:A
105.	delta-BHC	NA	NA	NA	NA	NA	NA .	NA	NA
106.	PCB-1242	NA	NA	· NA	NA	NA	NA	N.A	NA
107.	PCB-1254	NA	NA	NA	NA	NA	NA	NA	NA
108.	PCB-1221	NA	NA	- NA	NA	NA	NA	N.A	NA
109.	PCB-1232	NA	NA	NA	NA	NA	NA	NA	. NA
110.	PCB-1248	NA	NA	NA	· NA	NA	NA	N,A	NA
111.	PCB-1260	NA	NA	NA	NA	NA	NA	NA	NA
112.	PCB-1016	NA	NA	NA	NA	NA	NA	NA	NA
113.	toxaphene	NA	NA	NA	NA	NA	NA	NA	NA
114.	antimony	ND ·	SU	NT	NT	NT .	NT*	NT*	NT*
115.	arsenic	ND	SU	NT	NT	NΤ	NT*	ΝT	- NT
116.	asbestos	N-A	N-A	NA	NA	- NA	· NA	NA ·	NA
117.	beryllium	ND	รบ	NT	ND	NT	NT	NT	NT
118.	cadmium	ND	RG	SU	ND	SU	NT	RG	SU
119.	chromium	RG	RG	RG	RG	RG	RG	RG	RG
120.	copper	RG	RG	- RG	RG	RG	RG	RG	RG
121.	cyanide	ND	ND	ND	ND	ND	ND	ND	, SU
122.	lead	ND	RG .	RG	RG	SU	SU	RG	RG
123.	mercury	ND .	NT*	NT*	ND	ND	- ND	ND	ND
124.	nickel "	RG	RG	RG	RG	RG	RG	RG	RG
125.	selenium	ND	NT*	ND	NT	\$U	ND	NT	SU
126.	silver	NT	SU	NT*	NT	NT .	ND	NT	NT.
127.	thallium	NT	NΤ	NT*	ND	NT	ND	NT	NT
128.	zinc	RG -	RG	RG	RG	RG	Su	RG	R:G
129.	2,3,7,8-tetrachlorodibenzo-	NA	NA .	, NA -	NA	NA .	NA	NA .	, NA
	p-dioxin (TCDD)								•

			<u> </u>	
. •		WAPC	Forging Press	_ (
		Control	Hydraulic	Total
•	Pollutant	Blowdown	Fluid Leakage	Subcategory
1.	acenaphthene	NA -	- ND	SU
2.	acrolein	NA	ND	ND
3.	acrylonitrile	NA	ND	ND
4.	benzene	NA NA	ND	NT*
5.	benzidine	NA	· ND	SU
6.	carbon tetrachloride	· NA	ND	ND
7.	chlorobenzene	NA	ND .	ND
8.	1,2,4-trichlorobenzene	NA	ND	ND
- 9.	hexachlorobenzene	NA	ND	- ND III
10.	1.2-dichloroethane	NA	ND	ND
11:	1,1,1-trichloroethane	NA	RG	RG
12.	hexachloroethane	NA	. ND	NT .
13.	1,1-dichloroethane	. NA	RG	SU
14.	1,1,2-trichloroethane	NA -	ND	ND
15.	1,1,2,2-tetrachloroethane	NA	ND	ND
16.	chloroethane	NA	ND	ND
17.	bis(chloromethyl) ether	NA	ND	ND
18.	bis(2-chloroethyl) ether	NA .	ND '	. ND
19.	2-chloroethyl vinyl ether	NA	ND	ND
20.	2-chloronaphthalene	. NA	ND	ND *
21.	2,4,6-trichlorophenol	NA .	ND	ND
22.	parachlorometa cresol	NA	ND	SU
23.	chloroform	· NA	ND	NT*
24.	2-chlorophenol	NA	ND	· ND
25.	1,2-dichlorobenzene	NA	ND	ND
26.	1,3-dichlorobenzene	NA	· ND .	ND
27.	1,4-dichlorobenzene	NA	- ND	ND
28.	3,3'-dichlorobenzidine	NA -	ND	SU
29.	1,1-dichloroethylene	NA	ND	NT*
30.	1,2-trans-dichloroethylene	NA .	ND	ND
31.	2,4-dichlorophenol	NA	ND.	ND
32.	1,2-dichloropropane	NA	ND	ND
33.	1,2-dichloropropylene	NA.	ND	ND
34.	2,4-dimethylphenol	NA	ND	SU
35.	2,4-dinitrotoluene	NA	ND	ND
36.	2,6-dinitrotoluene	. NA	ND	SU
37.	1,2-diphenylhydrazine	NA ·	ND	NT
38.	ethylbenzene	. NA	ND	ND
39.	fluoranthene	NA	ND	. SU
40.	4-chlorophenyl phenyl ether	NA	ND	. OO ND
41.	4-bromophenyl phenyl ether	NA NA	ND	ND
42.	bis(2-chloroisopropyl) ether	NA NA	ND	ND
43.	bis(2-chloroethoxy) methane	. NA	ND	· NT

Table VI-5 (Continued)

	Pollutant	WAPC Control Blowdown	Forging Press Hydraulic Fluid Leakage	Total Subcategory
44.	methylene chloride	NA	NT	SÜ
45.	methyl chloride	NA	ND	ND
46.	methyl bromide	NA	ND	ND
47.	bromoform	NA	ND	ND
48.	dichlorobromomethane	NA	ND *	ND
49.	trichlorofluoromethane	NA	ND	ND
50.	dichlorodifluoromethane	NA	ND	ND
51.	chlorodibromomethane	NA	ND	ND
52.	hexachlorobutadiene	NA	ND	ND
53.	hexachlorocyclopentadiene	NA	ND	ND
54.	isophorone	NA	ND	ND
55.	naphthalene	NA	ND	SU
56.	nitrobenzene	NA	ND	ND
57.	2-nitrophenol	NA	ND	SU
58.	4-nitrophenol	NA	ND	SU
59.	2,4-dinitrophenol	NA	· ND	ND
60.	4,6-dinitro-o-cresol	NA	ND	SU
61.	N-nitrosodimethylamine	NA	ND	NT
62.	N-nitrosodiphenylamine	NA	ND	SU
63.	N-nitrosodi-n-propylamine	NA	ND	SU
64.	pentachlorophenol	NA	ND "	SU
65.	pheno1	NA	ND	su
66.	bis(2-ethylhexyl) phthalate	NA	RG	SU
67.	butyl benzyl phthalate	NA	ND	NT
68.	di-n-butyl phthalate	NA	ND	SU
69.	di-n-octyl phthalate	, NA	ND	NT
70.	diethyl phthalate	NA	ND	NT
71.	dimethyl phthalate	NA	ND ·	NT
72.	benzo(a)anthracene	NA	ND	NQ
73.	benzo(a)pyrene	NA	ND	SU
74.	3,4-benzofluoranthene	NA	ND	ND
75.	benzo(k)fluoranthene	NA	. ND	NQ
76.	chrysene	NA	ND	. NQ
77.	acenaphthylene	NA	ND.	NT
78.	anthracene	NA	ND	NT
79.	benzo(ghi)perylene	NA	ND	ND
80.	fluorene	NA	ND	ŞU
81.	phenanthrene	NA .	RG	SU
82.	dibenzo(a,h)anthracene	NA	ND	ND
вз.	indeno(1,2,3-c,d)pyrene	NA	ND	NT
84.	pyrene	NA	ND	SU
85.	tetrachloroethylene	NA.	ΝD	ND
86.	toluene	NA	ИD	NT
			1	

Table VI-5 (Continued)

	Pollutant		WAPC Control Blowdown	Forging Press Hydraulic Fluid Leakage	Total Subcategory
87.	trichloroethylene		NA	ND	- ND
88.	vinyl chloride		NA	ND .	ND
89.	aldrin		NA	NA	NA
90.	dieldrin		NA	NA	NA
91.	chlordane		NA	NA	NA -
92.	4,4'-DDT		NA -	NA	NA NA
93.	4.4'-DDE		NA NA	, NA	NA NA
	4,4'-DDD		NA NA	NA NA	NA NA
94.	•		NA.	NA.	- NA
95	alpha-endosulfan		NA NA	NA NA	NA NA
96.	beta-endosulfan		NA NA	NA NA	NA ·
97.	endosulfan sulfate				
98.	endrin	,	NA	NA NA	· NA
99.	endrin aldehyde		NA	NA . "	NA NA
100.	heptachlor		NA	NA	NA
101.	heptachlor epoxide		NA	NA	NA
102.	alpha-BHC		NA	NA	NA
103.	beta-BHC		NA	NA	NA .
104.	gamma-BHC		NA	· NA .	. NA
105.	delta-BHC		NA	NA	NA
106.	PCB-1242	- <u> </u>	NA	NA	NA
107.	PCB-1254		NA	- NA	NA
108.	PCB-1221		NA	NA	NA
109.	PCB-1232		` NA	NA -	NA
110.	PCB-1248		. NA	· NA	NA
111.	PCB-1260		NA	NA NA	NA ·
112.	PCB-1016		· NA	NA	· NA
113.	toxaphene	•	[*] NA	NA	· NA
114.	antimony		NT	ND	SU
115.	arsenic		· NT	ND	SU
116.	asbestos		NA	NA	NA
117.	beryllium		ND	ND	NT ·
118.	cadmium		NT	NT	RG
119.	chromium		RG	RG	RG
120.	copper		RG	RG	RG
121.	cyanide		ND -	. NA	SU
122.	lead		ND	RG	RG
123.	mercury -		ND	ND ·	NT*
124.	nickel		RG	RG	RG
125.	selenium	*	ND	ND	SU
126.	silver	•	ND	ND	SU
	thallium		ND ND	ND ND	NT*
127.			NT .	RG	RG
128.	zinc	d			
129.	2,3,7,8-tetrachiorod	oenzo-	NA .	NA	NA
	p-dioxin (TCDD)	÷			

PRIORITY POLLUTANT DISPOSITION NICKEL-COBALT FORMING SUBCATEGORY

*These pollutant parameters could also have been eliminated from further consideration due to presence in a small number of sources (SU).

Key: NA - Not Analyzed

ND - Never Detected

NQ - Never Found Above Their Analytical Quantification NT - Detected Below Levels Achievable by Treatment

SU - Detected in a Small Number of Sources

RG - Considered for Regulation

Table VI-6

PRIORITY POLLUTANT DISPOSITION
PRECIOUS METALS FORMING SUBCATEGORY

	•					
					Semi-Continuous	
	•	Rolling	Drawing	Shot	and Continuous	Surface
	•	Spent	Spent	Casting	Casting	Trt.
	Pollutant	Emulsions	Emulsions	CCW	CCW .	Rinsewater
1.	: acenaphthene	ND	ND	ND	· NA	NA
2.	acrolein	ND	ND	ND	NA ,	NA .
3.	acrylonitrile	ND	ND	ND	· NA	, NA
4.	benzene	RG	· ND	ND	NA	. NA
5.	benzidine	. ND	. ND	ND	NA	NA .
6.	carbon tetrachloride	ND	ND	ND	NA .	NA
7.	chlorobenzene	ND	ND -	ND	NA	NA
8.	1,2,4-trichlorobenzene	ND	. ND	ND	NA	· NA
9.	hexach Lorobenzene	ND.	, ND	ND	NA	NA .
πο.	1,2-dichToroethane	ND	ND	ND	NA	NA
11.	1,1,1-trichloroethane	ND	RG	RG .	NA	NA
12.	hexachloroethane	ND	ND	ND	, NA	NA .
13.	1,1-dichloroethane	ND	ND	ND -	NA	NA
14.	1,1,2-trichloroethane	ND	ŇD	ND	NA	NA
15.	1,1,2,2-tetrachloroethane	ND	ND	ND '	NA	. NA
16.	chloroethane	ND	ND	,ND	NA	NA
17.	bis(chloromethyl) ether	ND	ND	ND	NA	NA
18.	bis(2-chloroethyl) ether	ND	ND	ND	NA	NA
19.	2-chloroethyl vinyl ether	ND	ND :	ND	NA	NA .
20.	2-chloronaphthalene	ND	ND	ND '	NA	NA
21.	2,4,6-trichlorophenol	ND	ND	ND	NA ·	NA
22.	parachlorometa cresol	ND	ND -	ND´	NA	NA
23.	chloroform	ND	ND .	ND	NA NA	NA .
24.	2-chlorophenol	ND	ND	ND .	NA NA	NA NA
25.	1,2-dichlorobenzene	ND	ND	ND	NA NA	NA.
26.	1,3-dichlorobenzene	ND-	ND	ND	NA NA	NA NA
27.	1,4-dichlorobenzene	ND.	ND	ND	NA.	NA
28.	3,3'-dichlorobenzidine	ND	ND	ND	NA NA	NA NA
	· ·		ND ND		NA NA	
29. 30.	1,1-dichloroethylene 1,2-trans-dichloroethylene	ND ND	ND	ND ∙ND	NA NA	NA.
	•	ND ND				NA NA
31.	2,4-dichlorophenol		ND	ND	NA	NA
32.	1,2 dichloropropane	ND	ND	, ND	NA	NA NA
33.	1,2-dichloropropylene	ND	ND	ND	, NA	NA
34.	2,4-dimethylphenol	ND NB	ND	ND	NA NA	NA ***
35.	2,4-dinitrotoluene	ND .	ND	ND	NA	. NA
36.	2,6-dinitrotoluene	ND	ND	ND	NA	NA
37.	1,2-diphenylhydrazine	ND	ND	ND	NA NA	, NA
38.	ethylbenzene	ND	ND	ND	NA	NA
39.	fluoranthene	ND	ND	ND	NA	' NA
40.	4-chlorophenyl phenyl ether	ND	ND	ND	NA	NA
41.	4-bromophenyl phenyl ether	ND	ND	ND	NA -	, NA
42.	bis(2-chloroisopropyl) ether	, ND	ND	ND	NA	NA
43.	bis(2-chloroethoxy) methane	ND	ND	ND	NA	. NA

