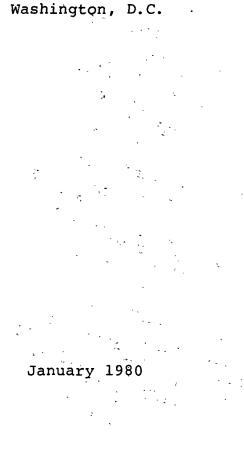

600880042A


TREATABILITY MANUAL

1

VOLUME I. Treatability Data

U.S. ENVIRONMENTAL PROTECTION AGENCY

۰.

7] ·

PREFACE

In January, 1979, EPA's Office of Enforcement and Office of Water and Waste Management requested help from the Office of Research and Development in compiling wastwater treatment performance data into a "Treatability Manual". This Manual was to be used in developing NPDES permit limitations for facilities which, at the time of permit issuance, were not fully covered by promulgated, industry-specific effluent guidelines authorized under Sections 301, 304, 306, 307, and 501 of the CWA:

A planning group was set up to manage the treatability program under the chairmanship of William Cawley, Deputy Director, Industrial Environmental Research Laboratory - Cincinnati. The group includes participants from: 1) the Industrial Environmental Research Laboratory - Cincinnati, 2) Effluent Guidelines Division, Office of Water and Waste Management; 3) Permits Division, Office of Enforcement; 4) Municipal Environmental Research Laboratory - Cincinnati; 5) R. S. Kerr, Environmental Research Laboratory - Ada; 6) Industrial Environmental Research Laboratory - Research Triangle Park; 7) Monsanto Research Corporation; and 8) Aerospace Corporation.

The objectives of the treatability program are:

- To provide readily accessible data and information on treatability of industrial and municipal waste streams for use by NPDES permit writers, enforcement personnel, and by industrial or municipal permit holders;
- To provide a basis for research planning by identifying gaps in knowledge of the treatability of certain pollutants and wastestreams;
- To set up a system allowing rapid response to program office requirements for generation of treatability data.

The primary output from this program is a five-volume Treatability Manual. The individual volumes are named as follows:

Volume	I	-	Treatability Data	·
Volume	II	-	Industrial Descriptions	· • • • •
Volume	III	-	Technologies	• ~ ~ ¥w •
Volume	IV	-	Cost Estimating	، •
Volume	V	-	Summary	4. 2 [.]

E

- To provide readily accessible data and information on treatability of industrial and municipal waste streams for use by NPDES permit writers, enforcement personnel, and laboratory researchers; and
- To provide a basis for research planning by identifying gaps in treatability knowledge and state-of-the-art.

A primary output from the treatability program is a five volume treatability manual. The treatability manual comprises five volumes, as follows:

VOLUME I	Treatability Data
VOLUME II	Industrial Descriptions
VOLUME III	Technologies
VOLUME IV	Cost Estimating
VOLUME V	Summary

ACKNOWLEDGMENT

The sheer size and comprehensiveness of this document should make it obvious that this had to be the effort of a large number of people. It is the collection of contributions from throughout the Environmental Protection Agency, particularly from the Office of Enforcement, Office of Water and Hazardous Materials and the Office of Research and Development. Equally important to its success were the efforts of the employees of the Aerospace Corporation and the Monsanto Research Corporation who participated in this operation.

No list of the names of everyone who took part in the effort would in any way adequately acknowledge the effort which those involved in preparing this Manual made toward its development. Equally difficult would be an attempt to name the people who have made the most significant contributions both because there have been too many and because it would be impossible to adequately define the term "significant." This document exists because of major contributions by the contractor's staff and by members of the following:

Effluent Guidelines Division Office of Water and Waste Management

Permits Division Office of Water Enforcement

National Enforcement Investigation Center Office of Enforcement

Center for Environmental Research Information

Municipal Environmental Research Laboratory

Robert S. Kerr Environmental Research Laboratory

Industrial Environmental Research Laboratory Research Triangle Park, NC

Industrial Environmental Research Laboratory Cincinnati, OH Office of Research and Development

The purpose of this acknowledgement is to express my thanks as Committee Chairman and the thanks of the Agency to the Committee Members and others who contributed to the success of this sfort.

William A. Cawley, Deputy Director, IFRL-Ci Chairman, Treatability Coordination Committee

CONTENTS

.

.

Υ.

.

.

I.1	Introduction	•	•	٠	•	•	٠	I.1-1
I.2	Classical and Conventional Pollutants						•	I.2-1
I.3	Industrial Wastewater Discharges							
I.4	Motals and Inorganics	-	•	•	•	•	-	T 4-1
⊥• *	Metals and Inorganics	•	•	٠	•	•	•	· · ·····
		•	•	•	•	•	•	· 1·4·1-1
	Arsenic	٠	٠	٠	٠	٠	٠	. 1.4.2-1
	Asbestos	•	٠	٠	•	•	٠	. I.4.3-1
	Beryllium	•	•	•	•	•	•	. I.4.4-1
	Cadmium	•	•	•	•	•	•	. I.4.5-1
	Chromium		•		•	•	•	. I.4.6-1
	Copper				•		•	. I.4.7-1
	Copper	•	•	•	Ť	•	•	т 4 8-1
		•	•	•	•	•	•	T / 0_1
	Lead	•	•	•	•	٠	•	· 1·4·9 ⁻¹
	Mercury.	٠	٠	•	٠	٠	•	1.4.10-1
	Nickel	٠	•	٠	٠	٠	•	I.4.11-1
	Selenium	٠	•	٠	•	٠	•	I.4.12-1
	Silver	•	٠	٠	•	•	٠	I.4.13-1
	Thallium	•						I.4.14-1
	Zinc				•	-		I.4.15-1
τ.5	Ethers			-				T.5-1
	Bis(chloromethyl) ether	•	•	•	•	•	•	T 5 1_1
	Dis(Childiomethyl) ether	•	•	•	•	•	•	
	Bis(2-chloroethyl) ether	•	•	•	٠	٠	•	. 1.5.2-1
	Bis(2-chloroisopropyl) ether	•	•	٠	•	٠	•	. 1.5.3-1
	2-Chloroethyl vinyl ether	٠	٠	٠	٠	٠	•	. I.5.4-1
	4-Chlorophenyl phenyl ether	•	•	٠	٠	•	•	. I.5.5-1
	4-Bromophenyl phenyl ether	•	•	•	•	٠	•	. I.5.6-1
	Bis(2-chloroethoxy)methane							
I.6	Phthalates	•				•		I.6-1
	Dimethyl phthalate							. I.6.1-1
	Diethyl phthalate					·		. T.6.2-1
	Di-n-butyl phthalate	•	•	•	•	•	•	T 6 3_1
	Di-n-octyl phthalate	•	٠	٠	٠	٠	•	
	Bis(2-ethylhexyl) phthalate	٠	٠	٠	•	٠	٠	. 1.0.5-1
-	Butyl benzyl phthalate	٠	٠	٠	٠	٠	٠	. I.6.6-1
I.7	Nitrogen Compounds	•	•	٠	•	٠	٠	I.7-1
	N-nitrosodimethylamine	•	•	•	•	•	•	. I.7.1-1
	N-nitrosodiphenylamine	•	•	•		•	•	. I.7.2-1
	N-nitrosodi-n-propylamine		-					. I.7.3-1
	Benzidine		•	Ţ	•			. I.7.4-1
	3,3'-Dichlorobenzidine	•		•	•	•		. I.7.5-1
						•		
	1,2-Diphenylhydrazine				٠			. 1.7.6-1
	Acrylonitrile	٠	٠	٠	•	٠	•	. I.7.7-1

Date: 7/31/79

• . .

¢ ، *ا* ÷ ¢

γŕ Ì. ٠ • , ۰ ۲

4 , , , . • •

. . · · ۲

١,

•

n, int, i

. .

" 95° " 1 3 .

4

2

CONTENTS (continued)

I.7	Nitrogen Compounds (continued) Butylamine	
	Butylamine	I.7.8-1
	Diethylamine	I.7.9-1
	Ethylenediamine	I.7.10-1
	Monoethylamine	I.7.11-1
	Monomethylamine	I.7.12-1
	Triethylamine	I.7.13-1
	Trimethylamine	I.7.14-1
I.8	Phenols	. I.8-1
	Phenol	I.8.1-1
	2-Chlorophenol.	T.8.2-1
	2,4-Dichlorophenol.	T.8.3-1
	2 4 6-Trichlorophenol	T 8 4_1
	Pentachlorophenol	T.8.5-1
	2-Nitrophenol	T 8 6-1
	A-Nitrophenol	T 8 7-1
	Pentachlorophenol	T 2 2 1
		T 9 9-1
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T 9 10-1
	2,4-Dimethylphenol.	T 0 T T - T
	• Total phenols	T.O.TT-T
	p-Chloro-m-cresol	
	4,6-Dinitro- <i>o</i> -cresol	
	Cresol	
I.9	Aromatics	. 1.9-1
	Benzene	1.9.1-1
	Chlorobenzene	1.9.2-1
	1,2-Dichlorobenzene	1.9.3-1
	1,3-Dichlorobenzene	1.9.4-1
	1,4-Dichlorobenzene	1.9.5-1
	1,2,4-Trichlorobenzene	1.9.6-1
		I.J./-I
	Ethylbenzene	1.9.8-1
	Nitrobenzene	
	Toluene	
	2,4-Dinitrotoluene	
	2,6-Dinitrotoluene	
	Aniline	I.9.13-1
	Benzoic acid	
	Benzyl chloride	
	Styrene	I.9.16-1
	Quinoline	1.9.17-1
	Xylenes	
	Nitrotoluene	I.9.19-1
	Naphthenic acid	I.9.20-1
I.10	Polynuclear Aromatic Hydrocarbons	
	2-Chloronaphthalene	1.10.1-1
	Benz(a) anthracene	
	Benzo(b)fluoranthene	
	Benzo(k)fluoranthene	I.10.4-1

.

Date: 7/31/79

.,

•

· · · · •

. • Υ. **,**

•

4 · · · + . .

CONTENTS (continued)

1.10 PolyIndicted a pyrene. I.10.5-1 Indenc(1,2,3-cd)pyrene. I.10.6-1 Dibenz(ah)antracene. I.10.7-1 Benzo(gh)perylene. I.10.9-1 Acenaphthene. I.10.10-1 Antracene. I.10.10-1 Anthracene. I.10.10-1 Anthracene. I.10.12-1 Fluoranthene. I.10.12-1 Promene. I.10.15-1 Phenanthrene. I.10.17-1 I.11 PCB's and Related Compounds. I.11.1-1 Arcclor 1016. I.11.2-1 Arcclor 121. I.11.2-1 Arcclor 1221. I.11.4-1 Arcclor 1224. I.11.4-1 Arcclor 1248. I.11.4-1 Arcclor 1254. I.11.7-1 Arcclor 1254. I.12.1-1 Methyl chloride. I.12.2-1 Chloroform. I.12.1-1 Methyl chloride. I.12.2-1 Chloroform. I.12.2-1 Chloroform. I.12.2-1 Chroroform. I.12.2-1 Chroroform. I.12.2-1 Chroroform. I.12.2-1 <	I.10	Polynuclear Aromatic Hydrocarbons	(continued)
Diberz(an) Anthracene 1.10.7-1 Benzo(ghi) perylene. 1.10.8-1 Acenaphthene. 1.10.10-1 Acenaphthylene. 1.10.10.10-1 Anthracene. 1.10.11-1 Chrysene. 1.10.12-1 Fluoranthene. 1.10.13-1 Pluoranthene. 1.10.14-1 Naphthalene 1.10.16-1 Pyrene. 1.10.16-1 Pyrene. 1.10.17-1 1.11 PCB's and Related Compounds. 1.11.10.17-1 Aroclor 1016. 1.11.2-1 Aroclor 1221. 1.11.2-1 Aroclor 1242. 1.11.4-1 Aroclor 1242. 1.11.4-1 Aroclor 1242. 1.11.4-1 Aroclor 1242. 1.11.7-1 Aroclor 1243. 1.11.7-1 Aroclor 1243. 1.11.2-1 Aroclor 1244. 1.11.7-1 Aroclor 1246. 1.12.1-1 Methyl chloride. 1.12.1-1 Methyl chloride. 1.12.1-1 Methyl chloride. 1.12.1-1 Methyl chloride. 1.12.2-1 <t< td=""><td></td><td>Benzo(a)pyrene</td><td> I.10.5-1</td></t<>		Benzo(a)pyrene	I.10.5-1
Diberz(an) Anthracene 1.10.7-1 Benzo(ghi) perylene. 1.10.8-1 Acenaphthene. 1.10.10-1 Acenaphthylene. 1.10.10.10-1 Anthracene. 1.10.11-1 Chrysene. 1.10.12-1 Fluoranthene. 1.10.13-1 Pluoranthene. 1.10.14-1 Naphthalene 1.10.16-1 Pyrene. 1.10.16-1 Pyrene. 1.10.17-1 1.11 PCB's and Related Compounds. 1.11.10.17-1 Aroclor 1016. 1.11.2-1 Aroclor 1221. 1.11.2-1 Aroclor 1242. 1.11.4-1 Aroclor 1242. 1.11.4-1 Aroclor 1242. 1.11.4-1 Aroclor 1242. 1.11.7-1 Aroclor 1243. 1.11.7-1 Aroclor 1243. 1.11.2-1 Aroclor 1244. 1.11.7-1 Aroclor 1246. 1.12.1-1 Methyl chloride. 1.12.1-1 Methyl chloride. 1.12.1-1 Methyl chloride. 1.12.1-1 Methyl chloride. 1.12.2-1 <t< td=""><td></td><td>Indeno(1,2,3-cd)pyrene</td><td> I.10.6-1</td></t<>		Indeno(1,2,3-cd)pyrene	I.10.6-1
Benzo(ghi)perylene. I.10.8-1 Acenaphthene. I.10.10-1 Anthracene. I.10.10-1 Anthracene. I.10.10-1 Chrysene. I.10.12-1 Fluoranthene. I.10.12-1 Fluoranthene. I.10.15-1 Phenanthrene. I.10.15-1 Phenanthrene. I.10.15-1 Pyrene. I.11.0.17-1 Aroclor 1016. I.11.1.1 Aroclor 1221. I.11.21 Aroclor 1221. I.11.21 Aroclor 1221. I.11.21 Aroclor 1223. I.11.4-1 Aroclor 1242. I.11.4-1 Aroclor 1248. I.11.51 Aroclor 1248. I.11.51 Aroclor 1260. I.12.1-1 Methyl chloride I.12.1-1 Methyl chloride I.12.1-1 Methyl chloride I.12.1-1 Methyl chloride I.12.2-1 Chloroform. I.12.1-1 Methyl chloride I.12.1-1 Methyl chloroethane. I.12.7-1 1,1.2-Trichloroethane		Dibenz(an)anthracene	• • • • • • • • • ±•±0•/**
Acenaphthylene. I.10.9-1 Acenaphthylene. I.10.10-1 Anthracene. I.10.11-1 Chrysene. I.10.12-1 Fluoranthene. I.10.13-1 Pluorene. I.10.14-1 Naphthalene I.10.16-1 Phenanthrene. I.10.16-1 Pyrene. I.10.16-1 Pyrene. I.10.17-1 Aroclor 1221 I.11.2-1 Aroclor 1232 I.11.2-1 Aroclor 1242 I.11.4-1 Aroclor 1242 I.11.4-1 Aroclor 1242 I.11.4-1 Aroclor 1248 I.11.7-1 Aroclor 1248 I.11.7-1 Aroclor 1260 I.12.1-1 Methyl chloride I.12.2-1 Aroclor 1260 I.12.1-1 Methyl chloride I.12.2-1 Chloroform I.12.2-1 Chloroform I.12.2-1 Chloroethane I.12.2-1 Chloroethane I.12.2-1 Chloroethane I.12.2-1 1.1-2-Dichloroethane I.12.2-1		Benzo(ghi)perylene	I.10.8-1
Acenaphthylene		Acenaphthene	I.10.9-1
Anthracene. I.10.11-1 Chrysene. I.10.12-1 Fluoranthene. I.10.13-1 Fluoranthene. I.10.13-1 Plorene. I.10.15-1 Phenanthrene. I.10.15-1 Pyrene. I.10.16-1 Pyrene. I.10.17-1 I.11 PCB's and Related Compounds. I.11.1 Aroclor 1016. I.11.1 Aroclor 1221. I.11.1 Aroclor 1232. I.11.3 Aroclor 1244. I.11.4-1 Aroclor 1248. I.11.4-1 Aroclor 1260. I.11.6-1 Aroclor 1260. I.11.7-1 I.12 Halogenated Hydrocarbons I.12.1-1 Methyl chloride I.12.2-1 Methyl chloride I.12.2-1 Methylene chloride I.12.2-1 Chloroform. I.12.2-1 Chloroform. I.12.2-1 Methylene chloride I.12.2-1 Chloroethane. I.12.2-1 Lorobethane. I.12.2-1 Lorobethane. I.12.2-1 Lorobethane. I.12.2-1 L,2-Dichloroethane.		Acenaphthylene	I.10.10-1
Chrysene. I.10.12-1 Fluoranthene. I.10.13-1 Fluorene. I.10.14-1 Naphthalene I.10.15-1 Phenanthrene. I.10.16-1 Pyrene. I.10.17-1 I.11 PCB's and Related Compounds. I.11.1-1 Aroclor 1016. I.11.1-1 Aroclor 1221. I.11.2-1 Aroclor 1232. I.11.4-1 Aroclor 1248. I.11.5-1 Aroclor 1254. I.11.6-1 Aroclor 1260. I.11.7-1 I.12 Halogenated Hydrocarbons I.12.2-1 Methyl ene chloride. I.12.2-1 Methyl chloride I.12.2-1 Methyl chloride I.12.3-1 Carbon tetrachloride. I.12.3-1 Carbon tetrachloride. I.12.4-1 Chloroethane. I.12.6-1 1,2-Dichloroethane. I.12.7-1 1,1.1.7-Trichloroethane. I.12.7-1 1,1.2.7-Tichloroethane. I.12.10-1 Hexachloroethane. I.12.10-1 Hynyl chloride. I.12.10-1 Hynyl chloride. I.12.10-1 Hexachlorocyclopene </td <td></td> <td>Anthracene</td> <td> I.10.11-1</td>		Anthracene	I.10.11-1
Fluoranthene. I.10.13-1 Fluorene. I.10.15-1 Phenanthrene. I.10.15-1 Phenanthrene. I.10.15-1 Phenanthrene. I.10.15-1 Phenanthrene. I.10.15-1 Pyrene. I.10.17-1 I.11 PCB's and Related Compounds. I.11.10.17-1 Aroclor 1016. I.11.2-1 Aroclor 1221. I.11.3-1 Aroclor 1222. I.11.3-1 Aroclor 1242. I.11.4-1 Aroclor 1254. I.11.6-1 Aroclor 1260. I.11.7-1 Aroclor 1260. I.11.7-1 Methyl chloride. I.12.1-1 Methyl chloride. I.12.2-1 Methyl chloride. I.12.2-1 Chloroform. I.12.4-1 Chloroform. I.12.4-1 Chloroethane. I.12.4-1 Chloroethane. I.12.4-1 Chloroethane. I.12.4-1 Chloroethane. I.12.4-1 Chloroethane. I.12.2-1 hethyl chloride. I.12.2-1 1,1,2-Trichloroethane. I.12.2.6-1 1,2.2-Dichloropr		Chrysene.	I.10.12-1
Fluorene. I.10.14-1 Naphthalene I.10.15-1 Phenanthrene. I.10.16-1 Pyrene. I.10.16-1 Pyrene. I.10.16-1 Pyrene. I.10.16-1 Pyrene. I.10.16-1 Pyrene. I.10.17-1 I.11 PCB's and Related Compounds. I.11.1-1 Aroclor 1221. I.11.2-1 Aroclor 1232. I.11.3-1 Aroclor 1242. I.11.4-1 Aroclor 1242. I.11.4-1 Aroclor 1248. I.11.7-1 Aroclor 1254. I.11.7-1 Aroclor 1260. I.11.7-1 I.12 Halogenated Hydrocarbons I.12.1-1 Methyl chloride I.12.2-1 Methyl chloride I.12.3-1 Carbon tetrachloride. I.12.4-1 Chloroethane. I.12.6-1 1,2-Dichloroethane. I.12.6-1 1,2-Dichloroethane I.12.7-1 1,1,1.7-Trichloroethane I.12.10-1 Hexachloroothane. I.12.10-1 Hexachloroothane. I.12.10-1 Hexachloroopropane I.12.12-1		Fluoranthene.	I.10.13-1
Phenanthrene. I.10.16-1 Pyrene. I.10.17-1 I.11 PCB's and Related Compounds. I.11-1 Aroclor 1016. I.11.1-1 Aroclor 1221. I.11.2-1 Aroclor 1221. I.11.2-1 Aroclor 1222. I.11.2-1 Aroclor 1242. I.11.3-1 Aroclor 1248. I.11.4-1 Aroclor 1254. I.11.6-1 Aroclor 1260. I.11.7-1 I.12 Halogenated Hydrocarbons I.12.1-1 Methyl chloride I.12.1-1 Methyl chloride I.12.2-1 Chloroform. I.12.3-1 Carbon tetrachloride I.12.3-1 Chloroethane. I.12.5-1 1,1-Dichloroethane. I.12.5-1 1,1-Dichloroethane. I.12.5-1 1,1.2-Trichloroethane I.12.8-1 1,2.2-Tetrachloroethane I.12.10-1 Hexachlorobutadiene I.12.11-1 Vinyl chloride. I.12.10-1 Hexachlorobutadiene I.12.11-1 Vinyl chloride. I.12.12-1 1,2-Dichloropropane I.12.11-1 Vinyl chloride.<		Fluorene.	I.10.14-1
Phenanthrene. I.10.16-1 Pyrene. I.10.17-1 I.11 PCB's and Related Compounds. I.11-1 Aroclor 1016. I.11.1-1 Aroclor 1221. I.11.2-1 Aroclor 1221. I.11.2-1 Aroclor 1222. I.11.2-1 Aroclor 1242. I.11.3-1 Aroclor 1248. I.11.4-1 Aroclor 1254. I.11.6-1 Aroclor 1260. I.11.7-1 I.12 Halogenated Hydrocarbons I.12.1-1 Methyl chloride I.12.1-1 Methyl chloride I.12.2-1 Chloroform. I.12.3-1 Carbon tetrachloride I.12.3-1 Chloroethane. I.12.5-1 1,1-Dichloroethane. I.12.5-1 1,1-Dichloroethane. I.12.5-1 1,1.2-Trichloroethane I.12.8-1 1,2.2-Tetrachloroethane I.12.10-1 Hexachlorobutadiene I.12.11-1 Vinyl chloride. I.12.10-1 Hexachlorobutadiene I.12.11-1 Vinyl chloride. I.12.12-1 1,2-Dichloropropane I.12.11-1 Vinyl chloride.<		Naphthalene	I.10.15-1
Pyrene		Phenanthrene.	I.10.16-1
I.11 PCB's and Related Compounds. I.11.1-1 Aroclor 1016. I.11.1-1 Aroclor 1221. I.11.1-1 Aroclor 1232. I.11.3-1 Aroclor 1242. I.11.3-1 Aroclor 1242. I.11.4-1 Aroclor 1244. I.11.4-1 Aroclor 1254. I.11.5-1 Aroclor 1260. I.11.6-1 Aroclor 1260. I.11.6-1 Aroclor 1260. I.11.7-1 I.12 Halogenated Hydrocarbons I.12.1-1 Methyl chloride. I.12.1-1 Methylene chloride. I.12.2-1 Chloroform. I.12.2-1 Chloroethane. I.12.2-1 Chloroethane. I.12.4-1 Chloroethane. I.12.5-1 1,1-Dichloroethane. I.12.8-1 1,2-Dichloroethane. I.12.8-1 1,1,2-Trichloroethane I.12.10-1 Hexachlorocethane. I.12.10-1 Hexachloropethane. I.12.10-1 Hexachloropethane. I.12.10-1 Hexachloropethane. I.12.10-1 Hexachloropethane. I.12.10-1 Hexachloropethane.<		Pvrene.	I.10.17-1
Aroclor 1016. I.11.1-1 Aroclor 1221. I.11.2-1 Aroclor 1232. I.11.3-1 Aroclor 1242. I.11.3-1 Aroclor 1248. I.11.4-1 Aroclor 1248. I.11.4-1 Aroclor 1248. I.11.5-1 Aroclor 1260. I.11.7-1 I.12 Halogenated Hydrocarbons I.11.7-1 I.12 Halogenated Hydrocarbons I.12.1-1 Methyl chloride I.12.1-1 Methyl chloride I.12.2-1 Methylene chloride I.12.2-1 Methylene chloride I.12.1-1 Methylene chloride I.12.1-1 Methylene chloride I.12.2-1 Aroclor 12.4. I.12.2-1 Methylene chloride I.12.2-1 Chloroofnm I.12.4-1 Chloroothane I.12.5-1 1,1-Dichloroethane I.12.5-1 1,1,2-Trichloroethane I.12.1-1 1,1,2-Trichloroethane I.12.1-1 Vinyl chloride I.12.1-1 Vinyl chloride I.12.1-1 1,2-Dichloropropane I.12.14-1 Hexachlorocyclopentadiene<	T.11	PCB's and Related Compounds	
Aroclor 1221	***		
Aroclor 1232. I.11.3-1 Aroclor 1242. I.11.4-1 Aroclor 1248. I.11.5-1 Aroclor 1254. I.11.6-1 Aroclor 1260. I.11.6-1 Aroclor 1260. I.11.7-1 I.12 Halogenated Hydrocarbons I.12.1-1 Methyl chloride I.12.1-1 Methylene chloride I.12.2-1 Chloroform. I.12.3-1 Carbon tetrachloride I.12.4-1 Chloroethane. I.12.5-1 1,1-Dichloroethane. I.12.6-1 1,2-Dichloroethane. I.12.6-1 1,2-Dichloroethane. I.12.7-1 1,1,2.7-Trichloroethane I.12.10-1 Hexachloroethane. I.12.11-1 Vinyl chloride. I.12.10-1 Hexachlorocyclopentaciene I.12.11-1 Hexachlorocyclopentaciene I.12.12-1 Hexachl		Aroclor 1221	
Aroclor 1242. I.11.4-1 Aroclor 1248. I.11.5-1 Aroclor 1254. I.11.6-1 Aroclor 1260. I.11.7-1 I.12 Halogenated Hydrocarbons I.11.7-1 I.12 Halogenated Hydrocarbons I.12.1-1 Methyl chloride I.12.1-1 Methyl chloride I.12.1-1 Methylene chloride I.12.1-1 Methylene chloride I.12.2-1 Chloroform I.12.3-1 Carbon tetrachloride I.12.3-1 Chloroethane I.12.4-1 Chloroethane I.12.5-1 1,1-Dichloroethane I.12.8-1 1,2-Dichloroethane I.12.8-1 1,12Trichloroethane I.12.8-1 1,1,2-Trichloroethane I.12.10-1 Hexachloroethane I.12.11-1 Vinyl chloride I.12.12-1 1,2-Dichloropropane I.12.12-1 1,3-Dichloropropane I.12.12-1 Hexachlorocyclopentadiene I.12.14-1 Hexachlorobutadiene I.12.16-1 Methyl bromide I.12.17-1 Dichlorobromomethane I.12.12-1 <tr< td=""><td></td><td></td><td></td></tr<>			
Aroclor 1248. I.11.5-1 Aroclor 1254. I.11.6-1 Aroclor 1260. I.11.7-1 I.12 Halogenated Hydrocarbons I.12.1-1 Methyl chloride I.12.3-1 Carbon tetrachloride I.12.5-1 1,1-Dichloroethane I.12.5-1 1,2-Dichloroethane I.12.6-1 1,2-Dichloroethane I.12.10-1 1,1,2-Trichloroethane I.12.10-1 1,1,2,2-Tetrachloroethane I.12.10-1 Vinyl chloride I.12.10-1 Vinyl chloride I.12.10-1 1,3-Dichloropropane I.12.12-1 1,3-Dichloropropene I.12.14-1 Hexachlorobutadiene I.12.15-1 Hexachlorobutadiene I.12.16-1 Methyl bromide<		$\frac{1202102}{12021}$	
Aroclor 1254. I.11.6-1 Aroclor 1260. I.11.7-1 I.12 Halogenated Hydrocarbons I.12.1-1 Methyl chloride I.12.1-1 Methyl chloride I.12.1-1 Methyl ene chloride I.12.2-1 Chloroform I.12.3-1 Carbon tetrachloride I.12.3-1 Carbon tetrachloride I.12.5-1 1.1-Dichloroethane I.12.5-1 1.2-Dichloroethane I.12.6-1 1.2-Dichloroethane I.12.7-1 1.1.2.4-1 I.12.6-1 1.2-Dichloroethane I.12.7-1 1.1.2.5-1 I.12.6-1 1.2-Dichloroethane I.12.10-1 Hexachloroethane I.12.10-1 Hexachloroethane I.12.10-1 Hexachloroethane I.12.10-1 Hexachloropropane I.12.11-1 Vinyl chloride I.12.11-1 Vinyl chloride I.12.12-1 1.2-Dichloropropane I.12.14-1 Hexachlorocyclopentadiene I.12.14-1 Hexachlorocyclopentadiene I.12.16-1 Methyl bromide I.12.16-1 Methyl bromide <td></td> <td>$\frac{1248}{1248}$</td> <td></td>		$\frac{1248}{1248}$	
Aroclor 1260		Aroclor 1254	
I.12 Halogenated Hydrocarbons I.12-1 Methyl chloride I.12.1-1 Methylene chloride I.12.2-1 Chloroform I.12.3-1 Carbon tetrachloride I.12.3-1 Carbon tetrachloride I.12.3-1 Chloroethane I.12.3-1 1,1-Dichloroethane I.12.5-1 1,1-Trichloroethane I.12.8-1 1,1,2-Trichloroethane I.12.8-1 1,1,2-Trichloroethane I.12.9-1 1,1,2,2-Tetrachloroethane I.12.10-1 Hexachloroethane I.12.11-1 Vinyl chloride I.12.11-1 Vinyl chlorode I.12.11-1 Vinyl chloride I.12.11-1 Vinyl chloropropane I.12.11-1 Vinyl chlorode I.12.11-1 Vinyl chloropropane I.12.11-1 Hexachlorocyclopentadiene I.12.12-1 1,2-Dichloropropane I.12.12-1 Hexachlorocyclopentadiene I.12.14-1 Hexachlorocyclopentadiene I.12.16-1 Methyl bromide I.12.18-1 Chlorodibromomethane I.12.18-1 Chlorodibromomethane I.12.20-1 </td <td></td> <td>Aroclor 1260</td> <td>T.11.7-1</td>		Aroclor 1260	T.11.7-1
Methylene chloride.I.12.2-1Chloroform.I.12.3-1Carbon tetrachloride.I.12.3-1Carbon tetrachloride.I.12.4-1Chloroethane.I.12.5-11,1-Dichloroethane.I.12.5-11,2-Dichloroethane.I.12.7-11,1,1-TrichloroethaneI.12.8-11,1,2-TrichloroethaneI.12.10-1Hexachloroethane.I.12.10-1Hexachloroethane.I.12.11-1Vinyl chloride.I.12.13-11,3-DichloropropaneI.12.14-1HexachlorobutadieneI.12.15-1HexachlorobutadieneI.12.16-1Methyl bromide.I.12.17-1DichlorobromomethaneI.12.19-1Bromoform.I.12.20-1DichlorodifluoromethaneI.12.20-1DichlorofluoromethaneI.12.21-1TrichlorofluoromethaneI.12.22-1Trichloroethylene.I.12.23-11,2-Dichloroethylene <tdi.22-1< td=""></tdi.22-1<>	т 12	Halogenated Hydrocarbons	
Methylene chloride.I.12.2-1Chloroform.I.12.3-1Carbon tetrachloride.I.12.3-1Carbon tetrachloride.I.12.4-1Chloroethane.I.12.5-11,1-Dichloroethane.I.12.5-11,2-Dichloroethane.I.12.7-11,1,1-TrichloroethaneI.12.8-11,1,2-TrichloroethaneI.12.10-1Hexachloroethane.I.12.10-1Hexachloroethane.I.12.11-1Vinyl chloride.I.12.13-11,3-DichloropropaneI.12.14-1HexachlorobutadieneI.12.15-1HexachlorobutadieneI.12.16-1Methyl bromide.I.12.17-1DichlorobromomethaneI.12.19-1Bromoform.I.12.20-1DichlorodifluoromethaneI.12.20-1DichlorofluoromethaneI.12.21-1TrichlorofluoromethaneI.12.22-1Trichloroethylene.I.12.23-11,2-Dichloroethylene <tdi.22-1< td=""></tdi.22-1<>		Methyl chloride	T.12.1-1
Chloroform.I.12.3-1Carbon tetrachloride.I.12.4-1Chloroethane.I.12.5-11,1-Dichloroethane.I.12.6-11,2-Dichloroethane.I.12.7-11,1,1-TrichloroethaneI.12.8-11,1,2-TrichloroethaneI.12.9-11,1,2,2-TetrachloroethaneI.12.10-1Hexachloroethane.I.12.11-1Vinyl chloride.I.12.12-11,3-DichloropropaneI.12.13-11,3-DichloropropaneI.12.15-1HexachlorocyclopentadieneI.12.16-1Methyl bromide.I.12.17-1DichlorobromomethaneI.12.18-1ChlorodifluoromethaneI.12.12-1TrichlorofluoromethaneI.12.22-1TrichlorofluoromethaneI.12.22-1TrichloroethyleneI.12.23-11,2-DichloropethaneI.12.22-1		Methylene chloride	T.12.2-1
Carbon tetrachloride. I.12.4-1 Chloroethane. I.12.5-1 1,1-Dichloroethane. I.12.6-1 1,2-Dichloroethane. I.12.7-1 1,1,1-Trichloroethane. I.12.8-1 1,1,2-Trichloroethane. I.12.9-1 1,1,2-Trichloroethane. I.12.9-1 1,1,2-Trichloroethane. I.12.10-1 Hexachloroethane. I.12.11-1 Vinyl chloride. I.12.12-1 1,3-Dichloropropane. I.12.13-1 1,3-Dichloropropane. I.12.14-1 Hexachlorocyclopentadiene I.12.15-1 Hexachlorocyclopentadiene I.12.17-1 Dichlorobromomethane. I.12.17-1 Dichlorobromomethane. I.12.12-1 Trichlorodifluoromethane. I.12.12-1 Trichloroethylene. I.12.20-1 Dichlorodifluoromethane. I.12.21-1 Trichloroethylene. I.12.22-1 Trichloroethylene. I.12.22-1 Trichloroethylene. I.12.22-1 Trichloroethylene. I.12.24-1 1,2-Dichloroethylene. I.12.24-1 1,2-Dichloroethylene. I.12.24-1			
Chloroethane. I.12.5-1 1,1-Dichloroethane. I.12.6-1 1,2-Dichloroethane. I.12.7-1 1,1,1-Trichloroethane I.12.8-1 1,1,2-Trichloroethane I.12.9-1 1,1,2-Trichloroethane I.12.10-1 Hexachloroethane. I.12.10-1 Vinyl chloride. I.12.12-1 1,2-Dichloropropane I.12.12-1 1,3-Dichloropropane I.12.13-1 1,3-Dichloropropane I.12.14-1 Hexachlorocyclopentadiene I.12.12-1 Methyl bromide. I.12.17-1 Dichlorobromomethane I.12.12-1 Dichlorobromomethane I.12.12-1 Trichlorofluoromethane I.12.12-1 Trichlorofluoromethane I.12.12-1 Trichlorofluoromethane I.12.22-1 Trichloroethylene I.12.22-1 Trichloroethylene I.12.23-1 1,2-Dichloroethylene I.12.24-1		Carbon tetrachloride	T. 12.4-1
1,1-Dichloroethane.I.12.6-11,2-Dichloroethane.I.12.7-11,1,1-TrichloroethaneI.12.8-11,1,2-TrichloroethaneI.12.9-11,1,2,2-TetrachloroethaneI.12.10-1Hexachloroethane.I.12.11-1Vinyl chloride.I.12.12-11,2-DichloropropaneI.12.13-11,3-DichloropropeneI.12.14-1HexachlorocyclopentadieneI.12.15-1HexachlorobutadieneI.12.16-1Methyl bromide.I.12.17-1DichlorobrommethaneI.12.19-1Bromoform.I.12.20-1DichlorodifluoromethaneI.12.20-1TrichlorofluoromethaneI.12.22-1TrichloroethyleneI.12.23-11,1-DichloroethyleneI.12.24-11,2-Trans-dichloroethyleneI.12.25-1			
1,2-Dichloroethane. I.12.7-1 1,1,1-Trichloroethane I.12.8-1 1,1,2-Trichloroethane I.12.9-1 1,1,2,2-Tetrachloroethane I.12.10-1 Hexachloroethane. I.12.11-1 Vinyl chloride. I.12.12-1 1,2-Dichloropropane I.12.12-1 1,3-Dichloropropane I.12.14-1 Hexachlorocyclopentadiene I.12.15-1 Hexachlorocyclopentadiene I.12.16-1 Methyl bromide. I.12.17-1 Dichlorobromomethane I.12.18-1 Chlorodibromomethane I.12.18-1 Chlorodibromomethane I.12.20-1 Dichlorodifluoromethane I.12.20-1 Dichlorodifluoromethane I.12.20-1 Dichlorodifluoromethane I.12.20-1 Dichlorodifluoromethane I.12.20-1 Dichlorodifluoromethane I.12.22-1 Trichloroethylene I.12.23-1 1,1-Dichloroethylene I.12.24-1 1,2-Trans-dichloroethylene I.12.25-1		1 1-Dichloroethane.	
1,1,1-TrichloroethaneI.12.8-11,1,2-TrichloroethaneI.12.9-11,1,2,2-TetrachloroethaneI.12.10-1Hexachloroethane.I.12.11-1Vinyl chloride.I.12.12-11,2-DichloropropaneI.12.13-11,3-DichloropropeneI.12.14-1HexachlorocyclopentadieneI.12.16-1Methyl bromide.I.12.17-1DichlorobromomethaneI.12.18-1ChlorodibromomethaneI.12.20-1DichlorofluoromethaneI.12.20-1DichlorofluoromethaneI.12.20-1DichlorofluoromethaneI.12.20-1DichlorofluoromethaneI.12.20-1DichlorofluoromethaneI.12.20-1DichlorofluoromethaneI.12.22-1TrichloroethyleneI.12.23-11,1-DichloroethyleneI.12.24-11,2-Trans-dichloroethyleneI.12.25-1		1 2-Dichloroethane	T 12 7-1
1,1,2-TrichloroethaneI.12.9-11,1,2,2-TetrachloroethaneI.12.10-1Hexachloroethane.I.12.11-1Vinyl chloride.I.12.12-11,2-DichloropropaneI.12.13-11,3-DichloropropeneI.12.14-1HexachlorobutadieneI.12.15-1HexachlorocyclopentadieneI.12.16-1Methyl bromide.I.12.17-1DichlorobromomethaneI.12.18-1ChlorodifluoromethaneI.12.20-1DichlorofluoromethaneI.12.20-1DichlorofluoromethaneI.12.21-1TrichlorofluoromethaneI.12.22-1TrichlorofluoromethaneI.12.23-11,1-DichloroethyleneI.12.24-11,2-Trans-dichloroethyleneI.12.25-1		1,2-Dichioloethane	T 12 8-1
1,1,2,2-Tetrachloroethane I.12.10-1 Hexachloroethane. I.12.11-1 Vinyl chloride. I.12.12-1 1,2-Dichloropropane I.12.13-1 1,3-Dichloropropene I.12.14-1 Hexachlorobutadiene I.12.15-1 Hexachlorocyclopentadiene I.12.16-1 Methyl bromide. I.12.17-1 Dichlorobromomethane I.12.18-1 Chlorodibromomethane I.12.20-1 Bromoform. I.12.20-1 Dichlorofluoromethane I.12.21-1 Trichlorofluoromethane I.12.22-1 Trichloroethylene I.12.23-1 1,1-Dichloroethylene I.12.24-1 1,2-Trans-dichloroethylene I.12.25-1		1,1,1,1-1110HOFOethane	т 12 9-1
Hexachloroethane.I.12.11-1Vinyl chloride.I.12.12-11,2-DichloropropaneI.12.13-11,3-DichloropropeneI.12.14-1HexachlorobutadieneI.12.15-1HexachlorocyclopentadieneI.12.16-1Methyl bromide.I.12.17-1DichlorobromomethaneI.12.18-1ChlorodibromomethaneI.12.19-1Bromoform.I.12.20-1DichlorodifluoromethaneI.12.21-1TrichlorofluoromethaneI.12.22-1TrichlorofluoromethaneI.12.22-1I.12.22-1I.12.22-1I.12.22-1I.12.23-11,1-DichloroethyleneI.12.24-11,2-Trans-dichloroethyleneI.12.25-1		1 1 2 2-Tetrachloroethane	т. 12. 10-1
Vinyl chloride.I.12.12-11,2-DichloropropaneI.12.13-11,3-DichloropropeneI.12.14-1HexachlorobutadieneI.12.15-1HexachlorocyclopentadieneI.12.16-1Methyl bromide.I.12.17-1DichlorobromomethaneI.12.18-1ChlorodibromomethaneI.12.20-1Bromoform.I.12.21-1TrichlorofluoromethaneI.12.22-1TrichlorofluoromethaneI.12.22-1I.12.22-1I.12.22-1I.12.23-1I.12.23-11,1-DichloroethyleneI.12.24-11,2-Trans-dichloroethyleneI.12.25-1		Heyachloroethane	T 12.11-1
1,2-DichloropropaneI.12.13-11,3-DichloropropeneI.12.14-1HexachlorobutadieneI.12.15-1HexachlorocyclopentadieneI.12.16-1Methyl bromideI.12.17-1DichlorobromomethaneI.12.18-1ChlorodibromomethaneI.12.19-1BromoformI.12.20-1DichlorodifluoromethaneI.12.21-1TrichlorofluoromethaneI.12.22-1TrichloroethyleneI.12.23-11,1-DichloroethyleneI.12.24-11,2-Trans-dichloroethyleneI.12.25-1		Vinyl chloride	T.12.12-1
1,3-DichloropropeneI.12.14-1HexachlorobutadieneI.12.15-1HexachlorocyclopentadieneI.12.16-1Methyl bromideI.12.17-1DichlorobromomethaneI.12.18-1ChlorodibromomethaneI.12.19-1BromoformI.12.20-1DichlorodifluoromethaneI.12.21-1TrichlorofluoromethaneI.12.22-1TrichlorofluoromethaneI.12.23-11,1-DichloroethyleneI.12.24-11,2-Trans-dichloroethyleneI.12.25-1			
HexachlorobutadieneI.12.15-1HexachlorocyclopentadieneI.12.16-1Methyl bromideI.12.17-1DichlorobromomethaneI.12.18-1ChlorodibromomethaneI.12.19-1BromoformI.12.20-1DichlorodifluoromethaneI.12.21-1TrichlorofluoromethaneI.12.22-1TrichlorofluoromethaneI.12.23-11,1-DichloroethyleneI.12.24-11,2-Trans-dichloroethyleneI.12.25-1		· • •	
HexachlorocyclopentadieneI.12.16-1Methyl bromideI.12.17-1DichlorobromomethaneI.12.18-1ChlorodibromomethaneI.12.19-1BromoformI.12.20-1DichlorodifluoromethaneI.12.20-1DichlorodifluoromethaneI.12.21-1TrichlorofluoromethaneI.12.22-1TrichloroethyleneI.12.23-11,1-DichloroethyleneI.12.24-11,2-Trans-dichloroethyleneI.12.25-1			
Methyl bromide.I.12.17-1DichlorobromomethaneI.12.18-1ChlorodibromomethaneI.12.19-1Bromoform.I.12.20-1DichlorodifluoromethaneI.12.21-1TrichlorofluoromethaneI.12.22-1TrichloroethyleneI.12.23-11,1-DichloroethyleneI.12.24-11,2-Trans-dichloroethyleneI.12.25-1			
Dichlorobromomethane		Methyl bromide.	
Chlorodibromomethane		Dichlorobromomethane	
Bromoform			
Dichlorodifluoromethane			
TrichlorofluoromethaneI.12.22-1TrichloroethyleneI.12.23-11,1-DichloroethyleneI.12.24-11,2-Trans-dichloroethyleneI.12.25-1			
TrichloroethyleneI.12.23-11,1-DichloroethyleneI.12.24-11,2-Trans-dichloroethyleneI.12.25-1			
l,l-Dichloroethylene			
1,2-Trans-dichloroethylene		1.1-Dichloroethvlene	I.12.24-1
		1,2-Trans-dichloroethylene .	I.12.25 - 1

4

Date: 7/31/79

CONTENTS (continued)

-

I.12	Halogenated Hydrocarbons (continued)
	Halogenated Hydrocarbons (continued) Allyl chloride
	2.2-Dichloropropionic acid I.12.28-1
	Phosgene
	Ethylene dibromide
	Phosgene
I.13	Pesticides
	Pesticides
	Endosulfan sulfate
	Endosulfan sulfate \ldots
	α-BHC
	β-BHC
	δ-BHC
	γ-BHC
	Aldrin
	Dieldrin
	4,4'-DDE
	4,4'-DDT
	4,4'-DDD
	Endrin
	Kelthane
	Naled
	Dichlone
	Kepone
	Diuron
	Endrin aldehyde
	Heptachlor
	Heptachlor epoxide
	Carbofuran T 13 22-1
	Carbofuran
	Chlordane
	Toxaphene
	Cantan
	Captan
	Coumaphos
	Diazinon
	Dicamba
	Dichlobenil.
	Malathion
	Methyl parathion
	Parathion
	Guthion
	Ethion
	Isoprene
	Chlorpyrifos
	Dichlorvos
	Diguat
	Disulfoton

Date: 7/31/79

.

.

CONTENTS (continued)

I.13	Pesticides (continued)
	Mevinphos
	Mexacarbate
	Trichlorfon
	Propargite
	Propargite
I.14	Oxygenated Compounds
	Acetaldehvde
	Acetic acid
	Ally1 alcohol
	Amv1 acetate
	Butyl acetate
	Butyl acetate
	Formaldehyde
	Formic acid.
	Fumaric acid
	Maleic acid
	Methyl methacrylate
	Propionic acid
	Vinyl acetate
	Adipic acid
	Crotonaldehyde
	Acrolein
	Furfural
	Propylene oxide
I.15	Miscellaneous
	Methyl mercaptan
	Methyl mercaptan
	CvclohexaneI.15.3-1
	Isophorone
	Strychnine
	2,3,7,8-Tetrachlorodibenzo-p-dioxin I.15.6-1
	Zinc phenol sulfonate I.15.7-1

•

Date: 7/31/79

.

GLOSSARY

AAP: Army Ammunitions Plant.

- AN: Ammonium Nitrate.
- ANFO: Ammonium Nitrate/Fuel Oil.
- BATEA: Best Available Technology Economically Achievable.
- BAT: Best Applicable Technology.
- BEJ: Best Engineering Judgement.
- BOD: Biochemical Oxygen Demand.
- clarification: Process by which a suspension is clarified to give a "clear" supernatant.
- cryolite: A mineral consisting of sodium-aluminum fluoride.

CWA: Clean Water Act.

- cyanidation process: Gold and/or silver are extracted from finely crushed ores, concentrates, tailings, and low-grade mine-run rock in dilute, weakly alkaline solutions of potassium or sodium cyanide.
- comminutor: Mechanical devices that cut up material normally removed in the screening process.
- effluent: A waste product discharged from a process.
- EGD: Effluent Guidelines Division.
- elutriation: The process of washing and separating suspended particles by decantation.
- extraction: The process of separating the active constituents of drugs by suitable methods.
- fermentation: A chemical change of organic matter brought about by the action of an enzyme or ferment.

- flocculation: The coagulation or coalescence of a finely-divided precipitate.
- fumigant: A gaseous or readily volatilizable chemical used as a disinfectant or pesticide.
- GAC: Granular Activated Carbon.
- gravity concentration: A process which uses the differences in density to separate valuable ore minerals from gangue.
- gravity separation/settling: A process which removes suspended solids by natural gravitational forces.
- grit removal: Preliminary treatment that removes large objects, in order to prevent damage to subsequent treatment and process equipment.
- influent: A process stream entering the treatment system.
- intake: Water, such as tap or well water, that is used as makeup water in the process.
- lagoon: A shallow artifical pond for the natural oxidation of sewage and ultimate drying of the sludge.
- LAP: Loading Assembly and Packing operations.
- MHF: Multiple Hearth Furnace.
- neutralization: The process of adjusting either an acidic or a basic wastestream to a pH in the range of seven.
- NPNES. National Pollutant Discharge Elimination System.
- NRDC: Natural Resources Defense Council.
- NSPS: New Source Performance Standards.
- photolysis: Chemical decomposition or dissociation by the action of radient energy.
- PCB: PolyChlorinated Biphenyl.
- POTW: Public Owned Treatment Works.
- PSES: Pretreatment Standards for Existing Sources.
- purged: Removed by a process of cleaning; take off or out.

screening process: A process used to remove coarse and/or gross solids from untreated wastewater before subsequent treatment.

- SIC: Standard Industrial Classification.
- SS: Suspended Solids.
- SRT: Solids Retention Time.
- starved air combustion: Used for the volumetric and organic reduction of sludge solids.

terpene: Any of a class of isomeric hydrocarbons.

- thermal drying: Process in which the moisture in sludge is reduced by evaporation using hot air, without the solids being combusted.
- TKN: Total Kjeldahl Nitrogen.
- TOC: Total Organic Carbon.
- trickling filter: Process in which wastes are sprayed through the air to absorb oxygen and allowed to trickle through a bed of rock or synthetic media coated with a slime of micro-
- bial growth to remove dissolved and collodial biodegradable organics.
- TSS: Total Suspended Solids.
- vacuum filtration: Process employed to dewater sludges so that a coke is produced having the physical handling characteristics and contents required for processing.
- VSS: Volatile Suspended Solids.
- WQC: Water Quality Criterion.

.

I.1 INTRODUCTION

Volume I is a compendium of treatability data for specific compounds. It is the first of a five volume set on industrial wastewater treatability. Volume II is a collection of industrial wastewater discharge information and includes data for both raw and treated wastewaters. Volume III is a compilation of available performance data for existing wastewater treatment technologies. Volume IV is a collection of capital and operating cost data for the treatment technologies described in Volume III. Volume V is an executive summary and describes the use of information contained in Volumes I - IV. The information contained in this manual was obtained from the open literature, government publications, on-going Office of Research and Development (ORD) treatability studies, equipment vendors, and regional and state EPA offices.

I.1.1 VOLUME 1 ORGANIZATION AND CONTENTS

Volume I of the Treatability Manual supplies data on specific compounds. It is intended to provide facile reference to physical data on the pollutants, their occurrence patterns, and methods of treatment and/or removal. Pollutants are grouped according to the following chemical categories:

- Metals and Inorganics
- Ethers
- Phthalates
- Nitrogen Compounds
- Phenols
- Aromatics
- Polynuclear Aromatic Hydrocarbons
- PCB's and Related Compounds
- Halogenated Hydrocarbons
- Pesticides
- Oxygenated Compounds
- Miscellaneous

The three-part entry for each pollutant includes the items discussed below:

• Description of the Pure Species

Date: 12/5/79

I.1-1

This section includes information such as name, formula, alternate names, Chemical Abstracts Registry Number, molecular or atomic weight, melting and boiling points, water solubility and vapor pressure. For organic compounds Henry's law constants, log octanol/water partition coefficients, biodegradability information, and carbon adsorption data are also presented; for metals common oxidation states and precipitation/coagulation properties are given.

A separate entry in this section summarizes current knowledge on probable fates in an aqueous medium. Processes considered in this last category are photolysis, oxidation, hydrolysis, volatilization, sorption, biological processes, and other significant reactions and interactions. When literature fate data for a specific compound are inadequate or nonexistent, the fate of closely related compounds are discussed, and the data is identified as pertaining to the general class of compounds.

• Industrial Occurrence Data

Wastewater pollutant concentrations are presented in tabular form for each industry in which the chemical substance has been detected. The minimum, maximum and average concentrations are reported for both untreated and treated wastewater. This information is derived from that presented in Volume II of the wastewater treatability manual. Consult Volume II for additional information regarding wastestreams in each industry.

Industrial wastewater discharge data presented in Section I.3 is then used in conjunction with the observed pollutant concentrations to estimate pollutant loadings for the industry. Pollutant loadings reported in kg/d form a basis for comparing relative impacts of the discharge from various industries.

• Pollutant Treatability/Removability

For each alternative standard treatment process, removal ranges and achieveable concentrations for the compound of interest are presented for both synthetic and actual wastewater samples, where appropriate data are available. Cross references to Volume III are given.

I.1.2 PHYSICAL AND CHEMICAL PROPERTIES DATA

Physical/chemical data presented in this volume are useful in predicting environmental fate or probable effectiveness of alternative treatment approaches. A brief description of the presentation and utility of individual parameters follows.

I.1.2.1 Henry's Law Constant

Henry's law constant is the equilibrium partial pressure of a compound divided by the concentration of the compound in water at 25°C and is defined by the following equation:

$$K = \frac{P}{S}$$

where

- $K = Henry's law constant, m^3 atm gmol^{-1}$
- P = partial pressure of compound in gas phase, atm
- S = concentration of compound in liquid phase, gmol/m³

It is an expression of the equilibrium distribution of a compound between air and water. The constant indicates qualitatively the volatility of a compound and is frequently used in equations which attempt to predict "stripping" of compound from aqueous solution. Increasing values of the constant favor volatilization as a fate mechanism and indicate amenability to steam or air stripping.

I.1.2.2 Log Octanol/Water Partition Coefficient

The log octanol/water partition coefficient or log P is the equilibrium distribution of a compound between two immiscible solvents, n-octanol and water. It is defined by the following equation:

$$Log P = Log \frac{C_{A,O}}{C_{A,H_2O}}$$

where

 $C_{A,O}$ = concentration of compound in oil phase C_{A,H_2O} = concentration of compound in water phase

Log P varies with temperature and solute concentration. The temperature of determination is assumed to be 25°C, although in many cases the temperature and method of determination is not known.

Log P measures the affinity of a compound for oil and water phases, as such it is a useful parameter for predicting the bioconcentration potential of compounds and sorption of compounds by organic soils where experimental values are not available. It is also used to determine the applicability of solvent extraction as a treatment alternative. Increasing values favoring strong bioaccumulation, adsorption and solvent extraction potentials.

Date: 12/5/79

I.1-3

I.1.2.3 Carbon Adsorption Data

Batch equilibrium carbon adsorption isotherm data were used to determine the effectiveness of carbon in adsorbing organic compounds. The adsorption isotherm is the relationship, at a given temperature and other conditions, between the amount of a substance adsorbed and its equilibrium concentration in the surrounding solution.

The carbon adsorption data were plotted according to the Freundlich equation. While this equation is empirical it is none-the-less widely used and has been found to describe adequately the adsorption process in dilute solution. The Freundlich equation has the form:

$$\frac{X}{M} = KC_{f}^{1/n}$$

The data were fitted to the logarithmic form of the above equation, which has the form:

$$\log \frac{X}{M} = \log K + 1/n \log C_{f}$$

where

X = C_o - C_f = initial concentration of solute in mg/L minus final concentration in solution at equilibrium

M = weight in grams of adsorbent (carbon)

Cf = final concentration of solute in mg/L at
 equilibrium

 $K = intercept at C_f = 1 (log C_f = 0)$

1/n = slope of the line

For the dilute solutions in this study, this equation yields a straight line with a slope of 1/n and an intercept equal to the value of K when $C_f = 1$ (log $C_f = 0$). The intercept is roughly an indicator of adsorption capacity and the slope, 1/n, of adsorption intensity. The concentration of compound on the carbon in equilibrium with a concentration C_f is given by the $\frac{X}{M}$ value, expressed as mg compound/gram of carbon.

Figures 1 and 2 are presented to illustrate the interpretation of adsorption isotherms. In Figure 1, the isotherm for Carbon A is at a high level and has only a slight slope. This means that adsorption is large over the entire range of concentrations studied. The fact that the isotherm for Carbon B in Figure 1 is

Date: 12/5/79

I.1-4

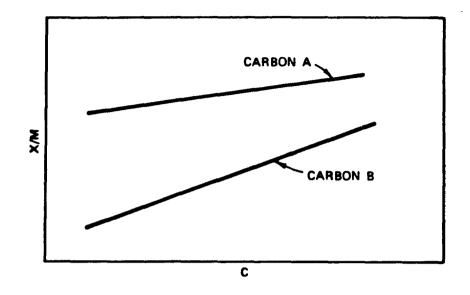


Figure 1. Adsorption isotherm, Carbon A and B.

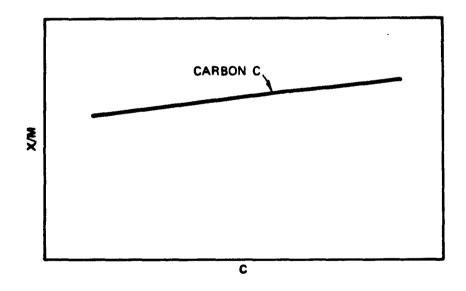


Figure 2. Adsorption isotherm, Carbon C.

at a lower level indicates proportionally less adsorption, although adsorption improves at higher concentrations over that at low concentrations. An isotherm having a steep slope, Carbon D, indicates that adsorption is good at high concentrations, but much less at low concentration.

For most compounds, the isotherm test was conducted at neutral pH. For those compounds that were expected to show an effect of pH the test was conducted at acid and/or basic pH as well as at neutral. The actual pH's are shown on the data sheets along with type of carbon used.

The adsorbability, defined as the carbon dose required to reduce a pollutant concentration from 10 mg/L to 1 mg/L at neutral pH, is also reported and serves as a basis for comparing individual compounds.

I.1.2.4 Biodegradability

The entry for biodegradability includes descriptive information on biological system utilized, measurement method, removals achieved and rate of removal. Biodegradability data are presented where available so as to give a qualitative indication as to whether or not a compound is amenable to biological oxidation. Test procedures varied as to length of time, degree of acclimation of seed organisms, and system utilized. In addition, other removal mechanisms such as vaporization and adsorption into sludge may have interfered with test results. These effects can not be clearly differentiated for the references used and their influence was not determined.

I.1.2.5 Metal Precipitation/Coagulation Properties

Solubility curves are given to illustrate the effect of lime softening and chemical coagulation on metals removal. Percent removal of metal is plotted as a function of coagulant dose, initial metal concentration and pH of the treated water.

I.2 POLLUTANT SELECTION

Pollutants selected for study in Volume I of the wastewater treatability manual were taken from the list of 299 compounds considered in Section 311 of the Water Pollution Control Act. Selection was based on a consideration of pollutant toxicity and stability in an aqueous environment. Of the 299 compounds initially considered, 129 had been previously designated as Toxic (Priority) Pollutants by the EPA and were included for study. Ninety-six of the remaining pollutants were found to readily dissociate, volatilize or otherwise degrade in an aqueous environment and were not considered. This left 74 pollutants that did not readily degrade or disappear from an aqueous environment. These were added to the list of 129 toxic pollutants to make a total of 203 and included for study in Volume I. Other pollutants will be added for study as time and data availability permits.

In addition, a number of conventional or classical water pollutants not addressed in Volume I are covered in Volumes II and III. These are listed below.

- Total Suspended Solids
- Total Kjeldahl Nitrogen
- Chemical Oxygen Demand
- Biochemical Oxygen Demand
- Oil and Grease
- Total Phenols
- Total Phosphous
- Total Organic Chlorine
- Total Organic Carbon

Date: 12/5/79

I.2-1

	INDUSTRIAL	WASTEWATER	DISCHARGES
--	------------	------------	------------

.

			Flows	a			
	Min	imum	and the second se	lean	Max:		
Industry	m ³ /d	Mgal/d	m ³ /d	Mgal/d	m ³ /d	Mgal/d	Reference
Coal mining	0	0	3,800	1.0	27,000	7.1	1
Textile mills	4.2	0.0011	1,800	0.50	29,000	7.6	2
Timber products processing	0	0	86	0.023	46,000	12	3, 4, 5
Petroleum refining	0	0	5,800	1.5	93,000	25	6
Paint and ink formulation	0	0	1.6	0.00043	46	0.012	7,8
Gum and wood chemicals	9	0.0023	1,700	0.44	7,600	2.0	9
Rubber processing	0	0	33	0.0087	860	0.23	10
Explosives manufacture	0	0	4.3	0.0011	350	0.092	11
Pulp, paper, and paperboard mills	0	0	30,000	7.9	NA	NA	4, 5, 12
Auto and other laundries	0.9	0.00024	210	0.057	1,400	0.36	13, 14
Porcelain enameling	0.64	0.00017	80,	0.021	410	0.11	15
Pharmaceutical manufacturing	0	0	920 ^b	0.24	6,800	1.8	16, 17
Ore mining and dressing	0	0	37,000	9.7	NA	NA	18, 19
Steam electric power generating		-		5.7	143	1173	10, 19
(condenser cooling system)	53	0.014	240	0.063	1,100	0.28	20, 21
Steam electric power generating	_			01005	1,100	0.20	20, 21
(water treatment)	0.0061	0.0000016	150 ^b	0.039	60,000	15	20, 21
Steam electric power generating			200	0.000	00,000	13	20, 21
(boiler or steam generator							
blowdown)	0.00042	0.0000001	150 ^b	0.039	14,000	3.8	20, 21
Steam electric power generating	0.00012	0.0000001	150	0.039	14,000	3.0	20, 21
(maintenance cleaning)	0.0010	0.00000027	300 ^b	0.080	19,000	4.9	20 21
Steam electric power generating	0.0010	0.00000027	500	0.000	19,000	4.9	20, 21
(ash handling)	19	0.0049	22,000 ^b	0.022	00.000	26	20 21
Steam electric power generating	17	0.0049	22,000	0.022	98,000	26	20, 21
(drainage)	8.6	0.0022	20	0.0053	270		
Steam electric power generating	0.0	0.0022	20	0.0053	370	0.10	20, 21
(air pollution control devices)	0.95	0.00025	3,600 ^b				
Inorganic chemicals manufacturing	0.95	0.00025			57,000	15	20, 21
Coil coating	50	0.013	25,000	6.6	125,000	33	22, 23, 5
Foundries	50 0	0.013	480	0.13	1,800	0.47	24
Leather tanning and finishing	0	+	2,700	0.71	6,700	1.8	25, 5
Iron and steel manufacturing	-	0	1,500	0.39	NA	NA	26, 27, 5
Nonferrous metals manufacturing	0	0	180,000	47	NA	NA	5
moniterious metals manufacturing	0	0	53,000	14	NA	NA	28, 5

a May include other than strictly process wastewater.

^bAverage of medians for various industry subcategories.

.

REFERENCES

- Technical Assistance in the Implementation of the BAT Review of the Coal Mining Industry Point Source Category (draft contractor's report). Contracts 68-01-3273, 68-01-4762, and 68-02-2618, U.S. Environmental Protection Agency, Washington, D.C., March 1979.
- Technical Study Report BATEA-NSPS-PSES-PSNS Textile Mills Point Source Category (draft contractor's report). Contracts 68-01-3289 and 68-01-3884, U.S. Environmental Protection Agency, Washington, D.C., November 1978.
- 3. Revised Technical Review of the Best Available Technology, Best Demonstrated Technology, and Pretreatment Technology for the Timber Products Processing Point Source Category (draft contractor's report). Contract 68-01-4827, U.S. Environmental Protection Agency, Washington, D.C., October 1978.
- 1972 Census of Manufacturers. Volume II: Industry Statistics. Part 1: SIC Major Groups 20-26. U.S. Department of Commerce, Bureau of the Census, Washington, D.C., August 1976.
- 1972 Census of Manufacturers. Special Report Series: Water Use in Manufacturing. MC72(SR)-4, U.S. Department of Commerce, Bureau of the Census, Washington, D.C., September 1975.
- 6. Draft Development Document Including the Data Base for the Review of Effluent Limitations Guidelines (BATEA), New Source Performance Standards, and Pretreatment Standards for the Petroleum Refining Point Source Category. U.S. Environmental Protection Agency, Washington, D.C., March 1978.
- Development of Effluent Limitations Guidelines for the Ink Manufacturing Industry (BATEA, NSPS, Pretreatment) (contractor's draft engineering report). U.S. Environmental Protection Agency, Washington, D.C., January 1979.

Date: 12/5/79

I.3-2

- 8. Development of Effluent Limitations Guidelines for the Paint Manufacturing Industry (BATEA, NSPS, Pretreatment) (contractor's draft engineering report). U.S. Environmental Protection Agency, Washington, D.C., January 1979.
- 9. Technical Review of the Best Available Technology, Best Demonstrated Technology, and Pretreatment Technology for the Gum and Wood Chemicals Point Source Category (draft contracttor's report). Environmental Science and Engineering, Inc.
- Review of the Best Available Technology for the Rubber Processing Point Source Category. Contract 68-01-4673, U.S. Environmental Protection Agency, Washington, D.C., July 1978.
- 11. Technical Review of the BAT Analysis of the Explosives Industry (draft contractor's report). U.S. Environmental Protection Agency, Washington, D.C., April 1979.
- 12. Preliminary Data Base for Review of BATEA Effluent Limitations Guidlines, NSPS, and Pretreatment Standards for the Pulp, Paper, and Paperboard Point Source Category. Contract 68-01-4624, U.S. Environmental Protection Agency, Washington, D.C., June 1979.
- 13. Technical Support Document for Auto and Other Laundries Industry (draft contractor's report). Contract 68-03-2550, U.S. Environmental Protection Agency, Washington, D.C., August 1979.
- 14. Status Report on the Treatment and Recycle of Wastewaters from the Car Wash Industry (draft contractor's report). Contract 68-01-5767, U.S. Environmental Protection Agency, Washington, D.C., July 1979.
- 15. Development Document for Effluent Limitations Guidelines and Standards for the Porcelain Enameling Point Source Category. EPA-440/1-79/072a, U.S. Environmental Protection Agency, Washington, D.C., August 1975.
- 16. Effluent Limitations Guidelines for the Pharmaceutical Manufacturing Industry (draft contractor's report). U.S. Environmental Protection Agency, Washington, D.C., May 1979.
- 17. Development Document for Interim Final Effluent Limitations Guidelines and Proposed New Source Performance Standards for the Pharmaceutical Manufacturing Point Source Category. EPA 440/1-75/060, U.S. Environmental Protection Agency, Washington, D.C., December 1976. 344 pp.

Date: 12/5/79

I.3-3

- 18. Development Document for Effluent Limitations Guidelines and New Source Performance Standards for the Ore Mining and Dressing Point Source Category, Volumes I and II. U.S. Environmental Protection Agency, Washington, D.C., July 1978.
- 19. 1972 Census of Mineral Industries. Subject Series: Water Use in Mineral Industries. MIC72(1)-2, U.S. Department of Commerce, Bureau of the Census, Washington, D.C., September 1975.
- Draft Technical Report for Revision of Steam Electric Effluent Limitations Guidelines. U.S. Environmental Protection Agency, Washington, D.C., September 1978. 607 pp.
- 21. Supplement for Pretreatment to the Development Document for the Steam Electric Power Generating Point Source Category. EPA-440/1-77/084, U.S. Environmental Protection Agency, Washington, D.C., April 1977. 224 pp.
- 22. Draft Development Document for Inorganic Chemicals Manufacturing Point Source Category - BATEA, NSPS, and Pretreatment Standards (draft contractor's report). Contract 68-01-4492, U.S. Environmental Protection Agency, Effluent Guidelines Division, Washington, D.C., April 1979.
- 23. Supplement for Pretreatment to the Development Document for the Inorganic Chemicals Manufacturing Point Source Category. EPA-440/1-77/087A, U.S. Environmental Protection Agency, Washington, D.C., July 1977.
- 24. Development Document for Effluent Limitations Guidelines and Standards for the Coil Coating Point Source Category. EPA 440/1-79/071a, U.S. Environmental Protection Agency, Effluent Guidelines Division, Washington, D.C., August 1979.
- 25. Foundry Industry (draft contractor's report). Contract 68-01-4379, U.S. Environmental Protection Agency, Washington, D.C., May 1979.
- 26. Development Document for Proposed Effluent Limitations Guidelines, New Source Performance Standards, and Pretreatment Standards for the Leather Tanning and Finishing Point Source Category. U.S. Environmental Protection Agency, Effluent Guidelines Division, Washington, D.C., July 1979.
- 27. Effluent Guidelines and Standards for Leather Tanning and Finishing. U.S. Environmental Protection Agency, 40 CFR 425; 39FR 12958, April 9, 1974.

Date: 12/5/79

I.3-4

28. Development Document for Effluent Limitations Guidelines and Standards for the Nonferrous Metals Manufacturing Point Source Category. Effluent Guidelines Division, Office of Water and Waste Management, U.S. Environmental Protection Agency, September 1979.

Compound: Antimony Formula: Sb Alternate Names [1] Antimony black, Antimony regulas CAS #: 7440-36-0 Physical, Chemical, and Biological Properties [2-4] m.p., °C: 630 at. wt.: 121.8 b.p. (760 torr), °C: 1,380 vapor pressure (25°C), torr: Negligible solubility in water, mg/L: Antimonic acid and antimony oxides are very slightly soluble common oxidation states: +5, +3, -3Probable Fate [2] photolysis: Not important under natural conditions (<100°C) oxidation: Present as soluble oxide or antimonite salts under natural redox conditions hydrolysis: Oxide or antimonic acid formed by hydrolysis volatilization: Not important under natural redox conditions sorption: Adsorbed to clays; coprecipitates with iron and aluminum compounds biological processes: Slight bioaccumulation and probable biomethylation other reactions/interactions: Not important

Precipitation/Coagulation Properties: Not available

Date: 8/13/79

I.4.1-1

			Raw	wastewater				
	Conce	entration,	µg/L	Load	Loading, ^C kg/d			
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Coal mining	<2	34	<10 7 ^d	0	0.26	0.038		
Textile mills	NA	ι70	7 ^a	2.9 x 10 ⁻⁵	0.20	0.013		
Explosives manufacture	ND	350	70	0	0.024	0.0003		
Timber products processing	BDL	47	2 ^e <9 ^d	0	0.092	0.0001		
Petroleum refining	<1	360	<9 ^a	0	0.84	0.052		
Paint and ink formulation	BDL	2,200	190	0	0.0087	0.0003		
Auto and other laundries	ND	1,800	86	7.7 x 10 ⁻⁵	0.12	0.018		
Porcelain enameling	98 ,	22,000	1,100	0.00070	0.088	0.45		
Pharmaceutical manufacturing	ND 🛔	28	6.43	0	0.19	0.0059		
Ore mining and dressing	<50 `	200	88	0	NA	<3.3		
Steam electric power generating								
(condenser cooling system)	BDL	10	5	0.00026	0.0055	0.0012		
Steam electric power generating			-					
(water treatment)	NA	NA	5,000 ^e	3.1 x 10 ⁻⁵	300	0.75		
Steam electric power generating								
(boiler or steam generator blowdown)	NA	NA	NA	NA	NA	NA		
Steam electric power generating								
(maintenance cleaning)	NA	NA	NA	NA	NA	NA		
Steam electric power generating								
(ash handling)	5	7	6	0.00011	0.13	0.59		
Steam electric power generating								
(air pollution control devices)	90	2,300	1,200	0.0011	68	4.3		
Steam electric power generating								
(drainage)	NA	NA 1,115_	NA	NA	NA	NA		
Inorganic chemical manufacturing	NA	1,115	NA	0	70	14		
Coil coating	3,000 ^g	3,000 ^g	3,000 ⁹	0.15	5.4	1.4		
Foundries	ND	900	270	0	1.8	0.73		
Nonferrous metals manufacturing	ND	80,000	5,600	0	NA	297		
Iron and steel manufacturing	NA	300	140	0	NA	25		

INDUSTRIAL OCCURRENCE OF ANTIMONY^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3, where mean is not available 1/2 the reported maximum was utilized.

d Median, not average.

e Average of medians reported for various industry segments or subcategories.

f Average of maximums reported for various industry segments or subcategories.

^gOne sample.

			Treated	l wastewater		
	Concer	ntration, µ	lg/L	Lo	ading, ^C kg	g/d
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean
Coal mining	<2	16	<7 ,	0	0.18	0.26
Textile mills	NA	680	4.5 ^d	1.9 x 10 ⁻⁵	0.13	0.0081
Explosives manufacture	NA	NA	NĄ	NA	NA	NA
Timber products processing	BDL	14	1 ^a	0	0.046	8.6 x 10
Petroleum refining	<1	370	<25 ^{-d}	0	2.3	0.14
Paint and ink formulation	BDL	180	26	0	0.0012	4.2 x 10
Auto and other laundries	1.0	20	6.9	6.2×10^{-7}	0.001	0.00014
Porcelain enameling	ND	3,300	660	4.2 x 10 ⁻⁵	0.027	0.00528
Pharmaceutical manufacturing	ND	90	11	0	0.075	0.010
Ore mining and dressing	<0.2	3.8	<0.6	0	NA	0.022
Iron and steel manufactuing	NA	400	120	0	NA	22
Foundries	<20	400	120	0	0.80	0.32
Nonferrous metals manufacturing	ND	4,000	520	0	NA	28

INDUSTRIAL OCCURRENCE OF ANTIMONY^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d Median, not average.

I.4.1-3

	Syntheti Removal	<u>c wastewater</u> Average	Actual Removal	wastewater Average	Volume III
Treatment process ^a	range, C	achievable	range, C	achievable	references,
	0	conc., µg/L	010	conc., µg/L	Section numbers
Gravity oil separation			NA	290	III.4.1
Gas flotation with chemical addition (calcium chloride, polymer)			47-89	<78	111.4.5
Gas flotation with chemical addition (polymer)			o ^{d,e}	_ ^e	III.4.5
Gas flotation with chemical addition (alum, polymer)			6 ^d	2,200 ^d	III.4.5
Filtration			26-89	320	111.4.6
Sedimentation			44-98	310	111.4.2
Sedimentation with chemical addition (Fe ²⁺ , lime)			8-30	13	111.4.3
Sedimentation with chemical addition (polymer)			44 ^d	43 ^d	111.4.3
Sedimentation with chemical addition (BaCl ₂)			70 ^d	<50 ^d	III.4.3
Sedimentation with chemical addition (alum, polymer)			0 ^{d,e}	-e	111.4.3
Sedimentation with chemical addition (alum)			٥ ^e	_e	111.4.3
Sedimentation with chemical addition (lime)			38-83	30	111.4.3
Aerated lagoons			82 ^d	30 ^d	111.5.3
Ozonation			0 ^e	_e	III.6.14
Activated sludge			30-90	46	111.5.1
Powdered activated carbon adsorption			0 ^{d,e}	- ^e	III.6.2
Powdered activated carbon adsorption (with activated sludge)			5 ^đ	41 ^đ	111.6.2
Granular activated carbon adsorption			12-33	160	III.6.1
Reverse osmosis			26-60	77	III.6.9

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR ANTIMONY^{a,b}

^aSee Volume III for detailed information.

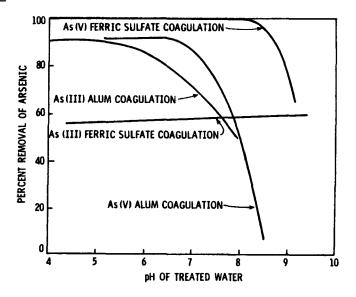
^bNA - Not available, ND - not detected, BDL - below detection limit.

CAverage and maximum removals reported.

^dOnly one data point.

^eActual data indicate negative removal.

REFERENCES


- Fairchild, E. J., R. J. Lewis, Sr., and R. L. Tatken. Registry of Toxic Effects of Chemical Substances, Volume II. NIOSH-78-104B, National Institute for Occupational Safety and Health, Cincinnati, Ohio, 1977. p. 105.
- Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume II, Metals and Inorganics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 5-1 - 5-7.
- 3. The Chemical Rubber Company. Handbook of Chemistry and Physics, 48th Edition. Cleveland, Ohio, 1967. p. B-100.
- 4. CRC Press, Inc. CRC Handbook of Chemistry and Physics, 58th Edition. Cleveland, Ohio, 1977. p. B-91.

.

Compound: Arsenic Formula: As Alternate Names [1]: Arsen (German, Polish) CAS #: 7440-38-2 Physical, Chemical, and Biological Properties [2, 3] b.p. (760 torr), °C: Sublimes at. wt.: 74.9 m.p., °C: 817 at 613 vapor pressure (25°C), torr: Negligible solubility in water, mg/L: As₂O₅, 1.05 x 10⁶ at 16°C; As₂O₃, 3.7 x 10⁴ at 20°C common oxidation states: +5, +3, 0, -3Probable Fate [2] photolysis: Not important oxidation: Under reducing condition, As is a stable solid; dissolved arsenic acid is present in oxygenated water

hydrolysis: Hydrolyzed to arsenious and arsenic acid forms (soluble) volatilization: Not important under natural redox conditions sorption: As is removed by clays, iron and manganese oxides, and aluminum biological processes: Bioaccumulated, but not biomagnified; biotransformed to organic arsenicals other reactions/interactions: Not important

Precipitation/Coagulation Properties [4]

Date: 8/13/79

I.4.2-1

Raw wastewater Concentration, µg/L Loading, c kg/d Industry Minimum Maximum Mean Minimum Maximum Mean Coal mining <86 10^d <2 250 2.3 0.32 n Textile mills NA 200 4.2 x 10⁻⁵ 0.29 0.018 10^e Timber products processing BDL 14.000 0 0.46 0.00086 <20^d Petroleum refining 3 480 0 1.9 0.12 Paint and ink formulation BDL 800 73 0 0.0033 0.00012 Gum and wood chemicals <10 110 <50 0.00045 0.38 0.82 Auto and other laundries ND 1,600 68 6.1 x 10⁻⁵ 0.095 0.014 Porcelain enameling 5 2,800 960 0.00061 0.39 0.077 \$. Pharmaceutical manufacturing ND 120 13 0 0.01 0.088 Ore mining and dressing <1 110 <20 0 NA <0.74 Steam electric power generating (condenser cooling system) 4 35 7 0.0004 0.008 0.0017 Steam electric power generating 9,500^e 6 x 10-5 (water treatment) NA NA 570 1.4 Steam electric power generating (boiler or steam generator blowdown) NA NA NA NA NA NA Steam electric power generating (maintenance cleaning) 0.012 5 310,000 41 4.1 x 10⁻⁸ 0.78 Steam electric power generating 74 9 0.00017 0.88 0.20 (ash handling) BDL Steam electric power generating (air pollution control devices) <4 300 150 0.00014 8.6 0.54 Steam electric power generating (drainage) NA NA NA NA NA NA 956^f 60 12 NA NA Inorganic chemicals manufacturing 0 75⁹ 75⁹ 75⁹ 0.004 0.135 0.036 Coil Coating ND 29 0.19 0.08 Foundries 160 0 Nonferrous metals manufacturing ND 310,000 13,000 0 NA 689 Iron and steel manufacturing NA 440 120 0 NA 22

INDUSTRIAL OCCURRENCE OF ARSENIC^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3, where mean is not available 1/2 the reported maximum was utilized.

^d Median, not average.

e Average of medians reported for various industry segments.

^fAverage of maximums reported for various industry segments.

90ne sample.

Ι.4.

2-3

	Treated wastewater								
	Concent	ration, µg	Loading, ^C kg/d						
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	2	35	7,	0	0.18	0.026			
Textile mills	NA	160	39 ^d	0.00016	1.1	0.070			
Timber products processing	BDL	6,980	35 d	0	1.6	0.003			
Petroleum refining	2	900	<20 ^d	0	1.9	0.12			
Paint and ink formulation	NA	NA	NA	NA	NA	NA			
Gum and wood chemicals	NA	17 ^e	17 ^e	0.00015	0.13	0.028			
Auto and other laundries	3.0	15	9.8	0	NA	0.36			
Pharmaceutical manufacturing	ND	7,200	520	0	3.5	0.47			
Ore mining and dressing	<0.01	3.7	<0.05	O NA	0.0019				
Iron and steel manufacturing	NA	400	48	0	NA	8.6			
Foundries	<20	30	23	0	0.15	0.062			
Nonferrous metals manufacturing	ND	2,900	470	0	NA	25			

INDUSTRIAL OCCURRENCE OF ARSENIC^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d Median, not average.

^eOne sample.