	Pollutant	Rolling Spent Emulsions	Drawing Spent Emulsions	Shot Casting CCW	Semi-Continuous and Continuous Casting CCW	Surface Trt. Rinsewater
44.	methylene chloride	RG	RG	NT	NA	NA
45.	methyl chloride	ND	ND	ND	NA	NA NA
46.	methyl bromide	ND	ND	ND	NA	NA NA
47.	bromoform	ND	ND	ND	NA	NA NA
48.	dichlorobromomethane	ND	ND	ND	NA	NA NA
49.	trichlorofluoromethane	ND	ND	ND	NA	NA.
50.	dichlorodifluoromethane	ND	ND	ND	NA	NA NA
51.	chlorodibromomethane	ND	ND	ND	NA.	NA NA
52.	hexachlorobutadiene	ND	ND	ND	NA NA	NA NA
53.	hexachlorocyclopentadiene	ND	ND	- ND	NA NA	NA NA
54.	isophorone	ND	ND	ND	NA NA	NA NA
55.	naphthalene	ND	ND	· ND	NA NA	NA ·
56.		ND	ND	ND	NA NA	NA NA
50. 57.	nitrobenzene	ND	ND	ND	NA NA	NA NA
57. 58.	2-nitrophenol	ND	ND ND	ND	NA NA	NA NA
59.	4-nitrophenol	ND	ND	· , ND	NA NA	NA NA
60.	2,4-dinitrophenol	ND	ND ND	ND	NA NA	
	4,6-dinitro-o-cresol		ND ND	ND ND	NA NA	NA NA
61.	N-nitrosodimethylamine	ND	ND	ND ND	NA NA	NA NA
62.	N-nitrosodiphenylamine	ND				NA NA
63.	N-nitrosodi-n-propylamine	ND	ND	ND	NA NA	NA NA
64.	pentachlorophenol	ND	ND	ND	NA	NA NA
65.	phenol	ND	ND	ND	NA NA	NA
66.	bis(2-ethylhexyl) phthalate	ND	, ND	ND	NA NA	NA
67.	butyl benzyl phthalate	, ND	ND	ND	NA NA	NA
68.	di-n-butyl phthalate	ND	ND	ND	NA NA	NA NA
69.	di-n-octyl phthalate	ND	ND	ND	NA NA	NA
70.	diethyl phthalate	ND	ND	ND	NA NA	NA
71.	dimethyl phthalate	ND	ND	, ND	NA	NA
72.	benzo(a)anthracene	ND .	ND	ND	NA -	NA
73.	benzo(a)pyrene	ND .	· · · ND	• ND	NA	NA -
74.	3,4-benzofluoranthene	ND	ND	ND	, NA	NA
75.	benzo(k)fluoranthene	ND	ND	ND	NA	NA
76.	chrysene	ND	ND	ND	NA	NA
77.	acenaphthylene	ND	ND	ND	NA	NA
78.	anthracene	ND	ND	ND	NA	NA
79.	benzo(ghi)perylene	ΝD	ND	ND	NA	NA
80,.	fluorene	ND	ND	ND	NA	NA
81.	phenanthrene `	ND	ND	ND	NA	NA .
82.	dibenzo(a,h)anthracene	· ND	ND	- ND	· · • · · • · · · · · · · · · · · · · ·	NA
83.	indeno(1,2,3-c,d)pyrene	ND	ND	ND	NA	NA
84.	pyrene	ND	ND	ND	NA	` NA
85.	tetrachloroethylene	ND	ND .	ND	NA	NA
86.	toluene	ND	ND	NT	NA	NA
						1

Table VI-6 (Continued)

			,		Semi-Continuous	· ·
		Rolling	Drawing	Shot	and Continuous	Surface
		Spent	Spent	Casting	Casting	Trt.
	Pollutant	Emulsions	Emulsions	CCW	CCW	Rinsewater
87.	trichloroethylene	RG	ND	NT	NA	NA
88	vinyl chloride	ND	ND	ND	NA .	NA
89.	aldrin	· NA	NA	NA	NA	NA NA
90.	dieldrin	NA	NA	NA	NA NA	NA
91.	chlordane	NA	NA	NA	NA :	NA NA
92.	4,4'-DDT	. NA	NA	NA	NA ·	" NA
93.	4,4'-DDE	NA NA	NA	NA	NA NA	NA NA
94.	4,4'-DDD	NA	NA	· NA	NA	NA NA
95.	alpha-endosulfan	NA	NA	NA	NA	NA
96.	beta-endosulfan	NA	NA	NA	NA .	NA
97	endosulfan sulfate	- 12 NA 1 12	NA	NA	. Indiana da in H <mark>NFA</mark> and a contrata data	NA
98.	endrin	NA	NA	NA	· NA	NA.
99.	endrin aldehyde	NA	NA .	. NA	NA	NA
100.	heptachlor	NA	NA	NA.	NA .	NA ·
101.	heptachlor epoxide	NA .	- NA	NA	NA	NA
102.	alpha-BHC	NA	NA	NA	NA NA	NA
103.	beta-BHC	NA	NA .	NA	NA ***	NA
104.	gamma-BHC	. NA	NA	NA	NA	NA
105.	delta-BHC .	NA "	NA	NA -	NA	NA
106.	PCB-1242	NA	NA	NA	NA	NA
107.	PCB-1254	NA	NA	· NA	NA	NA
,108.	PCB-1221	NA	NA	, NA	NA .	NA
109.	PCB-1232	NA	NA -	NA	NA	NA
110.	PCB-1248	NA	NA .	· NA	NA	NA
111.	PCB-1260	NA	NA	NA	NA .	NA
112.	PCB-1016	· NA	· NA	· NA	· NA	NA
113.	toxaphene	NA	NA	NA	· NA	NA
114.	antimony	NT ·	ND	NT	ND	NT
115.	arsenic	NT	ND ·	ND	. "ND	NT
116.	asbestos	NA	NA 🦠	- NA	· NA	NA
117.	beryllium	ND	ND ·	ND	ND	ND
118.	cadmium '	RG	ND .	RG	RG	RG
119	chromium	RG	ND	~ ND		NT
120.	copper .	RG .	RG ·	RG	RG	RG
121.	cyanide	ND	ND.	ND -	RG RG	ND
122.	lead	RG	RG ·	· NT	RG-	RG
123.	mercury	NT	ND	ND	NT	ND
124.	nickel	RG	RG	NT	NT	RG
125.	selenium	ND	ND	ND	· ND	ND
126.	silver	RG	RG	NT	NT	RG
127.	thallium	ND	ND.	· ND	. ND	NT
128.	zinc	RG	RG	RG	NT	* RG
129.	2,3,7,8-tetrachlorodibenzo-	NA	NA	NA ·	NA	- NA
	p-dioxin (TCDD)	r				,

	Pollutant	Alkaline Cleaning Prebonding Wastewater	Tumbling or Burnishing Wastewater	Sawing or Grinding Spent Emulsions	Pressure Bonding CCW	Total Subcategory
1.	acenaphthene	ND	ND	ND	NA	ND
2.	acrolein	ND	ND	ND	NA	ND
З.	acrylonitrile	ND	ND	ND	NA	ND
4.	benzene	ND	ND	ND	NA	ŠU
5.	benzidine	ND	ND	ND	NA	ND
6.	carbon tetrachloride	ND	ND	ND	NA	ND
7.	chlorobenzene	ND	ND	ND	NA	ND
8.	1,2,4-trichlorobenzene	ND	ND	ND	, NA	ND ·
9.	hexachlorobenzene	. ND	ND	ND	NA	ND
10.	1.2-dichloroethane	ND	ND	ND	NA	ND
11.	1,1,1-trichloroethane	RG	RG.	ND	NA	SU
12.	hexachloroethane	ND	ND	ND	NA NA	ND
13.	1,1-dichloroethane	ND	ND	ND	NA	ND
14.	1,1,2-trichloroethane	ND	ND	ND	NA	ND
15.	1,1,2,2-tetrachloroethane	ND	ND	ND	NA	. ND .
16.	chloroethane	ND	NT -	ND	NA	NT
17.	bis(chioromethy)) ether	ND	ND	ND	NA	ND ·
18.	bis(2-chloroethyl) ether	ND	ND	,ND	NA	ND ,
19.	2-chloroethyl vinyl ether	ND	ND	ND	NA	ND
20.	2-chloronaphthalene	ND	ND	ND	NA	ND
21.	2,4,6-trichlorophenol	ND	ND	ND	NA	ND →
22.	parachlorometa cresol	ND	ND	· ND	NA	ND
23.	chloroform	ND	ND	ND	NA ·	ND
24.	2-chlorophenol	, ND	ND	ND	NA	ND
25.	1,2-dichlorobenzene	ND	ND ·	ND	NA	ND
26.	1,3-dichlorobenzene	ND	ND	ND	NA	ND
27.	1,4-dichlorobenzene	ND	ND .	ND	NA	ND
28.	3,3'-dichlorobenzidine	ND	ND	" ND	NA	ND
29.	1,1-dichloroethylene	ND	ND	ND	NA	ND "
30.	1.2-trans-dichloroethylene	ND	ND	ND	NA	ND
31.	2.4-dichlorophenol	ND	ND	ND	NA	ND .
32.	1,2-dichloropropane	ND	ND	ND	NA	ND
33.	1,2-dichloropropylene	ND	· ND	ND	NA	ND
34.	2,4-dimethylphenol	ND	ND	ND	NA	ND
35.	2,4-dinitrotoluene	ND	ND ·	ND	NA [,]	ND
36.	2,6-dinitrotoluene	ND	ND	ND	NA	ND
37.	1,2-diphenylhydrazine	ND	ND	ND	NA	ND
38.	ethylbenzene	NĎ	ND	ND	NA	- ND
39.	fluoranthene	ND	ND	ND	NA	ND
40.	4-chlorophenyl phenyl ether	ND	ND	ND	NA	ND
41.	4-bromophenyl phenyl ether	ND	ND	ND ·	- NA	· ND
42.	bis(2-chloroisopropyl) ether	ND	ND	ND	NA.	ND
43.	bis(2-chloroethoxy) methane	ND .	ND .	ND .	. NA	ND
→10 .	DIDE SHID OCCIONY, INCCIDATE				• • • •	

Table VI-6 (Continued)

	Pollutant	Alkaline Cleaning Prebonding Wastewater	Tumbling or Burnishing	Sawing or Grinding Spent Emulsions	Pressure Bonding ` CCW	Total Subcategory
44.	methylene chloride	SU	NT	RG	NĄ	SU -
45.	methyl chloride	SU	. ND	ND	NA	SU
46.	methyl bromide	ND .	ND	ND	NA .	ND
47.	bromoform	ND	ND	ND	NA	·ND
48.	dichlorobromomethane	ND	ND	ND	NA	ND
49.	trichlorofluoromethane	ND	NT	ND	- NA	NT
50.	dichlorodifluoromethane	ND	ND	ND	NA	ND ·
51.	chlorodibromomethane	ND	ND	· ND	,NA	ND
52.	hexachlorobutadiene	ND	ND	ND	NA	ND
53.	hexachlorocyclopentadiene	ND	ND	ND	NA	ND
54.	isophorone	ND	ND	ND	NA	
55.	naphthalene	, ND	ND °	, ND	ŅΑ	ND
56.	nitrobenzene	ND	ND	ND	NA	ND
57.	2-nitrophenol	ND	ND	ND.	ŅA	ND
58.	4-nitrophenol	ND	-ND	ND	NA	ND
59.	2,4-dinitrophenol	ND	, ND	ND	NA	ND
60.	4,6-dinitro-o-cresol	ND	ND	ND	. NA	ND
61.	N-nitrosodimethylamine	, ND	ND	ND	NΑ	ND
62:	N-nitrosodiphenylamine	ND	ND	ND	NA	. ND
63.	N-nitrosodi-n-propylamine	ND	ND ·	ND .	· NA	ND
64.	pentachlorophenol	ND	ND	ND	NA	ND
65.	phenal	TM ·	ND	NT	; NA	NT
66.	bis(2-ethylhexyl) phthalate	NT	ND	ND	NA	ŃΤ
67.	butyi benzyl phthalate	ND *	ND	ND	NA	ND
68.	di-n-butyl phthalate	ND	ND	ND	NA	ND
69.	di-n-octyl phthalate	ND .	· ND	ND	ŃΑ	ND
70.		ND	ND	ND	NA	N,D
71.	dimethyl phthalate	ŰΝD	ND	ND	NA	ND
. 72.	benzo(a)anthracene	ND	, ND	· HD»	NA	ND
73.	benzo(a)pyrene	ND	, ND	- ND	NA	ND
74.	3,4-benzofluoranthene	ND.	ND	ND	NA	ND
75.	benzo(k)fluoranthene	ND	ND	ND	NA	ND
76.	chrysene	ND	ND	ND		ND
77.	acenaphthylene	ND	ND ·	ND	NA	ND
78.	anthracene	ND	ND	ND.	· NA	ND
79.	benzo(ghi)perylene	ND	ND	ND .	, NA	мD
80.	fluorene	ND	ND	ND	NA,	ND
81.	phenanthrene	ND	ND	ND	NA NA	ND
82.	dibenzo(a,h)anthracene	ND	, ND	ND .	. NA	ND
83.	indeno(1,2,3-c,d)pyrene	ND	ND .	ND	NA	ND
84.	pyrene	ND	ND	, ND	- NA	ND
85.	tetrachloroethylene	ND	ND	ND	NA	ND
86.	toluene	SU	SU	ND	, NA	SU

	Pollutant	Alkaline Cleaning Prebonding Wastewater	Tumbling or Burnishing Wastewater	Sawing.or Grinding Spent Emulsions	Pressure Bonding CCW	Total Subcategory
87.	trichloroethylene	NT	ND	ND	NA	SU
88.	vinyl chloride	ND	ND	ND	NA	ND
89.	aldrin	NA	NA	NA	NA	NA '
90.	dieldrin	NA	NA	NA	NA	NA
91.	chlordane	NA	NA	NA	NA	NA NA
92.	4,4'-DDT	NA	NA	NA	NA	NA
93.	4,4'-DDE	NA	NA	NA	NA	NA
94.	4,4'-DDD	NA	-NA	NA	NA.	NA NA
95.	alpha-endosulfan	NA	NA	NA	NA	NA
96.	beta-endosulfan	NA	NA ·	NA	NA	NA NA
97.	endosulfan sulfate	NA	NA	NA	NA	NA
98.	endrin	NA	NA	NA .	NA	NA NA
99.	endrin aldehyde	NA	NA	NA	NA	NA
100.	heptachlor	NA	NA	NA	NA	NA
101.	heptachlor epoxide	NA	NA	NA	NA	NA NA
102.	alpha-BHC	NA	NA	NA	NA	, NA
103.	beta-BHC	NA	NA	NA	NA NA	NA
104.	gamma-BHC	NA	NA	NA	NA	. NA
105.	delta-BHC	· NA	ŇA	· NA	NA.	NA NA
106.	PCB-1242	NA	NA	NA NA	NA	NA NA
107.	PCB-1254	NA	NA NA	NA NA	NA	NA
108.	PCB-1221	NA	NA NA	NA NA	NA	NA NA
109.	PCB-1232	NA	NA NA	· NA	NA	NA NA
110.	PCB-1248	NA	NA NA	NA .	NA	NA NA
111.	PCB-1260	NA	'NA	NA NA	NA	NA NA
112.	PCB-1016	NA	NA NA	NA	NA	NA
113.	toxaphene	· NA	NA	. NA	NA	NA ·
114.	antimony	ND	NT	ND	ND	NT
115.	arsenic	ND	ND	ND	ND	NT-
116.	asbestos	NA .	NA	NA	NA	NA
117.	beryllium	ND	ND	ND	ND	ND
118.	cadmium	RG	RG	ND	RG	·RG
119.	chromium	RG	RG	ND	NT	SU
120.	copper	RG	RG .	RG	RG	RG
121.	cyanide	RG	TS	ND	ND	RG
122.	lead	RG	RG.	RG	RG	RG.
123.	mercury	ND	ΝĬ	ND	· ND	NT
124.	nickel	RG.	RG.	NT	RG-	
125.	selenium	ND	ND	ND	ND	ND
126.	silver /	SU	RG	ND	NT	RG.
127.	thallium	ND	ND	ND	ND	NŤ
128.	zinc	RG	RG	RG .	RG	RG
129.	2,3,7,8-tetrachlorodibenzo-	NA	NA	NA NA	NA	.NA
	prdioxin (TCDD)		1.00	110	IM.	,iva

PRIORITY POLLUTANT DISPOSITION PRECIOUS METALS FORMING SUBCATEGORY

Key: NA - Not Analyzed ND - Never Detected

NO - Never Detected
NQ - Never Found Above Their Analytical Quantification
NT - Detected Below Levels Achievable by Treatment
SU - Detected in a Small Number of Sources
RG - Considered for Regulation

Table VI-7

PRIORITY POLLUTANT DISPOSITION
REFRACTORY METALS FORMING SUBCATEGORY

	Pollutant	Extrusion Press Hydraulic Fluid Leakage	Surface Trt. Spent - Baths	Surface Trt. Rinsewater	Alkaline Cleaning Spent Baths	Molten Salt Rinsewater	Tumbling or Burnishing Wastewater	Sawing or f Grinding CCW Wa
1.	acenaphthene	ND	NA	NA	NA	ND	ND	ND
2.	acrolein	ИD	NA	NA	NA	ND	ND	ND :
3.	acrylonitrile	ND	NA	NA	NA	ND	ND	ND
4.	benzene	ND	NA	NA	NA	ND	ND	ND
5.	benzidine	ND	NA	NA	NA	ND	ND	ND
6.	carbon tetrachloride	ND	NA	NA	NA	ND	ND	ND
7.	chlorobenzene	ND	NA	NA	NA	ND	ND	ND
	1,2,4-trichlorobenzene	. ND	NA	NA	NA	ND	ND	ND .
9.	hexachlorobenzene	ND	NA	NA	NA	ND	ND	ND
10.	1,2-dichloroethane	ND	NA	NA	NA	ND	ND	ND :
11.	1,1,1-trichloroethane	RG	NA	NA	NA	NQ	RG	RG
12.	hexachloroethane	ND	NA	NA	NA	ND	ND	ND
13.	1,1-dichloroethane	· ND	NA	NA	NA	ND	ND	ND
14.	1,1,2-trichloroethane	ND	NA	NA	NA.	ND .	ND	ND
15.	1,1,2,2-tetrachloroethane	ND	NA	NA	NA	ND	ND	NQ
16.	chloroethane	ND	NA	NA	. NA	ND	ND .	ND
17.	bis(chloromethyl) ether	ND .	· NA	NA	. NA	ND	ND	ND
18.	bis(2-chloroethyl) ether	ND ND	NA	NA	NA	ND	ND	ND :
19.		ND	NA NA	NA	NA	ND	ND	ND
20.	2-chloronaphthalene	ND	NA	NA -	NA	ND :	ND	ND
21.	2,4,6-trichlorophenol	· ND	NA	NA	NA	ND "	* ND .	. ND
22.	parachlorometa cresol '	ND	NA .	NA NA	NA	ND	· ND	ND
23.	chloroform	ND	NA	NA	NA.	NQ	NT	ND ·
24.	2-chlorophenol	. NQ	NA	NA :	· NA	ND ; : :	: ND	i ND
25.	•	ND	- NA	NA ·	NA	ND .	ND	ND
26.	1,3-dichlorobenzene	ND	NA	NA	NA.	ND .	ND	ND
27.	1,4-dichlorobenzene	NÓ	NA NA	NA NA	NA	ND	ND	ND .
28.		: ND	NA NA	NA NA	NA	ND	ND .	ND
29.	1,1-dichloroethylene	ND	NA NA	NA NA	NA NA	ND .	, ND	NQ .
30.	1,2-trans-dichloroethylene	ND	NA NA	NA	NA	ND .	ND	ND .
31.	2,4-dichlarophenol	ND	NA	NA	NA.	ND	ND	ND 4
	1,2-dichloropropane	ND	NA	NA NA	NA NA	ND	. ND	ND :
33.	1,2-dichloropropylene	· · · ND	NA NA	NA NA	NA .	ND	ND	ND
34.	2,4-dimethylphenol	ND	NA NA	NA	NA .	ND .	ND	NT
35.	2,4-dinitrotoluene	ND	NA NA	NA	NA	ND .	- ND	ND
36.	2,6-dinitrotoluene	. ND	'NA	NA NA	NA NA	ND .	· ND	ND :
37.	1,2-diphenylhydrazine	ND	NA	NA NA	NA .	ND	ND	ND
38.	ethylbenzene	· ND	NA NA	NA NA	NA .	ND	ND	ND
	fluoranthene	ND	NA	NA ·	NA NA	ND :	ND	NQ
40.	4-chlorophenyl phenyl ether	ND	NA NA	NA NA	NA NA	ND -	ND	· ND
41.	4-bromophenyl phenyl ether	ND	NA NA	NA NA	NA NA	ND	··· ND	- ND
42.			NA	NA	NA		ND	ND
42 43.	_bis(2-chloroethoxy) methane	. ND	NA	NA NA	NA-	ND :	· ND	, i ND
		47 3 12 1 T						11 · · · · · · · · · · · · · · · · · ·

Table VI-7

PRIORITY POLLUTANT DISPOSITION
REFRACTORY METALS FORMING SUBCATEGORY

	Pollutant	Extrusion Press Hydraulic Fluid Leakage	Surface Trt. Spent - Baths	Surface Trt. Rinsewater	Alkaline Cleaning Spent Baths	Molten Salt Rinsewater	Tumbling or Burnishing Wastewater	Sawing or Grinding CCW	Dye Penetrant Testing Wastewater
1.	acenaphthene	ND	NA	NA	NA	- ND	ND	ND	ND
2.	acrolein	ND	-NA	NA ·	NA	ND	ND	ND	ND
3.	acrylonitrile	ND .	NA	NA	NA	ND	ND	, ND	ND
4.	benzene	ND .	NA	NA	NA	ND '	ND ,	'ND	ND
5.	benzidine	ND	NA	NA	NA	ND	ND	ND	ND
6.	carbon tetrachloride	ND	NA	NA	NΑ	ND	ND	ND	ND
7.	chlorobenzene	ND	NA	NA	NA	ND	ND	ND	ND
8.	1,2,4-trichlorobenzene	ND	NA	NA	NA	ND	ND	ND	ND
9.	hexachlorobenzene	ND	NA	NA	NA	ЙD	ND	ND	ND
10.	1,2-dichloroethane	ND	NA	NA	NA	ND	ND	ND	ND
11.	1,1,1-trichloroethane	RG.	NA	NA	NA	NQ	RG	RG	RG
12.	hexachloroethane	, ND	NA	NA	NA	ND	ND	ND	ND
13.	1,1-dichloroethane	· ND	NA	NA ·	NA	. ND	ND	ND	NQ
14.	1,1,2-trichloroethane	ND	NA	NA	NA	ND -	ND	ND	ND
15.	1,1,2,2-tetrachloroethane	ND	NA	NA	NA	ND	ND .	NQ	ND
16.	chloroethane	ЙD	NA	NA	. NA	ND	ND	ND	ИD
17.	bis(chloromethyl) ether	ND	NA	· NA	NA NA	ND .	ND	ND	ND
18.	bis(2-chloroethyl) ether	ND	- NA	, NA	NA .	ND	ND.	ND:	. ND
19.	2-chloroethyl vinyl ether	ND	NA	, NA	NA	ND	, ND	ND	ND
20	2-chloronaphthalene	ND	NA	NA	NA	ND ·	ND	. ND	ND
21.	2.4.6-trichlorophenol	ND	NA	NA	NA	ND	ND .	. ND	ND
22.	parachlorometa cresol '	· ND	NA	NA	NA	ND	ND	ND	ND
23.	chloroform	ND	ΝA	NA	NA	NQ	NT	ND	· NQ
24.	2-chlorophenol	NQ	NA	· NA	NA	ND	· ND	ND	ND
25.	1,2-dichlorobenzene	ND	NA	NA ·	NA	ΝD	ND	ND	ND
26.	1,3-dichlorobenzene	ND	NA	NA	NA	ND	ND	ND	.ND
27.	1,4-dichlorobenzene	NĎ	- NA	NA	N A	ND	ND	ND	. ND
28.	3,3'-dichlorobenzidine	ND	NA	NA ·	NA	ND	ND	, ND	ND
29.	1.1-dichloroethylene	ND	NA ·	NA	NA	ND	ND	NO	NQ
30.	1,2-trans-dichloroethylene	ND	NA	NA.	NA	ИD	ND	ND	ND.
31.	2.4-dichlorophenol	ND	NA	NA	NA	ND	ND	ND	ND
32.	1,2-dichloropropane	ND	NA	NA	NA	ND	ND	ND	ND
33.	1,2-dichloropropylene	ND	NA	NA	NA .	ND	ND	ND	ND
34.	2,4-dimethylphenol	ND	NA	NA	NA	ND	ND	NT	ND
35.	2,4-dinitrotoluene	ND	NA	NA	NA	ND	ND	ND	RG
36.	2,6-dinitrotoluene	ND	`NA	NA.	NA.	ND	ND	ND	ND.
37.	1,2-diphenylhydrazine	ND	NA.	NA	NA	ND	ND	ND	ND
38.	ethylbenzene	· ND	NA	NA .	NA	ND	ND	ND	ND
39.	fluoranthene	ND	NA NA	NA NA	NA NA	ND	ND	NQ	ŔĠ
40.	4-chlorophenyl phenyl ether	ND	NA	NA NA	NA NA	ND	ND	ND	ND
41.	4-bromophenyl phenyl ether	ND	NA NA	NA NA	NA NA	ND	ND	· ND	ND
42.	bis(2-chloroisopropyl) ether	ND	NA NA	NA NA	NA	ND	ND	ND	ND
43.	bis(2-chloroethoxy) methane	ND ND	NA NA	NA NA	NA NA	DИ	ND	ND	ND
40.	DIS(Z Chioroethoxy) methane	ND	AFI	IXA	INA	140	ND	ND	MD

PRIORITY POLLUTANT DISPOSITION PRECIOUS METALS FORMING SUBCATEGORY

Key: NA - Not Analyzed
ND - Never Detected
NQ - Never Found Above Their Analytical Quantification
NT - Detected Below Levels Achievable by Treatment
SU - Detected in a Small Number of Sources
RG - Considered for Regulation

- Key: NA Not Analyzed
 - ND Never Detected
 - NQ Never Found Above Their Analytical Quantification
 NT Detected Below Levels Achievable by Treatment
 SU Detected in a Small Number of Sources

 - RG Considered for Regulation

Table VI-7

PRIORITY POLLUTANT DISPOSITION
REFRACTORY METALS FORMING SUBCATEGORY

	Pollutant	Extrusion Press Hydraulic Fluid Leakage	Surface Trt. Spent - Baths	Surface Trt. Rinsewater	Alkaline Cleaning Spent Baths	Molten Salt Rinsewater	Tumbling or Burnishing Wastewater	Sawing or Grinding CCW	Dye Penetrant Testing Wastewater
1.	acenaphthene	ND	NA	NA	NA	ND	ND	ND	ND
2.	acrolein	ND	NA	NA	NA	ND	ND	ND	ND
3.	acrylonitrile	ND	NA	NA	NA	ND	ND	ND	ND
4.	benzene	ND	NA	NA	NA	ND	ND	ND	ND
5.	benzidine	ND	NA	NA	NA	ND	ND	ND	ND
6.	carbon tetrachloride	ND	NA	NA	NA	ND	ND	ND	ND
. 7.	chlorobenzene	ND	NA	NA	NA	ND	ND	ND	ND
8.	1,2,4-trichlorobenzene	ND	NA	NA	NA	ND	ND	ND	ND
9.	hexachlorobenzene	ND	NA	NA	NA	ND	ND	ND	ND
10.	1,2-dichloroethane	ND	NA	NA	NA	ŇD	ND	ND	ND
11.	1,1,1-trichloroethane	RG	NA	NA	NA	NQ	RG	RG	RG
12.	hexachloroethane	ND	NA	NA	NA	ND	ND	ND	ND
13.	1,1-dichloroethane	· ND	NA	NA	NA	ND	ND	ND	NQ
14.	1,1,2-trichloroethane	ND	NA	NA	NA	ND .	ND	ND	ND
15.	1,1,2,2-tetrachloroethane	ND	NA	NA	NA	ND	ND	NQ	ND
16.	chloroethane	ND	NA	NA	NA	ND	ND	ND	ND
17.	bis(chloromethyl) ether	ND	ΝA	· NA	· NA	ND	ND	· ND	ND
18.	bis(2-chloroethyl) ether	ND	NA	NA	NA	ND	ND	· ND	ND
19.	2-chloroethyl vinyl ether	ND	NA	NA	NA	ND	ND	ND	ND
20.	2-chloronaphthalene	ND	NA	NA	NA	ND	· ND	ND	· ND
21.	2,4,6-trichlorophenol	ND	NA	NA	NA	ND	ND	ND	ND
22.	parachlorometa cresol '	ND	NA	NA	NA	ND	ND	ND	ND
23.	chloroform	ND	NA	NA	NA	NQ	NT	ND	NQ
24.	2-chlorophenol	NQ	NA	NA	NA	ND	ND	ND	ND
25.	1,2-dichlorobenzene	ND	NA	NA	NA	ND	ND	ND	ND
26.	1,3-dichlorobenzene	ND	NA	NA	NA	ND	ND	ND	. ND
27.	1,4-dichlorobenzene	NĎ	NA	NA	NA.	ND	ND	ND	ND
28.	3,3'-dichlorobenzidine	ND	NA	NA	NA.	ND	ND .	. ND	ND
29.	1.1-dichloroethylene	ND	NA	NA	NA.	ND	ND	NQ	NQ
30.	1,2-trans-dichloroethylene	ND	NA	NA NA	NA.	ND	ND .	ND	ND
31.	2,4-dichlorophenol	ND	NA.	NA NA	NA NA	ND	· ND	ND	ND
32.	1,2-dichloropropane	ND	NA.	NA NA	NA.	ND	ND	ND	ND
33.	1,2-dichloropropylene	ND	NA NA	NA	NA .	ND	ND	ND	ND
34.	2,4-dimethylphenol	ND	NA.	NA NA	NA .	ND	ND	NT	ND
35.	2,4-dinitrotoluene	ND	NA NA	NA.	NA NA	ND	ND	ND	RG
36.	2,6-dinitrotoluene	ND	' NA	NA NA	NA.	ND	ND	ND	ND
37.	1,2-diphenylhydrazine	ND	NA NA	NA NA	NA .	ND	ND	ND	ND
38.	ethylbenzene	· ND	NA NA	NA NA	NA NA	ND	ND	ND	ND
39.	fluoranthene	ND ND	NA NA	NA .	NA NA	ND	ND ND	NQ NQ	RG
39. 40.	•	ND	NA NA	NA NA		ND	ND ND	NQ ND	ND
40.	4-chlorophenyl phenyl ether	ND	NA NA	NA NA	NA NA	ND ND	ND ND	ND ND	ND ND
-	4-bromophenyl phenyl ether	ND ·	NA NA	NA NA		ND ·	ND ·	- ND -	ND ND
- 42.	bis(2-chloroisopropyl) ether		NA NA		NA:	ND	ND ·		
43.	bis(2-chloroethoxy) methane	ND	NA	NA	NA _.	הא	שא	ND ,	ND