Treatment process ^a	<u>Syntheti</u> Removal range, %	c wastewater Average achievable conc., μg/L	Actual Removal range, %	Average Average achievable conc., µg/L	Volume III references, Section number
Gravity oil separation			NA	46	III.4.1
Gas flotation with chemical addition (calcium chloride, polymer)			>28-80	<8.5	111.4.5
Gas flotation with chemical addition (alum, polymer)			56 ^d	3.5 ^d	111.4.5
Filtration			31-> 9 9	28	111.4.6
Sedimentation			68->99	72	III. 4.2
Sedimentation with chemical addition (alum, lime)			o ^{d,e}	_e	111.4.3
Sedimentation with chemical addition (lime, polymer)			37-75	10	111.4.3
Sedimentation with chemical addition (Fe ²⁺ , lime)			>69>99	<2	III.4.3
Sedimentation with chemical addition (sulfide)			>99 ^d	5 ^d	111.4.3
Sedimentation with chemical addition (BaCl ₂)			17->33	<8.5	111.4.3
Sedimentation with chemical addition (alum, polymer)			29 ^d	12 ^d	111.4.3
Sedimentation with chemical addition (alum)			1 9- >37	32	111.4.3
Sedimentation with chemical addition (lime)			60->99	<16	III.4.3
Ozonation			24-48	23	111.6.14
Activated sludge			> 4 3-> 9 6	35	111.5.1
Granular activated carbon adsorption			21-> 9 9	11	111.6.1
Reverse osmosis			79->99	7.7	III.6.9

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR ARSENIC^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

d Only one data point.

^eActual data indicate negative removal.

REFERENCES

- Fairchild, E. J., R. J. Lewis, Sr., and R. L. Tatken. Registry of Toxic Effects of Chemical Substances, Volume II. NIOSH-78-104B, National Institute for Occupational Safety and Health, Cincinnati, Ohio, 1977. p. 108.
- Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume II, Metals and Inorganics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 6-1 - 6-12.
- 3. The Chemical Rubber Company. Handbook of Chemistry and Physics, 48th Edition. Cleveland, Ohio, 1967. p. B-101.
- 4. Manual of Treatment Techniques for Meeting the Interim Primary Drinking Water Regulations. EPA-600/8-77-005, U.S. Environmental Protection Agency, Cincinnati, Ohio, May 1977. 73 pp.

.

 Compound:
 Asbestos
 Formula:
 Chrysotile - 3Mg0*2SiO2*2H2O

 Alternate Names
 [1]:
 Chrysotile, Amosite, Crocidolite - CaMg3(SiO3) 4

 Alternate Names
 [1]:
 Chrysotile, Amosite, Crocidolite, Tremolite, Amobile, Crocidolite, Tremolite, Anthophylite

 CAS #:
 1332-21-4

Physical, Chemical, and Biological Properties

mol. wt.: Varies m.p., °C: Varies b.p. (760 torr), °C: Unknown
vapor pressure (25°C), torr: Negligible
solubility in water (25°C), mg/L: Not applicable

Probable Fate [2]

Precipitation/Coagulation Properties: Not available

I.4.3-1

INDUSTRIAL OCCURRENCE OF ASBESTOS^{a,b}

	Raw wastewater								
	Concent	ration, 10 ⁶ f	Loading, ^c 10 ⁶ fibers/d						
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Petroleum refinery	NA	34 ^d	34 ^d	0	3.2	0.20			
Ore mining and dressing	4.2 x 10 ⁶	1.4 x 10 ⁷	3.8 x 10 ⁸	0	NA	1.4×10^{7}			
Steam electric power generating (condenser cooling system) Steam electric power generating	BDL	1.6 x 10 ⁸	BDL	_e _	_e _	_e _			
(water treatment)	NA	NA	NA	NA	NA	NA			
Nonferrous metals manufacturing	2.2 x 10 ⁶	1.3×10^{11}	3.1 x 10 ¹⁰	0	NA	1.6 x 10 ⁹			

I.4.3-2

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3, where mean is not available 1/2 the reported maximum was utilized.

^dOne sample.

^eMean pollutant concentration below detection limit.

INDUSTRIAL OCCURRENCE OF ASBESTOS^{a,b}

Industry	Treated wastewater								
	Concentr	ation, 106 fi	bers/L	Loading, ^C 106 fibers/d					
	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Petroleum refining	NA	NA	NA	NA	NA	NA 6.9 x 10 ¹			
Nonferrous metals manufacturing	NA	$1.3 \times 10^{11^{d}}$	NA 1.3 x 10^{11} d	0	NĄ	6.9 x 10 ¹			

I.4.3-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d_{One sample.}

	Synth	etic wastewater	Actu	al wastewater	Volume III
Treatment process	Removal range,	Average achievable conc., 10 ⁶ fibers/L	Removal range, %	Average achievable conc., 10 ⁶ fibers/L	references, Section numbers
Filtration			90->99	470 ^f	111.4.6
Sedimentation			80->99	3,000 ^f	III.4.2
Sedimentation with chemical addition (lime, polymer)			>99 ^d	8.2 ^{d,f}	III.4.3
Sedimentation with chemical addition (BaCl ₂)			38-75	140 ^f	III.4.3
Sedimentation with chemical addition (lime)			95 ^d	6.1 ^{d,f}	III.4.3

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR ASBESTOS^{a,b}

^aSee Volume III for detailed information.

bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

^eActual data indicate negative removal.

 $f_{Measured in 10^6 fibers/L.}$

I.4.3-4

REFERENCES

- 1. Fairchild, E. J., R. J. Lewis, Sr., and R. L. Tatken. Registry of Toxic Effects of Chemical Substances, Volume II. NIOSH-78-104B, National Institute for Occupational Safety and Health, Cincinnati, Ohio, 1977. p. 114.
- Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume II, Metals and Inorganics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 7-1 - 7-5.

Date: 8/13/79

I.4.3-5

.

Compound: Beryllium Formula: Be Alternate Names [1]: Glucinum CAS #: 7440-41-7 Physical, Chemical, and Biological Properties [2, 3] at. wt.: 9.012 m.p., °C: 1,280 b.p. (760 torr), °C: 2,970 vapor pressure (25°C), torr: Negligible solubility in water (30°C), mg/L: BeO, 0.2 common oxidation states: +2 Probable Fate [2] photolysis: No data found on photolysis of beryllium oxidation: Not important hydrolysis: Soluble beryllium salts are hydrolyzed for form insoluble beryllium hydroxides volatilization: Airborne dusts are the most widely known hazard associated with beryllium sorption: No data found of adsorption of beryllium biological processes: Beryllium is only slightly bioaccumulated other reactions/interactions: No data were found relative to aquatic fate on biotransformation of beryllium or its compounds

Precipitation/Coagulation Properties: Not available

Date: 8/13/79

I.4.4-1

	Raw wastewater							
	Concent	ration,	µg/L	Loading, ^c kg/d				
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Coal mining	1	57	17 <5	0	0.45	0.064		
Textile mills	NA	40	<5ັ	2.1 x 10 ⁻⁵	0.14	0.0090		
Timber products processing	BDL	19	4 ^e <2 ^d	0	0.18	0.00034		
Petroleum refining	<1	<20	<2 [°]	0	0.19	0.012		
Paint and ink formulation	BDL	100	10	0	0.00046	1.6 x 10-		
Auto and other laundries	ND	15	3	2.7 x 10-6	0.0042	0.00063		
Porcelain enameling	1.0	120	20	0.000013	0.0082	0.0016		
Ore mining and dressing	<2	<20	<8	0	NA	<0.30		
Steam electric power generating								
(condenser cooling system)	BDL	10	4.2	0.00022	0.0046	0.001		
Steam electric power generating			~		-			
(water treatment)	NA	NA	5,000 ^e	3 x 10 ⁻⁵	300 ^e	0.75		
Steam electric power generating								
(boiler or steam generator blowdown)	NA	NA	NA	NA	NA	NA		
Steam electric power generating								
(maintenance cleaning)	NA	NA	<10	<l 10<sup="" x="">-8</l>	<0.19	<0.003		
Steam electric power generating								
(ash handling)	BDL	2.5	<1.0	<0.000019	<0.098	<0.022		
Steam electric power generating								
(air pollution control devices)	<2.0	180	91	8.7 x 10 ⁻⁵	5.2	0.33		
Steam electric power generating								
(drainage)	NA	NA	4.0 ^e	3.4 x 10 ⁻⁵	0.0015	8 x 10 −		
Nonferrous metals manufacturing	ND	310	38	0	NA	2.0		
Iron and steel manufacturing	NA	10	7.3	0	NA	1.3		

INDUSTRIAL OCCURRENCE OF BERYLLIUM^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3, where mean is not available 1/2 the reported maximum was utilized.

^dMedian, not average.

е

Average of medians reported for various industry segments.

	Treated wastewater								
	Concen	tration,	mg/L	Loading, ^C kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	NA	0.001	<0.001	0	2.6×10^{-5}	3.8×10^{-6}			
Textile mills	NA	5	<5đ	2.1×10^{-5}	0.14	0.009			
Timber products processing	BDL	13	BDL	_e	_e	_e			
Petroleum refining	<1	<3	BDL <2 ^d	0	0.19	0.012			
Paint and ink formulation	BDL	20	9	0	0.00041	1.4×10^{-3}			
Auto and other laundries	<0.1	<5.0	2.6	2.3×10^{-6}	0.0036	0.00054			
Ore mining and dressing	<0.002	<0.002	<0.002	0	NA	7.4×10^{-1}			
Foundries	<20	<20	<20	0	0.13	0.054			
Iron and steel manufacturing	NA	10	76	0	NA	14			

INDUSTRIAL OCCURRENCE OF BERYLLIUM^{a,b}

1.0

NA

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

170

^bNA - not available; ND - not detected; BDL - below detection limit.

ND

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

19

0

d Median, not average.

Non ferrous metals manu-

facturing

^eMean pollutant concentration below detection limit.

Date:	
12/5/79	

	Syntheti	c wastewater	Actual	wastewater		
Treatment process ^a	Removal range, %	Average achievable conc., μg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
Gravity oil separation			NA	2 ^d	111.4.1	
Filtration			29-71	1.6	III.4.6	
Sedimentation			>87->98	<10	III.4.2	
Sedimentation with chemical addition (Fe ²⁺ , lime)			>82->89	<0.5	III.4.3	
Sedimentation with chemical addition (alum)			0 ^{d,e}	_e	III.4.3	
Sedimentation with chemical addition (lime)			38-76	0.85	III.4.3	
Aerated lagoons			>50 ^d	<1 ^d	111.5.3	
Granular activated carbon adsorption			0 ^e	_e	III.6.1	
Reverse osmosis			>42->85	<2.8	III.6.9	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR BERYLLIUM^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

^eActual data indicate negative removal.

I.4.4-4

REFERENCES

1

- 1. Fairchild, E. J., R. J. Lewis, Sr., and R. L. Tatken. Registry of Toxic Effects of Chemical Substances, Volume II. NIOSH-78-104B, National Institute for Occupational Safety and Health, Cincinnati, Ohio, 1977. p. 225.
- Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume II, Metals and Inorganics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 8-1 - 8-7.
- 3. The Chemical Rubber Company. Handbook of Chemistry and Physics, 48th Edition. Cleveland, Ohio, 1967. p. B-102.

.

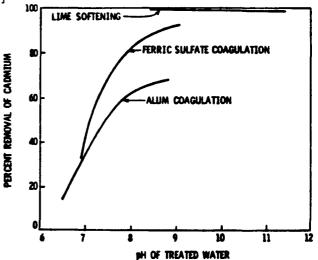
.

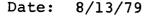
Compound: Cadmium

Formula: Cd

Alternate Names [1]: Kadmium (German)

CAS #: 7440-43-9


Physical, Chemical, and Biological Properties [2-4]


at. wt.: 112.4 m.p., °C: 321 b.p. (760 torr), °C: 765 vapor pressure (25°C), torr: Negligible solubility in water, mg/L: CdCl₂, 1.40 x 10⁶ at 20°C; CdS, 1.3 at 18°C; Cd(OH)₂, 26 at 25°C common oxidation states: +2 (always +2 in water)

Probable Fate [2]

It is not an important mechanism in determining fate of cadmium photolysis: compounds In reducing condition, Cd may precipitate with reduced sulfur to oxidation: form CdS hydrolysis: Aqueous solutions of cadmium salts are hydrolyzed to form hydroxide compounds volatilization: It is not known to form volatile compounds sorption: Sorption processes are important in determining cadmium transport, partitioning, and potential for remobilization biological processes: Accumulates in the tissues of aquatic and marine organisms at higher concentration other reactions/interactions: Organic ligands of biological origin may affect solubility and adsorption

Precipitation/Coagulation Properties [5]

I.4.5-1

			Raw	wastewater		
	Concent	tration, µ	g/L	Loa	ding, kg/d	
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean
Coal mining	2	20	14 <5 ^d	0	0.37	0.053
Textile mills	NA	46	<5ª	2.1 x 10 ⁻⁵	0.14	0.0090
Timber products processing	BDL	10	1 ^e <20 ^d	0	0.046	8.6 x 10 ⁻
Petroleum refining	<1	<220	<20 ^{°°}	0	1.9	0.12
Paint and ink formulation	BDL	810	57	0	0.0026	9.1 x 10 ⁻
Gum and wood chemicals	95	120	110	0.00099	0.83	0.18
Rubber processing	NA	720	190	3.8 x 10 ⁻⁵	0.16	0.0063
Auto and other laundries	ND	520	24	2 x 10 ⁻⁵	0.034	0.0050
Porcelain enameling	ND	9,600	740	0.0005	0.303	0.059
Pharmaceutical manufacturing	ND	32	2.7	0	0.018	0.0025
Dre mining and dressing	<5	25	<5.7	0	NA	<0.21
Steam electric power generating						
(condennser cooling systems)	BDL	200	4.0	0.0002	0.004	0.0010
Steam electric power generating						
(water treatment)	NA	NA	5,000 ^e	3 x 10 ⁻⁵	300	0.75
Steam electric power generating						
(boiler or steam generator blowdown)	NA	NA	NA	NA	NA	NA
Steam electric power generating						
(maintenance cleaning)	<1.0	51	6.5	6.5 x 10 ⁻⁹	0.12	0.002
Steam electric power generating						
(ash handling)	BDL	10	2	4×10^{-5}	0.20	0.044
Steam electric power generating						
(air pollution control devices)	4.0	110	57	5 x 10-5	3.2	0.20
Steam electric power generating						
(drainage)	NA	NA .	10 ^e	9 x 10 ⁻⁵	0.0037	0.0002
Inorganic chemicals manufacturing	NA	NA 300 ^f	NA	0	19	3.8
Coil coating	ND	200	22	0.001	0.040	0.011
Foundries	ND	740	140	0	0.94	0.378
Nonferrous metals manufacturing	2.3	80,000	5,400	õ	NA	286
Iron and steel manufacturing	NA	1,800	213	0	NA	38

INDUSTRIAL OCCURRENCE OF CADMIUM^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3, where mean is not available 1/2 the reported maximum was utilized.

d Median, not average.

e Average of medians reported for various industry segments.

f Average of maximums reported for various industry segments.

I.4.5-3

	Treated wastewater								
	Concent	ration,	µg/L	Loading, ^C kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	2	4	2,	0	0.053	0.0076			
Textile mills	NA	13	$^{2}_{6^{d}}$	2.5 x 10 ⁻⁵	0.17	0.011			
Timber products processing	BDL	7	14	0	0.046	8.6 x 10			
Petroleum refining	<1	20	<2 ¹ d	0	0.19	0.012			
Paint and ink formulation	BDL	200	24	0	0.0011	3.8 x 10			
Gum and wood chemicals	NA	NA	NA	NA	NA	NA			
Rubber processing	NA	1,500	760	0.00015	0.65	0.025			
Auto and other laundries	<1.0	31	11	1.0×10^{-5}	0.015	0.002			
Porcelain enameling	ND	2,000	650	0.0004	0.27	0.052			
Pharmaceutical manufacturing	ND	ND	ND	ND	ND	ND			
Ore mining and dressing	<0.002	16	<0.03	0	NA	0.001			
Foundries	10	840	120	0	0.80	0.32			
Iron and steel manufacturing	NA	770	270	0	NA	49			
Nonferrous metals manufacturing	ND	3,000	780	0	NA	41			

INDUSTRIAL OCCURRENCE OF CADMIUM^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d Median, not average.

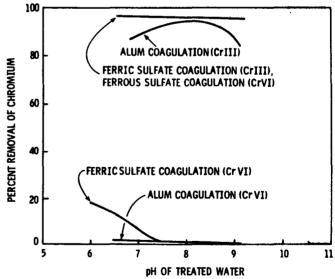
	Syntheti	c wastewater	Actual	wastewater	
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers
Gravity oil separation			NA	69	III.4.1
Gas flotation with chemical addition (calcium chloride, polymer)			79->98	17	111.4.5
Gas flotation with chemical addition (polymer)			o ^d ,e	_e	111.4.5
Gas flotation with chemical addition (alum, polymer)			0 ^{d,e}	_e	III.4.5
Filtration			39->99	20	III.4.6
Sedimentation			72->99	210	111.4.2
Sedimentation with chemical addition (lime, polymer)			27-93	<16	III.4.3
Sedimentation with chemical addition (Fe ²⁺ , lime)			25->50	6	III.4.3
Sedimentation with chemical addition (sulfide)			>50->99	<9	III.4.3
Sedimentation with chemical addition (polymer)			25-50	80	III.4.3
Sedimentation with chemical addition (alum, polymer)			42-61	33	111.4.3
Sedimentation with chemical addition (alum)			44-88	>9	111.4.3
Sedimentation with chemical addition (lime)			60-99	>9	111.4.3
Aerated lagoons			>97	<2	111.5.3
Ultrafiltration			>83->93	****	III.4.7
Ozona tion			0 ^{d,e}		III.6.14
Ion exchange			>99 ^d	<10 ^d	III.6.7
Activated sludge			31->99	4	111.5.1
Powdered activated carbon adsorption (with activated sludge)			0 ^{d,e}	_e	111.6.2
Granular activated carbon adsorption			34-95	12	III.6.1
Reverse osmosis			13-50	13	111.6.9

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR CADMIUM^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

CAverage and maximum removals reported.


^dOnly one data point.

^eActual data indicate negative removal.

REFERENCES

- Fairchild, E. J., R. J. Lewis, Sr., and R. L. Tatken. Registry of Toxic Effects of Chemical Substances, Volume II. NIOSH-78-104B, National Institute for Occupational Safety and Health, Cincinnati, Ohio, 1977. p. 255.
- Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume II, Metals and Inorganics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 9-1 - 9-13.
- 3. The Chemical Rubber Company. Handbook of Chemistry and Physics, 48th Edition. Cleveland, Ohio, 1967. p. B-104.
- 4. CRC Press, Inc. CRC Handbook of Chemistry and Physics, 58th Edition. Cleveland, Ohio, 1977. pp. B-97, B-98.
- Manual of Treatment Techniques for Meeting the Interim Primary Drinking Water Regulations. EPA-600/8-77-005, U.S. Environmental Protection Agency, Cincinnati, Ohio, May 1977. 73 pp.

Compound: Chromium Formula: Cr Alternate Names [1]: Chrome (French) CAS #: 7440-47-3 Physical, Chemical, and Biological Properties [2] m.p., °C: 1,860 at. wt.: 52.00 b.p. (760 torr), °C: 2,670 vapor pressure (25°C), torr: Negligible solubility in water (0°C), mg/L: CrO₃, 6.17 x 10⁵ common oxidation states: +3, +6 Probable Fate [2] photolysis: Not important oxidation: Cr(VI) slowly transformed to more stable Cr(III) hydrolysis: Cr(III) transformed to Cr(OH) 3 or Cr2O3 (both insoluble at neutral or alkaline pH) volatilization: Not important sorption: Cr(VI) adsorbed by organic materials; sorption of Cr(III) ancillary to precipitation of Cr(OH)₃ biological processes: Bioaccumulated by many aquatic organisms and passed on through the food chain; biotransformation is not important other reactions/interactions: Not important Precipitation/Coagulation Properties [3]

			Raw	wastewater		
	Conce	entration,	μg/L	Lo	ading, ^C kg/d	
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean
Coal mining	8	530	260 14 ^d 20 ^e 26 ^d	0	6.9	0.98
Textile mills	NA	880	14 ^d	5.9 x 10 ⁻⁵	0.40	0.025
Timber products processing	BDL	14,000	20 ^e	0	0.92	0.001
Petroleum refining	1	2,000	26 ^d	0	25	1.5
Paint and ink formulation	BDL	200,000	3,400	0	0.16	0.005
Gum and wood chemicals	34	1,500	600	0.0054	4.5	0.99
Rubber processing	NA	140	250	5 x 10 ⁻⁵	0.12	0.004
Pulp, paper and paperboard mills	<1'	24	<4	0	NA	0.12
Auto and other laundries	ND 1	8,800	180	0.00016	0.25	0.038
Porcelain enameling	ND	840	80	5 x 10~5	0.033	0.006
Pharmaceutical manufacturing	ND	140	24	0	0.16	0.022
Ore mining and dressing	<10	25	<17	0	NA	<0.63
Steam electric power generating				-		
(condenser cooling system)	2	560	30	0.016	0.033	0.007
Steam electric power generating	_					
(water treatment)	20	NA	5,200 ^e	3.2 x 10 ⁻⁵	310	0.78
Steam electric power generating			-,			
(boiler or steam generator blowdown)	NA	NA	20 ^e	8.4 x 10 ^{-9^e}	0.28	0.003
Steam electric power generating						
(maintenance cleaning)	ND	27,000	6,800	7 x 10-5	129	2
Steam electric power generating						-
(ash hauling)	BDL	1,000	19	0.0004	2	0.42
Steam electric power generating		-,				
(air pollution control devices)	10	500	26 0	0.00024	15	0.94
Steam electric power generating						
(drainage)	ND	17,000	610	0.005	0.22	0.01
Inorganic chemicals manufacturing	NA	67,000	NA	0	4,200	840
Coal coating	40	330,000	36,000	2	65	17
Foundries	NA	430	93	ō	0.62	0.25
Leather tanning and finishing	430	180,000	130,000	0	NA	195

INDUSTRIAL OCCURRENCE OF CHROMIUM^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wasewater discharges as reported in Section I.3, where mean is not available 1/2 the reported maximum was utilized.

d Median, not average.

e Average of medians reported for various industry segments.

f Average of maximums reported for various industry segments.

	Treated wastewater								
Industry	Conce	entration,	µg/L	Loading, ^C kg/d					
	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	13	70	38 a d	0	1.0	0.14			
Textile mills	NA	1,800	20	8.4×10^{-5}	0.58	0.036			
Timber products processing	1	6,600	30 ^d	0	1.4	0.0026			
Petroleum refining	1	1,230	50 ^d	0	4.6	0.29			
Paint and ink formulation	BDL	30,000	680	0	0.031	0.0011			
Gum and wood chemicals	88	900	280	0.0025	2.1	0.46			
Rubber processing	NA	220	110	2.2 x 10 ⁻⁵	NA	0.36			
Auto and other laundries	<5.0	170	61	5.5 x 10 ⁻⁵	0.085	0.013			
Porcelain enameling	ND	19	5	3.2 x 10 ⁻⁶	0.0021	0.0004			
Pharmaceutical manufacturing	ND	23	7.6	0	0.052	0.0070			
Ore mining and dressing	<0.02	40	<0.02	0	NA	0.00074			
Foundries	<20	150	33	0	0.22	0.089			
Iron and steel manufacturing	NA	95,000	3,000	0	NA	540			
Nonferrous metals manufacturing	ND	8,000	750	0	NA	40			
Coil coating	3	2,800	780	0.039	1.4	0′.37			
Leather tanning and finishing	<20	20,000	4,200	0	NA	6.3			

INDUSTRIAL OCCURRENCE OF CHROMIUM^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d_{Median, not average.}

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR CHROMIUM^{a,b}

Treatment process ^a	Synthet: Removal range, %	ic wastewater Average achievable conc , µg/L	<u>Actual</u> Removal range, ^C	wastewater Average achievable conc , µg/L	Volume III references, Section numbers
Gravity oil separation			NA	1,700	111 4.1
Gas flotation			40-58	300	III 4 4
Gas flotation with chemical addition (calcium chloride, polymer)			51-67	330	111 4 5
Gas flotation with chemical addition (polymer)			o ^{d, e}	-e	111 4 5
Gas flotation with chemical addition (alum, polymer)			19 ^d	360 ^d	111 4 5
Filtration			36->99	67	111 4 6
Sedimentation			79-299	1,200	FII 4 2
Filtration, Cr ⁺⁶			•	- *	111 4 6
Filtration, Cr ⁺³			95	610	III 4 6
Sedimentation with chemical addition (alum, lume)			72 ^d	31d	111.4 3
Sedimentation with chemical addition (lime, polymer)			86-98	120	111 4 3
Sedimentation with chemical addition (lime, polymer), Cr ⁺⁶			41-82	85	III 4 3
Sedimentation with chemical addition (Fe ²⁺ , lime)			>55->95	<33	111.4 3
Sedimentation with chemical addition (sulfide)			>97->99	40	III.4 3
Sedimentation with chemical addition (polymer)			>96-97	<14	111.4 3
Sedimentation with chemical addition (BaCl ₂)			72-93	28	III.4.3
Sedimentation with chemical addition (alum, polymer)			69-95	70	111.4.3
Sedimentation with chemical addition (alum)			69-95	95	111.4.3
Sedimentation with chemical addition (lime)			49-97	340	111.4.3
Sedimentation with chemical addition (lime) chromium dissolved			>99 ^d	40 ^d	111.4.3
Tertiary polishing lagoons			>71 ^d	<10 ^d	111.5.3
Aerated lagoons			63-99	380	111.5.3
Trickling filters			o ^{d, e}	_ e	111.5.2
Ultrafiltration			67 ^d	2,900 ^d	111.4.7
Ozonation			o ^{d, e}	۰.	111.6.14
Ion exchange			>99 ^d	10 ^d	111.6.7
Activated sludge			45-99	910	111.5.1
Powdered activated carbon adsorption (with activated sludge)			87-97	55	111.6.2
Powdered activated carbon adsorption (with activated sludge), Cr ⁺⁶			41->64	<20	111.6.2
Granular activated carbon adsorption			34-95	60	III.6 l
Granular activated carbon adsoprtion Cr ⁺⁶			>33 ^d	< 20 ^d	111 6.1
Reverse osmosis			44->99	460	111.6.9
Reverse osmosis Cr ⁺⁶			o ^{d,e}	- e	III 6.9
Reverse osmosis Cr ⁺³			,99 ^d	15 ^d	111.6.9

.

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit

^CAverage and maximum removals reported.

d_{Only one data point.}

^eActual data indicate negative removal

REFERENCES

- Fairchild, E. J., R. J. Lewis, Sr., and R. L. Tatken. Registry of Toxic Effects of Chemical Substances, Volume II. NIOSH-78-104B, National Institute for Occupational Safety and Health, Cincinnati, Ohio, 1977. p. 296.
- Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume II, Metals and Inorganics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 10-1 - 10-12.
- Manual of Treatment Techniques for Meeting the Interim Primary Drinking Water Regulations. EPA-600/8-77-005, U.S. Environmental Protection Agency, Cincinnati, Ohio, May 1977. 73 pp.

.

-

Compound: Copper

Formula: Cu

Alternate Names [1]: Allbri natural copper, Bronze powder, Copper bronze, C.I. pigment metal 2

CAS #: 7440-50-8

Physical, Chemical, and Biological Properties [2-4]

at. wt.: 63.55 m.p., °C: 1,080 b.p. (760 torr), °C: 2,600
vapor pressure (25°C), torr: Negligible
solubility in water (0°C), mg/L: CuCl₂, 7.06 x 10⁵
common oxidation states: +1, +2

Probable Fate [2]

photolysis: Not important oxidation: Cu(I) quickly oxidized in water; transformation Cu(II) to CuO and Cu₂(OH)₂CO₃ very pH-dependent hydrolysis: CuO and Cu₂(OH)₂CO₃ formed, but less effective than sorption volatilization: Not important sorption: Sorbed by hydrous iron and manganese oxides, enhanced by complexing with ligands biological processes: Bioaccumulated by all organisms, but not biomagnified; biotransformation not important other reactions/interactions: Not important

Precipitation/Coagulation Properties: Not available

Date: 8/13/79

I.4.7-1

	Raw wastewater							
Industry	Concentration, µg/L			Loading, kg/d				
	Minimum	n Maximum	Mean	Minimum	Maximu	n Mea		
Coal mining	6	1,300	460.	0	12	1.7		
Textile mills	NA	2,400	460 40 ^d	0.00017	1.1	0.072		
Explosives manufacture	10	940	300	0	0.10	0.0001		
Timber products processing	31	1,600	230 ^e	0	10	0.020		
Petroleum refining	2	1,400	26 ^d	0	2.4	0.15		
Paint and ink formulation	BDL	100,000	8,000	0	0.37	0.013		
Sum and wood chemicals	33	6,000	1,800	0.016	14	3.0		
Rubber processing	NA	120	200	4×10^{-5}	0.17	0.0066		
Pulp, paper and paperboard mills	<1	40	<13	0	NA	0.39		
Auto and other laundries	ND	11,000	413	0.00037	0.58	0.09		
Porcelain enameling	r .c) 12,000	2,500	0.0016	1.0	0.20		
Pharmaceutical manufacturing	ND	180	43	0	0.29	0.040		
ore mining and dressing	<20	100	<61	0	NA	<2.2		
team electric power generating								
(condenser cooling systems)	5	3,800	38	0.002	0.042	0.009		
team electric power generating		•						
(water treatment)	20	NA	14,000 ^e	8 x 10 ⁻⁵	840	2.1		
team electric power generating			•		•			
(boiler or steam generator blowdown)	20	190	40	1.7 x 10	-8 0.56	0,006		
steam electric power generating					•••••			
(maintenance cleaning)	170	12,000,000	160.000	0.0002	3.040	48		
Steam electric power generating					0,010			
(ash handling)	12	80	21	0.00040	2.1	0.46		
Steam electric power generating				0100040		0.10		
(air pollution control devices)	<2	560	281	0.00027	16	1.0		
Steam electric power generating	_							
(drainage)	ND	3,400	880	0.0076	0.326	0.018		
norganic chemicals manufacturing	NA	3,400 157,000 ^f	NA	0	9,800	2,000		
coil coating	ND	480	35	0.0018	0.063	0.017		
Coundries	ND	110.000	11.000	0	74	30		
eather tanning and finishing	35	740	200	õ	NA	0.15		
Nonferrous metals manufacturing	13	2.1 x 10 ⁶		õ	NA	4,000		
Iron and steel manufacturing	NA	NA	915	õ	NA	165		

INDUSTRIAL OCCURRENCE OF COPPER^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3, where mean is not available 1/2 the reported maximum was utilized.

.

d Median, not average.

^eAverage of medians reported for various industry segments. ^fAverage of maximums reported for various industry segments.

INDUSTRIAL OCCURRENCE OF COPPER^{a,b}

	Treated wastewater							
	Conc	entration	, μg/L	1	Loading, ^C	kg/d		
Industry	Minimun	n Maximu	m Mean	n Minimum	Maximur	n Mean		
Coal mining	6	9	7	0	0.18	0.026		
Textile mills	NA	290	32 ^d 92 ^d	0.00013	0.92	0.058		
Timber products processing	18	4,000	92 ^d	0	4.2	0.007		
Petroleum refining	3	300	92 10 ^d	0	0.93	0		
Paint and ink formulation	BDL	60,000	1,000	0	0.046	0.001		
Gum and wood chemicals	16	4,700	1,800	0.016	14	3.0		
Explosives manufacture	NA	NA	NA	NA	NA	NA		
Rubber processing	NA	NA	NA	NA	NA	NA		
Pulp, paper and paperboard mills	4	79	17	0	NA	0.51		
Auto and other industries	21	330	129	0.0012	0.18	0.027		
Porcelain enameling	ND	200	49	3.1×10^{-5}	0.020	0.004		
Pharmaceutical manufacturing	ND	65	21	0	0.14	0.019		
Ore mining and dressing	<0.02	910	22	0	NA	0.81		
Foundries	5.7	2,400	270	0	1.8	0.73		
Iron and steel manufacturing	NA	76,000	780	0	NA	140		
Nonferrous metals manufacturing	ND	300,000	21,000	0	NA	1,100		
Coil coating	ND	17	12	0.006	0.022	0.00		
Leather tanning and finishing	5	37	15	0	NA	0.023		

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d_{Median, not average.}

I.4.7-3

	Synthet1	<u>c</u> wastewater	Actual wastewater			
Treatment process ^a		Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
ravity oil separation			NA	100	111.4.1	
as flotation			69 ^d	5	III.4 4	
as flotation with chemical addition (calcium chloride, polymer)			78-91	300	111.4.5	
as flotation with chemical addition (polymer)			42-75	66	III.4.5	
as flotation with chemical addition (alum, polymer)			19 ^d	660 ^d	111.4.5	
iltration			40->99	200	111.4.6	
edimentation			66->99	73	III. 4 .2	
edimentation with chemical addition (alum, lime)			62-88	36	111.4.3	
edimentation with chemical addition (lime, polymer)			87->99	56	111.4.3	
edimentation with chemical addition (Fe ^{2+, lime})			72-92	21	111.4.3	
edimentation with chemical addition (sulfide)			>98->99	260	111.4.3	
edimentation with chemical addition (polymer)			56->89	140	111.4.3	
edimentation with chemical addition (BaCl ₂)			>62-73	<25	111.4.3	
edimentation with chemical addition (alum, polymer)			49-80	6,900	III.4.3	
edimentation with chemical addition (alum)			>64-81	<37	111.4.3	
edimentation with chemical addition (lime)			75->99	52	111.4.3	
ertiary polishing lagoons			٥ ^{d, e}	_e	111.5.3	
erated lagoons			49-94	40	111.5.3	
rickling filters			٥ ^{d, e}	_e	111.5.2	
ltrafiltration			>7 3-9 0	<700	111.4.7	
zonation			0 ^e	_ e	III.6.14	
hemical oxidation (chlorination)			14 ^d	320 ^d	111.6.3	
on exchange			98->99	95	111.6.7	
ctivated sludge			52->99	43	111.5.1	
owdered activated carbon adsorption (with activated sludge)			52 -96	17	111.6.2	
ranular activated carbon adsorption			47->85	<66	111.6.1	
everse osmosis			73->99	1,600	111.6.9	

.

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR COPPER^{a,b}

^aSee Volume III for detailed information.

bNA - Not available, ND - not detected, BDL - below detection limit.

C Average and maximum removals reported.

d Only one data point.

• Actual data indicate negative removal.

- Fairchild, E. J., R. J. Lewis, Sr., and R. L. Tatken. Registry of Toxic Effects of Chemical Substances, Volume II. NIOSH-78-104B, National Institute for Occupational Safety and Health, Cincinnati, Ohio, 1977. p. 306.
- Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume II, Metals and Inorganics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 11-1 - 11-19.
- 3. The Chemical Rubber Company. Handbook of Chemistry and Physics, 48th Edition. Cleveland, Ohio, 1967. p. B-108.
- 4. CRC Press, Inc. CRC Handbook of Chemistry and Physics, 58th Edition. Cleveland, Ohio, 1977. p. B-111.

.

Formula: • Cyanide ion; CN⁻ Compound: Cyanides (Total) • Hydrogen cyanide; HCN • Nitriles; RCN (R = organic Alternate Names: None group) CAS #: 57-12-5 for cyanide ion/74-90-8 for HCN Physical, Chemical, and Biological Properties for HCN [1] b.p. (760 torr), °C: 25.6 mol. wt.: 27.03 m.p., °C: -13.3 vapor pressure (20°C), torr: 620 solubility in water (25°C), mg/L: soluble in all proportions Probable Fate [2] photolysis: Presence of titanium dioxide causes rapid photooxidation of cyanide ion; otherwise, only some metallocyanides are photodecomposed oxidation: Strong oxidizing agents are required to oxidize cyanides hydrolysis: Too slow to compete with other fate mechanisms volatilization: HCN, which composes almost all the total cyanides under natural conditions, is very rapidly volatilized sorption: Cyanides are sorbed by most materials, but highly solublity precludes strong adsorption biological processes: Toxicity precludes bioaccumulation; almost all organisms biodegrade cyanides, but not as rapidly as volitalization other reactions/interactions: Not important Carbon Adsorption Data: Not available

	Raw wastewater									
	Con	centration,	µg/L	Loading, ^c kg/d						
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean				
Coal mining	NA	5	5 8 ^d	0	0.13	0.019				
Textile mills	NA	39	8 ^a	3.4 x 10~5	0.23	0.014				
Explosives manufacture	10	2,600	810,	0	0.28	0.0035				
Petroleum refining	<5	1,500	<50 ^d	0	46	0.29				
Paint and ink formulation	BDL	2,000	200	0	0.0092	0.0003				
Pulp, paper and paperboard mills	9	21	10	0	NA	0.30				
Auto and other laundries	ND	1,000	63	6 x 10 ⁻⁵	0.088	0.013				
Porcelain enameling	4	140	30	2 x 10 ⁻⁵	0.012	0.006				
Pharmaceutical manufacturing	ND	1,000	181	0.	1.2	0.17				
Ore mining and dressing	<0.02	<0.02	<0.02	0	NA	0.0007				
Steam electric power generating										
(condenser cooling system)	BDL	20	<20	<0.0011	<0.022	0.005				
Steam electric power generating			_							
(water treatment)	5	NA	12,000 ^e	7 x 10 ⁻⁵	720	1.8				
Steam electric power generating										
(boiler or steam generator blowdown)	5	14	10	4.2 x 10 ⁻⁹	0.14	0.001				
Steam electric power generating										
(maintenance cleaning)	NA	NA	NA	NA	NA	NA				
Steam electric power generating										
(ash handling)	BDL	22	<20	0.0004	<2.0	0.44				
Steam electric power generating										
(air pollution control devices)	NA	NA	NA	NA	NA	NA				
Steam electric power generating										
(drainage)	NA	NA F	NA	NA	NA	NA				
Inorganic chemicals manufacturing	NA	2,800 [°]	NA	0	175	35				
Coil coating	ND	18,000	220	0.011	0.40	o.11				
Foundries	ND	69	17	0	0.11	0.05				
Leather tanning and finishing	ND	100	33	0	NA	0.05				
Nonferrous metals manufacturing	<0.001	29	1.1	0	NA	0.058				
Iron and steel manufacturing	NA	190,000	5,500	0	NA	9.90				

INDUSTRIAL OCCURRENCE OF CYANIDES (Total)^{a,b}

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3, where mean is not available 1/2 the reported maximum was utilized.

d Median, not average.

e Average of medians reported for various industry segments.

f Average of maximums reported for various industry segments.

	Treated wastewater								
	Concentration, µg/L			Loading, ^C kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	5	50	10,	0	0.26	0.038			
Textile mills	NA	980	12 ^d	5.0×10^{-5}	0.35	0.022			
Petroleum refining	5	800	30 ^d	0	2.8	0.17			
Paint and ink formulation	BDL	530	40	0	0.0018	6.4 x 10			
Explosives manufacture	NA	NA	NA	NA	NA	NA			
Pulp, paper and paperboard mills	9	89	17	0	NA	0.51			
Auto and other laundries	<0.002	88	13	1.2×10^{-5}	0.018	0.0027			
Pharmaceutical manufacturing	ND	400	44	0	0.30	0.040			
Ore mining and dressing	<0.01	81	<0.01	0	NA	0.00037			
Foundries	1.0	180	31	0	0.21	0.084			
Iron and steel manufacturing	NA	16,000	580	0	NA	100			
Nonferrous metals manufacturing	<0.001	1.5	0.10) 0	NA	0.005			
Leather tanning and finishing	10	400	110	0	NA	0.17			

INDUSTRIAL OCCURRENCE OF CYANIDES (TOTAL)^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d Median, not average.

I.4.8-3

1

	<u>Syntheti</u>	c wastewater	Actual wastewater		
Treatment process ^a		Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers
Gravity oil separation			NA	170	III.4.1
Gas flotation			0 ^{d,e}	_e	III.4.3
Gas flotation with chemical addition (calcium chloride, polymer)			2-5	290	III.4.5
Gas flotation with chemical addition (polymer)			14 ^d	25 ^d	111.4.5
Gas flotation with chemical addition (alum, polymer)			≥61 ^d	≤10 ^d	III.4.5
Filtration			10-> 99	50	III.4.6
Sedimentation			31->90	330	III.4.2
Sedimentation with chemical addition (alum, lime)			>70-80	<17	III.4.3
Sedimentation with chemical addition (lime, polymer)			69-89	21	III.4.3
Sedimentation with chemical addition (alum, polymer)			o ^{d, e}	-e	III.4.3
Sedimentation with chemical addition (lime)			0 ^{d,e}	_e	111.4.3
Aerated lagoons			45-91	100	III.5.3
Trickling filters			79 ^d	16 ^d	111.5.2
Ultrafiltration			o ^{d,e}	_e	III.4.7
Dzonation			81-99	2,100	III.6.14
Chemical oxidation			84->99	38	III.6.3
Ion exchange			>98->99	65	111.6.7
Activated sludge			18->90	520	111.5.1
Powdered activated carbon adsorption			>62-69	<28	III.6.2
Granular activated carbon adsorption			57->90	<20	111.6.1
Reverse osmosis			43-97	2,200	III.6.9

						a h
POLLUTANT REMOVABILITY/TREATABILITY	WASTEWATER	TREATMENT	ALTERNATIVE	FOR	CYANIDES	(TOTAL)"'

÷.

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

d_{Only one data point.}

^eActual data indicate negative removal.

I.4.8-4

-

- 1. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. p. 379.
- Fairchild, E. J., R. J. Lewis, Sr., and R. L. Tatken. Registry of Toxic Effects of Chemical Substances, Volume II. NIOSH-78-104B, National Institute for Occupational Safety and Health, Cincinnati, Ohio, 1977. pp. 12-1 - 12-15.

Date: 8/13/79

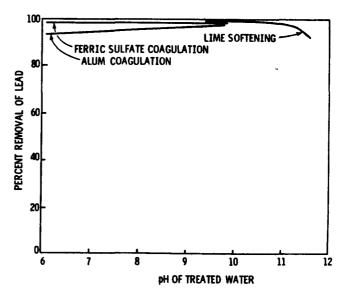
.

I.4.8-5

Compound: Lead

Formula: Pb

Alternate Names [1]: Pigment metal 4, Lead flake, Olow (Polish)


CAS #: 7439-92-1

Physical, Chemical, and Biological Properties [2, 3]

at. wt.: 207.2 m.p., °C: 328 b.p. (760 torr), °C: 1,740 vapor pressure (25°C), torr: Negligible solubility in water (20°C), mg/L: PbO, 17; PbCl₂, 9.9 x 10³ common oxidation states: o, +2, +4

Probable Fate [2]

Precipitation/Coagulation Properties [4]

Date: 8/13/79

I.4.9-1

			Raw	wastewater			
	Con	centration,	µg/L	Loading, ^c kg/d			
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean	
Coal mining	20	70	370 35 ^d	0	9.8	1.4	
Textile mills	NA	750	35 ^a	0.00015	1.0	0.063	
Explosives manufacture	ND	110	25	0	0.0087	0.0001	
Timber products processing	1	91	16,	0	0.74	0.0014	
Petroleum refining	2	960	<60 ^d	0	5.6	0.35	
Paint and ink formulation	BDL	900,000	86,000	0	3.9	0.14	
Gum and wood chemicals	11	72	20	0.00018	0.15	0.033	
Rubber processing	NA	390	120	2.4 x 10 ⁻⁵	0 10	0.0040	
Pulp, paper and paperboard mills	<1	38	<6	0	NA	0.18	
Auto and other laundries	ND	22,000	860	0.0007	1.2	0.18	
Porcelain enameling	150	880,000	2,900	0.0019	1.2	0.23	
Pharmaceutical manufacturing	ND	46	7.9	0	0.054	0.0073	
Ore mining and dressing	<20	60	<45	0	NA	<1.7	
Steam electric power generating							
(condenser cooling system)	BDL	800	13	0.00069	0.014	0.003	
Steam electric power generating		_					
(water treatment)	NA	12,000 ^e	NA	4 x 10 ⁻⁵	360	0.9	
Steam electric power generating							
(boiler or steam generator blowdown)	NA	NA	NA	NA	NA	NA	
Steam electric power generating							
(maintenance cleaning)	<10	5,200	440	4 x 10 ⁻⁷	8.4	0.13	
Steam electric power generating							
(ash handling)	BDL	70	30	0.0006	2.9	0.66	
Steam electric power generating							
(air pollution control devices)	10	520	270	0.0003	15	0.97	
Steam electric power generating							
(drainage)	NA	NA f	30 ^e	0.00026 ^e	0.011 ^e	0.0006	
Inorganic chemicals manufacturing	NA	160,000 ¹	NA	0	9,800	2,000	
Coil coating	ND	2,100	230	0.011	0.414	0.11	
Foundries	ND	140,000	7,700	0	5.1	21	
Leather tanning and finishing	60	3,500	680	0	NA	1.0	
Nonferrous metals manufacturing	ND	2.7×10^{7}	960,000	0	NA	51,000	
Iron and steel manufacturing	NA	25,000	3,100	ů 0	NA	560	

INDUSTRIAL OCCURRENCE OF LEAD^{a, b}

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3, where mean is not available 1/2 the reported maximum was utilized.

d Median, not average.

e Average of medians reported for various industry segments.

f Average of maximums reported for various industry segments.

		Treated wastewater								
	Concent	tration,	µg/L	Loading, ^C kg/d						
Industry	Minimum	Maximum		Minimum	Maximum	Mean				
Coal mining	<20	270	<60,	0	1.6	0.23				
Textile mills	NA	120	46 d	0.00019	1.3	0.0072				
Timber products processing	BDL	37	4d 28 ^d	0	0.18	0.0003				
Petroleum refining	1	107	28 ^a	0	2.6	0.16				
Paint and ink formulation	BDL	40,000	670	0	0.031	0.0011				
Gum and wood chemicals	BDL	19	11 9 ^e	0.000099	0.083	0.0017				
Rubber processing	NA	آ و 9	9 ^e	1.8 x 10 ⁻⁶	0.0077	0.0003				
Explosives manufacture	NA	NA	NA	NA	NA	NA				
Pulp, paper and paperboard mills	<1	9 5	<14	0	NA	0_42				
Auto and other industries	11	910	255	0.00023	0.36	0.054				
Porcelain enameling	ND	3,000	700	0.00045	0.29	0.056				
Pharmaceutical manufacturing	ND	10	2.0	0	0.014	0.0018				
Ore mining and dressing	<0.01	560	<0.10	0	NA	0.0037				
Foundries	10	8,500	840	0	5.6	2.3				
Iron and steel manufacturing	NA	5,500	480	0	NA	86				
Nonferrous metals manufacturing	ND	26,000	4,000	0	NA	210				
Coil coating	ND	110	38	0.0019	0.068	0.018				
Leather tanning and finishing	8	80	43	0	NA	0.065				

INDUSTRIAL OCCURRENCE OF LEAD^{a,b}

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concetration by industry wastewater discharges as reported in Section 1.2; where mean is not available, one-half the reported maximum was utilized.

d Median, not average.

^eOne sample.

		c wastewater		wastewater	
Treatment process ^a	Removal range,	Average achievable _conc., µg/L	Removal range,	Average achievable conc., µg/L	Volume III references, Section numbers
ravity oil separation			NA	150	111.4.1
as flotation			49-82	110	111.4.4
as flotation with chemical addition (calcium chloride, polymer)			97-98	150	III.4.5
as flotation with chemical addition (polymer)			15->29	<40	111.4.5
as flotation with chemical addition (alum, polymer)			o ^{d, e}	_e	III. 4 .5
iltration			36->99	140	III.4.6
edimentation			69->99	420	111.4.6
edimentation with chemical addition (alum, lime)			50 ^d	<200 ^d	III.4.3
edimentation with chemical addition (lime, polymer)			>72-98	210	III.4.3
edimentation with chemical addition (Fe ²⁺ , lime)			>40->96	<3	111.4.3
edimentation with chemical addition (sulfide)			>93-96	100	111.4.3
edimentation with chemical addition (polymer)			>52-97	77	111.4.3
edimentation with chemical addition (BaCl ₂)			42-83	40	III.4.3
edimentation with chemical addition (alum, polymer)			>74->96	<320	111.4.3
edimentation with chemical addition (alum)			6-18	120	111.4.3
edimentation with chemical addition (lime)			60-99	51	111.4.3
ertiary polishing lagoons			>72 ^d	<10 ^d	111.5.3
erated lagoons			86-93	< 50	111.5.3
rickling filters			o ^{đ,e}	_e	111.5.2
ltrafiltration			>74->95	<1,000	111.4.7
zonation			>29 ^d	<22 ^d	111.6.14
hemical oxidation			o ^{d,e}	_•	111.6.3
on exchange			99 ^d	10 ^đ	111.6.7
ctivated sludge			49-99	40	111.5.1
owdered activated carbon adsorption (with activated sludge)			39->78	<28	111.6.2
ranular activated carbon adsorption			14->72	46	111.6.1
everse osmosis			31->99	210	111.6.9

.

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR LEAD^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

CAverage and maximum removals reported.

d Only one data point.

^eActual data indicate negative removal.

- 1. Fairchild, E. J., R. J. Lewis, Sr., and R. L. Tatken. Registry of Toxic Effects of Chemical Substances, Volume II. NIOSH-78-104B, National Institute for Occupational Safety and Health, Cincinnati, Ohio, 1977. p. 515.
- Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume II, Metals and Inorganics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 13-1 - 13-21.
- 3. The Chemical Rubber Company. Handbook of Chemistry and Physics, 48th Edition. Cleveland, Ohio, 1967. p. B-118.
- Manual of Treatment Techniques for Meeting the Interim Primary Drinking Water Regulations. EPA-600/8-77-005, U.S. Environmental Protection Agency, Cincinnati, Ohio, May 1977. 73 pp.

Date: 8/13/79

1

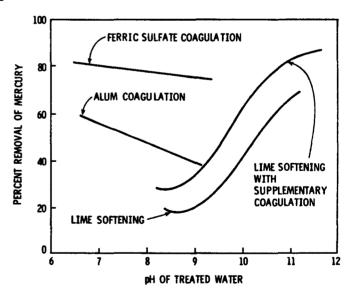
,

I.4.9-5

Compound: Mercury

Formula: Hg

Alternate Names [1]: Quick silver; Liquid silver


CAS #: 7439-97-6

Physical, Chemical, and Biological Properties [2-4]

at. wt.: 200.6 m.p., °C: 38.9 b.p. (760 torr), °C: 357
vapor pressure (25°C), torr: 0.0012
solubility in water, mg/L: HgO, 53 at 25°C; HgS (α), 0.01 at 18°C;
HgS (β), insoluble; HgCl₂, 6.9 x 10⁴ at 20°C
common oxidation states: +1, +2

Probable Fate [2]

Precipitation/Coagulation Properties [5]

Date: 8/13/79

I.4.10-1

				tewater		
	C	Concentration,	µg/L		Loading, c kg/	'a
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean
Coal mining	NA	0.003 ^d	0.003 ^d	0	7.9 x 10 ⁻⁵	1.1 x 10 ⁻⁸
Textile mills	NA	4	0.6	2.5 x 10-6	0.017	0.0011
Timber products processing	BDL	18	2f	0	0.092	0.00017
Petroleum refining	<0.1	6	<0.5 ^e	0	0.046	0.0029
Paint and ink formulation	BDL	120,000	5,200	0	0.24	0.0083
Rubber processing	NA	720	120	2.4 x 10 ⁻⁵	0.10	0.0040
Pulp, paper, paperboard mills	<1	3	<1	0	NA	0.030
Auto and other laundries	ND	51	2	2 x 10 ⁻⁶	0.003	0.004
Porcelain enameling	1	· · 1	1	6 x 10 ⁻⁷	0.0004	8 x 10 ⁻⁵
Pharmaceutical manufacturing	ND	\$ 1.3	0.15	0	0.001	0.001
Ore mining and dressing	<0.5	<84	<17	0	NA	0.63
Steam electric power generating						
(condenser cooling systems)	0.17	0.42	0.34	2 x 10 ⁻⁵	0.0004	0.001
Steam electric power generating			_			
(water treatment)	NA	NA	470 ^f	2.9	28	0.07
Steam electric power generating						
(boiler or steam generator blowdown)	NA	NA	NA	NA	NA	NA
Steam electric power generating						
(maintenance cleaning)	0.02	15,000	1	1 x 10 ⁻⁹	0.019	0.0003
Steam electric power generating			-			
(ash handling)	BDL	1.5	<0.5	9.6 x 10 ⁻⁶	0.050	0.011
Steam electric power generating						
(air pollution control devices)	0.1	70	35	3.3 x 10 ⁻⁵	2	0.13
Steam electric power generating					_	
(drainage)	NA	NA .	1 d	8.6 x 10 ⁻⁶	2×10^{-5}	0.00037
Coil coating	<10d	NA <10 ^d	<10 ^{-d}	<0.0005	·	<0.0048
Foundries	ND	9	0.64	0	0.004	0.0017
Iron and steel manufacturing	NA	1,300	70	õ	NA	13
Nonferrous metals manufacturing	ND	52	7.6	õ	NA	0.40
Inorganic chemicals manufacturing	NA	3,500 ⁹	NA	õ	219	44

INDUSTRIAL OCCURRENCE OF MERCURY^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND ~ not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3, where mean is not available 1/2 the reported maximum was utilized.

^dOne sample.

^eMedian, not average.

f Average of medians reported for various industry segments.

⁹Average of maximums reported fc. various industry segments.

Treated wastewater Loading, c kg/d Concentration, $\mu g/L$ Industry Minimum Mean Minimum Maximum Mean Maximum 2.6×10^{-5} 3.8×10^{-6} Coal mining <0.001 0.4 0.001 NA 0 1.7×10^{-6} Textile mills 0.011 0.00072 NA 0.7 1d <0.5^d 8.6×10^{-5} Timber products processing BDL 2 0 0.046 Petroleum refining 0.0029 <0.1 6 0 0.046 Paint and ink formulation 0.038 1.3×10^{-5} BDL 4,400 830 0 2.8×10^{-7} 4.6×10^{-5} Rubber processing 0.0012 1.4 NA 4.7 Pulp, paper and paperboard mills 0.030 NA 1 <1 0 NA 1.5×10^{-6} Auto and other laundries 1.7 0.00036 <0.2 5.6 0.0024 Pharmaceutical manufacturing ND 6.4 0.50 0.0034 0.00046 0 Ore mining and dressing 7.4×10^{-5} <0.002 NA <0.001 28 0 Foundries 0.3 0.043 0.017 <20 6.4 0 Iron and steel manufacturing 4.1 NA 500 23 0 NA Nonferrous metals manufacturing ND 12 1.3 0 NA 0.07

INDUSTRIAL OCCURRENCE OF MERCURY^{a,b}

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dMedian, not average.

Treatment process ^a	Synthetic wastewater Removal Average range, ^C achievable % conc., µg/L	Actual Removal range, %	wastewater Average achievable conc., µg/L	Volume III references, Section numbers
Gravity oil separation		NA	1.4	111.4.1
Gas flotation		o ^{d,e}	_e	III.4.4
Gas flotation with chemical addition (calcium chloride, polymer)		>68->90	<0.8	111.4.5
as flotation with chemical addition (alum, polymer)		33 ^d	ıd	111.4.5
Filtration		45-86	340	III.4.6
Sedimentation		50-> 99	6.1	III.4.2
Sedimentation with chemical addition (alum, lime)		71	2	III.4.3
edimentation with chemical addition (lime, polymer)		0 ^{d,e}	_e	111.4.3
Sedimentation with chemical addition (Fe ²⁺ , lime)		>30->60	<0.2	111.4.3
Sedimentation with chemical addition (sulfide)		>99 ^d	20 ^d	III.4.3
edimentation with chemical addition (polymer)		>62-99	70	111.4.3
Sedimentation with chemical addition (BaCl ₂)		87 ^d	0.5 ^d	III.4.3
edimentation with chemical addition (alum, polymer)		71-88	5,200	III.4.3
edimentation with chemical addition (alum)		>34->62	<76	111.4.3
edimentation with chemical addition (lime)		35->96	1.4	111.4.3
Nerated lagoons		>99 ^đ	0.1 ^d	III.5.3
Iltrafiltration		15-20	0.6	111.4.7
Activated sludge		30-87	<0.8	111.5.1
Powdered activated carbon adsorption		0 ^{d, e}	_ ^e	111.6.2
Franular activated carbon adsorption		33->99	1.6	III.6.1
Reverse osmosis		22->60	0.5	111.6.9

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR MERCURY^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

d_{Only one data point.}

^eActual data indicate negative removal.

- 1. Fairchild, E. J., R. J. Lewis, Sr., and R. L. Tatken. Registry of Toxic Effects of Chemical Substances, Volume II. NIOSH-78-104B, National Institute for Occupational Safety and Health, Cincinnati, Ohio, 1977. p. 526.
- Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume II, Metals and Inorganics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 14-1 - 14-13.
- 3. The Chemical Rubber Company. Handbook of Chemistry and Physics, 48th Edition. Cleveland, Ohio, 1967. p. B-120.
- 4. CRC Press, Inc. CRC Handbook of Chemistry and Physics, 58th Edition. Cleveland, Ohio, 1977. p. B-132.
- Manual of Treatment Techniques for Meeting the Interim Primary Drinking Water Regulations. EPA-600/8-77-005, U.S. Environmental Protection Agency, Cincinnati, Ohio, May 1977. 73 pp.

Compound: Nickel

Formula: Ni

Alternate Names [1]: Nickel sponge, Pulverized nickel, Raney nickel, Carbonyl nickel powder

CAS #: 7440-02-0

Physical, Chemical, and Biological Properties [2, 3]

at. wt.: 58.71 m.p., °C: 1,450 b.p. (760 torr), °C: 2,730 vapor pressure (25°C), torr: Negligible solubility in water, mg/L: NiS, 3.6 at 18°C; NiCl₂, 6.42 x 10⁵ at 20°C common oxidation states: +2

Probable Fate [2]

Precipitation/Coagulation Properties: Not available

<u>I</u> <u>Minimum</u> 0 0.00023	Loading, ^c kg, Maximum	
	Maximum	
0 0,00023		Mean
0.00023	14	2.1
	1.6	0.097
0	0.017	0.0002
0	0.69	0.0013
0	3.7	0.23
0	0.024	0.0008
0.00034	0.29	0.063
4.2 x 10 ⁻⁵	0.18	0.0069
0	NA	0.15
0.00011	0.027	0.027
0.009	5.7	1.1
0	0.24	0.032
0	NA	1.2
0.0011	0.024	0.0053
0.00004	396	1.0
1.3 x 10 ⁻⁸	0.42	0.0045
8.9 x 10-5	1,691	26.7
0.00065	3.3	0.75
0.00074	44	2.8
ND	ND	ND
0	6,875	1,375
-	0.72	0.19
		0.54
-		0.30
-		900
-		4,800
	0.02 0 0 0 0	0 1.3 0 NA 0 NA

INDUSTRIAL OCCURRENCE OF NICKEL^{a, b}

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3, where mean is not available 1/2 the reported maximum was utilized.

d Median, not average.

e Average of medians reported for var.ous industry segments.

f Average of maximums reported for various industry segments.

			Treated w	astewater			
	Conc	entration, µq	g/L	Loading, c kg/d			
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean	
Coal mining	<5	100	<14,	0	0.37	0.053	
Textile mills	NA	150	70 ^d	0.00029	2.0	0.13	
Timber products processing	2	150	18 ^d	0	0.83	0.001	
Petroleum refining	<1	74	<15 ^d	0	1.4	0.087	
Paint and ink formulation	BDL	80,000	1,800	0	0.083	0.0029	
Gum and wood chemicals	43	1,100	380	0.0034	2.9	0.63	
Explosives manufacture	NA	NA	NA	NA	NA	NA	
Rubber processing	NA	NA	NA	NA	NA	NA	
Pulp, paper and paperboard mills	<1	17	<6.3	0	NA	0.19	
Auto and other laundries	23	330	76	6.8×10^{-5}	0.11	0.016	
Porcelain enameling	ND	1,000	560	0.00036	0.23	0.045	
Pharmaceutical manufacturing	ND	110	31	0	0.21	0.028	
Ore mining and dressing	<0.05	2.4	<0.97	0	NA	0.036	
Foundries	<20	130	41	0	0.27	0.11	
Iron and steel manufacturing	NA	6,800	750	0	NA	140	
Nonferrous metals manufacturing	ND	310,000	24,000	0	NA	1,300	
Coil coating	ND	120	30	0.0015	0.054	0.014	
Leather tanning and finishing	4	34	24	0	NA	0.035	

INDUSTRIAL OCCURRENCE OF NICKEL^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d Median, not average.

I.4.11-3

	Syntheti	Synthetic wastewater		wastewater		
Treatment process ^a	Removal range,	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section number:	
Gravity oil separation			NA	69	III. 4 .1	
Gas flotation			o ^{d, e}	_e	III.4.4	
Gas flotation with chemical addition (calcium chloride, polymer)			>65 ->94	<73	III.4.5	
Gas flotation with chemical addition (polymer)			0	_e	111.4.5	
Gas flotation with chemical addition (alum, polymer)			41 ^d	270 ^d	III.4.5	
Filtration			31->99	64	III.4.6	
Sedimentation			59->99	<180	III.4.2	
Sedimentation with chemical addition (alum, lime)			>83 ^d	<1 ^d	III.4.3	
Sedimentation with chemical addition (lime, polymer)			86-96	240	111.4.3	
Sedimentation with chemical addition (lime, polymer) Ni dissolved			99 ^d	2,500 ^d	III.4.3	
Sedimentation with chemical addition (Fe ^{2⁺, lime)}			>35->95	3	III.4.3	
Sedimentation with chemical addition (sulfide)			>88-96	860	III.4.3	
Sedimentation with chemical addition (polymer)			35 ^d	43 ^d	III.4.3	
Sedimentation with chemical addition (alum, polymer)			35->97	17,000	111.4.3	
Sedimentation with chemical addition (alum)			>27->56	<36	III.4.3	
Sedimentation with chemical addition (lime)			40-99	540	III.4.3	
Sedimentation with chemical addition (lime) Ni dissolved			>99 ^d	20 ^d	III.4.3	
Aerated lagoons			17-50	34	111.5.3	
Ultrafiltration			>32 ^d	<500	III.4.7	
Ozonation			0 ^e	_e	III.6.14	
Ion exchange			>99	<10	111.6.7	
Activated sludge			29-92	78	III.5.1	
Powdered activated carbon adsorption (with activated sludge)			19->58	<14	111.6.2	
Granular activated carbon adsorption			17-68	110	111.6.1	
Reverse osmosis			46->98	66	111.6.9	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR NICKEL^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

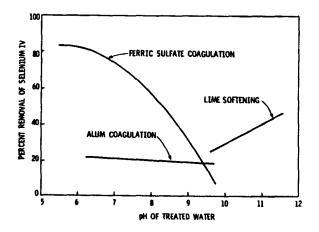
^CAverage and maximum removals reported.

d_{Only one data point.}

^eActual data indicate negative removal.

- 1. Fairchild, E. J., R. J. Lewis, Sr., and R. L. Tatken. Registry of Toxic Effects of Chemical Substances, Volume II. NIOSH-78-104B, National Institute for Occupational Safety and Health, Cincinnati, Ohio, 1977. p. 590.
- Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume II, Metals and Inorganics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 15-1 - 15-14.
- 3. The Chemical Rubber Company. Handbook of Chemistry and Physics, 48th Edition. Cleveland, Ohio, 1967. p. B-123.

. ..


... . .

I.4.11-5

.

Formula: Se Compound: Selenium Alternate Names [1]: Selenium dust CAS #: 7782-49-2 Physical, Chemical, and Biological Properties [2, 3] m.p., °C: 217 at. wt.: 78.96 b.p. (760 torr), °C: 685 vapor pressure (25°C), torr: Negligible solubility in water (14°C), mg/L: Se02, 3.84 x 10⁵; Se03 decomposes, very soluble common oxidation states: 2, 0, +4, +6 Probable Fate [2] photolysis: Not important oxidation: In aerobic waters, soluble anions are formed; under reducing conditions, selenium or metal selenides (insoluble) go into sediment, possibly forming volatile H₂Se hydrolysis: SeO_4^{-2} , SeO_4^{-2} , and $HSeO_3^{-1}$ (all soluble) are formed volatilization: H₂Se can be formed; volatilization can also follow biomethylation sorption: Adsorbed by hydrous metal oxides (strongly), clays, and organic chemicals, but only a small percentage of total Se is sorbed biological processes: Bioaccumulation by many species; possible biological redox reactions, and some biomethylation other reactions/interactions: Not important

Precipitation/Coagulation Properties [4]

I.4.12-1

	Raw wastewater								
	Concentration, µg/L			Loading, ^C kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	2	34	6 _d	0	0.16	0.023			
Textile mills	NA	740	26	0.00015	1.0	0.063			
Timber products processing	BDL.	53	3 ⁹ 3 ⁶ <8 ^d	0	0.14	0.0002			
Petroleum refining	<1	<20	<8ª	0	0.74	0.046			
Gum and wood chemicals	NA	11	11	9.9 x 10 ⁻⁵	0.083	0.018			
Rubber processing	NA	20	11	2.2 x 10 ⁻⁶	0.0095	0.0003			
Auto and other laundries	ND	120	5	4.5 x 10-6	0.007	0.001			
Porcelain enameling	1 ·	160,000	9,800	0.006	4	0.80			
Pharmaceutical manufacturing	ND \$	60	. 6	0	0.041	0.005			
Ore mining and dressing	<5 `	<30	<8.3	0	NA	0.30			
Steam electric power generating									
(condenser cooling system)	<5	28	9	0.00048	0.010	0.0022			
Steam electric power generating									
(water treatment)	NA	NA	58,000 ^e	0.00035	3,480	8.7			
Steam electric power generating									
(boiler or steam generator blowdown)	NA	NA	NA	NA	NA	NA			
Steam electric power generating									
(maintenance cleaing)	<2	24	2	3 x 10 ⁻⁷	0.038	0.0006			
Steam electric power generating									
(ash handling)	3	42	8	0.00015	0.78	0.18			
Steam electric power generating									
(air pollution control devices)	<0.6	2,700	1,400	0.001	80	5			
Steam electric power generating									
(drainage)	NA	NA c	NA	NA	NA	NA			
Inorganic chemicals manufacturing	NA	NA 93 ^f	NA	0	5.9	1.1			
Foundries	ND	NA	<8	0	<0.054	<0.022			
Iron and steel manufacturing	NA	670	67	0	NA	12			
Nonferrous metals manufacturing	ND	240,000	950	0	NA	50			

INDUSTRIAL OCCURRENCE OF SELENIUM^{a,b}

b_{NA} - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3, where mean is not available 1/2 the reported maximum was utilized.

d Median, not average.

e Average of medians reported for various industry segments.

f Average of maximums reported for various industry segments.

Industry	Treated wastewater								
	Concer	ntration,	µg/L	Loading, ^C kg/d					
	Minimum	Maximu	m Mean	Minimum	Maximum	Mean			
Coal mining	<2	20	<4,	0	0.11	0.015			
Cextile mills	NA	97	47 ^d	0.00020	1.3	0.085			
Fimber products processing	BDL	39	1 ^a	0	0.046	8.6 x 10 ⁻⁵			
Petroleum refining	<2	27	<16 ^d	0	1.5	0.093			
Gum and wood chemicals	BDL	19	10	0.000096	0.076	0.016			
Rubber processing	NA	24	13	2.6×10^{-6}	0.011	0.00043			
Auto and other laundries	<1.0	7.0	3.8	3.4×10^{-5}	0.0053	0.00080			
Porcelain enameling	ND	84	20	1.3 x 10 ⁻⁵	0.0082	0.0016			
Pharmaceutical manufacturing	ND	310	34	0	0.23	0.031			
Dre mining and dressing	<0.003	.15	<0.0050	NA	0.00020				
Foundries	9.5	<20	18.5	0	0.12	0.05			
Iron and steel manufacturing	NA	630	45	0	NA	8.1			
Nonferrous metals manu-									
facturing	ND	2,300	180	0	NA	9 .5			

INDUSTRIAL OCCURRENCE OF SELENIUM^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d Median, not average.

	Syntheti	c wastewater	Actual wastewater		
Treatment process ^a		Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers
Gravity oil separation			NA	20	III.4.1
Gas flotation			0 ^{d,e}	-e	III.4.4
Gas flotation with chemical addition (calcium chloride, polymer)			0 ^{d,e}	_ e	III.4.5
Gas flotation with chemical addition (alum, polymer			0 ^{d,e}	_e	III.4.5
Filtration			2-10	48	III.4.6
Sedimentation			60 ->99	<20	111.4.2
Sedimentation with chemical addition (lime, polymer)			oe	_e	III.4.3
Sedimentation with chemical addition (Fe ²⁺ , lime)			18-24	20	III.4.3
Sedimentation with chemical addition (BaCl ₂)			0 ^{d,e}	_e	III.4.3
Sedimentation with chemical addition (lime)			o ^e	_e	III.4.3
Tertiary polishing lagoons			44 ^d	18 ^d	III.5.3
Merated lagoons			>50 ^đ	<200 ^d	111.5.3
Activated sludge			0 ^{d,e}	_e	III.5.1
Powdered activated carbon adsorption (with activated sludge)			6->13	<30	111.6.2
Granular activated carbon adsorption			17->50	19	III.6.1
Reverse osmosis			>76-85	5.5	111.6.9

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR SELENIUM^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

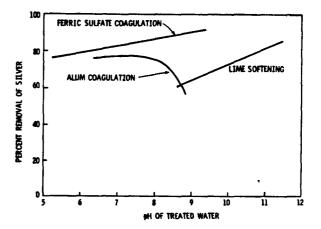
^eActual data indicate negative removal.

- 1. Fairchild, E. J., R. J. Lewis, Sr., and R. L. Tatken. Registry of Toxic Effects of Chemical Substances, Volume II. NIOSH-78-104B, National Institute for Occupational Safety and Health, Cincinnati, Ohio, 1977. p. 852.
- Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume II, Metals and Inorganics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 16-1 - 16-9.
- 3. CRC Press, Inc. CRC Handbook of Chemistry and Physics, 58th Edition. Cleveland, Ohio, 1977. p. B-46.
- 4. Manual of Treatment Techniques for Meeting the Interim Primary Drinking Water Regulations. EPA-600/8-77-005, U.S. Environmental Protection Agency, Cincinnati, Ohio, May 1977. 73 pp.

Compound: Silver

Formula: Ag

Alternate Names [1]: Argentium, Shell silver


CAS #: 7440-22-4

Physical, Chemical, and Biological Properties [2, 3]

at. wt.: 107.9 m.p., °C: 962 b.p. (760 torr), °C: 2,210
vapor pressure (25°C), torr: Negligible
solubility in water, mg/L: Ag₂O, 13 at 20°C; AgCl, 0.89 at 10°C
common oxidation states: +1 (principal state), +2, +3

Probable Fate [2]

Precipitation/Coagulation Properties [4]

Date: 8/13/79

I.4.13-1

Raw wastewater Loading, C kg/d Concentration, µg/L Industry Minimum Maximum Mean Minimum Maximum Mean <6 32^d Coal mining <2 10 0 0.16 0.023 130 Textile mills NA 0.00013 0.058 0.92 1.0 1^e Explosives manufacture ND 2 0 0.00035 4.3 x 10⁻⁶ Timber products processing BDL 7 0 0.046 0.000086 <1 Petroleum refining <250 <25 0 0.14 2.3 Paint and ink formulation BDL 200 12 0 0.00055 1.9 x 10⁻⁵ 0.0025 Auto and other laundries ND 130 12 1.1 x 10⁻⁵ 0.017 NA ¹ Pharmaceutical manufacturing NA NA NA NA NA Ore mining and dressing <10 <50 <16 0 NA <0.59 Steam electric power generating 80 (condenser cooling system) 0.7 4 0.00021 0.0044 0.00096 Steam electric power generating 5,000^e NA 0.000030 (water treatment) NA 300 0.75 Steam electric power generating (boiler or steam generator blowdown) NA NA NA NA NA NA Steam electric power generating 70 25 2.5 x 10⁻⁹ (maintenance cleaning) 10 0.48 0.008 Steam electric power generating (ash handling) 0.5 6 3.3 6.3 x 10⁻⁵ 0.32 0.073 Steam electric power generating 5 (air pollution control devices) 600 300 0.00029 17 1.1 Steam electric power generating NA NA NA (drainage) NA NA NA Inorganic chemicals manufacturin 280 18 3.5 NA NA 0 20^g 20^g 20^g Coil coating 0.001 0.036 0.010 Foundries ND NA 30 0 0.20 0.081 Iron and steel manufacturing NA 670 0 NA 8.6 48 Nonferrous metals manufacturing ND 4,700 320 0 NA 17

INDUSTRIAL OCCURRENCE OF SILVER^{a,b}

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3, where mean is not available 1/2 the reported maximum was utilized.

d_{Median}, not average.

^eAverage of medians reported for various industry segments.

^fAverage of maximums reported for various industry segments.

⁹One sample.

Industry	Treated wastewater								
	Conce	ntration, µg,	/L	Loading, ^C kg/d					
	Minimum	Maximum	Mean	Minímum	Maximum	Mean			
Coal mining	2	10	5,	0	0.13	0.019			
Textile mills	NA	140	25 ^d	0.00010	0.72	0.045			
Timber products processing	BDL	4	BDL,	_e	_e_	_e			
Petroleum refining	<1	<25	<5 ^d	0	0.46	0.029			
Paint and ink formulation	BDL	100,000	6,700	0	0.31	0.011			
Explosives manufacture	NA	NA	NA	NA	NA	NA			
Auto and other laundries	<1.0	7.0	4.0	0.000036	0.0056	0.00084			
Ore mining and dressing	<0.02	<0,02	<0_02	0	NA	7.4 x 10			
Foundries	NA	<20 ^r	<20 ¹	0	0.13	0.054			
Iron and steel manufacturing Nonferrous metals manufac-	NA	500	57	0	NA	10			
turing	ND	7,000	530	0	NA	28			

INDUSTRIAL OCCURRENCE OF SILVER^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d Median, not average.

^eMean pollutant concentration below detection limit.

^fOne sample.

	Synthetic wastewater		Actual	wastewater		
Treatment process ^a		Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
ravity oil separation			NA	120	III.4 .1	
as flotation with chemical addition (calcium chloride, polymer)			24->48	<13	III.4.5	
as flotation with chemical addition (polymer)			0 ^{d, e}	_ ^e	III.4.5	
as flotation with chemical addition (alum, polymer)			44 ^d	66 ^d	III.4.5	
iltration			11->50	22	III.4.6	
edimentation			78-> 99	<45	III.4.6	
edimentation with chemical addition (lime, polymer)			o ^{d, e}	_e	III.4.3	
edimentation with chemical addition (Fe ²⁺ , lime)			>79-> 97	12	III.4.3	
edimentation with chemical addition (sulfide)			>90->99	<25	III.4.3	
edimentation with chemical addition (BaCl ₂)			o ^{d,e}	_e	III.4.3	
edimentation with chemical addition (alum, polymer)			21 ^d	11 ^d	III.4.3	
edimentation with chemical addition (alum)			5-10	120	III.4.3	
edimentation with chemical addition (lime)			24->80	<4	III.4.3	
zonation			0 ^e	_ ^e	III.6.14	
on exchange			>99	<10	III.6 .7	
ctivated sludge			31->96	32	III.5.1	
ranular activated carbon adsorption			7-36	21	111.6.1	
everse osmosis			31-92	25	III.6.9	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR SILVER^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

• Actual data indicate negative removal.

REFERENCES

- Fairchild, E. J., R. J. Lewis, Sr., and R. L. Tatken. Registry of Toxic Effects of Chemical Substances, Volume II. NIOSH-78-104B, National Institute for Occupational Safety and Health, Cincinnati, Ohio, 1977. p. 858.
- Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume II, Metals and Inorganics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 17-1 - 17-9.
- 3. CRC Press, Inc. CRC Handbook of Chemistry and Physics, 58th Edition. Cleveland, Ohio, 1977. p. B-47.
- Manual of Treatment Techniques for Meeting the Interim Primary Drinking Water Regulations. EPA-600/8-77-005, U.S. Environmental Protection Agency, Cincinnati, Ohio, May 1977. 73 pp.

.

Compound: Thallium

Formula: T1

Alternate Names [1]: Thallium salt

CAS #: 7440-28-0

Physical, Chemical, and Biological Properties [2,3]

mol. wt.: 204.4 m.p., °C: 304 b.p. (760 torr), °C: 1,460
vapor pressure (25°C), torr: Negligible
solubility in water, mg/L: Tl₂S, 2.0 x 10² at 20°C; TlCl, 2.9 x 10³ at 16°C
common oxidation states: +1, +3

Probable Fate [2]

photolysis: Not important oxidation: Tl(III) present only in very oxidizing water; in reducing conditions, metallic Tl or sulfide may precipitate hydrolysis: Hydrolysis of Tl³⁺ to insoluble Tl(OH)₃ unimportant because of low Tl³⁺ content of natural water sorption: Tl⁺ adsorbed strongly by clay minerals and to a lesser degree by hydrous metal oxides biological processes: Quickly bioaccumulated by aquatic organisms other reactions/interactions: Not important

Precipitation/Coagulation Properties: Not available

I.4.14-1

			Raw	wastewater		
	Conc	entration,	µg/L	Lo	ading, c kg/	'a
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean
Coal mining	<5	15	<7,	0	0.18	0.026
Textile mills	NA	9	3 ^đ	1.3 x 10 ⁻⁵	0.087	0.0054
Timber products processing	BDL	10	1 ^e <1 ^d	0	0.046	8.6 x 10 ⁻
Petroleum refining	<1	<15	<1 ^a	0	0.093	0.0058
Paint and ink formulation	BDL	200	10	0	0.00046	1.6 x 10 ⁻
Auto and other laundries	ND	6	4	3.6 x 10 ⁻⁵	0.0056	0.00084
Pharmaceutical manufacturing	ND	24	3.0	0	0.020	0.0028
Ore mining and dressing	<100	<100	<100	0	NA	<3.7
Steam electric power generating						
(condenser cooling system)	BDL	13	2.5	0.00013	0.0028	0.00060
Steam electric power generating			_			
(water treatment)	NA	NA	5,000 ^e	3 x 10 ⁻⁵	300	0.75
Steam electric power generating						
(boiler or steam generator blowdown)	NA	NA	NA	NA	NA	NA
Steam electric power generating						
(maintenance cleaning)	NA	NA	NA	NA	NA	NA
Steam electric power generating						
(ash handling)	BDL	9	BDL	BDL	BDL	BDL
Steam electric power generating						
(air pollution control devices)	NA	NA	NA	NA	NA	NA
Steam electric power generating						
(drainage)	NA	NAf	NA	NA	NA	NA
Inorganic chemicals manufacturing	NA	150 [±]	NA	0	9.4	2.0
Iron and steel manufacturing	NA	NA	19	0	NA	3.4
Nonferrous metals manufacturing	ND	620	170	0	NA	33

INDUSTRIAL OCCURRENCE OF THALLIUM^{a, b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3, where mean is not available 1/2 the reported maximum was utilized.

d Median, not average.

e Average of medians reported for various industry segments.

fAverage of maximums reported for various industry segments.

	Treated wastewater							
	Concentration, $\mu g/L$			Loading, c kg/d				
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Coal mining	<5	6	<5,	0	0.13	0.019		
Textile mills	NA	18	<5 3d	1.3 ¥ 10 ⁻⁵	0.087	0.0054		
Timber products processing	BDL	7	BDL	_e	_ ^e	_e		
Petroleum refining	<1	<15	<4 ^a	0	0.37	0.023		
Paint and ink formulation	BDL	100	11	0	0.00051	1.8 x 10		
Auto and other laundries	<1.0	<5.0	2.8	2.5×10^{-6}	0.0039	0.00060		
Pharmaceutical manufacturing	ND	ND	ND	ND	ND	ND		
Ore mining and dressing	<0.01	<0.05	<0.01	0	NA	<0.00037		
Foundries	<20	<20	<20	0	0.13	0.054		
Iron and steel manufacturng	NA	60	16	0	NA	2.9		
Nonferrous metals manu-								
facturing	ND	800	140	0	NA	7.4		

INDUSTRIAL OCCURRENCE OF THALLIUM^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d Median, not average.

^eMean pollutant concentration below detection limit.

	Syntheti	.c wastewater	Actual	wastewater	
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers
Gravity oil separation			NA	2	III.4.1
Gas flotation with chemical addition (calcium chloride, polymer)			0 ^{d,e}	_e	III.4.5
Gas flotation with chemical addition (polymer)			o ^{d,e}	_e	111.4.5
Filtration			>55 ^d	<10 ^d	III.4.6
Sedimentation			>55->83	<5	III.4.2
Sedimentation with chemical addition (Fe ²⁺ , lime)			>55->88	<4	III.4.3
Sedimentation with chemical addition (lime)			>52->88	3.4	III.4.3
Aerated lagoons			>44->80	<16	111.4.3
Activated sludge			38 ^đ	29 ^d	111.5.1
Granular activated carbon adsorption					III.6.1
Reverse osmosis			70-89	3.5	111.6.9

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR THALLIUM^{a,b}

^aSee Volume III for detailed information.

bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

^eActual data indicate negative removal.