Table VI-7 (Continued)

	Pollutant	Extrusion Press · Hydraulic Fluid Leakage	Surface Trt. Spent - Baths	Surface Trt. Rinsewater	Alkaline Cleaning Spent Baths	Molten Salt Rinsewater	Tumbling or Burnishing Wastewater	Sawing or Grinding CCW	Dye Penetrant Testing Wastewater
44.	methylene chloride	RG	NA	NI A					
45.	methyl chloride	ND	NA NA	NA	NA	NQ	NT	N.T	NQ
46.	methyl bromide	ND	. NA	NA	NA	ND	ND	ND	ND
47.	bromoform	ND	NA NA	NA	NA	ND ·	ND	ND	ND
48.	dichlorobromomethane	ND	NA NA	NA	NA	ND	ND	ND	ND
49.	trichlorofluoromethane	ND	NA NA	NA	NA	ND	ND	ND	ND
50.	dichlorodifluoromethane	ND	NA NA	NA	NA	ND	· ND	NĎ	ND
51.	chlorodibromomethane	ND	NA NA	NA	NA	ND	ND	ND	ND
52.	hexachlorobutadiene	ND	NA NA	NA	NA	ND	ND	ND	ND
53.	hexachlorocyclopentadiene	ND	NA NA	NA	NA	ND	ND	ND	, ND
54.	isophorone	ND	NA NA	NA	NA	ND	ND	ND	, ND
55.	naphthalene	ND -:		NA	NA NA	ND	ND	-ND	ND
56.	nitrobenzene	ND ND	NA	NA	NA	. ND	NT	NT	RG
57.	2-nitrophenol	ND	ŅA	NA	NA	ND	·ND ·	ND	NT
58.	4-nitrophenol	ND	NA	NA ∗ .	NA	ND	ND	RG	ND
59.	2,4-dinitrophenol	ND	NA	NA	NA	ND	ND	ND	ND
60.	4,6-dinitro-o-cresol	ND	NA	NA	NA	ND	. ND	ND	ND
61.	N-nitrosodimethylamine	ND	NA	NĄ	NA	ND	ND	ND	RG
62.	N-nitrosodiphenylamine	ND	NA	NÀ	NA _.	ND	ND	ND	ND
63.	N-nitrosodi-n-propylamine	ND .	NA	NA	NA	ND	ND	ND	RG
64.	pentachlorophenol	ND.	NA	NA ·	NA	ND	ND	RG	ND
65.	pheno l		NA	NA:	NA	ND	ND	ND	
66.	bis(2-ethylhexyl) phthalate	RG ·	NA	NA	NA	ΝĎ	ND	RG	ND NT
67.	butyl benzyl phthalate	, RG	NA	NA	NA	ND	RG	NT	RG
68.	di-n-butyl phthalate	RG	. NA	NA	NA	ND	ND	ND	
69.	di-n-octyl phthalate	RG	NA	NA	NA	ND	ND	NQ ·	ND
70.	diethyl phthalate	RG	NA .	NA	NA	ND	ND	NQ	ND
71.	dimethyl phthalate	RG	NA	ŅΑ	NA	ND	ND	ND .	NQ
72.	benzo(a)anthracene	. ND	NA	NA	NA	. ND	ND	ND .	ND
73.	benzo(a)pyrene	RG	NA	NA	NA	ND	ND	ND	ND
74.	3,4-benzofluoranthene	ND	NA	NA	NA	ND	ND	ND ND	ND
75.	benzo(k)fluoranthene	ND	NA	NA	NA	ND	ND	ND	ND
76.	chrysene	ND	NA	NA	NA	ND	ND	ND -	ND
77.	acenaphthylene	RG	NA	NA	NA	ND	ND	ND .	ND
78	anthracene	ND	NA	NA	- NA	ND	ND	ND	ND
79.	benzo(ghi)perylene	ND	NA	NA	NA	ND	ND		RG -
80.	fluorene	, ND	NA	NA	NA .	ND	ND	NQ ND	RG
81.	phenanthrene	ND	· NA	NA	NA	ND	ND	ND	ND "
82.	dibenzo(a,h)anthracene	ND	NA ·	NA	NA	ND	ND		RG
83.	indeno(1 2 3-0 4)	ND	NA.	. NA	NA	ND	ND	ND	RG
84.	indeno(1,2,3-c,d)pyrene	ND	NA	NA	NA	· ND	ND	ND	ND
85.	tetrachloroethylene	ND	NA	NA	NA NA	ND	ИD	ND	ND
86.	toluene	RG	NA	NA	NA	NT	ND	NQ	ИĎ
٠٠.	ro i delle	RG	NA	NA	NA	ND	ND ND	ND	NQ
. •						140	טא	ND	ИD

87. trichlorosthylene ND NA NA NA NA ND ND ND ND ND NB NB Aldrin NA NA NA NA NA ND ND ND ND NB NB Aldrin NA NA NA NA NA NA NA NA ND ND ND ND NB NB Aldrin NA NA NA NA NA NA NA ND NA ND ND NB NB NB children NA NA NA NA NA NA ND NA ND ND NB		Pollutant	Extrusion Press Hydraulic Fluid Leakage	Surface Trt. Spent - Baths	Surface Trt. Rinsewater	Alkaline Cleaning Spent Baths	Molten Salt Rinsewater	Tumbling or Burnishing Wastewater	Sawing or Grinding CCW	Dye Penetrant Testing Wastewater
88	87.	trichloroethylene	, ND	NA	NA	NA	ND	ND	ND	ND
89. aldrin 90. dieldrin NA	88.	vinyl chloride	. ND	NA	NA	NA	ND	ND	ИD	ND
91. chlordane NA NA	89.		NA	NA	NA	NA	ND	NA	ND	ND
92. 4,4"-DDT NA NA NA NA NA NO NA NO ND ND 94. 4,4"-DDE NA NA NA NA NA NA NA NA NO ND ND 94. 4,4"-DDE NA NA NA NA NA NA NA NO ND ND 94. 4,4"-DDD NA NA NA NA NA NA NA NA ND NA ND ND 94. 4,4"-DDD NA NA NA NA NA NA NA NA ND NA ND ND ND ND NA ND ND ND ND NA ND ND ND ND ND NA ND ND ND ND NA ND ND ND ND ND NA ND ND ND ND NA ND ND ND ND ND ND NA ND ND ND ND ND ND NA ND ND ND ND ND ND ND ND ND NA ND	90.	dieldrin	NA	NA	NA	NA	ND	NA	ND	ND
93. 4;4'-DDE	91.	chlordane	NA	NA	NA	NA	ND	NA	ND	ND
93. 4,4'-DDE	92.	4,4'-DDT	NA ·	NA	NA	NA	ND	NA	ND	ND
94. 4,4'-0DD			NA	NA		NA	. ND	NA	ND	ND
95. alpha-endosulfan NA	94.		NA	NA	NA	NA	ND	NA	ND	ND
97. endosulfan sulfate NA NA NA NA NA NA NA ND NA ND NA 98. endrin NA NA NA NA NA NA ND NA ND ND 99. endrin aldehyde NA NA NA NA NA NA ND NA ND ND ND 101. beptachlor epoxide NA NA NA NA NA NA ND NA ND ND 102. alpha-BHC NA NA NA NA NA NA NA ND NA ND ND 103. beta-BHC NA NA NA NA NA NA NA NA ND NA ND ND 104. gampa-BHC NA NA NA NA NA NA NA NA ND NA ND ND 106. pcb-1242 NA NA NA NA NA NA NA NA ND NA ND ND 107. pcb-1254 NA NA NA NA NA NA NA NA ND NA ND ND 108. pcb-1222 NA NA NA NA NA NA NA NA ND NA ND ND 109. pcb-1232 NA NA NA NA NA NA NA NA NA ND ND NA 110. pcb-1248 NA NA NA NA NA NA NA NA NA ND ND ND 111. pcb-1260 NA NA NA NA NA NA NA NA NA ND ND ND 112. pcb-166 NA ND ND ND 113. toxaphene NA ND ND 114. antimony NT ND NT NT ND NT NT ND NT 115. arsenic ND ND ND ND NA		alpha-endosulfan	NA	NA	NA	NA	ND	NA	ND	NQ
97. endosulfan sulfate	96.	beta-endosulfan	NA	· NA	NA	NA	ND	NA	ND	ND
98. endrin 99. endrin aldehyde NA			NA	NA	N A	NA	ND	NA	ND	ND
99. endrin aldehyde				NA		NA	ND		ND	
100. heptachlor NA										
101. heptachlor.epoxide			NA	NA		NA	ND			ND
102		•								
103. beta=BHC										
104. gamma-BHC		•							-	. –
105. de ta=BHC										
106		7 '				NA	ND		ND	
107										
108										
109. PCB-1232										
110. PCB-1248										
111. PCB-1260										
112. PCB-1016		· -								
113. toxaphene										
114. antimony NT ND NT NT NT ND NA NA <td></td>										
115. arsenic ND ND NT NT ND ND NT ND 116. asbestos NA NA<		•								
116. asbestos NA ND ND NB NB RG ND NB NA ND ND <td></td> <td></td> <td></td> <td> –</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				–						
117. beryllium NT ND NT NT NT NT NT* ND										
118. cadmium										
119. chromium RG NT RG RG NT NT RG RG NT ND										
120. copper RG RG RG SU RG NT RG RG NT 121. cyanide NA ND ND ND NA ND ND RG ND 122. lead RG RG ND RG RG SU SU RG NT 123. mercury ND ND NT NT ND ND ND ND NT ND 124. nickel RG ND ND </td <td></td>										
121. cyanide NA ND ND NA ND ND RG ND 122. lead RG RG ND RG RG RG ND ND ND ND NT ND ND <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td></td<>								_		
122. lead RG ND RG RG SU SU RG NT 123. mercury ND NT NT ND ND ND NT ND 124. nickel RG ND										
123. mercury ND NT NT ND ND ND NT ND 124. nickel RG ND <		•								
124. nickel RG ND								· -		
125. selenium ND ND ND NT ND NT ND ND NT ND ND NT ND ND <td></td>										
126. silver RG RG NT* NT NT RG ND ND 127. thallium ND ND ND NT ND ND NT ND NT ND NT ND NT NG RG NA	. —									
127. thallium ND ND ND NT ND ND NT ND NT ND NT ND NT RG RG <td></td>										
12B. zinc RG RG NT ND NT RG RG RG 129. 2,3,7,8-tetrachlorodibenzo- NA NA NA NA NA NA NA NA NA										
129. 2,3,7,8-tetrachlorodibenzo- NA		=								
	129.		NA	NA	, INA	,	INA .	INA .	NA	· NA

	Pollutant	WAPC Blowdown	Total Subcategory
1.	acenaphthene	ND	ND
2.	acrolein	ND	ND .
3.	acrylonitrile	ND	ND
4.	benzene	ND	ND
5.	benzidine	ND	ND
6.	carbon tetrachloride	ND	ND
7.	chlorobenzene	ND	ND .
8.	1,2,4-trichlorobenzene	ND .	ND
9.	hexachlorobenzene	ND	ND
10.	1,2-dichloroethane	ND	ND
11.	1,1,1-trichloroethane	NT	SU
12.	hexachloroethane	ND	ND
13.	1,1-dichloroethane	ND	NQ
14.	1,1,2-trichloroethane	ND	ND
15.	1,1,2,2-tetrachloroethane	ND	NQ
16.	chloroethane	ND	ND
17.	bis(chloromethyl) ether	ND	ND
18.	bis(2-chloroethyl) ether	ŅD .	ND
19.	2-chloroethyl vinyl ether	ND	ND
20.	2-chloronaphthalene	ND	ND
21.	2,4,6-trichlorophenol	ND .	ND
22.	parachlorometa cresol	ND	ND
23.	chloroform	ND	NT
24.	2-chlorophenol	ND	NQ
25.	1,2-dichlorobenzene	ND	ND
26.	1,3-dichlorobenzene	ND	ND
27.	1,4-dichlorobenzene	ND.	ND
28.	3,3'-dichlorobenzidine	ND	ND
29.	1,1-dichloroethylene	ND	NQ
30.	1,2-trans-dichloroethylene	ND	ND
31.	2,4-dichlorophenol	ND	ND
32.	1,2-dichloropropane	ND	ND
33.	1,2-dichloropropylene	ND	ND
34.	2,4-dimethylphenol	ND	NT*
35.	2,4-dinitrotoluene	ND.	SU
36		ND-	
37.	1,2-diphenylhydrazine	ND	ND
38.	ethylbenzene	ND	ND
39.	fluoranthene	ND	SU
40	4-chlorophenyl phenyl ether	ND	ND
41.	4-bromophenyl phenyl ether	ND	ND
42.	bis(2-chloroisopropyl) ether	ND	. ND
43.	bis(2-chloroethoxy) methane	ND	ND

	Pollutant	WAPC Blowdown	Total Subcategory
44.	methylene chloride	NT	SU
45.	methyl chloride	ND	ND
46.	methyl bromide	ND	ND
47.	bromoform	ND	ND
48.	dichlorobromomethane	ND	ND
49.	trichlorofluoromethane	ND	ND
50.	dichlorodifluoromethane	ND	ND
51.	chlorodibromomethane	ND	ND
52.	hexachlorobutadiene	ND	ND
53.	hexachlorocyclopentadiene	ND	ND
54.	isophorone	ND .	ND
55.	naphthalene	ND	SU
56.	nitrobenzene	ND	NT*
57.	2-nitrophenol	ND	SU
58.	4-nitrophenol	ND	ND
59.	2,4-dinitrophenol	ND	ND
60.	4,6-dinitro-o-cresol	· ND	\$ U
61.	N-nitrosodimethylamine	ND	ND
62.	N-nitrosodiphenylamine	ND	SU
63.	N-nitrosodi-n-propylamine	ND	SU
64.	pentachlorophenol	ND .	ND
65.	phenol	ND	SU
66.	bis(2-ethylhexyl) phthalate	ND	SU
67.	butyl benzyl phthalate	ND	SU
68.	di-n-butyl phthalate	ND	SU
69.	di-n-octyl phthalate	ND	SU
70.	diethyl phthalate	-ND	SU
71.	dimethyl phthalate	ND	ND
72.	benzo(a)anthracene	ND	SU
73.	benzo(a)pyrene	ND .	ND ,
74.	3,4-benzofluoranthene	ND	, ND
75.	benzo(k)fluoranthene	ND	ND
76.	chrysene	ND	SU
77.	acenaphthylene	ND	SU
78.	anthracene	ND	SU
79. 80.	benzo(ghi)perylene	ND ND	ND SU
	fluorene		
81.	phenanthrene.	ND ND	. SU
82.	dibenzo(a,h)anthracene	ND ND	ND
83.	indeno(1,2,3-c,d)pyrene		ND
84.	pyrene	ND ND	,NQ
85.	tetrachloroethylene	ND	SU
86.	toluene	ND	SU

Table VI-7 (Continued)

		WAPC	Total
. •	Pollutant	Blowdown	Subcategory
		-	
87.	trichloroethylene	ND	ND
88.	vinyl chloride	ND	ND
89.	aldrin	NA	ND
90.	dieldrin	NA	ND .
91.	chlordane	NA	ND
92.	4,4'-DDT	NA	ND
93.	4,4'-DDE	NA	ND
94.	4,4'-DDD	NA	- ND
95.	alpha-endosulfan	NA	NQ
96.	beta-endosulfan	NA	ND
97.	endosulfan sulfate	NA	ND
98.	endrin	NA	ND.
99.	endrin aldehyde	NA	ND
100.	heptachlor	NA	ND
101.	heptachlor epoxide	NA	ND
102.	alpha-BHC	NA	, ND
103.	beta-BHC	NA	ND
104.	gamma-BHC	NA	NQ
105.	delta-BHC	NA	ND
106.	PCB-1242	NA	ND
107.	PCB-1254	NA ·	ND
108.	PCB-1221	NA	. ND
109.	PCB-1232	NA	ND
110.	PCB-1248	NA	ND
111.	PCB-1260	. NA	ND
112.	PCB-1016	NΆ	ND
113.	toxaphene	NA	ND
114.	antimony	NT	NT*
115.	arsenic	NT .	NT*
116.	asbestos	NA	NA
117.	beryllium	ND	NT*
118.	cadmium	ND	SU
119.	chromium	NT	: RG
120.	copper	NT	R G
121.	cyanide	ND	\$U
122.	1ead	RG	RG .
123.	mercury	ND	NT*
124.	nickel	NT .	RG
125.	selenium	NT	NT ' '
126.	silver	NT	RG
127.	thallium	NT	NT
128.	zinc	NT	RG
129.	2,3,7,8-tetrachlorodibenzo-	NA	NA
	p-dioxin (TCDD)		
	F 0.10% (1.000)		

PRIORITY POLLUTANT DISPOSITION REFRACTORY METALS FORMING SUBCATEGORY

*These pollutant parameters could also have been eliminated from further consideration due to presence in a small number of sources (SU).

- Key: NA Not Analyzed
 - ND Never Detected
 - NQ Never Found Above Their Analytical Quantification
 - NT Detected Below Levels Achievable by Treatment
 - SU Detected in a Small Number of Sources
 - RG Considered for Regulation

Table VI-8

PRIORITY POLLUTANT DISPOSITION
TITANIUM FORMING SUBCATEGORY

						*
			Surface			Sawing or
			Trt.	Surface		Grinding Spent
		Rolling	Spent	Trt.	Tumbling	Emulsions and
	Pollutant	CCW	Baths	Rinsewater	Wastewater	Syn. Coolants
	•					
1.	acenaphthene	NA	NA	NA	NA	. ND
2.	acrolein	NA	NA	NA	NA	. ND
3.	acrylonitrile	NA	NA	NA	NA	ND
4.	benzene	NA	NA	NA	NA	ND
5.	benzidine	NA	ŅΑ	NA	NA	ND
6.	carbon tetrachloride	NA	NΑ	NA	NA	NT ·
7.	chlorobenzene	NA ·	, NA	NA	NA	ND .
8.	1,2,4-trichlorobenzene	NA	NA	NA NA	NA	. ND
9.	hexachlorobenzene	NA .	. NA	NA	NA	: ND
10.	1,2-dichloroethane	NA	NA	NA	NA -	ND
11.	1,1,1-trichloroethane	NA	NA .	NA	NA	ND
12.	hexachloroethane	NA	- NA	NA .	NA	ND .
13.	1,1-dichloroethane	NA	NA	NA	, NA	ND .
14.	1,1,2-trichloroethane	NA	NA	NA	· NA	, ND
15.	1,1,2,2-tetrachloroethane	NA	NA	·NA	NA	. ND
16.	chloroethane	NA	NA	NA	NA -	ND
17.	bis(chloromethyl) ether	NA _.	NA	NA	NA	ND
18.	bis(2-chloroethyl) ether	NA	NA	NA	NA	ΝĐ
19.	2-chloroethyl vinyl ether .	NA	NA	NA	NA	ND
20.	2-chloronaphthalene	NA	NA	NA	NA	ND
21.	2,4,6-trichlorophenol	NA	NA	NA	NA	ND
22.	parachlorometa cresol	NA	NA	NA	NA	ND
23.	chloroform	NA	NA	NA	NA	ND
24.	2-chlorophenol	NA	NA	NA	NA	ΝĐ
25.	1,2-dichlorobenzene	NA	NA	NA	NA	ND
26.	1,3-dichlorobenzene	NA	NA	· NA	NA	ND
27.	1,4-dichlorobenzene	NA	NA	· NA	NA	ND
28.	3,3'-dichlorobenzidine	NA	NA	NA	NA	ND
29.	1,1-dichloroethylene	NA	NA	NA	NA	ND
30.	1,2-trans-dichloroethylene	NA	NA	NA .	NA	ND
31.	2,4-dichlorophenol	NA	NA	NA	NA	ND
32.	1,2-dichloropropane	NA	NA	NA	NA	ND
33.	1,2-dichloropropylene	NA	NA	NA	NA	ND
34	2,4-dimethylphenol	NA	NA	NA	NA	ND
35.	2,4-dinitrotoluene	NA	NA	NA	NA	ND
36.	2.6-dinitrotoluene	. NA	NA	· NA	NA	ND
37.	1,2-diphenylhydrazine	NA NA	NA	NA	NA	ND
38.	ethylbenzene	NA	NA	NA	NA NA	ND
39.	fluoranthene	NA	NA	NA	NA	ND
40.	4-chlorophenyl phenyl ether	NA	NA .	NA	NA	ND
41.	4-bromophenyl phenyl ether	NA	NA	NA	NA	ND
42.	bis(2-chloroisopropyl) ether	NA	NA	NA	NA	ND
43.	bis(2-chloroethoxy) methane	NA	NA	NA	NA	ND

Table VI-8 (Continued)

			Surface			Sawing or
			Trt.	Surface		Grinding Spent
		Rolling	Spent	Trt.	Tumbling	Emulsions and
	Pollutant	CCM	Baths	Rinsewater	Wastewater	Syn. Coolants
44.	methylene chloride	NA	NA	NA	NA	NT
45.	methyl chloride	NA	NA	NA	NA	ND
46.	methyl bromide	NA	NA	NA	NA	ND
47.	bromoform	NA	NA	NA	NA	ND
48.	dichlorobromomethane	NA	NA	NA	NA	ND
49.	trichlorofluoromethane	NA	NA	NA	NA	ND
50.	dichlorodiflüoromethane	NA	NA	NA	NA	ND
51.	chlorodibromomethane	NA	NA	NA	NA	ND
52.	hexachlorobutadiene	NA	NA	NA	NA	ND
53.	hexachlorocyclopentadiene	, NA	NA	NA	NA	ND
54.	isophorone	NA	. NA	NA	NA	ND
55.	naphthalene	NA	NA	NA	NA	ND
56.	nitrobenzene	NA	NA	NA	NA	ND
57.	2-nitrophenol	NA	NA	NA	NA	ND
58.	4-nitrophenol	NA	NA	NA	NA	ND
59.	2,4-dinitrophenol	NA	NA	NA	NA	ND
60.	4,6-dinitro-o-cresol	NA	NA	NA	NA	ND
61.	N-nitrosodimethylamine	NA	·NA	NA	NA	ND
62.	N-nitrosodiphenylamine	NA	NA ·	NA	NA	ND
63.	N-nitrosodi-n-propylamine	NA	NA	NA NA	NA NA	ND
64.	pentachlorophenol	NA	NA	NA	NA	ND
65.	phenol	NA	NA -	NA NA	NA NA	ND
66.	bis(2-ethylhexyl) phthalate	NA	NA	NA NA	NA .	ND
67.	butyl benzyl phthalate	NA.	NA	NA NA	NA .	ND
68.	di-n-butyl phthalate	NA	NA	NA NA	NA NA	ND
69.	di-n-octyl phthalate	NA NA	NA .	NA NA	NA NA	ND
70.	diethyl phthalate	NA -	NA ···	NA · ·	NA NA	. ND
71.	dimethyl phthalate	NA	NA	NA NA	NA.	ND
72.	benzo(a)anthracene	NA NA	NA	NA NA	NA NA	ND
73.	benzo(a)pyrene	NA NA	NA.	NA NA	NA NA	ND
74.	3,4-benzofluoranthene	NA NA	NA.	NA NA	NA NA	ND
75.	benzo(k)fluoranthene	NA NA	NA NA	NA NA	NA NA	ND
76.	chrysene .	NA	NA NA	NA NA	NA NA	ND
77.	acenaphthylene	NA.	NA NA	NA NA	NA NA	ND
78.	anthracene	NA NA	NA NA	NA .	NA NA	ND
79.	benzo(ghi)perylene	NA NA	NA NA	NA . NA	NA NA	ND ND
80.	fluorene	NA NA	- NA	NA NA	NA NA	ND
81.		NA				
	phenanthrene		NA	NA	NA -	: ND -
82.	dibenzo(a,h)anthracene	NA NA	NA	NA	NA ·	ND
83.	indeno(1,2,3-c,d)pyrene	NA	NA	ŅA	NA	ND
84.	pyrene	NA	NA.	NA	NA	ND
85.	tetrachloroethylene	NA	NA	NA	NA	ND
86.	toluene	NA	NA	NA	NA	ND

			Surface Trt.	Surface		Sawing or Grinding Spent
		Rolling	Spent	Trt.	Tumbling	Emulsions and
	Pollutant	CCW	Baths	Rinsewater	Wastewater	Syn. Coolants
87.	trichloroethylene	NA	- NA	NA	NA	ND:
88.	vinyl chloride	NA	NA	NA	NA -	ND
89.	aldrin	NA	NA	NA	NA	NA
90.	dieldrin	NA	NA "	NA	NA -	NA .
91.	chlordane .	NA	NA ·	NA	NA .	NA
92.	4,4'-DDT	NA	NA	NA	NA	NA
93.	4.4'-DDE	NA	NA	NA	NA	NA
94.	4,4'-DDD	NA	NA	NA	NA	· NA
95.	alpha-endosulfan	NA	NA	NA	NA .	NA
96.	beta-endosulfan	NA	NA	NA	NA	NA
97.	endosulfan sulfate	NA	NA.	NA	NA	NA
98.	endrin	NA I	NA	NA NA	NA	NA '
99.	endrin aldéhyde	NA	NA	NA	NA	NA
100.	heptachlor	NA	NΑ	NA	NA	NA
101.	heptachlor epoxide	- NA	NA	NA	NA	NA
102.	alpha-BHC	NA	NA	NA	NA	NA
103.	beta-BHC	NA	NA	NA	NA	NA
104.	gamma-BHC	NA.	,NA	NA	NA	NA
105.	delta-BHC	NA	NA	NA	NA	· NA
106.	PCB-1242	NA	,NA	NA	NA	NA
107.	PCB-1254	NA.	NA	NA	NA	NA
108.	PCB-1221	NA "	NA.	NA	NA	NA .
109.	PCB-1232	NA	NA	NA	NA	. NA
110.	PCB-1248	NA -	NA	NA	. NA	NA
111.	PCB-1260	NA	NA	NA	NA	NA
112.	PCB-1016	NA NA	NA	NA	NA.	NA
113.	toxaphene	NA	NA	NA	NA ·	NA
114.	antimony	ND	NT	NT	NT .	NT
115.	arsenic	ND	RG	NT	ND	NT
116.	asbestos	NA	NA.	NA NA	NA	NA
117.	beryllium	ND	NT	ND	ND	ND
118.	cadmium	ND	RG	SU	ND	ND
119.	chromium	ND	RG	RG.	RG	RG
	· Copper · ··· · · · · · · · · · · · · · · · ·	N.T	- RG	RG RG	ND	RG
121.	cyanide	RG	NA	NT	RG	RG
	1ead	RG	RG	RG	RG	RG
123.	mercury	ND ND	ND	ND	NT NT	ND
123.	nickel	NT	RG	RG	RG	RG
124.	selenium	ND	NT	ND	ND	RG
125.	silver	ND	NT	NT	ND ND	NT
	thallium	ND ND	NT	ND	ND ND	NT
127.		ND ND	RG	RG ·	RG	RG
128.	zinc			NA	NA	NA ⁻
129.	2,3,7,8-tetrachlorodibenzo-	NA	NA	AN	AM	NA
	p-dioxin (TCDD)					

	Pollutant	WAPC Blowdown	Total Subcategor
1.	acenaphthene	NA	ND
2.	acrolein	NA	ND
З.	acrylonitrile	NA	ND
4.	benzene	NA	ND
5.	benzidine	NA	ND
6.	carbon tetrachloride	NA	TM
7.	chlorobenzene	NA	ND
ű.	1,2,4-trichlorobenzene	NA	ND
9.	hexachlorobenzene	NA	ND
10.	1,2-dichloroethane	NA	ND
11.	1,1,1-trichloroethane	NA	ИD
12.	hexachloroethane	NA	ND
13.	1,1-dichloroethane	NA	ND
14.	1,1,2-trichloroethane	NA	ND
15.	1,1,2,2-tetrachloroethane	NA	ND
16.	chloroethane	NA	ИD
17.	bis(chloromethyl) ether	NA	ND .
18.	bis(2-chloroethyl) ether	NA	ND
19.	2-chloroethyl vinyl ether	NA	ND
20.	2-chloronaphthalene	NA	ND
21.	2,4,6-trichlorophenol	NA	ND
22.	parachlorometa cresol	NA	ND
23.	chloroform	NA	ND
24.	2-chlorophenol	NA	ND
25.	1,2-dichlorobenzene	NA	ND
26. 27.	1,3-dichlorobenzene	NA	ND
28.	1,4-dichlorobenzene	NA	ND
29.	3,3'-dichlorobenzidine	NA	. ND .
30.	1,1-dichloroethylene	NA	ND
31.	1,2-trans-dichloroethylene	NA .	ND .
32.	2,4-dichlorophenol	NA	ND
33.	1,2-dichloropropane	NA	ND
34.	1,2-dichloropropylene	NA	·ND
35.	2,4-dimethylphenol	NA	ND
36.	2,4-dinitrotoluene	NA	ND
37.	2,6-dinitrotoluene	NA	ND
38.	1,2-diphenylhydrazine	NA	ND
	ethylbenzene fluoranthana	NA	ND
39. 40.	fluoranthene	NA	ND
40. 41.	4-chlorophenyl phenyl ether	. NA	ND
41.	4-bromophenyl phenyl ether	NA	ND
43.	bis(2-chloroisopropyl) ether	NA NA	ND
4J.	bis(2-chloroethoxy) methane	- NA	ND

Table VI~8 (Continued)