REFERENCES

- Fairchild, E. J., R. J. Lewis, Sr., and R. L. Tatken. Registry of Toxic Effects of Chemical Substances, Volume II. NIOSH-78-104B, National Institute for Occupational Safety and Health, Cincinnati, Ohio, 1977. p. 891.
- Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume II, Metals and Inorganics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 18-1 - 18-7.
- 3. CRC Press, Inc. CRC Handbook of Chemistry and Physics, 58th Edition. Cleveland, Ohio, 1977. p. B-51.

Compound: Zinc

Formula: Zn

Alternate Names [1]: Blue powder, C.I. Pigment-black 16

CAS #: 7440-66-6

Physical, Chemical, and Biological Properties [2, 3]

mol. wt.: 65.38 m.p., °C: 420 b.p. (760 torr), °C: 907
vapor pressure (25°C), torr: Negligible
solubility in water, mg/L: ZnO, 1.6 at 29°C; ZnCl₂, 4.32 x 10⁶ at 25°C
common oxidation states: Always +2 in aqueous solution

Probable Fate

Precipitation/Coagulation Properties: Not available

I.4.15-1

INDUSTRIAL OCCURRENCE OF ZINC^{a, b}

	Raw wastewater								
	Conce	ntration,	µg∕L	Load	ling, ^C kg/d				
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	60	5,300	1,700 190 ^d	0	45	6.4			
Textile mills	NA ,	7,900	190 ^a	0.00080	0.29	0.34			
Explosives manufacture	ND	1,400	550	0	0.19	0.002			
Timber products processing	120	78,000	480 ^e	0	22	0.041			
Petroleum refining	24	760	250 ^d	0	23	1.4			
Paint and ink formulation	BDL	900,000	44,000	0	2.0	0.070			
Gum and wood chemicals	50	38,000	7,000	0.063	53	11			
Rubber processing	NA	770	300	6 x 10 ⁻⁵	0.26	0.009			
Pulp, paper, and paperboard mills	24 4	66	18	0	NA	0.54			
Auto and other laundries	ND 🐒	10,000	1,800	0.0016	2.5	0.38			
Porcelain enameling	78	650,000	5,700	0.0037	2.3	0.46			
Pharmaceutical manufacturing	ND	500	120	0	0.83	0.11			
Dre mining and dressing	<20	40	<27	0	NA	<1.0			
Steam electric power generating									
(condenser cooling system)	<5	780	127	0.0067	0.14	0.030			
Steam electric power generating									
(water treatment)	20	NA	11,000	6.7 x 10 ⁻⁵	660	1.7			
Steam electric power generating			•						
(boiler or steam generator blowdown)	10	50	20	8.4 x 10^{-9}	0.28	0.003			
Steam electric power generating									
(maintenance cleaning)	50	900,000	136,000	0.00014	2,600	41			
Steam electric power generating		500,000	190,000	0100011	2,000				
(ash handling)	BDL	1,200	350	6.7 x 10^{-7}	34	8.0			
Steam electric power generating	001	2,200	000	007 A 10	5.	0.0			
(air pollution control devices)	10	590	300	0.00029	17	1.1			
Steam electric power generating	10	050	000	0100025					
(drainage)	4	23 000	540	0.0046	0.20	0.011			
Inorganic chemicals manufacturing	NA	23,000 35,000 ^f	NA	0	2,200	438			
Coil coating	12	340,000	11,000	0.55	20	5.3			
Foundries	ND	350,000	49,000	0	328	328			
Leather tanning and finishing	96	2,600	49,000 540	0	NA	0.81			
Fron and steel manufacturing	NA	160,000	7,000	0	NA	1,300			
Nonferrous metals manufacturing	ND	2×10^{-6}	190,000	0	NA	10,070			

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3, where mean is not available 1/2 the reported maximum was utilized.

^dMedian, not average.

e Average of medians reported for various industry segments.

f Average of maximums reported for various industry segments.

			Treated v	wastewater		
	Concen	tration,	lg/L	Loadi	.ng, ^C kg/d	l
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean
Coal mining	60	73	61,	0	1.6	0.23
Textile mills	NA	38,000	200 ^d	0.00084	5.8	0.36
Timber products processing	47	41,000	250 ^a	0	11	0.021
Petroleum refining	<10	1,000	<70 ^d	0	6.5	0.41
Paint and ink formulation	BDL	100,000	4,800	0	0.22	0.007
Gum and wood chemicals	37	450	190	0.0017	1.4	0.31
Rubber processing	NA	2,300	170	3.4×10^{-5}	0.15	0.005
Explosives manufacture	NA	NA	NA	NA	NA	NA
Pulp, paper and paperboard mills	4	1,600	150	0	NA	4.5
Auto and other laundries	55	1,000	300	0.00027	0.42	0.063
Porcelain enameling	32	5,000	1,200	0.00077	0.49	0.096
Pharmaceutical manufacturing	ND	270	86	0	0.58	0.079
Ore mining and dressing	0.01	3,000	1.6	0	NA	0.060
Foundries	40	190,000	19,000	0	130	51
Iron and steel manufacturing	NA	36,000	1,700	0	NA	310
Nonferrous metals manufacturing	ND	100,000	10,400	0	NA	550
Coil coating	34	720	370	0.019	0.67	0.18
Leather tanning and finishing	49	170	91	0	NA	0.17

INDUSTRIAL OCCURRENCE OF ZINC^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d Median, not average.

	Syntheti Removal range,	<u>c wastewater</u> Average achievable	Actual Removal range,	Wastewater Average achievable	Volume III references.
Treatment process ^a	range,	_conc , µg/L_	range,	conc , µg/L	Section number
Gravity oil separation			NA	390	111.4.1
Gas flotation			11-22	27,000	III.4.4
Gas flotation with chemical addition (calcium chloride, polymer)			>95->99	150	III.4.5
Gas flotation with chemical addition (polymer)			>38->60	120	III.4.5
Gas flotation with chemical addition (alum, polymer)			10 ^d	2,300 ^d	III.4.5
Filtration			39->99	940	III.4.6
Sedimentation			71->99	2,600	III.4.2
Sedimentation with chemical addition (alum, lime)			55-> 99	3,400	III.4.3
Sedimentation with chemical addition (lime, polymer)			84->99	410	III.4.3
Sedimentation with chemical addition (Fe ²⁺ , lime)			>79->97	12	III.4.3
Sedimentation with chemical addition (sulfide)			>98->99	140	III.4.3
Sedimentation with chemical addition (polymer)			84-97	2,400	III. 4 .3
Sedimentation with chemical addition (BaCl ₂)			65-80	30	III.4.3
Sedimentation with chemical addition (alum, polymer)			69-83	660	111.4.3
Sedimentation with chemical addition (alum)			69-83	3,800	III.4.3
Sedimentation with chemical addition (lime)			77->99	640	III.4.3
Aerated lagoons			55-> 99	180	111.5.3
Jltrafiltration			>78-98	8,600	III.4.7
Dzonation			32-96	260	III.6.14
Ion exchange			97 ^d	400 ^d	III.6.7
Activated sludge			35 -92	200	III.5.1
Powdered activated carbon adsorption			٥ ^{d, e}	_e	III.6.2
Powdered activated carbon adsorption (with activated sludge)			58-98	110	111.6.2
Granular activated carbon adsorption			40->99	440	III.6.1
Reverse osmosis			83->99	530	III.6.9

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR ZINC^{a,b}

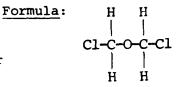
^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

^eActual data indicate negative removal.


REFERENCES

- 1. Fairchild, E. J., R. J. Lewis, Sr., and R. L. Tatken. Registry of Toxic Effects of Chemical Substances, Volume II. NIOSH-78-104B, National Institute for Occupational Safety and Health, Cincinnati, Ohio, 1977. p. 963.
- Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume II, Metals and Inorganics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 19-1 - 19-23.
- 3. CRC Press, Inc. CRC Handbook of Chemistry and Physics, 58th Edition. Cleveland, Ohio, 1977. p. B-59.

.

Compound: Bis(chloromethyl) ether

Alternate Names: BCME, Bis-CME, sym-Dichloromethyl ether

CAS #: 542-88-1

Physical, Chemical, and Biological Properties [1]

mol. wt.: 115 m.p., °C: -41.5 b.p. (760 torr), °C: 104
vapor pressure (22°C), torr: 30
solubility in water (temp. unknown), mg/L: 22,000
log octanol/water partition coefficients: -0.38
Henry's law constant: Not available
biodegradability: Not available

Probable Fate [1]

Carbon Adsorption Data: Not available

INDUSTRIAL OCCURRENCE OF BIS (CHLOROMETHYL) ETHER^{a, b}

			Raw w	astewater		
	Concei	ntration, p	lg/L	Lo	ading, ^C kg/	d
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

INDUSTRIAL OCCURRENCE OF BIS(CHLOROMETHYL) ETHER^{a,b}

		Tr	eated wa	stewater		
	Concer	ntration, µ	g/L	Loa	ading, ^C kg/	d
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

	Syntheti	Synthetic wastewater		wastewater		
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
Gravity oil separation			NA	390	III.4.1	
Activated sludge			>83 ^d	>10 ^d	III.5.1	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR BIS(CHLOROMETHYL) ETHER^{a,b}

^aSee Volume III for detailed information.

bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

REFERENCES

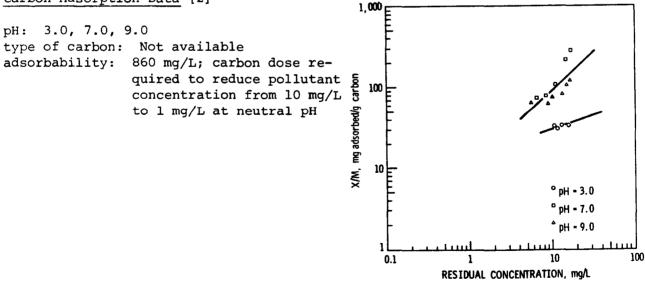
-

1. Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume III, Ethers, Phthalate Esters, and Nitrosamines. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 64-1 - 64-5.

.

Compound: Bis(2-chloroethyl) ether Formula:

Alternate Names: 1,1'-Oxybis(2-chloroethane), Bis(β-chloroethyl)ether, Chlorex, 1-Chloro-2-(β-chloroethoxy) ethane


CAS #: 111-44-4

Physical, Chemical, and Biological Properties [1]

mol. wt.: 143.0 m.p., °C: -46.8 b.p. (760 torr), °C: 178
vapor pressure (20°C), torr: 0.71
solubility in water (25°C), mg/L: 10,200
log octanol/water partition coefficients: 1.58
Henry's law constant: Not available
biodegradability: Not available

Probable Fate [1]

Carbon Adsorption Data [2]

Date: 8/13/79

I.5.2-1

	Raw wastewater						
	Concentration, $\mu g/L$			Load	Loading, ^C kg/d		
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean	
Pharmaceutical manufacturing	ND	170	19	0	0.13	0.01	
Foundries	ND	NA	4.5	0	0.030	0.01	

INDUSTRIAL OCCURRENCE OF BIS(2-CHLOROETHYL) ETHER^{a,b}

I.5.2-2

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3, where mean is not available 1/2 the reported maximum was utilized.

INDUSTRIAL OCCURR	ENCE OF I	BIS(2-CHLOROETHYL)	ETHER ^{a,b}
-------------------	-----------	--------------------	----------------------

-	Treated wastewater							
Industry	Conce	ntration, µ	Loading, c kg/d					
	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Pharmaceutical manufacturing	ND	110,	14 ₄	0	0.10	0.013		
Foundries	NA	8 ^a	8 ^a	0	0.054	0.0022		

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

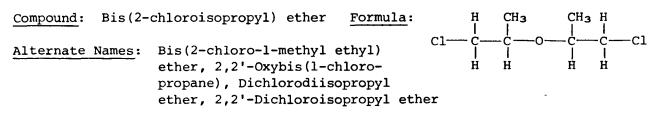
	Syntheti	c wastewater	Actual	wastewater		
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, <u>%</u>	Average achievable conc., µg/L	Volume III references, Section numbers	
Activated sludge Powdered activated carbon adsorption			>47 ^d 53 ^d	$^{<10}^{d}_{44}$	111.5.1 111.6.2	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR BIS(2-CHLOROETHYL) ETHER^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.


d_{Only one data point.}

1.5.2-4

REFERENCES

-

- Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume III, Ethers, Phthalate Esters, and Nitrosamines. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 65-1 - 65-7.
- Dobbs, R. A., R. J. Middendorf, and J. M. Cohen. Carbon Adsorption Isotherms for Toxic Organics. U.S. Environmental Protection Agency, Cincinnati, Ohio, 1978.

CAS #: 108-60-1

١

Physical, Chemical, and Biological Properties [1]

mol. wt.: 171.1 m.p., °C: -97 b.p. (760 torr), °C: 189
vapor pressure (20°C), torr: 0.85
solubility in water (temp. unknown), mg/L: 1,700
log octanol/water partition coefficients: 2.58
Henry's law constant: Not available
biodegradability: Not available

Probable Fate [1]

Carbon Adsorption Data: Not available

Date: 8/13/79

1.5.3-1

79		

Date:

12/5/

	Raw wastewater							
	Concent	tration, μ	g/L	I	oading, ^C kg/	ď		
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Pharmaceutical manufacturing	ND,	ND,	ND	_ ^b	_b	_b		
Foundries	3 ^a	3 ^a	3α	0	0.020	0.010		

INDUSTRIAL OCCURRENCE OF BIS(2-CHLOROISOPROPYL) ETHER^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual. ^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3, where mean is not available 1/2 the reported maximum was utilized.

d One sample.

н

			Treated w	astewater		
Industry	Concentration, µg/L			Loading, ^c kg/d		
	Minimum	Maximum	Mean	Minimum	Maximum	Mean
Pharmaceutical manufacturing	ND	ND	ND	_ ^d	_d	_d

INDUSTRIAL OCCURRENCE OF BIS(2-CHLOROISOPROPYL) ETHER^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

	Syntheti	c wastewater	Actual	wastewater	
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers
erated lagoons			>0 q	<2 ^d	111.5.3

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR BIS(2-CHLOROISOPROPYL) ETHER^{a, b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

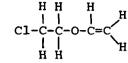
d_{Only one data point.}

REFERENCES

.

-

 Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume III, Ethers, Phthalate Esters, and Nitrosamines. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 66-1 - 66-7.


, .

.

Compound: 2-Chloroethyl vinyl ether

Formula:

Alternate Names: (2-Chloroethoxy) ethene, Vinyl 2-chloroethyl ether

CAS #: 110-75-8

Physical, Chemical, and Biological Properties [1]

mol. wt.: 106.6 m.p., °C: Not available b.p. (760 torr), °C: 108
vapor pressure (20°C), torr: 26.75
solubility in water (temp. unknown), mg/L: 15,000
log octanol/water partition coefficients: 1.28
Henry's law constant: Not available
biodegradability: Not available

Probable Fate [1]

Carbon Adsorption Data: Not available

INDUSTRIAL OCCURRENCE OF 2-CHLOROETHYL VINYL ETHER^{a,b}

······································	· · · · · · · · · · · · · · · · · · ·		Raw w	vastewater		
	Concer	ntration, μ	lg/L	Lo	ading, ^C kg/	'd
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

LOROETHYL VINYL ETHER ^{a,D}

	Treated wastewater						
	Concei	ntration, µ	g/L	Loa	ading, ^C kg/	d	
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mear	
		IIGH LINCON					

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

							a h
POLLUTANT REMOVABILITY/TREATABILITY	WASTEWATER	TREATMENT	ALTERNATIVE	FOR	2-CHLOROETHYL	VINYL	ETHER

	Syntheti	c wastewater	Actual	wastewater	
_	Removal range,	Average achievable	Removal range,	Average achievable	Volume III references,
Treatment process ^a	00	conc., µg/L	0%	conc., µg/L	Section numbers

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

REFERENCES

.

-

1. Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume III, Ethers, Phthalate Esters, and Nitrosamines. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 67-1 - 67-7.

.

¢

Compound: 4-Chlorophenyl phenyl ether Formula:

Alternate Names: 1-Chloro-4-phenoxybenzene, p-Chlorophenyl phenyl ether, 4-Chlorodiphenyl ether, 4-Chlorophenyl ether

CAS #: 7005-72-3

Physical, Chemical, and Biological Properties [1]

mol. wt.: 203.7 m.p., °C: Not available b.p. (760 torr), °C: 284
vapor pressure (20°C), torr: 0.001
solubility in water (20°C), mg/L: 59
log octanol/water partition coefficients: 5.00
Henry's law constant: Not available
biodegradability: Not available

Probable Fate [1]

Carbon Adsorption Data: Not available

I.5.5-1

			Raw was	stewater		
Industry	Concentration, $\mu g/L$			Loading, ^C kg/d		
	Minimum	Maximum	Mean	Minimum	Maximum	Mean
Coal mining	ND	3.3	0.4	0	0.011	0.0015
Iron and steel manufacturing	NA	NA	210	0	NA	38

INDUSTRIAL OCCURRENCE OF 4-CHLOROPHENYL PHENYL ETHER^{a, b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3, where mean is not available, one-half the reported maximum was utilized.

I.5.5-2

		1	'reated w	astewater		
	Concer	ntration, µ	Ig/L	Loa	ading, ^C kg/	d
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean
Coal mining	NA	ND	ND	_d	_ ^d	_d

INDUSTRIAL OCCURRENCE OF 4-CHLOROPHENYL PHENYL ETHER^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d Indeterminate. POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR 4-CHLOROPHENYL PHENYL ETHER^{a,b}

	Syntheti	c wastewater	Actual	wastewater	
	Removal range,	Average achievable	Removal range,	Average achievable	Volume III references,
Treatment process ^a	010	conc., µg/L	010	conc., µg/L	Section numbers

L

I.5.5-4

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

REFERENCES

-

 Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume III, Ethers, Phthalate Esters, and Nitrosamines. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 68-1 - 68-6.

•

Compound: 4-Bromophenyl phenyl ether

Alternate Names: 1-Bromo-4-phenoxybenzene, p-Bromophenyl phenyl ether, 4-Bromodiphenyl ether, 4-Bromophenyl ether

CAS #: 101-55-3

Physical, Chemical, and Biological Properties [1]

mol. wt.: 249.1 m.p., °C: 18.7 b.p. (760 torr), °C: 310
vapor pressure (20°C), torr: 0.0015
solubility in water (20°C), mg/L: 38
log octanol/water partition coefficients: 5.15
Henry's law constant: Not available
biodegradability: Not available

Formula:

Probable Fate [1]

Carbon Adsorption Data: Not available

I.5.6-1

INDUSTRIAL OCCURRENCE OF 4-BROMOPHENYL PHENYL ETHER^{a,b}

				· · · · · · · · · · · · · · · · · · ·		
			Raw w	astewater		
	Concer	ntration, μ	g/L	Loa	ading, ^C kg/	ď
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

b NA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

<u>Concer</u> Minimum	ntration, μ Maximum	g/L Mean		ading, ^c kg/	
Minimum	Maximum	Maan			
		nean	Minimum	Maximum	Mear
		nean	TITITTUCC.	maximum	1100

INDUSTRIAL OCCURRENCE OF 4-BROMOPHENYL PHENYL ETHER^{a, b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

I.5.6-3

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR 4-BROMOPHENYL PHENYL ETHER^{a,b}

	Syntheti	c wastewater	Actual	wastewater	
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers
Activated sludge			95 ^d	18 ^d	111.5.1

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

REFERENCES

-

1. Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume III, Ethers, Phthalate Esters, and Nitrosamines. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 69-1 - 69-5.

`

.

Formula:

Alternate Names:Dichlorodiethyl methylal,
Bis(β -chloroethyl) formal,
 β , β -Dichlorodiethyl formal

<u>CAS #: 111-91-1</u>

Physical, Chemical, and Biological Properties [1]

mol. wt.: 173.1 m.p., °C: Not available b.p. (760 torr), °C: 218
vapor pressure (20°C), torr: <0.1
solubility in water (temp. unknown), mg/l: 81,000
log octanol/water partition coefficients: 1.26
Henry's law constant: Not available
biodegradability: Not available</pre>

Probable Fate [1]

photolysis: Not important oxidation: Too slow to be important hydrolysis: Gradual hydrolysis of carbon-chlorine bond probable principle fate mechanism volatilization: Not important sorption: Possible importance as catalyst for hydrolysis biological processes: Not enough data to draw conclusion other reactions/interactions: Not important

Carbon Adsorption Data: Not available

			Raw was	stewater		
	Concent	tration, µ0	g/L	Loa	ading, ^c kg,	/d
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean
Coal mining	ND	50	11	0	0.29	0.04
Foundries	ND	NA	20	0	0.13	0.05

INDUSTRIAL OCCURRENCE OF BIS (2-CHLOROETHOXY) METHANE^{a,b,}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3, where mean is not available 1/2 the reported maximum was utilized.

	Treated wastewater							
Industry	Concer	Loading, ^C kg/d						
	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Coal mining	ND	<6.7	<5.7	0	0.15	0.02		
Auto and other laundries	NA	11 ^d	11 ^d	1.0×10^{-5}	0.015	0.0023		

INDUSTRIAL OCCURRENCE OF BIS(2-CHLOROETHOXY)METHANE^a

I.5.7-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d_{One sample}

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR BIS(2-CHLOROETHOXY)METHANE^{a,b}

	Syntheti	c wastewater	Actual	wastewater	
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers
Aerated lagoons			>60 ^d	<10 ^d	111.5.3

I.5.7-4

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

REFERENCES

-

 Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume III, Ethers, Phthalate Esters, and Nitrosamines. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 70-1 - 70-6.

Compound: Dimethyl phthalate

Formula:

-CH3

-0-CH3

Alternate Names: DMP, 1,2-Benzenedicarboxylic acid, Dimethyl ester, Phthalic acid dimethyl ester, Methyl phthalate

CAS #: 131-11-3

Physical, Chemical, and Biological Properties [1]

mol. wt.: 194.2 m.p., °C: 0 b.p. (760 torr), °C: 282
vapor pressure (20°C), torr: <0.01
solubility in water (32°C), mg/L: 4,000
log octanol/water partition coefficients: 3.42
Henry's law constant: Not available
biodegradability: Not available</pre>

Probable Fate [1]

photolysis: No direct photolysis; indirect photolysis too slow to be important oxidation: Not important hydrolysis*: Too slow to be important under natural conditions volatilization: Possible, but not important sorption*: Sorption onto particles and Biota and complexation with humic substances principal transport mechanism biological processes*: Bioaccumulation, biodegradation, and biotransformation by many organisms (including humans) are very important fates other reactions/interactions: Not important

*Inferred from data on phthalate esters as a group.

Carbon Adsorption Data [2]

1,000 pH: 3.0, 7.0, 9.0 type of carbon: Not available adsorbability: 93 mg/L; carbon dose remg adsorbed/g carbon quired to reduce pollutant 100 concentration from 10 mg/L to 1 mg/L at neutral pH XWX 10 • pH = 3.0 • pH = 7.0 pH = 9.0 100 0.1

1 10 RESIDUAL CONCENTRATION, mg/L

Date: 8/13/79

I.6.1-1

Date:		
12/5/79		

	Raw wastewater							
	Concent	tration, µg	g/L	Loading, ^C kg/d				
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Coal mining	ND	<3.3	<0.5	0	0.013	0.0019		
Textile mills	NA	14	12 ^d	5 x 10 ⁻⁵	0.35	0.22		
Petroleum refining	NA	NA	NA	NA	NA	NA		
Rubber processing	NA	14	5	1 x 10 ⁻⁶	0.0043	0.00016		
Auto and other laundries	ND	≤5	1	9 x 10 ⁻⁷	0.001	0.00021		
Ore mining and dressing	3.1	9.5	6.3	0	NA	0.23		
Coil coating	ND	14	10	0.0005	0.018	0.005		
Foundries	ND	2,200	72	0	0.19	0.48		
Leather tanning and finishing	NA	NA	17	0	NA	0.026		
Nonferrous metals manufacturing	ND	56	4.7	0	NA	0.25		
Iron and steel manufacturing	NA	20	16	0	NA	2.9		

INDUSTRIAL OCCURRENCE OF DIMETHYL PHTHALATE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d Median, not average.

	Treated wastewater							
	Concer	ntration, µg	[/L	Loading, ^C kg/d				
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Coal mining	ND	ND	ND	_d	_d	_d		
Textile mills	NA	1.0 ^e	1.0 ^e	4.2×10^{-6}	0.029	0.0018		
Petroleum refining	NA	NA	3f	0	0.28	0.017		
Rubber processing	NA	14	7.5	1.5 x 10 ^{~6}	0.0064	0.00025		
Foundries	10	320	79	0	0.53	0.21		
Iron and steel manufacturing	10	<10	0	NA	1.8			
Nonferrous metals manufacturing	ND	1,300	67	0	NA	3.6		

INDUSTRIAL OCCURRENCE OF DIMETHYL PHTHALATE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dMean pollutant concentration below detection limit.

^eOne sample.

^fMedian, not average.

	Syntheti	c wastewater	Actual	wastewater		
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
Filtration			>98 ^d	<0.03 ^d	III.4.6	
Sedimentation			49->99	42	III.4.2	
Aerated lagoons			25 ^d	6d	III.5.3	
Activated sludge			58 - >99	19	III.5.1	
Reverse osmosis			30-41	110	III.6.9	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR DIMETHYL PHTHALATE^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

REFERENCES

- Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume III, Ethers, Phthalate Esters, and Nitrosamines. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 94-1 - 94-15.
- 2. Dobbs, R. A., R. J. Middendorf, and J. M. Cohen. Carbon Adsorption Isotherms for Toxic Organics. U.S. Environmental Protection Agency, Cincinnati, Ohio, 1978.

Compound: Diethyl phthalate

Formula:

OC₂H₅

OC2H5

Alternate Names: DEP, Ethyl phthalate, 1,2-Benzendicarboxylic acid, Diethyl ether

CAS #: 84-66-2

Physical, Chemical, and Biological Properties [1]

mol. wt.: 222.2 m.p., °C: -40.5 b.p. (760 torr), °C: 298
vapor pressure (70°C), torr: 0.05
solubility in water (32°C), mg/L: 1,000
log octanol/water partition coefficients: 4.42
Henry's law constant: Not available
biodegradability: Not available

Probable Fate [1]

photolysis: No direct photolysis; indirect photolysis too slow to be important oxidation: Not important hydrolysis*: No data, but believed to be too slow to be important under natural conditions volatilization: Very little data, but volatilization is not considered as important as sorption sorption*: Adsorption onto solids and particles and complexation with humic material (fulvic acid) are the principal transport for DEP biological processes*: Bioaccumulation, biodegradation, and biotransformation by many organisms (including humans) are very important fates other reactions/interactions: Not important

*Inferred from data on phthalate esters as a group.

Carbon Adsorption Data: Not available

I.6.2-1

Industry	Raw wastewater								
	Conce	entration,	µg/L	Loading, ^C kg/d					
	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	ND	<10	<3.7	0	0.098	0.023			
Textile mills	NA	86]	6.0 ^e	2.5 x 10 ⁻⁵	0.17	0.011			
Petroleum refining	NA	12 ^d	12 ^d	0	1.1	0.070			
Pulp, paper and paperboard mills	<1 ′	29	<15	0	NA	0.45			
Auto and other laundries	ND	25	4	3.6 x 10 ⁻⁶	0.0056	0.00084			
Pharmaceutical manufacturing	ND	31	8	0	0.054	0.0074			
Ore mining and dressing	ND	9.6	2.9	0	NA	0.11			
Steam electric power generating									
(condenser cooling system)	10	11	11	0.00058	0.012	0.026			
Steam electric power generating									
(ash handling)	NA	NA	NA	NA	NA	NA			
Coil coating	ND	600	53	0.0097	0.095	0.025			
Foundries	ND	730	58	0	0.39	0.16			
Iron and steel manufacturing	NA	10	7	0	NA	1.3			
Nonferrous metals manufacturing	ND	83	4.7	0	NA	0.25			

INDUSTRIAL OCCURRENCE OF DIETHYL PHTHALATE^{a, b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dOne sample.

^eMedian, not average.

INDUSTRIAL OCCURRENCE OF DIETHYL PHTHALATE^{a,b}

	Treated wastewater								
Industry	Conce	ntration, µ	Loading, c kg/d						
	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	ND	<10	<5.7	0	0.15	0.021			
Textile mills	NA	9.4	1,5 ^a	6.3 x 10 ⁻⁶	0.043	0.0027			
Petroleum refining	<10	30	<20 ^a	0	1.9	0.12			
Pulp, paper and paperboard mills	<1	69	<24	0	NA _e	0.72 _e			
Pharmaceutical manufacturing	ND	ND	ND	_e	_e	_e			
Foundries	10	11,000	910	0	6.1	2.5			
Iron and steel manufacturing	NA	14	10	0	NA	1.8			
Nonferrous metals manufacturing	ND	82	6	0	NA	0.32			

I.6.2-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d Median, not average.

^eMean pollutant concentration below detection limit.

	Syntheti	c wastewater	Actual	wastewater		
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range,	Average achievable conc., μg/L	Volume III references, Section numbers	
Gravity oil separation		·····	NA	12 ^d	III.4.1	
Gas flotation			>17 ^d	ND	I II. 4 . 4	
Filtration			37->99	2,000	III.4.6	
Sedimentation			33->99	24	III.4.2	
Sedimentation with chemical addition			>99 ^d	<10 ^d	III.4.3	
Sedimentation with chemical addition			>98 ^d	<0.03 ^d	III.4.3	
Aerated lagoons			0 ^{d,e}	_e	III.5.3	
Trickling filters			0 ^{d,e}	_ ^e	III.5.2	
Activated sludge			58->99	6	III.5.1	
Granular activated carbon adsorption			0 ^e	_e	III.6.1	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR DIETHYL PHTHALATE^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

I.6.2-4

^CAverage and maximum removals reported.

^dOnly one data point.

^eActual data indicate negative removal.

REFERENCES

-

-

 Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume III, Ethers, Phthalate Esters, and Nitrosamines. U. S. Environmental Protection Agency, Washington, D.C., 1979. pp. 95-1 - 95-15.

•

Compound: Di-n-butyl phthalate Formula: DBP, O-Benzenedicarboxylic CuHe Alternate Names: acid, Dibutyl ester, Benzeneo-dicarboxylic acid, Di-n-butyl -C4H9 ester, n-Butyl phthalate, Dibutyl phthalate CAS #: 84-74-2 Physical, Chemical, and Biological Properties [1, 2] b.p. (760 torr), °C: 340 mol. wt.: 278.3 m.p., °C: -35 vapor pressure (115°C), torr: 0.1 solubility in water (25°C), mg/L: 4,500 log octanol/water partition coefficients: >4.42 (exact value unknown due to molecular folding) Henry's law constant: Not available biodegradability: Aerobic degradation in freshwater hydrosoil; 53% after 24-hr incubation, 98% after 5 days incubation Probable Fate [1] No direct photolysis; indirect photolysis too slow to be environphotolysis: mentally important oxidation: Not important hydrolysis*: Hydrolysis (only in surface waters) believed to be too slow to be important volatilization: Not likely to be an important transport process sorption*: Sorption onto particulates and complexation with organics are dominant transport processes biological processes*: Bioaccumulated in many organisms; biodegraded rapidly in natural soil; some biotransformation; all biological processes important fates other reactions/interactions: Not important 1,000 *Inferred from data on phthalate esters as a group. X/M, mg adsorbed/g carbon Carbon Adsorption Data [3] 100 pH: 3.0 type of carbon: Not available adsorbability: 42 mg/L; carbon dose required to reduce pollutant 10 concentration from 10 mg/L to 1 mg/L at neutral pH 100 10 0.1 RESIDUAL CONCENTRATION, mg/L

Date: 8/13/79

I.6.3-1

	Raw wastewater								
Industry	Cond	centration,	ıg/L	Loading, c kg/d					
	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	3.3	<10	<8.8	0	0.23	0.033			
Textile mills	NA	67	16 ^e ,	6.7 x 10 ⁻⁵	0.46	0.029			
Petroleum refining	NA	, 1.3 ^d	1.3 ^d	0	0.12	0.0075			
Paint and ink formulation	ND	69,000	4,100	0	0.19	0.0066			
Rubber processing	NA	NA	NA	NA	NA	NA			
Pulp, paper and paperboard mills ^a	NA	<1	<1	0	NA	0.030			
Auto and other laundries	ND	820	29	2.6 x 10 ⁻⁵	0.041	0.0061			
Pharmaceutical manufacturing	ND	90	10	0	0.068	0.0092			
Ore mining and dressing	ND	140	45	0	NA	1.7			
Steam electric power generating									
(condenser cooling system)	<10	48	18	0.00095	0.020	0.0043			
Steam electric power generating									
(ash handling)	7	48	32	0.00061	3.1	0.70			
Coil coating	ND	160	10	0.0005	0.018	0.0048			
Foundries	ND	5,400	160	0	1.1	0.43			
Iron and steel manufacturing	NA	520	33	0	NA	5.9			
Nonferrous metals manufacturing	ND	390	25	0	NA	1.3			

INDUSTRIAL OCCURRENCE OF DI-n-BUTYL PHTHALATE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dOne sample.

^eMedian, not average.

Industry	Treated wastewater							
	Conce	entration, µ	g/L	Loading, ^C kg/d				
	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Coal mining	<3.3	10 ,	<7.7,	0	0.20	0.029		
Textile mills	NA	3.6 ^d	3.6 ^d	1.5×10^{-5}	0.10	0.0065		
Petroleum refining	0.7	10	5.4 ^e	0	0.50	0.031		
Paint and ink formulation	ND	1,300,	160,	0	0.0074	0.00026		
Rubber processing	NA	2,500d	36 ^d	7.2 x 10 ⁻⁶	0.031	0.0012		
Pulp, paper and paperboard mills	<1	8	<3	0	NA	NA		
Auto and other laundries	0.9	290	76	6.8 x 10 ⁻⁵	0.11	0.016		
Pharmaceutical manufacturing	ND	12	0.86	0	0.0058	0.00079		
Foundries	1.0	9,300	710	0	4.8	1.9		
Iron and steel manufacturing	NA	420	35	0	NA	6.3		
Noferrous metals manufacturing	ND	79	15	0	NA	0.80		

INDUSTRIAL OCCURRENCE OF DI-n-BUTYL PHTHALATE^{a,b}

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dOne sample.

^eMedian, not average.

	Syntheti	c wastewater	Actual	wastewater	Volume III references, Section numbers	
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range,	Average achievable conc., µg/L		
Gravity oil separation			NA	1.3 ^d	III.4.1	
Gas flotation with chemical addition (calcium chloride, polymer)			39-79	150	III.4.5	
Gas flotation with chemical addition (polymer)			>61->99	<5	III.4.5	
Gas flotation with chemical addition (alum, polymer)			0 ^{d,e}	_e	III.4.5	
Filtration			16->99	910	III.4.6	
Sedimentation			40->99	42	III.4.2	
Sedimentation with chemical addition (alum, lime)			>99 ^d	<10 ^d	III.4.3	
Sedimentation with chemical addition (lime, polymer)			99 ^d	ıd	III.4.3	
Sedimentation with chemical addition (polymer)			50->99	<6.4	III.4.3	
Sedimentation with chemical addition (alum, polymer)			>78->99	<8.5	111.4.3	
Sedimentation with chemical addition (alum)			o ^e	_e	III.4.3	
Aerated lagoons			٥ ^{d, e}	_e	111.5.3	
Ozonation			77 ^đ	2.7 ^d	III.6.14	
Activated sludge			60->99	<9	111.5.1	
Granular activated carbon adsorption			62->99	1.3	III.6.1	
Reverse osmosis			59-83	0.9	III.6.9	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR DI-n-BUTYL PHTHALATE^{a,b}

^aSee Volume III for detailed information.

bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

^eActual data indicate negative removal.

- Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume III, Ethers, Phthalate Esters, and Nitrosamines. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 96-1 - 96-16.
- 2. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. pp. 222, 223.
- 3. Dobbs, R. A., R. J. Middendorf, and J. M. Cohen. Carbon Adsorption Isotherms for Toxic Organics. U.S. Environmental Protection Agency, Cincinnati, Ohio, 1978.

•

Compound: Di-n-octyl phthalate

Formula:

-C8H17

Alternate Names: DOP, *o*-Benzenedicarboxylic acid, Dioctyl ester, n-Dioctyl phthalate, Octyl phthalate, Dioctyl-*o*benzenedicarboxylate

CAŚ #: 117-84-0

Physical, Chemical, and Biological Properties [1, 2]

Probable Fate [1]

*Inferred from data on phthalate esters as a group.

Carbon Adsorption Data: Not available

			Raw wa	astewater		
	Concer	ntration,	µg/L	Loading, ^C kg/d		
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean
Coal mining	ND	<3.3	<0.4	0	0.011	0.0015
Auto and other laundries	ND	410	24	2.2 x 10 ⁻⁵	0.034	0.005
Coil coating	ND	180	16	0.00080	0.0077	0.029
Foundries	ND	NA	710	0	4.8	1.9
Iron and steel manufacturing	NA	120	13	0	NA	2.3
Nonferrous metals manufacturing	ND	95	8.4	0	NA	0.44

INDUSTRIAL OCCURRENCE OF DI-n-OCTYL PHTHALATE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual. ^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

	Treated wastewater								
	Concent	tration, µ	q/L	Loading, ^C kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	ND	<10	<1	0	0.026	0.0038			
Auto and other laundries	ND	4,	2,	2.0×10^{-6}	0.0028	0.00042			
Foundries	NA	$^{4}_{73}$ d	$^{2}_{73}$ d	0	0.49	0.02			
Iron and steel manufacturing Nonferrous metals manu-	j na	490	39	0	NA	7.0			
facturing	ND	189	12	0	NA	0.64			

INDUSTRIAL OCCURRENCE OF DI-n-OCTYL PHTHALATE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dOne sample.

	Syntheti	c wastewater	Actual	wastewater	
Treatment process ^a	Removal range, ^C %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section_numbers
Gas flotation with chemical addition (calcium chloride, polymer)			78 ^d	33 ^d	111.4.5
Gas flotation with chemical addition (polymer)			61 ^d	11 ^d	III.4.5
Gas flotation with chemical addition (alum, polymer)			0 ^{d,e}	_e	III.4.5
Filtration			>73->96	<1.5	111.4.6
Sedimentation			>49->99	<35	111.4.2
Sedimentation with chemical addition (alum, polymer)			92	5	111.4.3
Activated sludge			50 ->99	2,500	111.5.1
Granular activated carbon adsorption			76 -96	110	111.6.1

.

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR DI-n-OCTYL PHTHALATE^{a,b}

I.6.4-4

^aSee Volume III for detailed information.

bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

donly one data point.

• Actual data indicate negative removal.

- Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume III, Ethers, Phthalate Esters, and Nitrosamines. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 97-1 - 97-16.
- 2. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. pp. 279-281.

.

Compound: Bis(2-ethylhexyl) phthalate Formula:

Alternate Names: DEHP, Di(2-ethylhexyl) phthalate, Bis(2-ethylhexyl) ester phthalic acid, Di(2-ethylhexyl) orthophthalate, Di-sec-octyl phthalate, 2-Ethylhexyl phthalate, 1,2-Benzene dicarboxylic acid, Bis(2-ethylhexyl) ester $\bigcirc C-0-CH_{2}CH(C_{2}H_{5})C_{3}H_{7} \\
\bigcirc C-0-CH_{2}CH(C_{2}H_{5})C_{3}H_{7}$

<u>CAS #</u>: 117-81-7

Physical, Chemical, and Biological Properties [1]

mol. wt.: 391.0 m.p., °C: -50 b.p. (760 torr), °C: 387
vapor pressure (25°C), torr: <0.01
solubility in water (25°C), mg/L: 50
log octanol/water partition coefficients: >4.42 (exact value unknown because
of molecular folding)

Henry's law constant: Not available biodegradability: Not available

Probable Fate [1]

Carbon Adsorption Data: Not available

Date: 8/13/79

I.6.5-1

	Raw wastewater								
	Conce	entration,	µg/L	Loading, ^C kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	ND	50	11	0	0.29	0.041			
Textile mills	NA	860	26 ^e	0.00011	0.75	0.047			
Explosives manufacture	NA	72 ^đ	72 ^d	0	0.025	0.0003			
Timber products processing	BDL	1,500	280 f	0	13	0.024			
Petroleum refining	180	700	300 ^e	0	28	1.7			
Paint and ink formulation	ND	87,000	7,300	0	0.33	0.012			
Gum and wood chemicals	NA	NA	NA	NA	NA	NA			
Rubber processing	NA	530	170	3.4 x 10 ⁻⁵	0.15	0.0056			
Pulp, paper, paperboad mills	<1	66	<16	0	NA	0.48			
Auto and other laundries	ND	18,000	1,000	0.0009	1.4	0.21			
Pharmaceutical manufacturing	ND	170	38	0	0,26	0.035			
Ore mining and dressing	0.004	50	12	0	NA	0.44			
Steam electric power generating (condenser cooling system)	<10	36	27	0.0014	0.030	0.0065			
Steam electric power generating (water treatment)	NA	NA	<1	6.1 x 10 ⁻⁹	<0.06	0.0001			
Steam electric power generating (ash handling)	17	310	22	0.00040	2.2	0.48			
Inorganic chemicals manufacturing	NA	120	NA	0	7.5	1.5			
Coil coating	ND	1,100	75	0.0038	0.13	0.036			
Foundries	ND	817,000	21,000	0	141	57			
Leather tanning and finishing	NA	NA	25	0	NA	0.038			
Iron and steal manufacturing	NA	10,000	451	0	NA	81			
Nonferrous metals manufacturing	ND	7,000	237	0	NA	13			

INDUSTRIAL OCCURRENCE OF BIS (2-ETHYLHEXYL) PHTHALATE^{a,b}

a Information contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dOne sample.

^eMedian, not average.

f Average of medians reported for various industry segments.

	Treated wastewater								
	Conce	entration, µ	lg/L	Loading, ^C kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	ND	<6.7	<5_7	0	0.15	0.021			
Textile mills	NA	230	18 ^a	7.6 x 10 ⁻⁵	0.52	0.032			
Timber products processing	BDL	350	d	0	0.41	0.00077			
Petroleum refining	190	2,000	600 ^a	0	56	3.5			
Paint and ink formulation	ND	160	22	0	0.0010	3.5 x 10			
Gum and wood chemicals	NA	1,900 ^e	1,900 ^e	0.017	14	31			
Rubber processing	NA	430	100	2.0 x 10 ⁻⁵	0.086	0.0033			
Explosives manufacture	NA	NA	NA	NA	NA	NA			
Pulp, paper and paperboard mills	<1	294	<30	0	NA	0.90			
Auto and other laundries	ND	96	37	3.3 x 10 ⁻⁵	0.052	0.0078			
Pharmaceutical manufacturing	ND	380	47	0	0.32	0.043			
Foundries	2	16,000	1,600	0	11	4.3			
Iron and steel manufacturing	ND	11,000	680	0	NA	120			
Nonferrous metals manufacturing	ND	1,200	110	0	NA	5.8			
Leather tanning and finishing	ND	34	11	0	NA	0.017			

INDUSTRIAL OCCURRENCE OF BIS(2-ETHYLHEXYL) PHTHALATE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d Median, not average.

^eOne sample.

Treatment process ^a	Syntheti Removal range,	<u>c wastewater</u> Average achievable conc., µg/L	<u>Actual</u> Removal range,	wastewater Average achievable conc., µg/L	Volume III references, Section numbers
Gravity oil separation			NA	270	111.4.1
Gas flotation			٥d	_d	111.4.4
Gas flotation with chemical addition (calcium chloride, polymer)			72-82	610	111.4.5
Gas flotation with chemical addition (polymer)			51-92	60	III.4 .5
Gas flotation with chemical addition (alum, polymer)			25 [°]	90 ^e	111.4.5
Filtration			44-98	1,200	III. 4 .6
Sedimentation			33->99	24	111.4.2
Sedimentation with chemical addition (alum, lime)			o ^{d,e}	_d	111.4.3
Sedimentation with chemical addition (lime, polymer)			49-99	22	III.4.3
Sedimentation with chemical addition (polymer)			>48->97	<10	111.4.3
Sedimentation with chemical addition (BaCl ₂)			48-95	9	111.4.3
Sedimentation with chemical addition (alum, polymer)			78 ^e	67 ^e	III.4.3
Sedimentation with chemical addition (alum)			٥d	_d	III.4.3
Tertiary polishing lagoons			>58-72	<11	111.5.3
Merated lagoons			70 -96	<11	111.5.3
Trickling filters			83 ^e	6 ^e	111.5.2
Dzonation			od	_d	111.6.14
Activated sludge			37 ->9 9	64	111.5.1
Powdered activated carbon adsorption			>97 ^e	<10 ^e	III.6.2
Granular activated carbon adsorption			18-66	65	111.6.1
Reverse osmosis			51-96	21	111.6.9

.

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR BIS(2-ETHYLHEXYL) PHTHALATE^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dActual data indicate negative removal.

^eOnly one data point.

-

 Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume III, Ethers, Phthalate Esters, and Nitrosamines. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 98-1 - 98-16.

.

Compound: Butyl benzyl phthalate Formula: O-C4H9 Alternate Names: BBP, Benzyl butyl phthalate CAS #: 85-68-7 Physical, Chemical, and Biological Properties [1] b.p. (760 torr), °C: 377 mol. wt.: 312.0 m.p., °C: -35 vapor pressure (25°C), torr: Not available solubility in water (25°C), mg/L: Insoluble log octanol/water partition coefficients: >4.42 (exact value unknown because of molecular folding) Henry's law constant: Not available biodegradability: Not available Probable Fate [1] photolysis: Direct photolysis improbable; indirect photolysis too slow to be important oxidation: Not important hydrolysis*: Too slow to be important volatilization: Not a likely transport process sorption*: Sorption onto particulates and complexation with organic substances are dominant transport processes biological processes*: Bioaccumulated and metabolized by many organisms; biodegraded under natural conditions other reactions/interactions: Not important *Based on data for phthalate esters as a group.

Carbon Adsorption Data: Not available

I.6.6-1

	Raw wastewater								
	Concen	tration, µ	g/L	Loading, ^C kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	ND	<10	<3.3	0	0.087	0.012			
Textile mills	NA	73	42d	1.6 x 10 ⁻⁵	1.2	0.076			
Pulp, paper, and paperboad mills	2	100	51	0	NA	1.5			
Auto and other laundries	ND	1,500	34	3.1 x 10 ⁻⁵	0.048	0.0073			
Pharmaceutical manufacturing	ND	360	33	0	0.22	0.030			
Ore mining and dressing	ND	66	22	0	NA	0.81			
Steam electric power generating (condenser cooling system)	NA	NA	10	0.00053	0.0024	0.011			
Steam electric power generating (ash handling)	NA	NA	NA	NA	NA	NA			
Coil coating	ND	300	5 7	0.0029	0.10	0.027			
Foundries	ND	180	29	0	0.078	0.19			
Iron and steel manufacturing	NA	340	34	0	NA	6.1			
Nonferrous metals manufacturing	ND	98	11	0	NA	0.58			

INDUSTRIAL OCCURRENCE OF BUTYL BENZYL PHTHALATE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d Median, not average.

I.6.6-2

			Treated	d wastewater		
	Conce	ntration,	ation, µg/L		Loading, ^C kg/d	
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean
Coal mining	ND	<10	<3.3	0	0.087	0.012
Textile mills	NA	NA	NA	NA	NA	NA
Pulp, paper and paperboard mills	3	11	7	0	NA	0.21
Auto and other laundries	4	11	7.7	$7_{\rm d} \times 10^{-6}$	0_0 ⁰¹¹	0_0010
Pharmaceutical manufacturing	ND	ND	ND	_a	- ^a	-a
Foundries	2	49	23	0	0.15	0.062
Iron and steel manufacturing	NA	990	680	0	NA	120
Nonferrous metals manufacturing	ND	75	7.0	0	NA	0.37

INDUSTRIAL OCCURRENCE OF BUTYL BENZYL PHTHALATE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dMean pollutant concentration below detecton limit.

	Syntheti	c wastewater	Actual	wastewater	
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Averag e achievable conc., µg/L	Volume III references, Section numbers
Gas flotation			>99 ^d	ND	III.4.4
Gas flotation with chemical addition (calcium chloride, polymer)			>99 ^d	<0.03 ^d	III.4.5
Gas flotation with chemical addition (polymer)			>99 ^d	<0.03 ^d	III.4.5
Gas flotation with chemical addition (alum, polymer)			o d , e	-e	III.4.5
Filtration			76->99	2.2	III.4.6
Sedimentation			>48->99	<11	III.4.2
Sedimentation with chemical addition (lime, polymer)			>99 ^d	<10 ^d	III.4.3
Sedimentation with chemical addition (alum, polymer)			54	36	111.4.3
Merated lagoons			o ^{đ,e}	-e	111.5.3
Trickling filters			25	6	111.5.2
Dzonation			>97 ^d	<0.03 ^d	III.6.14
Activated sludge			o ^{d,e}	_e	111.5.1
Granular activated carbon adsorption			>83->99	5.7	111.6.1

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR BUTYL BENZYL PHTHALATE^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

• Actual data indicate negative removal.

٠

-

 Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume III, Ethers, Phthalate Esters, and Nitrosamines. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 99-1 - 99-15.

.

Compound:N-nitrosodimethylamineFormula:OAlternate Names:N-methyl-N-nitrosomethanamime,IDimethylnitrosoamineCH3NCH3

CAS #: 62-75-9

Physical, Chemical, and Biological Properties [1, 2]

Probable Fate [1]

Carbon Adsorption Data: Not available

Date: 8/13/79

I.7.1-1

INDUSTRIAL OCCURRENCE OF N-NITROSODIMETHYLAMINE^{a,b}

	Raw wastewater					
	Concer	Concentration, µg/L			ading, ^C kg/	d
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

INDUSTRIAL OCCURRENCE OF N-NITROSODIMETHYLAMINE^{A, b}

	Treated wastewater					
	Concer	ntration, µ	ig/L	Lo	ading, ^C kg/	d
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mear

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

I.7.1-3

Date:
Ч
N
~
ທີ
\mathbf{i}
7
9

	<u>Synthetic wastewater</u>		Actual	wastewater		
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
erated lagoons			67 ^d	ıď	III.5.3	

					a b
POLLUTANT REMOVABILITY/TREATABILITY	WASTEWATER	TREATMENT	ALTERNATIVE	FOR	N-NITROSODIMETHYLAMINE

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

d_{Only one data point.}

- Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume III, Ethers, Phthalate Esters, and Nitrosamines. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 116-1 - 116-6.
- 2. Fochtman, E. G., and W. Eisenberg. Treatability of Carcinogenic and other Hazardous Organic Compounds. Illinois Institute of Technology Research Institute, Chicago, Illinois. 58 pp.

Compound: N-Nitrosodiphenylamine

Formula:

Alternate Names: N-nitroso-N-phenyl benzamine, Diphenylnitrosoamine

CAS #: 86-30-6

Physical, Chemical, and Biological Properties [1]

mol. wt.: 198.2 m.p., °C: 66.5 b.p. (760 torr), °C: Not available vapor pressure (25°C), torr: Not available solubility in water (25°C), mg/L: Not available log octanol/water partition coefficients: 2.57 Henry's law constant: Not available biodegradability: Not available

Probable Fate [1]

Carbon Adsorption Data [2]

1,000 pH: 3.0, 7.0, 9.0 type of carbon: Not available adsorbability: 42 mg/L; carbon dose required to reduce pollutant K/M, mg adsorbed/g carbon 100 concentration from 10 mg/L to 1 mg/L at neutral pH 10 ° pH = 3.0 □ pH = 7.0 ^ pH = 9.0 1 100 0.1 10 1

RESIDUAL CONCENTRATION, mg/L

Date: 8/13/79

I.7.2-1

	Raw wastewater								
	Concer	ntration,	⊥g/L	Loading, ^C kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	ND	30	3.8	0	0.10	0.014			
Textile mills	NA	72	15 ^d	6.3 x 10 ⁻⁵	0.43	0.027			
Rubber processing	NA	53	35	7.0 x 10 ⁻⁶	0.030	0.0011			
Auto and other laundries	ND	1,800	95	8.6 x 10^{-5}	0.13	0.020			
Pharmaceutical manufacturing	ND	12	30	0	0.020	0.0028			
Foundries	ND	1,400	250	0	1.7	0.68			
Leather tanning and finishing	ND	NA	36	0	NA	0.054			

INDUSTRIAL OCCURRENCE OF N-NITROSODIPHENYLAMINE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d Median, not average.

	Treated wastewater							
	Concer	Loading, ^C kg/d						
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Coal mining	ND	ND	ND	_ ^d	_d	_d		
Textile mills	NA	NA	NA	NA	NA	NA		
Rubber processing	NA	NA	NA	NA	NA	NA		
Auto and other laundries	NA	620 ^e	620 ^e	0_00056	0_87	0_13 _d		
Pharmaceutical manufacturing	ND	ND_	ND	_ ^a	- ^a	_a		
Foundries	NA	190 ^e	190 ^e	0	1.3	0.51		

INDUSTRIAL OCCURRENCE OF N-NITROSODIPHENYLAMINE^{a,b}

Date: 12/5/79

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d Mean pollutant concentration below detection limit.

^eOne sample.

	Synthetic	c wastewater	Actual	wastewater	
Treatment process	Removal range,	Average achievable conc., µg/L	Removal range,	Average achievable conc., µg/L	Volume III references, Section number

н
•
7
•
N
1

^aSee Volume III for detailed information.

Granular activated carbon adsorption

^bNA - Not available, ND - not detected, BDL - below detection limit.

<10^d

_e

<0.8

<0.07^d

>77^d

84->99

>82^d

0^{d,e}

references, Section numbers

III.4.6

III.4.2

III.5.1

III.6.1

^CAverage and maximum removals reported.

^dOnly one data point.

Filtration

Sedimentation

Activated sludge

^eActual data indicate negative removal.

- Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume III, Ethers, Phthalate Esters, and Nitrosamines. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 117-1 - 117-5.
- 2. Dobbs, R. A., R. J. Middendorf, and J. M. Cohen. Carbon Adsorption Isotherms for Toxic Organics. U.S. Environmental Protection Agency, Cincinnati, Ohio, 1978.

Compound:N-nitroso-di-n-propylamineFormula:OAlternate Names:N-nitroso-N-propyl-1-propanamine,NDi-n-propylnitrosoamineC3H7-N-C3H7

CAS #: 621-64-7

Physical, Chemical, and Biological Properties [1]

mol. wt.: 130.2 m.p., °C: Not available b.p. (760 torr), °C: 205
vapor pressure (25°C), torr: Not available
solubility in water (25°C), mg/L: 9,900
log octanol/water partition coefficients: 1.31
Henry's law constant: Not available
biodegradability: Not available

Probable Fate [1]

Carbon Adsorption Data: Not available

		I	Raw wast	tewater			
	Concent	tration, µq	g/L	Load	ling, ^C kg/o	g/d	
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean	
Textile mills	NA	NA	NA	NA	NA	NA	
Foundries	ND	210	60	0	0.40	0.16	

INDUSTRIAL OCCURRENCE OF N-NITROSODI-n-PROPYLAMINE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3, where mean is not available one-half the reported maximum was utilized.

		Treated wastewater							
	Concer	Loading, ^C kg/d							
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Textile mills Foundries	NA NA	19 34 ^d	$^{10}_{34}$ d	4.2 x 10 ⁻⁵ 0	0. 89 0.23	0.018 0.0071			

INDUSTRIAL OCCURRENCE OF N-NITROSODI-n-PROPYLAMINE^{a,b}

I.7.3-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d_{One sample.}

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR N-NITROSO-DI-n-PROPYLAMINE^{a,b}

18

	Syntheti	c wastewater	vater <u>Actual wastewater</u>			
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
Activated sludge			0 ^d	_d	III.5.1	

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

d Actual data indicate negative removal.

REFERENCES

_

 Versar, Inc. Water-Related Environmental Fate of 129 Priortiy Pollutants, Volume III, Ethers, Phthalate Esters, and Nitrosamines. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 118-1 - 118-7.

•

.

Alternate Names: 4,4'-Diaminobiphenyl, 4,4'-Biphenyldiamine, (1,1'-Biphenyl)-4,4'-diamine

<u>CAS_#</u>: 92-87-5

Compound: Benzidine

Physical, Chemical, and Biological Properties [1]

mol. wt.: 184.2 m.p., °C: 129 b.p. (760 torr), °C: 402
vapor pressure (25°C), torr: Not available
solubility in water (12°C), mg/L: 400
log octanol/water partition coefficients: 1.81
Henry's law constant: Not available
biodegradability: Not available

Formula:

Probable Fate [1]

Carbon Adsorption Data: Not available

Date: 8/13/79

I.7.4-1

	Raw wastewater									
	Concent	tration, µ	g/L	Loa	ading, ^C kg	/d				
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean				
Leather tanning and finishing	NA	NA	4	0	NA	0.0060				
Nonferrous metals manufacturing	ND	6	1.2	0	NA	0.064				

INDUSTRIAL OCCURRENCE OF BENZIDINE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

-	 	 	

INDUSTRIAL OCCURRENCE OF BENZIDINE^{a,b}

			Treated wastewater							
	,	Conce	ntration, µ	Ig/L	Lo	ading, ^C kg/	d			
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean				
Foundries		NA	<20 ^d	<20 ^d	0	0.13	0.054			

I.7.4-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dOne sample.

	Syntheti	c wastewater	Actual	wastewater		
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
Aerated lagoons			41 ^d	7 ^d	III.5.3	
Activated sludge			o ^{d,e}	_e	111.5.1	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR BENZIDINE^{a, b}

I.7.4-4

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

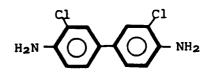
^CAverage and maximum removals reported.

^dOnly one data point.

^eActual data indicate negative removal.

•

REFERENCES


-

 Versar, Inc. Water-Related Environmental Fate of 129 Priortiy Pollutants, Volume III, Ethers, Phthalate Esters, and Nitrosamines. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 119-1 - 11-97.

.

Compound: 3,3'-Dichlorobenzidine

Formula:

Alternate Names: 3,3'-Dichloro-4,4'-diamino-(1,1'-biphenyl)

CAS #: 91-94-1

Physical, Chemical, and Biological Properties [1]

mol. wt.: 253.1 m.p., °C: 132 b.p. (760 torr), °C: Not available vapor pressure (25°C), torr: Not available solubility in water (25°C), mg/L: Not available log octanol/water partition coefficients: 3.02 Henry's law constant: Not available biodegradability: Not available

Probable Fate [1]

*Based on data for unsubstituted benzidine.

Carbon Adsorption Data: Not available

	۰									
	Raw wastewater									
	Concen	tration, µ	g/L	Loading, ^C kg/d						
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean				
Coal mining	NA	NA	ND	_ ^d	_ ^d	_ ^d				
Nonferrous metals manufacturing	ND	2	0.3	0	NA	0.016				

INDUSTRIAL OCCURRENCE OF 3,3'-DICHLOROBENZIDINE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dMean pollutant concentration below detection limit.

		Treated wastewater								
Industry	Conce	ntration,µg	Loading, ^C kg/d							
	Minimum	Maximum	Mean	Minimum	Maximum	Mean				
Coal mining	ND	<6.7	<0.4	0	0.011	0.0015				

			a h
INDUSTRIAL	OCCURRENCE	OF	3,3'-DICHLOROBENZIDINE ^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual. ^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized. I.7.5-4

						ah
POLLUTANT REMOVABILITY/TREATABILITY	WASTEWATER	TREATMENT	ALTERNATIVE	FOR	3,3'	-DICHLOROBENZIDINE"

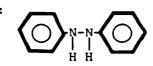
Synthet	ic wastewater	Actual	wastewater	
Removal	Average	Removal	Average	Volume III
range,	achievable	range,	achievable	references,
Treatment process ^a %	conc., µg/L	%	conc., µg/L	Section numbers

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

REFERENCES


-

 Versar, Inc. Water-Related Environmental Fate of 129 Priortiy Pollutants, Volume III, Ethers, Phthalate Esters, and Nitrosamines. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 120-1 - 120-7.

.

Compound: 1,2-Diphenylhydrazine

Formula:

Alternate Names: Hydrazobenzene, N,N'-bianiline

CAS #: 122-66-7

Physical, Chemical, and Biological Properties [1, 2]

mol. wt.: 184.2 m.p., °C: 131 b.p. (760 torr), °C: Not available vapor pressure (25°C), torr: Not available solubility in water (25°C), mg/L: Not available log octanol/water partition coefficients: 3.03 Henry's law constant: Not available biodegradability: No information for 1,2-Diphenylhydrazine; 1,1-Diphenylhydrazine reduced from 2 ppm to nondetectable levels during 7-day static biological test using activated sludge

Probable Fate [1]

sorption: Sorption onto particulates is the main transport process for the compound

biological processes: No data, but bioaccumulation possible

other reactions/interactions: Intramolecular rearrangement to form benzidine occurs in acidic solution

Carbon Adsorption Data: Not available

	Raw wastewater								
	Concent	tration, µ	g/L	Loading, ^C kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	ND	<3.3	<0.4	0	0.011	0.0015			
Textile mills	NA	22đ	22d	9.2 x 10 ⁻⁵	0.63	0.040			
Pharmaceutical manufacturing	ND	10	2	0	0.014	0.0018			
Iron and steel manufacturing	NA	NA	NA	NA	NA	NA			

INDUSTRIAL OCCURRENCE OF 1,2-DIPHENYLHYDRAZINE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, 1/2 the reported maximum was utilized.

^dOne sample.

-

INDUSTRIAL OCCURRENCE OF 1,2-DIPHENYLHYDRAZINE^{a,b}

			Treated	wastewater		
	Conce	ntration,	µg/L	L	oading, ^C k	g/d
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean
Coal mining	ND	<10	<0.6	0	0.016	0.0023
Textile mills	NA	NA .	NA ,	NA	NA	NA
Auto and other laundries	NA	NA 30 ^d	NA 30 ^d	2 _. 7 x 10 ⁷	⁵ 0,042	0,0063
Pharmaceutical manufacturing	ND	ND	ND	_e	_e	_e
Iron and steel manufacturing	NA	370	120	0	NA	22
Foundries	<20	180	73	0	0.49	0.20

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dOne sample.

^eMean pollutant concentration below detection limit.

	Syntheti	c wastewater	Actual	wastewater		
Treatment process	Removal range, ^C %	Average achievable conc., µg/L	Removal range, ^C %	Average achievable conc., µg/L	Volume III references, Section_numbers	
Aerated lagoons			0 ^{d,e}	-е	111.5.3	
Activated sludge			0 ^{d,e}	_ ^e	111.5.1	

						ab
POLLUTANT	REMOVABILITY/TREATABILITY	WASTEWATER	TREATMENT	ALTERNATIVE	FOR	1,2-DIPHENYLHYDRAZINE ^{a,b}

I.7.6-4

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

^eActual data indicate negative removal.

REFERENCES

-

- Versar, Inc. Water-Related Environmental Fate of 129 Priortiy Pollutants, Volume III, Ethers, Phthalate Esters, and Nitrosamines. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 121-1 - 121-8.
- 2. Fochtman, E. G., and W. Eisenberg. Treatability of Carcinogenic and other Hazardous Organic Compounds. Illinois Institute of Technology Research Institute, Chicago, Illinois. 58 pp.

Date: 8/13/79

.

I.7.6-5

Compound: N-nitrosodimethylamine

Formula:

0

CH3NCH3

Alternate Names: N-methyl-N-nitrosomethanamime, Dimethylnitrosoamine

CAS #: 62-75-9

Physical, Chemical, and Biological Properties [1, 2]

Probable Fate [1]

Carbon Adsorption Data: Not available

I.7.7-1

		4	Raw waster	water			
	Conce	entration,	µg/L	Loading, c kg/d			
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean	
Textile mills	NA	1,600 ^d 23,000 ^d	1,600 ^d 23,000 ^d	0.0067	46	2.9	
Rubber processing	NA	23,000 ^{°°}	23,000 ^{°°}	0.0046	20	0.76	
Iron and steel manufacturing	NA	21,000	6,900	0	NA	1,200	

INDUSTRIAL OCCURRENCE OF ACRYLONITRILE^{A, b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, 1/2 the reported maximum was utilized.

^dOne sample.

	Treated wastewater							
	Concer	ntration,	ug/L	Lo	ading, ^C k	g/d		
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Textile mills	NA	400 ^d	400^{d}	0.0014	0.10	0.014		
Rubber processing	NA	23,000 ^d	23,000 ^d	0.0046	20	0.76		
Iron and steel manufacturing	NA	NA	3,000,	0	NA	540		
Foundries	NA	23 ^d	23 ^a	0	0.15	0.062		

INDUSTRIAL OCCURRENCE OF ACRYLONITRILE^{a,b}

I.7.7-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dOne sample.

	Syntheti	c wastewater	Actual	wastewater	
Treatment process ^a	Removal range, ^C %	Average achievable conc., µg/L	Removal range, ^C %	Average achievable conc., µg/L	Volume III references, Section number
avity oil separation			NA	30 ^d	III.4.1

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR ACRYLONITRILE^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

REFERENCES

-

1. Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume III, Ethers, Phthalate Esters, and Nitrosamines. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 122-1 - 122-7.

-

•

Compound: Butylamine

 $\underbrace{Formula: \begin{array}{c} H & H & H & H \\ H & H & H & H \\ H - C - C - C - C - C - N \\ H & H & H \\ H & H & H \end{array}}_{H} H$

Alternate Names: 1-Aminobutane

CAS #: 109-73-9

Physical, Chemical, and Biological Properties [1, 2]

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not adsorbed by activated carbon

Date: 8/13/79

I.7.8-1

INDUSTRIAL OCCURRENCE OF BUTYLAMINE^{a, b}

			Raw w	astewater			
	Concer	ntration, μ	g/L	Loading, ^C kg/d			
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean	

I.7.8-2

a Information contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

INDUSTRIAL OCCURRENCE OF BUTYLAMINE^{a,b}

		Treated wastewater							
	Concentration, µg/L			Loading, ^C kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

•

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

I.7.8-4

					ab
POLLUTANT REMOVABILITY/TREATABILITY	WASTEWATER	TREATMENT	ALTERNATIVE	FOR	BUTYLAMINE

Synthetic wastew	astewater Actual wastewater		
range, ^C achieva	Average Removal Average hievable range, achievable nc.,µg/L % conc.,µg/L	Volume III references, Section numbers	

^aSee Volume III for detailed information.

bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

REFERENCES

-

- 1. CRC Press, Inc. CRC Handbook of Chemistry and Physics, 58th Edition. Cleveland, Ohio, 1977.
- 2. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. p. 144.

.

Compound: Diethylamine

Formula: C₂H₅ H-N C₂H₅

Alternate Names: None

CAS #: 109-89-7

Physical, Chemical, and Biological Properties [1, 2]

mol. wt.: 73.14 m.p., °C: -48 to -50 b.p. (760 torr), °C: 56.3
vapor pressure (20°C), torr: 200
solubility in water (14°C), mg/L: 815,000
log octanol/water partition coefficients: Not available
Henry's law constant: Not available
biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date: 8/13/79

I.7.9-1

INDUSTRIAL OCCURRENCE OF DIETHYLAMINE^{a,b}

		Raw wastewater						
	Concentrat	Loading, ^C kg/d						
Industry	Minimum Max	imum	Mean	Minimum	Maximum	Mean		

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

INDUSTRIAL OCCURRENCE OF DIETHYLAMINE^{a,b}

		T	'reated w	astewater			
	Concentration, µg/L		Loa	Loading, ^C kg/d			
Industry	Minimum	Maximum	Mean	Minimum			

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

I.7.9-4

POLLUTANT REMOVABILITY/TREATABILITY					a,b
POLLUTANT REMOVABILITY/TREATABILITY	WASTEWATER	TREATMENT	ALTERNATIVE	FOR	DIETHYLAMINE

	Synthetic wastewater		Actual	wastewater		
Treatment process ^a	Removal	Average	Removal	Average	Volume III	
	range,	achievable	range,	achievable	references,	
	%	conc., µg/L	%	conc., µg/L	Section numbers	

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

-

- 1. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. p. 242.
- CRC Press, Inc. CRC Handbook of Chemistry and Physics, 58th Edition. Cleveland, Ohio, 1977. p. C-106.

•

Compound: Ethylenediamine

Formula: H H H N-C-C-N

Alternate Names: Diaminoethane, 1,2-Ethanediamine, 1,2-Diaminoethane

<u>CAS #: 107-15-3</u>

Physical, Chemical, and Biological Properties [1-3]

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not adsorbed by activated carbon

Date: 8/13/79

I.7.10-1

1.7.10-2

INDUSTRIAL OCCURRENCE OF ETHYLENEDIAMINE^{a, b}

	Industry	Raw wastewater						
		Conce	Concentration, µg/L			Loading, ^C kg/d		
		Minimum	Maximum	Mean	Minimum	Maximum	Mean	
						······················		

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

bNA - not available; ND - not detected; BDL - below detection limit.

	Treated wastewater						
	Concer	Loading, ^C kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean	

I.7.10-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

	Synthetic wastewater	Actual wastewater	
	Removal Average	Removal Average	Volume III
а	range, achievable	range, achievable	references,

%

conc., µg/L

conc., µg/L

%

Section numbers

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR ETHYLENEDIAMINE^{a,b}

ı .
1

Treatment process^a

- ^bNA Not available, ND not detected, BDL below detection limit.
- ^CAverage and maximum removals reported.

-

- 1. CRC Press, Inc. CRC Handbook of Chemistry and Physics, 58th Edition. Cleveland, Ohio, 1977.
- Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. p. 317.
- 3. Pitter, P. Determination of Biological Degradability of Organic Substances. Water Research, 10:1-5, 1976.

.

Compound: Monoethylamine

Formula: H H H-C-C-N

Η

Alternate Names: Ethylamine, Aminoethane

CAS #: 75-04-7

Physical, Chemical, and Biological Properties [1, 2]

mol. wt.: 45.09 m.p., °C: -81 b.p. (760 torr), °C: 16.6
vapor pressure (20°C), torr: 910
solubility in water (25°C), mg/L: Not available
log octanol/water partition coefficient: Not available
Henry's law constant: Not available
biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date: 8/13/79

I.7.11-1

INDUSTRIAL OCCURRENCE OF MONOETHYLAMINE^{a, b}

		Raw wastewater					
	Concer	ntration, μ	g/L	Loading, ^C kg/d		′d	
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean	

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF MONOETHYLAMINE^{a,b}

		Treated wastewater						
	Concer	Concentration, µg/L		Loading, ^C kg/d		ď		
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

POLLUTANT REMOVABILITY/TR	EATABILITY WASTEWATER	TREATMENT ALTERNATIVE	E FOR	MONOETHYLAMINE ^{a,b}
I OLEOIMII KENOVADILIII/IK	JUINDIDIII MUDIDMAIDA	TREBINENT PETERMATIAL	s ron	HOROLIHITERHIL

Removal Average Removal Average Volume III range, achievable range, achievable references, Treatment process ^a % conc., µg/L % conc., µg/L Section numbers		Syntheti	Synthetic wastewater		wastewater	
	Treatment process ^a	C	achievable	С	achievable	
				<u></u>		

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

-

- 1. CRC Press, Inc. CRC Handbook of Chemistry and Physics, 58th Edition. Cleveland, Ohio, 1977.
- 2. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. p. 305.

Compound: Monome	thylamine	Formula:	H H-C-N H
Alternate Names:	•	Aminomethane, Mercurialin,	

CAS #: 74-89-5

Physical, Chemical, and Biological Properties [1]

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date: 8/13/79

1.7.12-1

INDUSTRIAL OCCURRENCE OF MONOMETHYLAMINE^{a,b}

		Raw wastewater						
		Concentration, $\mu g/L$			Loading, ^C kg/d			
	Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean	

I.7.12-2

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF MONOMETHYLAMINE^{a, b}

	·····	Treated wastewater					
	Concer	ntration, µ	Ig/L	Loa	Loading, c kg/d		
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean	

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

1.7.12-4

POLLUTANT	REMOVABILITY/	TREATABILITY	WASTEWATER	TREATMENT	ALTERNATIVE	FOR	MONOMETHYLAMINE ^{a, b}	0

	Syntheti	c wastewater	Actual	wastewater	
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range,	Average achievable conc., µg/L	Volume III references, Section numbers

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

.

...

 Off-line Bibliographic Citation List Generated from the Toxicology Data Bank by MEDLARS II, National Library of Medicine's National Interactive Retrieval Service, Bethesda, Maryland, 11 June 1979. Part I, pp. 50, 51.

.

.

Compound: Triethylamine Formula: CH₂CH₃ Alternate Names: None CH2CH3 H₃CH₂C CAS #: 121-44-8 Physical, Chemical, and Biological Properties [1] b.p. (760 torr), °C: 90 mol. wt.: 101.2 m.p., °C: -115 vapor pressure (25°C), torr: 50 solubility in water (20°C), mg/L: 15,000 log octanol/water partition coefficient: Not available Henry's law constant: Not available biodegradability: Degradation by Aerobacter at 30°C of 200 mg/L concentration was 100% in 11 hours Probable Fate: Not available photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

INDUSTRIAL OCCURRENCE OF TRIETHYLAMINE^{a,b}

	· · · · · · · · · · · · · · · · · · ·		Raw w	astewater		
	Concer	stration, μ	g/L	Lo	ading, ^C kg/	′d
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF TRIETHYLAMINE^{a,b}

		Tr	eated wa	stewater		
	Concer	ntration, µ	g/L	Lo	ading, ^C kg/	ď
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

	Syntheti	c wastewater	Actual	wastewater	
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section number:
	<u> </u>		<u> </u>	conc., µg/L	Section number

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR TRIETHYLAMINE^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

.

-

1. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. p. 616

Compound: Trimethylamine

Formula: CH₃, CH₃ I CH₃

Alternate Names: None

CAS #: 75-50-3

Physical, Chemical, and Biological Properties [1]

mol. wt.: 59.11 m.p., °C: -117 to -124 b.p. (760 torr), °C: 3.5
vapor pressure (20°C), torr: 1,440
solubility in water (25°C), mg/L: Not available
log octanol/water partition coefficient: Not available
Henry's law constant: Not available
biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date: 8/13/79

I.7.14-1

INDUSTRIAL OCCURRENCE OF TRIMETHYLAMINE^{a,b}

	Raw wastewater								
	Concer	Loading, ^C kg/d							
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF TRIMETHYLAMINE^{A, b}

		T	reated w	astewater	······································	
	Concer	ntration, µ	g/L	Loa	ading, ^C kg/	d
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

I.7.14-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

Synthet	ic wastewater	Actual	wastewater	
Removal range, process ^a %	Average achievable conc., µg/L	Removal range,	Average achievable conc., µg/L	Volume III references, Section number

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR TRIMETHYLAMINE^{a,b}

^aSee Volume III for detailed information.

 b NA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

.

-

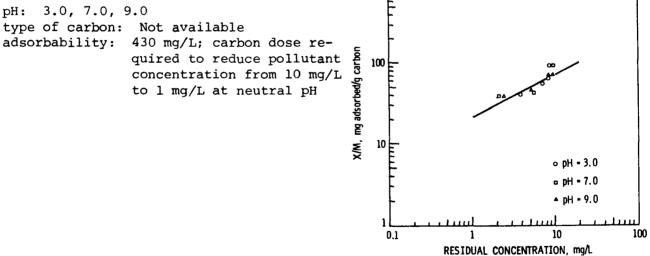
1. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. p. 619.

.

Compound: Phenol

Formula:

OH


Alternate Names: Carbolic acid, Hydroxybenzene, Phenyl hydroxide, Phenic acid, Phenyl hydrate

CAS #: 108-95-2

Physical, Chemical, and Biological Properties [1, 2]

*Vapor pressure of phenol as a supercooled liquid.

Probable Fate [1]

Date: 8/13/79

I.8.1-1

			Raw	wastewater			
	Con	centration,	µg/L	Loading, ^C kg/d			
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean	
Coal mining	ND	<10,000	<2,100	0	56	7.9	
Textile mills	NA	4,900	55 ^d	0.00023	1.6	0.099	
Explosives manufacture	15	70	40	0	0.014	0.0001	
Timber products processing	BDL	87,000	8,000 ^e	0	370	0.69	
Petroleum refining	13	4,900	>245 ^a	0	23	1.4	
Paint and ink formulation	ND	3,800	560	0	0.026	0.0009	
Gum and wood chemicals	130	23,000	5,600	0.050	42	9.2	
Rubber processing	NA	440	230	4.6 x 10 ⁻⁵	0.20	0.0076	
Pulp, paper and paperboard mills	<1	58	<7	0	NA	0.21	
Auto and other laundries	ND	840	28	2.5 x 10 ⁻⁵	0.039	0.0059	
Pharmaceutical manufacturing	ND	17,000	1,400	0	9.5	1.3	
Ore mining and dressing	66	210	140	0	NA	5.2	
Steam electric power generators							
(condenser cooling system)	5	20	7.5	0.0004	8.2×10^{-3}	0.0018	
Steam electric power generators							
(water treatment)	NA	NA	20	1×10^{-7}	1.2	0.003	
Steam electric power generators							
(ash handling)	6	40,	25	0.00048	2.5	0.55	
Inorganic chemicals manufacturing	NA	160 ¹	NA	0	10	2	
Coil coating	NA	16 ⁹	16 ^g	0.0008	0.0029	0,0077	
Foundries	ND	26,000	1,500	0	10	4.1	
Leather tanning and finishing	10	NA	2,500	0	NA	3.8	
Iron and steel manufacturing	NA	670,000	17,000	0	NA	3,100	
Nonferrous metals manufacturing	ND	70	12	0	NA	0.64	

INDUSTRIAL OCCURRENCE OF PHENOL^{a, b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3, where mean is not available, 1/2 the reported maximum was utilized.

^dMedian, not average

e Average of medians reported for various industry segments.

^fAverage of maximums reported for various industry segments. ^gOne sample. I.8.1-3

	Treated wastewater								
	Conce	Concentration, µg/L			Loading, ^C kg/d				
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	ND	<10,000	<2,000,	0	53	7.6			
Textile mills	NA	50	<2,000 14	5.9 x 10 ⁻⁵	0.40	0.025			
Timber products processing	BDL	16,000	15 59 ^d	0	0.69	0.0012			
Petroleum refining	NA	NA	59 ^a	0	5.5	0.34			
Paint and ink formulation	ND	1,200	140	0	0.0064	0.0002			
Gum and wood chemicals	NA	໌850 ^e	850 ^e	0.0076	6.4	1.4			
Rubber processing	NA	12,000	3,000	0.00060	2.6	0.099			
Explosives manufacture	NA	NA	NA	NA	NA	NA			
Pulp, paper and paperboard mills	<1	72	<11	0	NA	0.33			
Auto and other laundries	ND	120	38	3.4×10^{-5}	0.053	0.0080			
Pharmaceutical manufacturing	ND	17,000	1,700	0	12	1.6			
Ore mining and dressing	<0.01	<0.01	<0.01	0	NA	<0.0003			
Foundries	<10	34,000	6,100	0	41	16			
Iron and steel manufacturing	NA	53,000	900	0	NA	160			
Leather tanning and finishing	ND	1,400	320	0	NA	0.48			

INDUSTRIAL OCCURRENCE OF PHENOL^{a, b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d Median, not average.

^eOne sample.

		c wastewater		wastewater	
Treatment process ^a	Removal range,	Average achievable conc., µg/L	Removal range,	Average achievable conc., µg/L	Volume III references, Section numbers
ravity oil separation			NA	2,200	III.4.1
as flotation			26-51	1,200	111.4.4
as flotation with chemical addition (calcium chloride, polymer)			46-80	87	III.4.5
as flotation with chemical addition (polymer)			36-72	18	111.4.5
as flotation with chemical addition (alum, polymer)			0 ^{d,e}	_e	III.4.5
iltration t			26->93	3,400	III.4.6
dimentation			40->99	<21	111.4.2
dimentation with chemical addition (alum, lime)			48-96	25	111.4.3
dimentation with chemical addition (lime, polymer)			18->37	<10	III.4.3
dimentation with chemical addition (polymer)			14-29	37	III.4.3
dimentation with chemical addition (alum, polymer)			o ^{d, e}	_e	111.4.3
dimentation with chemical addition (alum)			> 80->9 0	<5	III.4.3
erated lagoons	•		>55 ->99	<14	111.5.3
rickling filters			0 ^{d,e}	_e	111.5.2
olvent extraction			65-> 9 9	2,200,000	111.5.6
stivated sludge			82->99	79	111.5.1
wdered activated carbon adsorption			> 83->8 5	95,000	III.6.2
ranular activated carbon adsorption			>60->96	0.7	111.6.1
everse osmosis			33-80	2.9	111.6.9

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR PHENOL^{a, b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

d_{Only one data point.}

• Actual data indicate negative removal.