	· ·		
	•	WAPC	Total
	Pollutant	Blowdown	Subcategory
44.	methylene chloride	NA	NT
45.	methyl chloride	NA	ND
46.	methyl bromide	NA	ND
47.	bromoform	NA	ND .
48.	dichlorobromomethane	NA	ND
49.	trichlorofluoromethane	NA	ND
50.	dichlorodifluoromethane	NA '	ND
51.	chlorodibromomethane	NA	ND
52.	hexachlorobutadiene	NA	ND
53.	hexachlorocyclopentadiene	NA	, ND
54.	isophorone	NA	ND
55.	naphthalene	NA	ND
56.	nitrobenzene	ΝA	ND
57.	2-nitrophenol	NA	ND
58.	4-nitrophenol	NA	ND
59.	2,4-dinitrophenol	. NA	ND
60.	4.6-dinitro-o-cresol	NA	ND
61.	N-nitrosodimethylamine	NA	ND
62.	N-nitrosodiphenylamine	NA	ND
63.	N-nitrosodi-n-propylamine	NA	ND
64.	pentachlorophenol	NA	ND
65.	phenol	NA	ND
66.	bis(2-ethylhexyl) phthalate	NA	ND
67.	butyl benzyl phthalate	NA	ND
68.	di-n-butyl phthalate	NA	ND
69.	di-n-octyl phthalate	NA -	ND
70.	diethyl phthalate	· NA	ND
71.	dimethyl phthalate	NA	· ND
72.	benzo(a)anthracene	NA	ND
73.	benzo(a)pyrene	NA	ND
74.	3,4-benzofluoranthene	NA	ND
75.	benzo(k)fluoranthene	NA	ND
76.	chrysene	··· · · · · · · · · · · · · · · · · ·	ND ND
77.	acenaphthylene	NA	ND
78.	anthracene	NA	ND
79.	benzo(ghi)perylene	NA	NĎ
80.	fluorene	NA	ND
81.	phenanthrene	NA	ND
82.	dibenzo(a,h)anthracene	NA	ND
83.	indeno(1,2,3-c,d)pyrene	NA	ND
84.	pyrene	. NA	ND
85.	tetrachloroethylene	ŇΑ	ND
86.	toluene	NA	ND

Table VI-8 (Continued)

	Pollutant	WAPC Blowdown	Total Subcategory
87.	trichloroethylene	NA	ND
88.	vinyl chloride	NA	ND
89.	aldrin	NA	NA
90.	dieldrin	NA	NA
91.	chlordane	NA	NA
92.	4,4'-DDT	NA	NA
93.	4,4'-DDE	NA	NA
94.	4,4'-DDD	NA	NA
95. 96.	alpha-endosulfan	NA	NA
96.	beta-endosulfan endosulfan sulfate	NA NA	NA NA
98.	endrin	NA NA	NA NA
99.	endrin aldehyde	NA NA	NA NA
100.	heptachlor .	NA NA	NA NA
101.	heptachlor epoxide	NA	NA NA
102.	alpha-BHC	NA NA	NA NA
103.	beta-BHC	NA	NA
104.	gamma-BHC	NA	NA
105.	delta-BHC	NA	NA
106.	PCB-1242	NA	NA
107.	PCB-1254	NA	NA
108.	PCB-1221	NA	NA
109.	PCB-1232	NA	NA
110.	PCB-1248	NA	NA
111.	PCB-1260	NA	NA
112.	PCB-1016	NA	NA
113.	toxaphene	. NA .	NA .
114.	antimony	NT	NT*
115.	arsenic	NT	SU
116. 117.	asbestos beryllium	NA	NA NT*
118.	cadmium	ND ND	SU SU
119.	chromium	RG	RG
120.	copper	. RG	RG
121.	cyanide	ND	RG
122.	lead	RG	RG
123.	mercury	ND	NT*
124.	nickel	RG	RG
125.	selenium	ND	SU
126.	silver	ND	NT
127.	thallium	ND	NT*
128.	zinc	RG	RG
129.	2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD)	NA .	NA .

PRIORITY POLLUTANT DISPOSITION TITANIUM FORMING SUBCATEGORY

. *These pollutant parameters could also have been eliminated from further consideration due to presence in a small number of sources (SU).

Key: NA - Not Analyzed ND - Never Detected

NQ - Never Found Above Their Analytical Quantification

NT - Detected Below Levels Achievable by Treatment

SU - Detected in a Small Number of Sources

RG - Considered for Regulation

Table VI-9
PRIORITY POLLUTANT DISPOSITION
URANIUM FORMING SUBCATEGORY

	Pollutant	Heat Trt. CCW	Surface Trt. Spent Baths	Surface Trt. Rinsewater	Sawing or Grinding Spent Emulsions	Area Cleaning Wastewater	WAPC Blowdown	Drum Wash Water	Laundry Wastewater	Total Subcategory
1.	acenaphthene	NA	NA	NA	ND	ND	NA	NA	NA	ND
2.	acrolein	NA	NA	NA	ŅD	ND	NA	NA	NA	ND
З.	acrylonitrile	NA	NA	NA	ND	ND	NA	NA	NA	ND
4.	benzene	NA	NA	NA	ND	ND	NA	NA	NA	ND
5.	benzidine	NA	NA	NA	ND	ND	NA	NA	NA	ND
6.	carbon tetrachloride	NA	NA	NA	ND	ND	NA	NA	NA	ND
7.	chlorobenzene	NA	NA	NA	ND	ND	NA	NA	NA	ND
8.	1,2,4-trichlorobenzene	NA	NA	NA	ND	. ND	NA .	NA	NA	ND
9.	hexachlorobenzene	NA	NA	NA	ND	ND	NA	NA	NA	ND
10.	1,2-dichloroethane	NA	NA	NA	ND	ND	NA	NA	, NA	ND
11.	1,1,1-trichloroethane	NA	NĄ	NA	ND	ND	NA	NA	NA	ND
12.	hexachloroethane	NA	NA	NA	ND	ND	NA	NA	NA	ND
13.	1,1-dichloroethane	NA	NA	NA	ND	ND .	NA	NA	NA NA	ND
14.	1,1,2-trichloroethane	NA	NA	ŅA	ND	ND	NA	NA	NA	ND
	. 1,1,2,2-tetrachloroethane	NA	NA	, NA	· ND	ND	NA	NA	NA NA	ND
16.	chioroethane	NA	NA	NA	ND	ND	NA	NA	NA	ND
17.	bis(chloromethyl) ether	NA.	NA	NA	ND	ND	- NA	NA	NA NA	ND ND
18.	bis(2-chloroethyl) ether	NA	NA .	NA	ND	ND	NA	NA	NA NA	· · · -
19.	2-chloroethyl vinyl ether	NA	NA NA	NA	ND	ND	NA	NA	NA NA	ND MD
20.	2-chloronaphthalene	NA	NA	NA	ND	ND	NA	NA	NA NA	ND ND
21.	2,4,6-trichlorophenol	NA NA	NA	NA NA	ND ND	ND RG	NA NA	NA NA	NA NA	SU
22.	parachlorometa cresol	NA "	NA			ND	NA NA	NA NA	NA NA	. ND
23.	chloroform	NA	NA	NA	ND	ND ND	NA NA	NA NA	NA NA	ND ND
24. 25.	2-chlorophenol	NA NA	NA NA	NA NA	ND ND	ND	NA NA	NA NA	NA NA	ND ND
25. 26.	1,2-dichlorobenzene 1,3-dichlorobenzene	NA NA	NA ·	NA NA	ND ND	ND	NA NA	NA NA	NA NA	ND
27.	1,4-dichlorobenzene	NA NA	NA	NA NA	ND	ND	NA NA	NA NA	NA NA	ND
28.	3,3'-dichlorobenzidine	NA NA	NA NA	NA NA	ND	ND	NA NA	NA	NA NA	ND
29.	1,1-dichloroethylene	NA.	NA NA	NA NA	ND	ND	. NA	NA	NA NA	ND
30.	1.2-trans-dichloroethylene	NA	NA	NA NA	ND	ND	NA NA	NA NA	NA NA	ND
31.	2,4-dichlorophenol	NA	NA NA	NA NA	ND	ND	NA NA	NA	NA NA	ND
32.	1,2-dichloropropane	NA.	NA	NA NA	ND	ND	NA	NA	NA	ND
33.	1,2-dichloropropylene	NA	NA.	NA NA	ND	ND	NA	NA	NA	ND
34.	2.4-dimethylphenol	NA	NA	NA NA	ND	ND	NA	NA	NA	ND
35.	2.4-dinitrotoluene	NA.	NA	NA NA	ND	ND	NA	NA	NA	ND
36.	2,6-dinitrotoluene	NA	NA	NA	ND	ND	NA	NA	NA	ND
37.	1,2-diphenylhydrazine	NA	NA	NA NA	· ND	ND	NA	NA	NA	ND
38.	éthylbenzene	NA	NA.	NA NA	ND	ND	NA NA	NA -	NA .	ND
39.	fluoranthene	ΝA	NA NA	NA NA	ND	ND	. NA	NA	NA	ND
40.	4-chlorophenyl phenyl ether	NA	NA	NA	ND	. ND	NA	, NA	NA	ND
41.	4-bromopheny! pheny! ether	NA	NA	NA	ND	ND	NA	NA	NA	ND
42.	bis(2-chloroisopropyl) ether	NA	NA	NA	ND	ND	NA	NA	ŅA	ND
43.	bis(2-chloroethoxy) methane	NA	NA	NA	ND	ND	NA	NA	NA	ND

Table VI-9 (Continued)

							•			
			Surface		· Sawing or					*
		Heat	Trt.	Surface	Grinding	Area		Drum		
		Trt.	Spent	Trt.	Spent	Cleaning	WAPC	Wash	Laundry	Total
	Pollutant	CCW.	Baths	Rinsewater	Emulsions	Wastewater	Blowdown	Water	Wastewater	Subcategory
44.	methylene chloride	NA ·	NA	NA	ND	· ND	NA	NA	NA ·	ND
45.	methyl chloride	NA	NA	NA	ND	ND	- NA	NA	NA	ND
46.	methyl bromide	NA	NA	NA	ND	· ND	. NA	· NA	NA -	ND
. 47 .	bromoform	NA	NA	NA	ND	ND	NA	NA	. NA	ND
48.	dichlorobromomethane	NA	NA	NA NA	ND ·	· ND	NA	. NA	NA	ND
49.	trichlorofluoromethane	NA	N.A.	NÃ	ND	ND	NA	·NA	NA	ND
50.	dichlorodifluoromethane	NA	NA.	NA	ND	ND	NA	NA	NA.	ND
51.	chlorodibromomethane	N A	NA	NA.	ND	ND	NA	NA.	NA	ND -
52.	hexachlorobutadiene	NA.	NA	- NA	ND	ND	NA	· NA	· NA	ND
53.	hexachlorocyclopentadiene	. 7N A	NA:	- NA	ND	ND .	. NA	NA.	NA .	ND
54.	isophorone	. NA	NA	NA	ND	ND	NA	NA	NA	ND
55.	naphthalene	NA.	NA	NA	. ND	ND	NA	NA	NA	.ND
56.	nitrobenzene	AN,	NA	- NA	ND	- ND	. NA	NA	NA	ND
57.	2-nitrophenol	NA	NA	NA .	ND	ND	NA	NA	NA	ND
58.	4-nitrophenol	N A	NA	NA NA	ND	ND	NA.	NA	NA	·ND
59.	2.4-dinitrophenol	NA.	NA	NA .	ND	ND ND	NA	· NA	NA	,ND
60.	4,6-dinitro-o-cresol	NA.	NA.	NA.	ND	ND	NA.	NA	NA	ND
61.	N-nitrosodimethylamine	NA	NA.	NA.	ND.	ND	NA	NA	NA.	۸D
62.	N-nitrosodiphenylamine	NA	NA	NA NA	ND ND	ND	NA	NA NA	NA NA	iND
63.	N-nitrosodi-n-propylamine	NA.	NA NA	NA NA	ND	ND	NA	NA	NA NA	ND
64.	pentachlorophenol	, NA	NA	NA NA	ND ND	ND	NA NA	NA	NA NA	ND
65.	phenol	NA	NA .	NA	ND	· ND	NA	· NA	NA	. ND
66.	bis(2-ethylhexyl) phthalate	- NA	NA	NA ·	ND	RG	NA NA	NA	- NA	RG
67.	butyl benzyl phthalate	N A	NA	NA NA	ND	ND	NA NA	NA NA	NA	ND
68.	di-n-butyl phthalate	NA.	NA NA	NA	ND	ND	NA NA	NA	NA .	ND
69.	di-n-octyl phthalate	NA	NA NA	NA ·	ND	. ND	NA	NA.	, NA	ND
. 70.	diethyl phthalate	- NA	, NA	· NA	ND	ND	NA NA	NA.	NA NA	, ND
71.	dimethyl phthalate	. NA	NA	NA NA	ND	ND	NA NA	NA.	NA NA	ND
72.	benzo(a)anthracene	NA.	NA	NA NA	, ND	ND .	· NA	- NA	· NA	ND
73.	benzo(a)pyrene	NA	NA	NA NA	ND	ND	NA NA	NA	. NA	ND
74.	3,4-benzofluoranthene	NA	NA	NA NA	ND	. ND	· NA	- NA	NA NA	ND
. 75	benzo(k)fluoranthene	NA.	NA	· NA	ND	ND	NA NA	NA	NA.	ND
76.	chrysene	NA	NA NA	NA NA	ND.	ND	NA.	NA	- NA	ND ND
77.	acenaphthylene	NA	NA -	NA NA	ND	ND	NA NA	NA	NA NA	ND
77. 78.	anthracene	NA	NA NA	· NA	ND	ND	NA NA	NA	NA NA	ND ND
79.	benzo(ghi)perylene	N:A	NA	NA NA	ND	ND	NA NA	NA	NA NA	ND
80.	fluorene	NA NA	NA NA	NA NA	ND	ND.	NA NA	NA NA	NA NA	
81.	phenanthrene	NA NA	NA NA	NA NA	RG	ND -	NA NA	NA NA	NA NA	ND SU
82.	dibenzo(a,h)anthracene	NA NA	NA NA	NA NA	ND.	, ND	NA NA	NA NA	NA NA	
			NA NA	NA NA	ND .		NA ·		NA NA	ND
83.	indeno(1,2,3-c,d)pyrene	NA NA	NA NA		иD ОN	ND		NA		ND
84.	pyrene	NA NA		NA NA		ND	NA NA	NA	NA NA	ND
85.	tetrachloroethylene	NA	NA	NA NA	ND	ND	NA NA	NA	NA NA	ND
86.	toluene	NA	NA	NA	ND	ND	NA	NA	NA	ND