REFERENCES

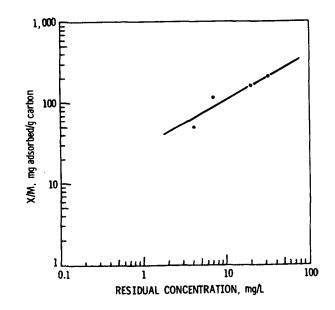
- Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume VI, Phenols, Cresols, and Monocyclic Aromatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 83-1 - 83-11.
- 2. Pitter, P. Determination of Biological Degradability of Organic Substances. Water Research, 10:1-5, 1976.
- 3. Dobbs, R. A., R. J. Middendorf, and J. M. Cohen. Carbon Adsorption Isotherms for Toxic Organics. U.S. Environmental Protection Agency, Cincinnati, Ohio, 1978.

Compound: 2-Chlorophenol

Formula:

OH

Cl


CAS #: 95-57-8

Physical, Chemical, and Biological Properties [1, 2]

Probable Fate [1]

Carbon Adsorption Data [3]

pH: 5.5 type of carbon: Filtrasorb-300 adsorbability: Not available

Date: 8/13/79

I.8.2-1

	Raw wastewater							
Industry	Conce	entration,	µg/L	Loading, ^C kg/d				
	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Coal mining	ND	· 86,	12,	0	0.32	0.045		
Textile mills	NA	78 ^d	78 ^d	0.00033	2.2	0.14		
Timber products processing	BDL	42	15 ^e	0	0.69	0.0013		
Pulp, paper, paperboard mills	NA	NA	NA	NA	NA	NA		
Auto and other laundries	ND	1	1	9 x 10 ⁻⁷	0.0014	0.00021		
Pharmaceutical manufacturing	ND	22	2.4	0	0.016	0.0022		
Steam electric power generators			f					
(water treatment)	NA	NA	27 ^f	2 x 10 ⁻⁷	1.6	0.004		
Foundries	ND	210	53	0	0.35	0.14		
Iron and steel manufacturing	NA	36,000	1,400	0	NA	250		

INDUSTRIAL OCCURRENCE OF 2-CHLOROPHENOL^{a, b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, 1/2 the reported maximum was utilized.

d One sample

e_{Median, not average.}

 $\ensuremath{^{f}}$ Average of medians reported for various industry segments.

INDUSTRIAL OCCURRENCE OF 2-CHLOROPHENOL^{a,b}

	Treated wastewater								
	Conce	ntration,	µg/L	Load	ing, ^C kg/d				
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	NA	ND	ND	_d	_d	_d			
Textile mills	NA	5.9 ^e	5.9 ^e	$2_{d}^{5} \times 10^{-5}$	⁰ a ¹⁷	0_a ⁰¹¹			
Timber products processing	BDL	4	BDL	_d	_a	_a			
Pulp, paper and paperboard mills	NA	4 9 ^e	BDL 9	0	NA	0.27			
Auto and other laundries	NA	2 ^e	2 ^e	1.8×10^{-6}	0.0028	0.0004			
Pharmaceutical manufacturing	ND	55	6.	0	NA	0.0055			
Foundries	8	40	22	0	0.15	0.059			
Iron and steel manufacturing	NA	NA	11	0	NA	2.0			

I.8.2-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dMean pollutant concentration below detection limit.

^eOne sample.

	Syntheti	c wastewater	Actual	wastewater
Treatment process	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L
Gravity oil separation			NA	33 ^d
Gas flotation with chemical addition (polymer)			0 ^{d,e}	_e
Sedimentation			44->88	<10
Sedimentation with chemical addition (lime, polymer)			0 ^d	<5 ^d

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR 2-CHLOROPHENOL^{a, b}

46-92

81^d

190,000^đ

<5^d

5.5

Volume III

references, Section numbers

III.4.1

III.4.5

III.4.2

III.4.3

III.5.1

III.6.2

^aSee Volume III for detailed information.

Powdered activated carbon adsorption

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

Activated sludge

^eActual data indicate negative removal.

REFERENCES

- Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume VI, Phenols, Cresols, and Monocyclic Aromatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 84-1 - 84-8.
- 2. Pitter, P. Determination of Biological Degradability of Organic Substances. Water Research, 10:1-5, 1976.
- 3. Report on visit of D. Stephan and W. Cawley, U.S. Environmental Protection Agency, to Calgon Environmental Systems Division, Calgon Corporation, Pittsburgh, Pennsylvania, 9 April 1979. 132 pp.

.

I.8.2-5

Compound: 2,4-Dichlorophenol

Formula:

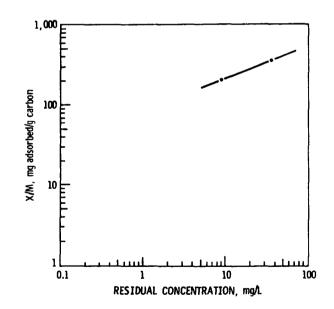
OH

C1

C1

Alternate Names: 2,4-DCP

CAS #: 120-83-2


Physical, Chemical, and Biological Properties [1, 2]

Probable Fate [1]

photolysis: Photolysis possible, but cannot compete with microbial biodegradation oxidation: Any oxidation which occurs is too slow to be important hydrolysis: Not important volatilization: No data, but not expected to be important sorption: Sorption will not remove significant amounts of 2,4-Dichlorophenol biological processes: Rapid microbial degradation is the principal fate of 2,4-DCP other reactions/interactions: Chlorination of water may produce further chlorination of 2,4-DCP

Carbon Adsorption Data [3]

pH: Not available type of carbon: Filtrasorb-300 adsorbability: Not available

Date: 8/13/79

I.8.3-1

INDUSTRIAL (
Industry
Textile mills Pulp, paper and paperboard mills Auto and other laundries Pharmaceutical manufacturing

Steam electric power generating (condenser cooling system)

Steam electric power generating

Steam electric power generating

(water treatment)

(ash handling)

INDUSTRIAL OCCURRENCE OF 2,4-DICHLOROPHENOL^{a,b}

Minimum

NA

ND

ND

NA

NA

NA

NA ,

Concentration, µg/L

Maximum

 $^{41}_{2^{d}}$

5

NA

NA

NA

≤10

Raw wastewater

0

0

1.8

Minimum

 1.8×10^{-6}

NA

 1.5×10^{-6} 14

0.00011

Mean

26^e 2^d

2

1

NA

240[±]

83^f

Loading, ^C kg/d

Maximum

0.75

NA

0.0028

0.0068

NA

8.1

Mean

0.047

0.060

0.00042

0.00092

NA

0.036

0.0016

NA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dOne sample.

^eAverage of medians reported for various industry segments.

 ${}^{\rm f}_{\rm Average}$ of maximums reported for various industry segments.

Date:

12/5/79

INDUSTRIAL OCCURRENCE OF 2,4-DICHLOROPHENOL^{a,b}

	Treated wastewater								
	Concer	ntration, μ	Ig/L	Loading, ^C kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Textile mills	NA	NA	NA	NA	NA	NA			
Pulp, paper and paperboard mills	<1	27	<7,	0	NA	0.81			
Auto and other laundries	NA	27 2 ^d	2 ^d	1.8×10^{-6}	0.0028	0.00042			
Pharmaceutical manufacturing	ND	4.0	0.8	0	0.0054	0.00074			
Foundries	<10	220	50	0	0.34	0.14			
Iron and steel manufacturing	NA	NA	11	0	NA	2.0			

I.8.3-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dOne sample.

	Synthetic wastewater		Actual wastewater			
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
Gas flotation with chemical addition (polymer)			0 ^{d,e}	-е	III.4.5	
Filtration			0 ^{d,e}	_e	III. 4 .6	
Sedimentation			33-98	29	III. 4 .2	
Activated sludge	-		>25->50	<7	III.5.1	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR 2,4-DICHLOROPHENOL^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

^eActual data indicate negative removal.

KEFERENCES

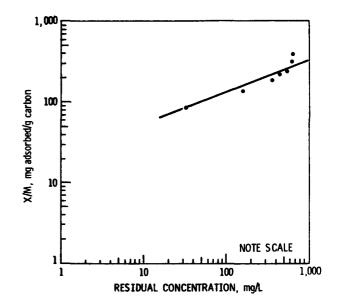
- Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume VI, Phenols, Cresols, and Monocyclic Aromatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 85-1 - 85-8.
- 2. Pitter, P. Determination of Biological Degradability of Organic Substances. Water Research, 10:1-5, 1976.
- 3. Report on visit of D. Stephan and W. Cawley, U.S. Environmental Protection Agency, to Calgon Environmental Systems Division, Calgon Corporation, Pittsburgh, Pennsylvania, 9 April 1979. 132 pp.

.

Compound: 2,4,6-Trichlorophenol

Formula:

Alternate Names: None


CAS #: 88-06-2

Physical, Chemical, and Biological Properties [1, 2]

Probable Fate [1]

Carbon Adsorption Data [3]

pH: Not available type of carbon: Filtrasorb-300 adsorbability: Not available

OH

C1

C1

I.8.4-1

	Raw wastewater								
Industry	Con	centration	, μg/L	Load	ing, ^c kg/d				
	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Textile mills	NA	27	20 ^d	8.4 x 10 ⁻⁵	0.58	0.036			
Timber products processing	BDL	530	250 [°]	0	11	0.022			
Rubber processing	NA	NA	NA	NA	NA	NA			
Pulp, paper and paperboard mills	<1	5	<3	0	NA	0.09			
Auto and other laundries	NA	NA	NA	NA	NA	NA			
Pharmaceutical manufacturing	ND	7	1.4	0	0.0095	0.001			
Steam electric power generating									
(condenser cooling system)	NA	NA	30	0.0016	0.033	0.007			
Leather tanning and finishing	ND	25,000	3,000	0	NA	5.0			
Foundries	ND	350	67	0	0.45	0.18			
Iron and steel manufacturing	NA	NA	39	0	NA	7			

INDUSTRIAL OCCURRENCE OF 2,4,6-TRICHLOROPHENOL^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d Median, not average.

INDUSTRIAL OCCURRENCE OF 2,4,6-TRICHLOROPHENOL								
			Treated w	vastewater				
	Concer	Ig/L	L					
Industry	Minimum	Maximum	Mean	Minimum				
Textile mills	NA	19 ^d	19 ^d	8 _e x 10 ⁻⁵				
Timber products processing	BDL	5,	BDL,	_e				
Rubber processing	NA	14,000 ^a	14,000 ^a	0.0028				
Pulp paper and paperboard mills	<1	. 72	×18	٥				

OPHENOL^{a,b}

Loading,^C kg/d

0_.55

Maximum

Mean

0_.034

Timber products processing	BDL	5,	BDL,	_e	_e	_e
Rubber processing	NA	14,000 ^a	14,000 ^a	0.0028	12	0.46
Pulp, paper and paperboard mills	<1	72	<18	0	NA	0.54
Pharmaceutical manufacturing	ND	6	0.6	5 x 10 ⁻ 7	0.0041	0.00055
Foundries	2	600	110	0	0.74	0.30
Iron and steel manufacturing	NA	NA	11	0	NA	2.0
Leather tanning and finishing	ND	4,300	730	0	NA	1.1

٠ 4-3

н. ω

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d_{One sample.}

^eMean pollutant concentration below detection limit.

	Syntheti	c wastewater	Actual	wastewater		
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
Gas flotation with chemical addition (calcium chloride, polymer)			0 ^{d,e}	_e	III.4 .5	
Filtration			80 ^d	69 ^d	III.4.6	
Sedimentation			0 ^e	_e	111.4.2	
Aerated lagoons			>99 ^d	<10 ^d	111.5.3	
Trickling filters			0 ^{d,e}	_e	III.5.2	
Activated sludge			36 -98	450	111.5.1	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR 2,4,6-TRICHLOROPHENOL^{a,b}

^aSee Volume III for detailed information. ^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

^eActual data indicate negative removal.

REFERENCES

 Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume VI, Phenols, Cresols, and Monocyclic Aromatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 86-1 - 86-8.

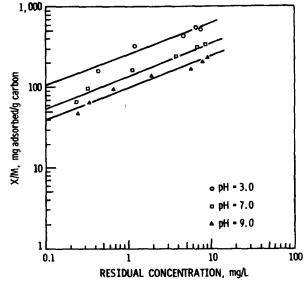
.

- 2. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York 1977. p. 612.
- 3. Report on visit of D. Stephan and W. Cawley, U.S. Environmental Protection Agency, to Calgon Environmental Systems Division, Calgon Corporation, Pittsburgh, Pennsylvania, 9 April 1979. 132 pp.

Compound: Pentachlorophenol

Formula:

Alternate Names: PCP, Chlorophen, Pentachlorol


CAS #: 87-86-5

Physical, Chemical, and Biological Properties [1, 2]

Probable Fate [1]

Carbon Adsorption Data [3]

pH: 3.0, 7.0, 9.0
type of carbon: Not available
adsorbability: 62 mg/L; carbon dose required to reduce pollutant
concentration from 10 mg/L
to 1 mg/L at neutral pH

OH

C1

C1

C1

Date: 8/13/79

I.8.5-1

	Raw wastewater								
	Cond	centration,	µg/L	L	oading, ^C kg	ı/d			
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	ND ^d	ND ^d	ND ^d	BDL	BDL	BDL			
Textile mills	NA	940	52	0.00022	1.5	0.094			
Timber products processing	90	310,000	13,000 ^e	0	600	1.1			
Paint and ink formulation	ND	27,000	3,300	0	0.15	0.0053			
Rubber processing	NA	31	17	3 x 10 ⁻⁶	0.015	0.0005			
Pulp, paper and paperboard mills	<1	9	<4	0	NA	0.12			
Auto and other laundries	ND	9	3	2.7 x 10 ⁻⁶	0.0042	0.00063			
Pharmaceutical manufacturing	ND	62	4.4	0	0.030	4.04			
Steam electric power generating									
(ash handling)	NA	NA	51	0.00097	5.0	1.1			
Inorganic chemicals manufacturing	NA	NA	NA	NA	NA	NA			
Foundries	ND	1,600	120	0	0.80	0.32			
Leather tanning and finishing	ND	NA	1,700	0	NA	1.1 x 10 ⁻⁰			
Nonferrous metals manufacturing	ND	17	1.5	0	NA	0.079			
Iron and steel manufacturing	NA	NA	76	0	NA	14			

INDUSTRIAL OCCURRENCE OF PENTACHLOROPHENOL^{a, b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dOne sample.

^eAverage of medians reported for various industry segments.

	Treated wastewater								
	Conce	entration, µ	g/L	Loading, ^C kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	ND	<3.3	<0_7	0	0.018	0.0026			
Textile mills	NA	15	12 ^d	5.0 x 10 ⁻⁵	0.029	0.024			
Timber products processing	32	130,000	910 ^d	0	42	0.078			
Paint and ink formulation	ND	490	120	0	0.0055	0.00019			
Rubber processing	NA	10 ^e	10 ^e	2.0×10^{-6}	0.0086	0.0003			
Pulp, paper and paperboard mill	s <1	200	<25	0	NA	0.75			
Auto and other laundries	10	58	34	3.1×10^{-5}	0.0476	0.0071			
Pharmaceutical manufacturing	ND	ND	ND	ND	ND	ND			
Foundries	12	140	49	0	0.33	0.13			
Iron and steel manufacturing	NA	NA	10	0	NA	1.8			
Leather tanning and finishng	ND	3,100	570	0	NA	0.86			

INDUSTRIAL OCCURRENCE OF PENTACHLOROPHENOL^{a, b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d Median, not average.

^eOne sample.

I.8.5-3

	Syntheti	c wastewater	Actual	wastewater		
Treatment process ^a	Removal range, ^C %	Average achievable conc., μg/L	Removal range, %	Average achievable conc., μg/L	Volume III references, Section_number	
Gravity oil separation			NA	330	III.4.1	
Gas flotation with chemical addition (calcium chloride, polymer)			0 ^{d,e}	_e	III.4.5	
Gas flotation with chemical addition (polymer)			9-19	19	111.4.5	
Filtration			29->87	7.5	III.4.6	
Sedimentation			55 ^d	24 ^d	III.4.2	
Sedimentation with chemical addition (alum, polymer)			>96 ^d	<0.4 ^d	III.4.3	
Aerated lagoons			>71 ^d	<10 ^d	111.5.3	
Trickling filters			0 ^{d,e}	_e	111.5.2	
Activated sludge			70->99	240	111.5.1	
Granular activated carbon adsorption			63->97	13	III.6.1	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR PENTACHLOROPHENOL^{a, b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

^eActual data indicate negative removal.

Date: 12/5/79

REFERENCES

 Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume VI, Phenols, Cresols, and Monocyclic Aromatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 87-1 - 87-12.

-

- 2. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. p. 511.
- Dobbs, R. A., R. J. Middendorf, and J. M. Cohen. Carbon Adsorption Isotherms for Toxic Organics. U.S. Environmental Protection Agency, Cincinnati, Ohio, 1978.

Compound: 2-Nitrophenol

Formula:

OH

NO₂

Alternate Names: *O*-Nitrophenol, 2-Hydroxynitrobenzene

CAS #: 88-75-5

Physical, Chemical, and Biological Properties [1, 2]

Probable Fate [1]

Carbon Adsorption Data: Not available

Date: 8/13/79

I.8.6-1

	Raw wastewater							
	Concent	tration, µ	g/L	Loa	bading, ^C kg/d			
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Coal mining Textile mills Rubber processing	ND NA NA	19 NA 9.4 ^d	2.7 NA 9.4 ^d	0 NA 0.000002	0.071 NA 0.0081	0.010 NA 0.0003		

INDUSTRIAL OCCURRENCE OF 2-NITROPHENOL^{a, b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dOne sample.

INDUSTRIAL OCCURRENCE OF 2-NITROPHENOL^{a,b}

	Treated wastewater								
	Concer	ntration, n	ng/L	Loading, ^C kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	NA	ND_	ND	_ ^d	_ ^d	_d			
Textile mills	NA	4.1^{e}_{-}	4.1^{e}	1.7 x 10 ⁻⁵	0.12	0.0074			
Rubber processing	NA	4.9 ^e	4.9 ^e	9.8×10^{-7}	0.0042	0.00016			
Pharmaceutical manufacturing	g ND	4,100	290	0	2.0	0.27			
Foundries	<20	40	30	0	0.20	0.081			
Iron and steel manufacturing	g NA	150	26	0	NA	4.7			

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

 d Mean pollutant concentration below detection limit.

^eOne sample.

	Syntheti	c_wastewater	Actual	wastewater	
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers
Gravity oil separation			NA	150 ^d	III.4.1
Sedimentation			>47 ^d	<10 ^d	III.4.2
Activated sludge			>99 ^d	<0.04 ^d	III.5.1

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR 2-NITROPHENOL^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

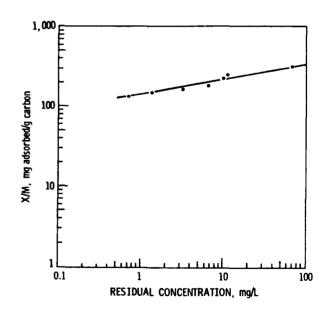
^dOnly one data point.

I.8.6-4

REFERENCES

 Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume VI, Phenols, Cresols, and Monocyclic Aromatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 88-1 - 88-9.

-


2. Pitter, P. Determination of Biological Degradability of Organic Substances. Water Research, 10:1-5, 1976.

OH Compound: 4-Nitrophenol Formula: p-Nitrophenol, Alternate Names: 4-Hydroxynitrobenzene CAS #: 100-07-7 Physical, Chemical, and Biological Properties [1, 2] b.p. (760 torr), °C: 279 mol. wt.: 139.1 m.p., °C: 115 vapor pressure (146°C), torr: 2.2 solubility in water (25°C), mg/L: 16,000 log octanol/water partition coefficient: 1.91 Henry's law constant: Not available biodegradability: 95% 4-nitrophenol removal (measured as COD removal) obtained at 20°C in activated sludge at a rate of 18 mg COD/g dry innoculum/hr Probable Fate [1] photolysis: Photolysis is slow, but might be the only degradative process which occurs oxidation: Attack by hydroxy radicals at C-2 and C-4 positions occurs, but no rate is available hydrolysis: Slight possibility of hydrolysis to 1, 4-benzoquinone after sorption by clay minerals volatilization: Not important

sorption: Slight potential for irreversible sorption by clay minerals biological processes: No bioaccumulation; resists biodegradation under natural conditions and inhibits microbial growth other reactions/interactions: Not important

Carbon Adsorption Data [3]

pH: Not available type of carbon: Filtrasorb-300 adsorbability: Not available

Date: 8/13/79

I.8.7-1

Industry	Raw wastewater								
	Concent	tration, µ	g/L	Loading, ^C kg/d					
	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Textile mills	NA	NA	NA	NA	NA	NA			
Auto and other laundries	ND	15	13	1.1 x 10 ⁻⁵	0.018	0.002			
Pharmaceutical manufacturing	ND	3,500	400	0	2.8	0.37			
Foundries	ND	NA	400	0	2.7	1.1			

INDUSTRIAL OCCURRENCE OF 4-NITROPHENOL^{a, b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3, where mean is not available 1/2 the reported maximum was utilized.

Industry	Treated wastewater								
	Concen	tration, µ	g/L	Loading, ^C kg/d					
	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Textile mills	NA	<10 ^d ND ^d	<10 ^d	4.2 x 10 ⁻⁵ ND	0.29	0.018			
Auto and other laundries	NA	NDa	ND	ND	ND	ND			
Pharmaceutical manufacturing	ND	1,100	79	0	0.54	0.073			
Foundries	6	20	13	0	0.087	0.035			

INDUSTRIAL OCCURRENCE OF 4-NITROPHENOL^{a, b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dOne sample.

	Syntheti	.c wastewater	Actual	wastewater	·····	
Treatment process ^a	Removal range, %	Average achievable conc., μg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
Sedimentation			0 ^{d,e}	_e	III.4.2	
Sedimentation with chemical addition (lime, polymer)			>9 ^d	<10 ^d	III.4.3	
Aerated lagoons			>23 ^d	<10 ^d	111.5.3	
Activated sludge			>99 ^d	<0.9 ^d	111.5.1	

a b

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

^eActual data indicate negative removal.

- Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume VI, Phenols, Cresols, and Monocyclic Aromatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 89-1 - 89-8.
- 2. Pitter, P. Determination of Biological Degradability of Organic Substances. Water Research, 10:1-5, 1976.
- 3. Report on visit of D. Stephan and W. Cawley, U.S. Environmental Protection Agency, to Calgon Environmental Systems Division, Calgon Corporation, Pittsburgh, Pennsylvania, 9 April 1979. 132 pp.

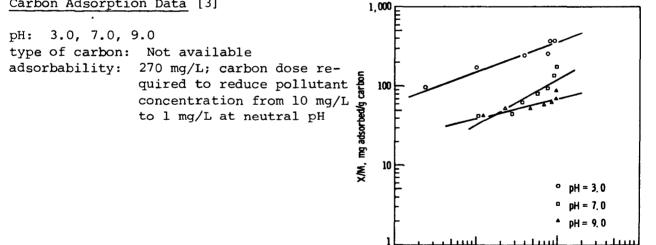
.

Compound: 2,4-Dinitrophenol

Formula:

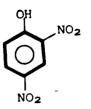
Alternate Names: Aldifen, 2,4-DNP

CAS #: 51-28-5


Physical, Chemical, and Biological Properties [1, 2]

m.p., °C: 114 mol. wt.: 184.11 b.p. (760 torr), °C: Not available vapor pressure (25°C), torr: Not available solubility in water (18°C), mg/L: 5,600 log octanol/water partition coefficient: 1.53 Henry's law constant: Not available biodegradability: 85% 2,4-dinitrophenol removal (measured as COD removal) obtained at 20°C in activated sludge at a rate of 6.0 mg COD/g dry innoculum/hr

Probable Fate [1]


photolysis: Degradation by slow photolysis may be principal fate oxidation: Oxidation by hydroxy radicals could occur, but no environmental rate is available hydrolysis: Slight possibility for hydrolysis after adsorption by clay minerals volatilization: Not important sorption: Slight potential for sorption by clay minerals biological processes: No bioaccumulation; uncertain amount of biodegradation under natural conditions other reactions/interactions: Not important

Carbon Adsorption Data [3]

0.1

Date: 8/13/79

100

10

RESIDUAL CONCENTRATION, mg/L

	۱	1	Raw was	tewater		
	Concer	ntration,	µg/L	Loadi	ng, ^C kg/d	
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean
Coal mining	NA	ND	ND	_d	_d	_d
Auto and other laundries	ND	19	19	1.7 x 10 ⁻⁵	0.027	0.004
Steam electric power generating (ash handling)	NA	NA	50 ^e	0.00095	4.9	1.1
Iron and steel manufacturing	NA	440	33	0	NA	5.9

INDUSTRIAL OCCURRENCE OF 2,4-DINITROPHENOL^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3, where mean is not available 1/2 the reported maximum was utilized.

^dMean pollutant concentration below detection limit.

^eAverage of medians reported for various industry segments.

Industry	Treated wastewater						
	Concentration, µg/L			Loading, ^C kg/d			
	Minimum	Maximum	Mean	Minimum	Maximum	Mean	
Coal mining	ND	<3,3	<0,7	0 _e	0 _e 018	0.0026	
Auto and other laundries	NA	<3 d ³ ND d	<0 d ⁷ ND d ⁷	_e	_e	_e	
Iron and steel manufacturing	NA	130	53	0	NA	9.5	

INDUSTRIAL OCCURRENCE OF 2,4-DINITROPHENOL^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

 b NA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dOne sample.

^eMean pollutant concentration below detection limit.

Date:	
12/5/79	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR 2,4-DINITROPHENOL^{a,b}

	Synthetic wastewater		Actual wastewater			
	Removal range,	Average achievable	Removal range,	Average achievable	Volume III references,	
Treatment process ^a	%	conc., µg/L	0/0	conc., µg/L	Section numbers	

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

- Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume VI, Phenols, Cresols, and Monocyclic Aromatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 90-1 - 90-9.
- 2. Pitter, P. Determination of Biological Degradability of Organic Substances. Water Research, 10:1-5, 1976.
- 3. Dobbs, R. A., R. J. Middendorf, and J. M. Cohen. Carbon Adsorption Isotherms for Toxic Organics. U.S. Environmental Protection Agency, Cincinnati, Ohio, 1978.

•

Compound: Resorcinol

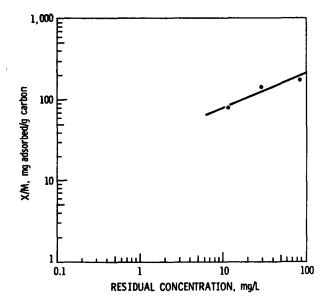
Formula:

OH

Alternate Names: *m*-Hydroxyphenol, 1,3-Dihydroxybenzene, 1,3-Benzenediol, Resorcin

CAS #: 108-46-3

Physical, Chemical, and Biological Properties [1, 2]


mol. wt.: 110.1 m.p., °C: 276-280 b.p. (760 torr), °C: Not available vapor pressure (138°C), torr: 5 solubility in water (30°C), mg/L: 2,290,000 log octanol/water partition coefficient: Not available Henry's law constant: Not available biodegradability: 90% resorcinol removal (measured as COP removal) obtained at 20°C in activated sludge at a rate of 58 mg COD/g dry innoculum/hr

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data [3]

pH: Not available type of carbon: Filtrsorb-300 adsorbability: Not available

			Raw w	vastewater		
	Concentra	ation, µg/	L	Loa	ding, ^C kg/	d
Industry	Minimum Ma	aximum	Mean	Minimum	Maximum	Mear

INDUSTRIAL OCCURRENCE OF RESORCINOL^{a, b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

INDUSTRIAL OCCURRENCE OF RESORCINOL^{a, b}

	Treated wastewater						
	Concer	Loading, ^C kg/d		d			
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mear	

I.8.9-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

Synthetic wastewater Actual wastewater_	Actual	Synthetic wastewater			vater Actua	al wastewater	
Removal Average Removal Average range, achievable range, achievable ess ^a % conc.,µg/L % conc.,µg/L	С	achievable	С	Treatment process ^a	able range,	c achievable	Volume III references, Section numbers

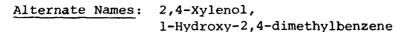
POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR RESORCINOL^{a,b}

^aSee Volume III for detailed information.

- ^bNA Not available, ND not detected, BDL below detection limit.
- ^CAverage and maximum removals reported.

- 1. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. p. 562.
- 2. Pitter, P. Determination of Biological Degradability of Organic Substances. Water Research, 10:1-5, 1976.
- 3. Report on visit of D. Stephan and W. Cawley, U.S. Environmental Protection Agency, to Calgon Environmental Systems Division, Calgon Corporation, Pittsburgh, Pennsylvania, 9 April 1979. pp. 132.

.

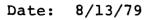

Compound: 2,4-Dimethylphenol

Formula:

OH

СНз

CH3


CAS #: 105-67-9

Physical, Chemical, and Biological Properties [1, 2]

*Vapor pressure as a supercooled liquid.

Probable Fate [1]

Carbon Adsorption Data: Not available

I.8.10-1

	Raw wastewater								
	Conce	ntration, 1	µg/L	Load	ling, ^C kg/d				
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
		•							
Coal mining	ND	22	4.8	0	0.074	0.010			
Timber products processing	BDL	6,600	1,300 ^d	0	60	0.11			
Petroleum refining	NA	NA	100	0	9.3	0.58			
Textile mills	NA	NA	NA	NA	NA	NA			
Auto and other laundries	ND	460	20	1.8 x 10 ⁻⁸	0.028	0.0042			
Pharmaceutical manufacturing	ND	ND	ND	ND	ND	ND			
Ore mining and dressing	270	270	270	0	NA	10			
Coil coating	21 ^e	21 ^e	21 ^e	0.001 ^e	0.038	0.010			
Foundries	ND	1,100	81	0	0.54	0.22			
Iron and steel manufacturing	NA	84,000	4,000	0	NA	720			
Nonferrous metals manufacturing	ND	14	7	0	NA	0.37			

INDUSTRIAL OCCURRENCE OF 2,4-DIMETHYL PHENOL^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3, where mean is not available 1/2 the reported maximum was utilized.

d Median, not average.

^eOne sample.

	Treated wastewater								
	Concent	tration, μ	g/L	Loading, ^C kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	NA	ND	ND	_d	_d	_d			
Textile mills	NA	8.0 ^e	8.0 ^e	3.4×10^{-5}	0.23	0.014			
Timber products processing	BDL	140	BDL	-d	-d	-d			
Petroleum refining	NA	8 ^e	8 ^e	0	0.74	0.046			
Auto and other laundries	NA	29 ^e	29 ^e	2.6 x 10 ⁻⁵	0.041	0.006			
Pharmaceutical manufacturing	ND	8.0	2.0	0	0.014	0.001			
Foundries	<10	490	120	0	0.80	0.32			
Iron and steel manufacturing	NA	70	10	0	NA	1.8			

INDUSTRIAL OCCURRENCE OF 2,4-DIMETHYLPHENOL^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dMean pollutant concentration below detection limit.

^eOne sample.

	Syntheti	c`wastewater	Actual	wastewater	
Treatment process ^a	Removal range,	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers
Gravity oil separation			NA	210	III.4.1
Gas flotation with chemical addition (calcium chloride, polymer)			>99 ^d	<0.1 ^d	III.4.5
Gas flotation with chemical addition (polymer)			0 ^{d,e}	_e	III.4.5
Filtration			0 ^e	_e	III.4.6
Sedimentation			18->55	<15	III.4.2
Sedimentation with chemical addition (lime, polymer)			76	<10	III.4.3
Activated sludge			32-95	<9	· III.5.1
Granular activated carbon adsorption			>89 ^d	<0.1 ^d	III.6.1

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR 2,4-DIMETHYLPHENOL^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

^eActual data indicate negative removal.

 Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume VI, Phenols, Cresols, and Monocyclic Aromatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 91-1 - 91-9.

-

2. Pitter, P. Determination of Biological Degradability of Organic Substances. Water Research, 10:1-5, 1976.

Compound: Total phenols

Formula: Derivatives of phenol

Alternate Names: Hydroxybenzenes, Phenoyl hydroxides

CAS #: See sections on individual phenols

Physical, Chemical, and Biological Properties

See sections on individual phenols.

Probable Fate [1]

Carbon Adsorption Data: See sections on individual phenols

••		
12/5/79		_

INDUSTRIAL OCCURRENCE OF TOTAL PHENOLS^{a, b}

		<u> </u>	Raw wast	ewater		
	C	oncentration	, μg/L	Loadi	ng, ^C kg/d	
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean
Timber products processing	BDL	1,300	75 ^d	0	3.4	0.0064
Paint and ink formulation	NA	NA	NA	NA	NA	NA
Gum and wood chemicals	460	53,000	8,500	0.076	64	14
Ore mining and dressing	<0.002	0.22	<0.032	0	NA	<0.0012
Steam electric power generating						
(condenser cooling system)	<10	-100	50	0.0027	0.055	0.012
Steam electric power generating			•			,
(water treatment)	NA	NA	20 ^đ	1.0 x 10 ^{-7^d}	1.2 ^d	0.003 ^d
Steam electric power generating			L.	د	a	a
(drainage)	NA	NA	500 ^d	0.0043 ^d	0.18 ^d	0.010 ^d
Leather tanning and finishing	110	110,000	1,800	0	NA	2.7
Nonferrous metals manufacturing	ND	28	0.98	0	NA	0.052

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, 1/2 the reported maximum was utilized.

d Average of medians reported for various industry segments.

		Treated wastewater							
Industry	Concer	ntration, p	Jg/L	I	oading, ^C k	kg/d			
	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Timber products processing	0.048	680	51	0	2.3	0.0044			
Paint and ink formulation	BDL	1,900	130	0	0.0060	0.0002			
Gum and wood chemicals	29	14,000	3,300	0.030	25	5.4			
Auto and other laundries	<1.0	264	62	5.6 x 10 ⁻⁵	0.087	0.013			
Nonferrous metals manufacturing	0.006	25	1.6	0	NA	0.085			

INDUSTRIAL OCCURRENCE OF TOTAL PHENOLS^{a, b}

I.8.11-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

	_	c wastewater		wastewater	
	Removal range,	Average achievable	Removal c range,	Average achievable	Volume III references,
Treatment process ^a	%	conc., µg/L	range,	conc., µg/L	Section number:
ravity oil separation			NA	24,000	III.4.1
Gas flotation			4 ^d	23,000 ^d	III.4.4
as flotation with chemical addition (calcium chloride, polymer)			48-96	410	III.4 .5
as flotation with chemical addition (polymer)			36- >50	210	III.4.5
as flotation with chemical addition (alum, polymer)			13 ^d	94 ^d	III.4.5
'iltration			15-65	65,000	III.4.6
Sedimentation			38-96	390	III.4.2
edimentation with chemical addition (alum, lime)			11-22	670	III.4.3
edimentation with chemical addition (sulfide)			29-58	190	III.4.3
edimentation with chemical addition (BaCl ₂)			0 ^{d,e}	-e	III.4.3
edimentation with chemical addition (alum, polymer)			30-60	100	III.4.3
edimentation with chemical addition (alum)			17-31	56,000	III.4.3
edimentation with chemical addition (lime)			22-33	170	III.4.3
ertiary polishing lagoons			23-46	40	111.5.3
erated lagoons			65->99	11	III.5.3
rickling filters		79	-81->99	72,000-79,000	III.5.2
lltrafiltration			36-82	83,000	III.4. 7
olvent extraction			98->99		III.5.6
zonation			41->99	55	III.6.14
ctivated sludge			61->99	<19,000	111.5.1
owdered activated carbon adsorption (with activated sludge)			>99	23	111.6.2
ranular activated carbon adsorption			58-99	1,100	III.6.1
leverse osmosis			27-81	13	III.6.9

.

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR TOTAL PHENOLS^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

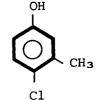
^CAverage and maximum removals reported.

^dOnly one data point.

^eActual data indicate negative removal.

.

-


 Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume VI, Phenols, Cresols, and Monocyclic Aromatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 84-1 - 93-8.

•

Compound: p-Chloro-m-cresol

Formula:

Alternate Names: 4-Chloro-m-cresol, 4-Chloro-3-methylphenol, 2-Chloro-5-hydroxytoluene

CAS #: 59-50-7

Physical, Chemical, and Biological Properties [1]

mol. wt.: 142 m.p., °C: 66 b.p. (760 torr), °C: 235
vapor pressure (25°C), torr: Not available
solubility in water (20°C), mg/L: 3,850
log octanol/water partition coefficient: 2.95
Henry's law constant: Not available
biodegradability: Not available

Probable Fate [1]

Carbon Adsorption Data: Not available

I.8.12-1

			Raw was	tewater			
	Cor	ncentration	n, μg/L	Loading, ^C kg/d			
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean	
Textile mills	NA	168 ^d	168 ^d	0.00070	4.8	0.30	
Petroleum refining	NA	NA	NA	NA	NA	NA	
Auto and other laundries	ND	≤10	50	5 x 10 ⁻⁷	0.0007	0.0001	
Foundries	ND	280	42	0	0.28	0.11	
Iron and steel manufacturing	NA	4,300	200	0	NA	36	

INDUSTRIAL OCCURRENCE OF *p*-CHLORO-*m*-CRESOL^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual. ^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dOne sample.

INDUSTRIAL OCCURRENCE OF p-CHLORO-0-CRESOL^{a,b}

		Treated wastewater							
	Concei	ntration, μ	Ig/L	Lo	Loading, ^C kg/d				
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Textile mills	NA	32 ^d	32 ^d .	0.00013	0.92	0.058			
Petroleum refining	NA	0.2 ^a	0.2 ^d	0	0.019	0.0012			
Foundries	<20	63	41	0	0.27	0.11			
Iron and steel manufacturing	NA	NA	27	0	NA	4.9			

I.8.12-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dOne sample.

	POLLU
-	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR p-CHLORO-m-CRESOL^{a,b}

	Syntheti	.c wastewater	Actual	wastewater		
Treatment process ^a	Removal range, %	, Average `achievable conc., μg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
Gravity oil separation			NA	120 ^d	III.4.1	
Filtration			0 ^e	_ ^e	III.4.6	
Sedimentation with chemical addition (lime, polymer)			44 ^d	62 ^d	III.4.3	
Activated sludge			65->98	<4	III.5.1	
Granular activated carbon adsorption			>83 ^d	<0.1 ^d	III.6.1	

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

^eActual data indicate negative removal.

Date:

12/5/79

 Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume VI, Phenols, Cresols, and Monocyclic Aromatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 92-1 - 92-7.

.

-

Compound: 4,6-Dinitro-o-cresol

Formula:

OH

NOa

O₂N

CH3

Alternate Names: DNOC, 2,4-Dinitro-6-methyl-phenol

CAS #: 534-52-1

Physical, Chemical, and Biological Properties [1, 2]

mol. wt.: 198.1 m.p., °C: 85.8 b.p. (760 torr), °C: Not available vapor pressure (25°C), torr: Not available solubility in water (25°C), mg/L: Not available log octanol/water partition coefficient: 2.85 Henry's law constant: Not available biodegradability: 1% removal after 48 hours incubation for initial concentration of 207 mg/L

Probable Fate [1]

Carbon Adsorption Data: Not available

Date: 8/13/79

I.8.13-1

			R	aw wastewa	tewater							
	Concent	tration, µ	g/L	Load	Loading, ^C kg/d							
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean						
Coal mining	ND	194	28	0	0.74	0.10						
Pharmaceutical manufacturing	ND	ND	ND	ND	ND	ND						
Foundries	ND	70	16	0	0.11	0.043						
Iron and steel manufacturing	NA	97 0	130	0	NA	23						

INDUSTRIAL OCCURRENCE OF 4,6-DINITRO-0-CRESOL^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3, where mean is not available 1/2 the reported maximum was utilized.

		Treated wastewater							
Industry	Concei	ntration,	µg/L	Loading, ^C kg/d					
	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	ND	6.7	0.4 ^d	0	0.011	0.0015			
Pharmaceutical manufacturing	ND	ND	ND	ND	ND	ND			
Foundries	7	80	45	0	0.30	0.12			
Iron and steel manufacturing	NA	NA	110	0	NA	20			

INDUSTRIAL OCCURRENCE OF 4,6-DINITRO-0-CRESOL^{a,b}

I.8.13-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d Median, not average.

	Syntheti	Synthetic wastewater		wastewater		
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
Sedimentation			48->95	460	111.4.2	
Sedimentation with chemical addition (lime, polymer)			0 ^{d,e}	_e	III.4.3	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR 4,6-DINITRO-0-CRESOL^{a,b}

I.8.13-4

^aSee Volume III for detailed information.

bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

^eActual data indicate negative removal.

REFERENCES

 Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume VI, Phenols, Cresols, and Monocyclic Aromatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 93-1 - 93-8.

;

-

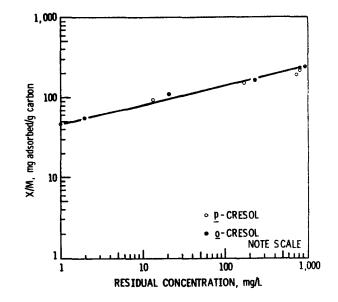
2. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. p. 275.

•

Compound:	Cresol	Formu	
Alternate	Names:	Cresylic acid, Cresyol, Tricresol, Methylphenol,	СНз
		Hydroxytoluene, Tokresol,	

CAS #: 1319-77-3

Physical, Chemical, and Biological Properties [1, 2]


Bacillol

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data [3]

pH: Not available type of carbon: Filtrasorb-300 adsorbability: Not available

Date: 8/13/79

I.8.14-1

			a.b
INDUSTRIAL	OCCURRENCE	\mathbf{OF}	CRESOL

		Raw wastewater					
	Concentration, $\mu g/L$ Loading, $c kg/d$		Concentration, Ug/L Lo				
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean	

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

INDUSTRIAL OCCURRENCE OF CRESOL^{a,b}

		Treated wastewater				
	Concentration, µg/L			Loading, ^C kg/d		d
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

I.8.14-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

I.8.14-4

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR CRESOL^{a,b}

Synth	etic wastewater	Actual	wastewater	
Remov	C	Removal	Average	Volume III
range		range,	achievable	references,
Treatment process ^a %		%	conc., µg/L	Section numbers

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

REFERENCES

 Off-line Bibliographic Citation List Generated from the Toxicology Data Bank by MEDLARS II, National Library of Medicine's National Interactive Retrieval Service, Bethesda, Maryland, 11 June 1979. Part I, pp. 89, 90.

;

- 2. Pitter, P. Determination of Biological Degradability of Organic Substances. Water Research, 10:1-5, 1976.
- 3. Report on visit of D. Stephan and W. Cawley, U.S. Environmental Protection Agency, to Calgon Environmental Systems Division, Calgon Corporation, Pittsburgh, Pennsylvania, 9 April 1979. 132 pp.

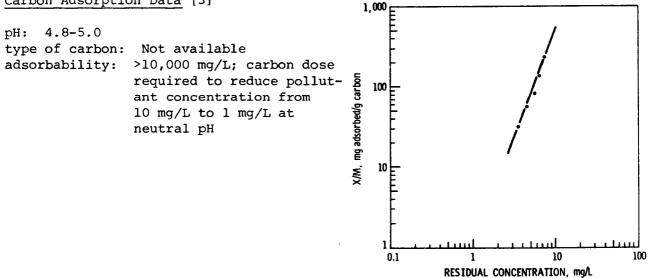
.

Compound: Benzene

Formula:

Alternate Names: Benzol, Cyclohexatriene

CAS #: 71-43-2


Physical, Chemical, and Biological Properties [1, 2]

mol. wt.: 78.12 m.p., °C: 5.5 b.p. (760 torr), °C: 80.1 vapor pressure (25°C), torr: 95.2 solubility in water (25°C), mg/L: 1,780-1,800 log octanol/water partition coefficient: Conflicting data reported Henry's law constant: Not available biodegradability: 33% theoretical oxidation of 500 ppm benzene by phenol-acclimated sludge after 12 hr aeration

Probable Fate [1]

photolysis: Photooxidation of volatilized benzene is the only form of photolysis which occurs oxidation: No aqueous oxidation occurs, but volatilized benzene is photooxidized at a rapid rate hydrolysis: Not important volatilization: Rapid volatilization (half-life = 4.81 hr) is the primary transport process for benzene sorption: Benzene should be adsorbed by organic material biological processes: Low potential for bioaccumulation; metabolized to catechols by many organisms; biodegraded at a slow rate other reactions/interactions: Not important

Carbon Adsorption Data [3]

Date: 8/13/79

I.9.1-1

			Raw wa	astewater			
	Conce	entration,	µg/L	Loading, ^C kg/d			
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean	
Coal mining	ND	15	2.6	0	0.069	0.009	
Textile mills	NA	200	<5 ^d	2.1 x 10 ⁻⁵	0.14	0.009	
Timber products processing	BDL	2,800	350 ^e	0	16	0.030	
Petroleum refining	NA	NA	>100	0	9.3	0.58	
Paint and ink formulation	ND	9,900	1,200	0	0.055	0.0019	
Gum and wood chemicals	BDL	' 710	180	0.0016	1.3	2.7	
Rubber processing	NA	⁶ 3,400	610	0.00012	0.52	0.020	
Pulp, paper and paperboard mills	<1	3	<2	0	NA	0.060	
Auto and other laundries	ND	23,000	840	0.00076	1.2	0.18	
Pharmaceutical manufacturing	ND	2,100	220	0	0.18	0.20	
Ore mining and dressing	ND	4.2	2.1	0	NA	0.078	
Steam electric power generating (condenser cooling system)	NA	NA	45 ^d	0.0024	0.050	0.011	
Steam electric power generating (water treatment)	NA	NA	$2^{\mathbf{d}}$	1.2 x 10 ⁻⁸	0.12	0.000	
Inorganic chemicals manufacturing	NA	15 ^e	NA	0	0.94	0.19	
Coil coating	<10	<10	<10	<0.0005	<0.018	<0.004	
Foundries	ND	NA	200	0	1.3	0.54	
Leather tanning and finishing	ND	150	19	0	NA	0.029	
Nonferrous metals manufacturing	ND	160	11	0	NA	0.58	
Iron and steel manufacturing	NA	43,000	2,000	0	NA	360	

INDUSTRIAL OCCURRENCE OF BENZENE^{a, b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reporteed in Section I.3; where mean is not available, 1/2 the reported maximum was utilized.

d Median, not average.

e Average of maximums reported for various industry segments.

			Treated v	wastewater			
	Concer	ntration, µg	J/L	Loading, ^C kg/			
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean	
Coal mining	ND	<6.7	<1,4	0	0.037	0.0053	
Textile mills	NA	64	<1 <5 ⁴	2.1 x 10 ⁻⁵	0.14	0,0090	
Timber products processing	BDL	33	BDL	_e	_e_	_e	
Paint and ink formulation	ND	3,800	390	0	0.018	0.00062	
Gum and wood chemicals	120	240	170	0.0015	1.2	0.28	
Rubber processing	NA	100	29	5.8 x 10 ⁻⁶	NA	NA	
Petroleum refining	NA	NA	NA	NA	NA	NA	
Pulp, paper and paperboard mills	<1	12	<2	0	NA	0.06	
Pharmaceutical manufacturing	ND	390	48	0	0.33	0.044	
Foundries	<10	60	26	0	0.17	0.07	
Iron and steel manufacturing	ND	120,000	1,800	0	NA	324	
Nonferrous metals manufacturing	ND	59	4.2	0	NA	0.22	
Leather tanning and finishing	ND	<10	<7	0	NA	0.011	

INDUSTRIAL OCCURRENCE OF BENZENE^{A, b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d Median, not average.

^eMean pollutant concentration below detection limit.

	Syntheti	c wastewater		wastewater	
Treatment process ^a	Removal range,	Average achievable	Removal range,	Average achievable	Volume III references, Section numbers
	010	_conc., µg/L	0	conc., µg/L	Section numbers
Gravity oil separation			NA	>75	111.4.1
Gas flotation with chemical addition (calcium chloride, polymer)			o ^d	_d	111.4.5
Gas flotation with chemical addition (polymer)			33 ^e	12 ^e	111.4.5
Filtration	ť.		28->99	45	III.4.6
Sedimentation			23->63	85	III. 4 .2
Sedimentation with chemical addition (alum, lime)			50 ^e	46 ^e	III.4.3
Sedimentation with chemical addition (lime, polymer)			0 ^{d,e}	_d	III.4.3
Sedimentation with chemical addition (polymer)			o ^{d,e}	_d	III. 4 .3
Sedimentation with chemical addition (alum, polymer)			49->9 7	160	III.4.3
Anaerobic lagoons			50 ^e	5,000 ^e	111.5.3
Aerated lagoons			56->9 5	<16	111.5.3
Solvent extraction			90-97	11,000	111.5.6
Activated sludge			49->99	4,100	111.5.1
Powdered activated carbon adsorption			95 ^d	20,000 ^d	111.6.2
Granular activated carbon adsorption			48->80	73	III.6.1
Reverse osmosis			43-80	1.5	111.6.9

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR BENZENE^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

d Actual data indicate negative removal.

eOnly one data point.

REFERENCES

- Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume VI, Phenols, Cresols, and Monocyclic Aromatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 71-1 - 71-10.
- 2. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. pp. 113-117.
- Dobbs, R. A., R. J. Middendorf, and J. M. Cohen. Carbon Adsorption Isotherms for Toxic Organics. U.S. Environmental Protection Agency, Cincinnati, Ohio, 1978.

Date: 8/13/79

.

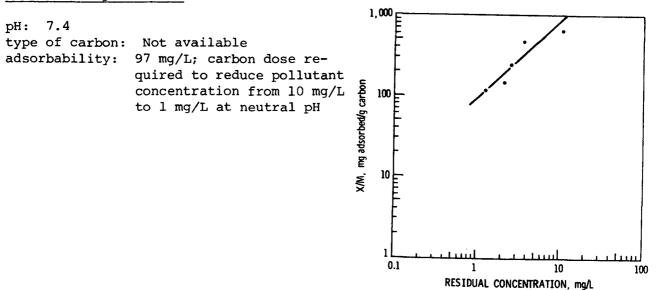
Compound: Chlorobenzene

Formula:

C1

Alternate Names: Monochlorobenzene, Benzene chloride

CAS #: 108-90-7


Physical, Chemical, and Biological Properties [1]

mol. wt.: 112.6 m.p., °C: -45 b.p. (760 torr), °C: 132 vapor pressure (25°C), torr: Conflicting data reported solubility in water (25°C), mg/L: 488 log octanol/water partition coefficient: 2.84 Henry's law constant: 3.56×10^{-3} atmos. m³/mole biodegradability: Not available

Probable Fate [1]

photolysis: Lack of data probably indicates relative unimportance oxidation: No data on aqueous oxidation; photooxidation of volatilized chlorobenzene is slower than photooxidation of benzene hydrolysis: Not important volatilization: Very rapid volatilization is the main transport process sorption: Chlorobenzene is presumably sorbed by organic materials biological processes: High potential for bioaccumulation and magnification; biodegradation very slow other reactions/interactions: There is a low probability of further chlorinating chlorobenzene by reaction with chlorinecontaining water

Carbon Adsorption Data [2]

Date: 8/13/79

I.9.2-1

	Raw wastewater								
	Conce	ntration,	µg/L	Loa d:	ing, ^c kg/d				
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Textile mills	NA	300	25 ^d	0.00010	0.72	0.045			
Auto and other laundries	ND	12	6	5.4 x 10 ⁻⁶	0.0084	0.0013			
Pharmaceutical manufacturing	ND	600	67	0	0.46	0.062			
Leather tanning and finishing	ND	NA	1.4	0	NA	0.0021			
Iron and steel manufacturing	NA	NA	<10	0	NA	<1.8			
Nonferrous metals manufacturing	ND	40	3.9	0	NA	0.21			

INDUSTRIAL OCCURRENCE OF CHLOROBENZENE^{a, b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reporteed in Section I.3, where mean is not available, 1/2 the reported maximum was utilized.

d Median, not average.

INDUSTRIAL OCCURRENCE OF CHLOROBENZENE^{a,b}

	Treated wastewater								
	Concer	ntration,	Loading, c kg/d						
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Textile mills	NA	3.5 ^d	3.5 ^d	1.5 x 10 ⁻⁵	0.10	0.0063			
Pharmaceutical manufacturing	ND	200	22	0	0.15	0.020			
Foundries	NA	200 470 ^d	22 470 ^d	0	3.10	1.3			
Iron and steel manufacturing	NA	NA	<10	0	NA	<1.8			
Nonferrous metals manufacturing	ND	65	4	0	NA	0.21			

I.9.2-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dOne sample.

I.9.2-4

	Syntheti	c wastewater	Actual	wastewater		
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
Filtration			0 ^d	_ ^d	III.4.6	
Activated sludge			71->99	5	III.5.1	
Granular activated carbon adsorption			>96 ^e	<0.2 ^e	III.6.1	

POLLUTANT	REMOVABILITY/TREATABILITY	WASTEWATER	TREATMENT	ALTERNATIVE	FOR	CHLOROBENZENE ^{a, b}
						•••••

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

d Actual data indicate negative removal.

^eOnly one data point.

REFERENCES

 Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume VI, Phenols, Cresols, and Monocyclic Aromatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 72-1 - 72-10.

-

2. Dobbs, R. A., R. J. Middendorf, and J. M. Cohen. Carbon Adsorption Isotherms for Toxic Organics. U.S. Environmental Protection Agency, Cincinnati, Ohio, 1978.

•

. .

.

Compound: 1,2-Dichlorobenzene

Formula: Cl

C1

Alternate Names: O-Dichlorobenzene, Orthodichlorobenzene, Dowtherm E

CAS #: 95-50-1

Physical, Chemical, and Biological Properties [1, 2]

Probable Fate [1]

Carbon Adsorption Data: Not available

	Raw wastewater							
	Concen	tration, µ	g/L	Loading, ^C kg/d				
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Coal mining	ND	<10	<1.2	0	0.032	0.0045		
Textile mills	NA	280	2 ^d	8.4 x 10 ⁻⁶	0.58	0.0036		
Auto and other laundries ^e	ND	1,100	30	2.7 x 10 ⁻⁵	0.042	0.0063		
Pharmaceutical manufacturing	ND	ND	ND	ND	ND	ND		
Steam electric power generating (condenser cooling system) ^e Steam electric power generating	<10	26	20	0.0011	0.022	0.0040		
(ash handling) ^e	NA	65	53	0.001	5.3 x 10 ⁻⁵	1.2		
Leather Tanning and finishing	ND	200	69	0	NA	0.10		

INDUSTRIAL OCCURRENCE OF 1,2-DICHLOROBENZENE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3, where mean is not available, 1/2 the reported maximum was utilized.

d Median, not average.

e Analytical method did not distinguish between dichlorobenzene isomers.

Date:

INDUSTRIAL OCCURRENCE OF 1,2-DICHLOROBENZENE^{a,b}

	Treated wastewater							
Industry	Conce	ntration, μ	Loading, ^C kg/d					
	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Coal mining	ND	<6.7	<1,5	0	0.040	0.0057		
Textile mills	NA	20	<1a5 10 ^a	0.000042	0.029 ė	0.018 _e		
Pharmaceutical manufacturing	ND	ND	ND	_ ^e	_e	_e		
Iron and steel manufacturing	NA	NA	15	0	NA	2.7		
Leather tanning and finishing	ND	69	13	0	NA	0.020		

I.9.3-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d Median, not average.

^eMean pollutant concentration below detection limit.

Date:	
12/5/79	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR 1,2-DICHLOROBENZENE^{a,b}

Synthetic wastewater		Actual	wastewater		
Removal range,	Average achievable conc.ug/L	Removal range,	Average achievable conc. ug/L	Volume III references, Section numbers	
			,,,		
		76 ^d	260 ^d	III.4.5	
		50 ->94	3.8	III.4.6	
		>99 ^d	<0.05 ^d	III.4.3	
		25->50	<12	III.4.3	
		>96 ^d	<10 ^d	III.5.3	
		73->99	<8	III.5.1	
		>99	<0.05	III.6.1	
	Removal	Removal Average range, achievable	Removal Average Removal range, achievable range, % conc., µg/L % 76 ^d 50->94 >99 ^d 25->50 >96 ^d 73->99	Removal range, achievable conc., µg/LRemoval range, conc., µg/LAverage achievable conc., µg/L76d 76d 260d 50->94260d 3.8 3.8 >99d <0.05d	

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

REFERENCES

 Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume VI, Phenols, Cresols, and Monocyclic Aromatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 73-1 - 73-8.

-

2. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. pp. 224, 225.

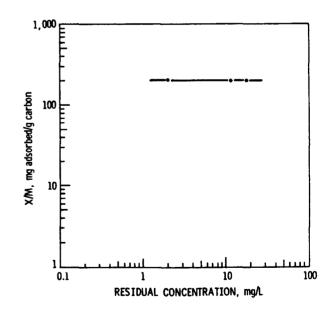
.

Compound: 1,3-Dichlorobenzene

Formula:

C1

Alternate Names: *m*-Dichlorobenzene, Metadichlorobenzene


CAS #: 541-73-1

Physical, Chemical, and Biological Properties [1, 2]

Probable Fate [1]

Carbon Adsorption Data [3]

pH: Not available
type of carbon: Filtrasorb-300
adsorbability: Not available

Date: 8/13/79

I.9.4-1

щ		
12,		
ີ		
79		
Ψ		

Date:

			Raw	wastewater		
	Concentration, µg/L			Loading, ^C kg/d		
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean
Auto and other laundries ^d Steam electric power generating	ND	1,100	30	2.7 x 10 ⁻⁵	0.042	0.0063
(condenser cooling system) ^d Steam electric power generating	<10	26	20	0.0011	0.022	0.0048
(water treatment) Steam electric power generating	NA	NA	1	6.1 x 10 ⁻⁹	0.060	0.00015
(ash handling)d	NA	65	53	0.0010	5.2	1.2
Iron and steel manufacturing	NA	NA	79	0	NA	14

INDUSTRIAL OCCURRENCE OF 1,3-DICHLOROBENZENE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3, where mean is not available, 1/2 the reported maximum was utilized.

^dAnalytical method did not distinguish between the dichlorobenzene isomers.

I.9.4-3

Industry	Treated wastewater							
	Conce	Loading, ^C kg/d						
	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Iron and steel manufacturing	NA	NA	2	0	NA	0.36		

INDUSTRIAL OCCURRENCE OF 1,3-DICHLOROBENZENE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

I.9.4-4

	Synthetic wastewater		Actual	wastewater		
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
Gravity oil separation			NA	3 ^d	III.4.1	
Gas flotation with chemical addition (calcium chloride, polymer)			76 ^d	260 ^d	III.4.5	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR 1,3-DICHLOROBENZENE^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

REFERENCES

 Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume VI, Phenols, Cresols, and Monocyclic Aromatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 74-1 - 74-8.

-

- 2. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. p. 226.
- 3. Report on visit of D. Stephan and W. Cawley, U.S. Environmental Protection Agency, to Calgon Environmental Systems Division, Calgon Corporation, Pittsburgh, Pennsylvania, 9 April 1979. 132 pp.

.

• .

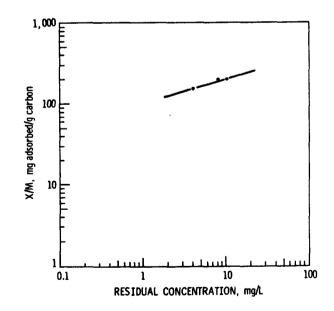
Compound: 1,4-Dichlorobenzene

Formula:

C1

C1

Alternate Names: p-Dichlorobenzene, Paradichlorobenzene


CAS #: 106-46-7

Physical, Chemical, and Biological Properties [1, 2]

Probable Fate [1]

Carbon Adsorption Data [3]

pH: Not available type of carbon: Filtrasorb-300 adsorbability: Not available

Date: 8/13/79

I.9.5-1

			Raw was	stewater				
	Conce	entration,	µg/L	Load	Loading, ^C kg/d			
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Coal mining	ND	<10	<1.1	0	0.029	0.0014		
Textile mills	NA	220	110 ^d	0.00046	3.2	0.20		
Auto and other laundries	ND	1,100	30	2.7 x 10 ⁻⁵	0.042	0.0063		
Pharmaceutical manufacturing	ND	5	0.55	0	0.0037	0.5		
Steam electric power generating								
(condenser cooling system) ^e	<10	26	20	0.0011	0.022	0.0048		
Steam electric power generating								
(ash handling) ^e	NA	65	53	0.001	5.2	0.0013		
Leather tanning and finishing	NA	NA	15	0	NA	0.022		
Nonferrous metals manufacturing	ND	26	4.3	0	NA	0.23		

INDUSTRIAL OCCURENCE OF 1,4-DICHLOROBENZENE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

b NA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dMedian, not average.

^eAnalytical method did not distinguish between the dichlorobenzene isomers.

I.9.5-2

			Treated w	wastewater	
Industry	Concer	ntration, µ	Loading, ^C kg/		
	Minimum	Maximum	Mean	Minimum	Maximum
Coal mining	ND	<10	<1.3,	0	0.034
fextile mills	NA	1.5	0.8 ^a	3.4×10^{-6}	0.023
Pharmaceutical manufacturing	ND	1.0	0.11	0	0.00075
Iron and steel manufacturing	NA	NA	73	0	NA

INDUSTRIAL OCCURRENCE OF 1.4-DICHLOROBENZENE^{a,b}

21

5

0

kg/d

NA

Mean

0.0049

0.0014

0.00010

0.0075

13

5-3 3

н.

9.

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

ND

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d Median, not average.

Leather tanning and finishing

	Synthetic wastewater		Actual	wastewater	
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers
Gas flotation with chemical addition (calcium chloride, polymer)			76 ^d	260 ^d	III.4.5
Aerated lagoons			>81 ^d	$< 10^{\mathbf{d}}$	III.5.3
Activated sludge			>82->99	<5	III.5.1

POLLUTANT REMOVABILITY/TREATABILITY	WASTEWATER TI	REATMENT AL	TERNATIVE	FOR 1	.4-DICHLOROBENZENE ^{a,b}
					, i bienzeneobinzene

^aSee Volume III for detailed information.

 b NA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

I.9.5-4

REFERENCES

- Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume VI, Phenols, Cresols, and Monocyclic Aromatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 75-1 - 75-2.
- 2. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. p. 226.
- 3. Report on visit of D. Stephan and W. Cawley, U.S. Environmental Protection Agency, to Calgon Environmental Systems Division, Calgon Corporation, Pittsburgh, Pennsylvania, 9 April 1979. 132 pp.

-

Compound: 1,2,4-Trichlorobenzene

Formula:

C1

Alternate Names: unsym-Trichlorobenzene

CAS #: 120-82-1

Physical, Chemical, and Biological Properties [1-3]

mol. wt.: 181.4 m.p., °C: 17.0 b.p. (760 torr), °C: 214
vapor pressure (25°C), torr: 0.42 (calculated)
solubility in water (temp. unknown), mg/L: 30
log octanol/water partition coefficient: 4.26
Henry's law constant: Not available
biodegradability: 92% ring disruption by Pseudomonas at 30°C of a 200 mg/L
solution in 120 hr

Probable Fate [1]

photolysis: Lack of data probably indicates relative unimportance oxidation: Oxidized by hydroxy radicals after volatilization hydrolysis: Not important volatilization: Very rapid volatilization can be hindered by adsorption if organics are present sorption: High potential for adsorption by organic materials biological processes: High potential for bioaccumulation; very little, if any biodegradation due to volatilization and adsorption other reactions/interactions: Not important

Carbon Adsorption Data: Not available

	Raw wastewater								
	Concen	tration, µ	g/L	Load	ding, ^C kg/0	3			
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Textile mills	NA	2,700	410 ^d	0.0017	12	0.74			
Steam electric power generating (condenser cooling system)	NA	NA	10 ^e	5.3 x 10 ⁻⁴	0.011	0.0024			
Foundries	ND	NA	7	0	0.047	0.0019			
Nonferrous metals manufacturing	ND	260	22	0	NA	1.2			

INDUSTRIAL OCCURRENCE OF 1,2,4-TRICHLOROBENZENE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dMedian, not average.

e Average of medians reported for various industry segments.

..

INC	TRIAL OCCURRENCE OF 1,	2,4-TRICH	LOROBENZEI	NE ^a
	······································		Treated	wastewater
	Conce	ntration,	µg/L	Loa
Industry	Minimum	Maximum	Mean	Minimum
Fextile mills	NA	1,500	610	0.0026
Foundries	<20	570	290	0

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

Nonferrous metals manufacturing

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

ND

47

4.4

0

Loading,^C kg/d

Maximum

18

NA

1.9

Mean

1.1 0.78

0.0066

I.9.6-3

,	
)	
ì	
i	POLLUTA
)	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR 1,2,4-TRICHLOROBENZENE^{a,b}

	Syntheti	<u>c wastewater</u>	Actual	wastewater		
Treatment process ^a	Removal range, %	Average (achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
Filtration			37 ^d	94 ^d	III.4.6	
Sedimentation			0 ^{d,e}	_e	III.4.2	
Sedimentation with chemical addition (alum, lime)			91 ^d	150 ^d	111.4.3	
Sedimentation with chemical addition (alum)			90 ^d	150 ^d	III.4.3	
Activated sludge			67->99	98	111.5.1	
Granular activated carbon adsorption			>93 ^d	<0.04 ^d	111.6.1	

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

^eActual data indicate negative removal.

I.9.6-4

REFERENCES

- Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume VI, Phenols, Cresols, and Monocyclic Aromatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 76-1 - 76-10.
- 2. Spencer, W. F. and W. J. Farmer. Assessment of the Vapor Behavior of Toxic Organic Chemicals. Contribution of Federal Research, SEA, USDA, and the University of California, Riverside, California.
- 3. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. p. 604.

.

,

Compound: Hexachlorobenzene

Formula:

C1

C1

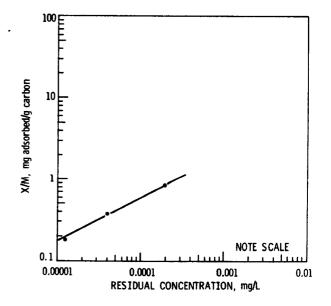
C1

C1

C1

Alternate Names: Perchlorobenzene, HCB

CAS #: 118-74-1


Physical, Chemical, and Biological Properties [1]

mol. wt.: 284.8 m.p., °C: 230 b.p. (760 torr), °C: 322 vapor pressure (20°C), torr: 1.09×10^{-5} solubility in water (25°C), µg/L: 6 log octanol/water partition coefficient: 6.18 Henry's law constant: Not available biodegradability: No degradation by Pseudomonas at 30°C in 120 hr

Probable Fate [1]

Carbon Adsorption Data [2]

pH: Not available type of carbon: Filtrasorb-300 adsorbability: Not available

Date: 8/13/79

I.9.7-1

	Raw wastewater								
	Conce	entration,	µg/L	Loading, ^C kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Textile mills	NA	2	1.3 ^d	5.5 x 10 ⁻⁶	0.037	0.0023			
Nonferrous metals manufacturing	ND	5,000	220	0	NA	12			

INDUSTRIAL OCCURRENCE OF HEXACHLOROBENZENE^{a, b}

I.9.7-2

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d Median, not average.

		T	reated w	astewater		
Industry	Concer	ntration, µ	Loading, ^C kg/d			
	Minimum	Maximum	Mean	Minimum	Maximum	Mean
Textile mills	NA	NA	NA	NA	NA	NA
Iron and steel manufacturing	NA	NA	210	0	NA	38
Nonferrous metals manufacturing	ND	220	30	0	NA	1.6

INDUSTRIAL OCCURRENCE OF HEXACHLOROBENZENE^{a,b}

I.9.7-3

Date:

12/5/79

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

I.9.7-4

	Syntheti	c wastewater	Actual	wastewater		
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
Aerated lagoons			0 ^{d,e}	_ ^e	III.5.3	
Activated sludge			47->97	0.4	III.5.1	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR HEXACHLOROBENZENE^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

d_{Only one data point.}

^eActual data indicate negative removal.

REFERENCES

- Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume VI, Phenols, Cresols, and Monocyclic Aromatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 77-1 - 77-13.
- 2. Report on visit of D. Stephan and W. Cawley, U.S. Environmental Protection Agency, to Calgon Environmental Systems Division, Calgon Corporation, Pittsburgh, Pennsylvania, 9 April 1979. 132 pp.

.

•

Formula: CH2CH3 Compound: Ethylbenzene Alternate Names: Phenylethane, Ethylbenzol CAS #: 100-41-4 Physical, Chemical, and Biological Properties [1, 2] b.p. (760 torr), °C: 136 mol. wt.: 106.2 m.p., °C: -94.9 vapor pressure (20°C), torr: 7 solubility in water (20°C), mg/L: 152 log octanol/water partition coefficient: 3.15 Henry's law constant: 6.44 atmos. m³/mole biodegradability: 27% theoretical oxidation of 500 ppm solution by phenolacclimated activated sludge after 12 hr aeration Probable Fate [1] photolysis: Photooxidation after volatilization is the principal fate of ethylbenzene oxidation: Not important other than in the case of photooxidation hydrolysis: Not important volatilization: Principal transport process for ethylbenzene sorption: Probably adsorbed by organic materials biological processes: Very little potential for bioaccumulation; can be used as sole carbon source by some microbes other reactions/interactions: Not important Carbon Adsorption Data [3] 1,000 pH: 7.3 type of carbon: Not available adsorbability: 170 mg/L; carbon dose recarbon quired to reduce pollutant 100 concentration from 10 mg/L X/M, mg adsorbed/g to 1 mg/L at neutral pH 10

Date: 8/13/79

I.9.8-1

0.1

1

10

RESIDUAL CONCENTRATION, mg/L

100

			Raw w	astewater			
	Conce	entration,	µg/L	Loading, ^C kg/d			
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean	
Coal mining	ND	<6.7	<1,	0	0.026	0.003	
Textile mills	NA	2,800	54 ^d	0.00023	1.6	0.097	
Timber products processing	BDL	2,100	37 ^d	0	1.7	0.003	
Petroleum refining	NA	NA	>100 ^d	0	9.3	0.58	
Paint and ink formulation	ND	15,000	3,400	0	0.16	0.005	
Gum and wood chemicals	20	28,000	4,700	0.042	35	7.7	
Rubber processing	NA	500	1,500	0.00030	1.3	0.049	
Pulp, paper and paperboard mills	NA	<1 ^e	<1 ^e	0	NA	0.030	
Auto and other laundries	ND	17,000	550	0.00050	0.77	0.12	
Pharmaceutical manufacturing	ND	86	16	0	1.1 x 10 ⁻¹	1.5 x 10	
Ore mining and dressing	ND	8.8	4.4	0	NA	0.16	
Steam electric power generating			£				
(water treatment)	NA	NA	3f	1.8 x 10 ⁻⁸	0.18	0.000	
Coil coating	NA	<10 ^e	<10 ^e	0.00050	0.0048	0.018	
Foundries	ND	NA	39	0	0.26	0.11	
Leather tanning and finishing	ND	NA	65	0	NA	9.8 x 10	
Nonferrous metals manufacturing	ND	21	2.5	0	NA	0.13	
Iron and steel manufacturing	NA	39,000	61	0	NA	11	

INDUSTRIAL OCCURRENCE OF ETHYLBENZENE^{a, b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d Median, not average.

^eOne sample.

 ${}^{\rm f}_{\rm Average}$ of medians reported for various industry segments.

	Treated wastewater								
	Conce	entration, mg/L		Loading, ^C kg/d					
Industry	Minimum	Maximum Mea	n Mi	nimum Max	imum Me	ean			
Coal mining	ND	<6.7	<0,9	0	0.024	0.003			
Textile mills	NA	3,000	<0_9 63	0.00026	1.8	0.11			
Timber products processing	BDL	140	20 ^e	0	0.92	0.001			
Petroleum refining	NA	NA	NA	NA	NA	NA			
Paint and ink formulation	ND	74,000	4,100	0	0.19	0.006			
Gum and wood chemicals	BDL	10 ^r	<10 ^r	9.0×10^{-5}	0.076	0.016			
Rubber processing	NA	>100	>26	5.2×10^{-6}	0.022	0.000			
Pulp, paper and paperboard mills	<1	74	<16	0	NA	0.48			
Auto and other laundries	NA	110 ^e	110 ^e	0.00010	0.154	0.023			
Pharmaceutical manufacturing	ND	11	1,6	0	0.011	0.00]			
Foundries	NA	<20 ^e	<20 ^e	0	0.13	0.054			
Iron and steel manufacturing	NA	4,400	110	0	NA	20			
Nonferrous metals manufacturing	ND	49	1.9	0	NA	0.10			
Leather tanning and finishing	ND	. 12	5	0	NA	0.00			

INDUSTRIAL OCCURRENCE OF ETHYLBENZENE^{A, b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d Median, not average.

^eAverage of medians reported for various industry segments.

f_{One sample.}

I.9.8-3

	Syntheti	c wastewater	Actual	wastewater		
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
Gravity oil separation			NA	>50	III.4 .1	
Gas flotation			>99 ^d	ND	III.4.4	
Gas flotation with chemical addition (calcium						
chloride, polymer)	• •		40->99	280	III.4.5	
Gas flotation with chemical addition (polymer)	t		65 ^d	160 ^d	III.4.5	
Gas flotation with chemical addition (alum, polymer)			0 ^{d,e}	_e	111.4.5	
Filtration			>75->99	<2.1	III.4.6	
Sedimentation			47-78	1,000	III.4.6	
edimentation with chemical addition (alum, lime)			>97-98	11	111.4.3	
Sedimentation with chemical addition (polymer)			81 ^d	130 ^d	III.4.3	
Sedimentation with chemical addition (alum, polymer)			>80->94	430	III.4.3	
Sedimentation with chemical addition (alum)			0 ^e	_e	111.4.3	
Aerated lagoons			>78->94	<10	111.5.3	
Solvent extraction			97 ^d	4,000 ^d	111.5.6	
Activated sludge			80->99	170	111.5.1	
Powdered activated carbon adsorption			87 ^d	18,000	III.6.2	
Granular activated carbon adsorption			٥ ^{d, e}	-e	III.6.1	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR ETHYLBENZENE^{A, b}

^aSee Volume III for detailed information.

bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

^eActual data indicate negative removal.

REFERENCES

 Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume VI, Phenols, Cresols, and Monocyclic Aromatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 78-1 - 78-5.

-

- 2. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. pp. 307-309.
- Dobbs, R. A., R. J. Middendorf, and J. M. Cohen. Carbon Adsorption Isotherms for Toxic Organics. U.S. Environmental Protection Agency, Cincinnati, Ohio, 1978.

.

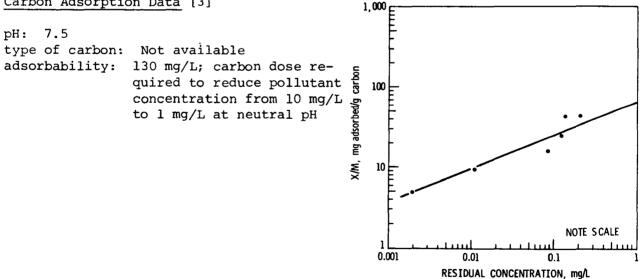
Compound: Nitrobenzene

Formula:

NO₂

Alternate Names: Nitrobenzol

CAS #: 98-95-3


Physical, Chemical, and Biological Properties [1, 2]

b.p. (760 torr), °C: 211 mol. wt.: 123.1 m.p., °C: 5.6 vapor pressure (20°C), torr: 0.15 solubility in water (20°C), mg/L: 1,900 log octanol/water partition coefficient: 1.85 Henry's law constant: 1.53 x 10⁻⁵ atmos. m³/mole biodegradability: 98% nitrobenzene removal (measured as COD removal) obtained at 20°C in activated sludge at a rate of 14 mg COD/g dry innoculum/hr

Probable Fate [1]

photolysis: Photoreduction could occur if nitrobenzene is adsorbed onto humus particles oxidation: Only important as method of destroying photoreduction products hydrolysis: Not important volatilization: Not fast enough to be important sorption: Adsorbed by humus and probably by clay biological processes: No bioaccumulation of any significance; biodegradation is relatively slow other reactions/interactions: Not important

Carbon Adsorption Data [3]

	Raw wastewater								
Industry	Conce	entration,	µg/L	Loading, ^C kg/d					
	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	ND	7	0.9	0	0.024	0.0034			
Paint and ink formulation	ND	180	100	0	0.0046	0.00016			
Pharmaceutical manufacturing	ND	ND	ND	ND	ND	ND			
Foundries	ND	280	94	0	0.063	0.25			
Leather tanning and finishing	ND	NA	73	0	NA	0.11			
Iron and steel manufacturing	NA	NA	1,400	0	NA	252			
Nonferrous metals manufacturing	ND	160	11	0	NA	0.58			

INDUSTRIAL OCCURRENCE OF NITROBENZENE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

	Treated wastewater							
	Concer	ntration, µ	Loading, ^C kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Coal mining	NA	ND	ND	_d	_d	_d		
Paint and ink formulation	ND	7,200	1,800	0,	0.083	0.0029		
Pharmaceutical manufacturing	ND	ND	ND	_a	-a	_ ^u		
Foundries	<20	<20	<20	0	0.13	0.054		
Iron and steel manufacturing	NA	NA	6	0	NA	1.1		
Nonferrous metals manufacturing	ND	5.5	2.8	0	NA	0.15		

INDUSTRIAL OCCURRENCE OF NITROBENZENE^{a,b}

I.9.9-

ŵ

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dMean pollutant concentration below detection limit.

	Syntheti	c_wastewater	Actual	wastewater	
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers
Sedimentation			>52 ^d	<10 ^d	III.4.2
Sedimentation with chemical addition (alum)			68 ^d	35 ^d	III.4.3
Aerated lagoons			>0 ^{d,e}	_e	111.5.3
Powdered activated carbon adsorption			79 ^d	67,000 ^d	III.6.2

a b

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

^eActual data indicate negative removal.

I.9.9-4

REFERENCES

- Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume VI, Phenols, Cresols, and Monocyclic Aromatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 79-1 - 79-8.
- 2. Pitter, P. Determination of Biological Degradability of Organic Substances. Water Research, 10:1-5, 1976.
- 3. Dobbs, R. A., R. J. Middendorf, and J. M. Cohen. Carbon Adsorption Isotherms for Toxic Organics. U.S. Environmental Protection Agency, Cincinnati, Ohio, 1978.

.

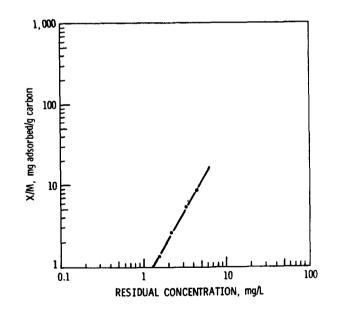
Compound: Toluene

Formula:

CHa

Alternate Names: Toluol, Phenylmethane, Methylbenzene, Methylbenzol, Methacide

CAS #: 108-88-3


Physical, Chemical, and Biological Properties [1]

mol. wt.: 92.13 m.p., °C: -95 b.p. (760 torr), °C: 111
vapor pressure (25°C), torr: 28.7
solubility in water (25°C), mg/L: 535
log octanol/water partition coefficient: 2.69
Henry's law constant: Not available
biodegradability: Not available

Probable Fate [1]

Carbon Adsorption Data [2]

pH: Not available
type of carbon: Filtrasorb-300
adsorbability: Not available

Date: 8/13/79

I.9.10-1

			Raw was	tewater			
	Co	oncentration,	µg/L	Loading, c kg/d			
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean	
Coal mining	ND	8	1.1	0	0.029	0.0041	
Textile mills	NA	620	26 ^d	0.00011	0.75	0.047	
Timber products processing	BDL	3,200	180 ^e	0	8.3	0.015	
Petroleum refining	NA	·NA	>100 ^d	0	9.3	0.58	
Paint and ink formulation	ND	260,000	10,000	0	0.46	0.016	
Gum and wood chemicals	20	17,000	2,600	0.023	20	4.3	
Rubber processing	0	350	77	1.5 x 10 ⁻⁵	0.066	0.0025	
Pulp, paper and paperboard mills	<1	14	<4	0	NA	0.12	
Auto and other laundries	ND	51,000	1,300	0.0012	1.8	0.0002	
Pharmaceutical manufacturing	ND	17,000	2,400	0	16.3	2.2	
Ore mining and dressing	ND	0.64	0.36	0	NA	0.013	
Steam electric power generators			-				
(water treatment)	NA	NA	98 ^e	6 x 10 ⁻⁷	5.9	0.015	
Coil coating	<10	<10	<10	<0.0005	<0.018	<0.0048	
Foundries	ND	NA	120	0	0.80	0.32	
Leather tanning and finishing	ND	400	67	0	NA	0.10	
Nonferrous metals manufacturing	ND	55	6.9	0	NA	0.37	
Iron and steel manufacturing	NA	17,000	590	0	NA	106	

INDUSTRIAL OCCURRENCE OF TOLUENE

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d Median, not average.

^eAverage of medians reported for various industry segments.

			Trea	ted wastewater	•	
	Concentration, mg/L			Loading, ^C kg/d		
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean
Coal mining	ND	7.3	1_{0}^{7}	0	0.045	0.0064
Textile mills	NA	1,400	14 ^a	5.9 × 10 ⁻⁵	0.40	0.025
Timber products processing	BDL	33_	BDL	_ ^e	_e	_e
Petroleum refining	NA	35 [±]	35 [‡]	0	3.2	0.20
Paint and ink formulation	ND	1,100	590	0	0.027	0.0009
Gum and wood chemials	10	2,000	660	0.0059	5.0	1.1
Rubber processing	NA	420	77	1.5 x 10 ⁻⁵	0.066	0.0025
Pulp, paper and paperboard mills	<1	55	<7	0	NA	0.21
Auto and other laundries	6	79 0	400	0.00036	0.56	0.084
Pharmaceutical manufacturing	ND	700	97	0	0.66	0.089
Foundries	<10	180	41	0	0.27	0.11
Iron and steel manufacturing	NA	NA	190	0	NA	34
Nonferrous metals manufacturing	ND	69	1.7	0	NA	0.09
Leather tanning and finishing	ND	<10	<8	0	NA	0.012

INDUSTRIAL OCCURRENCE OF TOLUENE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d Median, not average.

^eMean pollutant concentration below detection limit.

^fOne sample.

Date:	
12/5/79	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR TOLUENE^{a,b}

	Syntheti	c wastewater	Actual	wastewater		
Treatment process ^a	Removal range,	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
Gravity oil separation			NA	>65	III.4.1	
Gas flotation			>92 ^d	ND	III.4.4	
Gas flotation with chemical addition (calcium chloride, polymer)			19-65	1,000	111.4.5	
Gas flotation with chemical addition (polymer)			59 ^d	130 ^d	III.4.5	
Gas flotation with chemical addition (alum, polymer)			10 ^d	4.5 ^d	III.4.5	
Filtration			37->99	26	III.4.6	
Sedimentation			23-76	290	III.4.2	
Sedimentation with chemical addition (alum, lime)			76-96	43	III.4.3	
Sedimentation with chemical addition (lime, polymer)			0 ^{d,e}	_e	111.4.3	
Sedimentation with chemical addition (polymer)			20-3 9	950	III.4.3	
Sedimentation with chemical addition (alum, polymer)			18-73	990	111.4.3	
Sedimentation with chemical addition (alum)			49-93	1,260	111.4.3	
Sedimentation with chemical addition (lime)			0 ^{d,e}	_e	III.4.3	
Aerated lagoons			>72-> 9 5	<14	111.5.3	
Steam stripping			95-96	1,950	111.5.6	
Ozonation			15-31	1	111.6.14	
Activated sludge			49->99	57	111.5.1	
Granular activated carbon adsorption			38->99 ^d	80 ^d	111.6.1	
Reverse osmosis			3.8-12	17.5	III.6.9	

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

d_{Only one data point.}

• Actual data indicate negative removal.

REFERENCES

- Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume VI, Phenols, Cresols, and Monocyclic Aromatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 80-1 - 80-7.
- Report on visit of D. Stephan and W. Cawley, U.S. Environmental Protection Agency, to Calgon Environmental Systems Division, Calgon Corporation, Pittsburgh, Pennsylvania, 9 April 1979. 132 pp.

-

Compound: 2,4-Dinitrotoluene

Formula:

СНз

NO₂

NO2

Alternate Names: Dinitrotoluol, DNT, 1-Methyl-2,4-dinitrotoluene

CAS #: 121-14-2

Physical, Chemical, and Biological Properties [1]

mol. wt.: 182.1 m.p., °C: 70 b.p. (760 torr), °C: 300
vapor pressure (59°C), torr: 0.0013
solubility in water (22°C), mg/L: 270
log octanol/water partition coefficient: 2.01
Henry's law constant: Not available
biodegradability: Not available

Probable Fate [1]

photolysis: Intramolecular photolysis could be an important fate oxidation: Oxidation could follow adsorption onto clay particles hydrolysis: Not important volatilization: Too slow to be important sorption: 2,4-Dinitrotoluene should be strongly sorbed by humus and clay biological processes: Some bioaccumulation possible; biodegradation very slow other reactions/interactions: Not important

Carbon Adsorption Data: Not available

Date: 8/13/79

I.9.11-1

	, Raw wastewater							
	Concer	ntration,	µg/L	Loading, ^C kg/d				
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Coal mining	ND	6	0.8	0	0.021	0.0030		
Pharmaceutical manufacturing	ND	49	12	0	0.082	0.011		
Foundries	ND	<50	15	0	0.10	0.041		
Iron and steel manufacturing	NA	NA	710	0	NA	0.13		
Nonferrous metals manufacturing	ND	16	1.7	0	NA	0.090		

INDUSTRIAL OCCURRENCE OF 2,4-DINITROTOLUENE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

		T	reated wa	astewater		
	Concei	Loading, ^C kg/d				
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean
Coal mining	NA	ND	ND	_d	_d	_d
Pharmaceutical manufacturing	ND	ND	ND	_a	_a	_d
Foundries	<17	300	160	0	1.1	0.43
Iron and steel manufacturing	NA	NA	22	0	NA	4.0
Nonferrous metals manufacturing	ND	7	0.9	0	NA	0.048

INDUSTRIAL OCCURRENCE OF 2,4-DINITROTOLUENE^{a,b}

I.9.11-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dMean pollutant concentration below detection limit.

	Syntheti	c wastewater	Actual	wastewater	
Treatment process ^a	Removal range, %	Average achievable conc., μg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers
Sedimentation			80 ^{d,e}	10 ^d ,e	III.4.2
Aerated lagoons			0 ^{d,f}	_f	III.5.3

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATM	NT ALTERNATIVE FOR 2,4-DINITROTOLUENE ^{a,b}
---	--

I.9.11-4

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

d Only one data point.

^eAnalytical method did not distinguish betweem 2,4-dinitrotoluene and 2,6-dinitrotoluene.

^fActual data indicate negative removal.

 Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume VI, Phenols, Cresols, and Monocyclic Aromatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 81-1 - 81-8.

.

-

-

× ×

Compound: 2,6-Dinitrotoluene

Formula:

CH3

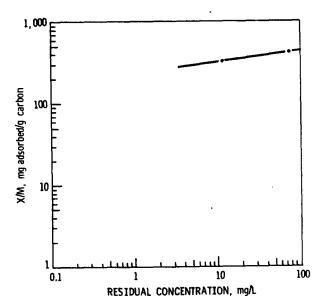
02N

NO2

Alternate Names: Dinitrotoluol

CAS #: 606-20-2

Physical, Chemical, and Biological Properties [1]


mol. wt.: 182.1 m.p., °C: 65 b.p. (760 torr), °C: 285
vapor pressure (25°C), torr: Not available
solubility in water (25°C), mg/L: Not available
log octanol/water partition coefficient: 2.05
Henry's law constant: Not available
biodegradability: Not available

Probable Fate [1]

photolysis: Intramolecular photolysis could be very important oxidation: Not important hydrolysis: Not important volatilization: Probably not an important transport process sorption: 2,6-Dinitrotoluene should be strongly sorbed by humus and clay biological processes: No data on bioaccumulation; biodegradation very slow other reactions/interactions: Not important

Carbon Adsorption Data [2]

pH: Not available type of carbon: Filtrasorb-300 adsorbability: Not available

Date: 8/13/79

1.9.12-1

	Raw wastewater								
	Concent	tration, µ	Loading, ^C kg/d						
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Textile mills	NA	54 ^d	54 ^d	0.00023	1.6	0.097			
Foundries	ND	<50	17	0	0.11	0.046			
Nonferrous metals manufacturing	ND	16	1.7	0	NA	0.090			
Iron and steel manufacturing	NA	47	25	0	NA	4.5			

INDUSTRIAL OCCURRENCE OF 2,6-DINITROTOLUENE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3, where mean is not available 1/2 the reported maximum was utilized.

^dOne sample.

	Treated wastewater							
	Concentration, µg/I			Loading, ^C kg/d				
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Textile mills	NA	NA	NA	NA	NA	NA		
Foundries	<17	300	160	0	1.1	0.43		
Iron and steel manufacturing	NA	NA	7	0	NA	1.3		
Nonferrous metals manufacturing	ND	1.0	0.1	0	NA	0.0053		

INDUSTRIAL OCCURRENCE OF 2,6-DINITROTOLUENE^{a,b}

I.9.12-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

Date:		
12/5/79]

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR 2,6-DINITROTOLUENE ^{a,b}	POLLUTANT REMOVABILITY/TREATABILITY	WASTEWATER	TREATMENT	ALTERNATIVE	FOR	2,6-DINITROTOLUENE ^{a,b}
--	-------------------------------------	------------	-----------	-------------	-----	-----------------------------------

	Syntheti	c wastewater	Actual	wastewater	
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., μg/L	Volume III references, Section numbers
Sedimentation			80 ^{d,e}	10 ^{d,e}	III.4.2
Sedimentation with chemical addition (lime)			>79 ^d	<10 ^d	III.4.3
Aerated lagoons			83 ^d	2 ^d	III.5.3
Activated sludge			0 ^{d,f}	_f	III.5. 1

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

^eAnalytical method did not distinguish between 2,4-dinitrotoluene and 2,6-dinitrotoluene.

f Actual data indicate negative removal.

 Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume VI, Phenols, Cresols, and Monocyclic Aromatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 82-1 - 82-9.

-

2. Report on visit of D. Stephan and W. Cawley, U.S. Environmental Protection Agency, to Calgon Environmental Systems Division, Calgon Corporation, Pittsburgh, Pennsylvania, 9 April 1979. 132 pp.

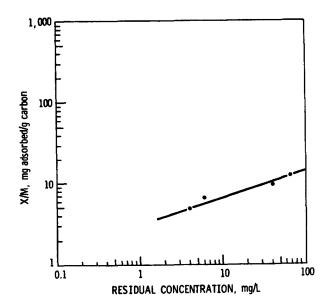
Compound: Aniline

Formula:

NH2

Alternate Names: Amino benzene, Phenylamine

CAS #: 62-53-3


Physical, Chemical, and Biological Properties [1, 2]

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data [3]

pH: 7.1 type of carbon: Filtrasorb-400 adsorbability: Not available

Date: 8/13/79

I.9.13-1

			a.b
INDUSTRIAL	OCCURRENCE	OF	ANILINE ^{a,b}

		Raw wastewater							
Industry		Conce	Loading, ^C kg/d						
		Minimum	Maximum	Mean	Minimum	Maximum	Mean		

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF ANILINE^{a, b}

	Treated wastewater						
	Concer	ntration, µ	Ig/L	Loading, ^C kg/d		'd	
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean	

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

		Syntheti	c wastewater	Actual	wastewater	
• 9	Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., μg/L	Volume III references, Section numbers
 س						

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR ANILINE^{a,b}

- ^bNA Not available, ND not detected, BDL below detection limit.
- ^CAverage and maximum removals reported.

^aSee Volume III for detailed information.

.

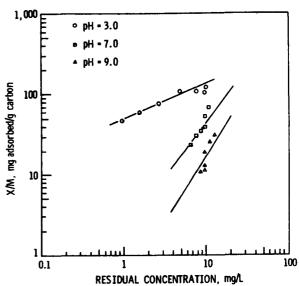
- 1. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. p. 102.
- 2. Pitter, P. Determination of Biological Degradability of Organic Substances. Water Research, 10:1-5, 1976.
- 3. Report on visit of D. Stephan and W. Cawley, U.S. Environmental Protection Agency, to Calgon Environmental Systems Division, Calgon Corporation, Pittsburgh, Pennsylvania, 9 April 1979. 132 pp.

Compound: Benzoic acid

Formula: COOH

Alternate Names: Benzenecarboxylic acid

CAS #: 62-53-3


Physical, Chemical, and Biological Properties [1, 2]

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data [3]

pH: 3.0, 7.0, 9.0
type of carbon: Not available
adsorbability: >10,000 mg/L; carbon dose
required to reduce pollutant concentration from
10 mg/L to 1 mg/L at
neutral pH

Date: 8/13/79

I.9.14-1

				a b
INDUSTRIAL	OCCURRENCE	OF	BENZOIC	ACID ^{ª,D}

	·	Raw wastewater					
	Concer	Concentration, µg/L			Loading, ^C kg/d		
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean	

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF BENZOIC ACID^{a,b}

		T	'reated w	astewater		
	Concer	ntration, µ	Ig/L	Lo	ading, ^C kg/	d
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

	Synthetic wastewater		Actual	wastewater		
Treatment process ^a	Removal	Average	Removal	Average	Volume III	
	range, ^C	achievable	range,	achievable	references,	
	%	conc., µg/L	%	conc., µg/L	Section numbers	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR BENZOIC ACID^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

-

- 1. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. p. 120.
- 2. Pitter, P. Determination of Biological Degradability of Organic Substances. Water Research, 10:1-5, 1976.
- 3. Dobbs, R. A., R. J. Middendorf, and J. M. Cohen. Carbon Adsorption Isotherms for Toxic Organics. U.S. Environmental Protection Agency, Cincinnati, Ohio, 1978.

Compound: Benzylchloride

Formula: CH₂Cl

Alternate Names: α-Chlorotoluene

CAS #: 100-44-7

Physical, Chemical, and Biological Properties [1]

mol. wt.: 126.6 m.p., °C: -41 to -43 b.p. (760 torr), °C: 179
vapor pressure (22°C), torr: 1
solubility in water (25°C), mg/L: Not available
log octanol/water partition coefficient: Not available
Henry's law constant: Not available
biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date: 8/13/79

INDUSTRIAL OCCURRENCE OF BENZYL CHLORIDE^{a, b}

	Industry	Raw wastewater						
		Conce	Concentration, µg/L			Loading, ^C kg/d		
		Minimum	Maximum	Mean	Minimum	Maximum	Mean	
-								

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

I.9.15-2

INDUSTRIAL OCCURRENCE OF BENZYL CHLORIDE^{a, b}

	Treated wastewater				
	Concentration, $\mu g/L$	Loading, ^C kg/d			
Industry	Minimum Maximum Mean	Minimum Maximum Mean			

I.9.15-3

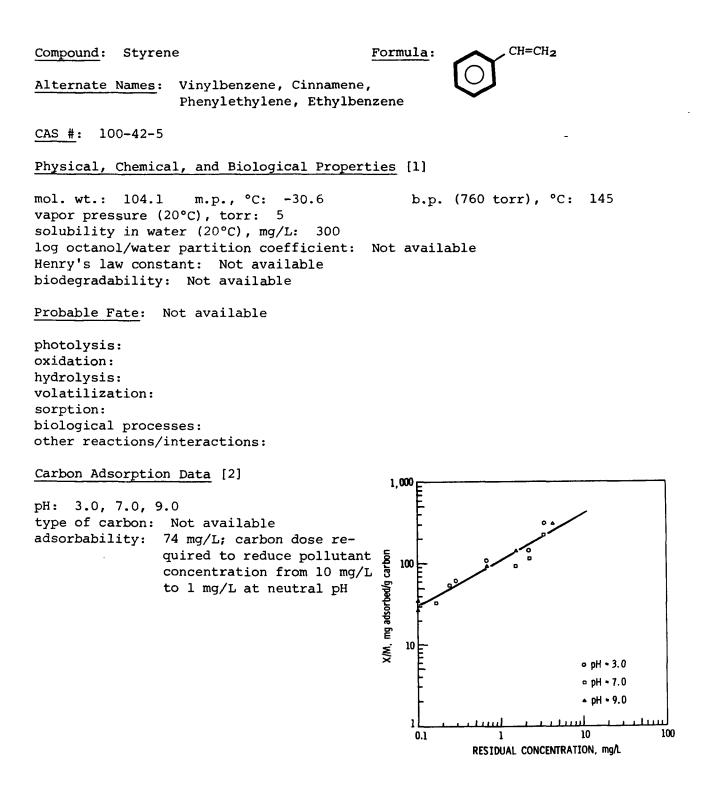
^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

						a h
POLLUTANT REMOVABILITY/TREATABILITY	UN CTEUNTED	THE R THREE NOT	ST TEDNISTIVE	FOD	DENTAT	
PULLUIANI REHOVADILIII/IREAIADILIII	WADIEWAIEK	IKEAIMENI	ALIEKNALIVE	ruk	BENZIL	CHLOKIDE

		Syntheti	c wastewater	Actual	wastewater	
6 · I	Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section_numbers
.15-4						

^aSee Volume III for detailed information.


^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

-

.

1. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. p. 126.

Date: 8/13/79

I.9.16-1

INDUSTRIAL OCCURRENCE OF STYRENE^{a,b}

		Raw wastewater						
Industry	Conce	Loading, ^C kg/d						
	Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean	

1.9.16-2

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF STYRENE^{a,b}

		T	reated w	astewater		
	Concentration, µg/L Loading, ckg/d		d			
Industry	Minimum			Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

I.9.16-4

	Syntheti	c wastewater	Actual	wastewater		
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
olvent extraction			>93 ^d	<1,000 ^d	111.5.6	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR STYRENE^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

-

- 1. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. p. 567.
- Dobbs, R. A., R. J. Middendorf, and J. M. Cohen. Carbon Adsorption Isotherms for Toxic Organics. U.S. Environmental Protection Agency, Cincinnati, Ohio, 1978.

-

Compound: Quinoline

Formula:

Alternate Names: Benzo(b)pyridine, 1-Benzazine

CAS #: 91-22-5

Physical, Chemical, and Biological Properties [1]

mol. wt.: 129.2 m.p., °C: -19.5 b.p. (760 torr), °C: 238
vapor pressure (60°C), torr: 1
solubility in water (temp. unknown), mg/L: 60,000
log octanol/water partition coefficient: Not available
Henry's law constant: Not available
biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date: 8/13/79

I.9.17-1

I.9.17-2

INDUSTRIAL OCCURRENCE OF QUINOLINE^{a,b}

	Raw wastewater						
	Concer	Loading, ^C kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mear	
4							
-							

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

b_{NA} - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF QUINOLINE^{a,b}

		T	reated w	astewater		
	Concer	ntration, µ	Ig/L	Loa	ading, ^C kg/	d
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

		Syntheti	.c wastewater	Actual	wastewater	
.9	Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., μg/L	Volume III references, Section numbers
 .17-4						

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR QUINOLINE^{a, b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

-

1. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. p. 560.

.

Formula: CH₃(C₆H₄)CH₃ and various Compound: Xylenes derivatives Alternate Names: Dimethylbenzenes, Methyltoluenes CAS #: Different for each compound; o-Xylene has CAS # 95-47-6 Physical, Chemical, and Biological Properties for o-Xylene [1] b.p. (760 torr), °C: 144 mol. wt.: 106.2 m.p., °C: -25.2 vapor pressure (32°C), torr: 10 solubility in water (25°C), mg/L: Insoluble log octanol/water partition coefficient: Not available Henry's law constant: Not available biodegradability: Not available Probable Fate: Not available photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions: Carbon Adsorption Data for p-Xylene [2] 1,000 pH: 7.3 type of carbon: Not available adsorbability: 110 mg/L; carbon dose re-K/W, mg adsorbed/g carbon quired to reduce pollutant 100 concentration from 10 mg/L to 1 mg/L at neutral pH 10 1 0.1 10 100 RESIDUAL CONCENTRATION, mg/L

Date: 8/13/79

I.9.18-1

]	Raw was	tewater		
	Concentration, µg/L			Loading, ^C kg/d		
Industry	Minimum	Maximum		Minimum	Maximum	Mean
Pulp, paper and paperboard mills	3	8	5	0	NA	0.15

INDUSTRIAL OCCURRENCE OF XYLENES^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

I.9.18-3

	Treated wastewater							
	Concei	Loading, c kg/d						
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Pulp, paper and paperboard mills	<1	400	<76	0	NA	2.3		

INDUSTRIAL OCCURRENCE OF XYLENES^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

	Syntheti	c wastewater	Actual	wastewater	
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section number
Trickling filters			0 ^{d,e}	_e	III.5.2
Solvent extraction			97->98	<4,000	III.5.6
Activated sludge			0 ^{d,e}	_ ^e	III.5.1

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR XYLENES^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

^eActual data indicate negative removal.

- Off-line Bibliographic Citation List Generated from the Toxicology Data Bank by MEDLARS II, National Library of Medicine's National Interactive Retrieval Service, Bethesda, Maryland, 11 June 1979. Part II, pp. 95, 96.
- Dobbs, R. A., R. J. Middendorf, and J. M. Cohen. Carbon Adsorption Isotherms for Toxic Organics. U.S. Environmental Protection Agency, Cincinnati, Ohio, 1978.

•

Formula: CH3 Compound: Nitrotoluene Alternate Names: Methyl nitrobenzene NO2 CAS #: 0, 88-72-2; m, 1321-12-6; p, 99-99-0 Physical, Chemical, and Biological Properties [1, 2] m.p., °C: 0, -10.6 to -4.1 b.p. (760 torr), °C: 0, 22.3 mol. wt.: 137.1 *m*, 15.5 *m*, 231 p, 51.3 p, 238 vapor pressure (20°C), torr: 0.1 solubility in water (30°C), mg/L: 0, 652; m, 498, p, 442 log octanol/water partition coefficient: Not available Henry's law constant: Not available biodegradability: o and p, 32.5 mg COD g⁻¹ dry innoculum h⁻¹; 98% removal by activated sludge at 20°C; m, 21.0 mg COD g⁻¹ dry innoculum h⁻¹; 99% removal by activated sludge at 20°C Probable Fate: Not available photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

INDUSTRIAL OCCURRENCE OF NITROTOLUENE^{a, b}

	Industry	Raw wastewater							
		Conce	Loading, kg/d						
		Minimum	Maximum	Mean	Minimum	Maximum	Mean		

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

			ah
INDUSTRIAL	OCCURRENCE	OF	NITROTOLUENE ^{a,b}

		T	reated w	astewater		
	Concer	ntration, µ	g/L	Lo	ading, ^c kg/	d
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

I.9.19-4

	Syntheti	c wastewater	Actual	wastewater	
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section number

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR NITROTOLUENE^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

_

- 1. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. pp. 495, 496.
- 2. Pitter, P. Determination of Biological Degradability of Organic Substances. Water Research, 10:1-5, 1976.

.

Compound: Naphthenic acid

Formula: Exact composition unknown [1]

b.p. (760 torr), °C:

Alternate Names:

CAS #: 1338-24-5

Physical, Chemical, and Biological Properties: Not available

mol. wt.: m.p., °C: vapor pressure (25°C), torr: solubility in water (25°C), mg/L: log octanol/water partition coefficient: Henry's law constant: biodegradability:

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date: 8/13/79

I.9.20-1

INDUSTRIAL OCCURRENCE OF NAPHTHENIC ACID^{a,b}

			Raw w	astewater			
	Concer	Concentration, µg/L			Loading, ^C kg/d		
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mear	

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

b NA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF NAPHTHENIC ACID^{a,b}

		T	reated w	astewater		
	Concentration, µg/L Loadin			ading, ^C kg/	ng, ^C kg/d	
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

I.9.20-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

Removal Average Removal Average Volume III range, achievable range, achievable references, atment process % conc., µg/L % conc., µg/L Section number

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR NAPHTHENIC ACID^{a,b}

ı.

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

-

.

1. Off-line Bibliographic Citation List Generated from the Toxicology Data Bank by MEDLARS II, National Library of Medicine's National Interactive Retrieval Service, Bethesda, Maryland, 11 June 1979. Part II, pp. 10.

.

C1 Compound: 2-Chloronaphthalene Formula: Alternate Names: Halowax, B-Chloronaphthalene CAS #: 91-58-7 Physical, Chemical, and Biological Properties [1] b.p. (760 torr), °C: Not available mol. wt.: 162.6 m.p., °C: 61 vapor pressure (20°C), torr: 0.017 (calculated) solubility in water (25°C), mg/L: 6.74 (calculated) log octanol/water partition coefficient: 4.12 Henry's law constant: Not available biodegradability: Not available Probable Fate [1] photolysis: Some of the dissolved compound may be photolyzed oxidation: Probabby too slow to be important hydrolysis: Not important volatilization: No volatilization rate has been determined, but volatilization has been recorded sorption: 2-Chloronaphthalene should be adsorbed onto particulates, especially organic matter biological processes: Bioaccumulation occurs, but is probably short-term; biodegradation and metabolization are both fairly rapid

other reactions/interactions: Not important

1

Carbon Adsorption Data: Not available

Date: 8/13/79

I.10.1-1

	Raw wastewater							
Industry	Concer	ntration,	µg/L	Loading, ^C kg/d				
	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Coal mining	ND	<3.3	<0.4	0	0.011	0.0015		
Textile mills	NA	<10d	<10d	4.2 x 10 ⁻⁵	0.29	0.018		
Auto and other laundries	ND	17	1	9 x 10-7	0.0014	0.00021		
Steam electric power generating (condenser cooling system)	NA	NA	10 ^e	6 x 10 ⁻⁸	0.6	0.0015		
Steam electric power generating (ash handling)	NA	NA	52 ^e	0.0010	5.1	1.1		
Iron and steel manufacturing	NA	NA	22	0	NA	4.0		
Nonferrous metals manufacturing	ND	3	0.3	0	NA	0.016		

INDUSTRIAL OCCURRENCE OF 2-CHLORONAPHTHALENE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual. ^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dOne sample.

	Treated wastewater							
Industry	Concer	ntration,	µg/L	Loading, ^C kg/d				
	Minimum	Maximum	Mean	Minimum	Maximum	Mear		
Coal mining	NA	ND	ND	_d	_d	_d		
Textile mills	NA	NA	NA	NA	NA	NA		
Iron and steel mnufacturing	NA	NA	3,500	0	NA	630		

INDUSTRIAL OCCURRENCE OF 2-CHLORONAPHTHALENE^{a,b}

I.10.1-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

	Syntheti	c wastewater	Actual	wastewater		
Treatment process ^a	Removal range, %	Average achievable conc., μg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
Gas flotation with chemical addition (alum, polymer)			3 ^d	16 ^d	III.4.5	
Filtration			0 ^{d,e}	_ ^e	III.4.6	
Sedimentation with chemical addition (lime, polymer)			0 ^{d,e}	_e	III. 4.3	
Aerated lagoons			>47 ^d	<10 ^d	III.5.3	
Activated sludge			50 ^d	$1^{\mathbf{d}}$	III.5. l	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR 2-CHLORONAPHTHALENE^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

^eActual data indicate negative removal.

I.10.1-4

 Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume V, Polycyclic Aromatic Hydrocarbons, PCB's and Related Compounds. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 37-1 -37-8.

-

.

Compound: Benz(a)anthracene

Formula:

Alternate Names: 1,2-Benzanthracene, Tetraphene, Naphthanthracene, 2,3-Benzophenanthrene

CAS #: 56-55-3

Physical, Chemical, and Biological Properties [1]

mol. wt.: 228.3 m.p., °C: 155-157 b.p. (760 torr), °C: Not available
vapor pressure (20°C), torr: 5 x 10⁻⁹
solubility in water (25°C), mg/L: 0.014
log octanol/water partition coefficient: 5.61
Henry's law constant: Not available
biodegradability: Not available

Probable Fate [1]

Carbon Adsorption Data: Not available

Date: 8/13/79

I.10.2-1

	Raw wastewater								
	Conce	entration,	µg∕L	Loading, c kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	ND	35	9.2	0	0.24	0.035			
Timber products processing	BDL	7,700	157 ^d	0	7.2	0.013			
Auto and other laundries	ND	120	120	0.00011	17	0.025			
Coil coating	ND	160	33	0.0016	0.059	0.016			
Foundries	ND	NA	3,300	0	22	8.9			
Iron and steel manufacturing	NA	2,000	90	0	NA	16			
Nonferrous metals manufacturing	ND	180	13	0	NA	70			

INDUSTRIAL OCCURRENCE OF BENZ(a)ANTHRACENE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d Median, not average.

INDUSTRIAL OCCURRENCE OF BENZ(a)ANTHRACENE^{a,b}

	Treated wastewater								
Industry	Conc	entration,	Loading, ^C kg/d						
	Minimum		Mean	Minimum	Maximum	Mean			
Coal mining	ND	<3.3	^{<0} 2 ^d 9 ^e	0	0.0053	0.00076			
Timber products processing	BDL	3,400	9 ^e	0_	0 ₂ 41	0_00077			
Auto and other laundries	NA	ND	ND	- ^I	_ r	- ¹			
Foundries	<20	7,300	1,200	0	8.0	3.2			
Iron and steel manufacturing	NA	470,000	34	0	NA	6.1			
Nonferrous metals manufacturing	ND	6.0	0.7	0	NA	0.04			

I.10.2-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dAnalytical method did not distinguish between benz(a)anthracene and chrysene.

^eMedian, not average.

f Indeterminate. 1.10.2-4

	Syntheti	c wastewater	Actual wa	stewater	
Treatment process ^a	Removal range, %	Average achievable conc., μg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers
Gravity oil separation			NA	55 d	III.4.1
Sedimentation with chemical addition (lime, polymer)			>81 ^d	<10 ^d	III.4.3
Sedimentation with chemical addition (lime)			>92 ^d	<10 ^d	III.4.3
Granular activated carbon adsorption			>93 - >97	<0.02	III.6.1

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR BENZ(a)ANTHRACENE^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

1. Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume V, Polycyclic Aromatic Hydrocarbons, PCB's and Related Compounds. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 103-1 - 103-15.

-

.

Compound: Benzo(b)fluoranthene

Formula:

Alternate Names: 2,3-Benzofluoranthene, Benz(e)acephenanthrylene, 3,4-Benzofluoranthene, B(b)F

CAS #: 205-99-2

Physical, Chemical, and Biological Properties [1]

mol. wt.: 252.3 m.p., °C: 167-168 b.p. (760 torr), °C: Not available vapor pressure (20°C), torr: 5×10^{-7} (calculated) solubility in water (25°C), mg/L: 0.0012 (calculated) log octanol/water partition coefficient: 6.57 Henry's law constant: Not available biodegradability: Not available

Probable Fate [1]

Carbon Adsorption Data: Not available

Date: 8/13/79

I.10.3-1

Industry	Raw wastewater								
	Concer	ntration,	µg/L	Loading, ^C kg/d					
	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining ^d	ND	. 12	3 6	0	0.095	0.014			
Textile mills	NA	<10 ^e	3.6 <10e	4.2 x 10 ⁻⁵	0.29	0.018			
Timber products processing	BDL	1,680	87 ¹	0	4.0	0.0075			
Foundries	ND	36	14	0	0.094	0.038			
Coil coating	ND	35	18	0.0009	0.032	0.0086			
Nonferrous metals manufacturing	ND	260	19	0	NA	1.0			
Iron & steel manufacturing	NA	200	28	0	NA	5.0			

INDUSTRIAL OCCURRENCE OF BENZO(b)FLUORANTHENE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dAnalytical method did not distinguish between benzo(b)fluoranthene and benzo(k)fluoranthene.

^eOne sample.

f Median, not average.

	Treated wastewater								
	Concer	ntration, µ	Loading, ^C kg/d						
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	NA	ND	ND	_d	_d	_d			
Timber products processing	BDL	210	37 ^e	0	1.7	0.0032			
Textile mills	NA	NA	NA	NA ,	NA ,	NA _			
Auto and other laundries	NA	ND	ND	_a	-a	-a			
Nonferrous metals manufacturing	ND	12	0.6	0	NA	0.032			
Iron and steel manufacturing	NA	37	12	0	NA	2.2			

INDUSTRIAL OCCURRENCE OF BENZO(k)FLUORANTHENE^{a,b}

I.10.3-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dMean pollutant concentration below detection limit.

^eMedian, not average.

I.10.3-4

	Syntheti	c wastewater	Actual	wastewater		
Treatment process ^a	Removal range, %	Average achievable conc., μg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
Sedimentation			83 ^d	6 ^d	III.4.2	
Aerated lagoons			0.4	97	III.5.3	
Ozonation			>80 ^d	<0.02 ^d	111.6.14	

					ab
POLLUTANT REMOVABILITY/TREATABILITY	WASTEWATER	TREATMENT	ALTERNATIVE	FOR	BENZO(b)FLUORANTHENE

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

 Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume V, Polycyclic Aromatic Hydrocarbons, PCB's and Related Compounds. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 104-1 - 104-12.

-

.

.

Compound: Benzo(k)fluroanthene

Formula:

Alternate Names: 11, 12-Benzofluoranthene, B(k)F

CAS #: 207-08-9

Physical, Chemical, and Biological Properties [1]

mol. wt.: 252.3 m.p., °C: 217 b.p. (760 torr), °C: Not available vapor pressure (20°C), torr: 5 x 10⁻⁷ (calculated) solubility in water (25°C), mg/L: 0.00055 (calculated) log octanol/water partition coefficient: 6.84 Henry's law constant: Not available biodegradability: Not available

Probable Fate [1]

Carbon Adsorption Data: Not available

Date: 8/13/79

I.10.4-1

		Indus
Cool	mining	d

INDUSTRIAL OCCURRENCE OF BENZO(k)FLUORANTHENE^{a,b}

Loading,^C kq/d Concentration, µg/L Minimum Maximum Mean Minimum Maximum Mean try 3.6 <10^e 12 10^e ND 0 0.095 0.014 Coal mining Textile mills^e 4.2 x 10⁻⁵ NA 0.29 0.018 Timber products processing 0 1.2 BDL 3,900 27 0.0023 Auto and other laundries ND 120 120 0.00010 0.17 0.025 Foundries ND NA 6 0 0.040 0.016 Coil coating ND 35 18 0.0009 0.032 0.0086 Iron & steel manufacturing 7.2 NA 360 40 0 NA Nonferrous metals manufacturing ND 210 20 0 1.0 NA

Raw wastewater

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dAnalytical method did not distinguish between benzo(b)fluoranthene and benzo(k)fluoranthene.

^eOne sample.

f Median, not average.

INDUSTRIAL OCCURRENCE OF BENZO(k)FLUORANTHENE^{a,b}

	Treated wastewater								
	Concer	ading, ^C kg	/d						
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	NA	ND	ND	_d	_ ^d	_d			
Timber products processing	BDL	210	37 ^e	0	1.7	0.0032			
Textile mills	NA	NA	NA	NAd	NA	NA d			
Auto and other laundries	NA	ND	ND	_ ^a	- ^a	_u			
Nonferrous metals manufacturing	ND	12	0.6	0	NA	0.032			
Iron and steel manufacturing	NA	37	12	0	NA	2.2			

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dMean pollutant concentration below detection limit.

^eMedian, not average.

	Syntheti	c wastewater	Actual	wastewater		
Treatment process ^a	Removal range,	Average achievable conc., µg/L	Removal range,	Average achievable conc., µg/L	Volume III references, Section numbers	
Gravity oil separation			NA	150	III.4.1	
Filtration			o ^d , e	_e	III.4.6	
Sedimentation			>57 - >97	<5	III. 4 .2	
Granular activated carbon adsorption			>80 ^d	<0.02 ^d	III.6.1	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR BENZO(k)FLUORANTHENE^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

^eActual data indicate negative removal.

1.10.4-4

1. Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume V, Polycyclic Aromatic Hydrocarbons, PCB's and Related Compounds. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 105-1 - 105-12.

-

.

,

Compound: Benzo(a)pyrene

Formula:

Alternate Names: 3,4-Benzopyrene

CAS #: 50-32-8

Physical, Chemical, and Biological Properties [1]


mol. wt.: 252.3 m.p., °C: 179 b.p. (760 torr), °C: Not available
vapor pressure (25°C), torr: 5 x 10⁻⁹
solubility in water (25°C), mg/L: 0.0038
log octanol/water partition coefficient: 6.04
Henry's law constant: Not available
biodegradability: Not available

Probable Fate [1]

Carbon Adsorption Data: Not available

Date: 8/13/79

I.10.5-1

	Raw wastewater								
	Concer	ntration,	Loa	Loading, ^C kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	ND	12	4 ₀ 6	0	0.12	0.017			
Timber products processing	BDL	2,700	420 ^a	0	19	0.036			
Petroleum refining	NA	NA	NA	NA	NA	NA			
Auto and other laundries	ND	120	120	0.00011	0.17	0.025			
Foundries	ND	57	16	0	0.11	0.043			
Coil coating	ND	<10	<10	<0.0005	<0:018	<0.0048			
Nonferrous metals manufacturing	ND	570	17	0	NA	0.90			
Iron & steel manufacturing	NA	510	21	0	NA	3.8			

INDUSTRIAL OCCURRENCE OF BENZO(a)PYRENE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d_{Median, not average.}

	Treated wastewater								
	Concer	ding, ^C kg/d							
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	NA	ND	ND	_d	_d	_d			
Timber products processing	BDL	290	15 ^e	0	0.69	0.0013			
Petroleum refining ^r	1.3	2.9	2.1	0	0.19	0.012			
Auto and other laundries	NA	2.9 17 ^ġ	2 1 17 ^ġ	1.5x10 ⁻⁵	0.024	0.0036			
Iron and steel manufacturing	NA	130	9	0	NA	1.62			
Nonferrous metals manufacturing	ND_	9.0	4.2	0	NA	0.22			
Foundries	<20 ^g	9.0 <20 ^g	4.2 <20 ^g	0	0.13	0.054			

INDUSTRIAL OCCURRENCE OF BENZO(a)PYRENE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dMean pollutant concentration below detection limit.

^eMedian, not average.

f Analytical method did not distinguish between benzo(a)pyrene and perylene.

^gOne sample.

I.10.5-3

	Syntheti	Lc wastewater	Actual	wastewater		
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
Gravity oil separation			NA	15.5	III.4.1	
Filtration			0 ^e	_e	111.4.6	
Sedimentation			>70 - 98	<5.3	III.4.2	
Sedimentation with chemical addition (lime, polymer)			0 ^{d,e}	_e	III.4.3	
Sedimentation with chemical addition (lime)			0 ^{d,e}	_e	III.4.3	
Aerated lagoons			33 ^d	2 ^e	III.5.3	
Ozonation			>90 ^d	<0.02 ^d	III.6.14	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR BENZO(a)PYRENE^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

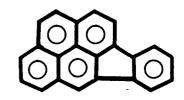
^CAverage and maximum removals reported.

^dOnly one data point.

^eActual data indicate negative removal.

I.10.5 آ د

1. Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume V, Polycyclic Aromatic Hydrocarbons, PCB's and Related Compounds. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 107-1 - 107-19.


-

.

Compound: Indeno(1,2,3-cd)pyrene

Formula:

Alternate Names: 2,3-0-Phenylenepyrene,

CAS #: 193-39-5

Physical, Chemical, and Biological Properties [1]

mol. wt.: 276.3 m.p., °C: 162-164 b.p. (760 torr), °C: Not available vapor pressure (20°C), torr: 10⁻¹⁰ (calculated) solubility in water (25°C), mg/L: 0.062 (calculated) log octanol/water partition coefficient: 7.66 Henry's law constant: Not available biodegradability: Not available

Probable Fate [1]

photolysis: Insufficient data, but at best only a small portion of the compound would be available in dissolved form for photolysis oxidation: Rapid oxidation by chlorine and/or ozone may compete for dissolved compound hydrolysis: Not important volatilization: Probably too slow to be important; rate uncertain sorption: Very strong adsorption onto suspended solids should be the dominant transport process biological processes: Bioaccumulation is short-term; metabolization and microbial biodegradation are the principal fates other reactions/interactions: Not important

Carbon Adsorption Data: Not available

	Raw wastewater								
	Concer	ntration,	µg/L	Loading, ^C kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	ND	<10	<2.1	0	0.056	0.0079			
Timber products processing	BDL	5,500	130 ^d	0	6.0	0.011			
Iron and steel manufacturing	NA	NA	7	0	NA				
Nonferrous metals manufacturing	ND	350	18	0	NA				

INDUSTRIAL OCCURRENCE OF INDENO(1,2,3-cd)PYRENE^a

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dMedian, not average.

	Treated wastewater								
Industry	Concentration, µg/L Loading, ^C kg/d								
	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	ND	6.3	0_4	0	0.011	0.0015			
Timber products processing	BDL	110	$^{0}_{40}a^{4}$	0	1.8	0.0034			
Iron and steel manufacturing	NA	NA	8	0	NA	1.4			
Nonferrous metals manufacturing	ND	8	0.4	0	NA	0.02			

INDUSTRIAL OCCURRENCE OF INDENO(1,2,3-cd)PYRENE^{a,b}

I.10.6-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d Median, not average.

	Syntheti	Synthetic wastewater		wastewater		
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
Gravity oil separation			NA	40 ^d	III.4.1	
Activated sludge			>99 ^d	<0.02 ^d	III.5.1	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR INDENO(1,2,3-cd)PYRENE^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

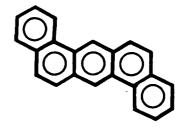
d_{Only one data point.}

 Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume V, Polycyclic Aromatic Hydrocarbons, PCB's and Related Compounds. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 112-1 - 112-12.

~

•

.


Compound: Dibenz(ah)anthracene

Formula:

Alternate Names: DB(a,h)A, 1,2,5,6-Dibenzanthracene, DBA

CAS #: 53-70-3

Physical, Chemical, and Biological Properties [1]

mol. wt.: 278.4 m.p., °C: 270 b.p. (760 torr), °C: Not available vapor pressure (20°C), torr: 10⁻¹⁰ (calculated) solubility in water (25°C), mg/L: 0.0005 log octanol/water partition coefficient: 5.97 Henry's law constant: Not available biodegradability: Not available

Probable Fate [1]

photolysis: The dissolved portion of the compound may undergo rapid photolysis to quinones oxidation: Rapid oxidation by chlorine and/or ozone may compete for dissolved DBA hydrolysis: Not important volatilization: Probably too slow to be important; rate uncertain sorption: Strong adsorption by suspended solids, especially organic particulates, should be the principal transport process biological processes: Bioaccumulation is short-term; metabolization and microbial biodegradation are the principal fates other reactions/interactions: Not important

Carbon Adsorption Data: Not available

Date: 8/13/79

I.10.7-1

	Raw wastewater								
	Concer	ntration,	µq/L	Loading, ^C kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	ND	<10	<1.7	0	0.045	0.0064			
Timber products processing	BDL	430	NA	0	9.9	0.018			
Iron and steel manufacturing	NA	16	8	0	NA	1.4			
Nonferrous metals manufacturing	ND	110	8.2	0	NA	0.43			

INDUSTRIAL OCCURRENCE OF DIBENZ(ah)ANTHRACENE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

	Treated_wastewater								
Industry	Concentration, µg/L Loading, c kg/								
	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	ND	8	0.5	ь ^о	0,013	0.0019			
Timber products processing	NA	BDL	BDL	_a	_a	-a			
Nonferrous metals manufacturing	ND	8	0.6	0	NA	0.032			
Iron and steel manufacturing	NA	NA	8	0	NA	1.44			

INDUSTRIAL OCCURRENCE OF DIBENZ(ah)ANTHRACENE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dMean pollutant concentration below detection limit.

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR DIBENZ(ah)ANTHRACENE^{a,b}

	Synthetic wastewater				
Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section number	
			•		
-	С	range, ^C achievable	range, ^C achievable range, ^C	range, ^C achievable range, ^C achievable	

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

1. Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume V, Polycyclic Aromatic Hydrocarbons, PCB's and Related Compounds. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 109-1 - 109-12.

-

•

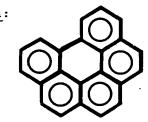
Compound: Benzo(ghi)perylene

Formula:

Alternate Names: 1,12-Benzoperylene

CAS #: 191-24-2

Physical, Chemical, and Biological Properties [1]


b.p. (760 torr), °C: Not available mol. wt.: 276 m.p., °C: 222 vapor pressure (20°C), torr: 10⁻¹⁰ (calculated) solubility in water (25°C), mg/L: 0.00026 log octanol/water partition coefficient: 7.23 Henry's law constant: Not available biodegradability: Not available

Probable Fate [1]

photolysis: The dissolved portion could undergo rapid photolysis, but very little of the compound is present in dissolved form oxidation: Oxidation by chlorine and/or ozone could occur if enough chlorine or ozone is present; relatively unimportant hydrolysis: Not important volatilization: Probably too slow to compete with adsorption as a transport process; rate uncertain sorption: Very strong adsorption onto suspended solids, especially organic matter, should be the dominant transport process biological processes: Bioaccumulation is short-term; metabolization and microbial biodegradation are the principal fates other reactions/interactions: Not important

Carbon Adsorption Data: Not available

Date: 8/13/79

Raw wastewater						
Concé	ntration,	µg/L	Loading, ^C kg/d			
Minimum	Maximum	Mean	Minimum	Maximum	Mean	
ND	12	3.6	0	0.095	0.014	
BDL	315	6 ^d	0	0.28	0.00052	
ND	<10	<10	<0.0005	<0.018	<0.0048	
ND	150	12	0	NA	0.64	
NA	NA	16	0	NA	2.9	
	Minimum ND BDL ND ND	MinimumMaximumND12BDL315ND<10	Concentration, µg/LMinimumMaximumMeanND123.6BDL3156 ^d ND<10	Concentration, μg/L Loa Minimum Maximum Mean Minimum ND 12 3.6 0 BDL 315 6 ^d 0 ND <10	Concentration, µg/L Loading, ^C kg, Minimum Maximum Mean Minimum Maximum ND 12 3.6 0 0.095 BDL 315 6 ^d 0 0.28 ND <10	

INDUSTRIAL OCCURRENCE OF BENZO(ghi)PERYLENE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dMedian, not average.

INDUSTRIAL OCCURRENCE OF BENZO(ghi)PERY					
		Т	reated		
	Concer	ntration, μ	ıg/L		
Industry	Minimum	Maximum	Mean		
Coal mining	ND	<3.3	$^{<0}_{2}a^{2}$		
Timber products processing	BDL	63	2 ^α		
Iron and steel manufacturing	NA	NA	6		

INDUSTRIAL OCCURRENCE OF BENZO(ghi)PERYLENE^{a,b}

wastewater

Minimum

0

0

0

0

0.2

Loading, c kg/d

Maximum

0.0053

NA

NA

Mean

0.00076

0.00017

1.1

0.011

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

ND

11

d Median, not average.

Nonferrous metals manufacturing

1.10.8-4

	Synthetic wastewater		Actual	wastewater		
Treatment process ^a	Removal range, %	Average achievable conc., μg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
Gravity oil separation			NA	550	III.4.1	
Sedimentation			>17 ^d	<10 ^d	III.4.2	

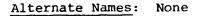
POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR BENZO(ghi)PERYLENE^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.


1. Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume V, Polycyclic Aromatic Hydrocarbons, PCB's and Related Compounds. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 106-1 - 106-12.

-

.

Compound: Acenaphthene

Formula:

CAS #: 83-32-9

Physical, Chemical, and Biological Properties [1]

mol. wt.: 154.2 m.p., °C: 96 b.p. (760 torr), °C: Not available vapor pressure (20°C), torr: 0.02 (calculated) solubility in water (25°C), mg/L: 3.47 log octanol/water partition coefficient: 4.33 Henry's law constant: Not available biodegradability: Not available

Probable Fate [1]

Carbon Adsorption Data: Not available

Date: 8/13/79

I.10.9-1

Industry	Raw wastewater							
	Concei	ntration,	µg/L	Loading, ^C , kg/d				
	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Coal mining	ND	<10	<1.9]	0	0.050	0.0072		
Textile mills	NA	12	8.7 ^d	3.6 x 10 ⁻⁵	0.25	0.016		
Timber products processing	BDL	55 , 000	170 ^d	0	7.8	0.015		
Petroleum refining	37	522	280 ^d	0	26	1.6		
Pharmaceutical manufacturing	ND	100	12	0	0.082	0.011		
Foundries	ND	200	21	0	0.014	0.057		
Leather tanning and finishing	ND	NA	5	0	NA	0.0075		
Nonferrous metals manufacturing	ND	100	7.4	0	NA	0.39		
Iron and steel manufacturing	NA	53	9	0	NA	1.6		

INDUSTRIAL OCCURRENCE OF ACENAPHTHENE^{a, b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND- not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^d Median, not average.

Date:		
12/5/79		

INDUSTRIAL OCCURRENCE OF ACENAPHTHENE^{a,b}

	Treated wastewater						
Industry	Conce	entration, µ	Loading, c kg/d				
	Minimum	Maximum	Mean	Minimum	Maximum	Mean	
Coal mining	NA	ND	ND	_d	_d	_d	
Textile mills	NA	0.5 ^e	0 ₂ 5 ^e	2.0×10^{-6}		0.0009	
Timber products processing	BDL	18,000	90 ¹	0	4.1	0.0077	
Petroleum refining	NA	0.6 ^e	0.6 ^e	0 b	0_056	0_0035	
Pharmaceutical manufacturing	ND	ND	ND	-a	-a	-a	
Foundries	<10	39	21	0	0.14	0.057	
Iron and steel manufacturing	NA	NA	11	0	NA	2.0	
Nonferrous metals manufacturing	ND	36	5.1	0	NA	0.27	

I.10.9-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dMean pollutant concentration below detection limit.

^eOne sample.

f Median, not average.

	Synthetic wastewater		Actual	wastewater		
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
Gravity oil separation			NA	910	III.4.1	
Filtration			73 ^d	0.6 ^d	III.4.6	
Aerated lagoons			0 ^{d,e}	_e	III.5.6	
Activated sludge			76 - >99	<1.5	III.5.1	
Granular activated carbon adsorption			>93 ^d	<0.04 ^d	III.6.1	
Reverse osmosis			76 - 99	1.5	III.6.9	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR ACENAPHTHENE^{a,b}

^aSee Volume III for detailed information.

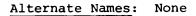
^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

^eActual data indicate negative removal.

I.10.9-4


REFERENCES

1. Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume V, Polycyclic Aromatic Hydrocarbons, PCB's and Related Compounds. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 100-1 - 100-12.

-

Compound: Acenaphthylene

Formula:

CAS #: 208-96-8

Physical, Chemical, and Biological Properties [1]

mol. wt.: 152.2 m.p., °C: 92 b.p. (760 torr), °C: Not available vapor pressure (20°C), torr: 0.029 solubility in water (25°C), mg/L: 3.93 log octanol/water partition coefficient: 4.07 Henry's law constant: Not available biodegradability: Not available

Probable Fate [1]

Carbon Adsorption Data: Not available

Date: 8/13/79

I.10.10-1

	Raw wastewater								
	Concer	ntration,	⊔g∕L	Loa	ading, ^C kg,	/d			
imber products processing etroleum refining eather tanning and finishing oil coating oundries	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	ND	8	1,	0	0.026	0.0038			
Timber products processing	BDL	2,060	930 ^a	0	43	0.080			
Petroleum refining	4	87	46 ^d	0	4.3	0.27			
Leather tanning and finishing	ND	NA	2	0	NA	0.003			
Coil coating	<10	<10	<10	<0.0005	<0.018	<0.0048			
Foundries	ND	62	15	0	0.10	0.040			
Iron and steel manufacturing	NA	6,400	290	0	NA	52			
Nonferrous metals manufacturing	ND	120	8.2	0	NA	0.43			

INDUSTRIAL OCCURRENCE OF ACENAPHTHYLENE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d Median, not average.

INDUSTRIAL OCCURRENCE OF ACENAPHTHYLENE^{a,b}

	Treated wastewater							
	Concer	ntration,	µq/L	Loa	ading, ^C kg	/d		
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Coal mining	NA	ND	ND	_d	_d	_d		
Timber products processing	BDL	190	4 ^e	0	0.18	0.00034		
Petroleum refining	NA	NA	NA	NA	NA	NA		
Nonferrous metals manufacturing	ND	36	1.3	0	NA	0.069		
Iron and steel manufacturing	NA	1,600	28	0	NA	5.0		
Foundries	<10	500	69	0	0.46	0.19		

I.10.10-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dMean pollutant concentration below detection limit.

^eMedian, not average.

	<u>Synthetic wastewater</u>		Actual	wastewater		
Treatment process ^a	Removal range, %_	Average achievable conc., μg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
Gravity oil separation			NA	40	III.4.1	
Sedimentation			>17 ^d	<10 ^d	III.4.2	
Sedimentation with chemical addition (lime, polymer)			0 ^{d,e}	_e	III.4.3	
Aerated lagoons			0 ^{d,e}	_e	III.5.3	
Activated sludge			0 ^{d,e}	_e	111.5.1	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR ACENAPHTHYLENE^{a, b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

^eActual data indicate negative removal.

I.10.10-4

REFERENCES

1. Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume V, Polycyclic Aromatic Hydrocarbons, PCB's and Related Compounds. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 101-1 - 101-12.

-

Compound: Anthracene

Formula:

Alternate Names: Paranaphthalene, Green oil, Tetra Olive NZG

CAS #: 120-12-7

Physical, Chemical, and Biological Properties [1]

mol. wt.: 178.2 m.p., °C: 216 b.p. (760 torr), °C: Not available
vapor pressure (20°C), torr: 1.95 x 10⁻⁴
solubility in water (25°C), mg/L: 0.073
log octanol/water partition coefficient: 4.45
Henry's law constant: Not available
biodegradability: Not available

Probable Fate [1]

Carbon Adsorption Data: Not available

I.10.11-1

	Raw wastewater							
	Conce	entration, p	Jg∕L	Loading, ^C kg/d				
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Cool mining ^d	ND	122	22	0	0.61	0.007		
Coal mining	ND	132	23	0 -	0.61	0.087		
Textile mills	NA	0.1 ^e	23 0.1 ^e	4.2 x 10 ⁻⁷	0.0029	0.00018		
Petroleum refining	46	Í,100	170 [£]	0	16	0.99		
Timber products processing	NA	NA	NA	NA	NA	NA		
Auto and other laundries ⁹	ND	470	23	2.1 x 10 ⁻⁵	0.032	0.0048		
Pharmaceutical manufacturing	ND	7	1.8	0	0.012	0.0017		
Coil coating	ND	1,400	28	0.0014	0.050	0.013		
Foundries	ND	470	64	0	0.43	0.17		
Leather tanning and finishing ^g	ND	140	62	0	NA	0.093		
Nonferrous metals manufacturing	ND	3,000	43	0	NA	2.2		
Iron and steel manufacturing	NA	2,800	91	0	NA	16		

INDUSTRIAL OCCURRENCE OF ANTHRACENE^{a, b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, 1/2 the reported maximum was utilized.

^d Analytical method did not distinguish between anthracene and phenanthrene.

^eOne sample.

f Median, not average.

^gAnalytical method di not distinguish between anthracene/phenanthrene.

	Treated wastewater							
	Concer	ntration, p	Jq/L	Loa	ding, ^C kg/	ď		
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Coal mining ^d	ND	<10	<1.4	0	0.037	0.005		
Textile mills	NA	4.4 ^e	⁴ ⁴ ^e 59 ^f	1.8×10^{-5}	1.3	0.007		
Timber products processing	BDL	37,000	59 ¹ _	0	2.7	0.005		
Petroleum refining	Trace	<10	<0.8 ¹	0	0.074	0.004		
Auto and other laundries ⁹	2	12	5.0	4.5×10^{-6}	0.007	0.001		
Pharmaceutical manufacturing	ND	ND	ND	ND	ND	ND		
Foundries	<4	3,200	480	0	3.2	1.3		
Iron and steel manufacturing	NA	2,300	5 9	0	NA	11		
Nonferrous metals manufacturing	ND,	140,	6.6,	0	NA	0.35		
Leather tanning and finishing	ND ND ^d	<10 ^d	6.6 4.1 ^d	0	NA	0.006		

INDUSTRIAL OCCURRENCE OF ANTHRACENE^{a,b}

1.10.11-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dAnalytical method did not distinguish between anthracene and phenanthrene.

^eOne sample.

^fMedian, not average.

		<u>c wastewater</u>	<u>Actual</u>	wastewater	
	Removal range,	Average achievable	Removal range,	Average achievable	Volume III references,
Treatment process ^a	%	conc., µg/L		conc., µg/L	Section numbers
Gravity oil separation			NA	3 ^d	111.4.1
Gas flotation			45 ^{d,f}	~600 ^d ,f	III.4.4
Gas flotation with chemical addition (calcium chloride, polymer)			83 ^{d, f}	66 ^{d, f}	III.4.5
Gas flotation with chemical addition (polymer)		t	0 ^{d,e,f}	_e,f	111.4.5
Gas flotation with chemical addition (alum, polymer)			0 ^{d,e,f}	_e,f	III.4.5
Filtration			40-70 [£]	400 [£]	III.4.6
Sedimentation			55 -92^f	<14 ^f	111.4.2
Sedimentation with chemical addition (lime, polymer)			0 ^{d,e,f}	_e,f	III.4.3
Sedimentation with chemical addition (polymer)			0 ^{d,e,f}	_e,f	111.4.3
Sedimentation with chemical addition (alum)			0 ^{d,e,f}	_e,f	III.4.3
Ozonation				0.2 ^f	111.6.14
Activated sludge				<2.5 ^f	111.5.1
Granular activated carbon adsorption				0.12 ^f	III.6.1
Reverse osmosis			77 ^{d, f}	0.7 ^{d,f}	111.6.9

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR ANTHRACENE^{a,b}

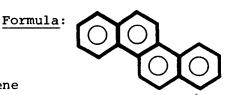
^aSee Volume III for detailed information.

bNA - Not available, ND - not detected, BDL - below detection limit

^CAverage and maximum removals reported.

d_{Only one data point.}

eActual data indicate negative removal


fAnalytical method did not distinguish between anthracene and phenanthrene.

REFERENCES

1. Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume V, Polycyclic Aromatic Hydrocarbons, PCB's and Related Compounds. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 102-1 - 102-12.

-

Compound: Chrysene

Alternate Names: 1,2-Benzophenanthrene, Benz(a)phenanthrene, 1,2,5,6-Dibenzonaphthalene

<u>CAS #</u>: 218-01-9

Physical, Chemical, and Biological Properties [1]

mol. wt.: 228.3 m.p., °C: 256 b.p. (760 torr), °C: Not available
vapor pressure (20°C), torr: 6.3 x 10⁻⁷ (calculated)
solubility in water (25°C), mg/L: 0.002
log octanol/water partition coefficient: 5.61
Henry's law constant: Not available
biodegradability: Not available

Probable Fate [1]

	Raw wastewater								
	Conce	entration,	µg/L	Loading, ^C kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
đ									
Coal mining ^d	ND	35	9.2	0	0.24	0.035			
Simber products processing	BDL	4,700	98 ^e	0	4.5	0.0084			
Petroleum refining	5.5	20	13 ^e	0	1.2	0.075			
oil coating	ND	160	17	0.00085	0.031	0.008			
oundries	57	13,000	1,100	0	7.4	3.0			
ron and steel manufacturing	NA	2,200	94	0	NA	17			
Nonferrous metals manufacturing	ND	10,000	160	0	NA	8.5			

INDUSTRIAL OCCURRENCE OF CHRYSENE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

b NA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dAnalytical method did not distinguish between benz(a)anthracene and chrysene.

^eMedian, not average.

INDUSTRIAL OCCURRENCE OF CHRYSENE^{a,b}

		Treated wastewater								
	Conce	ntration,	hd/r	Lo	ading, ^C kg,	/d				
imber products processing etroleum refining pundries	Minimum	Maximum	Mean	Minimum	Maximum	Mean				
Coal mining ^d	ND	<3.3	<0.2	0	0,0053	0,0076				
Timber products processing	BDL	19,000	BDL	_e	_e	_E				
Petroleum refining	0.3	1.4	0.8 ¹	0	0.074	0.0046				
Foundries	13	<20	17	0	0.11	0.046				
Iron and steel manufacturing	NA	530	18	0	NA	3.2				
Nonferrous metals manufacturing	ND	140	3.8	0	NA	0.20				

I.10.12-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dAnalytical method did not distinguish between benz(a)anthracene and chrysene.

^eMean pollutant concentration below detection limit.

f Median, not average.

	Syntheti	.c wastewater	Actual	wastewater	
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers
Gravity oil separation			NA	11	III.4.1
Sedimentation			0 ^{d,e}	_e	III.4.2
Sedimentation with chemical addition (lime, polymer)			99 ^d	10 ^d	III.4.3
Sedimentation with chemical addition (lime)			>92 ^d	<10 ^d	III.4.3

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR CHRYSENE^{a, b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

^eActual data indicate negative removal.

REFERENCES

1. Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume V, Polycyclic Aromatic Hydrocarbons, PCB's and Related Compounds. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 108-1 - 108-12.

-

.

Compound: Fluoranthene

Formula:

Alternate Names: Benzo(j,k)fluorene, Idryl

CAS #: 206-44-0

Physical, Chemical, and Biological Properties [1]

mol. wt.: 202.3 m.p., °C: 111 b.p. (760 torr), °C: Not available vapor pressure (20°C), torr: 6 x 10⁻⁶ (calculated) solubility in water (25°C), mg/L: 0.26 log octanol/water partition coefficient: 5.33 Henry's law constant: Not available biodegradability: Not available

Probable Fate [1]

Date:		
12/5/79		

INDUSTRIAL OCCURRENCE OF FLUORANTHENE^{a,b}

	·		Raw wa	astewater			
	Conce	entration,	µg/L	Loa	Loading, ^C kg/d		
imber products processing etroleum refining uto and other laundries pil coating	Minimum	Maximum	Mean	Minimum	Maximum	Mean	
Coal mining	ND	16	4,	0	0.11	0.015	
Timber products processing	BDL	35,000	1,600 ^a	0	74	0.14	
Petroleum refining	NA	270 ^e	270 ^e	0	25	1.6	
Auto and other laundries	ND	14	7	6.3 x 10- 6	0.0098	0.0015	
Coil coating	ND	130	20	0.001	0.028	0.0096	
Foundries	ND	390	40	0	0.27	0.11	
Leather tanning and finishing	ND	NA	0.3	0	NA	0.00045	
Iron and steel manufacturing	NA	3,100	110	0	NA	20	
Nonferrous metals manufacturing	ND	3,000	55	0	NA	2.9	

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d Median, not average.

^eOne sample.

INDUSTRIAL OCCURRENCE OF FLUORANTHENE^{a, b}

		Treated wastewater								
	Conce	ntration, p	ug/L	Loa	ading, ^C kg	/d				
imber products processing etroleum refining uto and other laundries bundries ron and steel manufacturing	Minimum	Maximum	Mean	Minimum	Maximum	Mean				
Coal mining	ND	<6.7	<0_4	0	0.011	0.0015				
Timber products processing	BDL	17,000	<0a4 110 ⁴	Q	5 <u>.</u> 1	0,0095				
Petroleum refining	NA	NA	BDL	_e	-	_e				
Auto and other laundries	ND	0.4	0.2	2×10^{-7}	0.00028	4.2×10^{-1}				
Foundries	6	97	35	0	0.23	0.095				
Iron and steel manufacturing	ND	860	39	0	NA	7.0				
Nonferrous metals manufacturing	ND	200	13	0	NA	0.69				

Date: 12/5/79

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d Median, not average.

^eMean pollutant concentration below detection limit.

I.10.13-3

12/5/79	

	Syntheti	c wastewater	Actual	wastewater	
Treatment process ^a	Removal range, %	Average achievable .conc., μg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers
Gravity oil separation			NA	60	111.4.1
Gas flotation with chemical addition (polymer)			0 ^{d,e}	_e	III.4.5
Filtration			29-50	0.11	III.4.6
Sedimentation			17->64	<17	III.4.2
Sedimentation with chemical addition (lime, polymer)			>97 ^d	<10 ^d	III.4.3
Dzonation			50 ^d	0.1 ^d	111.6.14
Activated sludge			0 ^{d,e}	_e	III.5.1
Granular activated carbon adsorption			>82->90	<0.02	111.6.1

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR FLUORANTHENE^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

^eActual data indicate negative removal.

Date:

REFERENCES

 Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume V, Polycyclic Aromatic Hydrocarbons, PCB's and Related Compounds. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 110-1 - 110-13.

.

-

Compound: Fluorene

Formula:

Alternate Names: 2,3-Benzidene, Diphenylenemethane

CAS #: 86-73-7

Physical, Chemical, and Biological Properties [1]

mol. wt.: 116.2 m.p., °C: 116-117 b.p. (760 torr), °C: Not available vapor pressure (20°C), torr: 1.3 x 10⁻² (calculated) solubility in water (25°C), mg/L: 1.98 log octanol/water partition coefficient: 4.18 Henry's law constant: Not available biodegradability: Not available

Probable Fate [1]

Carbon Adsorption Data: Not available

Date: 8/13/79

I.10.14-1

Industry	Raw wastewater							
	Conce	entration,	μg/L	Loading, ^C kg/d				
	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Coal mining	ND ,	47	8	0	0.21	0.030		
Textile mills	NA	15	NA	_d	_d	_d		
Timber products processing	BDL	48,000_	2,300 ^e	0	100	0.20		
Petroleum refining	NA	270 ¹	270 ^r	0	25	1.6		
Pharmaceutical manufacturing	ND	14	3.5	0	0.024	0.003		
Foundries	ND	800	66	0	0.44	0.18		
Coil coating	ND	300	17	0.00085	0.031	0.032		
Nonferrous metals manufacturing	ND	94	5	0	NA	0.27		
Iron and steel manufacturing	NA	2,500	85	0	NA	15		

INDUSTRIAL OCCURRENCE OF FLUORENE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dMean pollutant concentration below detection limit.

^eMedian, not average.

f_{One sample.}

INDUSTRIAL OCCURRENCE OF FLUORENE^{a,b}

Industry	Treated wastewater							
	Conce	ntration, µ	Loading, ^C kg/d					
	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Coal mining	NA	ND	ND	_ ^d	_ ^d	_d		
Timber products processing	BDL	16,000	36 ^e	0	1.6	0.0031		
Petroleum refining	NA	NA	NA	NA	NA	NA		
Textile mills	NA	NA	NA	NA ,	NA d	NA _		
Pharmaceutical manufacturing	ND	ND	ND	_a	- ^a	_a		
Foundries	5	10,000	1,300	0	8.7	3.5		
Iron and steel manufacturing	NA	500	17	0	NA	3.1		
Nonferrous metals manufacturing	ND	100	8.7	0	NA	0.46		

I.10.14-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dMean pollutant concentration below detection limit.

^eMedian, not average.

	Syntheti	c wastewater	
	Removal	Average	
2	range, Č	achievable	
Treatment process ^a	0/0	conc., µg/1	
Gravity oil separation			
Filtration			
Sedimentation			
Sedimentation with chemical addition			

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR FLUORENE^{a,b}

	Syntheti	c wastewater	Actual	wastewater		
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
Gravity oil separation			NA	140	111.4.1	
Filtration			0 ^{d,e}	_e	III.4.6	
Sedimentation			>79 ^d	<10 ^d	III.4.2	
Sedimentation with chemical addition (lime, polymer)			50 - >99	<7.5	III.4.3	
Aerated lagoons			99 ^d	0.2 ^d	III.5.3	
Ozonation			67 ^d	0.1 ^d	III.6.14	
Activated sludge			>99	<0.02	III.5.1	

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

^eActual data indicate negative removal.

REFERENCES

 Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume V, Polycyclic Aromatic Hydrocarbons, PCB's and Related Compounds. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 111-1 - 111-12.

-

Formula: Compound: Naphthalene Moth balls, Tar Camphor, Alternate Names: Naphthene CAS #: 91-20-3 Physical, Chemical, and Biological Properties [1, 2] mol. wt.: 128.2 m.p., °C: 80.6 b.p. (760 torr), °C: Not available vapor pressure (20°C), torr: 0.0492 solubility in water (25°C), mg/L: 34.4 log octanol/water partition coefficient: 3.37 Henry's law constant: Not available biodegradability: Readily degraded in static biological test using acclimated seed from an activated sludge plant; reduced from 2 ppm to nondetectable during 7-day test Probable Fate [1] photolysis: Relatively high solubility could make photolysis an important fate; data inconclusive oxidation: Chlorine and/or ozone in sufficient quantities may oxidize naphthalene hydrolysis: Not important volatilization: Rate uncertain; could be very important sorption: Relatively low partition coefficient makes adsorption less dominant but sorption is still a competitive transport process biological processes: Short-term bioaccumulation; biodegradation and metabolization are the ultimate fates other reactions/interactions: Not important Carbon Adsorption Data [3] 1,000 pH: Not available type of carbon: Filtrasorb-300 adsorbability: Not available

Uoques 100 100 100 100 100 100 100 RESIDUAL CONCENTRATION, mg/L

Date: 8/13/79

I.10.15-1

	Raw wastewater							
Industry	Conce	entration,	µg/L	Loading, c kg/d				
	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Coal mining	ND	402	5 7	0	1.5	0.21		
Textile mills	NA	110	44 ^d	0.00018	1.3	0.079		
Timber products processing	BDL	45,000	3,500 ^d	0	160	0.30		
Petroleum refining	∿68	∿1,000	∿400 ^d	0	∿3 7	∿2.3		
Paint and ink formulation	ND	18,000	1,500	0	0.069	0.0024		
Pulp, paper and paperboard mills	NA	NA	NA	NA	NA	NA		
Auto and other laundries	ND	4,800	240	0.00022	0.34	0.050		
Pharmaceutical manufacturing	ND	14	2.8	0	0.019	0.0020		
Coil coating	ND	35	<10	<0.0005	<0.018	<0.005		
Foundries	ND	160	27	0	0.18	0.073		
Leather tanning and finishing	ND	67	26	0	NA	0.039		
Nonferrous metals manufacturing	ND	5,000	110	0	NA	5.8		
Iron and steel manufacturing	NA	29,000	2,300	0	NA	414		

INDUSTRIAL OCCURRENCE OF NAPHTHALENE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^d Median, not average.

I.10.15-2

н.

10.15-3

	Treated wastewater							
Industry	Conce	ntration, µ	Loading, c kg/d					
	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Coal mining	ND	<10	<0_6	0	0.016	0.0023		
Textile mills	NA	255	<0.06 22	9.2 x 10 ⁻⁵	0.63	0.040		
Petroleum refining	NA	0.1 ^e	0.1 ^e	0	0.0093	0.0005		
Timber products processing	NA	NA	NA	NA	NA	NA		
Paint and ink formulation	NA	NA	NA	NA	NA	NA		
Pulp, paper and paperboard mills	NA	6 ^e	NA 6	0	NA	0.18		
Auto and other laundries	0.9	520	200	0.00018	0.28	0.042		
Pharmaceutical manufacturing	ND	7	1.4	0	0.0095	0.0013		
Foundries	3	270	44	0	0.29	0.12		
Iron and steel manufacturing	NA	5,900	200	0	NA	36		
Leather tanning and finishing	ND	15	4.3	0	NA	0.0064		
Nonferrous metals manufacturing	ND	930	17	0	NA	0.90		

INDUSTRIAL OCCURRENCE OF NAPHTHALENE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d Median, not average.

^eOne sample.

		c wastewater	·····	wastewater	
	Removal	Average	Removal	Average	Volume III
Treatment process ^a	range,"	achievable conc., µg/L	range, ` %	achievable conc., µg/L	references. Section numbers
Gravity oil separation			NA	410	111.4.1
Gas flotation			∿18-36	~380	III.4.4
Gas flotation with chemical addition (calcium chloride, polymer)		· ·	54-82	700	III 4.5
Gas flotation with chemical addition (polymer)		ł.	>65-> 9 6	<5	III 4.5
Gas flotation with chemical addition (alum, polymer)			52	11	III.4.5
Filtration			>78-86	<5.8	III.4.6
Sedimentation			>50 ~>98	<22	III.4.2
Sedimentation with chemical addition (alum, lime)			70 ^d	16 ^d	III.4.3
Sedimentation with chemical addition (lime, polymer)			49-98	6.5	III.4.3
Tertiary polishing lagoons			>82 ^d	<10 ^d	111.5.3
Aerated lagoons			>28->58	<5.5	III.5.3
Trickling filters			0 ^{d,e}	-e	111.5.2
Activated sludge			66->99	17	111.5.1
Powdered activated carbon adsorption			>96 ^d	<10 ^d	111.6.2

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR NAPHTHALENE^{a,b}

a See Volume III for detailed information.

bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

e Actual data indicate negative removal.

REFERENCES

- Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume V, Polycyclic Aromatic Hydrocarbons, PCB's and Related Compounds. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 113-1 - 113-12.
- 2. Fochtman, E. G., and W. Eisenberg. Treatability of Carcinogenic and other Hazardous Organic Compounds. Illinois Institute of Technology Research Institute, Chicago, Illinois. 58 pp.
- 3. Report on visit of D. Stephan and W. Cawley, U.S. Environmental Protection Agency, to Calgon Environmental Systems Division, Calgon Corporation, Pittsburgh, Pennsylvania, 9 April 1979. 132 pp.

.

Compound: Phenanthrene

Formula:

Alternate Names: Phenanthren

CAS #: 85-01-8

Physical, Chemical, and Biological Properties [1]

mol. wt.: 178.2 m.p., °C: 101 b.p. (760 torr), °C: Not available vapor pressure (20°C), torr: 6.8 x 10⁻⁴ solubility in water (25°C), mg/L: 1.29 log octanol/water partition coefficient: 4.46 Henry's law constant: Not available biodegradability: Not available

Probable Fate [1]

Carbon Adsorption Data: Not available

Date: 8/13/79

I.10.16-1

	Raw wastewater							
	Conce	entration,	µg/L	Loading, ^C kg/d				
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Timber products processing	BDL	39,000	3,800 ^d	0	170	0.33		
Petroleum refining	NA	NA	NA	NA	NA	NA		
Auto and other laundries	ND	470	28	2.1 x 10 ⁻⁵	0.032	0.0048		
Pharmaceutical manufacturing	ND	7	1.8	0	0.012	0.0016		
Coil coating	ND	1,400	28	0.0014	0.050	0.013		
Foundries	ND	470	63	0	0.42	0.11		
Leather tanning and finishing	ND	140	62	0	NA	0.093		
Nonferrous metals manufacturing	ND	3,000	46	0	NA	2.4		
Iron and steel manufacturing	NA	2,800	99	0	NA	18		

INDUSTRIAL OCCURRENCE OF PHENANTHRENE^{a, b}

a Information contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CMedian, not average.

^dAverage of medians reported for various industry segments.

^eAnalytical method did not distinguish between anthracene/phenanthrene.

Treated wastewater Loading, c kg/d Concentration, µg/L Minimum Industry Maximum Minimum Maximum Mean Mean 33^d Timber products processing 1.5 0.0028 BDL 36,000 0 <0.8^d Petroleum refining ⁰f⁰⁷⁴ ⁰f⁰⁰⁴⁶ BDL <10 ⁰f Auto and other laundries ND ND ND _f _f f Pharmaceutical manufacturing ND ND ND Foundries 3,200 480 0 3.2 1.3 <4 Iron and steel manufacturing NA 2,300 67 0 NA 12 Nonferrous metals manufacturing 4.6 0.24 ND 140 0 NA Leather tanning and finishing <10 0.0062 ND 4.1 0 NA

INDUSTRIAL OCCURRENCE OF PHENANTHRENE^{a,b}

I.10.16-

ω

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d Median, not average.

^eAnalytical method did not distinguish between anthracene and phenanthrene.

 $f_{Mean pollutant concentration below detection limit.$

	Synthetic wastewater		<u>Actual</u>	wastewater		
Treatment process ^a	Removal range,	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
Gravity oil separation			NA	3	II1 4 .	
Gas flotation			45	~600	111 4 4	
Gas flotation with chemical addition (calcium chloride, polymer)		. .	83	66	III.4 .5	
Gas flotation with chemical addition (polymer)		4	0	-	III.4 .5	
Gas flotation with chemical addition (alum, polymer)			0	-	III 4.5	
Filtration			40-70	400	III.4.6	
Sedimentation			55 -92	<14	III.4.2	
Sedimentation with chemical addition (lime, polymer)			0	-	III 4.3	
Sedimentation with chemical addition (polymer)			0	-	111.4 3	
Sedimentation with chemical addition (alum)			0	-	III.4.3	
Aerated lagoons			0 ^{d,e}	_e	III.5.3	
Ozonation			48->97 ^f	0.2 ^f	III.6.14	
Activated sludge			57->97 ^f	<2.5 ^f	111.5.1	
Granular activated carbon adsorption			>63->97 ^f	0.12 ^f	111.6.1	
Reverse osmosis			77	0.7	III.6.9	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR PHENANTHRENE^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

d_{Only one data point}

^eActual data indicate negative removal

f_{Analytical method did not distinguish between anthracene and phenanthrene}

REFERENCES

 Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume V, Polycyclic Aromatic Hydrocarbons, PCB's and Related Compounds. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 114-1 - 114-12.

_

•

Compound: Pyrene

Formula:

Alternate Names: Benzo(def)phenanthrene

CAS #: 129-00-0

Physical, Chemical, and Biological Properties [1]

mol. wt.: 202 m.p., °C: 150 b.p. (760 torr), °C: Not available vapor pressure (20°C), torr: 6.85 x 10⁻⁷ solubility in water (25°C), mg/L: 0.14 log octanol/water partition coefficient: 5.32 Henry's law constant: Not available biodegradability: Not available

Probable Fate [1]

Carbon Adsorption Data: Not available

Date: 8/13/79

I.10.17-1

Date:		
12/5/79		

	Raw wastewater							
	Cond	centration, 1	lg/L	Loading, ^C kg/d				
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Coal mining	ND	19	4	0	0.11	0.015		
Textile mills	NA	0.9 ^d	0.9 ^d	3.8 x 10 ⁻⁶	0.026	0.0016		
Timber products processing	BDL	22,000	1,000 ^e	0	46	0.086		
Petroleum refining ^f	∿30	\sim 40	∿35	0	∿3.2	∿0.20		
Petroleum refining ^f	NA	16	16	0	1.5	0.093		
Auto and other laundries	ND	11	6	5.4 x 10 ⁻⁶	0.0084	0.0013		
Leather tanning and finishing	ND	NA	0.14	0	NA	0.00021		
Foundries	ND	1,100	44	0	0.30	0.12		
Coil coating	ND	50	13	0.00065	0.023	0.0062		
Nonferrous metals manufacturing	ND	7,000	130	0	NA	6.9		
Iron and steel manufacturing	NA	26,000	79	0	NA	14		

INDUSTRIAL OCCURRENCE OF PYRENE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dOne sample.

e_{Median, not average.}

^fAnalytical method did not distinguish between pyrene and fluoranthene.

	 	_

INDUSTRIAL OCCURRENCE OF PYRENE^a

	Treated wastewater							
	Concentration, µg/L			Loading, c kg/d				
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Coal mining	ND	<3.3	<0.2	0	0.0053	0.00076		
Textile mills	NA	0.3	0.2ª	8.4×10^{-7}	0.0058	0.00036		
Timber products processing	BDL	9,400	77 ^a 7 ^d	0	3.5	0.0066		
Petroleum refining	BDL	7	7 ^a	0	0.65	0.041		
Auto and other laundries	ND	0.3	0.15	1.0×10^{-7}	0.00021	3.2 x 10		
Foundries	12	3,200	290	0	1.9	0.78		
Iron and steel manufacturing	NA	1,100	43	0	NA	7.70		
Nonferrous metals manufacturing	ND	180	11	0	NA	0.58		

I.10.17-3

Date:

12/5/79

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d Median, not average.

	POLLUTANT	REMOVABIL
	Treatment	process ^a
Gravity	oil separat	ion
Gas flot	tation with	chemical a

LITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR PYRENE^{a,b}

Synthetic wastewater

Average

conc., $\mu g/L$

achievable

Removal range,

%

Actual wastewater

Average

conc., $\mu g/L$

achievable

Volume III references,

Section numbers

Removal range,

%

(polymer)	
Filtration	
Sedimentation	
Sedimentation (lime, polym	
Sedimentation (lime)	wi
Aerated lagoon	s

I.10.17-4

Gravity oil separation	NA	37	III.4.1
Gas flotation with chemical addition (polymer)	0 ^{d,e}	_e	III.4.5
Filtration	0 ^e	_e	111.4.6
Sedimentation	54-79	<18	III.4.2
Sedimentation with chemical addition (lime, polymer)	70->87	<10	III.4.3
Sedimentation with chemical addition (lime)	0 ^{d,e}	_e	III.4.3
Aerated lagoons	67 ^d	ı ^d	111.5.3
Activated sludge	16-78	2	111.5.1
Granular activated carbon adsorption	>83->97	<0.01	111.6.1
Reverse osmosis	0 ^{d,e}	_e	111.6.9

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

^eActual data indicate negative removal.