87. trichloroethylene NA		Pollutant	Heat Trt. CCW	Surface Trt. Spent Baths	Surface Trt. Rinsewater	Sawing or Grinding Spent Emulsions	Area Cleaning Wastewater	WAPC Blowdown	Drum Wash Water	Laundry Wastewater	Total Subcategory
88. aldrin NA			NA	NA	NA	ND	ND	NΛ	NI A	ALA.	ND
89. dieidrin NA			NA	NA	NA						
91. chlordane NA			NA	NA	NA						
91. chlordane NA	-		NA	NA	NA						
92. 4.4"-DDT NA			NA	NA							
93. 4,4"-DDE		4,4'-DDT	NA								
94. 4,4'-DDD		4,4'-DDE	NA								
95. alpha-endosulfan NA N	94.	4,4'-DDD	NA								
96. beta-endosulfan	95.	alpha-endosulfan	NA								
97. endosulfan sulfate NA	96.	beta-endosulfan	NA								
98. endrin aldehyde	97.	endosulfan sulfate									
99	98.	endrin	NA								
100. heptachlor NA	99.	endrin aldehyde									
101. heptachlor epoxide	100.										NA
102. alpha=BHC	101.	heptachlor epoxide									
103. beta=BHC	102.										
105. delta=BHC NA NA NA NA NA NA NA NA NA N	103.							** *			NA
105. delta=BHC	104.	gamma-BHC								NA	NA NA
106. PCB-1242	105.									NA	NA .
107. PCB-1254	106.	· · · · · · · · · · · · · · · · · · ·								NA	NA
108. PCB-1221	107.									NA	NA
109. PCB-1232 NA	108.					** *			NA	NA	* NA
110. PCB-1248								.NA	NA	NA	NA
111. PCB-1260								NA	NA	NA	NA
112. PCB-1016		· · · · · · · · · · · · · · ·						NA	NA	NA	NA
113. toxaphene							NA	NA	NA	NA	NA
114. antimony	_	· · · · -					NA	NA	NA	NA	
NE		•						NA	NA	NA	NA
ND	-	•						ND	ND	ND	
NA								ND	ND .	NT	
N1		- · · · · · · · · · · · · · · · · · · ·					NA	NA	NA		
119.		•						NT	NT		
120.		····· · ·				RG	RG	ND			-
121. cyanide							RG	ND	NT		
122. lead						RG	RG	ТИ	RG		
123. mercury		•				NT	RG	ND	ND		
124. nickel	_				RG	RG	RG	RG			
124.					ND	ND	ND				
125. Selentum ND ND NT NT NT ND ND ND NT 126. silver NT NT ND NT NT ND NT NT ND ND ND ND NT ND ND ND NT ND ND ND ND ND NT ND	-				RG	NT	RG				
120. Silver NT NT ND NT NT NT ND NT NT NT ND NT NT 127thailium NT NT ND NT					NT	NT	NT				
127. thallium NT NT ND NT 128. zinc NT RG					ND	NT					NIT
128. zinc NT RG	-				ND	NT					
129. 2,3,7,8-tetrachlorodibenzo- NA NA NA NA NA NA NA NA			NT	R G	RG						
p-dioxin (TCDD)	129.		NA	NA	NA	NA	NA	NA NA	NA	NA	NA

Table VI-9 (Continued)

PRIORITY POLLUTANT DISPOSITION URANIUM FORMING SUBCATEGORY

Key: NA - Not Analyzed ND - Never Detected

NQ - Never Found Above Their Analytical Quantification
NT - Detected Below Levels Achievable by Treatment
SU - Detected in a Small Number of Sources
RG - Considered for Regulation

Table VI-10

PRIORITY POLLUTANT DISPOSITION ZINC FORMING SUBCATEGORY

Pollutant	Surface Trt. Rinsewater	Alkaline Cleaning Rinsewater	Total Subcategory
1. acenaphthene	ND	NQ	NQ
2. acrolein	ND ·	ND NT	ND
3. acrylonitrile	NT NT	NT NT	NT NT
4. benzene 5. benzidine	ND ND	ND	ND
6. carbon tetrachloride	NT	NT	NT
7. chlorobenzene	NQ	NQ	. NQ
8. 1,2,4-trichlorobenzene	. ND	ND	. ND
9. hexachlorobenzene	. ND	ND	ND
10. 1,2-dichloroethane	NQ	NQ	NQ
11. 1,1,1-trichloroethane	ND	NT	NT
12. hexachloroethane	ND	ND	ND
13. 1.1-dichloroethane	NT	NT	NT
14. 1,1,2-trichloroethane	NQ	· NQ	NQ
15. 1,1,2,2-tetrachloroethane	NT	NT	NT
16. chloroethane	ND	, ND	ND
<pre>17. bis(chloromethyl) ether</pre>	ND	ND	ND
18. bis(2-chloroethyl) ether	NT	NQ	NT
19. 2-chloroethyl vinyl ether	ND	ND	ND
20. 2-chloronaphthalene	ND	ND	. ND
21. 2,4,6-trichlorophenol	ND	ND	ND
22. parachlorometa cresol	ND	ND -	ND
23. chloroform	NT	NT	.NT
24. 2-chlorophenol	ND	ND	ND
25. 1,2-dichlorobenzene	ND	, ND	ND
26. 1,3-dichlorobenzene	. ND	ND	ND
27. 1,4-dichlorobenzene	ND	ND	ND ND
28. 3,3'-dichlorobenzidine 29. 1.1-dichloroethylene	ND NT	ND	ND NT
30. 1,2-trans-dichloroethylene	NT NT	NT NT	NT NT
31. 2.4-dichlorophenol	. ND	ND	ND
32. 1,2-dichloropropane	NQ	NT	NT
33. 1,2-dichloropropylene	NQ	NT	NT
34. 2,4-dimethylphenol	NT	ND	NT
35. 2,4-dinitrotoluene	ND	ND	ND
36. 2,6-dinitrotoluene	NT	NT	NT
37. 1,2-diphenylhydrazine	NQ	NQ	NQ
38. ethylbenzene	NŢ .	NT	NT
39. fluoranthene	ND	NT	NT
40. 4-chlorophenyl phenyl ether	ND	ND	ND
41. 4-bromophenyl phenyl ether	ND	ND	ND
42. bis(2-chloroisopropyl) ether	- ND	··· ND	ND
43. bis(2-chloroethoxy) methane	NT	NT	NT

Table VI-10 (Continued)

PRIORITY POLLUTANT DISPOSITION ZINC FORMING SUBCATEGORY

	Pollutant	Surface Trt. Rinsewater	Alkaline Cleaning Rinsewater	Total Subcategory
44.	methylene chloride	NT	NT	NT
45.	methyl chloride	ND	ND	' ND
46.	methyl bromide	ND	NQ	NQ
47.	bromoform	NT	NŤ	NT
48.	dichlorobromomethane	NT	NT	NT
49.	trichlorofluoromethane	ND	. ND	ND
50.	dichlorodifluoromethane	ND	ND	ND
51.	chlorodibromomethane	RG	NT	RG
52.	hexachlorobutadiene .	ND	ND :	ND
53.	hexachlorocyclopentadiene	- ND	ND .	ND .
54.	isophorone	ND	ND	ND
55.	naphthalene	NT	NT	NT
56.	nitrobenzene	ND	ND	ND
57.	2-nitrophenol	ND	ND	ND
58.	4-nitrophenol	ND .	ND	ND
59.	2,4-dinitrophenol	ND	ND	ND
60.	4,6-dinitro-o-cresol	ND	ND	ND
61.	N-nitrosodimethylamine	ND	ND	ND
62.	N-nitrosodiphenylamine	ND	ND	ND
63.	N-nitrosodi-n-propylamine	ND	ND	ND
64.	pentachlorophenol	ND	ND	ND
65.	pheno 1	ND	ND	ND
66.	bis(2-ethylhexyl) phthalate	NQ	RG	RG
67.	butyl benzyl phthalate	NT	NT	NT
68.	di-n-butyl phthalate	RG ,	ND	RG
69.	di-n-octyl phthalate	ND	ND .	ND
70.	diethyl phthalate	NT	NT	NT
71.	dimethyl phthalate	ИD	ND	ND
72.	benzo(a)anthracene	NT	NT .	NT
73.	benzo(a)pyrene	ND	ND	ND
74.	3,4-benzofluoranthene	ND	ND	ND
75.	benzo(k)fluoranthene	ND	ND	ND
76.	chrysene	NT	ND	NT
77.	acenaphthylene	ND	ND	ND
78.	anthracene	NQ	NT	NT
79.	benzo(ghi)perylene	ND	ND	ND
80.	fluorene	ND	ND	ND
81.	phenanthrene	NQ ·	NT	NT
82.	dibenzo(a,h)anthracene	ND	ND TC	ND TC
83.	indeno(1,2,3-c,d)pyrene	ND	TS	TS
84.	pyrene	ND	ND	ND
85.	tetrachloroethylene	NT	NT	NT
86.	toluene	NT	NT	NT

Table VI-10 (Continued)

PRIORITY POLLUTANT DISPOSITION ZINC FORMING SUBCATEGORY

		Surface	Alkaline	
	Pollutant	Trt. Rinsewater	Cleaning Rinsewater	Total
	Politicalit	Killsewater	Kinsewater	Subcategory
87.	trichloroethylene	NT	NT	NT
88.	vinyl chloride	ND	NÐ	ND
89.	aldrin	NA	NA	NA
90.	dieldrin	NA	NA	NA
91.	chlordane	NA	NA	NA
92.	4,4'-DDT	NA	NA	NA
93.	4,4'-DDE	NA	NA	NA
94.	4,4'-DDD	. NA	NA-	NA
95.	alpha-endosulfan	NA	NA	NA
96.	beta-endosulfan	NA	NA	NA
97.	endosulfan sulfate	NA	NA	NA
98.	endrin	NA	NA	NA
99.	endrin aldehyde	NA	NA	NA
100.	heptachlor	NA	NA	NA
101.	heptachlor epoxide	NA	NA	NA
102.	alpha-BHC	NA	NA	NA
103.	beta-BHC	NA	NA	NA
104.	gamma-BHC	NA	NA	NA
105.	delta-BHC	NA	NA	NA
106.	PCB-1242	NA	NA	NA
107.	PCB-1254	NA	· NA	NA .
108.	PCB-1221	NA	NA	NA
109.	PCB-1232	NA	NA	NA
110.	PCB-1248	NA	NA	NA
111.	PCB-1260	NA	NA ·	NA
112.	PCB-1016	NA	NA	NA
113.	toxaphene	, NA ,	NA , .	, NA
114.	antimony	ND	ND	ND
115.	arsenic	ND	ND	ND
116.	asbestos	NA	NA	NA
117.	bery1lium	, ND	ND	ND
118.	cadmium	ЙD	ND	ND
119.	chromium	RĢ	ND	RG
120.	copper	ND	. ND	ND
121.	cyanide	ND	RG	RG
122.	lead	ND	ND	ND
123.	mercury	ND	ND	ND
124.	nickel	RG	ND .	RG
125.	selenium	ND	ND	ND
126.	silver	· ND	ND	ND
127.	thallium	ND	ND	ND
128.		RG	RG	RG
129.	2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD)	NA	NA ·	NA .

Table VI-10 (Continued)

PRIORITY POLLUTANT DISPOSITION ZINC FORMING SUBCATEGORY

Key: NA - Not Analyzed

ND - Never Detected

NQ - Never Found Above Their Analytical Quantification

NT - Detected Below Levels Achievable by Treatment

SU - Detected in a Small Number of Sources

RG - Considered for Regulation

1301

Table VI-11

PRIORITY POLLUTANT DISPOSITION ZIRCONIUM-HAFNIUM FORMING SUBCATEGORY

	Pollutant	Total Subcategor
1.	acenaphthene	ND
2.	acrolein	NT
З.	acrylonitrile	ND
4.	benzene	NQ
5.	benzidine	ND
6.	carbon tetrachloride	ND
7.	chlorobenzene	NQ
8.	1,2,4-trichlorobenzene	ND
9.	hexachlorobenzene	ND
10.	1,2-dichloroethane	ND
11.	1,1,1-trichloroethane	SU
12.	hexachloroethane	ND
13.	1,1-dichloroethane	NQ
14.	1,1,2-trichloroethane	ND
15.	1,1,2,2-tetrachloroethane	ND
16.	chloroethane	ND
17.	bis(chloromethyl) ether	ND
18.	bis(2-chloroethyl) ether	ND
19.	2-chloroethyl vinyl ether	ND
20.	2-chloronaphthalene	ND
21. 22.	2,4,6-trichlorophenol	ND
22. 23.	parachlorometa cresol	SU
23. 24.	chloroform :	NT*
2 4 . 25.	2-chlorophenol	ИD
26. 26.	1,2-dichlorobenzene	ND
20. 27.	1,3-dichlorobenzene 1,4-dichlorobenzene	ND
28.		- ND
29.	3,3′-dichlorobenzidine 1,1-dichloroethylene	ND
30.	1,2-trans-dichloroethylene	ND ND
31.	2,4-dichlorophenol	ND
32.	1,2-dichloropropane	ND
33.	1,2-dichloropropylene	ND
34.	2,4-dimethylphenol	ND
35.	2,4-dinitrotoluene	ND
36.	2,6-dinitrotoluene	ND
37.	1,2-diphenylhydrazine	ND
38.	ethylbenzene	SU
39.	fluoranthene	ND .
40.	4-chlorophenyl phenyl ether	ND
41.	4-bromophenyl phenyl ether	ND
42.	bis(2-chloroisopropyl) ether	ND
43.	bis(2-chloroethoxy) methane	סא
	= := := = =::or ocarioxy) mediane	140

Table VI-11 (Continued)

PRIORITY POLLUTANT DISPOSITION ZIRCONIUM-HAFNIUM FORMING SUBCATEGORY

Pollutant	Total Subcategory
methylene chloride	RG
	ИĎ
	ИD
bromoform	МÐ
dichlorobromomethane	ИD
trichlorofluoromethane	ND
	ND
	ND
hexachlorobutadiene	ND ND-
	ИD
	ND
· · · · ·	ND
	NQ
	ND
	ND
	ND
	ND
N-nitrosodiphenylamine	ND
N-nitrosodi-n-propylamine	ND
	ND
phenol	ND
	· SU
	ND NQ
	SU
	NQ
dietny: phthalate	· ND
	ND
	· ND
	, ND
	ND
	ND
acenaphthylene	ND -
anthracene.	NQ
benzo(ghi)perylene	, ND
fluore ne	ND
phenanthrene	NQ
dibenzo(a,h)anthracene	ND
	. ND
pyrene	ND
	NQ RG
toluene	κu
	methylene chloride methyl chloride methyl bromide bromoform dichlorobromomethane trichlorofluoromethane dichlorodifluoromethane chlorodifluoromethane hexachlorodifluoromethane hexachlorocyclopentadiene isophorone naphthalene nitrobenzene 2-nitrophenol 4-nitrophenol 4-nitrophenol 4,6-dinitro-o-cresol N-nitrosodimethylamine N-nitrosodimethylamine N-nitrosodi-n-propylamine pentachlorophenol bis(2-ethylhexyl) phthalate butyl benzyl phthalate di-n-butyl phthalate di-n-octyl phthalate diethyl phthalate diethyl phthalate diethyl phthalate dimethyl phthalate dimethyl phthalate dimethyl phthalate benzo(a)anthracene benzo(k)fluoranthene benzo(k)fluoranthene chrysene acenaphthylene anthracene benzo(ghi)perylene fluorene phenanthrene dibenzo(a,h)anthracene indeno(1,2,3-c,d)pyrene

Table VI-11 (Continued)

PRIORITY POLLUTANT DISPOSITION ZIRCONIUM-HAFNIUM FORMING SUBCATEGORY

	Pollutant	Total Subcategor
		Subcategor
87.	trichloroethylene	NQ
88.	vinyl chloride	ND
89.	aldrin	ND
90. 91.	dieldrin	ND
92.	chlordane	ND
93.	4,4'-DDT	ND
94.	4,4'-DDE 4,4'-DDD	ND
95.	4,4 ~DDD	ND
96.	alpha-endosulfan beta-endosulfan	ND
97.	endosulfan sulfate	ND
98.	endosurran surrate endrin	ND
99.	endrin endrin aldehyde	ND
100.	heptachlor	ND
101.	heptachlor epoxide	ND
102.	alpha-BHC	ND
103.	beta-BHC	ND
104.	gamma-BHC	ND
105.	delta-BHC	ND
106.	PCB-1242	ND
107.	PCB-1254	ND
108.	PCB-1221	ND ND
109.	PCB-1232	ND
110.	PCB-1248	ND
111.	PCB-1260	ND
112.	PCB-1016	ND
113.	toxaphene	- ND
114.	antimony	SU
115.	arsenic	SU
116.	asbestos	NA NA
117.	beryllium	NT
118.	cadmium	SU
119.	chromium	RG
120.	copper	RG
121.	cyanide	RG
122.	lead	RG
123.	mercury	NT*
124		RG
125.	selenium	NT
126.	silver	NT
127.	thallium	SU
128.	zinc	RG
129.	2,3,7,8-tetrachlorodibenzo-	NA
	p-dioxin (TCDD)	,

Table VI-11 (Continued)

PRIORITY POLLUTANT DISPOSITION ZIRCONIUM-HAFNIUM FORMING SUBCATEGORY

*These pollutant parameters could also have been eliminated from further consideration due to presence in a small number of sources (SU).

Key: NA - Not Analyzed

ND - Never Detected

NQ - Never Found Above Their Analytical Quantification

NT - Detected Below Levels Achievable by Treatment

SU - Detected in a Small Number of Sources

RG - Considered for Regulation

Table VI-12

PRIORITY POLLUTANT DISPOSITION METAL POWDERS FORMING SUBCATEGORY

	Pollutant	MPP Wet Atomization Wastewater	Tumbling, Burnishing or Cleaning Wastewater	Sawing or Grinding Spent Emulsions	Steam Trt. WAPC	Total Subcategory
1.	acenaphthene	NA	ND	ND	ND	ND
2.	acrolein	NA	ND	ND	ND	ND
э.	acrylonitrile	NA	ND	ND	ND	ND
4.	benzene	NA	NT	ND	NT	NT*
5.	benzidine	NA	ND	ND	ND	ND
6.	carbon tetrachloride	NA	NT	NT	NT	NT
7.	chlorobenzene	NA	ND	ND	ND	ND
8.	1,2,4-trichlorobenzene	NA	ND	ND	ND	ND
9.	hexachlorobenzene	NA	ND	ND	ND	ND
10.	1.2-dichloroethane	NA.	ND	ND	ND	ND
11:	1,1,1-trichloroethane	NA NA	RG	RG	NT	RG
12.	hexachloroethane	NA NA	ND	ND	ND	ND
13.	1.1-dichloroethane	NA NA	ND	ND	ND	ND
14.	1,1,2-trichloroethane	NA NA	ND	ND	ND	ND
15.		NA NA	ND	ND	ND	ND
16.	1,1,2,2-tetrachloroethane chloroethane	NA .	ND	ND	ND .	ND
	= -		ND ND	ND	ΝĎ	ND
17.	bis(chloromethyl) ether	NA NA	ND	ND	ИD	ND
18.	bis(2-chloroethy)) ether	NA .			ND	ND
19.	2-chloroethyl vinyl ether	NA	ND	ND		
20.	2-chloronaphthalene	NA	ND	ND	ND	ND
21.	2,4,6-trichlorophenol	NA	ND	ND	ИD	ND
22.	parachlorometa cresol	NA	ND	ND	ND	ND
23.	ch1oroform	NA	ND	ND	ND	ND
24.	2-chlorophenol	NA	ND	ND	ИД	ND
25.	1,2-dichlorobenzene	NA "	ND	ND	ND	·ND
26.	1,3-dichlorobenzene	· NA	ND	ND	ND -	· ND
27.	1,4-dichlorobenzene	. NA	ND	ND	ND	ND
28.	3,3′-dichlorobenzidine	NA	ND	ND	ND	ND
29.	1,1-dichloroethylene	NA	ND	ND	ND	ND
30.	1,2-trans-dichloroethylene	NA	ND	ND	ИD	ND
31.	2,4-dichlorophenol	NA	ND	ND	ND	ND
32.	1,2-dichloropropane	NA	ND	ND	ND	ND
. 33.	1,2-dichloropropylene	NA "	ND	ND	ND	ND
34.	2,4-dimethylphenol	NA	ND	ND	ND	ND
35.	2,4-dinitrotoluene	NA	ND	ND	ND	ND ·
36.	2,6-dinitrotoluene	NA	ND	ND	ND	, ND
37.	1,2-diphenylhydrazine	NA	ND ·	ΝĐ	ИD	ND
38.	ethylbenzene.	NA	ND	ND	ИD	ND
39.	fluoranthene	NA	ND	ND	ND	ND
40.	4-chlorophenyl phenyl ether	, NA	ND .	ND	ND.	ND
41.	4-bromophenyl phenyl ether	NA	ND	ND	ND	ND
42.	bis(2-chloroisopropyl) ether	NA	ND	ND	ND	ND
43.	bis(2-chloroethoxy) methane	NA	ND	ND	ND	ND

Table VI-12 (Continued)

PRIORITY POLLUTANT DISPOSITION METAL POWDERS FORMING SUBCATEGORY

			•	•		
			Tumbling.	Sawing or		
		MPP Wet	Burnishing	Grinding	Steam	
	•	Atomization	or Cleaning	Spent	Trt.	Total
	Pollutant	Wastewater	Wastewater	Emulsions	WAPC	Subcategory
44.	methylene chloride	· NA	NT*	ND	NT	NT*
45.	methyl chloride	NA	ND	· ND	ΝĎ	ND
46.	methyl bromide	NA	ND	ND -	ND	ND
47.	bromoform	NA	ND	ND	ND	ND
48.	dichlorobromomethane	NA	· ND	. ND	ND	. ND
49.	trichlorofluoromethane	· NA	ND	' ND	ND	ND
50.	dichlorodifluoromethane	·NA	ND	ND	ND	- ND
51.	chłorodibromomethane	NA	ND	· ND	ND	ND
52.	hexachlorobutadiene	NA	ND	ND	ND	· ND
53.	hexachlorocyclopentadiene	·NΑ	ND	ND.	ND	ND -
54.	isophorone	NA	ND	ND	ND.	ND
55.	naphthalene	NA	ND	, ND	ND	ND
56.	nitrobenzene	NA	ND	ND	ND	ND
57.	2-nitrophenol	NA	ND	, ND	ND	ND
58.	4-nitrophenol	NA	·ND	ND	. ND	. ND
59,	2.4-dinitrophenol	NA	ND	: ND	· ND	ND
60.	4,6-dinitro-o-cresol	NA ·	ND	· ND	, ND	ND
61.	N-nitrosodimethylamine	· NA	ND	ND ·	ND	• ND
62.	N-nitrosodiphenylamine	NA .	ND	ND	ND	ND
63.	N-nitrosodi-n-propylamine	NA	; ND	ND	ND	ND
64.	pentachlorophenol	NA	ND	ND	ND	· ND
65.	phenol	· NA	ND	. ND	ND	· ND
66.	bis(2-ethylhexyl) phthalate	NA NA	ND	ND	ND	ND
67.	butyl benzyl phthalate	NA	ND	ND	ND	ND
68.	di-n-butyl phthalate	NA	ND	: ND	ND	ND
69.	di-n-octyl phthalate	NA	ND	ND	ND	ND
70.	diethyl phthalate	NA .	·ND	ND	ND	ND
71.	dimethyl phthalate	NA	ND	ND	ND	ND
72.	benzo(a)anthracene	NΑ	ND	ND .	ND	. ND
73.	benzo(a)pyrene	NA	ND.	ND	· · ND	ND
74.	3,4-benzofluoranthene	NA	ND	ND	ND	ND
75.	benzo(k)fluoranthene	NA	ND	ND	ND	ND
76.	chrysene	NA	ND-	ND	ND	- ND
77.	acenaphthylene	NA	ND	ND	ND	ND
78.	anthracene	NA	ND ·	. ND	ND	ND
79.	benzo(ghi)perylene	NA	ND	ND	ND	. ND
80.	fluorene	NA	ND	ND	ND	ND
81.	ohenanthrene	NA	ND	ND	ND	ND
82.	dibenzo(a,h)anthracene	NA	ND	ND	ND	ND
83.	indeno(1,2,3-c,d)pyrene	NA	ND	ND	ND	ND
84.	pyrene	NA.	ND	ND	ND	ND
85.	tetrachloroethylene	NA ·	סא	ND	ND	ND
86.	toluene	NA	NT*	NT	NT	NT*

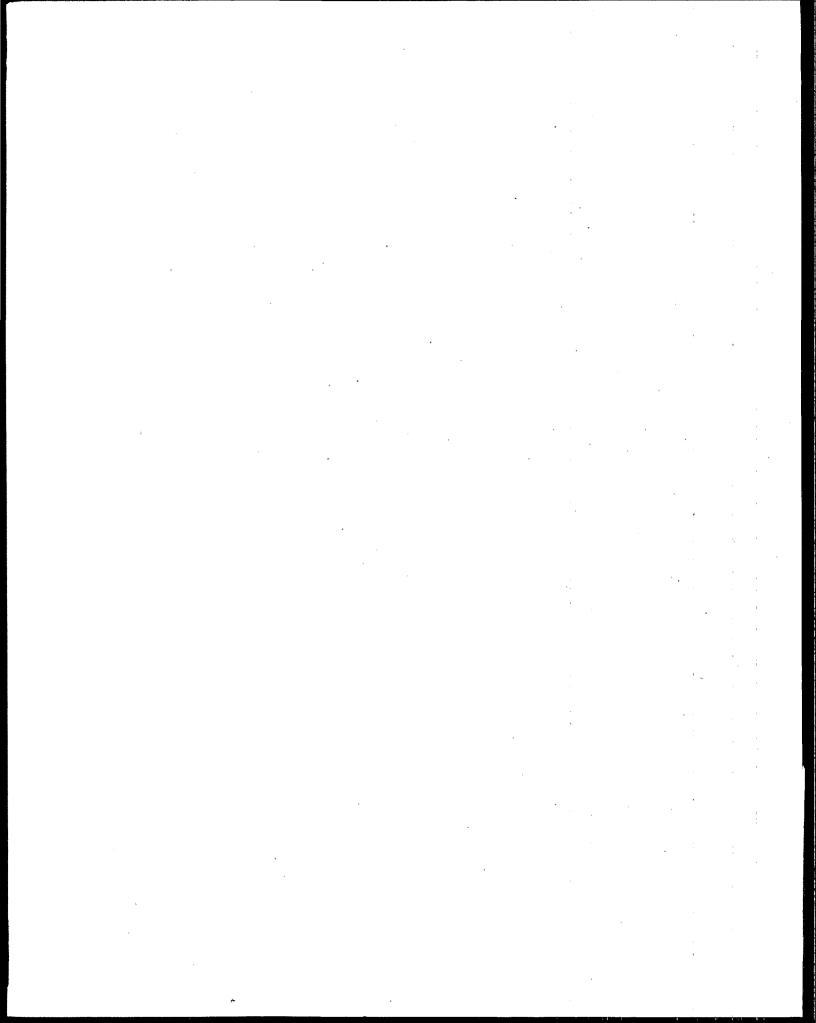
Table VI-12 (Continued)

PRIORITY POLLUTANT DISPOSITION METAL POWDERS FORMING SUBCATEGORY

	Pollutant	MPP Wet Atomization Wastewater	Tumbling, Burnishing or Cleaning Wastewater	Sawing or Grinding Spent Emulsions	Steam Trt. WAPC	Total Subcategory
87.	trichloroethylene	NA	ND	ND	ND	ND
88.	vinyl chloride	NA.	ND	ND	ND	ND
89.	aldrin	NA	NA	NA	NA	NA NA
90.	dieldrin	NA	NA	NA NA	NA NA	NA
91.	chlordane	NA	NA	NA	NA	NA
92.	4,4'-DDT	NA	NA.	NA NA	NA	NA NA
93.	4,4'-DDE	NA	NA.	NA	NA	NA
94.	4,4'-DDD	NA	NA.	NA ·	NA	NA NA
95.	alpha-endosulfan	NA	NA.	NA NA	NA	NA NA
96.	beta-endosulfan	NA	NA NA	NA NA	NA	NA NA
97.	endosulfan sulfate	NA	NA NA	NA.	NA	NA NA
98.	endrin	NA	NA	NA NA	NA NA	NA NA
99.	endrin aldehyde	NA .	NA	NA NA	NA	NA NA
100.	heptachlor	NA	NA	NA NA	NA	NA NA
101.	heptachlor epoxide	NA	NA	NA NA	NA	NA NA
102.	alpha-BHC	NA	NA	, NA	NA	NA .
103.	beta-BHC	NA	NA	NA NA	NA	NA NA
104.	gamma-BHC	NA	NA	NA	NA	NA NA
105.	delta-BHC	NA	NA	NA NA	NA	NA NA
106.	PCB-1242	NA	NA	NA NA	NA NA	NA NA
107.	PCB-1254	NA	NA NA	NA NA	NA NA	
108.	PCB-1221	NA	NA	NA NA	NA NA	NA NA
109.	PCB-1232	NA	NA NA	NA NA	NA NA	NA NA
110.	PCR-1248	NA	NA NA	NA NA	NA NA	
111.	PCB-1260	NA NA	NA	NA NA	NA NA	NA
112.	PCB-1016	NA	NA NA	NA NA	NA NA	NA NA
113.	toxaphene	NA	· NA	NA NA	NA NA	NA NA
114.	antimony	NA	NT*	ND	ND	NT*
115.	arsenic	ND	NT*	ND	ND	NT*
116.	asbestos	NA NA	NA NA	NA NA	NA NA	
117.	beryllium	NA NA	ND	ND	ND	NA ND
118.	cadmium	ND	ND	ND	ND	ND
119.	chromium	RG	RG	RG	ND	RG
120.	copper	RG	RG	RG	ND	RG RG
121.	cyanide	NT	R G	RG	RG	
122.	lead	SU	RG	RG .	ND	RG RG
123.	mercury	ND	ND ND	ND		_
124.	nickel	RG	RG	NT	ND	ND
125.	selenium	NA NA	ND		ND	RG
126.	silver	NA	ND	ND ND	ND	ND
127.	thallium	NA NA	ND		ND	ND NT
128.	zinc	RG	RG	NT	ND	NT
129.	2,3,7,8-tetrachlorodibenzo-	NA	NA	RG NA · · · ·	NΤ	RG.
	p-dioxin (TCDD)			INA	NA .	NA ···

*These pollutant parameters could also have been eliminated from further consideration due to presence in a small number of sources (SU).

Key: NA - Not Analyzed


ND - Never Detected

NQ - Never Found Above Their Analytical Quantification

NT - Detected Below Levels Achievable by Treatment

SU - Detected in a Small Number of Sources

RG - Considered for Regulation

: : : •

	•		i	
·				
•			,	
	,			
			1	
			;	
	:			
		:		
			i	
*				