REFERENCES

1. Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume V, Polycyclic Aromatic Hydrocarbons, PCB's and Related Compounds. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 115-1 - 115-12.

-

.

Compound: Aroclor 1016 Formula: A mixture of mono, di, and trichloro isomers of the polychlorinated biphenyls (PCB's) Alternate Names: None CAS #: Not assigned Physical, Chemical, and Biological Properties [1, 2] mol. wt.: 257.9* m.p., °C: Not available b.p. (760 torr), °C: 325-356 vapor pressure (25°C), torr: 4×10^{-4} (estimated) solubility in water (temp. unknown), mg/L: 0.34 (estimated) log octanol/water partition coefficient: 3.48 (estimated) Henry's law constant: Not available biodegradability: Aerobic degradation in semicontinuous activated sludge process; 30% degradation of <1 mg/L concentration after 48 hours incubation *Average. Probable Fate [1] photolysis: Not important oxidation: Not important hydrolysis: Not important volatilization: Slow volatilization is the cause of global distribution of PCB's, but is inhibited by adsorption sorption: PCB's are rapidly adsorbed onto solids especially organic matter, and are often immobilized in sediments, but may reenter solution biological processes: Strong bioaccumulation; mono-, di- and tri-chlorinated biphenyls are gradually biodegraded other reactions/interactions: Not important

o mer redetions, meerdetions. Not importa

Carbon Adsorption Data: Not available

I.11.1-1

	· Raw wastewater						
Industry	Concentration, µg/L			Loading, ckg/d			
	Minimum	Maximum	Mean	Minimum	Maximum	Mean	
Petroleum refining	1.8	1.9	1.9 ^d	0	0.18	0.011	
Foundries ^e	ND	830	5 7	0	0.38	0.15	
Iron and steel manufacturing	NA	<10	<10	0	NA	<1.8	

INDUSTRIAL OCCURRENCE OF AROCLOR 1016^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d Median, not average.

^eAnalytical method did not distinguish between Aroclor 1016, 1232, 1248, and 1260.

		Т	reated w	astewater		
	Conce	Loading, ^C kg/d				
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean
Petroleum_refining	NA	NA	NA	NA	NA	NA
Petroleum _, refining Foundries	<5	480	64	0	0.43	0.17
Iron and steel manufacturing	NA	<10	<10	0	NA	<1.8

INDUSTRIAL OCCURRENCE OF AROCLOR 1016^{a,b}

I.11.1-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dAnalytical method did not distinguish between Aroclor 1016, 1232, 1248, and 1260.

	Synthetic wastewa		Actual	wastewater		
Treatment process ^a	Removal range, %	Average achievable conc., μg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
Gravity oil separation			NA	1.3	III.4.1	
Gas flotation			0 ^{d,e}	_e	III.4.4	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR AROCLOR 1016^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

d_{Only one data point.}

^eActual data indicate negative removal.

REFERENCES

1. Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume V, Polycyclic Aromatic Hydrocarbons, PCB's and Related Compounds. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 36-1 - 36-17.

-

 Tucker, E. S., V. W. Saeger, and O. Hicks. Activated Sludge Primary Biodegradation of Polychlorinated Biphenyls. Monsanto Company, St. Louis, Missouri, March 1975. 9 pp.

.

.

Formula: A mixture of polychlori-Compound: Aroclor 1221 nated biphenyls which is approximately 21% chlorine by weight Alternate Names: None CAS #: 111-042-82 Physical, Chemical, and Biological Properties [1, 2] mol. wt.: 200.7* m.p., °C: Not available b.p. (760 torr), °C: 275-320 vapor pressure (25°C), torr: 6.7×10^{-3} (estimated) solubility in water (25°C), mg/L: 15 (estimated) log octanol/water partition coefficient: 2.81 (estimated) Henry's law constant: Not available biodegradability: Aerobic degradation in semicontinuous activated sludge process; 80% degradation of <5 mg/L concentration after</pre> 48 hour incubation *Average. Probable Fate [1]

Carbon Adsorption Data: Not available

I.11.2-1

Industry	Raw wastewater								
	Concent	ration, u	g/L	Loading, ^C kg/d					
	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Petroleum refining	0.1	<5	<3 ^d	0	0.28	0.01			
Foundries ^e	ND	1,400	79	0	0.53	0.21			
Iron and steel manufacturing	NA	<10	<10	0	NA	<1.8			

INDUSTRIAL OCCURRENCE OF AROCLOR 1221^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d_{Median, not average.}

^eAnalytical method did not distinguish between Aroclor 1221 and Aroclor 1254.

Industry		Treated wastewater								
	Conce	ntration, µ	Loading, ^C kg/d							
	Minimum	Maximum	Mean	Minimum	Maximum	Mean				
Petroleum_refining	NA	<5 ^d	<5 ^d	0	0.46	0.029				
Foundries	<5	650	78	0	0.52	0.21				
Iron and steel manufacturing	NA	<10	<10	0	NA	<1.8				

INDUSTRIAL OCCURRENCE OF AROCLOR 1221^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dOne sample.

^eAnalytical method did not distinguish between Aroclor 1221 and Aroclor 1254.

I.11.2-3

I.11.2-4

	Synthetic wastewater		wastewater		
Treatment process ^a	Removal Average range, achievable % conc.,µg/L	Removal range,	Average achievable conc., µg/L	Volume III references, Section number	
ravity oil separation		NA	0.1 ^d	111.4.1	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR AROCLOR 1221^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

.

REFERENCES

- 1. Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume V, Polycyclic Aromatic Hydrocarbons, PCB's and Related Compounds. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 36-1 - 36-17.
- Tucker, E. S., V. W. Saeger, and O. Hicks. Activated Sludge Primary Biodegradation of Polychlorinated Biphenyls. Monsanto Company, St. Louis, Missouri, March 1975. 9 pp.

.

I

Compound: Aroclor 1232

Formula: A mixture of polychlorinated biphenyls which is approximately 32% chlorine by weight

Alternate Names: None

CAS #: 111-411-65

Physical, Chemical, and Biological Properties [1]

mol. wt.: 232.2* m.p., °C: Not available b.p. (760 torr), °C: 290-325
vapor pressure (25°C), torr: 4.06 x 10⁻³ (estimated)
solubility in water (25°C), mg/L: 1.45 (estimated)
log octanol/water partition coefficient: 3.22 (estimated)
Henry's law constant: Not available
biodegradability: Not available

*Average.

Probable Fate [1]

Carbon Adsorption Data: Not available

Date: 8/13/79

I.11.3-1

1

Raw wastewater Raw wastewater Concentration, μg/L Loading, ^C kg/d Industry Minimum Maximum Mean Minimum Maximum Petroleum 0.5 0.9 0.7^d 0 0.065

<1^e

830

<10

<1e

57

<10

0

0

0

NA

0.38

NA

Mean

0.0041

0.030

0.15

<1.8

INDUSTRIAL OCCURRENCE OF AROCLOR 1232^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

NA

ND

NA

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d Median, not average.

Pulp, paper and paperboard mills

Iron and steel manufacturing

^EOne sample.

Foundriesf

I.11.3-2

12/5/79	
Ľ	

Date:

INDUSTRIAL OCCURRENCE OF AROCLOR 1232^{a,b}

Industry	Treated wastewater							
	Conce	ntration, µ	Loading, ^C kg/d					
	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Petroleum refining	NA	NA	NA	NA	NA	NA		
Pulp, paper and paperboard mills Foundries	NA	NA	NA	NA	NA	NA		
Foundries	<5	480	64	0	0.43	0.17		
Iron and steel manufacturing	NA	<10	<10	0	NA	<1.8		

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dAnalytical method did not distinguish between Aroclor 1016, 1232, 1248, and 1260.

Synthetic wastewate		c wastewater	Actual	wastewater		
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
Gravity oil separation			NA	0.63	III.4.1	
Filtration			16 ^d	480 ^d	III.4.6	

							a b
POLLUTANT	REMOVABILITY/TREATABILITY	WASTEWATER	TREATMENT	ALTERNATIVE	FOR	AROCLOR	1232 , 2

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

d_{Only one data point.}

REFERENCES

1. Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume V, Polycyclic Aromatic Hydrocarbons, PCB's and Related Compounds. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 36-1 - 36-17.

•

.

-

•

A mixture of polychlori-Formula: Compound: Aroclor 1242 nated biphenyls which is approximately 42% chlorine by weight Alternate Names: None CAS #: 534-692-19 Physical, Chemical, and Biological Properties [1, 2] mol. wt.: 266.5* m.p., °C: Not available b.p. (760 torr), °C: 325-366 vapor pressure (25°C), torr: 4.06×10^{-4} solubility in water (25°C), mg/L: 0.24 log octanol/water partition coefficient: 3.54 (estimated) Henry's law constant: 5.7×10^{-4} atmos. m³ mole⁻¹ biodegradability: Aerobic degradation in semicontinuous activated sludge process; 26% degradation of <1 mg/L concentration after 48 hour incubation *Average. Probable Fate [1] photolysis: Inhibited by presence of oxygen, but possibly the only degradative pathway for highly-chlorinated PCB's oxidation: Not important hydrolysis: Not important volatilization: Slow volatilization causes global dispersion of PCB's, but is inhibited by adsorption sorption: PCB's are rapidly adsorbed onto solids, especially organic matter, and are often immobilized in sediment, but may reenter solution biological processes: Strong bioaccumulation; mono-, di-, and tri-chlorinated biphenyls are gradually biodegraded other reactions/interactions: Not important Carbon Adsorption Data: Not available

Date: 8/13/79

I.11.4-1

	Raw_wastewater								
	Concer	ntration,	µg/L	Loading, ^C kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Petroleum refining	NA	0.5 ^đ	0.5 ^d	0	0.046	0.0029			
Pulp, paper and paperboard mills	NA	2 ^d	2 ^d	0	NA	0.060			
Iron and steel manufacturing	NA	<10	<10	0	NA	<1.8			

INDUSTRIAL OCCURRENCE OF AROCLOR 1242^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^d One sample.

Industry	Treated wastewater							
	Concer	ntration, µ	Loading, ^C kg/d					
	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Petroleum refining	NA	NA	NA	NA	NA	NA		
Pulp, paper and paperboard mills	NA	NA	NA	NA	NA	NA		
Iron and steel manufacturing	NA	<10	<10	0	NA	<1.8		

INDUSTRIAL OCCURRENCE OF AROCLOR 1242^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

	Synthetic wastewater		Actual	wastewater		
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., μg/L	Volume III references, Section numbers	
Gravity oil separation			NA	3.6	III.4.1	
Gas flotation			0 ^{d,e}	_ ^e	III.4.4	
Filtration			16 ^d	480 ^d	III.4.6	

							ah
POLLUTANT	REMOVABILITY/TREATABILITY	WASTEWATER	TREATMENT	ALTERNATIVE	FOR	AROCLOR	1242 ^{°, 5}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

^eActual data indicate negative removal.

 Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume V, Polycyclic Aromatic Hydrocarbons, PCB's and Related Compounds. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 36-1 - 36-17.

_

 Tucker, E. S., V. W. Saeger, and O. Hicks. Activated Sludge Primary Biodegradation of Polychlorinated Biphenyls. Monsanto Company, St. Louis, Missouri, March 1975. 9 pp.

.

Compound: Aroclor 1248

Formula: A mixture of polychlorinated biphenyls which is approximately 48% chlorine by weight

Alternate Names: None

CAS #: 126-722-96

Physical, Chemical, and Biological Properties [1]

mol. wt.: 299.5* m.p., °C: Not available b.p. (760 torr), °C: 340-375 vapor pressure (25°C), torr: 4.94 x 10^{-4} solubility in water (25°C), mg/L: 0.054 log octanol/water partition coefficient: 3.80 (estimated) Henry's law constant: 3.5 x 10^{-3} atmos. m³ mole⁻¹ biodegradability: Not available

*Average.

Probable Fate [1]

Carbon Adsorption Data: Not available

Date: 8/13/79

I.11.5-1

	Raw wastewater							
Industry	Concentration, ug/L			Loading, c kg/d				
	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Pulp, paper and paperboard mills	NA	18 ^d	18 ^d	0	NA	0.54		
Foundries ^e	ND	830	57	0	0.381	0.15		
Iron and steel manufacturing	NA	<10	<10	0	NA	<1.8		
Nonferrous metals manufacturing	ND	32	0.7	0	NA	0.037		

INDUSTRIAL OCCURRENCE OF AROCLOR 1248^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dOne sample.

e Analytical method did not distinguish between Aroclor 1016, 1232, 1248, and 1260.

	Treated wastewater							
	Conce	Loading, ^C kg/d						
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Pulp, paper and paperboard mills	0	<1 ^d	<1 ^d	0	NA	0.030		
Foundries	<5	48 0	64	0	0.43	0.17		
Iron and steel manufacturing	NA	<10	<10	0	NA	<1.8		
Nonferrous metals manufacturing	ND	9.8	1.1	0	NA	0.06		

INDUSTRIAL OCCURRENCE OF AROCLOR 1248^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dOne sample.

^eAnalytical method did not distinguish between Aroclor 1016, 1232, 1248, and 1260.

	Syntheti	c wastewater	Actual	wastewater	
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section number
Tiltration			16 ^d	480 ^d	III.4.6

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR AROCLOR 1248^{a,b}

1.11.5-4

^aSee Volume III for detailed information.

 b NA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

 Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume V, Polycyclic Aromatic Hydrocarbons, PCB's and Related Compounds. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 36-1 - 36-17.

-

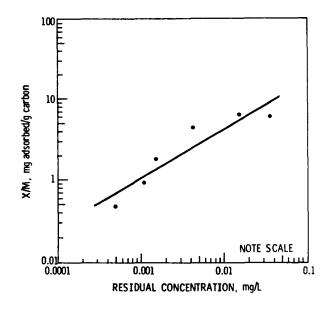
.

Compound: Aroclor 1254

Alternate Names: None

CAS #: 110-976-91

Physical, Chemical, and Biological Properties [1, 2]


*Average.

Probable Fate [2]

biological processes: Strong bioaccumulation other reactions/interactions: Not important

Carbon Adsorption Data [3]

pH: Not available type of carbon: Filtrasorb-300 adsorbability: Not available

Date: 8/13/79

```
I.11.6-1
```

	Raw wastewater							
Industry	Concer	ntration,	µg/L	Loading, c kg/d				
	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Pulp, paper and paperboard mills	NA	<1d	1	0	NA	0.030		
Foundries ^e	ND	1,400	79	0	0.53	0.21		
Iron and steel manufacturing	NA	<10	<10	0	NA	<1.8		
Nonferrous metals manufacturing	ND	52	1.1	0	NA	0.058		

INDUSTRIAL OCCURRENCE OF AROCLOR 1254^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dOne sample.

^eAnalytical method did not distinguish between Aroclor 1221 and Aroclor 1254.

	Treated wastewater							
Industry	Concei	Loading, ^C kg/d						
	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Pulp, paper and paperboard mills	<1	2	<1	0	NA	0.030		
Pulp, paper and paperboard mills Foundries	<5	650	78	0	0.52	0.21		
Iron and steel manufacturing	NA	<10	<10	0	NA	<1.8		
Nonferrous metals manufacturing	ND	7.0	0.8	0	NA	0.042		

INDUSTRIAL OCCURRENCE OF AROCLOR 1254^{a,b}

I.11.6-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^d Analytical method did not distinguish between Aroclor 1221 and Aroclor 1254.

	Syntheti	c wastewater	Actual	wastewater		
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section number	
Filtration			20 ^d	650 ^d	III.4.6	

PULLUIANI REMUVADILIII/IREAIADILIII WASIEWAIEK IREAIMENI ALIEKNAIIVE FUR ARULLUK 1234	POLLUTANT REMOVABILITY/TREATABILITY	WASTEWATER	TREATMENT	ALTERNATIVE	FOR	AROCLOR	1254 ^{a,b}
---	-------------------------------------	------------	-----------	-------------	-----	---------	---------------------

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

d_{Only one data point.}

- Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume V, Polycyclic Aromatic Hydrocarbons, PCB's and Related Compounds. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 36-1 - 36-17.
- Tucker, E. S., V. W. Saeger, and O. Hicks. Activated Sludge Primary Biodegradation of Polychlorinated Biphenyls. Monsanto Company, St. Louis, Missouri, March 1975. 9 pp.
- 3. Report on visit of D. Stephan and W. Cawley, U.S. Environmental Protection Agency, to Calgon Environmental Systems Division, Calgon Corporation, Pittsburgh, Pennsylvania, 9 April 1979. 132 pp.

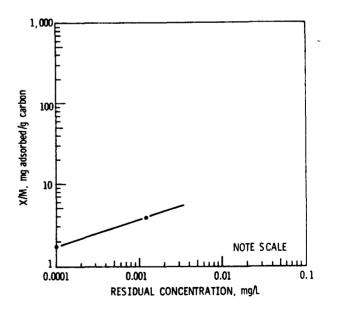
Compound: Aroclor 1260

Formula: A mixture of polychlorinated biphenyls which is approximately 60% chlorine by weight

Alternate Names: None

CAS #: 110-968-25

Physical, Chemical, and Biological Properties [1]


mol. wt.: 375.7* m.p., °C: Not available b.p. (760 torr), °C: 385-420 vapor pressure (25°C), torr: 4.05×10^{-5} solubility in water (25°C), mg/L: 0.0027 log octanol/water partition coefficient: 4.34 (estimated) Henry's law constant: 7.1×10^{-3} atmos. m³ mole⁻¹ biodegradability: Not available

*Average.

Probable Fate [1]

Carbon Adsorption Data [2]

pH: Not available type of carbon: Filtrasorb-300 adsorbability: Not available

Date: 8/13/79

I.11.7-1

	Raw wastewater								
Industry	Concent	tration, µ	g/L	Loading, c kg/d					
	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Foundries ^d	ND	830	57	0	0.38	0.15			
Iron and steel manufacturing	NA	<10	<10	0	NA	<1.8			

INDUSTRIAL OCCURRENCE OF AROCLOR 1260^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dAnalytical method did not distinguish between Aroclor 1016, 1232, 1248, and 1260.

	Treated wastewater							
Industry	Conce	Loading, ^C kg/d						
	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Foundries ^d	<5	48 0	64	0	0.43	0.17		
Iron and steel manufacturing	NA	<10	<10	0	NA	<1.8		

INDUSTRIAL OCCURRENCE OF AROCLOR 1260^{a,b}

I.11.7-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dAnalytical method did not distinguish between Aroclor 1016, 1232, 1248, and 1260.

1.11.7-4

POLLUTANT	REMOVABILITY/TREAT	ABILITY WASTEWATE	R TREATMENT	ALTERNATIVE	FOR	AROCLOR	1260 ^a ,	ь

	Syntheti	.c wastewater	Actual	wastewater		
Treatment process	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., μg/L	Volume III references, Section numbers	
Filtration			16 ^d	480 ^d	III.4.6	

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

 Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume V, Polycyclic Aromatic Hydrocarbons, PCB's and Related Compounds. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 36-1 - 36-17.

-

2. Report on visit of D. Stephan and W. Cawley, U.S. Environmental Protection Agency, to Calgon Environmental Systems Division, Calgon Corporation, Pittsburgh, Pennsylvania, 9 April 1979. 132 pp.

.

Compound: Methyl chloride

Formula: H

Alternate Names: Chloromethane, Monochloromethane

CAS #: 74-87-3

Physical, Chemical, and Biological Properties [1]

mol. wt.: 50.59 m.p., °C: -97.7 b.p. (760 torr), °C: -24.2
vapor pressure (20°C), torr: 3,760
solubility in water (20°C), mg/L: 6,450-7,250
log octanol/water partition coefficient: 0.91
Henry's law constant: Not available
biodegradability: Not available

Probable Fate [1]

photolysis: Information lacking, probably unimportant; appreciable photodissociation may occur in stratosphere oxidation: Information lacking, probably unimportant; in troposphere oxidation by hydroxyl radicals for formyl chloride and other products important fate hydrolysis: Slow hydrolysis, unimportant in comparison to volatilization volatilization: Volatilization to the atmosphere is rapid and is a major transport process for removal of methyl chloride sorption: No data available, sorption onto sediments and suspended particulates probably unimportant biological processes: Data lacking, biodegradation and bioaccumulation are not expected to be important fates other reactions/interactions: Not important

Carbon Adsorption Data: Not available

Date: 8/13/79

I.12.1-1

	, Raw wastewater							
Industry	Concent	tration, µ	g/L	Loading, c kg/d				
	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Textile mills	NA	<5 ^d	<5 ^d	2.1 x 10 ⁻⁵	0.14	0.0090		
Timber products processing	BDL	2,600	77 ^e	0	3.5	0.0066		
Pharmaceutical manufacturing	ND	1,500	300	0	2	0.28		
Ore mining and dressing	ND	ND	ND	_d	_d	_d		

INDUSTRIAL OCCURRENCE OF METHYL CHLORIDE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dOne sample.

e Median, not average.

Industry	Treated wastewater							
	Concei	Loading, ^C kg/d						
	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Timber products processing	13	1,900	140 ^d	0	6.4	0.012		
Textile mills	NA	NA	NA	NA e	NA	NA		
Pharmaceutical manufacturing	ND	ND	ND	_e	_ ^e	_e		

INDUSTRIAL OCCURRENCE OF METHYL CHLORIDE^{a,b}

I.12.1-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d Median, not average.

^eMean pollutant concentration below detection limit.

	Synthetic wastewater		Actual	wastewater		
Treatment process ^a	Removal range, %	Average achievable conc., μg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
Gas flotation with chemical addition (polymer)			0 ^{d,e}	_e	III.4.5	
Filtration			>87 ^d	<0.4 ^d	III.4.6	
Sedimentation			59->99	64	III.4.2	
Aerated lagoons			>91 ^d	<5 ^d	III.5.3	
Reverse osmosis			0 ^{d,e}	_e	III.6.9	

								ab
POLLUTANT	REMOVABILITY	TREATABILITY	WASTEWATER	TREATMENT	ALTERNATIVE	FOR	METHYL	CHLORIDE

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

^eActual data indicate negative removal.

1.12.1-4

-

,

 Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume IV, Halogenated Aliphatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 38-1 - 38-9.

.

Date: 8/13/79

-

.

1.12.1-5

•

Compound: Methylene chloride Formula: Cl ·ć-н Dichloromethane, Methylene Alternate Names: dichloride, Methane dichloride, Ĥ Methylene bichloride 74-09-2 CAS #: Physical, Chemical, and Biological Properties [1] b.p. (760 torr), °C: 39.8 mol. wt.: 84.94 m.p., °C: -95 vapor pressure (20°C), torr: 362 solubility in water (25°C), mg/L: 13,200-20,000 log octanol/water partition coefficient: 1.25 Henry's law constant: Not available biodegradability: Not available Probable Fate [1] photolysis: Photochemical reactions in aqueous media are probably unimportant slow photodecomposition in troposphere in the presence of nitrogen oxides is possible, appreciable photodissociation may occur in stratosphere Information lacking, probably unimportant; in troposphere oxidaoxidation: tion by hydroxyl radicals to carbon dioxide, carbon monoxide, and phosgene is important fate mechanism hydrolysis: Not important fate process volatilization: Due to high vapor pressure, volatilization to the atmosphere is rapid and is a major transport process sorption: Data lacking, sorption by inorganic and organic materials not expected to be important fate mechanism biological processes: Data lacking, bioaccumulation not expected, biodegradation may be possible other reactions/interactions: Not important Carbon Adsorption Data [2] 1,000 pH: Not available type of carbon: Filtrasorb-300 adsorbability: Not available K/M, mg adsorbed/g carbon 100 10

NOTE SCALE NOTE SCALE 1 10 100 RESIDUAL CONCENTRATION, mg/L

1,000

Date: 8/13/79

I.12.2-1

	Raw wastewater								
	Conce	entration,	µg/L	Loading, ^C kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	ND	82	14	0	0.37	0.053			
Textile mills	NA	110	47	0.00020	1.3	0.085			
Timber products processing	BDL	20	NA	0	0.46	0.00086			
Petroleum refining	>30	>90	>45 ^d	0	4.2	0.26			
Paint and ink formulation	ND	210,000	17,000	0	0.78	0.027			
Gum and wood chemicals	190	16,000	4,000	0.036	30	6.6			
Rubber processing	NA	70	19	3.8 x 10 ⁻⁶	0.016	0.00063			
Pulp, paper and paperboard mills	<1	4	<1.9	0	NA	0.057			
Auto and other laundries	ND	640	64	5.8 x 10 ⁻⁵	0.09	0.013			
Pharmaceutical manufacturing	ND	20,000	2,600	0	17.7	2.4			
Ore mining and dressing	2.5	8	5.3	0	NA	0.2			
Steam electric power generating (condenser cooling system)	65	9,400	2,300	0.12	2.5	0.55			
Steam electric power generating (water treatment)	NA	NA	1.2 ^e	7.3 x 10 ⁻⁹	0.072	180			
Steam electric power generating (ash handling)	>140	>9,400	3,300	0.063	320	73			
Inorganic chemicals manufacturing	NA	NA	NA	NA	NA	NA			
Coil coating	<10	<10	<10	<0.0005	<0.018	<0.0048			
Foundries	ND	2,400	100	0	0.67	0.27			
Nonferrous metals manufacturing	ND	88,000	680	0	NA	36			
Iron and steel manufacturing	NA	140	50	0	NA	9			

INDUSTRIAL OCCURRENCE OF METHYLENE CHLORIDE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dMedian, not average.

^eAverage of medians reported for various industry segments.

f One sample.

I.12.2-2

	Treated wastewater							
	Con	centration,	µg/L	Loading, ^C kg/d				
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Coal mining	ND	21	6	0	0.16	0.023		
Textile mills	NA	<5	<5	2.1 _. x 10 ⁻⁵	0 _d 14	0,0090		
Timber products processing	BDL	23	BDL	_a	-a	-a		
Petroleum refining	50	>60	>50 ^e	0	4.6	0.29		
Paint and ink formulation	ND	3,100	5,600	0	0.26	0.0090		
Gum and wood chemicals	85	2,400	1,000	0.0090	7.6	1.6		
Rubber processing	NA	520	170	3.4 x 10 ⁻⁵	0.15	0.0056		
Pulp, paper and paperboard mills	<1	270	<19	0	NA	0.57		
Auto and other laundries	ND	1,200	440	0.00040	0.616	0.092		
Pharmaceutical manufacturing	ND	850,000	75,000	0	510	69		
Foundries	<5	2,500	270	0	1.8	0.73		
Nonferrous metals manufacturing	ND	4,300	140	0	NA	7.4		
Iron and steel manufacturing	NA	270	37	0	NA	6.7		

INDUSTRIAL OCCURRENCE OF METHYLENE CHLORIDE^{a, b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d Mean pollutant concentration below detection limit.

^eMedian, not average.

	Synthetic wastewater	Actual	wastewater		
Treatment process	Removal Average range, achievable % conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section number	
Gravity oil separation		NA	>47	111.4.1	
Gas flotation with chemical addition (calcium chloride, polymer)		2-7	2,200	III. 4 .5	
Gas flotation with chemical addition (polymer)		61 ^d	22 ^d	III.4.5	
Gas flotation with chemical addition (alum, polymer)	t	84 ^d	8 ^d	111.4.5	
Filtration		14-62	2,400	III.4 .6	
Sedimentation		38-88	530	III.4.2	
Sedimentation with chemical addition (alum, lime)		13 ^d	2,000 ^d	III.4.3	
Sedimentation with chemical addition (lime, polymer)		0 ^e	_e	111.4.3	
Sedimentation with chemical addition (polymer)		0 ^e	_e	111.4.3	
Sedimentation with chemical addition (alum, polymer)		56-98	5,600	111.4.3	
Sedimentation with chemical addition (alum)		>78->99	<40	111.4.3	
Aerated lagoons		65-97	390	111.5.3	
Steam stripping		75-87	160,000	111.5.5	
Trickling filters		o ^{đ,e}	_•	111.5.2	
Ozonation		0 ^e	_e	111.6.14	
Activated sludge		21-99	95	111.5.1	
Granular activated carbon adsorption		31-92	140	111.6.1	
Reverse osmosis		21-64	5	III.6.9	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR METHYLENE CHLORIDE^{A, b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

d_{Only one data point.}

^eActual data indicate negative removal

Average and maximum removals reported.

-

.

- Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume IV, Halogenated Aliphatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp 39-1 - 39-11.
- 2. Report on visit of D. Stephan and W. Cawley, U.S. Environmental Protection Agency, to Calgon Environmental Systems Division, Calgon Corporation, Pittsburgh, Pennsylvania, 9 April 1979. 132 pp.

.

.

Formula: C1 Compound: Chloroform Trichloromethane Alternate Names: CAS #: 67-66-3 Physical, Chemical, and Biological Properties [1] b.p. (760 torr), °C: 61.7 mol. wt.: 119.4 m.p., °C: -63.5 vapor pressure (20°C), torr: 150 solubility in water (20°C), mg/L: 8,200 log octanol/water partition coefficient: 1.97 Henry's law constant: Not available biodegradability: Not available Probable Fate [1] photolysis: Little data available, probably unimportant; photodissociation can occur in stratosphere oxidation: Information lacking, probably unimportant in aqueous medium; in troposphere oxidation by hydroxyl radicals to phosgene and chlorine oxide is important fate mechanism hydrolysis: Not important fate process volatilization: Volatilization is a major transport process for removal of chloroform from aqueous mediums sorption: Data lacking, sorption by inorganic and organic materials not expected to be important fate mechanism biological processes: Data lacking; some bioaccumulation is indicated, biodegradation may be possible other reactions/interactions: Not important Carbon Adsorption Data [2] 100 pH: 7.3 type of carbon: Not available adsorbability: 820 mg/L; carbon dose re-K/M, mg adsorbed/g carbon quired to reduce pollutant 10 concentration from 10 mg/L to 1 mg/L at neutral pH NOTE SCALE 0.1 0.001 0.01 0.1 RESIDUAL CONCENTRATION, mg/L

Date: 8/13/79

I.12.3-1

			a.b
INDUSTRIAL	OCCURRENCE	OF	CHLOROFORM ^{a, b}

	Raw wastewater							
	Conce	ntration,	lg/L	Loading, ^C kg/d				
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Coal mining	ND	<6.7	<1	0	0.026	0.0038		
Textile mills	NA	640	48 ^d	0.00020	1.4	0.086		
Timber products processing	BDL	20	NA	0	0.46	0.0008		
Paint and ink formulation	ND	900	120	0	0.0055	0.00019		
Gum and wood chemicals	<10	1,4 00	<680	0.0061	5.1	1.1		
Rubber processing	NA	270	27	5.4 x 10 ⁻⁶	0.023	0.0008		
Petroleum refining	10	15	13 ^d	0	1.2	0.11		
Pulp, paper and paperboard mills	<1	17	<6	0	NA	0.18		
Auto and other laundries	ND	35,000	78 0	0.0007	1.1	0.16		
Pharmaceutical manufacturing	ND	1,600	300	0	2	0.28		
Ore mining and dressing	1.1	4.6	2.9	0	NA	0.11		
Steam electric power generating (water treatment)	NA	NA	14 ^e	6.1 x 10 ⁻⁹	0.84	0.0021		
Inorganic chemicals manufacturing	NA	690 [£]	NA	0	43	8.6		
Leather tanning and finishing	ND	41	15	0	NA	0.023		
Iron and steel manufacturing	NA	1,400	64	0	NA	3.4		
Nonferrous metals manufacturing	ND	1,800	61	0	NA	11		

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d_{Median}, not average.

^eAverage of medians reported for various industry segments.

f Average of maximums reported for various industry segments.

н.

12.3-3

	Treated wastewater								
	Con	centration,	µg/L	Loading, kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	ND	<10	<2.4	0	0.064	0.0091			
Textile mills	NA	58	8.5	0.000036	0.24	0.015			
Petroleum refining	NA	NA	NA	NA	NA	NA			
Paint and ink formulation	ND	4,700	390	0	0.018	0.0006			
Gum and wood chemicals	10	1,400	670	0.0060	5.1	1.1			
Timber products processing	NA	NA	NA	NA	NA	NA			
Rubber processing	NA	100	4.7	9.4×10^{-7}	0.0040	0.0001			
Pulp, paper and paperboard mills	<1	430	<46	0	NA	1.4			
Auto and other laundries	8	44	18	7.2×10^{-6}	0.025	0.0038			
Pharmaceutical manufacturing	ND	1,400	150	0	1.0	0.14			
Foundries	7	500	85	0	0.57	0.23			
Iron and steel manufacturing	NA	280	31	0	NA	5.6			
Nonferrous metals manufacturing	ND	2,900	98	0	NA	5.2			
Leather tanning and finishing	ND	10	5	0	NA	0.007			

INDUSTRIAL OCCURRENCE OF CHLOROFORM^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

	Synthet: Removal range	c wastewater Average achievable	Actual Removal range	Wastewater Average achievable	Volume III references,
Treatment process ^a	· · · · · · · · · · · · · · · · · · ·	conc , µg/L	00	conc., µg/L	Section number:
Gravity oil separation			NA	58	III 4 3
Gas flotation			n ^{it} e	_e	III.4 4
Gas flotation with chemical addition (calcium chloride, polymer)			31 /4	5 9	111.4.5
Gas flotation with chemical addition (polymer)		,	41 ^d	24 ^d	111.4 5
Gas flotation with chemical addition (alum, polymer)			0 ^d , e	_e	III 4.5
Filtration			0 °	_e	111.4 6
Sedimentation			16->81	110	111.4.2
Sedimentation with chemical addition (alum, lime)			0 ^{d,e}	_e	111.4 J
Sedimentation with chemical addition (lime, polymer)			26->78	<9	III.4.3
Sedimentation with chemical addition (polymer)			0 ^{d,e}	_e	III.4 3
Sedimentation with chemical addition (alum, polymer)			27~>94	140	111.4.3
Sedimentation with chemical addition (alum)			o ^{d,e}	_e	111.4.3
Aerated lagoons			36->5 7	340	111.5.3
Steam stripping			89 >99	13,000	111.5.5
Trickling filters			0 ^{d,e}	_e	111.5.2
Activated sludge			63-`99	<13	111.5.1
Granular activated carbon adsorption			>67->99	<11	III.6.1
Reverse osmosis			20-79	16	111.6.9

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR CHLOROFORM^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

d_{Only one data point}

^eActual data indicate negative removal.

^CAverage and maximum removals reported.

REFERENCES

-

- Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume IV, Halogenated Aliphatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 40-1 - 40-11.
- 2. Dobbs, R. A., R. J. Middendorf, and J. M. Cohen. Carbon Adsorption Isotherms for Toxic Organics. U.S. Environmental Protection Agency, Cincinnati, Ohio, 1978.

Compound: Carbon tetrachloride Formula: C1 ċ-c1 Tetrachloromethane, Methane Alternate Names: ċ1 tetrachloride, Perchloromethane, Benzinoform CAS #: 56-23-5 Physical, Chemical, and Biological Properties [1] b.p. (760 torr), °C: 76.5 mol. wt.: 153.8 m.p., °C: -22.9 vapor pressure (20°C), torr: 90 solubility in water (20°C), mg/L: 785 log octanol/water partition coefficient: 2.64 Henry's law constant: Not available biodegradability: Not available Probable Fate [1] photolysis: No information available pertaining to the rate of photolysis in aqueous environment; in the stratsophere photodissociation occurs to eventually form phosgene as the principal product oxidation: No information available; in troposphere it exhibits an extremely slow rate of reaction with hydroxyl radicals hydrolysis: Data unavailable volatilization: Volatilization is rapid and is an important transport process for the removal of tetrachloromethane from aquatic systems Little data available, but adsorption onto sediments rich in sorption: organic material possible biological processes: Little data available, some bioaccumulation and biodegradation possible other reactions/interactions: Unknown Carbon Adsorption Data [2] 100 pH: 7.3 type of carbon: Not available adsorbability: 225 mg/L; carbon dose required to reduce pollutant X/M, mg adsorbed/g carbon 10 concentration from 10 mg/L to 1 mg/L at neutral pH

0.1

0.01

NOTE SCALE

0.1

RESIDUAL CONCENTRATION, mg/L

Date: 8/13/79

	Raw wastewater								
	Conce	entration,	μ g/ L	Loading, c kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	ND	· <10	<1.4	0	0.037	0.0053			
Paint and ink formulation	ND	30,000	1,900	0	0.087	0.0030			
Rubber processing	NA	350	180	3.6 x 10 ⁻⁵	0.15	0.0059			
Auto and other laundries	ND	1,700	95	8.6 x 10 ⁻⁵	0.13	0.02			
Pharmaceutical manufacturing	ND	6,000	460	0	3.1	0.42			
Ore mining and dressing	ND	ND,	ND	_e	_e	_e			
Inorganic chemicals manufacturing	NA	200 ^a	NA	0	13	2.5			
Foundries	ND	480	45	0	0.3	0.12			
Iron and steel manufacturing	NA	NA	40	0	NA	7.2			
Nonferrous metals manufacturing	ND	2,300	81	0	NA	4.3			

INDUSTRIAL OCCURRENCE OF CARBON TETRACHLORIDE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dAverage of maximums reported for various industry segments.

^eMean pollutant concentration below detection limit.

	Treated wastewater								
	Conce	Loading, ^C kg/d							
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	ND	<6.7	<0.5	0	0.013	0.0019			
Paint and ink formulation	ND	1,800	640	0	0.029	0.0010			
Rubber processing	NA	1,400	700	0.00014	0.60	0.023			
Pharmaceutical manufacturing	ND	300	21	0	0.14	0.02			
Foundries	<10	39	22	0	0.15	0.059			
Iron and steel manufacturing	NA	NA	8	0	NA	`1.4			
Nonferrous metals manufacturing	ND	1,700	88	0	NA	0.13			

INDUSTRIAL OCCURRENCE OF CARBON TETRACHLORIDE^{a, b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

н.

12.4-3

Synthetic wastewater Actual wastewater Volume III Removal Average Removal Average range, range, achievable achievable references, Treatment process^a š Section numbers conc., $\mu q/L$ % conc., $\mu g/L$ 1^d Gravity oil separation NA III.4.1 Gas flotation with chemical addition lqq 50^d (calcium chloride, polymer) **III.4.5** Gas flotation with chemical addition 76^d 410^d (alum, polymer) **III.4.5** Filtration >73-93 <32 **III.4.6** Sedimentation with chemical addition >17^d <10^d (alum, lime) **III.4.3** Sedimentation with chemical addition 1,800^d 94^d (alum, polymer) **III.4.3** od,e _e III.5.1 Activated sludge

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR CARBON TETRACHLORIDE^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

^eActual data indicate negative removal.

I.12.4-4

REFERENCES

-

- Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume IV, Halogenated Aliphatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 41-1 - 41-9.
- 2. Dobbs, R. A., R. J. Middendorf, and J. M. Cohen. Carbon Adsorption Isotherms for Toxic Organics. U.S. Environmental Protection Agency, Cincinnati, Ohio, 1978.

Formula: Compound: Chloroethane нн Ċ-C1 Ethyl chloride, monochloro-Alternate Names: ethane, Hydrochloric ether, Muriatic ether CAS #: 75-00-3 Physical, Chemical, and Biological Properties [1] b.p. (760 torr), °C: 12.3 mol. wt.: 64.52 m.p., °C: -136 vapor pressure (20°C), torr: 1,000 solubility in water (20°C), mg/L: 5,740 log octanol/water partition coefficient: 1.54 Henry's law constant: Not available biodegradability: Not available Probable Fate [1] photolysis: No information available pertaining to rate of photodissociation in aqueous environment; photodissociation to formyl chloride may occur in stratosphere oxidation: No data available hydrolysis: Data unavailable, hydrolysis suggested as an important fate process volatilization: Some volatilization occurs, importance as a fate mechanism unknown sorption: No data available biological processes: No data available, biodegradation and bioaccumulation are not expected to be important fate other reactions/interactions: Unknown Carbon Adsorption Data: Not available

Industry	Raw wastewater								
	Concei	ntration,	Jg/L	Loading, ^C kg/d					
	Minimum	Maximum	Mean	Minimum	Maximum	Mear			
Gum and wood chemicals	BDL	520	170,	0.0015	1.3	0.38			
Rubber processing	NA	520 4,900 ^d	170 4,900 ^d	0.00098	4.2	0.16			

INDUSTRIAL OCCURRENCE OF CHLOROETHANE^{a, b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dOne sample.

	Treated wastewater								
Industry	Concer	Loading, ^C kg/d							
	Minimum	Maximum	Mean	Minimum	Maximum	Mear			
Gum and wood chemicals	NA	NA	NA	NA	NA	NA			
Rubber processing	NA	NA	NA	NA	NA	NA			

INDUSTRIAL OCCURRENCE OF CHLOROETHANE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

POLLUTANT	REMOVABILITY/TREATAB	BILITY WASTEWATER	R TREATMENT	ALTERNATIVE	FOR CHLOROETHANE ^{a,}	D

:

	Syntheti	c wastewater	Actual	wastewater	
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section_numbers
Granular activated carbon adsorption			58->99	71,000	III.6.1

1.12.5-4

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

REFERENCES

•

-

 Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume IV, Halogenated Aliphatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 42-1 - 42-9.

 $H \longrightarrow \begin{array}{c} C1 & H \\ I & I \\ C & C \\ I \\ I \\ I \\ I \\ H \end{array} H$ Compound: 1,1-Dichloroethane Formula: Ethylidene chloride, Alternate Names: Ethylidene dichloride CAS #: 75-34-3 Physical, Chemical, and Biological Properties [1] b.p. (760 torr), °C: 57.3 mol. wt.: 98.96 m.p., °C: -97.0 vapor pressure (25°C), torr: 234 solubility in water (20°C), mg/L: 5,500 log octanol/water partition coefficient: 1.79 Henry's law constant: Not available biodegradability: Not available Probable Fate [1] photolysis: Information lacking; photodissociation to chloroacetyl chloride in stratosphere is predicted oxidation: Information lacking; indirect evidence from similar compounds suggests little potential for oxidation in aquatic systems, in troposphere 1,1-dichloroethane is probably oxidized at a slow rate in a similar fashion to 1,2-dichloroethane hydrolysis: No information available volatilization: Due to high vapor pressure, volatilization to the atmosphere should be major transport process sorption: No data available biological processes: Data lacking; bioaccumulation not expected, biodegradation may be possible other reactions/interactions: Unknown Carbon Adsorption Data: Not available

I.12.6-1

	Raw wastewater							
	Concent	tration, µ	g/L	Loading, ^C kg/d				
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Textile mills ^d	NA	14	14	5.9 x 10 ⁻⁵	0.40	0.025		
Paint and ink formulation	ND	4 33	10,	0	0.00046	1.6 x 10-5		
Rubber processing	NA	<2 ^d	<2 ^d	4.0 x 10 ⁻⁷	0.0017	6.6 x 10 ⁻⁵		
Pharmaceutical manufacturing	ND	ND	ND	_e	_e	_e		
Leather tanning and finishing	ND,	NA .	<3,	0	NA	<0.0045		
Foundries	ND 55 ^d	55 ^d	55 ^d	0	0.37	0.14		
Coil coating	ND	18	18	0.0009	0.032	0.0086		
Nonferrous metals manufacturing	ND	180	20	0	NA	1.1		
Iron and steel manufacturing	NA	NA	8	0	NA	1.4		

INDUSTRIAL OCCURRENCE OF 1,1-DICHLOROETHANE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dOne sample.

^eMean pollutant concentration below detection limit.

1.12.6-3

	Treated wastewater								
	Concer	ntration, µ	Loading, ^C kg/d						
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Paint and ink formulation	ND	180	95	0	0.0044	0.00015			
Textile mills	NA	NA	NA	NA	NA	NA			
Rubber processing	NA	110	56	1.1×10^{-5}	0.048	0.0018			
Pharmaceutical manufacturing	ND	28	7	0	0.048	0.0064			
Iron and steel manufacturing	NA	NA	7	0	NA	1.3			
Nonferrous metals manufacturing	ND	7	0.6	0	NA	0.032			

INDUSTRIAL OCCURRENCE OF 1,1-DICHLOROETHANE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

	Syntheti	c wastewater	Actual	wastewater		
Treatment process ^a	Removal range, %	Average achievable conc., μg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
Gravity oil separation			NA	1 ^d	111.4.1	
Filtration			0 ^{d,e}	_e	III.4.6	
Sedimentation			>0 ^d	<10 ^d	111.4.2	
Activated sludge			>9->18	< 3 .5	III.5.1	
Granular activated carbon adsorption			>89->99	8,100	III.6.1	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR 1,1-DICHLOROETHANE^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

^eActual data indicate negative removal.

REFERENCES

.

_

 Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume IV, Halogenated Aliphatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 43-1 - 43-9.

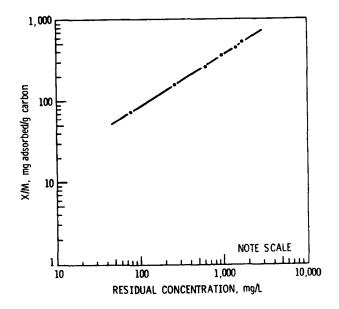
Compound: 1,2-Dichloroethane

Alternate Names: Ethylene dichloride, Glycol dichloride

CAS #: 107-06-2

Physical, Chemical, and Biological Properties [1]

mol. wt.: 98.98 m.p., °C: -35.4 b.p. (760 torr), °C: 83.5
vapor pressure (20°C), torr: 61
solubility in water (20°C), mg/L: 8,690
log octanol/water partition coefficient: 1.48
Henry's law constant: Not available
biodegradability: Not available


Formula:

— н

Probable Fate [1]

Carbon Adsorption Data [2]

pH: Not available type of carbon: Filtrasorb-300 adsorbability: Not available

Date: 8/13/79

I.12.7-1

	Raw wastewater								
	Concentration, $\mu g/L$			Loading, ^C kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	NA	ND,	ND,	_e	_e	_e			
Textile mills	NA	<5 ^d	<5 ^d	2.1 x 10 ⁻⁵	0.14	0.0090			
Paint and ink formulation	ND	420	100,	0	0.0046	0.00016			
Rubber processing	NA	93 ^d	93 ^d	0.000018	0.080	0.0031			
Pulp, paper and paperboard mills	NA	NA	NA	NA	NA	NA			
Auto and other laundries	ND	500	250	0.00023	0.35	0.052			
Pharmaceutical manufacturing	ND	74	8.7	0	0.059	0.0074			
Steam electric power generating (condenser cooling system) Steam electric power generating	NA	NA	44 ^f	0.0023	0.048	0.011			
(ash handling)	NA	NA	27 ^f	0.00051	2.6	0.59			
Inorganic chemical manufacturing	NA	620 ^g	NA	0	39	7.8			
Foundries	NA	170	83	0	0.56	0.24			
Iron and steel manufacturing	NA	NA	<10	0	NA	<1.8			
Nonferrous metals manufacturing	ND	180	20	0	NA	1.1			

INDUSTRIAL OCCURRENCE OF 1,2-DICHLOROETHANE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dOne sample.

^eMean pollutant concentration below detection limit.

^fAverage of medians reported for various industry segments.

^gAverage of maximums reported for various industry segments.

I.12.7-3

	Treated wastewater							
	Concei	ntration, µ	Jd\T	Loading, ^C kg/d				
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Coal mining	ND	<3.3	<0.2	0	0.0053	0.0007		
Paint and ink formulation	ND	170	70	0	0.0032	0.00011		
Textile mills	NA	NA	NA	NA	NA	NA		
Rubber processing	NA	4,	3,	6 x 10 ⁻⁷	0.0026	9.9 x 10		
Pulp, paper and paperboard mills	NA	4 <1 ^d	<1 ^d	0	NA	0.030		
Pharmaceutical manufacturing	ND	7,000	500	0	3.4	0.46		
Foundries	<20	<20	<20	0	0.13	0.054		
Iron and steel manufacturing	NA	NA	<10	0	NA .	<1.8		
Nonferrous metals manufacturing	ND	240	11	0	NA	0.58		

INDUSTRIAL OCCURRENCE OF 1,2-DICHLOROETHANE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dOne sample.

	Syntheti	Synthetic wastewater		wastewater		
	Removal	Average	Removal	Average	Volume III	
а	range, Č	achievable	range , ۲	achiev able	references,	
Treatment_process ^a	0	conc., µg/L	<u> </u>	conc., µg/L	Section numbers	
Filtration			0 ^{d,e}	_ ^e	III.4 .6	
Sedimentation			>70 ^d	<10 ^d	III.4.2	
edimentation with chemical addition (alum, polymer)			30->60	<50	III. 4 .3	
edimentation with chemical addition (alum)			0 ^{d,e}	_e	III.4.3	
Steam stripping			97->99	33,000	III.5.5	
Solvent extraction			87->99	84,000	III.5.6	
Powdered activated carbon adsorption			81 ^d	190,000 ^d	111.6.2	
Granular activated carbon adsorption			>86->99	230,000	III.6.1	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR 1,2-DICHLOROETHANE^{a,b}

^aSee Volume III for detailed information.

b NA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

d_{Only one data point.}

^eActual data indicate negative removal.

REFERENCES

:

-

- Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume IV, Halogenated Aliphatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 44-1 - 44-9.
- 2. Report on visit of D. Stephan and W. Cawley, U.S. Environmental Protection Agency, to Calgon Environmental Systems Division, Calgon Corporation, Pittsburgh, Pennsylvania, 9 April 1979. 132 pp.

Compound: 1,1,1-Trichloroethane

Formula: Cl H Cl - C - C - H $c_{1} - C - H$

Alternate Names: Methyl chloroform, Chlorotene, Genklene, Baltana

CAS #: 71-55-6

Physical, Chemical, and Biological Properties [1]

mol. wt.: 133.4 m.p., °C: -30.4 b.p. (760 torr), °C: 74.1
vapor pressure (20°C), torr: 96.0
solubility in water (20°C), mg/L: 480-4,400
log octanol/water partition coefficient: 2.17
Henry's law constant: Not available
biodegradability: Not available

Probable Fate [1]

Carbon Adsorption Data: Not available

Date: 8/13/79

I.12.8-1

	Raw wastewater								
Industry	Cond	centration,	µg/L	Loading, ^C kg/d					
	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	ND	<10	<2.5	0	0.066	0.0094			
Textile mills	NA	17	7.8 ^d	0.00033	0.22	0.014			
Timber products process	BDL	90	30 ^e	0	1.4	0.0026			
Paint and ink formulation	ND	· 1,000	3 50	0	0.016	0.00056			
Gum and wood chemicals ^f	BDL	830	280	0.0025	2.1	0.46			
Rubber processing	NA	NA	NA	NA	NA	NA			
Pulp, paper and paperboard mills	<1	414	<106	0	NA	3.2			
Auto and other laundries	ND	6,600	520	0.00047	0.73	0.11			
Pharmaceutical manufacturing	ND	130	10	0	0.068	0.0092			
Ore mining and dressing	0.63	0.63	0.63	0	NA	0.023			
Steam electric power generating									
(condenser cooling system)	13	26	15	0.0008	0.017	0.0036			
Coil coating	ND	1,300	12	0.0006	0.022	0.0022			
Foundries	ND	16,000	1,400	0	9.4	3.8			
Leather tanning and finishing	ND	NA	1.4	0	NA	0.0021			
Iron and steel manufacturing	NA	420	44	0	NA	7.9			
Nonferrous metals manufacturing	ND	40	3.6	0	NA	0.19			

INDUSTRIAL OCCURRENCE OF 1,1,1-TRICHLOROETHANE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dOne sample.

^eAverage of medians reported for various industry segments.

I.12.

8-3 -3

Industry	Treated wastewater							
	Con	centration,	µg/L	Loading, c kg/d				
	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Coal mining	ND	<10,	<3a1 5a1	0	0.082	0.012		
Textile mills	NA	5 ^a	5 ^α	2.1 x 10 ⁻⁵	0.14	0.0009		
Paint and ink formulation	ND	560	89	0	0.0041	0.0001		
Gum and wood chemicals	NA	NA	NA	NA	NA	NA		
Timber products processing	NA	7,100	7,100	0.0014	6.1	0.23		
Rubber processing	NA	NA	NA	NA	NA	NA		
Pulp, paper and paperboard mills	<1	4 d	<2,	0	NA	0,060		
Auto and other laundries	ND	NDa	<2 ND ^d	_e	_e	_e		
Pharmaceutical manufacturing	ND	360,000	25, 80 0	0	180	24		
Nonferrous metals manufacturing	ND	10	1.5	0	NA	0.08		
Iron and steel manufacturing	NA	50	10	0	NA	1.8		

INDUSTRIAL OCCURRENCE OF 1,1,1-TRICHLOROETHANE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dOne sample.

^eMean pollutant concentration below detection limit.

	Syntheti	c wastewater	Actual wastewater			
	Removal	Average	Removal	Average	Volume III	
Treatment process ^a	range, Č	achievable conc., µg/L	range, č	achievable conc., µg/L	references, Section numbers	
Gravity oil separation			NA	50 ^d	III.4.1	
Gas flotation with chemical addition						
(calcium chloride, polymer)			22 ^đ	14^{d}	III.4.5	
Gas flotation with chemical addition						
(polymer)			>4->9	<6	111.4.5	
Gas flotation with chemical addition						
(alum, polymer)			74 ^d	860 ^d	III.4.5	
Filtration			67-94	710	III.4.6	
Sedimentation			30->57	<19	III.4.2	
Sedimentation with chemical addition						
(lime, polymer)			0 ^{d,e}	~e	III.4.3	
Sedimentation with chemical addition						
(alum, polymer)			46-93	69	III.4.3	
Aerated lagoons			96 ^d	22 ^d	III.5.3	
Steam stripping			9 ^d	42,000 ^d	III.5.5	
Activated sludge			74->99	<2.4	III.5.1	
Granular activated carbon adsorption			>99 ^d	<10 ^d	111.6.1	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR 1,1,1-TRICHLOROETHANE^{a,b}

^aSee Volume III for detailed information. ^bNA - Not available, ND - not detected,

BDL - below detection limit.

^CAverage and maximum removals reported. ^dOnly one data point.

e Actual data indicate negative removal.

REFERENCES

-

 Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume IV, Halogenated Aliphatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 45-1 - 45-12.

Compound: 1,1,2-Trichloroethane

 $\underbrace{ \begin{array}{ccc} Formula: & Cl & Cl \\ Cl & \begin{matrix} c \\ - \end{matrix} \\ H \end{matrix} \\ H \end{array} } H$

Alternate Names: Vinyl trichloride

CAS #: 79-00-5

Physical, Chemical, and Biological Properties [1]

mol. wt.: 133.4 m.p., °C: -36.5 b.p. (760 torr), °C: 134
vapor pressure (20°C), torr: 19
solubility in water (20°C), mg/L: 4,500
log octanol/water partition coefficient: 2.17
Henry's law constant: Not available
biodegradability: Not available

Probable Fate [1]

Carbon Adsorption Data: Not available

Date: 8/13/79

I.12.9-1

	Raw wastewater								
	Cond	centration,	µg/L	Loading, ^C kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	NA	ND	ND	BDL	BDL	BDL			
Paint and ink formulation	ND	2,800	290	0	0.013	0.00046			
Rubber processing	NA	<0.1 ^a	<0.1 ^d	2 x 10 ⁻⁸	8.6 x 10 ⁻⁵	3.3 x 10 ⁻⁶			
Auto and other laundries	ND	3,000	1,500	0.0014	2.1	0.32			
Pharmaceutical manufacturing	ND	1,300	95	0	0.65	0.087			
Leather tanning and finishing	ND	NA	1.4	0	NA	0.0021			
Foundries	ND	NA	10	0	0.067	0.027			
Nonferrous metals manufacturing	ND	29	1.2	0	NA	0.064			

INDUSTRIAL OCCURRENCE OF 1,1,2-TRICHLOROETHANE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dOne sample.

н.

12.9-2

	Treated wastewater							
	Concei	ntration, p	Jg/L	Loading, c kg/d				
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Coal mining	ND	<3.3	<0.2	0	0.0053	0.00076		
Paint and ink formulation	ND	2,100	93	0	0.0043	0.00015		
Rubber processing	NA	<1	<0.55	1.1×10^{-7}	0.00047	1.8 x 10 ⁻⁵		
Pharmaceutical manufacturing	ND	890	64	0	0.43	0.06		
Nonferrous metals manufacturing	ND	8.5	1.7	0	NA	0.09		

INDUSTRIAL OCCURRENCE OF 1,1,2-TRICHLOROETHANE^{a,b}

Date: 12/5/79

I.12.9-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR 1,1,2-TRICHLOROETHANE^{a,b}

	Syntheti	c wastewater	Actual	wastewater	
Treatment process	Removal range, %	Average 'achievable conc., µg/L	Removal range, %	Average achievable conc., μg/L	Volume III references, Section_numbers
Filtration			0 ^{d,e}	_e	III.4.6
Sedimentation with chemical addition (alum, polymer)			0 ^{d,e}	_e	III.4.3
Steam stripping			>99	<48	III.5.5
Solvent extraction			90-95	16,000	III.5.6
Activated sludge			>9 ^d	<10 ^d	III.5.1
Granular activated carbon adsorption			>99 ^d	<10 ^d	III.6.1

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

^eActual data indicate negative removal.

REFERENCES

.

-

 Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume IV, Halogenated Aliphatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 46-1 - 46-9.

•

Formula: C1 C1 Compound: 1,1,2,2-Tetrachloroethane - H H sym-Tetrachloroethane, Alternate Names: Acetylene tetrachloride CAS #: 79-34-5 Physical, Chemical, and Biological Properties [1] b.p. (760 torr), °C: 146 mol. wt.: 167.8 m.p., °C: -36 vapor pressure (20°C), torr: 5 solubility in water (20°C), mg/L: 2,900 log octanol/water partition coefficient: 2.56 Henry's law constant: Not available biodegradability: Not available Probable Fate [1] Information not available pertaining to the rate of photolysis photolysis: in aquatic environment; photodissociation in stratosphere is expected oxidation: Information not available hydrolysis: Data lacking, slow hydrolysis expected volatilization: Some volatilization occurs, importance as a fate mechanism unknown sorption: Information not available biological processes: Information not available other reactions/interactions: Unknown 1,000 Carbon Adsorption Data [2] pH: Not available type of carbon: Filtrasorb-300 adsorbability: Not available K/M, mg adsorbed/g carbon 100 10 NOTE SCALE 10 100 RESIDUAL CONCENTRATION, mg/L

Date: 8/13/79

I.12.10-1

1,000

	Raw wastewater							
	Conce	ntration,	µg/L	Loading, ^C kg/d				
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Coal mining	NA	ND,	ND,	BDL	BDL	BDL		
Rubber processing	NA	1.5 ^a	1.5 ^d	3 x 10 ⁻⁷	0.0013	4.9 x 10 ⁻⁵		
Pharmaceutical manufacturing	ND	10	2	0	0.014	0.0018		
Foundries	ND	NA	18	0	0.12	0.049		
Leather tanning and finishing	ND	NA	5.4	0	NA	0.0081		
Nonferrous metals manufacturing	ND	35	2.8	0	NA	0.15		

INDUSTRIAL OCCURRENCE OF 1,1,2,2-TETRACHLOROETHANE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, 1/2 the reported maximum was utilized.

^dOne sample.

I.12.10-3

	Treated wastewater							
	Concer	ntration,	µg/L	Loading, ^C kg/d				
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Coal mining	ND	<3.3	<0.2	0	0.0053	0.00076		
Rubber processing	NA	4	1.7	3.4×10^{-7}	0.0015	5.6×10^{-1}		
Auto and other laundries	0.7	9	5	4.5 x 10 ⁻⁶	0,007	0_0010		
Pharmaceutical manufacturing	ND	ND	ND	-a	_a	-a		
Foundries	18	<20	19	0	0.13	0.051		
Iron and steel manufacturing	NA	<10	<10	0 d	NA d	<1_8		
Leather tanning and finishing	ND	ND	ND	_a	_a	_ a		
Nonferrous metals manufacturing	ND	190	10	0	NA	0.53		

INDUSTRIAL OCCURRENCE OF 1,1,2,2-TETRACHLOROETHANE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^d Mean pollutant concentration below detection limit.

	Syntheti	c wastewater	Actual	wastewater	
Treatment process ^a	Removal range, %	Average achievable conc., μg/L	Removal range, ^C %	Average achievable conc., µg/L	Volume III references, Section numbers
Filtration			0 ^{d,e}	_e	III.4.6
Sedimentation			0 ^{d,e}	_e	III.4.2
Sedimentation with chemical addition (alum, lime)			30 ^d	35 ^d	III.4.3
Steam stripping			40->99	32,000	III.5.5
Solvent extraction			91-99	4,200	III.5.6
Activated sludge			>22->44	<9	III.5.1

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR 1,1,2,2-TETRACHLOROETHANE^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

^eActual data indicate negative removal.

I.12.10-4

REFERENCES

-

- Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume IV, Halogenated Aliphatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 47-1 - 47-9.
- 3. Report on visit of D. Stephan and W. Cawley, U.S. Environmental Protection Agency, to Calgon Environmental Systems Division, Calgon Corporation, Pittsburgh, Pennsylvania, 9 April 1979. 132 pp.

-

I.12.10-5

Compound: Hexachloroethane

Alternate Names: Perchloroethane, Carbon hexachloride

CAS #: 67-72-1

Physical, Chemical, and Biological Properties [1]

mol. wt.: 236.7 m.p., °C: 187 (sublimes) b.p. (777 torr), °C: 186
vapor pressure (20°C), torr: 0.4
solubility in water (22°C), mg/L: 50
log octanol/water partition coefficient: 3.34
Henry's law constant: Not available
biodegradability: Not available

Probable Fate [1]

Carbon Adsorption Data: Not available

Date: 8/13/79

I.12.11-1

	Raw wastewater							
	Concer	ntration,	µg/L	Loading, ^C kg/d				
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Coal mining	NA	ND	ND	BDL	BDL	BDL		
Inorganic chemicals manufacturing	NA	90 ^d	NA	0	5.6	1.1		
Nonferrous metals manufacturing	ND	23	1.5	0	NA	0.080		

INDUSTRIAL OCCURRENCE OF HEXACHLOROETHANE a, b

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dAverage of maximums reported for various industry segments.

		Treated wastewater							
	Conce	ntration, j	Loading, c kg/d						
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	ND	<6.7	<0.4	0	0.011	0.0019			

INDUSTRIAL OCCURRENCE OF HEXACHLOROETHANE^{a,b}

I.12.11-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR HEXACHLOROETHANE ^{A, b}	POLLUTANT	REMOVABILITY/TREATABILITY	WASTEWATER	TREATMENT	ALTERNATIVE	FOR	HEXACHLOROETHANE ^{a, b}	
---	-----------	---------------------------	------------	-----------	-------------	-----	----------------------------------	--

		Syntheti	c wastewater	Actual	wastewater	
-1	Treatment process	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., μg/L	Volume III references, Section numbers
ა						
بہ نہ						
1 Þ						

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

REFERENCES

-

 Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume IV, Halogenated Aliphatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 48-1 - 48-8.

•

Compound: Vinyl chloride

Formula:

Alternate Names: Chloroethene, Monochloroethylene, Monovinylchloride, MVC, Chloroethylene

CAS #: 75-01-4

Physical, Chemical, and Biological Properties [1]

mol. wt.: 62.50 m.p., °C: -154 b.p. (760 torr), °C: -13.4
vapor pressure (25°C), torr: 2,660
solubility in water (25°C), mg/L: 1.1
log octanol/water partition coefficient: 0.60
Henry's law constant: Not available
biodegradability: Not available

Probable Fate [1]

photolysis: Light-induced transformations of vinyl chloride can occur through indirect photolysis in water containing photosensitizers, direct photolysis insignificant oxidation: Experiments indicate that vinyl chloride is decomposed in water by reactive radicals, when present in sufficient concentration; in the troposphere rapid oxidation by hydroxyl radicals occurs yielding as end-products hydrogen chloride and carbon monoxide hydrolysis: Due to rapid volatilization, hydrolysis should not be a significant aquatic fate volatilization: Volatilization to the atmosphere is rapid and is a major transport process Sorption by inorganic and organic materials not expected to be sorption: important fate mechanism biological processes: Biodegradation and bioaccumulation are not believed to be important fate processes other reactions/interactions: Vinyl chloride could be converted to more highly chlorinated compounds in aqueous environment where high concentrations of chlorine/chloride exist

Carbon Adsorption Data: Not available

Date: 8/13/79

I.12.12-1

	Raw wastewater								
	Concen	tration, p	g/L	Loading, ^C kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Textile mills	NA	11 ^d	11 ^đ	0.000046	0.32	0.020			

INDUSTRIAL OCCURRENCE OF VINYL CHLORIDE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dOne sample.

I.12.12-3

	Treated wastewater							
	Concer	ntration, µ	Loading, ^C kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Textile mills	NA	NA	NA	NA	NA	NA		

INDUSTRIAL OCCURRENCE OF VINYL CHLORIDE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

٠

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

	<u>Synthetic wastewater</u>		Actual	wastewater		
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section_numbers	
Granular activated carbon adsorption			0 ^{d,e}	ےe	111.6.1	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR VINYL CHLORIDE^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

^eActual data indicate negative removal.

REFERENCES

•

-

 Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume IV, Halogenated Aliphatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 49-1 - 49-10.

-

,

Compound: 1,2-Dichloropropane

Formula: H Cl H Cl - C - C - C - HL L L

Alternate Names: Propylene chloride, Propylene dichloride

CAS #: 78-87-5

Physical, Chemical, and Biological Properties [1]

mol. wt.: 113.0 m.p., °C: -100 b.p. (760 torr), °C: 96.8
vapor pressure (20°C), torr: 42
solubility in water (20°C), mg/L: 2,700
log octanol/water partition coefficient: 2.28
Henry's law constant: Not available
biodegradability: Not available

Probable Fate [1]

Carbon Adsorption Data: Not available

I.12.13-1

	Raw wastewater							
	Concent	tration, μ	g/L	Loading, ^C kg/d				
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Textile mills	NA	100 ^d	100 ^d	0.00042	2.9	0.18		
Paint and ink formulation	ND	970	180	0	0.0083	0.00029		

INDUSTRIAL OCCURRENCE OF 1,2-DICHLOROPROPANE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dOne sample.

	Treated wastewater						
	Conce	ntration, µ	Loading, ^C kg/d				
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean	
Paint and ink formulation	ND	400	210	0	0.0097	0.0003	
Textile mills	NA	NA	NA	NA	NA	NA	

INDUSTRIAL OCCURRENCE OF 1,2-DICHLOROPROPANE^{a,b}

I.12.13-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

	Synthetic wastewater		Actual	wastewater		
Treatment process ^a	Removal range, %	Average achievable conc., μg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
Filtration			0 ^{d,e}	_e	III.4.6	
Sedimentation with chemical addition (alum, lime)			59 ^d	400 ^d	III.4.3	
Activated sludge			>68->82	<5.4	111.5.1	
Powdered activated carbon adsorption			93 ^d	70,000 ^d	111.6.2	
Granular activated carbon adsorption			>64->99	5.4	III.6.1	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR 1,2-DICHLOROPROPANE^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

^eActual data indicate negative removal.

REFERENCES

.

-

 Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume IV, Halogenated Aliphatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 54-1 - 54-5.

•

Compound:1,3-DichloropropeneFormula:ClHClHAlternate Names:1,3-DichloropropyleneHClHClHCAS #:542-75-6(trans)(cis)

Physical, Chemical, and Biological Properties [1]

mol. wt.: 110.98 m.p., °C: Not available b.p. (760 torr), °C: 104 (cis isomer); 112 (trans isomer) vapor pressure (20°C), torr: 25 solubility in water (25°C), mg/L: 2,700 (cis isomer); 2,800 (trans isomer) log octanol/water partition coefficient: 1.98 Henry's law constant: Not available biodegradability: Not available

Probable Fate [1]

Carbon Adsorption Data: Not available

Date: 8/13/79

I.12.14-1

			Raw wast	ewater		
Industry	Concen	tration, µg	I/L	Loading, ^C kg/d		
	Minimum	Maximum	Mean	Minimum	Maximum	Mean
Pharmaceutical manufacturing	ND	ND	ND	_d	_ ^d	_ ^d
Iron and steel manufacturing	NA	NA	<10	0	NA	<1.8

INDUSTRIAL OCCURRENCE OF 1,3-DICHLOROPROPENE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dMean pollutant concentration below detection limit.

Industry	Treated wastewater							
	Concei	ntration, µ	Loading, ^C kg/d					
	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Pharmaceutical manufacturing	ND	ND	ND	_d	_d	_ ^d		

INDUSTRIAL OCCURRENCE OF 1,3-DICHLOROPROPENE^{a,b}

I.12.14-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dMean pollutant concentration below detection limit.

	Syntheti	Synthetic wastewater		wastewater		
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range,	Average achievable conc., µg/L	Volume III references, Section_numbers	
Activated sludge			0 ^{d,e}	_e	III.5.1	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR 1,3-DICHLOROPROPENE^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

eActual data indicate negative removal.

REFERENCES

-

 Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume IV, Halogenated Aliphatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 55-1 - 55-6.

•

,

Compound: Hexachlorobutadiene

Alternate Names: HCBD, Hexachloro-1,3-butadiene

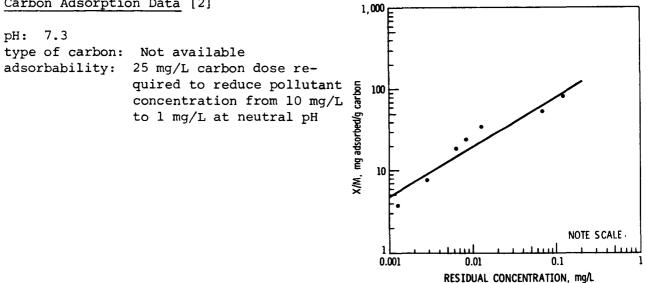
Formula: C1 C1 C1 C1

$$c = c - c = c$$

 $c = c$
 $c = c$

CAS #: 87-68-3

Physical, Chemical, and Biological Properties [1]


b.p. (760 torr), °C: 215 mol. wt.: 260.8 m.p., °C: -21 vapor pressure (20°C), torr: 0.15 solubility in water (20°C), mg/L: 2 log octanol/water partition coefficient: 3.74 Henry's law constant: Not available biodegradability: Not available

Probable Fate [1]

photolysis: Absorption of sunlight too weak to make photolysis important oxidation: Lack of information probably indicates unimportance hydrolysis: Lack of information probably indicates unimportance volatilization: Low vapor pressure precludes volatilization as an important transport process sorption: Adsorbed by organic materials very strongly biological processes: Bioaccumulation occurs in some aquatic organisms; no information on biodegradation

other reactions/interactions: Unknown

Carbon Adsorption Data [2]

INDUSTRIAL OCCURRENCE OF HEXACHLOROBUTADIENE^{a, b}

		Raw wastewater						
		Concer	Loading, ^C kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

н

12.15-3

INDUSTRIAL OCCURRENCE OF HEXACHLOROBUTADIENE^{a,b}

	T	reated w	vastewater		
Conce	ntration, µ	g/L	Loa	ading, ^C kg/	d
Minimum	Maximum	Mean	Minimum	Maximum	Mea
Minimum	Maximum	Mean	Minimum	Maximum	4
					-
		Concentration, µ	Concentration, µg/L		Concentration, µg/L Loading, ^C kg/

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

					ab
POLLUTANT REMOVABILITY/TREATABILITY	WASTEWATER	TREATMENT	ALTERNATIVE	FOR	HEXACHLOROBUTADIENE

		Syntheti	c wastewater	Actual	wastewater	
н.	Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers
12.			·····		_	
15-4						

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

REFERENCES

-

- Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume IV, Halogenated Aliphatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 56-1 - 56-6.
- Dobbs, R. A., R. J. Middendorf, and J. M. Cohen. Carbon Adsorption Isotherms for Toxic Organics. U.S. Environmental Protection Agency, Cincinnati, Ohio, 1978.

.

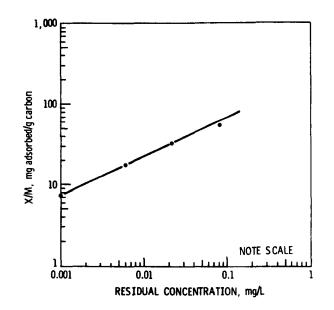
Compound: Hexachlorocyclopentadiene

Formula:

C1

Alternate Names: HCCPD, Perchlorocyclopentadiene

CAS #: 77-47-4


Physical, Chemical, and Biological Properties [1]

mol. wt.: 272.8 m.p., °C: -9.9 b.p. (760 torr), °C: 239
vapor pressure (25°C), torr: 0.081
solubility in water (temp. unknown), mg/L: 0.805
log octanol/water partition coefficient: Not available
Henry's law constant: Not available
biodegradability: Not available

Probable Fate [1]

Carbon Adsorption Data [2]

pH: Not available type of carbon: Filtrasorb-300 adsorbability: Not available

Date: 8/13/79

I.12.16-1

			a.b
INDUSTRIAL	OCCURRENCE	OF	HEXACHLOROCYCLOPENTADIENE ^{a,b}

		Raw wastewater						
	Conce	ntration, μ	g/L	Loa	ading, ^C kg/	ď		
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

INDUSTRIAL OCCURRENCE OF HEXACHLOROCYCLOPENTADIENE^{a,b}

	Treated wastewater							
	Conce	ntration, µ	Loading, ^C kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Foundries	NA	<20 ^d	<20 ^d	0	0.13	0.054		

Date:

12/5/79

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d_{One sample.}

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR HEXACHLOROCYCLOPENTADIENE^{a,b}

•	Syntheti	c wastewater	Actual	wastewater	
_	Removal range,	Average achievable	Removal range,	Average achievable	Volume III references,
Treatment process ^a	010	conc., µg/L	010	conc., µg/L	Section numbers

I.12.16-4

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

REFERENCES

- Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume IV, Halogenated Aliphatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 57-1 - 57-5.
- 2. Report on visit of D. Stephan and W. Cawley, U.S. Environmental Protection Agency, to Calgon Environmental Systems Division, Calgon Corporation, Pittsburgh, Pennsylvania, 9 April 1979. 132 pp.

-

Compound:Methyl bromideFormula:Alternate Names:Bromomethane, Terabol,

Alternate Names: Bromomethane, Terabol, Monobromomethane, Embafume

<u>CAS #: 74-83-9</u>

Physical, Chemical, and Biological Properties [1]

mol. wt.: 94.94 m.p., °C: -93.6 b.p. (760 torr), °C: 4.6
vapor pressure (20°C), torr: 1,420
solubility in water (20°C), mg/L: 900
log octanol/water partition coefficient: 1.1
Henry's law constant: Not available
biodegradability: Not available

H-Ç-Br

Probable Fate [1]

Carbon Adsorption Data: Not available

Date: 8/13/79

I.12.17-1

. .

.

	Raw wastewater							
	Concen	tration, µg	/L	Loading, c kg/d				
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Pharmaceutical manufacturing	ND	15	3	0	0.02	0.0028		

INDUSTRIAL OCCURRENCE OF METHYL BROMIDE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

1.12.17-3

	Treated wastewater						
	Concer	Loading, ^C kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean	
Pharmaceutical manufacturing	ND	ND	ND	_d	_d	_ ^d	

INDUSTRIAL OCCURRENCE OF METHYL BROMIDE^{A, b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d_{Mean pollutant concentration below detection limit.}

						ah
POLLUTANT REMOVABILITY/TREATABILITY	WASTEWATER	TREATMENT	ALTERNATIVE	FOR	METHYL	BROMIDE

		Syntheti	c wastewater	Actual	wastewater	
н	Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range,	Average achievable conc., µg/L	Volume III references, Section numbers
Ļ				······································		
N.						
щ						
7						
2.17-4			,			

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

REFERENCES

-

 Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume IV, Halogenated Aliphatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 58-1 - 58-7.

.

Compound: Dichlorobromomethane Formula: Alternate Names: Bromodichloromethane CAS #: 75-27-4 Physical, Chemical, and Biological Properties [1] m.p., °C: -57.1 b.p. (760 torr), °C: 90 mol. wt.: 163.8 vapor pressure (20°C), torr: 50 solubility in water (25°C), mg/L: Not available log octanol/water partition coefficient: 1.88 Henry's law constant: Not available biodegradability: Not available Probable Fate [1] photolysis: No information oxidation: No information, but probably not important hydrolysis: Too slow to be important volatilization: Volatilization has been demonstrated, but the rate is unknown sorption: No information, but adsorption onto activated carbon has been demonstrated biological processes: Moderate potential for bioaccumulation/Metabolization by some aquatic species is known to occur other reactions/interactions: Dichlorobromomethane may be formed by a haloform reaction following chlorination of drinking water if sufficient bromide is present

Carbon Adsorption Data: Not available

Date: 8/13/79

I.12.18-1

	Raw wastewater								
	Concer	ntration,	⊔g∕L	Loading, ^C kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Textile mills	NA	6,6 ^d	6,6 ^d	2.8 x 10 ⁻⁵	0.19	0.012			
Petroleum refining	NA	110	110 [°]	0	10	0.64			
Paint and ink formulation	ND	27 ^e	27 ^e	0	0.0012	4.3 x 10-			
Pulp, paper and paperboard mills	NA	-^d	6 ^d	0	NA	0.18			
Auto and other laundries	ND	33	10	9.0 x 10 ⁻⁵	0.014	0.0021			
Pharmaceutical manufacturing	NA	NA	NA	NA	NA	NA			
Ore mining and dressing	0.02	0.02	0.02	0	NA	740			
Inorganic chemicals manufacturing	NA	310 ^f	NA	0	19	3.9			
Leather tanning and finishing	ND	NA	<3	0	NA	0.0045			
Iron and steel manufacturing	NA	NA	NA	NA	NA	NA			

INDUSTRIAL OCCURRENCE OF DICHLOROBROMOMETHANE^{a,b}

I.12.18-2

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dOne sample.

^eDetected in only one sample.

 $^{\rm f}{\mbox{\rm Average}}$ of maximums reported for various industry segments.

)			
ì			
ì			
)			

INDUSTRIAL OCCURRENCE OF DICHLOROBROMOMETHANE^{a,b}

			freated w	astewater		
	Concei	ntration, p	Loading, ^C kg/d			
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean
Paint and ink formulation	NA	ND	ND	_d	_d	_d
Textile mills	NA	NA	NA	NA	NA	NA
Petroleum refining	NA	NA	NA	NA	NA	NA
Pulp, paper and paperboard mills	0	<1 ^e	<1 ^e	0	NA	0.030
Auto and other laundries	ND	1.0	0.5	0.45	0.0007	0.0001
Nonferrous metals manufacturing	ND	18	3	0	NA	0.16
Iron and steel manufacturing	NA	NA	<10	0	NA	<1.8
Foundries	NA	23 ^e	23 ^e	0	0.15	0.062

I.12.18-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dMean pollutant concentration below detection limit.

^eOne sample.

	Syntheti	c wastewater	Actual	wastewater	
Treatment process ^a	Removal range, %	Average achievable conc., μg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers
Gas flotation with chemical addition (alum, polymer)			>85 ^d	<0.9 ^d	III.4.5
Activated sludge			0 ^e	_e	III.5.1

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR DICHLOROBROMOMETHANE^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

^eActual data indicate negative removal.

I.12.18-4

REFERENCES

-

 Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume IV, Halogenated Aliphatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 59-1 - 59-6.

-

Formula: Compound: Chlorodibromomethane Br-Ç-Cl Alternate Names: Dibromochloromethane CAS #: 124-48-1 Physical, Chemical, and Biological Properties [1] m.p., °C: <-20 b.p. (748 torr), °C: 119-120 mol. wt.: 208.3 vapor pressure (10.5°C), torr: 15 solubility in water, (temp. unknown), mg/L: Not available log octanol/water partition coefficient: 2.09 Henry's law constant: Not available biodegradability: Not available Probable Fate [1] photolysis: No information oxidation: No information, but probably not important hydrolysis: Too slow to be important volatilization: Volatilization has been demonstrated, but the rate is unknown sorption: No information, but adsorption onto activated carbon has been demonstrated biological processes: Moderate potential for bioaccumulation/biodegradation occurs in some organisms other reactions/interactions: May be formed by haloform reaction after chlorination of water if sufficient bromide is present

Carbon Adsorption Data: Not available

Date: 8/13/79

I.12.19-1

	Raw wastewater								
	Concer	ntration,	µg/L	Loading, c kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Paint and ink formulation ^d	ND	43	43	0	0.0020	6.9 x 10 ⁻⁵			
Simber products processing	NA	NA	NA	NA	NA	NA			
Petroleum refining	NA	NA	110 ^e	0	10	0.93			
uto and other laundries	ND	12	6	5.4 x 10 ⁻⁶	0.0084	0.0013			
team electric power generating									
(condenser cooling system)	NA	NA	59	0.0031	0.065	0.014			
Ionferrous metals manufacturing	ND	81	5.4	0	NA	0.29			

INDUSTRIAL OCCURRENCE OF CHLORODIBROMOMETHANE^{a, b}

a Information contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dDetected in only one sample.

^eMedian, not average.

	Treated wastewater								
	Conce	ntration, µ	Ig/L	Loa	ading, ^C kg/	ď			
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Timber products processing	BDL	30	BDL	_d	_d	_d			
Petroleum refining	NA	NA	NA	NA	NAd	NAd			
Paint and ink formulation	NA	ND	ND	-4	-,				
Auto and other laundries	NDe	ND ^e	NDe	_a	_a	_u			
Nonferrous metals manufacturing	ND	2,800	252	0	NA	13			

INDUSTRIAL OCCURRENCE OF CHLORODIBROMOMETHANE^{a,b}

I.12.19-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d_{Mean} pollutant concentration below detection limit.

^eOne sample.

	Synthetic wastewater		Actual	wastewater		
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
Sedimentation			>77 ^d	<10 ^d	III.4.2	
Sedimentation with chemical addition			>50 ^d	<0.3 ^d	III.4.3	

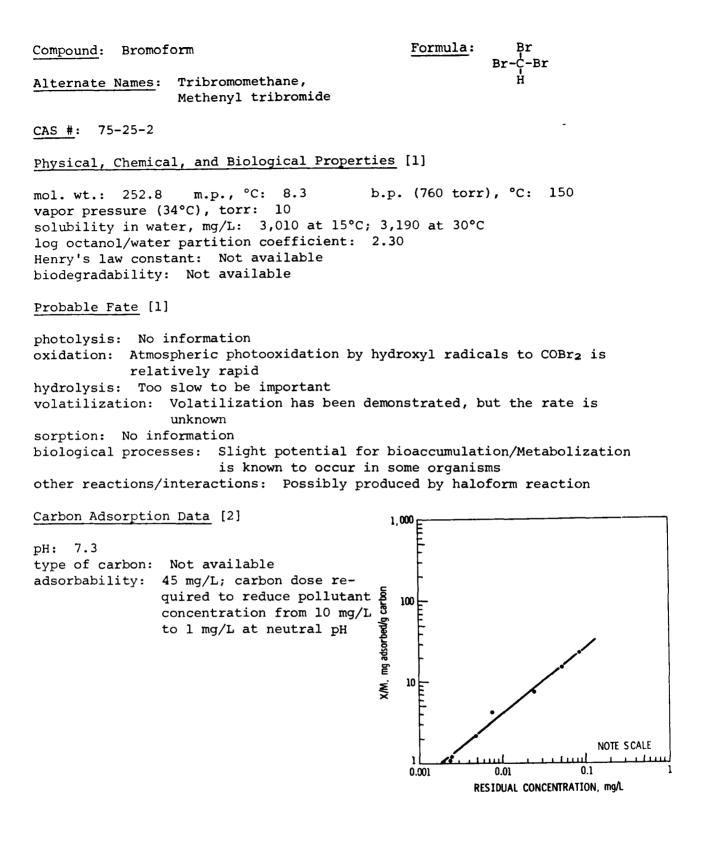
						a h
POLLUTANT	REMOVABILITY/TREATABILITY	WASTEWATER	TREATMENT	ALTERNATIVE	FOR	CHLORODIBROMOMETHANE"

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.


REFERENCES

-

 Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume IV, Halogenated Aliphatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 60-1 - 60-7.

-

ŧ

Date: 8/13/79

I.12.20-1

12/5/79		

Date:

			Raw wast	ewater		
	Conce	ntration, µ	g/L	Loa	ding, ^C kg/d	l
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean
Dulp paper and paperheard wills	NA	14^{d}	14^{d}	0	ΝĀ	0 4 2
Pulp, paper and paperboard mills			14	U e	NA	0.42
Pharmaceutical manufacturing	ND	ND	ND	-	-	-
Steam electric power generating						
(condenser cooling system)	13	580	210	0.011	0.23	0.05
Nonferrous metals manufacturing	ND	65	6.8	0	NA	0.36

INDUSTRIAL OCCURRENCE OF BROMOFORM^{a, b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual. ^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dOne sample.

^eMean pollutant concentration below detection limit.

INDUSTRIAL	OCCURRENCE	OF	BROMOFORM ^{a, b}
------------	------------	----	---------------------------

Industry	Treated wastewater							
	Concer	Loading, ^C kg/d						
	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Pulp, paper and paperboard mills	NA	3 ^d	<3 ^d	0	NA	0.090		
Pharmaceutical manufacturing	ND	ND	ND	_e	_e	_ ^e		
Nonferrous metals manufacturing	ND	44	2.1	0	NA	0.11		
Leather tanning and finishing	ND	<10	<5	0	NA	<0.0075		

I.12.20-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dOne sample.

^eMean pollutant concentration below detection limit.

	Synthetic wastewater		Actual wastewater			
Treatment process ^a	Removal range, %	Average achievable conc., μg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
Activated sludge			0 ^{d,e}	_e	III.5.1	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR BROMOFORM^{a,b}

I.12.20-4

^aSee Volume III for detailed information.

bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

d_{Only one data point.}

e Actual data indicate negative removal.

REFERENCES

-

- Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume IV, Halogenated Aliphatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 61-1 - 61-7.
- Dobbs, R. A., R. J. Middendorf, and J. M. Cohen. Carbon Adsorption Isotherms for Toxic Organics. U.S. Environmental Protection Agency, Cincinnati, Ohio, 1978.

.

I.12.20-5

Formula: Compound: Dichlorodifluoromethane F-C-Cl Alternate Names: Fluorocarbon-12, Freon-12 CAS #: 75-71-8 Physical, Chemical, and Biological Properties [1] b.p. (760 torr), °C: -29.8 mol. wt.: 129.9 m.p., °C: -158 vapor pressure (20°C), torr: 4,310 solubility in water (25°C), mg/L: 280 log octanol/water partition coefficient: 2.16 Henry's law constant: Not available biodegradability: Not available Probable Fate [1] photolysis: Volatilized dichlorodifluoromethane is photodissociated to CF₂O and Cl₂ in the stratosphere oxidation: No information; probably unimportant hydrolysis: Not important under environmental conditions volatilization: Very rapid volatilization removes most of the compound from water sorption: Some potential for adsorption exists, but is greatly inhibited by volatilization biological processes: Potential for bioaccumulation and transformation is offset by volatilization other reactions/interactions: Not important

Carbon Adsorption Data: Not available

Date: 8/13/79

I.12.21-1

Raw wastewater Concentration, µg/L Loading,^C kg/d Industry Minimum Mean Minimum Mean IN N N N N

INDUSTRIAL OCCURRENCE OF DICHLORODIFLUOROMETHANE^{a, b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

INDUSTRIAL OCCURRENCE OF DICHLORODIFLUOROMETHANE^{a,b}

		T	reated w	astewater			
	Concer	Concentration, µg/L			Loading, ^C kg/d		
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean	

I.12.21-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

Removal Average Removal Average Volume III		<u>bjiiciic</u>	c wastewater	Actual	wastewater	
range, ^C achievable range, ^C achievable references, Treatment process ^a % conc., µg/L % conc., µg/L Section number	Treatment process ^a	С	achievable	С	achievable	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR DICHLORODIFLUOROMETHANE^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

•

-

.

 Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume IV, Halogenated Aliphatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 62-1 - 62-8.

.

<u>Compound</u>: Trichlorofluoromethane <u>Formula</u>: Cl Cl-C-Cl

Alternate Names: Fluorocarbon-11, Freon-11

CAS #: 75-69-4

Physical, Chemical, and Biological Properties [1]

mol. wt.: 137.4 m.p., °C: -111 b.p. (760 torr), °C: 23.8
vapor pressure (20°C), torr: 667
solubility in water (temp. unknown), mg/L: 1,100
log octanol/water partition coefficient: 2.53
Henry's law constant: Not available
biodegradability: Not available

Probable Fate [1]

photolysis: Volatilized trichlorofluoromethane is eventually photodissociated to CFC10 and Cl₂ in the stratosphere oxidation: No information; not expected to be important hydrolysis: Not important under environmental conditions volatilization: Rapid volatilization is the major transport process sorption: Potential for adsorption is greatly hindered by volatilization biological processes: Rapid volatilization precludes bioaccumulation or degradation other reactions/interactions: Not important

Carbon Adsorption Data: Not available

Date: 8/13/79

I.12.22-1

		-	Raw was	tewater		
Industry	Concen	tration, µg	I/L	Loading, ^C kg/d		
	Minimum	Maximum	Mean	Minimum	Maximum	Mean
Textile mills	NA	2,100	<5	2.1 x 10 ⁻⁵	0.14	0.0090
Auto and other laundries	ND	120	120	0.00011	0.17	0.025
Pharmaceutical manufacturing	ND	ND	ND	0	NA	_e
Nonferrous metals manufacturing	ND	100	12	0	NA	0.64

INDUSTRIAL OCCURRENCE OF TRICHLOROFLUOROMETHANE^{a,b}

I.12.22-2

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dMean pollutant concentration below detection limit.

		I	'reated w	vastewater		
	Concer	Loading, ^C kg/d				
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean
Textile mills	NA	NA	NA	NA	NA	NA
Auto and other laundries	5	150	78	7 x 10 ⁻⁵	0.11	0.016
Pharmaceutical manufacturing	ND	80	5.7	0	0.0052	0.039

INDUSTRIAL OCCURRENCE OF TRICHLOROFLUOROMETHANE^{a,b}

I.12.22-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

	Synthetic wastewater		Actual	wastewater		
Treatment process ^a	Removal range, %	Average achievable conc., μg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
Gas flotation with chemical addition (alum, polymer)			>50 ^d	<2 ^d	III.4.5	
Filtration			0 ^{d,e}	_ ^e	III.4.6	
Tertiary polishing lagoons		, ,	>79 ^d	<10 ^d	III.5.3	
Activated sludge			19-96	<450	III.5.1	
Granular activated carbon adsorption			o ^{d,e}	_e	III.6.1	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR TRICHLOROFLUOROMETHANE^{a,b}

н	
•	
Ч	
Ν	
•	

. 22-4

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

^eActual data indicate negative removal.

-

 Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume IV, Halogenated Aliphatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 63-1 - 63-8.

•

<u>Compound</u>: Trichloroethylene <u>Formula</u>: C1 C1 <u>Alternate Names</u>: Trichloroethene, Ethylene trichloride, Ethinyl trichloride, Tri-clene

CAS #: 79-01-6

Physical, Chemical, and Biological Properties [1]

mol. wt.: 131.4 m.p., °C: -73 b.p. (760 torr), °C: 87
vapor pressure (20°C), torr: 57.9
solubility in water (20°C), mg/L: 1,100
log octanol/water partition coefficient: 2.29
Henry's law constant: Not available
biodegradability: Not available

Probable Fate [1]

other reactions/interactions: Not important

Carbon Adsorption Data [2]

pH: 7.3 type of carbon: Not available adsorbability: 430 mg/L; carbon dose required to reduce pollutant concentration from 10 mg/L to 1 mg/L at neutral pH

100

0.001 0 01 RESIDUAL CONCENTRATION, mg/L

Date: 8/13/79

I.12.23-1

	Raw wastewater									
	Conce	entration,	µg/L		Loading, c kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean				
Coal mining	ND	<10	<1.4	0	0.037	0.0053				
Textile mills	NA	840	47	0.00020	1.3	0.085				
Paint and ink formulation	ND	5,000	960	0	0.044	0.0015				
Rubber processing	NA	<0.1 ^d	<0.1 ^d	2 x 10 ⁻⁸	8.6 x 10 ⁻⁵	3.3 x 10 ⁻				
Pulp, paper and paperboard mills	NA	NA	NA	NA	NA	NA				
Auto and other laundries	ND	800	90	9.1 x 10 ⁻⁵	0.13	0.019				
Pharmaceutical manufacturing	ND	62	8	0	0.054	0.0074				
Foundries	ND	280	109	0	0.73	0.29				
Leather tanning and finishing	ND	NA	2	0	0.003	NA				
Coil coating	ND	310	<10	<0.0005	<0.018	<0.0018				
Nonferrous metals manufacturing	ND	900	59	0	NA	3.1				
Iron and steel manufacturing	NA	NA	13	0	NA	2.3				

INDUSTRIAL OCCURRENCE OF TRICHLOROETHYLENE^{a, b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dOne sample.

I.12.23-2

н

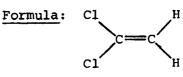
.12.23-3

Treated wastewater Loading, c kg/d Concentration, $\mu g/L$ Industry Maximum Minimum Minimum Mean Maximum Mean Coal mining <1.1 0.029 0.0041 <10 0 ND 2.0×10^{-5} Textile mills 0.14 0.0088 87 4.9 NA Paint and ink formulation 0.0036 0.00012 300 78 ND 0 Rubber processing NA 1.600 550 0.00011 0.47 0.018 Pulp, paper and paperboard mills <1 <3 NA 0.090 6 0 Auto and other laundries 1.0×10^{-5} 11 0.015 0.0023 ND 30 Pharmaceutical manufacturing 7 0.78 0 0.0053 0.00072 ND Iron and steel manufacturing 2.0 NA NA 11 0 NA Nonferrous metals manufacturing 330 18 0 NA 0.95 ND

INDUSTRIAL OCCURRENCE OF TRICHLOROETHYLENE^{a, b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.


^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

-

- Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume IV, Halogenated Aliphatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 52-1 - 52-13.
- Dobbs, R. A., R. J. Middendorf, and J. M. Cohen. Carbon Adsorption Isotherms for Toxic Organics. U.S. Environmental Protection Agency, Cincinnati, Ohio, 1978.

-

Compound: 1,1-Dichloroethylene

Alternate Names: 1,1-Dichloroethene, Vinylidine chloride, Vinylidene chloride, 1,1-DCE

CAS #: 75-35-4

Physical, Chemical, and Biological Properties [1]

mol. wt.: 96.94 m.p., °C: -122 b.p. (760 torr), °C: 37
vapor pressure (25°C), torr: 591
solubility in water (20°C), mg/L: 400
log octanol/water partition coefficient: 1.48
Henry's law constant: Not available
biodegradability: Not available

Probable Fate [1]

Date: 8/13/79

I.12.24-1

	Raw wastewater							
	Conce	ntration,	րց/ե	Loa	ling, ^C kg/c	1		
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Coal mining	ND	<10,	<1.4	0	0.037	0.0053		
Textile mills	NΛ	<5 ^d	<5d	2.1 x 10 ⁻⁵	0.14	0.0090		
Paint and ink formulation	ND	620	76	()	0.0035	0.00012		
Auto and other laundries	ND	23	12	l.l x 10 ⁻⁵	0.017	0.0025		
Pharmaceutical manufacturing	ND	95	8.9	0	0.061	0.0082		
Steam electric power generating								
(condenser cooling system)	NΛ	NA	$16^{\rm e}$	0.00084	0.018	0.0039		
Coil coating	ND	240	15	0.00075	0.027	0.0072		
Iron and steel manufacturing	NΛ	NA	<10	()	NΛ	<1.8		
Nonferrous metals manufacturing	ND	6,100	200	()	NA	11		

INDUSTRIAL OCCURRENCE OF 1,1-DICHLOROETHYLENE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

 $^{\rm b}$ NA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d One sample.

Average of medians reported for various industry segments.

н

2.24-2

	Treated wastewater							
Industry	Conce	ntration, µ]	Loading, ^C kg/d				
	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Coal mining	ND	<10	<1.6	0	0.042	0.0060		
Paint and ink formulation	ND	44	20	0	0.00092	3.2 x 10 ⁻¹		
Textile mills	NA	NA	NA	NA	NA	NA		
Pharmaceutical manufacturing	ND	370	27	0	0.18	0.025		
Nonferrous metals manufacturing	ND	4,100	86	0	NA	4.6		

INDUSTRIAL OCCURRENCE OF 1,1-DICHLOROETHYLENE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

I.12.24-3

	Synthetic wastewater		Actual	wastewater		
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
Filtration			>52 ^d	<2 ^d	III.4.6	
Sedimentation			0 ^e	_e	III.4.2	
Sedimentation with chemical addition (alum, polymer)			>98 ^d	<10 ^d	III.4.3	

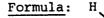
POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR 1,1-DICHLOROETHYLENE^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

d_{Only one data point.}


^eActual data indicate negative removal.

-

 Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume IV, Halogenated Aliphatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 50-1 - 50-10.

-

Compound: 1,2-Trans-dichloroethylene

Cl

C1

н

Alternate Names: Trans-1,2-dichloroethene, Trans-acetylene dichloride, Dioform

CAS #: 540-59-0

Physical, Chemical, and Biological Properties [1]

mol. wt.: 96.94 m.p., °C: -50 b.p. (760 torr), °C: 47.5
vapor pressure (]4°C), torr: 200
solubility in water (20°C), mg/L: 600
log octanol/water partition coefficient: 1.48
Henry's law constant: Not available
biodegradability: Not available

Probable Fate [1]

Carbon Adsorption Data: Not available

Date: 8/13/79

I.12.25-1

	Raw wastewater							
	Concent	tration, p	g/L	Loading, ^C kg/d				
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Paint and ink formulation	ND	260	72	0	0.0033	0.00011		
Rubber processing	NA	NA	NA	NA	NA	NA		
Auto and other laundries	ND	460	230	0.00021	0.32	0.048		
Pharmaceutical manufacturing	ND	ND	ND	_e	_e ¯	_e		
Steam electric power generating			_					
(condenser cooling system)	NA	NA	11 ^d	0.00058	0.012	0.0026		
Coil coating	ND	82	<10	<0.0005	<0.018	<0.0048		
Foundries	ND	NA	<6	0	<0.75	<0.15		
Leather tanning and finishing	ND	NA	6	0	NA	0.009		
Iron and steel manufacturing	ND	<10	8	0	NA	1.4		
Nonferrous metals manufacturing	ND	480	17	0	NA	Q.90		

INDUSTRIAL OCCURRENCE OF 1,2-trans-DICHLOROETHYLENE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dAverage of medians reported for various industry segments.

^eMean pollutant concentration below detection limit.

	Treated wastewater								
	Conce	ntration, µ	g/L	Loading, ^C kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Paint and ink formulation	ND	190,	50,	0	0.0023	8.0 x 10			
Rubber processing	NA	190 16 ^d	50 16	3.2 x 10 ⁻⁶	0.014	0.00053			
Pharmaceutical manufacturing	ND	550	140,	0	0.95	0.13			
Foundries	NA	<20 ^d	<20 ^d	0	<0.13	<0.054			
Nonferrous metals manufacturing	ND	7.5	4.4	0	NA	0.23			
Iron and steel manufacturing	NA	<10	8	0	NA	1.4			

INDUSTRIAL OCCURRENCE OF 1,2-trans-DICHLOROETHYLENE^{a,b}

I.12.25-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dOne sample.

POLLUTANT R	EMOVABILIT

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR 1,2-trans-DICHLOROETHYLENE a,b

Synthetic wastewater Actual wastewater				
Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., μg/L	Volume III references, Section numbers
		NA	~20 ^d	III.4.1
		0 ^{d,e}	_e	III.4.1
		0 ^e	_e	III.4.2
		0 ^{d,e}	_e	III.4.3
		28 ^d	190 ^d	III.4.3
		76->99	340,000	III.5.5
		0 ^{d,e}	_e	III.6.1 4
	Removal range,	Removal Average range, achievable	Removal Average range, achievable range, conc., μg/L % Removal range, range, conc., μg/L % % conc., μg/L % NA 0 ^d , e 0 ^e 0 ^d , e 28 ^d	Removal range, achievable conc., μg/LRemoval range, conc., μg/LAverage range, conc., μg/LNA 0~20 d 0 d,e o e~20 d e e o e000000000000000000102819076->99

^aSee Volume III for detailed information.

 $^{\rm b}$ NA - Not available, ND - not detected, BDL - below detection limit.

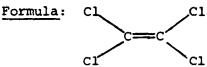
^CAverage and maximum removals reported.

^dOnly one data point.

^eActual data indicate negative removal.

I.12.25-4

.


-

 Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume IV, Halogenated Aliphatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 51-1 - 51-10.

-

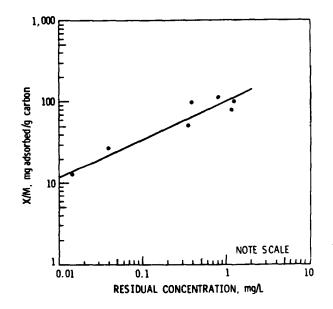
.

Compound: Tetrachloroethylene

<u>Alternate Names</u>: Tetrachloroethene, Ethylene tetrachloride, Perchloroethylene

CAS #: 127-18-4

Physical, Chemical, and Biological Properties [1]


mol. wt.: 165.8 m.p., °C: -22.7 b.p. (760 torr), °C: 121
vapor pressure (20°C), torr: 14
solubility in water (20°C), mg/L: 150-200
log octanol/water partition coefficient: 2.88
Henry's law constant: Not available
biodegradability: Not available

Probable Fate [1]

other reactions/interactions: Not important

Carbon Adsorption Data [2]

pH: Not available type of carbon: Filtrasorb-300 adsorbability: Not available

Date: 8/13/79

I.12.26-1

	Raw wastewater								
	Conc	entration,	µg/L	Loading, ^C kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	NA	ND	ND	BDL	BDL	BDL			
Textile mills	NA	2,100,	<5,	2.1 x 10 ⁻⁵	0.14	0.0090			
Petroleum refining	NA	, >50 ^d	>50 ^d	0	4.6	0.29			
Paint and ink formulation	ND	:4,900	920	O	0.042	0.0015			
Pulp, paper and paperboard mills	NA	NA	NA	NA	NA	NA			
Auto and other laundries	ND	93,000	9,600	0.0086	13	2.1			
Pharmaceutical manufacturing	ND	36	3.5	0	0.024	0.0032			
Ore mining and dressing	ND	ND	ND	BDL	BDL	BDL			
Steam electric power generating									
(condenser cooling)	NA	NA	78 ^e	0.0041	0.086	0.019			
Inorganic chemicals manufacturing	NAd	196 ¹	NA	0	2.5	12			
Coil coating	<10 ⁴	<10 ⁴	<10 ⁴	0.0005	0.018	0.0048			
Foundries	ND	370	70	0	0.47	0.032			
Leather tanning and finishing	ND	NA	12	0	NA	0.018			
Nonferrous metals manufacturing	ND	310	14	0	NA	0.74			
Iron and steel manufacturing	NA	1,100	42	0	NA	7.6			

INDUSTRIAL OCCURRENCE OF TETRACHLOROETHYLENE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dOne sample.

^eAverage of medians reported for various industry segments.

^fAverage of maximum reported for various industry segments.

I.12.26-3

	Treated wastewater							
	Conce	ntration,	Jg/L	Loading, ^C kg/d				
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Coal mining	ND	<3.3	<0 "2	0	0.0053	0.00076		
Textile mills	NA	17	$^{<0}_{11}a^2$	4.6×10^{-5}	0.32	0.020		
Petroleum refining	NA	10 ^e	10 ^e	0	0.93	0.058		
Paint and ink formulation	ND	700	190	0	0.0087	0.00030		
Pulp, paper and paperboard mills	<1	4	<2	0	NA	0.060		
Auto and other laundries	2	1,000	340	0,00030	0_476	0 ₋ 071		
Pharmaceutical manufacturing	ND	ND	ND	- ^I	- ^I	- ¹		
Foundries	1.0	210	54	0	0.36	0.15		
Iron and steel manufacturing	NA	51	16	0	NA	2.9		
Nonferrous metals manufacturing	ND	190	15	0	NA	0.80		

INDUSTRIAL OCCURRENCE OF TETRACHLOROETHYLENE^{a, b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d Median, not average.

^eOne sample.

 $f_{Mean pollutant concentration below detection limit.$

	Synthetic wastewater		Actual wastewater			
	Removal	Average	Removal	Average	Volume III	
a	range,	achievable	range,	achievable	references,	
Treatment process ^a	010	conc., µg/L	0	conc , µg/L	Section number:	
Gravity oil separation			NA	>40	III.4 1	
Gas flotation with chemical addition (calcium chloride, polymer)			23-94	580	III.4 .5	
Gas flotation with chemical addition (polymer)		• • •	0 ^{đ,e}	_e	III.4 .5	
Gas flotation with chemical addition (alum, polymer)			>10 ^d	<0.9 ^d	III.4.5	
Filtration			30 ->99	49	III.4 6	
Sedimentation			34-76	<23	III.4 2	
Sedimentation with chemical addition (alum, lime)			95 ^d	13 ^d	1 1J. 4 .3	
Sedimentation with chemical addition (lime, polymer)			0 ^{d,e}	_e	III.4.3	
Sedimentation with chemical addition (alum, polymer)			15->44	270	III.4.3	
Sedimentation with chemical addition (alum)			0 ^{d, e}	_e	III.4.3	
Sedimentation with chemical addition (11me)			0 ^{d,e}	_e	III.4.3	
Aerated lagoons			>e0 _q	<10 ^d	111.5.3	
Steam stripping			78->99	2,300	111.5.5	
Activated sludge			75->99	<7	111.5.1	
Granular activated carbon adsorption			68 ^d	32 ^d	III.6.1	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR TETRACHLOROETHYLENE^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

d Only one data point.

e Actual data indicate negative removal.

-

- Versar, Inc. Water-Related Environmental Fate of 129 Priority Pollutants, Volume IV, Halogenated Aliphatics. U.S. Environmental Protection Agency, Washington, D.C., 1979. pp. 53-1 - 53-13.
- 2. Report on visit of D. Stephan and W. Cawley, U.S. Environmental Protection Agency, to Calgon Environmental Systems Division, Calgon Corporation, Pittsburgh, Pennsylvania, 9 April 1979. 132 pp.

.

•

Compound: Allyl chloride

Formula: H H H C=C-C-C1

Alternate Names: Chloroallylene, 3-Chloro-1propene, 3-Chloropropylene, 2-Propenyl chloride

CAS #: 107-05-1

Physical, Chemical, and Biological Properties [1]

mol. wt.: 76.53 m.p., °C: -134 b.p. (760 torr), °C: 44-45
vapor pressure (25°C), torr: 368
solubility in water (25°C), mg/L: Slightly soluble
log octanol/water partition coefficient: Not available
Henry's law constant: Not available
biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date: 8/13/79

I.12.27-1

I.12.27-2

INDUSTRIAL OCCURRENCE OF ALLYL CHLORIDE^{a, b}

		Raw w	wastewater				
Concer	μ	g/L	Loa	ading, ^C kg/	ď		
Minimum	Maximum	Mean	Minimum	Maximum	Mear		
-			Concentration, µg/L	Concentration, µg/L Loa	Concentration, µg/L Loading, ^C kg/		

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCURRENCE OF ALLYL CHLORIDE^{a,b}

•	Treate	d waster	water	<u></u>	
	Concentration, µg/L		Loading,	c kg/d	
Industry	Minimum Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

I.12.27-3

.

1.12.27-4

POLLUTANT REMOVABILITY/TREATABILITY	WASTEWATER TH	REATMENT	ALTERNATIVE	FOR	ALLYL	CHLORIDE ^{a,b}	

	Syntheti	c wastewater	Actual	wastewater		
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

-

 Off-line Bibliographic Citation List Generated from the Toxicology Data Bank by MEDLARS II, National Library of Medicine's National Interactive Retrieval Service, Bethesda, Maryland, 11 June 1979. Part II, pp. 88, 89.

•

Compound: 2,2-Dichloropropionic acid Formula: H - C - C - OH

Alternate Names: 2,2-Dichloropropanoic acid

CAS #: 75-99-0

Physical, Chemical, and Biological Properties [1]

mol. wt.: 143 m.p., °C: Not available b.p. (760 torr), °C: 185-190 vapor pressure (25°C), torr: Not available solubility in water (25°C), mg/L: Very soluble log octanol/water partition coefficient: Not available Henry's law constant: Not available biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

I.12.28-2

INDUSTRIAL OCCURRENCE OF 2,2-DICHLOROPROPIONIC ACID^{a,b}

			Raw w	astewater		
	Conce	ntration, μ	g/L	Loading, ^C kg/d		
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mear

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

b NA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OC	CURRENCE OF 2,2-DICHLOROPROPIONIC	ACID ^{a,b}	
	Treated was	tewater	
	Concentration, $\mu g/L$	Loading, c kg/d	
Industry	Minimum Maximum Mea	n Minimum Maximum M	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

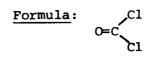
POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR 2,2-DICHLOROPROPIONIC ACID^{a,b}

Removal Average Removal Average Volume III range, achievable range, achievable references, Treatment process ^a % conc., µg/L % conc., µg/L Section numbers		Syntheti	c wastewater	Actual	wastewater	
	 Treatment process ^a	Č	achievable	С	achievable	

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.


.

-

 CRC Press, Inc. CRC Handbook of Chemistry and Physics, 58th Edition. Cleveland, Ohio, 1977. P. C-454.

.

Compound: Phosgene

_

<u>Alternate Names</u>: Chloroformyl chloride, Carbonyl chloride, Carbonic acid dichloride

CAS #: 75-44-5

Physical, Chemical, and Biological Properties [1]

mol. wt.: 98.92 m.p., °C: -118 b.p. (760 torr), °C: 8.1
vapor pressure (20°C), torr: 1,220
solubility in water (25°C), mg/L: Not available, compound decomposes
log octanol/water partition coefficient: Not available
Henry's law constant: Not available
biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

INDUSTRIAL OCCURRENCE OF PHOSGENE^{a, b}

		Raw wastewater							
		Concentration, µg/L Loa			ading, ^C kg/d				
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mear			

I.12.29-2

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

1.12.29-4

	Syntheti	c wastewater	Actual	wastewater	····
Treatment process ^a	Removal range,	Average achievable conc., µg/L	Removal range,	Average achievable conc., µg/L	Volume III references, Section numbe

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR PHOSGENE^{a, b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

-

1. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. p. 534.

.

.

Compound: Ethylene dibromide Formula: H H Br-C-C-Br Alternate Names: Ethylene bromide, 1,2-Dibromoethane, Glycoldibromide CAS #: 106-93-4 Physical, Chemical, and Biological Properties [1] mol. wt.: 187.9 m.p., °C: 9.97 b.p. (760 torr), °C: 132 vapor pressure (20°C), torr: 11 solubility in water (30°C), mg/L: 4,310 log octanol/water partition coefficient: Not available Henry's law constant: Not available biodegradability: Not available Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date: 8/13/79

I.12.30-1

INDUSTRIAL OCCURRENCE OF ETHYLENE DIBROMIDE^{a, b}

	Raw wastewater							
	Concentration, µg/L			Loa	ading, ^C kg/	kg/d		
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

IND	STRIAL OCCURRENCE OF ETHYLENE DIBROMIDE ^{a, b}	
	Treated wastewater	
	Concentration, µg/L Loading, ^C kg/d	
Industry	Minimum Maximum Mean Minimum Maximum	Mean

I.12.30-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

POLLUTANT REMOVABILITY/TREATABILITY	WASTEWATER	TREATMENT	ALTERNATIVE	FOR	ETHYLENE	DIBROMIDE	

a,b

		Syntheti	c wastewater	Actual	wastewater	
п.	Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers
12						
ω						
0						
, A						

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

-

1. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. p. 316.

.

Compound: Epichlorohydrin

Formula: H H H C-C-C-C-C1

Alternate Names: 3-Chloro-1,2-epoxypropane,(Chloromethyl) ethylene oxide

CAS #: 106-89-8

Physical, Chemical, and Biological Properties [1]

mol. wt.: 92.53 m.p., °C: -48.0 b.p. (760 torr), °C: 116
vapor pressure (16.6°), torr: 10
solubility in water (25°C), mg/L: Insoluble
log octanol/water partition coefficient: Not available
Henry's law constant: Not available
biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date: 8/13/79

I.12.31-1

INDUSTRIAL OCCURRENCE OF EPICHLOROHYDRIN^{a,b}

				· · · · · · · · · · · · · · · · · · ·			
	Raw wastewater						
	Concer	ntration, μ	g/L	Loa	ading, ^C kg/	ď	
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean	

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

INDU	STRIAL OCCURRENCE OF EPICHLORO	HYDRIN ^{a, b}			
	Treat	ed wastew	vater		
	Concentration, $\mu g/L$		Loading	Loading, ^C kg/d	
Industry	Minimum Maximum	Mean	Minimum	Maximum	Mea

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

н.

12.31-4

Synthetic wastewater	ater Actual wastewater		
Removal Average range, ^C achievable ocess ^a % conc.,µg/L	ble range, ^C achievable	Volume III references, Section number	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR EPICHLOROHYDRIN^{a, b}

^aSee Volume III for detailed information.

- ^bNA Not available, ND not detected, BDL below detection limit.
- ^CAverage and maximum removals reported.

-

 Off-line Bibliographic Citation List Generated from the Toxicology Data Bank by MEDLARS II, National Library of Medicine's National Interactive Retrieval Service, Bethesda, Maryland, 11 June 1979. Part II, pp. 121-123.

•

Compound: α -Endosulfan

Formula:

CI CI

CI

CI

CL

 $\dot{s} = 0$

Alternate Names: 6,7,8,9,10,10-Hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzo(e)dioxathiepin-3-oxide

CAS #: 115-29-7

Physical, Chemical, and Biological Properties [1]

mol. wt.: 407 m.p., °C: 108 b.p. (760 torr), °C: Not available vapor pressure (25°C), torr: Not available solubility in water (25°C), mg/L: Insoluble log octanol/water partition coefficient: Not available Henry's law constant: Not available biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date: 8/13/79

I.13.1-1

	Raw wastewater								
	Concer	ntration,	µg∕L	Loading, ^C kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	ND	<6.7	<1	0	0.029	0.004			
Foundries	ND	NA	2.5	0	0.017	0.007			
Iron and steel manufacturing	NA	NA	<10	0	ND	<1.8			
Nonferrous metal manufacturing	ND	15	11	0	ND	0.58			

INDUSTRIAL OCCURRENCE OF α -ENDOSULFAN^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

			Treated	wastewa	ter		
	Concentration, µg/L				Loading, ^C kg/d		
Industry	Minimum		Maximum	Mean	Minimum	Maximum Mea	
Coal mining	NA	ND	ND	_d	_d	_ ^d	
Foundries	<5	<5	<5	0	<0.0	34 <0.014	
Iron and steel manufacturing	NA	NA	<10	0	NA	<1.8	
Nonferrous metals manufacturing	ND	0.6	5 O.:	20	NA	0.011	

INDUSTRIAL OCCURRENCE OF α -ENDOSULFAN^{a,b}

I.13.1-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

	Synthetic wastewater		Actual	wastewater	
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section_number
 Tredemente process	0	<u></u>	<u> </u>	conc., pg, b	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR α-ENDOSULFAN^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

-

 Meister Publishing Co. 1976 Farm Chemicals Handbook. Willoughby, Ohio, 1976. p. D 106.

.

•

Compound: Endosulfan sulfate

Formula: Not available

b.p. (760 torr), °C:

Alternate Names: None

CAS #: None assigned

Physical, Chemical, and Biological Properties: Not available

mol. wt.: m.p., °C: vapor pressure (25°C), torr: solubility in water (25°C), mg/L: log octanol/water partition coefficient: Henry's law constant: biodegradability:

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date: 8/13/79

I.13.2-1

	INDUSTRIAL	OCCURRENCE	OF ENDOSU	JLFAN
				R
		Concer	ntration,	µg∕L
Industry		Minimum	Maximum	Mea

SULFAN SULFATE^{a,b}

NA

NA 0.03^d

Raw wastewater

Mean

<10

<1.3

0.03^d

Minimum

0

0

0

Loading,^C kg/d

Maximum

<0.0087

NA

NA

Mean

<0.0035

0.0016

<1.8

^a Information	contained	in	this	table	was	obtained	from	Volume	II	of	the	Treatability	
Manual.													

ND

NA

ND

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges are reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

Foundries

Iron and steel manufacturing

Nonferrous metal manufacturing

••		
12/5/79		

Date

Treated wastewater Loading, c kg/d Concentration, $\mu g/L$ Industry Minimum Minimum Maximum Mean Maximum Mean Foundries <5 <0.014 <5 <5 0 <0.034 Iron and steel manufacturing <1.8 <10 NA NA 0 NA Nonferrous metals manufacturing 0.2 0.1 0 NA 0.011 ND

INDUSTRIAL OCCURRENCE OF ENDOSULFAN SULFATE^{a,b}

I.13.2-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

POLLUTANT	REMOVABILITY/TREATABILITY	WASTEWATER	TREATMENT	ALTERNATIVE	FOR	ENDOSULFAN	SULFATE ^{a,b}

		Syntheti	c wastewater	Actual	wastewater		
н.	Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
13.2-							
4	-						

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

Compound: β -Endosulfan

Formula:

CI CI

CI

CI

Alternate Names: 6,7,8,9,10,10-Hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzo(e)dioxathiepin-3-oxide

CAS #: 115-29-7

Physical, Chemical, and Biological Properties [1]

mol. wt.: 407 m.p., °C: 206 b.p. (760 torr), °C: Not available vapor pressure (25°C), torr: Not available solubility in water (25°C), mg/L: Insoluble log octanol/water partition coefficient: Not available Henry's law constant: Not available biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date: 8/13/79

I.13.3-1

INDUSTRIAL OCCURRENCE OF β -ENDOSULFAN^{a,b}

	Raw wastewater							
	Conce	ntration,	µg/L	Lo	ading, kg/o	£		
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Coal mining	ND	<6.7	<1.1	0	0.029	0.0041		
Foundries	ND	NA	<1.7	0	<0.011	<0.0046		
Iron and steel manufacturing	NA	NA	<10	0	NA	<1.8		
Nonferrous metals manufacturing	ND	15	1.6	0	NA	0.085		

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

Date:

12/5/79

	Treated wastewater								
Industry	Concei	ntration, µ	Loading, ^C kg/d						
	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	NA	ND	ND	_ ^d	_d	_d			
Foundries	<5	<5	<5	0	<0.034	<0.014			
Iron and steel manufacturing	NA	NA	<10	0	NA	<1.8			
Nonferrous metals manufacturing	ND	0.2	0.1	0	NA	0.011			

INDUSTRIAL OCCURRENCE OF β -ENDOSULFAN^{a,b}

Date: 12/5/79

I.13.3-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

					a.b
POLLUTANT REMOVABILITY/TREATABILIT	Y WASTEWATER	TREATMENT	ALTERNATIVE	FOR	β -ENDOSULFAN [*] , ²

		Syntheti	c wastewater	Actual	wastewater			
н.	Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers		
ран (
ω •								
ω								
4								

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

REFERENCES

-

 Meister Publishing Co. 1976 Farm Chemicals Handbook. Willoughby, Ohio, 1976. p. D 106.

-

Compound: α -BHC

Formula:

CI

CI

Η

CI

н

Η

CI

CI

CI

-н

Alternate Names: Hexachlorocyclohexane, Lindane, Benzenehexachloride, HCCH, HCH, TBH

CAS #: None assigned

Physical, Chemical, and Biological Properties [1]

mol. wt.: 290.8 m.p., °C: 157 b.p. (760 torr), °C: Decomposes at 288
vapor pressure (25°C), torr: Not available
solubility in water, mg/L: 10
log octanol/water partition coefficient: Not available
Henry's law constant: Not available
biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date: 8/13/79

I.13.4-1

	Raw wastewater						
	Concentration, µg/L			Loading, ^C kg/d			
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean	
Coal mining	NA	ND	ND	BDL	BDL	BDL	
Timber products processing	0.001	0.186	NA	0	0.0043	8 x 10-6	
Ore mining and dressing	ND	ND	ND	BDL	BDL	BDL	
Foundries	ND	NA	7.2	0	0.019	0.048	
Iron and steel manufacturing	NA	NA	<10	0	NA	<1.8	
Nonferrous metal manufacturing	ND	0.6	0.23	0	NA	0.012	

INDUSTRIAL OCCURRENCE OF α -BHC^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

			Treate	ed wastewater			
	Concer	ntration,	µg/L	Loading, ^C kg/d			
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean	
Coal mining	ND	0.02 ^d	0.02 ^d	8.4×10^{-8}	0.00058	3.6 x 10 ⁻⁵	
Timber products processing	NA	NA	NA	NA	NA .	NA	
Foundries	<5	6	5.2	0	0.035	0.014	
Iron and steel manufacturing	NA	NA	<10	0	NA	<1.8	
Nonferrous metals manufacturing	ND	0.7	0.1	0	NA	0.0053	

INDUSTRIAL OCCURRENCE OF α -BHC^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dOne sample.

1.13.4-4

	Syntheti	.c wastewater	Actual	wastewater	
Treatment process ^a	Removal range, %	Average achievable conc., μg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section_numbers
Filtration			38-77	4	III.4.6
Granular activated carbon adsorption			>47	<1	III.6.1

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR α-BHC^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

REFERENCES

-

1. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. p. 365.

•

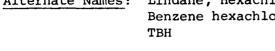
.

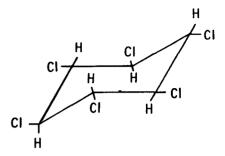
Compound: β -BHC

Formula:

Lindane, Hexachlorocyclohexane, Alternate Names: Benzene hexachloride, HCCH, HCH, TBH

CAS #: None assigned


Physical, Chemical, and Biological Properties [1]


mol. wt.: 290.8 m.p., °C: 297 b.p. (760 torr), °C: sublimes vapor pressure (25°C), torr: Not available solubility in water, mg/L: 5 log octanol/water partition coefficient: Not available Henry's law constant: Not available biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date: 8/13/79

			Raw w	astewater		
	Concer	ntration,	µg/L]	Loading, ^C k	g/đ
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean
Timber products processing	0.001	0.186	NA	0	0.0043	8 x 10-6
Ore mining and dressing	ND	ND	ND	ND	ND	ND
Foundries	ND	NA	25	0	0.17	0.067
Iron and steel manufacturing	NA	NA	<10	0	NA	<1.8
Nonferrous metal manufacturing	ND	4.5	0.16	0	NA	0.0085

INDUSTRIAL OCCURRENCE OF β -BHC^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

	Treated wastewater								
	Conce	Loa	Loading, ^C kg/d						
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Timber products processing	NA	NA	NA	NA	NA	NA			
Foundries	<5	55	12	0	0.08	0.03			
Iron and steel manufacturing	NA	NA	<10	0	NA	<1.8			
Nonferrous metals manufacturing	ND	0.3	0.1	0	NA	0.0053			

INDUSTRIAL OCCURRENCE OF β -BHC^{a,b}

I.13.5-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

I.13.5-4

	Syntheti	c wastewater	Actual	wastewater	
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers
iltration			21 ^d	55 ^d	III.4.6

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR $\beta\text{-BHC}^{a,b}$

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

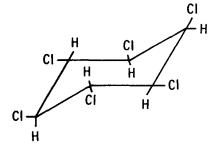
^CAverage and maximum removals reported.

^dOnly one data point.

REFERENCES

-

1. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. p. 365.


.

Compound: δ -BHC

Formula:

Alternate Names: Benzenehexachloride, Lindane, Hexachlorocyclohexane, HCCH, HCH, TBH

CAS #: None assigned

Physical, Chemical, and Biological Properties [1]

mol. wt.: 290.8 m.p., °C: 129 b.p. (760 torr), °C: Not available vapor pressure (25°C), torr: Not available solubility in water, mg/L: 10 log octanol/water partition coefficient: Not available Henry's law constant: Not available biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

			Raw_w	astewater		
	Concer	ntration,	µg∕L		Loading, ^C k	g/đ
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean
Coal mining	NA	ND	ND	NA	NA	NA
Timber products processing	0.001	0.186	NA	0	0.0043	8 x 10-6
Foundries	ND	NA	9.3	0	0.062	0.0025
Nonferrous metal manufacturing	ND	4.0	0.24	0	NA	0.013
Iron and steel manufacturing	NA	NA	<10	0	NA	<1.8

INDUSTRIAL OCCURRENCE OF δ -BHC^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF δ-BHC ^{a,b}	INDUSTRIAL	OCCURRENCE	OF	δ-BHC ^{a,b}
---	------------	------------	----	----------------------

	Concentration, µg/L			Loading, c kg/d		
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean
Coal mining	ND	0.05 ^d	0.05 ^d	2.1×10^{-7}	0.0014	9.0 x 10 ⁻⁵
Timber products processing	NA	NA	NA	NA	NA	NA
Foundries	<5	<20	<10	0	<0.067	<0.027
Nonferrous metals manufacturing	ND	0.5	0.2	0	NA	0.011
Iron and steel manufacturing	NA	NA	<10	0	NA	<1.8

I.13.6-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

d_{One sample.}

I.13.6-4

	Syntheti	c wastewater	Actual	wastewater	
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers
	<u> </u>				

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR δ -BHC^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

REFERENCES

-

1. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. p. 365.

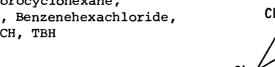
•

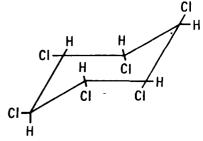
Compound: Y-BHC

Formula:

<u>Alternate Names</u>: Hexachlorocyclohexane, Lindane, Benzenehexachloride, HCCH, HCH, TBH

CAS_#: None assigned


Physical, Chemical, and Biological Properties [1]


mol. wt.: 290.8 m.p., °C: 112 b.p. (760 torr), °C: Not available vapor pressure (25°C), torr: Not available solubility in water, mg/L: 10 log octanol/water partition coefficient: Not available Henry's law constant: Not available biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date:

	<u></u>		Raw w	astewater	<u> </u>	
	Concei	ntration,	µg/L	:	Loading, ^C 1	kg∕đ
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean
Coal mining	NA	<10	<1.7	0	0.045	0.006
Timber products processing	0.001	0.186	NA	0	0.0043	8 x 10-6
Ore mining and dressing	ND	ND	ND	BDL	BDL	BDL
Foundries	ND	NA	7	0	0.047	0.020
Nonferrous metals manufacturing	ND	0.2	0.06	0	NA	0.003
Iron and steel manufacturing	NA	NA	<10	0	NA	<1.8

INDUSTRIAL OCCURRENCE OF γ -BHC^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF γ -BHC^{a,b}

		1	[reated w	vastewater			
	Concentration, µg/L Loading, ^C kg						
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean	
Coal mining	ND	<10	<1.1	0	0.029	0.0041	
Timber products processing	NA	NA	NA	NA	NA	NA	
Foundries	<5	<20	<6.4	0	<0.043	<0.017	
Iron and steel manufacturing	NA	NA	<10	0	NA	<1.8	
Nonferrous metals manufacturing	ND	0.1	NA	0	NA	0.0027	

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

	Synthetic w	wastewater	Actual	wastewater	
Treatment process ^a	range, cac	Average chievable onc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section number

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR X-BHC^{a,b}

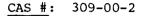
^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

REFERENCES

-


1. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. p. 365.

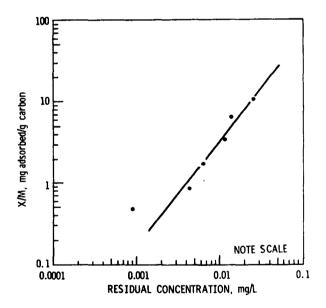
.

Compound: Aldrin

Formula:

Alternate Names: 1,2,3,4,10,10-Hexachloro-1,4,4a,5,8,8a-hexahydro-oxo-1,4endo-5,8-dimethanonaphthalene

Physical, Chemical, and Biological Properties [1]


mol. wt.: 364.9 m.p., °C: 104 b.p. (760 torr), °C: Not available vapor pressure (25°C), torr: Not available solubility in water, mg/L: Insoluble log octanol/water partition coefficient: Not available Henry's law constant: Not available biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data [2]

pH: Not available type of carbon: Filtrasorb-300 adsorbability: Not available

C1

CC12

C1

C1

Ċ1

H

CH₂

Н

Н

н.

Н

ń

Date: 8/13/79

I.13.8-1

Industry	Raw wastewater					
	Concentration, µg/L			Loading, ^C kg/d		
	Minimum	Maximum	Mean	Minimum	Maximum	Mean
Coal mining	NA	ND .	ND ,	BDL	BDL	BDL
Timber products processing	NA	0.001 ^a	0.001 ^a	0	4.6 x 10 ⁻⁵	8.5 x 10 ⁻⁸
Ore mining and dressing	<10	<10	<10	0	NA	<0.37
Foundries	ND	NA	<2.5	0	<0.017	<0.0088
Iron and steel manufacturing	NA	NA	<10	0	NA	<1.8
Nonferrous metals manufacturing	ND	7	0.6	0	NA	0.032

INDUSTRIAL OCCURRENCE OF ALDRIN^{a, b}

13.8-2

н.

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dOne sample.

,

	Treated wastewater								
	Conce	ntration,	ug/L	Loading, c kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	ND	<3.3	<0.3	0	0.0079	0.0011			
Timber products processing	NA	NA	NA	NA	NA	NA			
Foundries	<5	<20	<7	0	<0.047	<0.019			
Iron and steel manufacturing	NA	NA	<10	0	NA	<1.8			
Nonferrous metals manufacturing	ND	0.5	0.2	0	NA	0.011			

INDUSTRIAL OCCURRENCE OF ALDRIN^{a, b}

I.13.8-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

	Syntheti	c wastewater	Actual	wastewater	
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers
Gravity oil separation			NA	3 ^{d,e}	III.4.1

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR ALDRIN^{a,b}

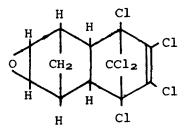
^aSee Volume III for detailed information.

 b NA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

d Only one data point.

^eAnalytical method did not distinguish between aldrin and dieldrin.


- CRC Press, Inc. CRC Handbook of Chemistry and Physics, 58th Edition. Cleveland, Ohio, 1977. p. C-104.
- 2. Report on visit of D. Stephan and W. Cawley, U.S. Environmental Protection Agency, to Calgon Environmental Systems Division, Calgon Corporation, Pittsburgh, Pennsylvania, 9 April 1979. 132 pp.

.

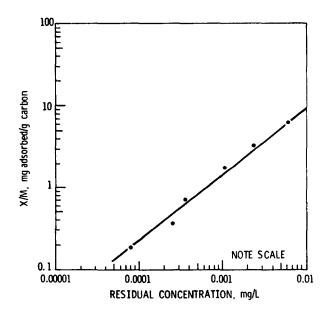
Compound: Dieldrin

Formula:

Alternate Names: HEOD; 1,2,3,4,10,10-Hexachloro-6,7,-epoxy-1,4,4a,5,6,7,8,8aoctahydro-1,4-endo, exo-5,8dimethanonaphthalene

CAS #: 60-57-1

Physical, Chemical, and Biological Properties [1]


mol. wt.: 381 m.p., °C: 175 b.p. (760 torr), °C: Not available
vapor pressure (25°C), torr: Not available
solubility in water (25°C), mg/L: Insoluble
log octanol/water partition coefficient: Not available
Henry's law constant: Not available
biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data [2]

pH: Not available type of carbon: Filtrasorb-300 adsorbability: Not available

Date: 8/13/79

I.13.9-1

	Raw wastewater							
	Concei	ntration,	⊔g∕L	Loading, c kg/d				
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Textile mills	NA	NA	NA	NA	NA	NA		
Foundries	ND	NA	4	0	0.027	0.011		
Iron and steel manufacturing	NA	NA	<10	0	NA	<1.8		
Nonferrous metals manufacturing	ND	0.2	0.05	0	NA	0.0026		

INDUSTRIAL OCCURRENCE OF DIELDRIN^{a, b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF DIELDRIN^{a, b}

	Treated wastewater							
Industry	Conce	ntration,	ug/L	Loading, ^C kg/d				
	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Textile mills	NA	0.2 ^d	0.2 ^d	8.4×10^{-7}	0.0058	0.00036		
Foundries	<5	<20	<8	0	<0.054	<0.022		
Iron and steel manufacturing	NA	NA	<10	0	NA	1.8		
Nonferrous metals manufacturing	ND	0.4	0.1	0	NA	0.0053		

I.13.9-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

	Syntheti	c wastewater	Actual	wastewater	
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers
ravity oil separation			NA	3 ^d ,e	III.4.1

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR DIELDRIN^{a, b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

^eAnalytical method did not distinguish between aldrin and dieldrin.

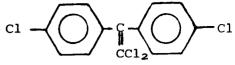
.

-

1. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. p. 241.

.

2. Report on visit of D. Stephan and W. Cawley, U.S. Environmental Protection Agency, to Calgon Environmental Systems Division, Calgon Corporation, Pittsburgh, Pennsylvania, 9 April 1979. 132 pp.


Date: 8/13/79

-

I.13.9-5

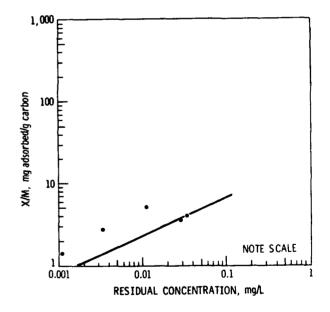
Compound: 4,4'-DDE

Formula:

Alternate Names: Dichlorodiphenyl dichloroethylene, 1,1-Dichloro-2,2bis(p-chlorophenyl)-ethylene

CAS #: 72-55-9

Physical, Chemical, and Biological Properties:


mol. wt.: 318 m.p., °C: Not available b.p. (760 torr), °C: Not Available
 (calculated)
vapor pressure (25°C), torr: Not available
solubility in water (25°C), mg/L: Not available
log octanol/water partition coefficient: Not available
Henry's law constant: Not available
biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data [1]

pH: Not available type of carbon: Filtrasorb-300 adsorbability: Not available

Date: 8/13/79

I.13.10-1

	Raw wastewater							
	Concer	ntration,	Loa	oading, ^C kg/d				
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Auto and other laundries	ND	≤3.0	NA	1.4 x 10 ⁻⁶	<0.0021	<0.00032		
Foundries	ND	NA	10	0	0.067	0.027		
Nonferrous metals manufacturing	ND	0.4	0.06	0	NA	0.032		
Iron and steel manufacturing	NA	NA	<10	0	NA	<1.8		

INDUSTRIAL OCCURRENCE OF 4,4'-DDE^{a,b}

I.13.10-2

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

	Treated wastewater							
Industry	Concer	ntration,	Loading, ^C kg/d					
	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Foundries	<5	20	7	0	0.047	0.019		
Iron and steel manufacturing	NA	NA	<10	0	NA	<1.8		
Nonferrous metals manufacturing	ND	0.2	0.06	0	NA	0.0032		

INDUSTRIAL OCCURRENCE OF 4,4'-DDE^{a,b}

I.13.10-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

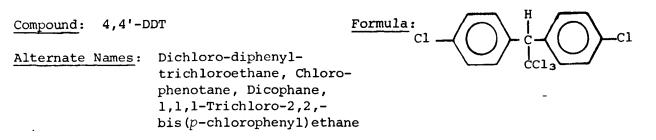
I.13.10-4

	Syntheti	c wastewater	Actual	wastewater	
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section number
			Ŭ		

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR 4,4'-DDE^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.


^CAverage and maximum removals reported.

-

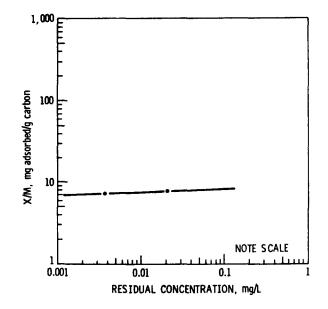
 Report on visit of D. Stephan and W. Cawley, U.S. Environmental Protection Agency, to Calgon Environmental Systems Division, Calgon Corporation, Pittsburgh, Pennsylvania, 9 April 1979. 132 pp.

 \mathbf{i}

-

CAS #: 50-29-3

Physical, Chemical, and Biological Properties [1]


mol. wt.: 354.5 m.p., °C: 108-109 b.p. (760 torr), °C: 260
vapor pressure (25°C), torr: Not available
solubility in water (25°C), mg/L: Insoluble
log octanol/water partition coefficient: Not available
Henry's law constant: Not available
biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data [2]

pH: Not available type of carbon: Filtrasorb-300 adsorbability: Not available

Date: 8/13/79

I.13.11-1

	Traduce	L

INDUSTRIAL OCCURRENCE OF 4,4-DDT^{a,b}

	Raw wastewater							
	Concer	ntration,	Jg∕L	Load	ling, ^C kg/o	1		
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Auto and other laundries	ND	≤3.0	NA	<1.4 x 10 ⁻⁶	<0.0021	<0.00032		
Foundries	ND	NA	6	0	0.04	0.016		
Nonferrous metals manufacturing	ND	1.0	0.04	0	NA	0.0021		
Iron and steel manufacturing	NA	NA	<10	0	ND	<1.8		
Textile mills	NA	NA	NA	NA	NA	NA		

I.13.11-2

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

	Treated wastewater							
	Conce	ntration,	Jg/L	Loa	ding, ^C kg/o	đ		
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Textile mills	NA	0.5 ^d	0.5 ^d	2.1×10^{-6}	0.014	0.00090		
Foundries	<5	<20	<6	0	0.04	0.016		
Iron and steel manufacturing	NA	NA	<10	0	NA	<1.8		
Nonferrous metals manufacturing	ND	0.4	0.07	0	NA	0.0037		

INDUSTRIAL OCCURRENCE OF 4,4'-DDT^{a,b}

I.13.11-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dOne sample.

н.

13.11-4

	Syntheti	c wastewater	Actual	wastewater		
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
Sedimentation with chemical addition (alum, lime)			>52 ^d	<1 ^d	III.4.3	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR 4,4'-DDT^{a,b}

^aSee Volume III for detailed information.

bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

_

- 1. CRC Press, Inc. CRC Handbook of Chemistry and Physics, 58th Edition. Cleveland, Ohio, 1977. p. C-291.
- 2. Report on visit of D. Stephan and W. Cawley, U.S. Environmental Protection Agency, to Calgon Environmental Systems Division, Calgon Corporation, Pittsburgh, Pennsylvania, 9 April 1979. 132 pp.

.

Compound: 4,4'-DDD

Formula:

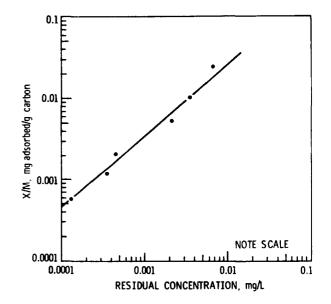
C1

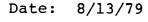
Cl

Alternate Names: 1,1-Dichloro-2,2bis(p-chloropheny1) ethane

CAS #: 72-54-8

Physical, Chemical, and Biological Properties [1]


mol. wt.: 320.0 m.p., °C: 109-110 b.p. (760 torr), °C: Not available vapor pressure (25°C), torr: Not available solubility in water (25°C), mg/L: Not available log octanol/water partition coefficient: Not available Henry's law constant: Not available biodegradability: Not available


Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data [2]

pH: Not available type of carbon: Filtrasorb-300 adsorbability: Not available

I.13.12-1

Industry	Raw wastewater								
	Concei	ntration,	µg∕L	Loading, ^C kg/d					
	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Foundries	ND	NA	9	0	0.06	0.024			
Nonferrous metals manufacturing	ND	0.1	0.1	0	NA	0.0053			
Iron and steel manufacturing	NA	NA	<10	0	NA	<1.8			

INDUSTRIAL OCCURRENCE OF 4,4'-DDD^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

	Treated wastewater							
	Concei	Loading, c kg/d						
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Foundries	<5	<5	<5	0	<0.034	<0.014		
Iron and steel manufacturing	. NA	NA	<10	0	NA	<1.8		
Nonferrous metals manufacturing	ND	0.2	0.1	0	NA	0.0053		

INDUSTRIAL OCCURRENCE OF 4,4'-DDD^{a,b}

I.13.12-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

I.13.12-4

Synthetic wastewater <u>Actual wastewater</u>	Synthe		wastewater
range, ^C achievable range, ^C achievable reference		Treatment process ^a	achievable reference

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR 4,4'-DDD^{a,b}

^aSee Volume III for detailed information.

- ^bNA Not available, ND not detected, BDL below detection limit.
- ^CAverage and maximum removals reported.

-

- CRC Press, Inc. CRC Handbook of Chemistry and Physics, 58th Edition. Cleveland, Ohio, 1977. p. C-291.
- Report on visit of D. Stephan and W. Cawley, U.S. Environmental Protection Agency, to Calgon Environmental Systems Division, Calgon Corporation, Pittsburgh, Pennsylvania, 9 April 1979. 132 pp.

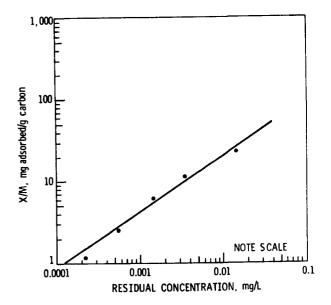
•

<u>Compound</u>: Endrin <u>Formula</u>: <u>Alternate Names</u>: 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4a,5,6,7,8,8aoctahydro-1,4-endo,endo-5,8dimethanonaphthalene

CAS #: 72-20-8

1

Physical, Chemical, and Biological Properties [1]


mol. wt.: 380.9 m.p., °C: Not available b.p. (760 torr), °C: Not available
vapor pressure (25°C), torr: Not available
solubility in water (25°C), mg/L: Not available
log octanol/water partition coefficient: Not available
Henry's law constant: Not available
biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data [2]

pH: Not available type of carbon: Filtrasorb-300 adsorbability: Not available

Date: 8/13/79

I.13.13-1

I.13.13-2

	Raw wastewater								
	Concei	ntration,	µg∕L	Loading, ^C kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Foundries	ND	NA	<1.3	0	<0.0087	<0.003			
Iron and steel manufacturing	NA	NA	<10	0	NA	<1.8			
Nonferrous metals manufacturing	ND	5.4	0.46	0	NA	0.024			

INDUSTRIAL OCCURRENCE OF ENDRIN^{a, b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

	Treated wastewater							
	Concer	Loading, ^C kg/d						
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Iron and steel manufacturing	NA	NA	<10	0	NA	<1.8		
Nonferrous metals manufacturing	NA	0.2	0.1	0	NA	0.0053		

INDUSTRIAL OCCURRENCE OF ENDRIN^{a, b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dMean pollutant concentration below detection limit.

e_{Median, not average.}

^fAnalytical method did not distinguish between benzo(a)pyrene and perylene.

I.13.13-

Synthetic wastewater Actual wastewater	Synthetic	
Removal Average Removal Average range, achievable range, achievabl % conc., µg/L % conc., µg	range, ^C	Freatment process ^a

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR ENDRIN^{a,b}

^aSee Volume III for detailed information.

- ^bNA Not available, ND not detected, BDL below detection limit.
- ^CAverage and maximum removals reported.

- Fairchild, E. J., R. J. Lewis, Sr., and R. L. Tatken. Registry of Toxic Effects of Chemical Substances, Volume II. NIOSH-78-104B, National Institute for Occupational Safety and Health, Cincinnati, Ohio, 1977. pp. 366.
- 2. Report on visit of D. Stephan and W. Cawley, U.S. Environmental Protection Agency, to Calgon Environmental Systems Division, Calgon Corporation, Pittsburgh, Pennsylvania, 9 April 1979. 132 pp.

.

CC13 Compound: Kelthane Formula: C1 Alternate Names: Kelthanethanol, Difocol, 2,2,2-Trichloro-1,1-di-

(4-chlorophenyl) ethanol

CA\$ #: 115-32-2

Physical, Chemical, and Biological Properties [1]

mol. wt.: 370.5 m.p., °C: Not available b.p. (760 torr), °C: 77-78 vapor pressure (25°C), torr: Not available solubility in water: Almost totally insoluble log octanol/water partition coefficient: Not available Henry's law constant: Not available biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date: 8/13/79

I.13.14-1

INDUSTRIAL OCCURRENCE OF KELTHANE^{a, b}

	Raw wastewater					
	Concentration, $\mu q/L$ Loading, $c kq/l$					ď
Industry	Minimum Maximum Mean Minimum Maximum Me					

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

			ab
INDUSTRIAL	OCCURRENCE	OF	KELTHANE ^{a, b}

	Treated wastewater					
	Concentration, µg/L	Loading, ^C kg/d				
Industry	Minimum Maximum Mean	Minimum Maximum Mean				

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

I.13.14-4

	······································	<u>c wastewater</u>		wastewater	
Treatment process ^a	Removal range,	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section number

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR KELTHANE^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

REFERENCES

_

 Off-line Bibliographic Citation List Generated from the Toxicology Data Bank by MEDLARS II, National Library of Medicine's National Interactive Retrieval Service, Bethesda, Maryland, 11 June 1979. Part II, pp. 71, 72, 73.

•

Compound:	Naled	Formula:	Cl Br O
Alternate 1	Names:	Bromex; Orthodibrom; Phosphoric acid, 1,2-dibromo-2,2-Dichloroethyl dimethyl ester	$C1 - C - C - O - P - OCH_3$ $C1 - C - C - O - P - OCH_3$ $Br H OCH_3$

CAS #: 300-76-5

Physical, Chemical, and Biological Properties [1]

mol. wt.: 476.9 m.p., °C: 26 b.p. (0.5 torr), °C: 110
vapor pressure (20°C), torr: 2 x 10³
solubility in water: Almost totally insoluble
log octanol/water partition coefficient: Not available
Henry's law constant: Not available
biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date: 8/13/79

I.13.15-1

INDUSTRIAL OCCURRENCE OF NALED^{a, b}

	Raw wastewater						
	Concer	ntration, µ	g/L	Lo	ading, ^C kg/	d	
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mear	

I.13.15-2

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF NALED^{a,b}

	Treated wastewater						
	Concer	Concentration, µg/L		Loading, ^C kg/d		d	
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean	

I.13.15-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

I.13.15-4

	Syntheti	c wastewater	Actual	wastewater	
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section number
Treatment process	%	conc., µg/L	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	conc., µg/L	Section number

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR NALED^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

REFERENCES

-

 Off-line Bibliographic Citation List Generated from the Toxicology Data Bank by MEDLARS II, National Library of Medicine's National Interactive Retrieval Service, Bethesda, Maryland, 11 June 1979. Part II, pp. 16, 17, 18.

.

Compound: Dichlone

Formula:

C1

0

Alternate Names: Phygon, US Rubber 604, 2,3-Dichloro-1,4-naphthoquinone, Sanquinon

CAS #: 117-80-6

Physical, Chemical, and Biological Properties [1]

mol. wt.: 227.0 m.p., °C: 195 b.p. (2 torr), °C: 275
vapor pressure (25°C), torr: Not available
solubility in water (25°C), mg/L: Insoluble
log octanol/water partition coefficient: Not available
Henry's law constant: Not available
biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date: 8/13/79

I.13.16-1

INDUSTRIAL OCCURRENCE OF DICHLONE^{a, b}

	Raw wastewater					
	Concentration, µg/L			n, µg/L Loading, ^C kg/d		
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

I.13.16-2

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF DICHLONE ^{a, r}	INDUSTRIAL	OCCURRENCE	OF	DICHLONE ^{a, c}
---	------------	------------	----	--------------------------

	Treated wastewater						
	Concentration, µg/L			Loading, ^C kg/d			
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean	

I.13.16-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

.

^bNA - not available; ND - not detected; BDL - below detection limit.

		Syntheti	c wastewater	Actual	wastewater	
	Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., μg/L	Volume III references, Section number
<u> </u>						

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR DICHLONE^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

REFERENCES

-

 Off-line Bibliographic Citation List Generated from the Toxicology Data Bank by MEDLARS II, National Library of Medicine's National Interactive Retrieval Service, Bethesday, Maryland, 11 June 1979. Part II, pp. 81, 82.

.

Compound: Kepone	Formula:	$c_1 \xrightarrow{c_1} c_1$
Alternate Names:	<pre>1,la,3,3a,4,5,5,5a,5b 6-Decachloroctahydro-1,3 4-metheno-2H-cyclobuta(cd) pentalen-2-one; Merex; Decachloroketone</pre>	

CAS #: 143-50-0

Physical, Chemical, and Biological Properties [1]

mol. wt.: 490.6 m.p., °C: Not available b.p. (760 torr), °C: Not available vapor pressure (25°C), torr: Not available solubility in water (25°C), mg/L: Not available log octanol/water partition coefficient: Not available Henry's law constant: Not available biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

÷

Date:

INDUSTIRAL OCCURRENCE OF KEPONE^{a, b}

	Raw wastewater						
Industry	Concentration, µg/L			Loading, ^C kg/d			
	Minimum	Maximum	Mean	Minimum	Maximum	Mean	

I.13.17-2

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

1

			ah
INDUSTRIAL	OCCURRENCE	OF	KEPONE

		T	r ea ted w	astewater		
	Concentration, µg/L			Loading, ^C kg/d		
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

Synthetic wastewate	r Actual wastewater
Removal Average range, achievable Treatment process ^a % conc., μg/	5

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR KEPONE^{a,b}

^aSee Volume III for detailed information.

 b NA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

REFERENCES

-

.

 Fairchild, E. J., R. J. Lewis, Sr., and R. L. Tatken. Registry of Toxic Effects of Chemical Substances, Volume II. NIOSH-78-104B, National Institute for Occupational Safety and Health, Cincinnati, Ohio, 1977. p. 549.

-

ι

Compound: Diuron

Formula: $(C1) \rightarrow (CH_3)_2$

Alternate Names: 3-(3,4-Dichlorophenyl)-1-dimethylurea

CAS #: 330-54-1

Physical, Chemical, and Biological Properties [1, 2]

mol. wt.: 233.1 m.p., °C: 158-159 b.p. (760 torr), °C: Not available vapor pressure (25°C), torr: Not available solubility in water (temp. unknown), mg/L: 42 log octanol/water partition coefficient: Not available Henry's law constant: Not available biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date: 8/13/79

I.13.18-1

INDUSTRIAL OCCURRENCE OF DIURON^{a, b}

*			vastewater			
	Concer	ntration, μ	g/L	Lo	ading, ^C kg/	'd
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF DIURON^{a, b}

		Treated wastewa					
Industry	Concentr	Concentration, µg/L			Loading, ^C kg/d		
	Minimum M	Maximum	Mean	Minimum	Maximum	Mean	

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

• •

н.

13.18-4

Removal Average Removal Average Volume III range, achievable range, achievable references Treatment_process ^a %conc.,µg/L %conc.,µg/L Section_numb

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR DIURON^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

REFERENCES

-

- 1. Fairchild, E. J., R. J. Lewis, Sr., and R. L. Tatken. Registry of Toxic Effects of Chemical Substances, Volume II. NIOSH-78-104B, National Institute for Occupational Safety and Health, Cincinnati, Ohio, 1977. p. 948.
- 2. Meister Publishing Co. 1976 Farm Chemicals Handbook. Willoughby, Ohio, 1976. pp. D96, D97.

-

Compound: Endrin aldehyde

Formula: Not available

b.p. (760 torr), °C:

Alternate Names: None

CAS #: None assigned

Physical, Chemical, and Biological Properties: Not available

mol. wt.: m.p., °C: vapor pressure (25°C), torr: solubility in water (25°C), mg/L: log octanol/water partition coefficient: Henry's law constant: biodegradability:

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date: 8/13/79

I.13.19-1

Industry	. Raw wastewater								
	Concei	ntration,	hd\r	Loading, ^C kg/d					
	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Foundries	ND	20	5 .2	0	0.035	0.014			
Iron and steel manufacturing	NA	NA	<10	0	NA	<1.8			
Nonferrous metals manufacturing	ND	0.9	0.15	0	NA	0.0080			

INDUSTRIAL OCCURRENCE OF ENDRIN ALDEHYDE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

Industry	Treated wastewater							
	Conce	Loading, ^C kg/d						
	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Foundries	<5	<20	<9	0	0.06	0.024		
Iron and steel manufacturing	NA	NA	<10	0	NA	<1.8		
Nonferrous metals manufacturing	ND	0.5	0.15	0	NA	0.08		

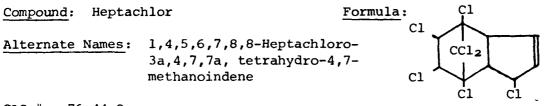
INDUSTRIAL OCCURRENCE OF ENDRIN ALDEHYDE^{a, b}

I.13.19-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

1.13.19-4


	Syntheti	Synthetic wastewater		wastewater		
	Removal range,	Average achievable	Removal range,	Average achievable	Volume III references,	
Treatment process ^a	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	conc., µg/L	0,0	conc., µg/L	Section number:	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR ENDRIN ALDEHYDE^{a,b}

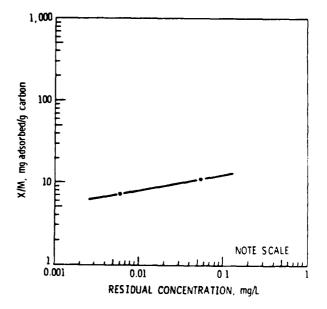
^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

CAS #: 76-44-8

Physical, Chemical, and Biological Properties [1, 2]


mol. wt.: 373.3 m.p., °C: 95-96 b.p. (760 torr), °C: Not available vapor pressure (25°C), torr: Not available solubility in water (25°C), mg/L: Insoluble log octanol/water partition coefficient: Not available Henry's law constant: Not available biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data [3]

pH: Not available
type of carbon: Filtrasorb-300
adsorbability: Not available

Date: 8/13/79

I.13.20-1

		۱	Ra	aw wastewater			
Industry	Concentration, $\mu g/L$			Loading, ^C kg/d			
	Minimum	Maximum	Mean	Minimum	Maximum	Mean	
Coal mining	NA	ND	ND	BDL	BDL	BDL	
Timber products processing	0.001	0.684	NA	0	0.016	2.9 x 10 ⁻⁵	
Auto and other laundries	ND	<u><</u> 3.0	NA	<1.4 x 10 ⁻⁶	<0.0021	<0.00032	
Foundries	ND	NA	<7.5	0	<0.05	<0.02	
Iron and steel manufacturing	NA	NA	<10	0	NA	<1.8	
Nonferrous metals manufacturing	ND	0.5	0.08	0	NA	0.0042	

INDUSTRIAL OCCURRENCE OF HEPTACHLOR^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

Industry	Treated wastewater							
	Concei	Loading, c kg/d						
	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Coal mining	ND	<6.7	<0.8	0	0.021	0.0030		
Timber products processing	NA	NA	NA	NA	NA	NA		
Foundries	<5	<5	<5	0	0.034	0.014		
Iron and steel manufacturing	NA	NA	<10	0	NA	<1.8		
Nonferrous metals manufacturing	ND	0.7	0.1	0	NA	0.0053		

INDUSTRIAL OCCURRENCE OF HEPTACHLOR^{a, b}

I.13.20-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

POLLUTANT REMOVABILITY/TREATABILI	Y WASTEWATER TR	REATMENT ALTERNATIVE F	OR HEPTACHLOR ^{a,b}
iobbolinti (bilotibiliti) itentibiliti	T WHOLDWHICK IN	ACTURENT ADILIANTIAN F	on her mendon

	Synthetic wastewater		Actual wastewater		
Treatment process ^a	Removal range, %	Average achievable conc., μg/L	Removal range, %	Average achievable conc., μg/L	Volume III references, Section numbers
Activated sludge			76 ^d	1.5 ^d	III.5.1

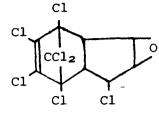
^aSee Volume III for detailed information.

 b NA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

-


- Fairchild, E. J., R. J. Lewis, Sr., and R. L. Tatken. Registry of Toxic Effects of Chemical Substances, Volume II. NIOSH-78-104B, National Institute for Occupational Safety and Health, Cincinnati, Ohio, 1977. pp. 547.
- 2. Meister Publishing Co. 1976 Farm Chemicals Handbook. Willoughby, Ohio, 1976. p. D 132.
- 3. Report on visit of D. Stephan and W. Cawley, U.S. Environmental Protection Agency, to Calgon Environmental Systems Division, Calgon Corporation, Pittsburgh, Pennsylvania, 9 April 1979. 132 pp.

.

Compound: Heptachlor epoxide

Formula:

Alternate Names: 1,4,5,6,7,8,8-Heptachloro-2,3-epoxy-2,3,3a,4,7,7ahexahydro-4,7-methanoindene

CAS #: 1024-57-3

Physical, Chemical, and Biological Properties [1]

mol. wt.: 389.3 m.p., °C: Not available b.p. (760 torr), °C: Not available
vapor pressure (25°C), torr: Not available
solubility in water (25°C), mg/L: Not available
log octanol/water partition coefficient: Not available
Henry's law constant: Not available
biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date: 8/13/79

I.13.21-1

		Raw wastewater							
Industry	Concei	ntration,	µg/L	Loa	ading, ^C kg/d				
	Minimum	Maximum	Mean	Minimum	Maximum	Mean			
Coal mining	NA	ND	ND	BDL	BDL	BDL			
Iron and steel manufacturing	NA	NA	<10	0	NA	<1.8			
Nonferrous metals manufacturing	ND	0.2	0.07	0	NA	0.003			

INDUSTRIAL OCCURRENCE OF HEPTACHLOR EPOXIDE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

	Treated wastewater							
	Concer	ntration, p	lg/L	Loa	/d			
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Coal mining	ND	<6.7	<0.6	0	0.016	0.0023		
Foundries	<5	<5	<5	0	0.034	0.014		
Iron and steel manufacturing	NA	NA	<10	0	NA	<1.8		
Nonferrous metals manufacturing	ND	0.7	0.1	0	NA	0.0053		

INDUSTRIAL OCCURRENCE OF HEPTACHLOR EPOXIDE^{a,b}

I.13.21-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

I.13.21-4

POLLUTANT REMOVABILITY/TREATABILITY						a.b
POLLUTANT REMOVABILITY/TREATABILITY	WASTEWATER	TREATMENT	ALTERNATIVE	FOR	HEPTACHLOR	EPOXIDE

	Syntheti	c wastewater	Actual	wastewater		
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
Sedimentation with chemical addition (alum, lime)			>29 ^d	<1 ^d	III.4.3	

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

-

1. Fairchild, E. J., R. J. Lewis, Sr., and R. L. Tatken. Registry of Toxic Effects of Chemical Substances, Volume II. NIOSH-78-104B, National Institute for Occupational Safety and Health, Cincinnati, Ohio, 1977. p. 547.

OOCHNCH3 Compound: Carbofuran Formula: CH₃ Alternate Names: [1] 2,3-Dihydro-2,2-dimethyl-7-benzofuranol methylcarbamate, Methyl carbamic acid, 2,3-Dihydro-2,2dimethy1-7-benzofurany1 ester

CAS #: 156-36-62

Physical, Chemical, and Biological Properties [1]

m.p., °C: 150-153 b.p. (760 torr), °C: Not available mol. wt.: 221.3 vapor pressure (25°C), torr: Not available solubility in water (25°C), mg/L: Not available log octanol/water partition coefficient: Not available Henry's law constant: Not available biodegradability: Not available

CH3

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

INDUSTRIAL OCCURRENCE OF CARBOFURAN^{a, b}

	<u> </u>					
Industry	Concen	tration, μ	g/L	Loading, ^C kg/d		
	Minimum	Maximum	Mean	Minimum	Maximum	Mean

I.13.22-2

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

.

INDUSTRIAL OCCURRENCE OF CARBOFURAN^{a,b}

	Treated wastewater					
	Concer	itration, µ	g/L	Loa	ading, ^c kg/	'd
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

	Synthetic wastewat		Actual	wastewater		
Treatment process	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., μg/L	Volume III references, Section numbers	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR CARBOFURAN^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

.

-

 Merck and Co., Inc. The Merck Index, Ninth Edition. Rahway, New Jersey, 1976. pp. 1808, 1809.

•

Compound: Mercaptodimethur

Formula:

Alternate Names: Methiocarb

CAS #: 2032-65-7

Physical, Chemical, and Biological Properties [1]

mol. wt.: 225.3 m.p., °C: 117-118 b.p. (760 torr), °C: Not available vapor pressure (25°C), torr: Negligible solubility in water (25°C), mg/L: Insoluble log octanol/water partition coefficient: Not available Henry's law constant: Not available biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

INDUSTRIAL OCCURRENCE OF MERCAPTODIMETHUR^{a, b}

	Raw wastewater						
Industry	Concentration, $\mu g/L$ Loading,			ading, ^C kg/	kg/d		
	Minimum Maximum	Mean	Minimum	Maximum	Mean		

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

b NA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF MERCAPTODIMETHUR^{a, b}

	Treated wastewater					
	Concer	ntration, µ	g/L	Loa	ading, ^C kg/	d
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

1.13.23-4

	Synthetic wastewater		Actual	wastewater	
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., μg/L	Volume III references, Section number
Treatment process ^a			2 Ginge ,		-

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR MERCAPTODIMETHUR^{a, b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

-

.

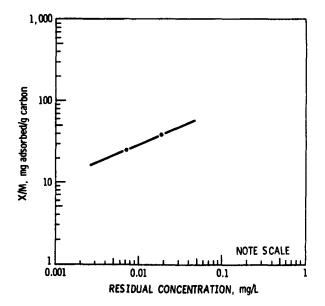
 Off-line Bibliographic Citation List Generated from the Toxicology Data Bank by MEDLARS II, National Library of Medicine's National Interactive Retrieval Service, Bethesda, Maryland, 11 June 1979. Part II, pp. 54, 55.

.

<u>Compound</u>: Chlordane <u>Alternate Names</u>: 1,2,4,5,6,7,8,8-Octachloro-3a,4,7,7a-tetrahydro-4,7methanoindane <u>Formula</u>: Cl

CAS #: 57-74-9

Physical, Chemical, and Biological Properties [1]


mol. wt.: 409.8 m.p., °C: Not available b.p. (760 torr), °C: Not available
vapor pressure (25°C), torr: 1 x 10⁵
solubility in water (25°C), mg/L: Insoluble
log octanol/water partition coefficient: Not available
Henry's law constant: Not available
biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data [2]

pH: Not available type of carbon: Filtrasorb-300 adsorbability: Not available

Date: 8/13/79

I.13.24-1

			Ray	w wastewater		
	Concer	ntration,	lg/L	Load	ding, ^C kg/d	
	Minimum	Maximum	Mean	Minimum	Maximum	Mean
Auto and other laundries	ND	≤3.0	NA	<1.4 x 10 ⁻⁶	<0.0021	<0.00032
Foundries	ND	NA	12	0	0.08	0.032
Iron and steel manufacturing	NA	NA	<10	0	NA	<1.8
Nonferrous metals manufacturing	ND	1.2	0.15			
Timber products processing	<0.001	0.035	NA	0	0.00078	1 x 10 ⁻⁶

INDUSTRIAL OCCURRENCE OF CHLORDANE^{a, b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

	Treated wastewater							
	Concer	ntration, µ	Ig/L	Loa	Loading, ^C kg/o			
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Timber products processing	NA	NA	NA	NA	NA	NA		
Foundries	<5	24	8	0	0.054	0.022		
Iron and steel manufacturing	NA	NA	<10	0	NA	<1.8		
Nonferrous metals manufacturing	ND	31	1.1	0	NA	0.058		

I.13.24-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

Synthetic wastewater Actual wastewater Removal Removal Volume III Average Average range, achievable achievable references, range, Treatment process^a % Section numbers conc., $\mu g/L$ % conc., µg/L $\mathbf{3}^{\mathbf{d}}$ Gravity oil separation III.4.1 NA 24^d 37^d III.4.6 Filtration

POLLUTANT REMOVABILITY/TREATABILITY WASTÉWATER TREATMENT ALTERNATIVE FOR CHLORDANE^{a,b}

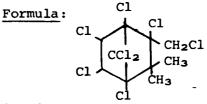
^aSee Volume III for detailed information.

 b_{NA} - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

-


- Ouellette, R. P., and J. A. King. Chemical Week Pesticides Register. McGraw-Hill Book Company, New York, New York, 1977. p. 159.
- 2. Report on visit of D. Stephan and W. Cawley, U.S. Environmental Protection Agency, to Calgon Environmental Systems Division, Calgon Corporation, Pittsburgh, Pennsylvania, 9 April 1979. 132 pp.

.

Compound: Toxaphene

Alternate Names: Polychlorocamphene

CAS #: 8001-35-2

Physical, Chemical, and Biological Properties [1]

mol. wt.: 414 m.p., °C: 70-90 b.p. (760 torr), °C: Not available vapor pressure (25°C), torr: 0.2-0.4 solubility in water (25°C), mg/L: 0.5 log octanol/water partition coefficient: Not available Henry's law constant: Not available biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

	Raw wastewater							
	Concer	ntration,	µg/L	Loading, ^C kg/d				
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Iron and steel manufacturing	NA	NA	<10	0	NA	<1.8		
Nonferrous metals manufacturing	ND	0.4	0.25	0	NA	<0.013		

INDUSTRIAL OCCURRENCE OF TOXAPHENE^a

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

	Treated wastewater						
	Concer	ntration, µ	g/L	Loa	ading, ^C kg/	d	
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean	
Iron and steel manufacturing	NA	NA	2	0	NA	0.36	

INDUSTRIAL OCCURRENCE OF TOXAPHENE^{a,b}

I.13.25-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

I.13.25-4

	Synthetic wastewater		Actual	wastewater		
Treatment process ^a	Removal range, %	Average achievable conc., μg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
avity oil separation			NA	3 ^đ	III.4.1	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR TOXAPHENE^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

.

-

1. Guyer, G. E., et al. Toxaphene Status Report. U.S. Environmental Protection Agency, Washington, D.C., 1971. p. 10.

•

•

 Compound:
 Captan
 Formula:

 Alternate Names:
 N(trichloromethylthio-4-cyclohexene-1,2,-dicarboxylic acid,imide
 N-S-CCl3

 CAS #:
 133-06-2
 0

Physical, Chemical, and Biological Properties [1]

mol. wt.: 300.6 m.p., °C: 172-173 b.p. (760 torr), °C: Not available
vapor pressure (25°C), torr: <0.01
solubility in water (25°C), mg/L: <0.5
log octanol/water partition coefficient: Not available
Henry's law constant: Not available
biodegradability: Not available</pre>

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date: 8/13/79

I.13.26-1

I.13.26-2

INDUSTRIAL OCCURRENCE OF CAPTAN^{a,b}

	Raw wastewater						
· ·	Conce	Loading, ^C kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean	
					<u>.</u>		

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

b NA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF CAPTAN^{a,b}

	Treated wastewater					
	Concen	tration, μ	g/L	Loa	ading, ^C kg/	d
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

I.13.26-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

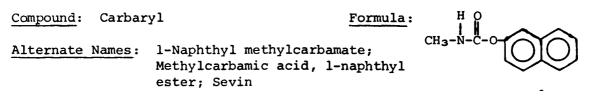
^bNA - not available; ND - not detected; BDL - below detection limit.

	Synthetic wastewater		Actual wastewater			
 Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., μg/L	Volume III references, Section_number	
	- <u> </u>					

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR CAPTAN^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.


^CAverage and maximum removals reported.

.

-

 Off-line Bibliographic Citation List Generated from the Toxicology Data Bank by MEDLARS II, National Library of Medicine's National Interactive Retrieval Service, Bethesda, Maryland, 11 June 1979. Part II, pp. 46, 47.

-

CAS #: 63-25-2

Physical, Chemical, and Biological Properties [1]

mol. wt.: 201.2 m.p., °C: 142 b.p. (760 torr), °C: Not available
vapor pressure (25°C), torr: <0.005
solubility in water (30°C), mg/L: 40
log octanol/water partition coefficient: Not available
Henry's law constant: Not available
biodegradability: Not available</pre>

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date: 8/13/79

I.13.27-1

INDUSTRIAL OCCURRENCE OF CARBARYL^{a,b}

			Raw w	astewater		
	Concer	ntration, µ	g/L	Loa	ading, ^C kg/	ď
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

1.13.27-2

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF CARBARYL^{a,b}

		· · · · · · · · · · · · · · · · · · ·	Treated	wastewate	r	
	Concer	ntration, µ	g/L	Lo	ading, ^C kg/	'd
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

I.13.27-4

Syntheti	.c wastewater	Actual	wastewater	
Removal range, %	Average achievable conc., μg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section_number
	<u>conc.</u> , pg/1		<u>conc.</u> , <u>pg</u> /2	
	Removal range, %	range, ^C achievable %conc.,µg/L	Removal Average Removal range, achievable range, % conc.,µg/L %	Removal Average Removal Average range, achievable range, achievable % conc.,µg/L % conc.,µg/L

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR CARBARYL^{a,b}

^aSee Volume III for detailed information.

 b NA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

-

 Off-line Bibliographic Citation List Generated from the Toxicology Data Bank by MEDLARS II, National Library of Medicine's National Interactive Retrieval Service, Bethesda, Maryland, 11 June 1979. Part II, pp. 36, 37.

.

Compound: Coumaphos Formula:

C₂H₅O S CH₃ C₂H₅O P Cl Cl

Alternate Names: 0-(3-Chloro-4-methyl-2-oxo-2H-1-benzopyran-7-yl),0,0-diethyl phosphorothioate, Co-Ral

CAS #: 56-72-4

Physical, Chemical, and Biological Properties [1]

mol. wt.: 353 m.p., °C: 90-92 b.p. (760 torr), °C: Not available vapor pressure (25°C), torr: Not available solubility in water (25°C), mg/L: Insoluble log octanol/water partition coefficient: Not available Henry's law constant: Not available biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date: 8/13/79

I.13.28-1

			a.b
INDUSTRIAL	OCCURRENCE	OF	COUMAPHOS ^{a,b}

			Raw w	astewater		
	Concer	itration, μ	g/L	Loa	ading, ^C kg/	đ
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF COUMAPHOS^{a,b}

			Treated	l wastewate	r	
	Concer	ntration, µ	Ig/L	Lo	ading, ^C kg/	d
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

Removal	Average	Removal	Average	Volume III
range,	achievable conc., µg/L	range, ^C %	achievable conc., µg/L	references, Section numbers

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR COUMAPHOS^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

.

-

 Meister Publishing Co. 1976 Farm Chemicals Handbook. Willoughby, Ohio, 1976. p. D 67.

-

.

Compound:DiazinonFormula:Alternate Names:0,0-Diethyl-0-(2-isopropyl-
6-methyl-4-pyrimidinyl)
phosphorothioateCH_3CH_2O
CH_3CH_2OCH_3
CH_3CH_2OCAS #:333-41-5CH_3CH_2O
CH_3CH_2OCH_3CH_2O
CH_3CH_2O

Physical, Chemical, and Biological Properties [1]

mol. wt.: 304.4 m.p., °C: Not available b.p. $(2 \times 10^{-3} \text{ torr})$, °C: 83-84 vapor pressure (20°C) , torr: 1.4 x 10^{-4} solubility in water (20°C) , mg/L: 40 log octanol/water partition coefficient: Not available Henry's law constant: Not available biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date: 8/13/79

I.13.29-1

н.

13.29-2

INDUSTRIAL OCCURRENCE OF DIAZINON^{a,b}

			Raw w	vastewater		
	Concer	ntration, p	lg/L	Lo	ading, ^C kg/	′d
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mear
			/			

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

b_{NA} - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF DIAZINON^{a,b}

			Treated	wastewate:	r	
	Conce	ntration, µ	g/L	Lo	ading, ^C _kg/	'd
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mear
•						

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

I.13.29-3

	Syntheti	c wastewater	Actual	wastewater	
reatment process ^a	Removal	Average	Removal	Average	Volume III
	range,	achievable	range,	achievable	references,
	%	conc., µg/L	%	conc., µg/L	Section number

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR DIAZINON^{a,b}

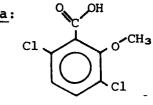
^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

.

-


 Off-line Bibliographic Citation List Generated from the Toxicology Data Bank by MEDLARS II, National Library of Medicine's National Interactive Retrieval Service, Bethesda, Maryland, 11 June 1979. Part III, pp. 83-85.

•

Compound: Dicamba

Formula:

Alternate Names: Banvel,3,6-Dichloro-oanisic acid

CAS #: 1918-00-9

Physical, Chemical, and Biological Properties [1, 2]

mol. wt.: 221.0 m.p., °C: 114-116 b.p. (760 torr), °C: Not available vapor pressure (25°C), torr: Not available solubility in water (25°C), mg/L: Not available log octanol/water partition coefficient: Not available Henry's law constant: Not available biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date: 8/13/79

I.13.30-1

INDUSTRIAL OCCURRENCE OF DICAMBA^{a,b}

			Raw w	astewater		
	Concer	tration, μ	g/L	Loa	ading, ^C kg/	d
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF DICAMBA^{a,b}

Loading, ^C kg/d	Concentration, µg/L	
num Maximum N		Industry
		Industry

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

POLLUTANT REMOVABILITY/TREATABILITY	WASTEWATER	TREATMENT	ALTERNATIVE	FOR DICAMBA ^{a, b}	D
-------------------------------------	------------	-----------	-------------	-----------------------------	---

	Synthetic wastewater		Actual	wastewater			
_	Removal range,	Average achievable	Removal range,	Average achievable	Volume III references,		
Treatment process ^a	0,0	conc., µg/L	0/0	conc., µg/L	Section numbers		

- 1.13.30-4
- ^aSee Volume III for detailed information.
- ^bNA Not available, ND not detected, BDL below detection limit.
- ^CAverage and maximum removals reported.

-

- 1. Fairchild, E. J., R. J. Lewis, Sr., and R. L. Tatken. Registry of Toxic Effects of Chemical Substances, Volume II. NIOSH-78-104B, National Institute for Occupational Safety and Health, Cincinnati, Ohio, 1977. p. 189.
- 2. Meister Publishing Co. 1976 Farm Chemicals Handbook. Willoughby, Ohio, 1976. p. D 28.

.

Compound: Dichlobenil

Formula:

Alternate Names: Casoron 113, 2,6-Dichlorobenzonitrile

CAS #: 1194-65-6

Physical, Chemical, and Biological Properties [1]

mol. wt.: 172 m.p., °C: 139-145 b.p. (760 torr), °C: 270
vapor pressure (20°C), torr: 5.5 x 10⁻⁴
solubility in water (20°C), mg/L: 25
log octanol/water partition coefficient: Not available
Henry's law constant: Not available
biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date: 8/13/79

I.13.31-1

INDUSTRIAL OCCURRENCE OF DICHLOBENIL^{a, b}

Industry		Raw wastewater							
	Concer	Concentration, $\mu g/L$			Loading, ^C kg/d				
	Minimum	Maximum	Mean	Minimum	Maximum	Mean			

I.13.31-2

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF DICHLOBENIL^{a, b}

		Treated wastewater						
		Concer	ntration, µ	Ig/L	Loa	ading, ^C kg/	d	
-1	Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean	
				·····				
ა								
I								

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

1.13.31-4

Synthetic_wastewater Actual wastewater	Syntheti	
Removal Average Removal Average Volume III range, achievable range, achievable references, cess ^a % conc., µg/L % conc., µg/L Section number	С	Treatment process ^a

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR DICHLOBENIL^{a,b}

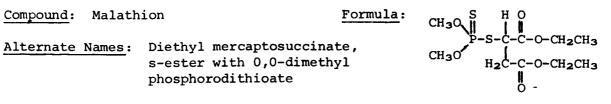
^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

, r

•


-

1. Ouellette, R. P., and J. A. King. Chemical Week Pesticides Register. McGraw-Hill Book Company, New York, New York, 1977. p. 178.

.

-

I.13.31-5

CAS #: 121-75-5

Physical, Chemical, and Biological Properties [1]

mol. wt.: 330 m.p., °C: 2.85 b.p. (760 torr), °C: Not available vapor pressure (20°C), torr: 4×10^{-5} solubility in water (temp. unknown), mg/L: 145 log octanol/water partition coefficient: Not available Henry's law constant: Not available biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date: 8/13/79

I.13.32-1

I.13.32-2

INDUSTRIAL OCCURRENCE OF MALATHION^{a, b}

	Raw wastewater						
	Concentration, µg/L			Loading, ^C kg/d			
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mear	

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF MALATHION^{a,b}

			wastewate	r		
	Concer	Loading, ^C kg/d				
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

I.13.32-4

Syntheti	Synthetic_wastewater		wastewater		
Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., μg/L	Volume III references, Section_numbers	
	Removal	range, ^C achievable	Removal Average Removal range, achievable range,	Removal Average Removal Average range, achievable range, achievable	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR MALATHION^{a, b}

^aSee Volume III for detailed information.

 b NA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

REFERENCES

•

-

 Meister Publishing Co. 1976 Farm Chemicals Handbook. Willoughby, Ohio, 1976. pp. D 153 - D 154.

-

I.13.32-5

Compound: Methyl parathion

Formula:

CH₃O,

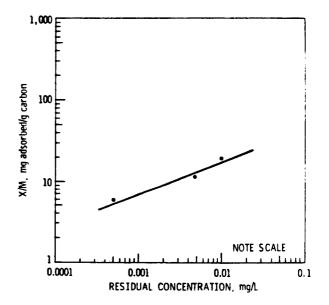
CH₃O

NO₂

Alternate Names: 0,0-Dimethyl-0-p-nitrophenyl phosphorothioate

CAS #: 298-00-0

Physical, Chemical, and Biological Properties [1, 2]


mol. wt.: 263.2 m.p., °C: 35-36 b.p. (760 torr), °C: Thermally unstable vapor pressure (20°C), torr: 0.97 x 10^{-5} solubility in water (25°C), mg/L: 55-60 log octanol/water partition coefficient: Not available Henry's law constant: Not available biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data [3]

pH: Not available type of carbon: Filtrasorb-300 adsorbability: Not available

Date: 8/13/79

I.13.33-1

I.13.33-2

INDUSTRIAL OCCURRENCE OF METHYL PARATHION^{a,b}

	Raw wastewater							
	Conce	Loading, ^C kg/d						
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mear		
······································			· · · · · · · · · · · · · · · · · · ·					

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

	Treated wastewater						
	Conce	Loading, ^C kg/d		d			
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mea	
Industry						_	
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Me	
· ·····			······				

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

I.13.33-4

	Syntheti	c wastewater	Actual	wastewater	
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section number
		-			

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR METHYL PARATHION^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

REFERENCES

-

- 1. Initial Scientific and Minieconomic Review of Methyl Parathion, Criteria and Evaluation Division, Office of Pesticide Programs, U.S. Environmental Protection Agency, Washington, D.C., February 1975. pp. 14, 17.
- Meister Publishing Co. 1976 Farm Chemicals Handbook. Willoughby, Ohio, 1976. p. D 166.
- 3. Report on visit of D. Stephan and W. Cawley, U.S. Environmental Protection Agency, to Calgon Environmental Systems Division, Calgon Corporation, Pittsburgh, Pennsylvania, 9 April 1979. 132 pp.

•

Compound: Parathion

Formula:

CH3CH2

CH3CH2C

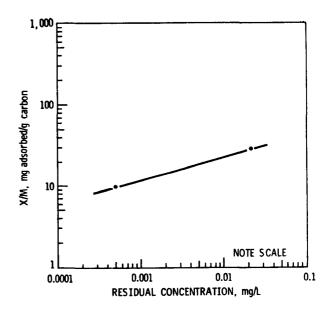
NO2

Alternate Names: 0,0-Diethyl-0-p-

nitrophenyl phosphorothioate

CAS #: 56-38-2

Physical, Chemical, and Biological Properties [1]


mol. wt.: 291.3 m.p., °C: 6.1 b.p. (760 torr), °C: 375
vapor pressure (25°C), torr: Not available
solubility in water (25°C), mg/L: Insoluble
log octanol/water partition coefficient: Not available
Henry's law constant: Not available
biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data [2]

pH: Not available type of carbon: Filtrasorb-300 adsorbability: Not available

Date: 8/13/79

I.13.34-1

INDUSTRIAL OCCURRENCE OF PARATHION^{a, b}

			Raw w	astewater		
	Conce	ntration, μ	lg/L	Loading, ^C kg/d		
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF PARATHION^{a, b}

	Treated wastewater						
	Concentration, mg/L			Loading, ^C kg/d			
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean	

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

1.13.34-4

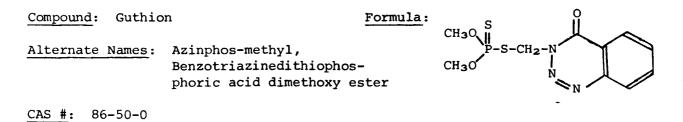
Synthetic wastewa	water Actual wastewater		
Removal Averac range, ^C achieval %conc.,	able range, ^C achievable r	olume III eferences, tion number:	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR PARATHION^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.


REFERENCES

-

- 1. CRC Press, Inc. CRC Handbook of Chemistry and Physics, 58th Edition. Cleveland, Ohio, 1977. p. C-411.
- 2. Report on visit of D. Stephan and W. Cawley, U.S. Environmental Protection Agency, to Calgon Environmental Systems Division, Calgon Corporation, Pittsburgh, Pennsylvania, 9 April 1979. 132 pp.

•

•

Physical, Chemical, and Biological Properties [1]

mol. wt.: 317.3 m.p., °C: 73-74 b.p. (760 torr), °C: Not available
vapor pressure (20°C), torr: <3.8 x 10⁻⁴
solubility in water (25°C), mg/L: 33
log octanol/water partition coefficient: Not available
Henry's law constant: Not available
biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date: 8/13/79

I.13.35-1

INDUSTRIAL OCCURRENCE OF GUTHION^{a,b}

	Industry	Raw wastewater							
		Conce	Loading, c kg/d						
		Minimum	Maximum	Mean	Minimum	Maximum	Mean		
1									

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF GUTHION^a

	Treated wastewater						
	Conce	Loading, ^C kg/d					
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mear	
·							

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

	Syntheti	Synthetic wastewater		wastewater		
 Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., μg/L	Volume III references, Section numbers	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR GUTHION^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

REFERENCES

-

 Off-line Bibliographic Citation List Generated from the Toxicology Data Bank by MEDLARS II, National Library of Medicine's National Interactive Retrieval Service, Bethesda, Maryland, 11 June 1979. Part III, pp. 20-22.

•

Compound:EthionFormula:CH3CH2OSSOCH2CH3Alternate Names:0,0,0',0'-Tetraethyl-
S,S'-methylene-bisphosphoro-
dithioate0,0,0',0'-Tetraethyl-
CH3CH2OCH3CH2OP-S-CH2-S-POCH2CH3

CAS #: 563-12-2

Physical, Chemical, and Biological Properties [1]

mol. wt.: 384.5 m.p., °C: -12 to -13 b.p. (760 torr), °C: Not available vapor pressure (25°C), torr: 1.5×10^{-6} solubility in water: Slightly soluble log octanol/water partition coefficient: Not available Henry's law constant: Not available biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

INDUSTRIAL OCCURRENCE OF ETHION^{a, b}

		Raw wastewater					
	Concentration, µg/L			Loading, c kg/d		ď	
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mear	

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF ETHION^{a,b}

	Treated wastewater					
	Concentration, µg/L Loading, ^C kg/d					
Industry	Minimum Maximum Mean Minimum Maximum Me	ean				

I.13.36-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

I.13.36-4

.

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR ETHION^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

REFERENCES

-

 Off-line Bibliographic Citation List Generated from the Toxicology Data Bank by MEDLARS II, National Library of Medicine's National Interactive Retrieval Service, Bethesda, Maryland, 11 June 1979. Part III, pp. 63-66.

.

.

Compound: Isoprene

Formula: H H | | C=C-C=CH₂ | | H CH₃

Alternate Names: 2-Methyl-1,3-butadiene

<u>CAS #: 78-79-5</u>

Physical, Chemical, and Biological Properties [1]

mol. wt.: 68.13 m.p., °C: ∿-120 b.p. (760 torr), °C: 34.1
vapor pressure (15.4°C), torr: 400
solubility in water (25°C), mg/L: Almost totally insoluble
log octanol/water partition coefficient: Not available
Henry's law constant: Not available
biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

INDUSTRIAL OCCURRENCE OF ISOPRENE^{a,b}

	Raw wastewater					
	Concer	ntration, μ	g/L	Loa	ading, ^C kg/	′d
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF ISOPRENE^{a, b}

	Treated wastewater					
	Concentration, µg	/L	Loa	ading, ^C kg/	d	
Industry	Minimum Maximum	Mean	Minimum	Maximum	Mean	

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

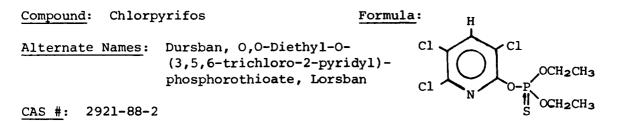
^bNA - not available; ND - not detected; BDL - below detection limit.

Syntheti		Actual	wastewater		
Removal range, %	nent process ^a	Average achievable conc., µg/L	Removal range,	Average achievable conc., µg/L	Volume III references, Section number

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR ISOPRENE^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.


^CAverage and maximum removals reported.

REFERENCES

-

 Off-line Bibliographic Citation List Generated from the Toxicology Data Bank by MEDLARS II, National Library of Medicine's National Interactive Retrieval Service, Bethesda, Maryland, 11 June 1979. Part III, pp. 59, 60.

-

Physical, Chemical, and Biological Properties [1]

mol. wt.: 350.6 m.p., °C: 41-42 b.p. (760 torr), °C: Not available
vapor pressure (25°C), torr: 1.8 x 10⁻⁵
solubility in water (35°C), mg/L: 2
log octanol/water partition coefficient: Not available
Henry's law constant: Not available
biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Raw wastewater Concentration, µg/L Loading,^C kg/d Industry Minimum Mean Minimum Mean I

INDUSTRIAL OCCURRENCE OF CHLORPYRIFOS^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

	Treated wastewater				
	Concentration, µg/L Loading, ^C kg/d				
Industry	Minimum Maximum Mean Minimum Maximum Mean				

INDUSTRIAL OCCURRENCE OF CHLORPYRIFOS^{a,b}

a_____

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

I.13.38-3

	Synthetic wastewa		Actual	wastewater	
Treatment process ^a	- ·	Average achievable conc., μg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section_numbers

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR CHLORPYRIFOS^{a,b}

^aSee Volume III for detailed information.

 $^{\rm b}$ NA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

-

 Off-line Bibliographic Citation List Generated from the Toxicology Data Bank by MEDLARS II, National Library of Medicine's National Interactive Retrieval Service, Bethesda, Maryland, 11 June 1979. Part III, pp. 74-76.

•

Compound: Dichlorvos

Alternate Names: 2,2-Dichlorovinyl-0,0-dimethyl phosphate

CAS #: 62-73-7

Physical, Chemical, and Biological Properties [1]

mol. wt.: 221 m.p., °C: Not available b.p. (0.05 torr), °C: 35
vapor pressure (20°C), torr: 1.2 x 10⁻²
solubility in water (20°C), mg/L: 10,000
log octanol/water partition coefficient: Not available
Henry's law constant: Not available
biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date: 8/13/79

I.13.39-1

INDUSTRIAL OCCURRENCE OF DICHLORVOS^{a,b}

		Raw wastewater						
	Concentration, µg/L			Loading, ^C kg/d				
	Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean	

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF DICHLORVOS^{a,b}

		Treated	d wastewate	r	
	Concentration	 , μg/L	Lo	ading, ^C kg/	d
Industry	Minimum Maximu	m Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

		Syntheti	c wastewater	Actual wastewater		
н •	Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers
13						
• 39-						

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR DICHLORVOS^{a,b}

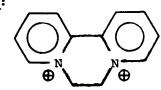
^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

.

-


 Ouellette, R. P., and J. A. King. Chemical Week Pesticides Register. McGraw-Hill Book Company, New York, New York, 1977. p. 178.

•

Compound: Diquat

Formula:

Alternate Names: Usually exists as Diquat dibromide

CAS #: 85-00-7 (Diquat dibromide)

Physical, Chemical, and Biological Properties of Disquat dibromide [1]

mol. wt.: 344.1 m.p., °C: 335-340 b.p. (760 torr), °C: Not available vapor pressure (25°C), torr: Not available solubility in water (20°C), mg/L: 700,000 log octanol/water partition coefficient: Not available Henry's law constant: Not available biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date: 8/13/79

I.13.40-1

INDUSTRIAL OCCURRENCE OF DIQUAT^{a,b}

			Raw w	astewater		. <u>.</u>
	Concer	ntration, μ	g/L	Lo	ading, ^C kg/	′d
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

INDUST	RIAL OCCURRENCE OF DIQUAT ^{a,b}	
	Treated	d wastewater
	Concentration, µg/L	Loading, ^C kg/d
Industry	Minimum Maximum Mean	Minimum Maximum Mear

I.13.40-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

	Synthetic wastewater		Actual wastewater			
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range,	Average achievable conc., µg/L	Volume III references, Section numbers	

						ab
POLLUTANT	REMOVABILITY/TREATABILITY	WASTEWATER	TREATMENT	ALTERNATIVE	FOR	DIQUAT

^aSee Volume III for detailed information.

- ^bNA Not available, ND not detected, BDL below detection limit.
- ^CAverage and maximum removals reported.

-

 Off-line Bibliographic Citation List Generated from the Toxicology Data Bank by MEDLARS II, National Library of Medicine's National Interactive Retrieval Service, Bethesda, Maryland, 11 June 1979. Part III, pp. 118, 119.

-

	Raw wastewater						
	Concentration, $\mu g/L$			Loading, c kg/d		′d	
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mea	

INDUSTRIAL OCCURRENCE OF DISULFOTON^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

Compound: Disulfoton Formula: CH3CH2O S-CH2-CH2-S-CH2CH2 Alternate Names: 0,0-Diethyl S-[2-CH3CH2O ethylthio)ethyl] phosphorodithioate CAS #: 298-04-4 Physical, Chemical, and Biological Properties [1] mol. wt.: 274.4 m.p., °C: >-25 b.p. (1.5 torr), °C: 132-133 vapor pressure (20°C), torr: 1.8 x 10⁻⁴ solubility in water (23°C), mg/L: 25 log octanol/water partition coefficient: Not available Henry's law constant: Not available biodegradability: Not available Probable Fate : Not available photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

,

Date: 8/13/79

I.13.41-1

INDUSTRIAL OCCURRENCE OF DISULFOTON^{a,b}

			Treated	wastewate	r	
	Concer	ntration, µ	g/L	Lo	ading, ^C kg/	d
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

	Syntheti	c wastewater	Actual		
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section number:
Treatment process	<u>0</u>	conc., µg/L	0	conc., µg/L	Section number

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR DISULFOTON^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

-

 Off-line Bibliographic Citation List Generated from the Toxicology Data Bank by MEDLARS II, National Library of Medicine's National Interactive Retrieval Service, Bethesda, Maryland, 11 June 1979. Part III, pp. 135-137.

•

N

Compound: Mevinpl	hos	Formula:	CH3Q I	CH3 0
Alternate Names:	Phosdrin, 2-Methoxycarbony] l-methylvinyl dimethyl phosphate	-	CH30	-C=CC-O-CH ₃ H
<u>CAS #</u> : 7786-34-7				-
Physical, Chemica	l, and Biological Properties	[1]		

mol. wt.: 224.2 m.p., °C: Not available b.p. (1 torr), °C: 106-108
vapor pressure (21°C), torr: 2.9 x 10³
solubility in water (25°C), mg/L: Miscible
log octanol/water partition coefficient: Not available
Henry's law constant: Not available
biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date: 8/13/79

I.13.42-1

INDUSTRIAL OCCURRENCE OF MEVINPHOS^{a, b}

			Raw w	astewater		
	Concer	ntration, μ	g/L	Loa	ading, ^C kg/	ď
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mea

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF MEVINPHOS^{a,b}

		Treated wastewater					
	Concent	tration, µ	g/L	Lo	ading, ^C kg/	d	
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean	

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

Removal Average Removal Average Volume III range, achievable range, achievable references,	range, ^C achievable range, ^C achievable references,	range, ^C achievable range, ^C achievable reference		Syntheti	c wastewater	Actual	wastewater	
Treatment process ^a % conc., μg/L % conc., μg/L Section number			Treatment process	С	achievable	Ċ	achievable	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR MEVINPHOS^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

.

-

 Off-line Bibliographic Citation List Generated from the Toxicology Data Bank by MEDLARS II, National Library of Medicine's National Interactive Retrieval Service, Bethesda, Maryland, 11 June 1979. Part III, pp. 43-45.

-

Compound: Mexacarbate

Formula:

CH3

CH3

H₃C

Ha

H

H

N-CH3

Ņ

Alternate Names: Zectran, 4-Dimethylamino-3,5-xylyl N-methylcarbamate

CAS #: 315-18-4

Physical, Chemical, and Biological Properties [1]

mol. wt.: 222.3 m.p., °C: 85 b.p. (760 torr), °C: Not available
vapor pressure (139°C), torr: <0.1
solubility in water (25°C), mg/L: Almost totally insoluble
log octanol/water partition coefficient: Not available
Henry's law constant: Not available
biodegradability: Not available</pre>

Probable Fate : Not available]

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date: 8/13/79

I.13.43-1

INDUSTRIAL OCCURRENCE OF MEXACARBATE^{a,b}

		Raw wastewater				
	Concentration, µg/L			Loading, c kg/d		
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mear

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF MEXACARBATE^{a,b}

	Treated wastewater					
	Concer	ntration, µ	g/L	Lo	ading, ^C kg/	′d
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

		Syntheti	c wastewater	Actual	wastewater	
н.	Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, ^C %	Average achievable conc., µg/L	Volume III references, Section numbers
μ ω			· _ · · · · · · · · · · · · · · · · · ·			
4						
Ψ						
4						

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR MEXACARBATE^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

 Off-line Bibliographic Citation List Generated from the Toxicology Data Bank by MEDLARS II, National Library of Medicine's National Interactive Retrieval Service, Bethesda, Maryland, 11 June 1979. Part III, pp. 29, 30.

-

Compound: Trichl	orfon	Formula:	H₃C-Q 0 OH
Alternate Names:	Dylox, Dimethyl(2,2,2- trichloro-1-hydroxyethy) phosphonate		Р-с-сс1 ₃ н ₃ с-о І н

CAS #: 52-68-6

Physical, Chemical, and Biological Properties [1]

mol. wt.: 257 m.p., °C: 81-82 b.p. (760 torr), °C: Not available vapor pressure (25°C), torr: Not available solubility in water (25°C), mg/L: 120,000 log octanol/water partition coefficient: Not available Henry's law constant: Not available biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date: 8/13/79

I.13.44-1

INDUSTRIAL OCCURRENCE OF TRICHLORFON^{a, b}

		Raw wastewater					
	Concentration, µg/L			Loa	Loading, ^C kg/d		
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean	

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF TRICHLORFON^{a, b}

		Treated wastewater				
	Concen	tration, µ	g/L	Lo	ading, ^C kg/	'd
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR TRICHLORFON^{a,b}

	Syntheti	Synthetic wastewater		wastewater			
_	Removal range,	Average achievable	Removal range,	Average achievable	Volume III references,		
Treatment process ^a	0,0	conc., µg/L	0,0	conc., µg/L	Section numbers		

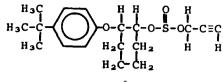
^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

•

-


 Meister Publishing Co. 1976 Farm Chemicals Handbook. Willoughby, Ohio, 1976. p. D 103.

-

Compound: Propargite

Formula:

Alternate Names: Omite, 2-(p-tert-Butylphenoxy) cyclohexyl-2-proponyl sulfite

CAS #: 2312-35-8

Physical, Chemical, and Biological Properties [1]

mol. wt.: 350 m.p., °C: Not available b.p. (760 torr), °C: Not available vapor pressure (25°C), torr: Not available solubility in water (25°C), mg/L: Insoluble log octanol/water partition coefficient: Not available Henry's law constant: Not available biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data:

Date: 8/13/79

_I.13.45-1

INDUSTRIAL OCCURRENCE OF PROPARGITE^{a, b}

			Raw w	astewater		
	Concer	ntration, μ	lg/L	LOa	ading, ^C kg/	ď
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF PROPARGITE^{a,b}

	Treated wastewater					
	Concen	itration, µ	g/L	Lo	ading, ^C kg/	d
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

I.13.45-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

1.13.45-4

Synthetic	Sy	c wastewater	Actual	wastewater	
		Average achievable conc., µg/L	Removal range,	Average achievable conc., µg/L	Volume III references, Section number

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR PROPARGITE^{a,b}

^aSee Volume III for detailed information.

 b NA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

٠

-

 Ouellette, R. P., and J. A. King. Chemical Week Pesticides Register. McGraw-Hill Book Company, New York, New York, 1977. p. 242.

•

Compound: Carbon disulfide

Formula: S=C=S

-

Alternate Names: Dithiocarbonic anhydride

CAS #: 75-15-0

Physical, Chemical, and Biological Properties [1]

mol. wt.: 76.14 m.p., °C: -111 b.p. (760 torr), °C: 46.3
vapor pressure (25°C), torr: 360
solubility in water (20°C), mg/L: 2,940
log octanol/water partition coefficient: Not available
Henry's law constant: Not available
biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date: 8/13/79

I.13.46-1

INDUSTRIAL OCCURRENCE OF CARBON DISULFIDE^{a,b}

	Raw wastewater				
	Concentration, $\mu g/L$ Loading, kg/d				
Industry	Minimum Maximum Mean Minimum Maximum Mea				

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF CARBON DISULFIDE^{a,b}

Ψ.		Treated wastewater							
	Industry	Concentration, µg/L Load			ading, ^C kg/	cg/d			
		Minimum	Maximum	Mean	Minimum	Maximum	Mean		
н •									
13									
• 4					-				
6									

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

POLLUTANT	REMOVABILITY/TREATABI	LITY WASTEWATER	TREATMENT	ALTERNATIVE	FOR CAR	BON DISULFIDE	a,b

	Syntheti	.c wastewater	Actual	wastewater	
	Removal range,	Average achievable	Removal range,	Average achievable	Volume III references,
Treatment process ^a	, ange ,	conc., µg/L	2 unge ,	conc., µg/L	Section numbers

1.13.46-4

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

_

 Off-line Bibliographic Citation List Generated from the Toxicology Data Bank by MEDLARS II, National Library of Medicine's National Interactive Retrieval Service, Bethesda, Maryland, 11 June 1979. Part III, pp. 109, 110.

•

•

Compound: Acetaldehyde Formula: CH3-C Alternate Names: Ethanal, Ethyl aldehyde CAS #: 75-07-0 Physical, Chemical, and Biological Properties [1, 2] mol. wt.: 44.05 m.p., °C: -124 b.p. (760 torr), °C: 21 vapor pressure (20°C), torr: 740 solubility in water (25°C), mg/L: Miscible log octanol/water partition coefficient: Not available Henry's law constant: Not available biodegradability: 93% acetaldehyde removal (measured as BOD) obtained in 5-day static activated sludge test Probable Fate: Not available photolysis: oxidation:

hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date: 8/13/79

I.14.1-1

			a.h
INDUSTRIAL	OCCURRENCE	OF	ACETALDEHYDE ^{a,b}

			Raw w	astewater		
	Conce	ntration, μ	g/L	Loa	ading, ^C kg/	ď
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

I.14.1-2

			ah
INDUSTRIAL	OCCURRENCE	OF	ACETALDEHYDE ^{a,b}

					Treated wastewater								
			Concentration, µg/L Loading,					oading, ^C kg	/d				
	Indust	try			<u>M</u> :	nimum		imum		an	Minimum	Maximum	Mean
						-							
	·····												
Information	contained :	in this	table	was	obtained	from	Volume	II	of the	Trea	atability	Manual.	

Thiormation contained in this table was obtained from volume if of the freatability

^bNA - not available; ND - not detected; BDL - below detection limit.

	Syntheti	c wastewater	Actual	wastewater		
Treatment process ^a	Removal range, %	Average achievable conc., μg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
Anaerobic lagoons			58-67	28	III.5.3	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR ACETALDEHYDE^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

- Off-line Bibliographic Citation List Generated from the Toxicology Data Bank by MEDLARS II, National Library of Medicine's National Interactive Retrieval Service, Bethesda, Maryland, 11 June 1979. Part III, pp. 145-147.
- 2. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. pp. 57-59.

.

Compound: Acetic acid Formula: OH CHa Ethanoic acid, Methane Alternate Names: carboxylic acid, Vinegar acid CAS #: 64-19-7 Physical, Chemical, and Biological Properties [1] mol. wt.: 60.05 m.p., °C: 16.7 b.p. (760 torr), °C: 118 vapor pressure (20°C), torr: 11.4 solubility in water (20°C), mg/L: 38 log octanol/water partition coefficient: Not available Henry's law constant: Not available biodegradability: 50% theoretical oxidation of 500 ppm acetic acid by phenol acclimated sludge after 12 hr aeration Probable Fate: Not available photolysis: oxidation: hydrolysis: volatilization: sorption:

biological processes:
other reactions/interactions:

Carbon Adsorption Data [2]

pH: 4.0 type of carbon: Filtrasorb-400 adsorbability: Not available

Date: 8/13/79

I.14.2-1

I.14.2-2

INDUSTRIAL OCCURRENCE OF ACETIC ACID^{a, b}

			Raw w	astewater		
	Conce	ntration, μ	g/L	Loa	ading, ^C kg/	′d
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mea
Industry	Minimum	Maximum	Mean	Minimum	Maximum	M

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

				ah
INDUSTRIAL	OCCURRENCE	OF	ACETIC	ACID"

	Treated wastewater
	Concentration, µg/L Loading, ^C kg/d
Industry	Minimum Maximum Mean Minimum Maximum Me

I.14.2-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

	Syntheti	c wastewater	Actual	wastewater	
Treatment process	Removal range, %	Average achievable conc., μg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers
Anaerobic lagoons			0 ^d	_d	III.5.3

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR ACETIC ACID^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

d Actual data indicate negative removal.

-

- 1. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. p. 74.
- Report on visit of D. Stephan and W. Cawley, U.S. Environmental Protection Agency, to Calgon Environmental Systems Division, Calgon Corporation, Pittsburgh, Pennsylvania, 9 April 1979. 132 pp.

•

Compound: Allyl alcohol

Formula: H H H C=C-C-OH

Alternate Names: 2-Propenol

CAS #: 107-18-6

Physical, Chemical, and Biological Properties [1, 2]

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data:

Date: 8/13/79

INDUSTRIAL OCCURRENCE OF ALLYL ALCOHOL^{a,b}

			Raw w	astewater		
	Concer	ntration, μ	g/L	Loa	ading, c kg/	d
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

/

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF ALLYL ALCOHOL^{a, b}

	Treated wastewater					
	Concer	ntration, µ	g/L	Lo	ading, ^C kg/	d
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

I.14.3-4

Synthetic wastewater Actual wastew	/ater
range, ^C achievable range, ^C achie	erage Volume III evable references, , µg/L Section number

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR ALLYL ALCOHOL^{a, b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

_

- Off-line Bibliographic Citation List Generated from the Toxicology Data Bank by MEDLARS II, National Library of Medicine's National Interactive Retrieval Service, Bethesda, Maryland, 11 June 1979. Part III, pp. 94, 95.
- 2. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. pp. 83-85.

.

<u>Compound</u> : Amyl a	cetate	Formula:	О СН з
<u>Alternate Names</u> :	Isoamyl acetate, Acetic acid 3- methylbutyl ester		H ₃ C-C-CH ₂ CH ₂ -C-н СН ₃
<u>CAS #</u> : 123-92-2			
Physical, Chemica	l, and Biological Prope	rties [1]	

mol. wt.: 130.1 m.p., °C: -78.5 b.p. (760 torr), °C: 142
vapor pressure (25°C), torr: 6
solubility in water (25°C), mg/L: 2,500
log octanol/water partition coefficient: Not available
Henry's law constant: Not available
biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

I.14.4-1

INDUSTRIAL OCCURRENCE OF AMYL ACETATE^{a,b}

		-		Raw w	astewater		
		Concer	ntration, μ	g/L	Loa	ading, ^C kg/	ď
Indu	stry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF AMYL ACETATE	INDUSTRIAL	OCCURRENCE	OF	AMYL	ACETATE ^a	b
---------------------------------------	------------	------------	----	------	----------------------	---

	Treated wastewater					
	Concen	itration, µ	g/L	Lo	ading, ^C kg/	d
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR AMYL ACETATE^{A, b}

	Synthetic wastewate	Actual wastewater	
Treatment process ^a	Removal Average	Removal Average	Volume III
	range, achievable	range, achievable	references,
	% conc.,µg/	% conc., µg/L	Section numbers

^aSee Volume III for detailed information.

bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

REFERENCES

-

 Off-line Bibliographic Citation List Generated from the Toxicology Data Bank by MEDLARS II, National Library of Medicine's National Interactive Retrieval Service, Bethesda, Maryland, 11 June 1979. Part III, pp. 1, 2.

.

Compound:Butyl acetateFormula:O
H3C-C-O-CH2CH2CH2CH3Alternate Names:Acetic acid, butyl
ester;Butyl ethanoateCAS #:123-86-4-Physical, Chemical, and Biological Properties [1, 2]mol. wt.:116.2m.p., °C: -77.9b.p. (760 torr), °C: 125-126vapor pressure (25°C), torr:15
solubility in water (25°C), mg/L:Slight

log octanol/water partition coefficient: Not available
Henry's law constant: Not available

biodegradability: 7% of theoretical oxygen demand removed in 5-day BOD test

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date: 8/13/79

I.14.5-1

INDUSTRIAL OCCURRENCE OF BUTYL ACETATE^{a, b}

		Raw wastewater						
	Concentration, $\mu g/$	L Loading, ^C kg/d						
Industry	Minimum Maximum	Mean Minimum Maximum Mean						

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

				ab
INDUSTRIAL	OCCURRENCE	OF	BUTYL	ACETATE ^{a, b}

		astewater					
	Concer	Concentration, µg/L			Loading, ^C kg/d		
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean	

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

<u>Synthetic</u> wastewater Actual wastewater
RemovalAverageRemovalAverageVolume Irange,chievablerange,chievablereferenceTreatment process%conc., µg/L%conc., µg/L

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR BUTYL ACETATE^{a,b}

^aSee Volume III for detailed information.

bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

REFERENCES

_

- Off-line Bibliographic Citation List Generated from the Toxicology Data Bank by MEDLARS II, National Library of Medicine's National Interactive Retrieval Service, Bethesda, Maryland, 11 June 1979. Part III, pp. 164, 165.
- 2. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. pp. 141-143.

.

Compound: Butyric acid Formula: OH Alternate Names: Butanoic acid, Ethylacetic acid, Propylformic acid CAS #: 107-92-6 Physical, Chemical, and Biological Properties [1, 2] mol. wt.: 88.12 m.p., °C: -7.9 b.p. (760 torr), °C: 164 vapor pressure (20°C), torr: 0.84 solubility in water (25°C), mg/L: Soluble in all proportions log octanol/water partition coefficient: Not available Henry's law constant: Not available biodegradability: 25% of theoretical oxygen demand removed in 12 hr static activated sludge test Probable Fate: Not available photolysis: oxidation: hydrolysis: volatilization: sorption:

.

Carbon Adsorption Data: Not available

other reactions/interactions:

biological processes:

INDUSTRIAL OCCURRENCE OF BUTYRIC ACID^{a,b}

Raw wastewater						
Concer	Loading, c kg/d					
Minimum	Maximum	Mean	Minimum	Maximum	Mear	
			Concentration, µg/L	Concentration, µg/L Loa	Concentration, µg/L Loading, ^C kg/	

I.14.6-2

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF BUTYRIC ACID^{a,b}

	Treated wastewater						
	Concentr	Loading, ^C kg/d					
Industry			Mean	Minimum	Maximum	Mear	
						-	

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

	Syntheti	c wastewater	Actual	wastewater	
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, ^C %	Average achievable conc., µg/L	Volume III references, Section numbers
Anaerobic lagoons			0 ^d	_d	111.5.3

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

Actual data indicate negative removal.

REFERENCES

_

- 1. Off-line Bibliographic Citation List Generated from the Toxicology Data Bank by MEDLARS II, National Library of Medicine's National Interactive Retrieval Service, Bethesda, Maryland, 11 June 1979. Part III, p. 39.
- 2. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. pp. 158.

.

Compound: Formaldehyde

Formula:

Alternate Names: Methanal, Formalin, Oxomethane

CAS #: 50-00-0

Physical, Chemical, and Biological Properties [1]

mol. wt.: 30.0 m.p., °C: -118 to -92 b.p. (760 torr), °C: -21 to -19
vapor pressure (-88°C), torr: 10
solubility in water (25°C), mg/L: Not available
log octanol/water partition coefficient: Not available
Henry's law constant: Not available
biodegradability: 60% of theoretical oxygen demand removed in 5-day BOD test

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

			a.b
INDUSTRIAL	OCCURRENCE	\mathbf{OF}	FORMALDEHYDE ^{a, b}

			Raw w	astewater			
	Concent	Concentration, µg/L			Loading, ^C kg/d		
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean	

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

INDUSTRIAL OCCURRENCE OF FORMALDEHYDE^{a, b}

		Treated wastewater					
	Concer	tration, µ	g/L	Lo	ading, ^C kg/	d	
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean	

Date:

12/5/79

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

	Synthetic wastewater Actual wastewater		Synthetic wastewater Actual wastewater		
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR FORMALDEHYDE^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

REFERENCES

-

1. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. p. 342.

-

.

<u>Compound</u>: Formic acid <u>Formula</u>: <u>Alternate Names</u>: Methanoic acid, Hydrogen carboxylic acid, Formylic

CAS #: 64-18-6

Physical, Chemical, and Biological Properties [1, 2]

aciđ

mol. wt.: 46.03 m.p., °C: 8.4 b.p. (760 torr), °C: 101
vapor pressure (24°C), torr: 40
solubility in water (25°C), mg/L: Soluble in all proportions
log octanol/water partition coefficient: Not available
Henry's law constant: Not available
biodegradability: 70% of theoretical oxygen demand removed in 24 hr
static activated sludge test

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

INDUSTRIAL OCCURRENCE OF FORMIC ACID^{a, b}

	Raw wastewater					
	Concer	ntration, μ	g/L	Loading, c kg/d		
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF FORMIC ACID^{a,b}

	Tre	Treated wastewater				
	Concentration, µg	/L	Loading, ^C kg/d		d	
Industry	Minimum Maximum	Mean	Minimum	Maximum	Mean	

I.14.8-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

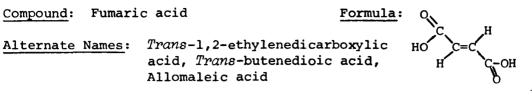
^bNA - not available; ND - not detected; BDL - below detection limit.

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR FORMIC ACID^{a, b}

	Synthetic wastewater		Actual wastewater			
	Removal range,	Average achievable	Removal range,	Average achievable	Volume III references,	
Treatment process ^a	00	conc., µg/L	20	conc., µg/L	Section number:	

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.


^CAverage and maximum removals reported.

REFERENCES

_

- Off-line Bibliographic Citation List Generated from the Toxicology Data Bank by MEDLARS II, National Library of Medicine's National Interactive Retrieval Service, Bethesda, Maryland, 11 June 1979. Part III, pp. 11-13.
- 2. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. p. 346.

.

CAS #: 110-17-8

Physical, Chemical, and Biological Properties [1, 2]

mol. wt.: 116.1 m.p., °C: 300 to 302 b.p. (1.7 torr), °C: Sublimes at 165
vapor pressure (25°C), torr: Not available
solubility in water (25°C), mg/L: 7,000
log octanol/water partition coefficient: Not available
Henry's law constant: Not available
biodegradability: 1.7% of theoretical oxygen demand removed after 24 hr
static activated sludge test

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

I.14.9-2

INDUSTRIAL OCCURRENCE OF FUMARIC ACID^{a,b}

	Raw wastewater						
	Concentration, µg/L Loading					.ng, c kg/d	
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mear	
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Me	

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

b NA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF FUMARIC ACID^{a,b}

	Treated wastewater					
	Concer	ntration, µ	g/L	Lo	Loading, ^C kg/d	
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

Date:

12/5/79

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

I.14.9-4

	Synthetic wastewater		Actual wastewater		
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal ran ge , %	Average achievable conc., µg/L	Volume III references, Section number
Treatment process	%	conc., µg/L	%	conc., µg/L	Section numbers

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR FUMARIC ACID^{a, b}

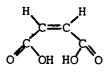
^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

REFERENCES

-


- 1. Off-line Bibliographic Citation List Generated from the Toxicology Data Bank by MEDLARS II, National Library of Medicine's National Interactive Retrieval Service, Bethesda, Maryland, 11 June 1979. Part III, p. 52.
- 2. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977.

.

Compound: Maleic acid

Formula:

Alternate Names: Cis-1,2-ethylenedicarboxylic acid, Toxilic acid, Cis-butenedioic acid

CAS #: 110-16-7

Physical, Chemical, and Biological Properties [1, 2]

mol. wt.: ll6.1 m.p., °C: 130.5 b.p. (760 torr), °C: Decomposes at 135
vapor pressure (25°C), torr: Not available
solubility in water (25°C), mg/L: Freely soluble
log octanol/water partition coefficient: Not available
Henry's law constant: Not available
biodegradability: 4.5% of theoretical oxygen demand removed after 12 hr
static activated sludge test

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

I.14.10-1

INDUSTRIAL OCCURRENCE OF MALEIC ACID^{a,b}

		Raw wastewater					
	Concentration, µg/L			Loading, kg/d			
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean	

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF MALEIC ACID^{a,b}

	Treated wastewater Concentration, µg/L Loadin			astewater	- 	
				ading, ^C kg/	d	
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

	•		a h
POLLUTANT REMOVABILITY/TREATABILITY	WASTEWATER TREATMEN	T ALTERNATIVE FO	R MALEIC ACID",

<u>,</u>	Synthetic wastewater		Actual wastewater			
Treatment process ^a	Removal	Average	Removal	Average	Volume III	
	range,	achievable	range,	achievable	references,	
	%	conc., µg/L	%	conc., µg/L	Section numbers	

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

REFERENCES

_

- Off-line Bibliographic Citation List Generated from the Toxicology Data Bank by MEDLARS II, National Library of Medicine's National Interactive Retrieval Service, Bethesda, Maryland, 11 June 1979. Part III, pp. 56, 57.
- 2. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. p. 420.

.

Compound: Methyl methacrylate

Formula: CH2==C-C-O-CH3 | || CH3 O

Alternate Names: 2-Methyl-propenoic acid, methyl ester

CAS #: 80-62-6

Physical, Chemical, and Biological Properties [1, 2]

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

I.14.11-1

				a.h
INDUSTRIAL	OCCURRENCE	\mathbf{OF}	METHYL	METHACRYLATE ^{a,b}

			Raw w	astewater		
	Concer	ntration, μ	lg/L	Loa	ading, c kg/	đ
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF METHYL METHACRYLATE^{a,b}

		T	reated w	astewater		
	Concen	ntration, µ	g/L	Lo	Loading, ^C kg/d	
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

Removal Average Removal Average Volume I			<u>Synthetic wastewater</u>			
	reatment process ^a	Ċ	achievable	Ć	achievable	Volume III references, Section numbe

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR METHYL METHACRYLATE^{a,b}

^aSee Volume III for detailed information.

- ^bNA Not available, ND not detected, BDL below detection limit.
- ^CAverage and maximum removals reported.

REFERENCES

-

- CRC Press, Inc. CRC Handbook of Chemistry and Physics, 58th Edition. Cleveland, Ohio, 1977. p. C-465.
- 2. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. p. 464.

.

Compound: Propionic acid

Formula: CH3CH2C

Alternate Names: Propanoic acid

CAS #: 79-09-4

Physical, Chemical, and Biological Properties [1, 2]

mol. wt.: 74.08 m.p., °C: -20.8 b.p. (760 torr), °C: 141
vapor pressure (25°C), torr: Not available
solubility in water (25°C), mg/L: Soluble in all proportions
log octanol/water partition coefficient: Not available
Henry's law constant: Not available
biodegradability: 40% of theoretical oxygen demand removed after 24 hr
static activated sludge test

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date: 8/13/79

I.14.12-1

INDUSTRIAL OCCURRENCE OF PROPIONIC ACID^{a, b}

			Raw w	astewater		
	Conce	Concentration, µg/L				d
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL	OCCURRENCE	OF	PROPIONIC	ACID ^{a,b}
THEODINING	OCCONTRACT	01	TROLIONIC	ACTD

		T	'reated w	astewater		
	Concer	ntration, µ	Ig/L	Loading, ^C kg/d		d
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

	Syntheti	c wastewater	Actual	wastewater	
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section number
Anaerobic lagoons			0 ^d	_d	111.5.3

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR PROPIONIC ACID^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dActual data indicate negative removal.

REFERENCES

-

- CRC Press, Inc. CRC Handbook of Chemistry and Physics, 58th Edition. Cleveland, Ohio, 1977. p. C-451.
- 2. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. p. 548.

Date: 8/13/79

.

I.14.12-5

Compound: Vinyl acetate Formula: CH3C-O=CH=CH2 Alternate Names: Acetic acid, ethenyl ester; 1-Acetoxyethylene CAS #: 108-05-4 Physical, Chemical, and Biological Properties [1, 2] mol. wt.: 86.10 m.p., °C: -93.2 b.p. (760 torr), °C: 72.2-72.3 vapor pressure (21°C), torr: 100 solubility in water (20°C), mg/L: 20,000 log octanol/water partition coefficient: Not available Henry's law constant: Not available biodegradability: 42% theoretical oxidation of 10 mg/L vinyl acetate observed in 10-day static activated sludge test Probable Fate: Not available photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes:

cther reactions/interactions:

Carbon Adsorption Data: Not available

				ah
INDUSTRIAL	OCCURRENCE	OF	VINYL	ACETATE ^{a,b}

	Raw wastewater						
	Concentration, $\mu g/L$			Loading, ^C kg/d		ď	
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean	

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF VINYL ACETATE^{a,b}

			Treated	wastewate	r	
	Concer	Concentration, µg/L Loading, ^C k			ading, ^C kg/	'd
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

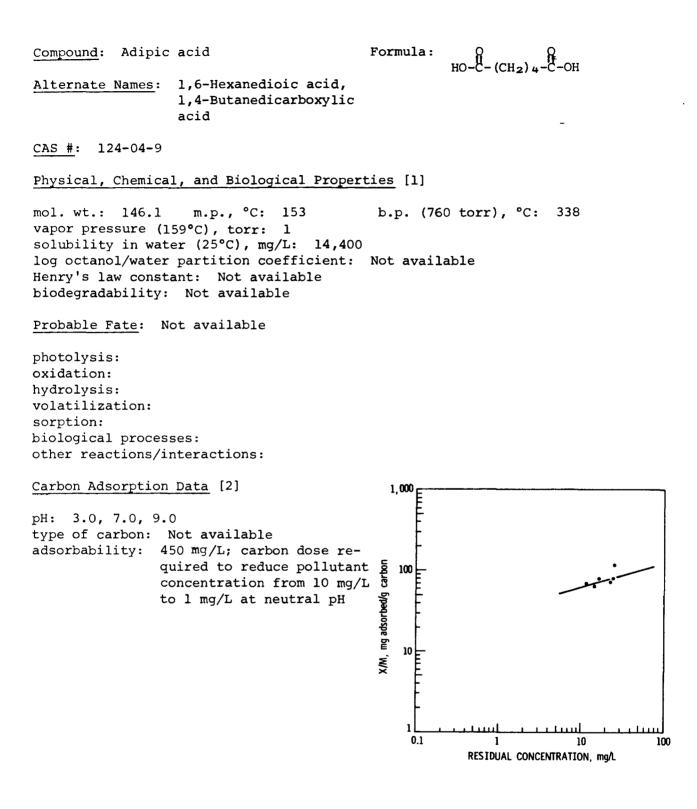
^bNA - not available; ND - not detected; BDL - below detection limit.

		Synthetic wastewater	Actual wastewater	
H •	Treatment process	Removal Average range, achievable % conc., µg/L	Removal Average range, achievable % conc.,µg/L	Volume III references, Section numbers
14.1				
ພ 1 42				

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR VINYL ACETATE^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.


^CAverage and maximum removals reported.

REFERENCES

_

- Off-line Bibliographic Citation List Generated from the Toxicology Data Bank by MEDLARS II, National Library of Medicine's National Interactive Retrieval Service, Bethesda, Maryland, 11 June 1979. Part III, pp. 158, 159.
- 2. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. p. 634.

.

Date: 8/13/79

I.14.14-1

INDUSTRIAL OCCURRENCE OF ADIPIC ACID^{a, b}

	Raw wastewater					
	Concentration, µg/L			Loa	ading, ^C kg/	d
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

		Treated wastewater				
	Concen	tration, µ	Ig/L	Loa	ading, ^C kg/	d
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

1.14.14-4

Removal Average Removal Average Volume III	ater Actual	Synthetic wastewater		
Treatment process ^a % conc., µg/L % conc., µg/L Section number	ble range, ^C	achievable	C	Treatment process ^a

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR ADIPIC ACID^{a,b}

^aSee Volume III for detailed information.

- ^bNA Not available, ND not detected, BDL below detection limit.
- ^CAverage and maximum removals reported.

REFERENCES

.

-

- Off-line Bibliographic Citation List Generated from the Toxicology Data Bank by MEDLARS II, National Library of Medicine's National Interactive Retrieval Service, Bethesda, Maryland, 11 June 1979. Part III, pp. 104, 105.
- 2. Dobbs, R. A., R. J. Middendorf, and J. M. Cohen. Carbon Adsorption Isotherms for Toxic Organics. U.S. Environmental Protection Agency, Cincinnati, Ohio, 1978.

.

,

Compound: Crotonaldehyde

Formula: CH3CH=CHC

_

Alternate Names: 2-Butenal

CAS #: 123-73-9

Physical, Chemical, and Biological Properties [1, 2]

mol. wt.: 70.09 m.p., °C: -74 b.p. (760 torr), °C: 104-105
vapor pressure (25°C), torr: Not available
solubility in water (25°C), mg/L: Slight
log octanol/water partition coefficient: Not available
Henry's law constant: Not available
biodegradability: 37% of theoretical oxygen demand removed in 5-day BOD test

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

INDUSTRIAL OCCURRENCE OF CROTONALDEHYDE^{a, b}

		Raw wastewater				
	Concer	$tration, \mu$	g/L	Loading, c kg/d		
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF CROTONALDEHYDE^{a, b}

	Treated wastewater					
	Concer	ntration, µ	g/L	Loading, ^C kg/d		
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

I.14.15-4

	Syntheti	c wastewater	Actual	wastewater		
Treatment process	Removal range, %	Removal Average Removal range, achievable range, ac		Average achievable conc., µg/L	Volume III references, Section numbers	

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

REFERENCES

.

_

- CRC Press, Inc. CRC Handbook of Chemistry and Physics, 58th Edition. Cleveland, Ohio, 1977. p. C-229.
- 2. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. p. 201.

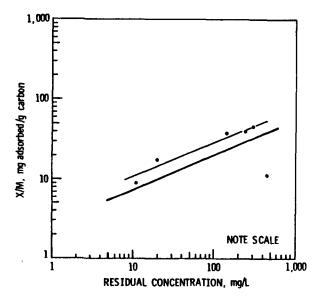
Date: 8/13/79

.

I.14.15-5

Compound:AcroleinFormula:H2C=CH-C-HAlternate Names:Aqualin, Acrylaldehyde,
2-Propenal-CAS #:107-02-8-

Physical, Chemical, and Biological Properties [1]


mol. wt.: 56.1 m.p., °C: -87.7 b.p. (760 torr), °C: 52.5
vapor pressure (20°C), torr: 220
solubility in water (20°C), mg/L: 671
log octanol/water partition coefficient: Not available
Henry's law constant: Not available
biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data [2]

pH: Not available Type of carbon: Filtrasorb - 300 Absorbability: Not available

Date: 8/13/79

I.14.16-1

INDUSTRIAL	OCCURRENCE	OF	ACROLEIN ^{a, b}

		Raw wastewater				
	Concentration,	µg/L	Lo	ading, ^C kg/	′d	
Industry	Minimum Maximum	Mean	Minimum	Maximum	Mean	

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF ACROLEIN^{a,b}

		T	reated w	astewater		
	Concen	Concentration, µg/L			ading, ^C kg/	d
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

		Synthetic wastewater		Actual	wastewater		
Treatment	process ^a	Removal range, %	Average achievable conc., μg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
Gas flotation with (alum, polymer)	chemical addition			0 ^{d,e}	_e	III.4.5	
Filtration				>86 ^d	<100 ^d	III.4 .6	
Powdered activated	carbon adsorption			30 ^d	700,000 ^d	III.6.2	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR ACROLEIN^{a, b}

н
٠
ш
4
•
Ч
δ
1
4

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

^eActual data indicate negative removal.

_

- 1. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. p. 74.
- 2. Report on visit of D. Stephan and W. Cawley, U.S. Environmental Protection Agency, to Calgon Environmental Systems Division, Calgon Corporation, Pittsburgh, Pennsylvania, 9 April 1979. 132 pp.

.

Compound:FurfuralFormula:Alternate Names:Furfurole, 2-Furancarbonyl,
2-Furaldehyde, Fural,
Furfuraldehyde, FuroleC

CAS #: 98-01-1

Physical, Chemical, and Biological Properties [1-4]

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

I.14.17-2

INDUSTRIAL OCCURRENCE OF FURFURAL^{a,b}

Raw wastewater						
Concentration, µg/L			Loading, ^C kg/d			
Minimum	Maximum	Mean	Minimum	Maximum	Mear	
-						

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF FURFURAL^{a,b}

		l	reated w	astewater		···.
	Concen	tration, µ	ıg/L	Lo	ading, ^C kg/	d
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

		Syntheti	c wastewater	Actual	wastewater	- · · · · · · · · · · · · · · · · · · ·
-1	Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers
>						
ר נ						

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR FURFURAL^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

- CRC Press, Inc. CRC Handbook of Chemistry and Physics, 58th Edition. Cleveland, Ohio, 1977. p. C-314.
- 2. Jordan, T. E. Vapor Pressure of Organic Compounds. Interscience Publishers, Inc., New York, New York, 1954. p. 104.
- 3. Pitter, P. Determination of Biological Degradability of Organic Substances. Water Research, 10:1-5, 1976.
- 4. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. p. 349.

•

Compound: Propylene oxide Formula: CH3CH-CH2 Alternate Names: 1,2-Epoxy-propane, Methyloxiron CAS #: 75-56-9 Physical, Chemical, and Biological Properties [1-3] mol. wt.: 58.08 m.p., °C: -104 b.p. (760 torr), °C: 34.3 vapor pressure (25°C), torr: ~530 solubility in water, mg/L: 650,000 at 30°C; 405,000 at 20°C log octanol/water partition coefficient: Not available Henry's law constant: Not available biodegradability: 75% propylene oxide removal (measured as BOD removal) obtained in 5-day static activated sludge test on a 333 mg/L solution Probable Fate: Not available photolysis: oxidation: hydrolysis: volatilization: sorption:

biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date: 8/13/79

I.14.18-1

INDUSTRIAL OCCURRENCE OF PROPYLENE OXIDE^{a,b}

	······································	Raw wastewater				
	Concer	ntration, μ	g/L	Lo	ading, ^C kg/	'd
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF PROPYLENE OXIDE^{a,b}

		T	reated w	vastewater		
	Concer	ntration, µ	g/L	Lo	ading, ^c kg/	'd
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

Synthe	Synthetic wastewater		wastewater			
	C	emoval ange,	Average achievable conc., µg/L	Volume III references, Section number		

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR PROPYLENE OXIDE^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

- 1. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. p. 544.
- 2. CRC Press, Inc. CRC Handbook of Chemistry and Physics, 58th Edition. Cleveland, Ohio, 1977. p. C-448.
- 3. Jordan, T. E. Vapor Pressure of Organic Compounds. Interscience Publishers, Inc., New York, New York, 1954. p. 118, plate 2.
- 4. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. p. 544.

Date: 8/13/79

-

I.14.18-5

Compound:	Methyl	mercaptan	Formula:	н I
Alternate	Names:		Mercaptomethane, drate, Thiomethyl	н-с-s-н 1 н

<u>CAS #</u>: 74-93-1

Physical, Chemical, and Biological Properties [1]

mol. wt.: 48.10 m.p., °C: -123 b.p. (760 torr), °C: 5.95
vapor pressure (25°C), torr: Not available
solubility in water (20°C), mg/L: 23,330
log octanol/water partition coefficient: Not available
Henry's law constant: Not available
biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date: 8/13/79

I.15.1-1

•

INDUSTRIAL OCCURRENCE OF METHYL MERCAPTAN^{a,b}

			Raw w	astewater		
	Concer	ntration, μ	g/L	Loa	ading, ^C kg/	ď
Industry	Minimum			Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

bNA - not available; ND - not detected; BDL - below detection limit.

1	INDUSTRIAL OCCURRE	ENCE OF METHYL MERCAPTAN ^{a,b}	
		Treated wa	stewater
		Concentration, µg/L	Loading, ^C kg/d

Minimum

Maximum

Minimum

Mean

Maximum

Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

Industry

I.15.1-4

		c wastewater		wastewater	
	Removal range,	Average achievable	Removal range,	Average achievable	Volume III references,
Treatment process ^a	010	conc., µg/L	0/0	conc., µg/L	Section number

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR METHYL MERCAPTAN^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

_

 Off-line Bibliographic Citation List Generated from the Toxicology Data Bank by MEDLARS II, National Library of Medicine's National Interactive Retrieval Service, Bethesda, Maryland, 11 June 1979. Part III, pp. 130, 131.

.

<u>Compound</u>: Dodecyl benzenesulfonic acid <u>Formula</u>: <u>Alternate Names</u>: Benzenesulfonic acid, dodecyl ester; Dodecylbenzenesulfonate <u>CAS #</u>: 1886-81-3 -<u>Physical, Chemical, and Biological Properties</u> [1, 2]

mol. wt.: 326.5 m.p., °C: Not available b.p. (760 torr), °C: Not available vapor pressure (25°C), torr: Not available solubility in water (25°C), mg/L: Not available log octanol/water partition coefficient: Not available Henry's law constant: Not available biodegradability: 99% removal (measured as COD removal) obtained at 20°C in activated sludge as a rate of ll mg COD/g dry innoculum/hr

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date: 8/13/79

I.15.2-1

I.15.2-2

INDUSTRIAL OCCURRENCE OF DODECYL BENZENE SULFONIC ACID^{a, b}

		Raw wastewater						
Industry	Concer	ntration, μ	g/L	Loa	ading, ^C kg/	'a		
	Minimum	Maximum	Mean	Minimum	Maximum	Mear		
		Maximum	Mean	MITTINUM	Max Illulli	Mea		
					-			
	Industry			<u>Concentration, µg/L</u> Industry Minimum Maximum Mean		Concentration, µg/L Loading, kg/		

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

b NA - not available; ND - not detected; BDL - below detection limit.

TNDUSTRIAL	OCCURRENCE	OF	DODECYL.	BENZENE	SULFONTC	ACTD ^{a,b}
INDUDINING	occontrained	01	DODUCID	DENGENIC	DOTI ONLO	IICTD

		Treated wastewater							
		Concentration, $\mu g/L$			Loading, ^C kg/d				
	Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
н									
• •									
ຫ									
• N									
I									
ω									

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

		Syntheti	.c wastewater	Actual	wastewater		
I.15	Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section numbers	
د ۲					-		

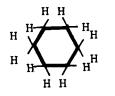
POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR DODECYLBENZENE SULFONIC ACID^{a, D}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

_


- 1. Fairchild, E. J., R. J. Lewis, Sr., and R. L. Tatken. Registry of Toxic Effects of Chemical Substances, Volume II. NIOSH-78-104B, National Institute for Occupational Safety and Health, Cincinnati, Ohio, 1977. p. 165.
- 2. Pitter, P. Determination of Biological Degradability of Organic Substances. Water Research, 10:1-5, 1976.

-

Compound: Cyclohexane

Formula:

Alternate Names: Hexahydrobenzene, Hexamethylene, Hexanaphthene

CAS #: 110-82-7

Physical, Chemical, and Biological Properties [1]

mol. wt.: 84.16 m.p., °C: 6.3 b.p. (760 torr), °C: 81
vapor pressure (20°C), torr: 77
solubility in water (20°C), mg/L: 55
log octanol/water partition coefficient: Not available
Henry's law constant: Not available
biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date: 8/13/79

I.15.3-1

INDUSTRIAL OCCURRENCE OF CYCLOHEXANE^{a,b}

	Raw wa	astewater
	Concentration, µg/L	Loading, ckg/d
Industry	Minimum Maximum Mean	Minimum Maximum Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

INDUSTRIAL OCCURRENCE OF CYCLOHEXANE^{a,b}

		Treated wastewater						
	Concen	Concentration, µg/L			Loading, ^C kg/d			
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		

I.15.3-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

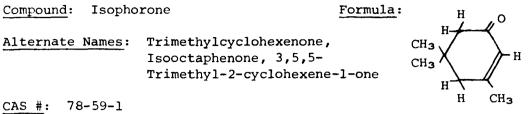
^bNA - not available; ND - not detected; BDL - below detection limit.

	Syntheti	c wastewater	Actual wastewater			
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section number	
		<u>conc.</u> , <u>pg</u> , <u>b</u>	0			

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR CYCLOHEXANE^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.


^CAverage and maximum removals reported.

-

1. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. p. 204.

-

.

Physical, Chemical, and Biological Properties [1]

mol. wt.: 138.2 m.p., °C: -8 b.p. (760 torr), °C: 215
vapor pressure (20°C), torr: 0.38
solubility in water (temp. unknown), mg/L: 12,000
log octanol/water partition coefficient: Not available
Henry's law constant: Not available
biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

	Raw wastewater							
	Concei	ntration,	ıg∕L	Loading, ^C kg/d				
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Coal mining	ND	307	44	0	1.2	0.17		
Paint and ink formulation	ND	44,000 ^d	NA	0	1.0	0.035		
Rubber processing	NA	NA	NA	NA	NA	NA		
Auto and other laundries	ND	190	10	9.0 x 10 ⁻⁶	0.014	0.002		
Coil coating	ND	600	300	0.015	0.54	0.14		
Iron and steel manufacturing	NA	NA	4,000	0	NA	720		
Nonferrous metals manufacturing	ND	29	1.6	0	NA	0.085		

INDUSTRIAL OCCURRENCE OF ISOPHORONE^{a,b}

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

I.15.4-2

INDUSTRIAL OCCURRENCE OF ISOPHORONE^{a, b}

	Treated wastewater							
	Conce	Loading, ^C kg/d						
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean		
Coal mining	NA	ND	ND	_d	_ ^d	_d		
Paint and ink formulation	ND	200	78	0	0.0036	0.00012		
Rubber processing	NA	<7 ^e	<7 ^e	1.4×10^{-6}	0,0062	0 _a 00023		
Auto and other laundries	NA ND ^e	NDe	NDe	-a	_a	_a		
Pharmaceutical manufacturing	ND	ND	ND	_d	_d	_a		
Foundries	<20	<20	<20	0	<0.13	<0.054		
Iron and steel manufacturing	NA	NA	9 5	0	NA	17		
Nonferrous metals manufacturing	ND	6	3	0	NA	0.16		

I.15.4-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

^CPollutant loadings determined by multiplying mean pollutant concentration by industry wastewater discharges as reported in Section I.3; where mean is not available, one-half the reported maximum was utilized.

^dMean pollutant concentration below detection limit.

^eOne sample.

	Syntheti	.c wastewater	Actual	wastewater		
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section_numbers	
Gravity oil separation			NA	6 ^d	III. 4 .1	
Gas flotation with chemical addition (calcium chloride, polymer)			>95 ^d	ND	111.4.5	
Sedimentation			49->97	<23	III.4.2	
Aerated lagoons			33 ^d	2 ^d	III.5.3	
Activated sludge			0 ^{d,e}	_e	111.5.1	
Powdered activated carbon adsorption			97 ^đ	30,000 ^d	III.6.2	

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR ISOPHORONE^{a, b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

^dOnly one data point.

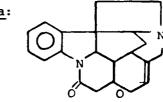
^eActual data indicate negative removal.

I.15.4-4

REFERENCES

-

 Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Company, New York, New York, 1977. p. 404.


-

Compound: Strychnine

Formula:

Alternate Names:

CAS #: 57-24-9

4

Physical, Chemical, and Biological Properties [1]

mol. wt.: 334.4 m.p., °C: 268-290 b.p. (760 torr), °C: 270
vapor pressure (25°C), torr: Not available
solubility in water (25°C), mg/L: Not available
log octanol/water partition coefficient: Not available
Henry's law constant: Not available
biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

INDUSTRIAL OCCURRENCE OF STRYCHNINE^{a,b}

	Raw wastewater					
	Concer	ntration, µ	g/L	Loa	ading, ^C kg/	′d
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mear

I.15.5-2

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

			ah
INDUSTRIAL	OCCURRENCE	OF	STRYCHNINE ^{a, b}

	Treated wastewater					
	Concer	ntration,	Jg/L	Loa	ading, c kg/	d
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

	Syntheti	c wastewater	Actual	wastewater	
Treatment process ^a	Removal range, %	Average achievable conc., µg/L	Removal range, %	Average achievable conc., µg/L	Volume III references, Section_numbers

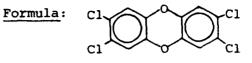
POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR STRYCHNINE^{a,b}

^aSee Volume III for detailed information.

^bNA - Not available, ND - not detected, BDL - below detection limit.

^CAverage and maximum removals reported.

REFERENCES


.

-

1. The Chemical Rubber Company. Handbook of Chemistry and Physics, 48th Edition. Cleveland, Ohio, 1967. pp. C-546, 547.

.

Compound: 2,3,7,8-Tetrachlorodibenzop-dioxin

Alternate Names: TCDD

CAS #: 1746-01-6

Physical, Chemical, and Biological Properties [1]

mol. wt.: 322 m.p., °C: Not available b.p. (760 torr), °C: Not available
vapor pressure (25°C), torr: Not available
solubility in water (25°C), mg/L: Not available
log octanol/water partition coefficient: Not available
Henry's law constant: Not available
biodegradability: Not available

<u>Probable Fate</u>: No specific data, but TCDD is extremely toxic and very resistant to all forms of degradation

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date: 8/13/79

INDUSTRIAL	OCCURRENCE	OF	2,3,7,8-TETRACHLORODIBENZO-p-DIOXIN ^{a,b}
TUDODIUTUD	OCCOLUMNCH	U 1	2757.70 Illinendenebisblikbe p bionin

	Raw wastewater						
	Concer	itration, μ	g/L	Loa	ading, ^C kg/	d	
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mear	

I.15.6-2

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

bNA - not available; ND - not detected; BDL - below detection limit.

		T	'reated w	astewater		
	Concer	ntration, µ	Ig/L	Lo	ading, ^C kg/	d
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

INDUSTRIAL OCCURRENCE OF 2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN^{a,b}

I.15.6-3

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.

POLLUTANT REMOVABILITY/TREATABILITY WASTEWATER TREATMENT ALTERNATIVE FOR 2,3,7,8-TETRACHLORODIBENZO-p-DIOXIN^{a,D}

	Synthetic wastewate	r Actual w	astewater	
_	Removal Average range, achievable	Removal range,	Average achievable	Volume III references,
Treatment process ^a	% conc., μg/	L 😵	conc., µg/L	Section numbers

^aSee Volume III for detailed information.

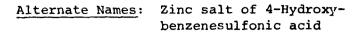
^bNA - Not available, ND - not detected, BDL - below detection limit.

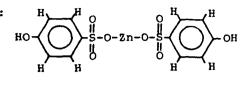
^CAverage and maximum removals reported.

REFERENCES

-

 Fairchild, E. J., R. J. Lewis, Sr., and R. L. Tatken. Registry of Toxic Effects of Chemical Substances, Volume II. NIOSH-78-104B, National Institute for Occupational Safety and Health, Cincinnati, Ohio, 1977. p. 358.


-


.

.

Compound: Zinc phenol sulfonate

Formula:

CAS #: 127-82-2

Physical, Chemical, and Biological Properties [1]

mol. wt.: 411.7 m.p., °C: Not available b.p. (760 torr), °C: Not available
vapor pressure (25°C), torr: Not available
solubility in water (temp. unknown), mg/L: 625,000
log octanol/water partition coefficient: Not available
Henry's law constant: Not available
biodegradability: Not available

Probable Fate: Not available

photolysis: oxidation: hydrolysis: volatilization: sorption: biological processes: other reactions/interactions:

Carbon Adsorption Data: Not available

Date: 8/13/79

I.15.7-1

۰

INDUSTRIAL OCCURRENCE OF ZINC PHENOL SULFONATE^{a, b}

			Raw w	astewater		
	Concen	tration, µ	g/L	Loa	ading, ^C kg/	d
Industry	Minimum	Maximum	Mean	Minimum	Maximum	Mean

I.15.7-2

^aInformation contained in this table was obtained from Volume II of the Treatability Manual.

^bNA - not available; ND - not detected; BDL - below detection limit.